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Abstract 

 

Conducting Polymer Hydrogels for High-Performance Electrochemical 

Devices 

 

Borui Liu, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor: Guihua Yu 

 

Abstract: Conducting polymer hydrogels (CPHs) is a class of unique materials 

that synergize the advantages of conducting polymers (CPs) and polymer hydrogels 

together. It has been employed in many high-performance electrochemical devices for 

years, such as energy storage and biosensors. However, large limitations of applying 

CPHs into the abovementioned areas have been facing the researcher for a long time, 

mainly due to the difficulties from complicated materials synthesis and untenable 

nanostructures for potential applications. The drawbacks of previously reported CPHs 

have put numerous disadvantages onto their applications, partially because they have, for 

example, high prices, untunable microscale or nanoscale architectures, environmentally 

hazardous properties, and unscalable and time-consuming synthesis processes. In this 

thesis, we proposed a novel route for carrying out CPHs by one-step organics synthesis at 

ambient conditions. The CPHs have hierarchically porous nanostructures crosslinked in a 

three-dimensional (3D) way, which enable its stable mechanical, unique chemical and 

physical properties, and outstanding electrochemical properties for potential applicability 



 vi 

in long-term energy storage devices and highly sensitive biosensors. With highly 

controllable nanostructures of the CPHs, our novel concept and material system could 

possibly be utilized in a broad range of electrochemical applications, including but not 

limited to lithium-ion batteries (LIBs) electrodes, electrochemical capacitors (ECs), 

biofuel cells, medical electrodes, printable electronic devices, and biosensors. 
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Chapter 1: Introduction 

Hydrogels are a class of materials that are developed by polymeric chains 

crosslinking three-dimensionally, which enables flexible property that is similar to 

naturally produced tissues and can swell under certain conditions but will not dissolve in 

water. A general concept of hydrogel could be made up of hydrophilic polymeric fibers 

and up to 99% water held inside the three-dimensional (3D) hydrogel matrix, which 

enhances their physical stability and flexibility. The highly adsorbing nature, large 

surface areas and porosities, fast chemical and mechanical responses, stable chemical and 

electrochemical stabilities, environmental friendliness and cost-efficiency of hydrogels 

enable them to be very promising alternative candidates for the next-generation electronic 

and electrochemical materials and devices, such as lithium-ion batteries (LIBs), 

supercapacitors (SCs), fuel cell electrodes, biosensors, drug delivery, medical electrodes, 

and so on.
1
  

Due to their unique 3D micro-/nano- structures and tunability, hydrogels are else 

employed as frameworks for combining with other lower dimensional materials, such as 

micro-/nano- particles (zero-dimensional),
2, 3

 carbon nanotubes (one-dimensional),
4
 

graphene nanosheets (two-dimensional),
5
 to form functional composites. The 

incorporations of additives or fillers help give largely improved promising performance 

in contrast to their separated individual candidates. In addition to the advantageous 

characteristics, there are also drawbacks of the aforementioned hydrogel composites. On 

one hand, the prerequisite for a rationally designed hydrogel composite is that the 

hydrogels and fillers (inorganic or organic) must be chemically and physically 

compatible with each other. Therefore, selecting well compatible materials with 

particular hydrogels leaves the difficulty of hydrogel composite synthesis due to less 
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available choices, especially in the case of pursuing high performance of the composite 

materials. One the other hand, although using surface modifications or treatments can 

assist the compatibility between the fillers and hydrogels mother matrix, degrading 

performance may be resulted from even the simplest treatments. For example, it was 

reported that CNTs were used as fillers to improve the electrical conductivity of the 

CNTs/hydrogel composite product. CNTs are known to be hydrophobic, while the 

hydrogels are hydrophilic. To gain an eventually well compatible hydrogel composite 

material, CNTs was treated with strong acid to make them to be water-loving materials. 

However, the acid treatment time and the acid concentration must be strictly controlled, 

since more than enough treatment can cause degradation or lose of the initial good 

electrical conductivity, resulting in a non-functional CNTs/hydrogel composite material. 

Moreover, the complexity and uncertainty in materials synthesis process make them to be 

of high time-cost and low scalability. Therefore, achieving hydrogels or hydrogel 

composites of excellent electrical and electrochemical properties without any 

complicated synthesis is a critical goal for extending their applicability in future 

electronic devices. 

Conducting polymers (CPs), such as polythiophene (PTs),
6
 polyaniline (PAni),

7
 

polypyrrole (PPy),
8
 poly(phenylene sulphide-phenyleneamine) (PPSA) and many other 

synthetic organic polymers,
9
 have been widely studied in the past decade. Generally, they 

are unstable p-type or n-type electrical semiconductors, without introduced anion 

dopants, which function for charge neutralization and electrical conductivity 

improvement during polymerization processes. The delocalized π-π conjugated polymer 

backbone chains are chemically, electrochemically and physically reversible during the 

doping/de-doping process. Moreover, the anion dopants can also play as crosslinkers at 

particular binding positions on the polymer host chains, to form 3D porous structures.
10
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The facile micro-/nano- structural building route provide a tunable way to synthesize a 

series of multifunction materials for advanced electrochemical devices and biomaterials.
9, 

11-13
 

 

 

Figure 1: Representative applications of the hydrogels. 

Conducting polymer hydrogels (CPHs), as a subgroup of CPs, synergize the 

virtues of both conducting polymers and polymer hydrogels. The 3D architectures of 

CPHs not only provide excellent electronic transport pathways through the crosslinked 

polymeric fibers, but also offer readily ionic migrations due to their large enough 

porosities. Another key property is the mechanical performance of CPHs. Three-
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dimensionally built-up polymer framework stabilizes the functional materials and extends 

their operational life. Another merit of CPHs is their facile processability, which enables 

CPHs to be cuttable, transformable, and processable by traditional ink-jet printing, 

electrospinning, screen printing, and newly developed 3D printing methods for 

micropatterned bioelectrodes, highly sensitive biosensors, energy storage and conversion 

devices, conductive coatings, etc. (Fig. 1) 
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Chapter 2: Synthetic Hydrogels 

2.1 CONVENTIONAL METHODS FOR CONDUCTING POLYMER (CPS) SYNTHESIS 

Large efforts on studying the chemical synthesis and electrochemical synthesis of 

CPs have been carried out extensively during the past decade. In most cases, a hard or 

soft template will be selected for template-direct growth of CPs. Typically applied 

templates for this purpose include aluminium oxide membranes,
14, 15

 polycarbonate (PC) 

membranes, block copolymers,
16

 porous silicate,
17

 mesoporous zeolites,
18

 carbon 

nanotubes,
19

 and pre-existing nanostructured materials.
20

 Hard template offers unique 

advantages for conventional materials synthesis. On one hand, they have cylindrical or 

spherical pores uniformly embedded in the template membranes with a wide range of 

pore diameters down to 10 nm and with pore densities up to 10
9
/cm

2
.
21

 The templated-

based porous nanostructures of hard templates enable precursor fillers to be loaded into 

the templates and eventually produced with unique nanostructures after removal of the 

hard templates. On the other hand, most hard templates are commercially available 

products with controllable pore sizes and distributions, which make it easier for 

synthesizing the wanted CPs with specified nanostructures. However, challenges are still 

exist for hard-template based CPs synthesis. Most importantly, hard templates limit the 

scalability for large-scale fabrications and manufacturing. Also, demanding post-

treatment to remove the hard templates for the intermediums in order to get the final 

nanostructured CPs may complicate the synthesis process and damage the good 

properties of CPs. 
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Figure 2: Conventional methods for the synthesis of nanostructured CPs. 

