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Acoustic metamaterials are sub-wavelength structures designed to over-

come limitations in the material properties of conventional materials. The

present research focuses on the nonlinear acoustic and dynamic response of a

specific type of engineered microstructure called a snapping acoustic metama-

terial (SAMM). Snapping of these elements is defined as large, rapid deforma-

tions induced by infinitesimal perturbations in the time-varying external pres-

sure. Snapping behavior in SAMM elements results from their non-monotonic

stress-strain response, which displays regimes of positive and negative stiff-

ness. This work presents a modeling study of the nonlinear behavior of both

individual SAMM elements and a heterogeneous material containing a dilute

concentration of SAMM elements embedded in a nearly incompressible vis-

coelastic solid. Two different scenarios are considered: (i) nonlinear wave
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propagation in the heterogeneous medium, and (ii) forced nonlinear dynam-

ics of inclusions embedded in a viscoelastic medium. The nonlinearity of the

SAMM elements is represented by a cubic pressure-volumetric strain relation-

ship based on finite element model results from previous work. The effective

nonlinear response of a heterogeneous mixture of SAMM elements embedded

in a matrix, characterized by the parameters B/A and C/A, is then deter-

mined using both a nonlinear mixture law and a nonlinear Hashin-Shtrikman

approach. The former estimate is limited to matrix materials with zero shear

modulus, which cannot stabilize SAMM inclusions in regimes of negative stiff-

ness. The augmented Hashin-Shtrikman method, however, includes nonlinear

elasticity and the shear modulus of the matrix material. It therefore provides

accurate estimates of the homogenized material when SAMM elements display

negative stiffness and enhanced acoustical nonlinearity. The distortion of an

acoustic wave propagating through the effective medium is studied through nu-

merical solution of a nonlinear evolution equation that includes both quadratic

and cubic nonlinearity. Finally, the forced nonlinear dynamic response of both

a single SAMM element in a matrix and a domain of effective medium material

embedded in matrix is considered. This behavior is of interest for generating

enhanced absorption of acoustic wave energy because snapping leads to large

hysteresis in the stress-strain response. A generalized Rayleigh-Plesset anal-

ysis is adapted to model the large-deformation dynamics associated with the

system.
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Chapter 1

Introduction

1.1 Motivation

The world is filled with complex heterogeneous media that are studied

for various applications in engineering. Some, like ocean sediments, biological

tissue, wood and polycrystalline metals, are readily found in nature, while oth-

ers, generally referred to as composite materials or “composites”, are designed

to elicit a specific response. Research on the properties of composites rapidly

accelerated in the 1960s when technological advances allowed the creation of

such heterogeneous materials [1]. Although composites containing natural ma-

terials may offer an increased or altered response over a single phased materials

[2], their overall behavior is limited by the constituent materials used to create

the composite. For example, it is well known that large amplitude waves will

distort when propagating in a material that demonstrates a nonlinear stress-

strain response in the presence of sufficiently weak losses [3]. The nonlinearity

in the response of the medium, known as the material nonlinearity, is not

only limited by the currently available constituent materials, but is also domi-

nated by second order strain effects, often referred to as quadratic nonlinearity.

Higher order effects, such as a dependence on cubic strain contributions, are

usually negligible, and the ability to engineer the nonlinear response of a ma-
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terial is currently very limited. However, cubic material nonlinearity and the

ability to tailor both the quadratic and cubic nonlinear response are of in-

terest because they may offer unique capabilities for improved resolution in

acoustic imaging [4] or one-way propagation of acoustic energy [5]. Another

trade-off of interest to the engineering community involves energy dissipation

and mechanical stiffness of the medium [6]. In general, there is an inverse

relationship between these two material properties; compliant materials pro-

vide high mechanical damping while the converse is true for stiff materials.

The ability to produce composites that are both lossy and stiff is of signifi-

cant interest to make improved devices and structures that isolate acoustical

and vibratory disturbances. In an attempt to expand the range of attainable

material properties offered by current composites, science has turned to a new

class of materials that exploits small-scale structures to generate unconven-

tional material response. The new heterogeneous media are referred to as

“metamaterials”.

1.2 Metamaterials

The term metamaterials describes a class of engineered sub-wavelength

structures designed to produce overall properties (usually dynamic) that are

unattainable with conventional materials. The term has been adopted in mul-

tiple disciplines, but is primarily of interest in the fields of electromagnetics

and acoustics. The concept of metamaterials originated in the field of electro-

magnetism in the late twentieth century but the underlying principles quickly
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became a topic of research in the field of acoustic and elastic materials [7, 8].

Although studies of metamaterials is a very recent development, related

concepts do appear sparingly in the literature. For example, in the late nine-

teenth century, William Thomson (Lord Kelvin) suggested that longitudinal

light waves with a velocity of zero are achievable if the æther, then consid-

ered to be an elastic medium, had a negative compressibility [9]. The most

notable early example arose in the late 1960s when Veselago theoretically pro-

posed an electromagnetic material with negative values of both the relative

permittivity and permeability to achieve a negative refractive index [10]. The

concept of negative constitutive properties remained an academic enigma for

three decades until research on electromagnetic metamaterials finally rendered

the study of those properties feasible [11]. Extensive theoretical efforts paired

with experimental validation and useful applications of physically realizable

structures with negative effective constitutive properties then emerged. Re-

search of such materials has since evolved into the field of high interest it is

today [12].