Another way of synthesizing CPs is to use soft meso-structured templates such as 

surfactant micelles, colloidal particles, and structure-directing molecules, etc. Surfactant 

micelles have been utilized extensively in chemical synthesis of microstructured and 

nanostructured materials.
22

 The fundamental mechanism of surfactant based soft-template 

synthesis of spatially organized CPs is automatically achieved under certain chemical 

environment through self-assembly, which is sensitively controlled by the surfactant tail 

lengths within the hydrophobic cores of the aggregations and effective surface areas 

composed by surfactant heads facing towards outside of the aggregations.
23

 An additional 

route of preparing nanostructured CPs is to use either conductive or non-conductive 

colloidal nanoparticles as soft templates. However, the biggest challenge facing these 

strategies (Fig. 2) is that integration individually existed CPs units into 3D arrangement is 
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practically difficult. Hence, in order to benefit fast matter transfer, namely electronic 

migration and ionic diffusion, as well as to gain a larger specific surface area derived 

from high porosity of CPs, alternative approach is critically needed to achieve CPHs. 

2.2 CONVENTIONAL METHODS FOR CONDUCTING POLYMER HYDROGELS (CPHS) 

SYNTHESIS 

CPHs are highly electronically conductive and structurally integrated hydrogels, 

with unique nanostructures, large porosity, and reversible electrochemical properties. 

Conventionally, CPHs are founded by chemical or electrochemical polymerizations of 

conducting polymer monomers onto non-conductive hydrogel host nano-matrix 

templates. Using chemical initiators or electrochemical polymerizations, conducting 

polymer monomers will be polymerized inside the confined nanostructured hydrogel 

framework. Three major ways of forming CPHs have been developed in previously 

reported literatures, as indicated by Fig. 3. 

First of all, non-templated hydrogel is prepared most commonly. After removal of 

most of water trapped by the hydrogel matrix, the hydrogel backbones will be established 

with open nanoporous structures. Then, the conducting polymer monomers will be filled 

into the ready dehydrated hydrogel matrix, following by a polymerization process of the 

monomer fillers, as presented in route 1. Route 1 is called “bottom-up” approach. 

Examples include CP/pHEMA,
24-26

 CP/alginate,
27, 28

 PEDOT/PAA,
29

 PEDOT/PAMPS,
30

 

and CP/PAAM.
27, 31-34

 The second way to synthesize CPHs is to use an already existing 

template with nanostructured pores or cylinder spaces inside, and then introduce the 

hydrogel as fillers to fill in the sacrificing template. After removal of the sacrificing 

template, nanostructured hydrogel will be stably sized into a structurally inverse 

template, which will be further filled with conducting polymer monomers. Therefore, 

CPHs will be formed after the finalization of polymerization steps. This is the so-called 
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“bottom-up, up-bottom” approach.
27,35-37

 A third way is to first blend hydrogel and 

conducting polymer monomers together to form a homogenous mixture, and then initiate 

the polymerization of either component firstly and then the other one afterwards. While, 

simultaneous copolymerization of both components in the blender of hydrogel and 

conducting polymer monomers is also an alternative method to achieve the CPHs.
38

 

 

Figure 3: Three conventional methods for the synthesis of CPHs. 

It's worth noting that the aforementioned three conventional synthetic routes can 

only fabricate CPHs composed two physically different and separated components, 

namely the hydrogels and conducting polymers. Also, all three methods have multiple 

synthetic steps, which are time-consuming and scientifically intricate. Moreover, 

secondary processing of the CPHs products, such as purification, tailoring, 

functionalization, modification and adhibition in potential electrochemical devices, could 
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be largely limited due to the discontinuities, in terms of matter categories and material 

properties. Therefore, a novel synthesis approach for CPHs with highly integrated 

physical, chemical, and electrochemical properties is scientifically and technically 

significant. Here, we will present a new method for CPHs synthesis that is advanced in a 

facile processability, tunable and integrated nanostructures, excellent electronic 

conductivity, and outstanding electrochemical activities. 

2.3 NOVEL METHODS FOR CPHS SYNTHESIS 

Basically, conventionally synthesized CPHs could severely suffer from the 

structural discontinuity, low biocompatibility, and detrimental electrical disintegrity, 

resulting in the deterioration of the electrical properties. Furthermore, there have been no 

reports on synthetic CPHs that could be processed or manufactured straightforwardly 

using large-scale micro-patternings. Phytic acid is a naturally produced saturated cyclic 

acid, the molecular geometry of which is clearly shown in Fig. 4. The crosslinking effect 

of phytic acid could be attributed to its six hydroxy groups, which could chemically 

interact to connect with multiple conducting polymer chains. 

 

 

Figure 4: The molecular geometry of phytic acid. 

Previously, we reported the nanostructured CPHs of PAni using the 

abovementioned our novel synthesis.
39

 In this synthesis (Fig. 5), the aniline monomer 

was used as the conducting polymer construction units and phytic acid was used as the 
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crosslinkers. A certain proportion of the mixture of aniline and phytic acid was mixed 

homogeneously to form a milk-white gel-like solution. After quickly adding in the 

ammonium persulfate (initiator), the polymerization reactions will be finished soon in 

several minutes, producing a dark-green hydrogel. 

 

 

Figure 5: Molecular structures and morphological characterizations of the synthetic CPH 

of PAni. (A) Scheme of 3D nanostructured PAni CPH. (B) Digital image of PAni CPH 

product, indicating the excellent viscidity of the hydrogel. (C−E) SEM images of the 3D 

porous nanostructures of PAni hydrogel. 
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The PAni hydrogel was tested for micro-patterning using ink-jet printing, 

demonstrating great processability and scalability. The PAni hydrogel was also tested in 

an half-cell supercapacitor. The PAni hydrogel-based supercapacitor showed very small 

electrochemical impedance and good rate performance, indicating good charge transfer 

capabilities. Additionally, a specific capacitance of ca. 480 Fg
−1

 at a current density of 

0.2 Ag
−1

 and 93% capacitance retention over 10,000 cycles were achieved, indicating the 

excellent electrochemical activity and potential for sustainable energy storage 

applications. Moreover, the synthetic PAni hydrogel was tested as biosensor electrode. 

Data showed an obtained response time of only ca. 0.3 s and an average sensing time of 

ca. 1.1 s, which could be benefited from the 3D porous nanostructures and highly 

conductive property. 

In this view, we herein report several applications of CPHs for energy storage 

devices and biosensors through a brand novel and forthright synthetic route to achieve 3D 

nanostructured CPHs networks using conducting polymer monomers as the build-blocks 

of the 3D conductive network of the hydrogel, and phytic acid molecules as the dopants 

as well as the crosslinkers. 
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Chapter 3: CPHs for High-Performance Electrochemical Energy Storage 

(EES) Devices 

3.1 3D HYBRID NANOSTRUCTURED ELECTRODE FOR LI-ION BATTERIES 

Electrochemical devices using conventionally synthesized CPs, hydrogels, and 

CPHs have been challenging in future applications, due to the limitation of the traditional 

multistep synthesis routes and discontinuity of the CPHs properties. Here, we apply our 

newly developed CPHs synthesis methods of using conducting polymer monomers as the 

nanostructured hydrogel backbones and phytic acid as the crosslinkers to form 3D porous 

architectures. The unique 3D porous nanostructured CPHs can not only facilitate ultrafast 

charge transportation at the interfaces of the aqueous phases and the CPHs as well as 

inside the CPHs body, but also largely enhance the electrical, electrochemical, and 

mechanical properties of the CPHs. The improved advantages of the CPHs based on our 

novel synthesis have been applied in Li-ion battery electrodes, electrochemical 

supercapacitor electrodes, and biosensors. 

Due to the tremendously increasing consumption of reserved fuels (petroleum, 

natural gases, coal, etc.), and the derived environmental contamination problems, new 

efficient and long-last energy technologies are immediately needed. Current novel energy 

sources such as wind energy, solar energy, hydroenergy, and geothermal energy have 

been contributing to electric power supplies. However, these power sources are still 

facing unstable accommodation and low efficiency of utilizing energy, due to the 

frequent fluctuations of electric power transported by the electric grids day and night. In 

order to improve the electric power source efficiency and accommodate the power 

shortage at electricity usage fastigium, high-performance energy storage devices are 

critically needed. 
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Li-ion battery is widely regarded as one of the most promising energy storage 

devices, owing to its high energy and power density, high rate performance, no memory 

effects, long-term cycling lifetime, environmental benignity, and relatively low cost. A 

Li-ion battery, in general, is composed of a Li-rich cathode, an anode, a separator 

sandwiched between them, and Li-ion conducting electrolyte wetting all these three 

components. In a Li-ion battery, lithium ions function as the energy storage charges, and 

the electrochemical shuttling of lithium ions back and forth between the cathode and 

anode characterizes the fundamental operational mechanism of the charge/discharge 

processes. During charge, lithium ions migrate from the cathode side to the anode side, 

resulting in a step-wise or continuous drop of the cell voltage, and vice versa.
40

 Fig. 6 

shows the schematic illustration of the structures of a typical Li-ion battery and lithium 

ions transportations during charge/discharge. 

 

Figure 6: Schematic illustration of a typical battery construction and lithium-ion 

migration directions during charge/discharge processes.  
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Recently, silicon (Si) has been intensively studied as one of the most promising 

anode materials for the next-generation high-performance Li-ion batteries, because: (1) Si 

has a theoretical gravimetric capacity of ca. 4,200 mAh g
−1

, assuming the formation of 

Li15Si4 (or Li3.75Si) phase via deep charge.
41

 This is nearly ten times higher than that of 

the commercially available graphite based anode materials. (2) Si has a low charge 

plateau around 0.2 V vs. Li/Li
+
, which make it possible for a high output voltage of the 

whole cell. (3) Si ranks the second place out of all elements in the crust, making it an 

abundant reserve with low cost. (4) Si is environmentally friendly. Even after 

combustion, Si will produce only silicon oxides, which is much safer, compared to 

graphitic anodes. However, Si anode is still facing critical problems. First of all, Si has a 

relative large volume expansion (ca. 300%−400%) during charge, which will cause 

cracking and pulverization of the Si anode, resulting in electron hopping and larger 

impedance. Second, Si is intrinsically poor electronic conductor. The low electrical 

conductivity of Si largely limited the charge/discharge rates and active materials 

utilization. Moreover, during charge/discharge processes, a layer of solid-electrolyte-

interphase (SEI) will be continuously formed on the surface of anode materials. The large 

volumetric expansion/contraction of Si structures will cause loss of support for SEI layer 

and break the SEI payer into small pieces into the electrolyte, resulting in a polluted 

electrolyte and poor cycling. Afterwards, SEI layer will be formed by consuming 

electrolyte, and will be broke again and again until the battery dies soon. Besides, the 

kinetics of Si-Li alloying/dealloying during charge/discharge processes are essentially 

controlled by the Si-Li reacting front. Therefore, nanostructured Si-based anodes are 

necessarily needed in order to shorten the Li diffusion pathway, boost the utilization 

efficiency, and to gain high enough cell capacity. 
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3.2 SYNTHESIS OF 3D ELECTRODE FOR LI-ION BATTERIES 

Herein, we used our newly developed CPHs synthesis method to form silicon 

nanoparticles (SiNPs)−PPy CPHs nanocomposite anode materials for high-performance 

Li-ion batteries, with long-term cycling life and high rate performance, via the following 

steps.
42

 First, solution A was prepared by mixing 84 μL pyrrole monomers (98% reagent 

grade, Sigma Aldrich) with 184 μL phytic acid solution (50% w/w in H2O, Sigma 

Aldrich) in 2,500 μL isopropyle alcohol (IPA) to form a milk-white gel. Solution B was 

achieved by dissolving 274 mg ammonium persulphate (APS) into 2,500 μL deionized 

(DI) water. Then, 900 μL solution A and 300 μL solution B were mixed well with 60.0 

mg SiNPs (MTI, Inc) in a 20 mL glass vial to form a light-brown gel-like blender, 

followed by 3−5 min bath sonication. Afterwards, the sonicated blender was seated on 

the lab-table for 10 min, producing dark-green slurry. After 1 min more sonication of the 

slurry, doctor-blade coating was conducted for the slurry on a piece of copper foil. For 

comparison, we also synthesized ternary SiNPs−PPy−single walled carbon nanotubes 

(CNTs) electrode for further improvements in the cycling and rate performance of the 

battery. The nanostructures of the SiNPs−PPy and SiNP−PPy−CNTs ternary electrodes 

were characterized by scanning electron microscope (SEM), scanning transmission 

electron microscope (STEM), and elemental mapping. The electrochemical performance 

of the two electrode materials were measured by electrochemical impedance 

spectroscopy (EIS), cyclic voltammetry (CV), rate performance and cycling performance 

tests. 

3.3 CHARACTERIZATIONS OF HALF-CELL LI-ION BATTERIES 

 As shown in Fig. 7, the SiNP−PPy−CNTs nanostructured ternary electrode was 

synthesized by the one-step organic reaction. The SiNPs were wrapped well in the CPH 

matrix, and the CNTs were wrapping and crossing the entire SiNP−PPy bulk. The 3D 
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wrapping of PPy CPH on SiNPs could not only enhance the electrical conductivity of the 

whole electrode, but also largely accommodate the huge volumetric evolution 

(expansion/contraction) during long-term deep charge/discharge cycling. The CNTs 

wrapping and crossing can further improve the mechanical and electrical integrity of the 

SiNP−PPy binary material. Moreover, the PPy CPH and CNTs wrapping on SiNPs 

surfaces could also stabilize the SEI layer, thus further improving the cycling life for the 

battery. Additionally, there is an in situ polymeric layer on the SiNP surface, resulting in 

an enhanced electrical and structural integrity. The synthesis of binary nanostructured 

SiNPs−PPy electrode was conducted under the same way except for the coating of CNTs. 

 

 

Figure 7: Ternary electrode structure design and fabrication. (A) Schematic illustration of 

the formation of 3D SiNPs−PPy−CNTs nanostructured ternary electrode. (B) Digital 
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image showed the as-synthesized SiNPs−PPy−CNT slurry to be dark-green color (left), 

and indicated that the SiNPs−PPy−CNT slurry can be evenly blade-coated onto the large-

area copper foil (right). 

 

 

Figure 8: Nanostructural characterizations of 3D Si−PPy electrode. 

Fig. 8 presented the nanostructures of binary nanostructured SiNPs−PPy 

electrode. The 3D hierarchical ternary nanostructures of the SiNPs−PPy electrode were 

clearly shown in the SEM image in Fig. 8(A). Fig. 8(B) demonstrated an in situ layer of 

polymeric coating on SiNPs surface. Electrochemical analysis tests were carried out in a 

half cell with lithium metal chip as the counter electrode. 
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Figure 9: Electrochemical characterizations of 3D Si−PPy electrode. (A) EIS profiles for 

the first ten cycles. (B) CV profile of the SiNPs−PPy electrode at a scanning rate of 0.1 

mV s
−1

 in the voltage range of 0.01−1.0 V vs. Li/Li
+
 after 10 cycles. (C) Voltage profiles 

at various current rates at 0.4, 0.8, 1.6, 3.2 and 7.1 A g
−1

. (D) Rate performance at 0.4, 

0.8, 1.6, 3.2 and 7.1 A g
−1

 rates. 