Researchers began to pursue the acoustic equivalent of the electromag-

netic metamaterials shortly after experimental evidence confirmed theoretical

predictions in electromagnetism. Acoustic metamaterials include heteroge-

neous materials displaying negative mass density or negative elastic stiffness,

or materials where both these properties are negative. There have also been

recent interest in acoustic metamaterials displaying nonlinear response [13, 14].

Some salient examples of acoustic metamaterials and related devices are high-
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(a) (b)

(c) (d)

Figure 1.1: Examples of acoustic metamaterials: (a) Experimental chain of
Helmholtz resonators with negative stiffness and dispersion response taken
from Figure 2 in Ref. [15]; (b) Coated sphere that makes up sonic crystal and
the measured response taken from Figure 1 in Ref. [16]; (c) Pressure field for
an actual structured acoustic lens taken from Figure 4 in Ref. [17]; and (d)
Pressure field with acoustic cloaking shell taken from Figure 2 in Ref. [18].
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lighted in Fig. 1.1.

The non-intuitive concept of negative mass density can be demon-

strated using Newton’s second law of motion, F = mü, where F is an ex-

ternal excitation force required to provided an acceleration ü to mass m. If

one considers lossless, time-harmonic motion, the displacement can be given

by u = u0 cosωt and the acceleration by

ü = −ω2u0 cosωt = ω2u0 cos (ωt+ π) .

Expressing the acceleration in terms of the phase shift, π, indicates that the ac-

celeration is always π out of phase with the displacement. The time-harmonic

force required to impose the displacement will have a phase angle, ϕ, with

respect to the displacement and is expressed as

F = F0 cos (ωt+ ϕ) = mω2u0 cos (ωt+ π)

where the amplitudes F0 and u0 are always positive. For a conventional sys-

tems with m > 0, one must have ϕ = π. Thus the excitation force is exactly in

phase with the acceleration and π out of phase with the displacement. How-

ever, if the force is exactly in phase with the displacement, which occurs when

ϕ = 0, the force must be π out of phase with the acceleration of the mass.

This reversal of the common understanding of Newton’s second law can be

re-interpreted as a case where the force and acceleration are in phase, but the

mass is assigned an effective value that is less than zero: m < 0. Physically,

this corresponds to the metamaterial moving out of phase with the rest of the

5



structure. Examples of effective negative mass density arise when a system

comprised of multiple, individual masses is approximated as a single effective

mass [19].

Negative stiffness, which refers to a decreasing incremental resistance

to an imposed increase in deformation, also characterizes an effective response.

This can be understood in a manner similar to that shown for the negative

effective mass density. The force, F , is related to the deformation, ∆u, of a

spring or medium with generalized stiffness k, such that F = k∆u. If the

motion is once again considered to be time-harmonic, with ∆u = u0 cosωt,

then the excitation force is given by

F = F0 cos (ωt+ ϕ) = ku0 cosωt,

where the amplitudes F0 and u0 are always positive. Conventional, positive

stiffness with k > 0 characterizes mechanical systems with an external exci-

tation force that is in phase (ϕ = 0) with the deformation and the restoring

force generated resists the deformation applied to its surroundings. The con-

verse is true for negative stiffness, for which the applied force is ϕ = π out

of phase with the deformation. For a system exhibiting quasi-static negative

stiffness, the internal energy versus imposed strain has negative curvature, im-

plying that the system can assist the deformation induced by an externally

applied force [20]. Negative stiffness can be generated either dynamically or

structurally and the distinction between the two is detailed in Section 1.2.1.

In either case, the response of a system with negative mass density or negative
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stiffness reverses the behavior that one expects to observe with conventional

materials. Research has shown that while continuous materials cannot possess

negative stiffness or density, it is possible to achieve negative effective parame-

ters by engineering sub-wavelength structures with hidden degrees of freedom

to induce local resonances [15, 16] or internal energy with regions of negative

curvature [21].

1.2.1 Negative Stiffness

The research detailed in this thesis is focused on the nonlinear response

of acoustic metamaterial elements that have been designed to exhibit nega-

tive stiffness. It is therefore important to note the differences between the

two distinct phenomena that this topic refers to in the literature. The first

type employs sub-wavelength dynamics to elicit dynamic negative stiffness.

Specifically, these metamaterials achieve effective negative properties from the

locally resonant response of the system. The effective dynamic stiffness is only

negative for a finite range of frequencies and is restricted to occur near the

resonance of the system [15]. The majority of acoustic metamaterial litera-

ture on negative stiffness involves dynamic negative effective moduli achieved

through such resonant effects.

Conversely, non-resonant acoustic metamaterials attain static negative

moduli due to structural instabilities. The physical behavior associated with

this type of negative stiffness is not restricted to a finite range of operating

frequencies near a resonance of the sub-wavelength structure [6]. This con-
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cept of negative stiffness can be elicited from buckling behavior of elements

such as beams or thin shells, which has been studied in detail since the ini-

tial work of Leonhard Euler in the eighteenth century and predates modern

consideration of acoustic metamaterials [22]. The original goal of research on

structural buckling was to avoid the buckling instabilities because they lead to

mechanical failure of the structures. Dynamic buckling with snap-through, or

snapping, refers to a nonlinear response characterized by large, rapid displace-

ments due to an infinitesimal change in the loading force [23]. As the structure

approaches the buckling state, there is a decreasing resistance to the increas-

ing loading force. Once the structure reaches a critical load, negative stiffness

behavior will be observed for a displacement control loading. Although the

term ‘metamaterial’ was not coined until decades later, the physical behav-

ior associated with the buckling response of sub-wavelength structures is the

underlying principal of the second type of negative stiffness studied with re-

gard to acoustic metamaterials, which exploit, rather than avoid, the elastic

instabilities.

When the dynamic stiffness of a material for certain frequencies is neg-

ative, as with the resonant metamaterials, the overall static elastic parameters

are still positive and the system is structurally stable. Overall stability, how-

ever, is unattainable with static negative stiffness [24]. Although metamateri-

als that derive their exotic properties from resonant effects have the advantage

of being statically stable, there are substantial disadvantages associated with

the dependence on resonant effects. First, there is a limited frequency range
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in which these materials can operate, which may impose restrictions on the

versatility of the material. Second, internal losses can affect the resonance of a

physical system, potentially diminishing the intended response [21]. Therefore,

it is of interest to consider non-resonant acoustic metamaterials to overcome

these limitations.

Though acoustic metamaterials displaying non-resonant negative stiff-

ness is of interest, it is well known that static negative stiffness is unstable. For

a heterogeneous material containing elements that rely on structural negative

stiffness, the negative values of the microscopic elastic moduli may cause the

macroscopic static stiffness to also be negative, resulting in overall instability.

Fortunately, it is possible to constrain a negative stiffness element within a

surrounding positive stiffness material to yield a stable heterogeneous medium

that is characterized by positive effective stiffness [6]. Therefore, configura-

tions are sought with overall positive static moduli that take advantage of the

microscale structural instabilities, but are stabilized by a positive stiffness ma-

trix to elicit the interesting response associated with negative stiffness while

eliminating the limitations of relying on resonant effects.

1.3 Related Examples and Applications

The acoustic metamaterials of interest here offer unique means of gen-

erating strong nonlinearities, which is a relatively new area of study in the

field of acoustic metamaterials. In order to provide a background on related

research, the present section is divided into two subsections: linear acous-
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tic metamaterials and nonlinear systems. Linear acoustic metamaterials are

more widely studied than nonlinear acoustic metamaterials and thus appear

more prevalently in the literature. Several examples of systems with negative

material properties, including both dynamic negative stiffness and structural

negative stiffness, are described in Section 1.3.1. The nonlinear response of

acoustic metamaterial elements and heterogeneous acoustic metamaterials is

the primary focus of this work. Section 1.3.2 therefore provides examples of

related nonlinear systems including applications of nonlinear acoustic meta-

materials.

1.3.1 Linear Acoustic Metamaterials

In recent years, the study of linear acoustic metamaterials have surfaced

for a variety of applications, which are divided into two categories here. The

first involves the ability of the effective medium to manipulate an incident

acoustic wave and the second focuses on the dissipation of mechanical energy.

1.3.1.1 Wave Manipulation Due to Resonant Effects

Whether or not a medium can support wave propagation and how any

subsequent waves propagate through the medium are of significant interest

within the field of acoustics. A frequency range for which waves cannot prop-

agate for periodic media is called a band gap or stop band. Combinations

of different conventional solids and fluids have been utilized to design sonic

crystals with different or wider frequency ranges of the band gap [25]. Sonic
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crystals are synthetic, periodic structures with spatially varying material prop-

erties, such as stiffness or density. The resulting dynamic response of the sonic

crystal is highly dependent upon the constitutive relationship of its compo-

nents, the periodicity and shape of the heterogeneities, and sometimes even

the external forces imposed on the system [26]. Within the field of acoustic

metamaterials, it has been found that the negative material properties offer the

ability to alter the characteristics of the band gaps to provide very high levels

of acoustic isolation using a sub-wavelength structure. One of the earliest ex-

amples of acoustic metamaterials involved the fabrication of locally resonant

sonic crystals comprised of thinly coated, high density spheres embedded in a

polymer [16]. That experiment proved it was possible to tune the band gap

by varying parameters of the heterogeneous medium, such as sub-wavelength

geometry and material properties of the constituents. Although Liu et al.

claimed the locally sonic crystals measured in Ref. [16] exhibited negative

stiffness, later analysis showed that the behavior they observed was due to

an effective negative mass density [27]. Acoustic metamaterials that actually

displayed dynamic negative stiffness emerged later. For example, Fang et al.

investigated engineering the frequency response in an acoustic waveguide at

ultrasonic frequencies with an array of sub-wavelength Helmholtz resonators

to generate negative effective dynamic moduli near the resonance of system

[15].