 

 

Figure 10: Nanostructural characterizations of 3D Si−PPy−CNT ternary electrode. 

Fig. 9 presented the electrochemical performance of the SiNPs−PPy electrode. 

Fig. 9(A) showed the EIS plots for the first ten cycles of 3D SiNPs−PPy electrode. The 

impedance for the first cycle was larger than those of the second to the tenth cycles, 

indicating a decreasing impedance of the of SiNPs−PPy electrode. This could be due to 

the activation effect and electrical conductivity improvement derived from the Li-Si 

alloying. Although the SEI layer, which is essentially electronically resistive but lithium-

ion conductive, formed majorly during the first charge/discharge cycle, no obvious 
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impedance increase was observed, suggesting a minor negative effect from the SEI 

formation compared to the former two effects. Also, the impedance of cycle 2−10 had 

little change, indicating little further SEI formation and good stability of the electrode 

materials during the cycling afterwards. Fig. 9(B) showed the CV profile of the 

SiNPs−PP electrode at a scanning rate of 0.1 mV s
−1

 in the voltage range of 0.01−1.0 V 

vs. Li/Li
+
 after 10 cycles. Typical redox peaks were observed as one at around 0.2 V and 

two at 0.4−0.6 V. In contrast to the weak peak at around 0.02 V, the strong peak at 

around 0.2 V indicated that Li-Si alloying contributed majorly to the total capacity. 

Charge/discharge profiles in Fig. 9(C−D) showed that the average discharge capacity at 

0.4 A g
−1

 rate was ca. 2400 mAh g
−1

, demonstrating the good capacity maintenance at 

higher current rates of the SiNPs−PPy electrode. 

Fig. 10 showed the SEM and STEM images of 3D SiNPs−PPy−CNTs ternary 

nanostructured electrode. Fig. 10(A−B) clearly showed that the ternary anode material 

had a hierarchical porous nanostructure. SiNPs were embedded in the highly conductive 

constructed by PPy CPHs and CNTs. The porous nanostructure and mechanical 

properties of the ternary electrode can largely accommodate volumetric evolution of 

SiNPs during Li-Si alloying/dealloying reactions. Also, PPy CPHs plus CNTs can assist 

the electrical integrity of the electrode material, offering continuous electron transport 

across the 3D nanostructure to active materials. For Fig. 10(C−D), the STEM image and 

elemental mapping confirmed an in situ polymeric coating on SiNPs surfaces. The in situ 

PPy CPHs coating was intimately formed by the synergistic effect of electrostatic 

function between the negatively charged −OH groups and positively charged polypyrrole 

polymer backbone and the hydrogen bonding between phosphoric acid groups in the 

phytic acid molecules and native SiO2 on the Si particle surfaces. The in situ PPy CPHs 

layer was obviously demonstrated by the carbon signalized area (red) around the SiNPs 



 20 

(green) in Fig. 10(D). The in situ PPy CPHs layer could link the individual Si particles to 

the 3D conductive network, resulting in a further improved electric conductivity of the 

electrode material. To test the improvement of the 3D Si−PPy−CNT ternary electrode, 

we conducted similar characterizations as follows. 

 

 

Figure 11: Electrochemical characterizations of 3D Si−PPy−CNT ternary electrode. (A) 

EIS profiles for the first ten cycles. (B) CV profile of the SiNPs−PPy−CNTs electrode at 

a scanning rate of 0.1 mV s
−1

 in the voltage range of 0.01−1.0 V vs. Li/Li
+
 after 10 

cycles. (C) Voltage profiles at various current rates at 0.5, 1.0, 2.0, 4.0, and 8.3 A g
−1

. (D) 

Rate performance at 0.5, 1.0, 2.0, 4.0, and 8.3 A g
−1

 rates. 

Fig. 11(A) showed the EIS plots for the first ten cycles of 3D Si−PPy−CNT 

ternary electrode. The impedance for the first cycle was larger than those of the second to 

the tenth cycles, indicating a decreasing impedance of the of Si−PPy−CNT electrode. 

This could be due to the activation effect and electrical conductivity improvement 

derived from the Li-Si alloying. Although the SEI layer, which is essentially 
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electronically resistive but lithium-ion conductive, formed majorly during the first 

charge/discharge cycle, no obvious impedance increase was observed, suggesting a minor 

negative effect from the SEI formation compared to the former two effects. Also, the 

impedance of cycle 2−10 had little change, indicating little further SEI formation and 

good stability of the electrode materials during the cycling afterwards. Fig. 11(B) showed 

the CV profile of the SiNPs−PPy−CNTs electrode at a scanning rate of 0.1 mV s
−1

 in the 

voltage range of 0.01−1.0 V vs. Li/Li
+
 after 10 cycles. Typical redox peaks were 

observed as one at around 0.2 V and two at 0.4−0.6 V. In contrast to the weak peak at 

around 0.02 V, the strong peak at around 0.2 V indicated that Li-Si alloying contributed 

majorly to the total capacity. Charge/discharge profiles in Fig. 11(C−D) showed that the 

average discharge capacity at 0.5 A g
−1

 rate was ca. 3100 mAh g
−1

, which was ca. 400 

mAh g
−1

 higher than that of the Si−PPy anode at the same current density (Fig. 9). 
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Figure 12: Cycling stability and morphological evolution of the 3D SiNPs−PPy and 

SiNPs−PPy−CNTs hybrid electrodes after long-term cycling. 

Cycling performance tests for the 3D SiNPs−PPy, SiNPs−PPy−CNTs hybrid 

electrodes, and SiNPs−PVDF regular electrode (control sample) were conducted in the 

voltage range of 0.01−1.0 V vs. Li/Li
+
. Fig. 12(A) presented that the 3D SiNPs−PPy and 

SiNPs−PPy−CNTs nanostructured electrodes showed stable cycling with capacity 

retentions of over 85% and 60% for 1000 cycles, respectively. The specific discharge 

capacities of both electrodes were over 1000 mAh g
−1

 at 3.3 A g
−1

 current rate. In sharp 

contrast, the SiNPs−PVDF regular electrode will almost die in 200 cycles with average 

capacity lower than 500 mAh g
−1

. The good cycling performance of the PPy CPHs based 

3D nanostructured electrodes can be attributed to the mechanical accommodation effect 

of polymeric hydrogel matrix on volumetric changes of the SiNPs. The high active 

materials utilization efficiency of the hybrid electrodes were attributed to the 3D electron 

transfer pathway and the ultrafast lithium ion diffusion crossing the 3D hierarchical 

porous nanostructures of the hybrid electrodes. It is worth mentioning that the CNTs 

contributed to a higher specific capacity in the ternary electrode. This could be attributed 

to the better electric connections between the SiNPs and the outside CPHs network, 

which offered a smoother transport for electrons and improved utilization efficiency of 

active materials (Si). Moreover, the Coulombic efficiencies (CEs) of both hybrid 

electrodes were higher than 78% for the first cycle and over 99% in average for over 

1000 cycles, indicating excellent reversibility of the battery. The stable reversible Li-

extraction capacity and CE vs. cycle number for the ternary electrode at 8.6 A g
−1

 current 

rate with discharge capacity limited to 1000 mAh g
−1

 was shown in Fig. 12 (B). The CE 

was ca. 76% for the first cycle and rapidly ramped to over 99% for the subsequent cycles. 
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Fig. 12 (C) showed the nanostructures of the cycled hybrid electrode with SEI 

layer and CNTs removed. After long-term cycling, the 3D matrix was mostly maintained. 

The fibrous backbones had morphological deformation due to repeated electrochemical 

lithiation/delithiation. After the cycling, conductively polymeric coating was maintained, 

which was shown clearly from the elemental mapping in Fig. 12 (D), although little 

structural changes happened. Therefore, long-term cycling stability could be achieved. 