In addition to acoustic metamaterials that display either effective nega-

tive mass or effective negative stiffness, it has also been shown that it is possible
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to generate both negative properties simultaneously. A prime example is the

acoustic split ring resonators proposed in direct analogy to the electromagnetic

split ring resonators that were at the forefront of electromagnetic metamate-

rial research [28, 29]. Acoustic metamaterials with both negative stiffness and

negative mass density can be used for sound focusing and confinement and

offer the possibility to create a superlens that can exceed the diffraction limit

to achieve sub-wavelength resolution imaging [30].

1.3.1.2 Damping Due to Structural Negative Stiffness

Vibrations in mechanical systems are often undesirable because they

can adversely affect people and the performance of sensitive equipment. There-

fore, engineers are often concerned with the ability of a system to isolate and

dissipate unwanted mechanical energy. Lakes and co-workers have extensively

investigated composites [31, 32] and column dampers [33, 34] that take advan-

tage of structural negative stiffness, concluding that the presence of negative

stiffness enhances both the overall static stiffness and mechanical damping.

As a simple example, Lakes showed that buckled silicone rubber tubes demon-

strated greatly enhanced damping capacity as compared to identical silicone

rubber tubes in an unbuckled configuration [35]. Experiments with multi-

walled carbon nanotubes lead to the same conclusion of increased damping

due to the presence of buckling as compared to unbuckled carbon nanotubes

[36]. Those initial results lead to studies of heterogeneous materials containing

domains of negative stiffness that suggested the possibility of creating a stiff

12



composite material with enhanced damping to overcome the trade-off between

stiffness and loss found in conventional materials. It is important to note,

however, that there may be caveats to those early works on structural nega-

tive stiffness. Stability analysis of composites with a negative stiffness phase

indicate that it may be possible to obtain unusually large magnitudes for the

effective dynamic stiffness, but not for the overall static stiffness [24, 37].

1.3.2 Nonlinear Systems

Nonlinear systems are studied for several reasons. One may be to im-

prove upon a linear theory that does not adequately describe the system at

hand for large disturbances. Another motivation may be to achieve some re-

sponse that cannot be realized with a linear material. Examples of the latter

appear in the present section with nonlinear systems applied to vibration iso-

lation and nonlinear wave manipulation applications.

1.3.2.1 Vibration Isolation

Systems with negative stiffness or zero stiffness have been shown to

improve both the shock isolation and vibration isolation capabilities of a sys-

tem [38]. In addition to negative stiffness, nonlinear systems with “quasi-

zero-stiffness” (QZS) are widely studied within the field of vibration isolation

because decreasing the stiffness makes the system more capable of isolating

against low frequency vibrations [39]. Systems with quasi-zero-stiffness can

be created through different combinations of negative and positive stiffness
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springs [38, 39]. Employing negative or zero linear stiffness for vibration iso-

lation dates back to the mid twentieth century when Molyneux proposed zero

stiffness as a means of isolating from mechanical vibrations in 1957, acknowl-

edging the existence of an unstable, negative stiffness regime [40]. In the late

1970’s, a guiding mechanisms was designed with negative stiffness springs to

alleviate unwanted movement within the system [41]. Other designs relying

upon springs with an effective negative stiffness to absorb vibrations appeared

in the 1990’s and were applied specifically to isolation tables to protect sen-

sitive equipment against sub-Hertz vibrations [42, 43]. More recent examples

of suspension systems for vibration isolation include applications for vehicles

[44] and railroads [45].

Similarly, vibration isolation of a linear vibrating system can be achieved

by coupling it to a strongly nonlinear component. The nonlinear attachment,

termed a nonlinear energy sink (NES), is basically a nonlinear version of a

linear tuned mass damper that absorbs the dynamic vibrations at certain fre-

quencies. The mechanism is designed to facilitate efficient transfer of energy

from the linear system that one wishes to isolate from vibrations to the non-

linear element. The energy within the NES is distributed from the primary

mode in the linear component to higher order modes present in the nonlin-

ear attachment, which are subsequently dissipated rapidly through mechanical

losses. Quinn and co-workers recently studied several NES attachments that

employed springs with cubic nonlinearity and zero linear stiffness, such that

the force-displacement response is given simply by F = knlx
3. The character-
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istic of zero linear stiffness is termed an “essential nonlinearity”. The cubically

nonlinear springs greatly accelerated the dissipation of vibrational energy of

the system in comparison to a system with only linear components [46]. NESs

with nonlinear attachments that contain both a cubic stiffness term and a neg-

ative linear stiffness have studied more recently. The presence of the negative

linear stiffness in the nonlinear component more efficiently dissipated energy

in comparison to the NESs that possessed the essentially nonlinearity [47].

1.3.2.2 Nonlinear Wave Manipulation

It is also possible to alter properties of the band gap using nonlinear

periodic systems. Therefore, this section highlights research that is analogous

to the work presented in Section 1.3.1.1. The nonlinear dispersion relation for

periodic strings [48] and chains of nonlinear oscillators [49] have been studied

in an attempt to understand the effects nonlinearity have on the band gap.

Further, periodic systems made of elastomers that undergo nonlinear deforma-

tions have also been designed to alter the features of band gaps as a function

of an imposed deformation for different loading conditions [13, 50]. These

acoustic metamaterials may find applications as phononic switches because

the properties of the medium change due to some external force, but are re-

versible and repeatable [51]. Another related nonlinear material that has been

suggested as a nonlinear acoustic metamaterial is a granular crystal, which is

a compact chain of elastic particles. The response of the granular crystals can

be tuned depending on the material properties, geometry, and applied static
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force, making them applicable to acoustic switches and one-way energy flow

devices [14]. Further examples of devices used for non-reciprocal energy flow

have been created using a superlattice, comprised of two alternating linear

media, attached to a strongly nonlinear medium, such as a suspension of mi-

crobubbles [5, 52]. The development of a one way energy flow device may be

beneficial for biomedical ultrasound, energy harvesting, and non-destructive

testing [5, 14].

1.4 Objective

This thesis presents an exploration and detailed analysis of the nonlin-

ear behavior of one type of acoustic metamaterial inclusions, called a snapping

acoustic metamaterial (SAMM). The SAMM inclusions of interest exhibit non-

monotonic stress-strain behavior, which displays regimes of both positive and

negative stiffness, giving rise to a hysteretic snapping due to the presence of

cubic nonlinearities. The nonlinear constitutive behavior can be tuned depend-

ing on the physical and geometrical properties of the microstructure. Some

background on the behavior of the specific element exists [21], but not with

respect to the nonlinear acoustic or dynamic response. The overall intent of

the present research is to characterize the quadratic and cubic acoustic non-

linearities of a SAMM inclusion when embedded in a continuous constraining

material and to understand the nonlinear dynamics of the elements in an effort

to quantify the stiffness and damping capacity. Although understanding the

nonlinear acoustic and dynamic behavior is of interest for the SAMM inclu-
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sion scale, it is also worthwhile to investigate the overall macroscopic response

associated with a heterogeneous material comprised of a low volume fraction

of the SAMM inclusions embedded in a nearly incompressible matrix mate-

rial. Therefore, the objective of the present research is to develop a tool to

understand the influence of the unique nonlinear behavior exhibited by the

SAMM inclusions in an effort to design a composite with nonlinear macro-

scopic properties, which can be tuned using the microscale geometry to elicit

the desired macroscopic response. The present focus is on the effort to begin

understanding the behavior on both the microscale and macroscale from the

standpoint of nonlinear acoustics by introducing physical models of sufficient

complexity to capture the details of the multiscale phenomena leading to the

unconventional material response.

1.5 Thesis Overview

This thesis is organized into three main chapters, all of which employ

the response of the same representative SAMM inclusion inspired by the work

of Klatt and Haberman [21]. Chapter 2 describes the SAMM inclusion and

provides additional background useful to understand its nonlinear constitu-

tive relationship. The constitutive behavior characterizing a representative

SAMM inclusion is then examined through an overall pressure-strain rela-

tionship and local stiffness coefficients that vary as a function of an imposed

pre-strain. The later chapters use the information from Chapter 2 to study

two different nonlinear responses for the SAMM inclusion and a heterogeneous
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material comprised of a small volume fraction of SAMM inclusions embedded

in a nearly incompressible viscoelastic matrix. Characterizing the matrix as a

nearly incompressible elastic solid, which corresponds to a Poisson’s ratio near

0.5, is valid due to the quasi-static, long wavelength limit approximations in

the models presented. This requires the radius of the SAMM inclusion, Ri,

to be much smaller than the characteristic wavelength of the matrix material,

such that kmRi � 1, where km is the acoustic wavenumber.

Chapter 3 explores the acoustic nonlinearity associated with a hetero-

geneous medium comprised of the SAMM inclusions embedded in a nearly

incompressible elastic matrix. As a precursor to understanding the acoustic

nonlinearity associated with the SAMM inclusions, several state equations are

presented as a standard means of describing the nonlinearities of a fluid or

solid in acoustics. Some examples of the acoustic nonlinearity found in the

literature are presented for reasons of comparison. The nonlinearity parame-

ters are then used to describe the SAMM inclusion and the matrix. In order

to describe the nonlinearity of the effective medium, two quasi-static homog-

enization techniques are presented. The first focuses on obtaining effective

nonlinearity parameters from the law for immiscible mixtures. However, this

technique limits the analysis to a matrix with zero shear modulus. To account

for shear stresses, typical homogenization methods from linear elasticity are

extended to accommodate finite deformations and thus obtain effective non-

linear elastic parameters. The technique used in this work follows from the

Hashin-Shtrikman bounds derived in linear elasticity and the moduli obtained
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are related to the acoustic nonlinearity parameters. The overall macroscopic

response of the representative element is then compared with conventional ma-

terials. The remainder of Chapter 3 focuses on modeling a propagating acous-

tic wave through the effective medium, which requires augmenting standard

techniques used to describe nonlinear distortion of a time-harmonic plane wave

to include both quadratic and cubic nonlinearity. Examples of distorted acous-

tic waveforms are presented to demonstrate how the presence of the SAMM

inclusions affect the behavior of an acoustic wave.