In conclusion, our novel CPHs synthesis method worked well in Li-ion battery. 

This promising material design and the concept of the scalable synthesis method are 

expected to be useful for other alloy-type anode such as germanium, tin, and tin oxides. 

3.4 CPHS FOR ELECTROCHEMICAL SUPERCAPACITORS (SCS) 

 

Figure 13: Ragone plot of various electrical energy storage devices and classical 

constructions of an electrochemical capacitor. 

While Li-ion batteries have been used widely studied and applied in up-to-date 

portable devices, the low current density provided by Li-ion batteries largely limits the 

power density of the power suppliers and thus the performance of electrical systems. 
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(Fig. 13) Therefore, electrical power sources that can provide much larger current are 

critically needed for next-generation high-performance electronic devices. The property 

differences of Li-ion batteries and electrochemical capacitors are shown in Table 1.
43

 

 

Electrochemical capacitors, namely supercapacitors or ultracapacitors, since the 

earliest patent filed in 1950’s and product marketized in 1970’s, have been extensively 

studied as the most promising backup power suppliers for high-power electrical 

appliances, such as hybrid electrical vehicles (HEVs), electrical vehicle (EVs), wearable 

and portable devices. Electrochemical capacitors are generally allocated into two 

categories: electrical double-layer capacitors (EDLC) and pseudocapacitors. As different 

from conventional solid dielectric capacitors, these new types of electrochemical 

capacitors store electricity with two main mechanisms: double-layer capacitance and 

pseudocapacitance (faradaic charge storage). Moreover, the pseudocapacitance 

mechanism includes two charge storage principles: redox reactions upon electrosorption 

or cation intercalation at the electrode surfaces.
44, 45

 

Table 1: Comparison of Li-ion batteries and electrochemical capacitors 

Property Battery Electrochemical capacitor 

Storage mechanism Chemical Physical 

Power limitation Reaction kinetics, mass transport Electrolyte conductivity 

Energy storage High (bulk) Limited (surface area) 

Charge rate Kinetically limited High, same as discharge rate 

Cycle life limitations 
Mechanical stability, chemical 

reversibility 
Side reactions 

Graphitic electrodes for electrochemical capacitors have been commercially used 

in the past several decades. Mostly, graphitic materials are based on double-layer 

capacitance mechanism. The excellent electrical conductivity, well stable chemical and 

electrochemical properties, and good electrochemical activity of graphite/graphene 
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electrodes make them good candidates for capacitive electrode materials.
46-48

 However, 

their applications are narrowed by the limited specific capacitance, which is mainly due 

to their energy storage mechanism and restricted specific surface area.
49-51

 Therefore, 

many studies have been conducted on combining graphitic materials with transition metal 

oxides. 

Transition metal oxides (TMOs) are famous for their excellent pseudocapacitive 

property, which offers ultrahigh pseudocapacitance for potential applications. However, 

most TMOs-based electrodes are intrinsically low electrical conductivity, resulting in 

poor capacitive performance. Therefore, combining TMOs, such as RuO2,
52-55

 MnO2,
56-60

 

Mn3O4,
61-63

 V2O5,
64-67

 TiO2,
68-71

 NiO/Ni(OH)2,
72, 73

 et al. with graphitic materials seems 

to be an effective way to provide highenough capacitance and thus accomplish good 

enough electrochemical performance.
74-78

 It has been reported that RuO2 pseudocapacitor 

electrode has the highest theoretical specific gravimetric capacitance (over ca. 1000 F 

g
−1

) among all previously reported metal oxides (MOs), but the bottleneck of large-scale 

application is the high cost (a vehicle-sized EC of RuO2 would cost more than $1 

million).
79

 Also, MnOx-based electrodes suffer from unwanted dissolving during redox 

charge/discharge cycling processes. 

The specific capacitance (Cs) for the device can be achieved using the following 

the equation: 

   
  

 
 
    

 
 

where Cs is the capacitance of the supercapacitor, m is the total active mass loading on 

the electrode, Id is the current density based on mass loading of active materials, t is 

discharging time, and V is the applied voltage range. 
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Power density (P) and energy density (E) can be calculated by using the following 

equations: 

  
  

   
           

      

 
 

 

where V is the applied voltage range, R is the internal resistance, m is the total mass 

loading of active electrode materials, and C is the measured total capacitance of the 

supercapacitors. 

Flexible electrochemical energy storage devices, such as wearable devices, 

bendable screens, and foldable televisions, are the most exciting development in the next-

generation power sources. Traditional MOs/TMOs based supercapacitor electrode 

materials used for flexible energy storage devices are facing difficulties such as low 

active materials loading and decreasing electrochemical performance when aggrandizing 

the active materials mass density. Therefore, new materials for high-performance 

supercapacitors with long-last cycling life, ideal electrochemical performance, advanced 

tunable nanostructures, low cost, high mass-loading density, and scalable manufacturing. 

Herein, we report 3D hierarchically porous nanostructured PPy-based CPHs as 

high-performance flexible supercapacitor electrodes. The organic synthesis of PPy CPHs 

is generally the same as previously reported synthesis method for PAni conducting 

polymer hydrogels.
10

 

3.5 SYNTHESIS OF PPY HYDROGEL ELECTRODE 

During polymer synthesis, 274 mg APS solid (98%, Sigma Aldrich) was 

dissolved in 500 μL DI water, and labeled as solution A. 84 μL pyrrole (99%, Sigma 

Aldrich) was mixed into 500 μL IPA, followed by the addition of 184 μL phytic acid 

(50%, wt. % in water, Sigma Aldrich), and labeled as solution B. After gentle shaking, 
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solution B will become an ivory-white blender. The chemical vials in addition to the A/B 

solutions were rapidly cooled to roughly 0−4 ℃ using dry ice to slow down the 

exothermal organic reactions. Right after a ready mix of A and B solutions, a controllable 

time-dependent dip of a piece of carbon cloth (24-hour surface treatment in 8 M HNO3, 

10 mm × 20 mm) into the as-synthesized PPy CPHs was conducted. Electrodes were 

naturally dried in fume hood at room temperature and purified by immersing them in DI 

water and IPA for 24 hours. Afterwards, another drying step was repeated for future 

electrochemical measurements. PPy hydrogels with different pyrrole:phytic acid (Py:PA) 

ratios of 5:1, 10:1 and 20:1 were synthesized for further optimization and electrochemical 

testing. It is shown in Fig. 14(A) that the hydrated dark-green PPy hydrogel is well 

attached to the bottom part of a 20 mL glass vial, indicating the property of high viscosity 

of the hydrogel. Fig. 14 (B) shows two electrode samples of the PPy CPHs coated on 

individual pieces of carbon cloth. The active materials mass loading densities are decided 

by the weight changes of the dried carbon cloth before hydrogel coating and after the 

coated PPy CPHs totally dehydrated over the coated surface areas. After dehydration of 

the supercapacitor electrodes, the PPy hydrogel will be tightly staying on the carbon 

cloth, making sure the physical stability of the electrodes during long-term 

charge/discharge cycling operation. After dehydration, the spongy 3D porous PPy CPHs 

bulk was pressed under a 100 g balance weight and maintained the intact morphology, 

indicating the good mechanical property of the PPy hydrogel. 
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Figure 14: PPy CPHs material and as-synthesized electrodes. (A) Sample of the PPy 

hydrogel in a 20 mL glass vial. (B) Electrode demos of PPy hydrogel coated carbon 

cloth. (C) Dehydrated sponge-like 3D PPy hydrogel sample placed under a 100 g weight. 