The other interest, presented in Chapter 4, studies the large deforma-

tion dynamical behavior associated with the SAMM inclusion when embedded

in a nearly incompressible viscoelastic matrix material. A nonlinear differen-

tial equation used to model the nonlinear oscillations of a bubble, called the

Rayleigh-Plesset equation, has been adapted and modified to incorporate the

behavior of the SAMM inclusion. A decoupled system that models the mi-

croscale and macroscale independently is presented. The dynamics of a single

SAMM inclusion embedded in a nearly incompressible medium and the het-

erogeneous material containing the SAMM inclusion surrounded by the same

matrix are solved in parallel. The intent is to capture the hysteretic snap-

ping due to large deformations and provide a qualitative understanding of the

damping associated with the effective medium.

The thesis is concluded with Chapter 5, which summarizes the work

detailed in Chapters 2–4. Although the research presented here provides con-

siderable detail about the nonlinear behavior associated with the SAMM in-
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clusions, there is still more to be understood and some suggestions for future

work is also highlighted.
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Chapter 2

Governing Behavior of Snapping Acoustic

Metamaterial Inclusions

The present research focuses on snapping acoustic metamaterial

(SAMM) inclusions with large nonlinearities generated physically on the in-

clusion scale due to negative stiffness. One means of attaining the behavior

of interest is through a sub-wavelength structure, designed specifically such

that the geometrical features induce the desired negative stiffness response.

Therefore, this negative stiffness is a structurally induced effect, as opposed

to being a resonance dependent response.

The element in Fig. 2.1 is the SAMM inclusion of interest for the present

research. The computational models presented in Section 2.3 and throughout

Chapters 3 and 4 utilize data obtained from a plane strain, finite element

model (FEM) reported by Klatt, and the diagram is obtained directly from

the FEM [21, 53]. The foundation for the inclusion design comes from the field

of microelectromechanical systems (MEMs), where the fabrication of tunable,

bistable, buckled beams was investigated for use in devices such as relays or

optical witches [54]. The influence from MEMs appears in the double beam

element shown in Fig. 2.1. This component is the source of the buckling
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Figure 2.1: Diagram of the SAMM inclusion of interest.

instabilities that induce a snapping response. The instabilities are considered

for an SAMM inclusion embedded within a surrounding elastic material, and

the interface between the inclusion and matrix is clearly delineated in Fig. 2.1.

The pressure imposed on the entire inclusion-matrix interface, either due to the

matrix or some other external force, is localized at the pressure transformer.

The concentrated force on the midpoint of each double element beam incites a

mechanical response that is responsible for the snapping behavior under certain

loading conditions. If the pressure incident upon the beam is not restricted

to the center of the beam by the pressure transformer, the desired negative

stiffness behavior may be significantly diminished or even eliminated due to

the inclusions inability to snap-through.
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The red dashed lines in Fig. 2.1 denote the symmetry axes for the

inclusion and indicate that the element is spherically symmetric. Further, the

SAMM inclusion is assumed to be much smaller than the acoustic wavelength,

both with respect to the matrix it is embedded in and the effective medium

that contains several SAMM inclusions. Therefore, the SAMM inclusion shown

in Fig. 2.1 is modeled as a sphere.

The response from the FEM is easily scaled depending on the physical

material that makes up the SAMM inclusion, as well as the curvature of the

double beam component, corresponding to the ability to tune the structural

instabilities to elicit a desired mechanical response. For additional details

regarding the physical design and modeling of the SAMM inclusions, the reader

is referred to Refs. [21] and [53].

2.1 Nonlinear Stiffness

The intent here is to characterize the linear and nonlinear stiffness of the

SAMM inclusion in order to understand its constitutive behavior when acted

upon by an external force. While the linear response of a material is fairly

well understood, nonlinear behavior, which is the primary focus of the present

work, is far more complicated. In order to provide a theoretical foundation for

the study of the acoustic metamaterials of interest, it is worthwhile to provide

a thorough understanding of the nonlinear behavior as related to nonlinear

oscillators and nonlinear stress-strain response of hyper-elastic materials.
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2.1.1 Nonlinear Springs

Mechanical systems are modeled using masses, springs and dampers.