3.6 CHARACTERIZATIONS OF HALF-CELL SCS 

The Fourier transform infrared spectroscopy (FTIR) analysis in Fig. 15(A) 

confirms the formation of PPy CPHs. The absorption bands are assigned to the in-ring 

stretching vibrations of C=C and C−C bonds in the pyrrole rings and stretching vibrations 

of C=C and C−N bonds (1552.4 and 1704.9 cm
−1

, respectively), C=C and C−N bonds, in-

plane and out-of-plane bending vibrations of the C−H bond (1296 and 1045.1 cm
−1

), and 

stretching vibrations of C=C and C−N bonds (965.4 cm
−1

). These absorptions are 

characteristics of those for PPy hydrogel.
80

 SEM images in Fig. 15(B) show the 3D 

porous morphology of PPy hydrogel. The foam-like microstructures are constructed by 

continuous network of spheres with diameter between 200 nm to 5 μm. Further TEM 

investigation in Fig. 15(C) reveals that the hollow organic PPy microspheres are with 

shell thickness of 50−100 nm. 
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Figure 15: Interconnected hollow sphere conducting PPy hydrogel. (A) FTIR of the PPy 

hydrogel with characteristic peaks labeled. (B) SEM image of dehydrated PPy hydrogel. 

Inset scale bar: 1 μm. (C) TEM image of dehydrated PPy hydrogel. Inset scale bar: 200 

nm. 

 EIS, CV, and galvanostatic charge-discharge measurements were conducted for 

the PPy CPHs electrodes in a conventional three-electrode system. Fig. 16(A) shows the 

EIS curves of PPy hydrogel based electrodes measured in a 1 M H2SO4 electrolyte with 

different PPy mass loadings: 1.8 mg/cm
2
, 7.2 mg cm

−2
 and 20 mg cm

−2
. The two small 

semicircles in higher frequency range indicate very small charge transfer resistance. 

Approximately vertical EIS curve tails in lower frequency range predict idea capacitive 

ability. Fig. 16(B) exhibits the rate-dependent CV curves at different scan rates of the 

half-cell PPy hydrogel supercapacitor. The current densities increase along with 

increasing scan rates, suggesting good rate performance. Fig. 16(C) shows the discharge 
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profiles of the PPy hydrogel electrode at current densities of 0.14, 0.28, 0.7, 1.4, and 2.8 

A g
−1

. Specific capacitance vs current density profiles are compared for the hydrogel 

electrodes with active mass loadings of 1.8, 7.2, and 20 mg cm
−2

 at various current 

densities in Fig. 16(D), revealing excellent rate capability even with relatively high 

material loadings. Corresponding data were also shown in form of areal capacitance vs 

current density in Fig. 16(E). Area-normalized capacitance values are largely improved 

compared to previous reports.
81, 82

 A specific capacitance of 300−400 F g
−1

 was achieved 

for all the three samples at the current density of 0.2 A g
−1

. To the best of our knowledge, 

this is the best performance that has ever been reported in literatures compared to that of 

other supercapacitors using conducting polymers as active electrode materials. Besides, 

cycle life is another criterion for in supercapacitor operations. Fig. 16(F) shows the 

cycling stability of the PPy hydrogel electrodes. After 2000 electrochemical cycles, the 

capacitance degradations are less than 10% for all three samples. High materials loading 

did not worsen the capacitance retention. 

The ideal performance could be attributed to the following reasons. Firstly, the 

synthesized conducting polymer hydrogel has an intrinsically good electric conductivity 

along the polymer backbones. Unlike other metal oxide electrodes or composite 

electrodes, PPy hydrogel electrode has a 3D continuous electron transfer pathway. The 

highly integrated electronic conductive backbone of PPy hydrogel electrode ensures good 

electrochemical performance for supercapacitors. Secondly, although specific 

capacitance (F g
−1

) is commonly used in scientific reports, areal capacitance (F cm
−2

) is 

more important in practical utilities since it will be restricted by high mass loading. PPy 

hydrogel electrode has micro-/nano- porous structures. The interspatial porosity offered 

by ruptured PPy hollow spheres as well as those between PPy nanofibers allows fast ionic 

migration from the aqueous electrolyte to the electrode inside, favoring rapid 
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adsorption/desorption process. Although PPy hydrogel layer will thicken proportionally 

with an increasing mass loading, its porous structure can still support high-rate behavior 

of the supercapacitors. Also, the hydrophilic property of PPy hydrogel can ensure a 

thorough wetting of the electrode by aqueous electrolyte. Moreover, the unique hydrogel 

viscosity provides good affinity to the carbon cloth fibers. No obvious active material 

peeling off from the carbon cloth substrate has ever been observed yet during the 

electrochemical tests, which physically guarantees enduring stable electrochemical 

performance of the supercapacitors. Most importantly, the rapidly charged/discharged 

redox-active sites incorporated on the polymer matrix can increase the overall 

capacitance of the supercapacitor under fast cycling rates.
83

 

 

 

Figure 16: Electrochemical measurements of the PPy hydrogel supercapacitors in 1 M 

H2SO4 electrolyte with various high active mass-loadings. 
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3.7 CHARACTERIZATIONS OF SYMMETRIC FLEXIBLE SCS 

 A highly flexible supercapacitor was assembled by two pieces of dehydrated PPy 

hydrogel electrodes sandwiching a PVA-H2SO4 gel-like electrolyte. The PPy hydrogel 

were well wetted by PVA-H2SO4 electrolyte. The brief configuration of the solid-state 

symmetric PPy hydrogel supercapacitor is shown in Fig. 17. 

Electrochemical performance of the PPy hydrogel supercapacitor (active mass 

loading: 20 mg cm
−2

, Py:PA = 10:1) was tested by EIS, CV, rate capability and cycling 

tests. Fig. 18(A) shows the EIS curve of the symmetric PPy hydrogel supercapacitor. The 

extremely small values on the real axis in the higher frequency range indicate a good 

ionic conductivity of the PPy CPHs. The nearly vertical tail in lower frequency range also 

implies ideal capacitive property of the flexible solid-state supercapacitor. 

 

 

Figure 17: Highly flexible symmetric PPy CPHs supercapacitor. 

To test the electrochemical performance under bended conditions, CV was 

conducted in voltage range of 0.0−1.0 V vs. Ag/AgCl reference electrode (RE) at 100 

mV s
−1

 scan rate, showing well overlapping curves with radius of curvatures of ∞, 8 mm, 

and 3 mm in Fig. 18(B). Apparently, the encircled areas in the closed CV curves decrease 

as the curvature of the supercapacitor increases. Even under highly bended status, the 

capacitance degradation is still negligible compared to that of the flat one, which can be 
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attributed to the good mechanical flexibility of the spongy PPy hydrogel network. The 

porous space enclosed in PPy hydrogel network can largely accommodate the 

deformation of PPy backbone during bending. To test the flexibility-dependent rate 

capability, galvanostatic charge/discharge tests were carried out under various current 

densities. Specific capacitance was calculated and plotted vs. current density in Fig. 

18(C). The specific capacitance retains ca. 90.1%, ca. 80.6%, and ca. 61.3% of the initial 

value when current density is increased by 4×, 19×, and 44×, respectively. Cycling 

performance was further tested for the flexible solid-state supercapacitor by 3000 

charge/discharge electrochemical cycles in the potential range of 0.0−1.0 V vs. Ag/AgCl 

RE (Fig. 18(D)). Capacitance retention of ca. 10% was finally achieved, indicating 

relatively good electrochemical stability and cyclability. 

 

 

Figure 18: Electrochemical performance of the flexible PPy CPHs supercapacitor under 

various bended conditions. Inset: radii of curvature of the sample are 8 mm and 3 mm on 

the left and right, respectively. 
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 In conclusion, the 3D porous nanostructured PPy CPHs achieved by our unique 

materials synthesis method has demonstrated ideal electrochemical properties for high-

performance flexible solid-state supercapacitor electrodes. 
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Chapter 4: CPHs for Glucose Enzyme Biosensors 

Human health is one of the most popular social topics in the past decade. As one 

of the leading causes of disabilities and death, blood sugar illness has been early brought 

to the worldwide research forefront. As soon as the blood glucose concentration is higher 

or lower than theoretically normal range of 80−120 mg dL
−1

 or 4.4−6.6 mM, potential 

metabolic disorders reflect on human body. With the consumption accounting for about 

85% of the whole biosensor market and the critical requirements for a tight monitoring of 

blood glucose levels, more developed highly sensitive, low-cost, long-life biocompatible 

electrochemical glucose biosensors are eagerly needed. 

4.1 DEVELOPMENT OF ELECTROCHEMICAL GLUCOSE BIOSENSORS 

Electrochemical glucose biosensor was firstly reported by L. Clark Jr. and C. 

Lyons of the Cincinnati Children’s Hospital in the year 1962. It was established on a 

glucose oxidase (GOx) thin layer captured over an oxygen electrode via a semipermeable 

dialysis membrane. The sensing mechanism relied on detecting the oxygen consumed by 

the enzyme-catalyzed reaction, while applying a negative potential to the platinum (Pt) 

cathode for a reductive detection of the oxygen consumption, as the chemical reaction 

equation shown below.
84

 

Glucose + O2 
               
→            Gluconic Acid + H2O2, 

and 

O2 + 4H
+
 + 4e

−
 → 2H2O. 

In 1973, G. Guilbault and G. Lubrano carried out an enzyme electrode for the 

amperometric (anodic) determination for blood glucose.
85

 The mechanism was based on 

the monitoring of the hydrogen peroxide product, as shown by the equation below. 

H2O2 → O2 + 2H
+
 + 2e

−
. 
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Then, continuous ex-vivo and in-vivo monitoring of blood glucose were put 

forward, which were proposed by P. Schlapfer et al. and M. Shichiri et al. in 1974 and 

1982, respectively.
86, 87

 The 1980s−1990s epoch witnessed the most vigorous growing of 

biosensor developments, indicating the increasing prominence of biotechnology at that 

era. Emerging developments and outcomes included mediator-based ‘second-generation’ 

glucose biosensors, screen-printed strips for self-monitoring, enhanced electrical 

communication between the redox center of GOx and the electrode surface, and 

subcutaneously implantable devices.
88-91

 

The third-generation glucose biosensors move towards a much higher selectivity, 

advantaging in very low operating potentials and the absence of redox mediators. Several 

works were reported regarding the overcoming of the spatial separation of donor-acceptor 

pair for a direct electron-transfer route catalyzed by GOx.
92-95

 The comparison of three 

generations of glucose biosensors are presented in Fig 19(A−C). Despite the comforting 

progresses in the development of highly sensitive glucose biosensors, they are still 

limited due to not good enough performance.  

 

 

Figure 19: Schemes of the three generations of electrochemical glucose biosensors. (A) 

Natural oxygen cofactor. (B) Artificial redox mediators. (C) Direct electron transfer 

between GOx and electrode. 
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4.2 PANI HYDROGEL FOR HIGHLY SENSITIVE GLUCOSE BIOSENSORS 

Next-generation electrochemical glucose biosensors are very important for 

accurate human blood monitoring and potential disease prevention. However, many 

glucose biosensors have restricted detective capability dominated by their not fast enough 

electrical signal direction and transfer. Therefore, new materials with high electrical 

conductivity, good ionic transportability, high electrochemical activity, good 

electrochemical stability, as well as good biocompatibility are of critical significance for 

improving the sensitivity of electrochemical glucose biosensors. 

Herein, we report a highly sensitive glucose enzyme sensor based on platinum 

nanoparticles (PtNPs)−polyaniline (PAni) CPH heterostructures.
96

 The PtNPs−PAni 

glucose biosensor was founded on the platform of our previously reported CPHs 

synthesis method.
10

 

4.3 SYNTHESIS OF PTNPS−PANI GLUCOSE BIOSENSORS 

Synthesis of the PAni hydrogel: Solution A was achieved by well mixing the 

blender of 921 μL phytic acid solution in 2000 μL DI water, followed by adding in 458 

μL distilled aniline monomer (99%, Sigma Aldrich) and then sonicated to get clear 

solution. Solution B was achieved by dissolving 286 mg APS (98%, Sigma Aldrich) in 

1000 μL DI water. Afterwards, solution A and B were rapidly mixed in a 20 mL glass 

vial under ice-water bath (0−4 ℃) condition, and a dark-green PAni hydrogel will be 

formed in 3−5 min. 

Fabrication of PtNPs−PAni glucose biosensor: 5 μL mixed solution containing A 

and B was coated onto a platinum electrode of 5 mm in diameter and ca. 0.1963 cm
2
 in 

area. After being transferred to 2 ℃ environment for 10 min, a thin uniform PAni 

hydrogel layer was formed on the Pt electrode surface. Then, electrode was dipped in DI 

water at 40 ℃ for 30 min to remove oligomers and excess ions. Afterwards, the PAni 
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hydrogel-modified Pt electrode was immersed into a solution containing 4,500 μL DI 

water, 9.65 μL H2PtCl6 (1 mM), and 250 μL formic acid for 12 h. Then, the electrode was 

repeatedly washed running DI water to remove the excess ions and dried at 45 ℃. 

Immobilization of GOx on PtNPs−PAni electrode: Glucose oxidase (glucose 

oxidase type II, ≥ 15000 units g
−1

 solid, Sigma) was dissolved (40 mg mL
−1

) in a 20 mM 

phosphate-buffered saline (PBS) solution. Then, 10 μL of the GOx solution was deposited 

onto the electrode. The electrode was maintained under ambient conditions until it was 

dry. A total of 10 μL of 0.1% glutaraldehyde was added to the electrode and allowed to 

react for 4 h to cross-link the GOx with the PtNPs−PAni hydrogel matrix. Finally, the 

prepared bioelectrode was washed thoroughly with 0.02 M PBS before storing it in 20 

mM PBS. The PAni was rehydrated to form a hydrogel after these processes. 

 

 

Figure 20: Schematic illustration of the 3D heterostructure of the PtNPs−PAni hydrogel. 

 Schematic description of the nanostructures of the 3D PtNPs−PAni electrode is 

shown in Fig. 20. It is clearly shown that the 3D porous nanostructures of the PAni 

hydrogel function as the electrically conductive framework, providing fast electron 

transport along the polymeric fibers three-dimensionally. Also, the porous nanostructures 

provide high porosity and large specific surface area, which could be beneficial to fast 

mass transition and large surface area in glucose solutions. Therefore, PtNPs and GOx 
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immobilized on PAni surfaces will be better contacting with glucose solutions and 

efficiently detecting chemical reaction signals in the glucose solutions. 

4.4 CHARACTERIZATIONS OF PTNPS−PANI BIOSENSORS 

SEM images were taken to show the detailed nanostructures of the PtNPs−PAni 

hydrogel electrode. Fig. 21(A) and (B) are SEM images of PtNPs−PAni hydrogel 

electrode with low magnification and high magnification, respectively. The well 

crosslinked 3D nanoporous PAni network is shown in Fig. 21(A). The fibrous polymeric 

hydrogel network offers high electrical conductivity and porosity to gain high sensitivity 

of the composite electrode for biosensor. After zooming in, zero-dimensional PtNPs 

grown on PAni hydrogel fibers are clearly revealed by the rough surface of PAni 

hydrogel with particle-like materials coated. This indicates the PtNPs could be well 

immobilized and uniformly coated on PAni hydrogel matrix even after repeated washing 

by DI water. 