In many cases, one is only concerned with the dynamic response for small am-

plitude oscillations. In those cases, it is reasonable to model the system as a

linearly oscillating system. However, for systems subjected to large amplitude

vibrations or for those comprised of components with a very strong nonlinear

response, a nonlinear oscillator more accurately describes the response. When

the nonlinear component is the spring element, the reaction force generated as

a result of an imposed displacement from its equilibrium position can be repre-

sented with a Taylor series expansion. The expansion is commonly considered

up to third order with respect to position x, such that [55]

F = k1x+ k2x
2 + k3x

3, (2.1)

where the equilibrium position is assumed to be the x0 = 0 position and ki

represent the linear and nonlinear stiffness terms. The second order term, k2,

is often assumed to be negligible.

The spring force as a function of an imposed displacement is shown in

Fig. 2.2 for three spring types—a linear spring, a nonlinear hardening spring

and a nonlinear softening spring. These three springs are of interest because

they represent the canonical types of material responses that are commonly

studied. The linear spring is plotted in blue and as expected, shows a straight

line with constant slope over the entire range of displacements. The nonlinear

hardening spring, modeled with k3 > 0, is shown by the green curve and refers
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Figure 2.2: Force versus displacement for linear, hardening and softening
springs.

to an increasing force for a given displacement increment as the displacement

from the origin increases. The nonlinear softening spring, modeled with k3 < 0,

is given by the red curve and behaves conversely to the hardening spring. As

the curve indicates, a softening spring is characterized by offering decreasing

force per displacement increment as the overall displacement from the origin

is increased [56].

The relatively simple nonlinear force-displacement constitutive rela-

tionships induces behavior such as the jump phenomena for a single degree

of freedom mass-spring-damper system. Jump phenomena occur on frequency
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(a) Linear Spring (b) Hardening Spring (c) Softening Spring

Figure 2.3: Amplitude versus frequency for (a) linear spring, (b) hardening
spring and (c) softening spring adapted from Ref. [56].

response curves that are multivalued at frequencies near the small-amplitude

resonance frequency of the system. Such a response is exemplified in Fig. 2.3

adapted from Figure 1-5 in Ref. [56]. The amplitude versus frequency response

for the linear spring, shown in Fig. 2.3(a), is single-valued with the peak cen-

tered at resonance. Figure 2.3(b) presents the hardening spring, with letters

and arrows delineating the path on the multivalued amplitude-frequency re-

sponse curve. Starting at point A, the response follows the curve for decreasing

frequency to point B, and then jumps to the amplitude at point C on the upper

half of the curve instead of following the bottom half of the to point E. The

amplitude then follows the upper curve for decreasing frequency. Starting now

at point D, the amplitude response as frequency increases follows the upper

curve to point E and then jumps down to point F on the lower curve. The

softening spring exhibits a similar response but in the opposite direction, as

shown in Fig. 2.3(c) with the marked arrows.

The behavior shown in Fig. 2.3 corresponds to that of a Duffing os-
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cillator, which is one of the most widely studied systems within the field of

nonlinear dynamics. The third order constitutive response, such as the one

given in Eq. (2.1), corresponds to a fourth order potential energy function. The

ordinary differential equation used to describe forced oscillations of this sys-

tem was first studied by Georg Duffing in the early twentieth century in order

to understand the hardening spring response associated with some mechanical

systems and is known as Duffing’s equation [57]. The Duffing oscillator has

since been the subject of a significant amount of theoretical and experimental

studies, including a thorough introduction by Virgin as an illustrative example

of principles associated with nonlinear vibrations [58]. Many of these studies

involve a fourth order potential energy function with potential wells, char-

acterized by local minimas, and focus on the motion within or between the

potential wells. The SAMM inclusions of interest here exhibit similar behav-

ior, which is briefly introduced in this chapter, with more information found

in [21, 53]. The nonlinear dynamic response is considered in detail in Chapter

4.

2.1.2 Nonlinear Stress-Strain Response

Understanding the nonlinear stress-strain relationship is of fundamen-

tal importance for analyzing the structures of interest in this thesis. The non-

linear stress-strain behavior is analogous to the force-displacement response

of nonlinear springs. Metrics of stiffness, however, are difficult to quantify

when operating outside the limit of linear elasticity. For example, when a
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material is subjected to large deformations, the subsequent response could be

inelastic, where the strain energy when loading the system differs from un-

loading. Inelastic behavior occurs with pseudo-elasticity, e.g. stress softening,

and plasticity, which induces an irreversible deformation [59]. While the over-

all response is not elastic in either case, elasticity theory, to an extent, can

approximately describe the incremental deformation relative to the current

configuration or strain state. Examples of such hyper-elastic material models

are Neo-Hookean, Mooney-Rivlin [60], Varga and modified Varga [61] materi-

als. One method of more accurately analyzing the deformation utilizes a strain

energy approach, where local estimates of nonlinear stiffness characterize the

deformation. Strain energy models are applied to the inclusions of interest in

Section 2.2.