 

 

Figure 21: SEM images of PtNPs−PAni hydrogel nanocomposite. (A) 3D hierarchical 

nanostructures of the PtNPs−PAni hydrogel. (B) Homogeneous loading of PtNPs on the 

surface of the 3D PAni hydrogel network. 
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The mass loading density of PtNPs was qualitatively revealed in the low-

magnification TEM image Fig. 22(A) and high-resolution TEM (HRTEM) image Fig. 

22(B). As determined by the statistical size distribution of the PtNPs in the inset of Fig. 

22(A), the PtNPs had monodispersed diameters of ca. 2 nm in average. HRTEM image in 

Fig. 22(B) revealed the crystalline lattices of PtNPs. The lattice spacings shown are ca. 

0.23 nm and 0.20 nm, which are attributed to Pt (111) and (100) planes.
97, 98

 

 

 

Figure 22: TEM images of PtNPs−PAni hydrogel nanocomposite. (A) mass loading 

density of PtNPs in the composite electrode, and (B) crystalline PtNPs on the PAni 

hydrogel. 

To confirm the formation of PtNPs on 3D nanostructured PAni hydrogel matrix, 

X-ray photoelectron spectroscopy (XPS) and FTIR were conducted on the as-synthesized 

PtNPs−PAni hydrogel samples. XPS spectrum of Pt 4f core level region, as shown in Fig. 

23(A), had three groups of subpeaks of 1, 2, and 3 labeled with binding energies of 71.1, 

71.9, and 74.4 eV, respectively. The first peak was assigned to Pt
0
,
99

 while the second 

peak could be attributed to metallic Pt nanoparticles or Pt
2+

 (byproduct), and the third 

peak was assigned to Pt
4+

, suggesting the formation of a trace amount of PtO2. The high 

loading of PtNPs was revealed by the atomic ratio of Pt:N (1.92:1) in Table 2. 

Furthermore, FTIR spectrum in Fig. 23(B) represented two characteristic peaks located at 
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1580 cm
−1

 and 1491 cm
−1

, which are attributed to the stretching vibrations of the quinoid 

and benzenoid rings, separately. The absorption peak near 1143 cm
−1

 resulted from the 

N=Q=N (Q denotes quinoid ring) stretching mode, which was an indication of the 

electron delocalization in PAni. 

Table 2: Elemental concentration of PtNPs−PAni hydrogel sample 

C1s N1s O1s Cl2p Pt4f 

61.30 8.64 12.51 0.97 16.59 

 

 

Figure 23: XPS and FTIR spectrums of PtNPs−PAni hydrogel sample. (A) Pt 4f XPS 

spectrum of the PtNPs−PAni hydrogel. (B) FTIR spectrum of PtNPs−PAni hydrogel 

electrode. 

To measure the electrochemical performance of the PtNPs−PAni hydrogel 

biosensor, current−time responsibility was tested at 0.56 V with successive addition of 

glucose. Fig. 24(A) shows that the response current ramped up quickly (3 s for a 95% of 

steady state current in average) as soon as the addition of glucose, while still can reach up 

to a steady state rapidly, indicating an excellent biosensor performance of the 

PtNPs−PAni hydrogel composite. As shown in Fig. 24(B), in the glucose concentration 

range of 0.01−8 mM, the response current vs. glucose concentration plot was very close 
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to ideal linearity, also suggesting good sensitivity and responsibility of the PtNPs−PAni 

hydrogel composite electrode. By calculation, sensitivity was as high as 96.1 μA∙ 

mM
−1

∙cm
−2

. This is higher than all previously reported values for sensor electrodes based 

on composite of Pt, PAni, PPy, or multi-walled carbon nanotubes (MWCNTs), as listed 

in Table 3. 

Table 3: Comparison of analytical performance of glucose sensors. 

Electrodes 
Sensitivity 

(mA∙cm
−2

∙M
−1

) 

Response 

time (s) 

Linear 

range 

(mM) 

Detection 

limit (μM) 

Km 

(mM) 
Ref. 

GOx/PPy/Pt/Al2

O3 
7.4 < 4 0.5−10 30 7.01 100 

GOx/MWCNTs/

Pt 
52.7  0−28 30  101 

Nafion/GOx/Cu2

S−MWCNTa/G

C 

1.0  0.01−1 10  102 

GOx/(Pt/C)/GC 125 < 5 0−45 < 300  103 

GOx/Pt−DENs/

PANI/CNT/Pt 
42 5 0.001−12 0.5  104 

GOx/Pt/MWNT

−PANI/GCE 
128  

0.003−8.

2 
1 0.64 105 

GOx/PAni/PAN/

Pt 
67.1  0.002−12 2 13 106 

GOx/AuNPs/PA

ni/GC 
73.25  

0.001−0.

8 
0.5  107 

Pt−DENs/GOx/

Pt−DENs/PAni/

PSS/GC 

39.63 5 0.01−4.5 0.5  108 

GOx−PtNP−PA

ni−Pt 
96.1 3 0.01−8 0.7 2.35 

this 

work 

To prove the outstanding contribution of the 3D heterostructure of PtNPs−PAni 

hydrogel biosensor, comparison between the PtNPs−PAni hydrogel and PAni on Pt 

electrode was carried out. Calibration plots of current increase as a function of the H2O2 

concentration of Pt electrode with PtNPs−PAni hydrogel and Pt electrode with the PAni 
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hydrogel was shown in Fig. 25. It is obvious that the PtNPs−PAni had a much more 

sensitive current increase than PAni on Pt electrode, demonstrating the advantage of 

PtNPs−PAni’s heterostructure over the PAni on Pt electrode. 

 

 

Figure 24: Electrochemical measurements for PtNPs−PAni hydrogel biosensor. (A) 

Amperometric response of PtNPs−PAni hydrogel electrode after successive addition of 

glucose in 100 mM PBS (pH = 5.6) at an applied potential of 0.56 V. Inset: the zoom-in 

of the red square section. (B) Calibration plot for glucose concentrations from 1μM to 80 

mM. 
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Figure 25: Calibration plots of current increase as a function of the H2O2 concentration of 

Pt electrode with PtNPs−PAni hydrogel and Pt electrode with the PAni hydrogel. 

 In conclusion, our uniquely designed 3D PtNPs−PAni hydrogel heterostructured 

nanocomposite demonstrated outstanding analytical performance as glucose biosensor 

electrodes. The novel concept and synthesis method can be extended to other types of 

biosensors and contribute to future potential analytical applications. 
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Chapter 5: Conclusion 

In this thesis, we proposed a novel material synthesis concept for synthesizing 3D 

nanostructured CPHs and studied their potentials for energy storage and glucose 

biosensor applications. The unique 3D hierarchical porous nanostructures offers greatly 

improved mass transportability. The excellent electrical conductivity and electrochemical 

activity of the hydrogels also provided fast electron pathways and good electric charges 

collecting capability. The highly porous nanostructures and hydrophilic property offered 

large specific surface areas to fulfill the requirement for contacting well with electrolytes 

or solutions. Even with ultrahigh CPHs mass loadings, the energy storage devices can 

still provide outstanding electrochemical performance. Moreover, stable mechanical 

properties enabled good physical stability for long-last operations. The flexibility of the 

CPHs can also afford opportunities for flexible/stretchable electronic devices. 

As a key component in electronic devices, CPHs achieved by our unique 

synthesis method can be promisingly contributing to future scaled-up energy storage and 

conversion, and analytical devices fields. The major challenge of this is to optimize the 

synthesis procedures to be more efficient. 
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