As a simple illustrative example, consider the nonlinear stress-strain

constitutive relation depicted by the solid black curve in Fig. 2.4. The re-

sponse is similar to that of a softening spring shown in Fig. 2.2. The linear

regime of the constitutive curve in Fig. 2.4, approximately indicated by the

response within the green box, corresponds to a straight line about a refer-

ence configuration of zero stress and zero strain. Stiffness is defined as the first

derivative of stress with respect to strain [62]. In Fig. 2.4, the stiffness is there-

fore represented by the slope of the stress-strain curve, as denoted by the blue

dashed line. Within the green box, the blue dashed line and the solid black

curve predict nearly the same stress value for a given strain, indicating this

section of the overall nonlinear response is well represented with a linear rela-
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Figure 2.4: Example nonlinear stress-strain constitutive curve.

tionship between stress and strain. The blue dashed line diverges significantly

from the black curve when outside the green box, indicating that the slope is

a nonlinear function of strain, and the linear stiffness approximation within

the green box is no longer valid outside of the box. This is clearly illustrated

when one considers the red dashed line. The red dashed line is only tangent

to a small portion of the black curve, centered about the vertical solid red

line at E0, and is less steep than the blue dashed line that corresponds to the

linear regime centered at the zero strain configuration. The simple example

illustrates that parameters used to describe the stiffness of a nonlinear elas-

tic material are only valid within finite segments of the constitutive curve. To
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more accurately model the response of the material around a give strain point,

one can employ higher order, nonlinear terms with values that vary depend-

ing on the strain state. The strain dependent material stiffness parameters,

both linear and nonlinear, are referred to in the present work as local stiffness

parameters or local linear and nonlinear stiffness moduli. Describing an en-

tire curve using local approximations is essentially a Taylor series expansion

evaluated at the pre-strain, E0, such that

σ − σ0 = (E − E0)
∂σ

∂E

∣∣∣∣
E0

+
1

2
(E − E0)

2 ∂
2σ

∂E2

∣∣∣∣
E0

+ · · · , (2.2)

where σ0 is the stress evaluated at E0. If the response corresponds only to

the linear component of the black curve in Fig. 2.4, then the first term on the

right hand side of Eq. (2.2) is sufficient to describe the behavior. The slope,

as given by ∂σ/∂E evaluated at E0, is effectively constant for all E0 within

the linear range and the higher order terms in Eq. (2.2) are negligible. As the

constitutive relationship becomes more nonlinear, the higher order derivatives

of stress with respect to strain must be accounted for. This is the underlying

principle of the perturbation theory utilized in throughout the present work.

It is worth clarifying the concept of ‘global’ and ‘local’ parameters to

describe an entire constitutive stress-strain response curve. In the present

thesis, global parameters utilize one function and one set of parameters to

uniquely define the entire behavior. The local description, on the other hand,

are functions of another variable, such as strain [63]. Within the field of

nonlinear elasticity, it is often unlikely that global parameters will correctly
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characterize the entire constitutive stress-strain relationship. Instead, a global

approximation is likely to diverge from the actual material response for in-

creasingly nonlinear material behavior. For the example curve in Fig. 2.4, the

nonlinearity associated with the change in curvature as the strain increases is

most accurately described by local coefficients instead of global parameters.

2.2 Constitutive Relationship

In the present work, the strain energy density used to describe the non-

linear behavior of the SAMM inclusions is a fourth order power law expansion

in strain, such that [62]

E = E0 +BijEij +
1

2!
CijklEijEkl +

1

3!
DijklmnEijEklEmn

+
1

4!
MijklmnopEijEklEmnEop, (2.3)

where Bij, Cijkl, Dijklmn, and Mijklmnop are components of the elastic stiffness

tensors that describe the SAMM inclusion, Eij are components of the strain

tensor and E0 is the strain energy density of the undeformed state. The Cauchy

stress corresponding to the deformation is found from the relation [62]

σij =
∂E

∂Eij
. (2.4)

Therefore, the stress tensor is

σij = Bij + CijklEkl +
1

2
DijklmnEklEmn +

1

6
MijklmnopEklEmnEop. (2.5)
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From an acoustics standpoint, the pressure, not the stress, is of interest. The

two are related by [62]

P = −1

3
σii. (2.6)

From Eqs. (2.5) and (2.6), pressure, as a function of strain and the stiffness

tensors, is

P = −1

3

(
Bii + CiiklEkl +

1

2
DiiklmnEklEmn +

1

6
MiiklmnopEklEmnEop

)
(2.7)

The inclusion considered in the present work is assumed to be a sphere

undergoing spherically symmetric deformation, where the radial displacement

is given by [64]

ur = air, (2.8)

with ai being a constant that characterizes the deformation and r representing

the distance from the origin, or radial coordinate, in the Lagrangian reference

frame. In general, the Lagrangian strain tensor is related to the displacement

field, ui, through the relation

Eij =
1

2
(ui,j + uj,i + uk,iuk,j) , (2.9)

where the index notation ui,j denotes the partial derivative of ui with respect

to xj. The components of the strain tensor for the spherical SAMM inclusion

is obtained from Eqs. (2.8) and (2.9), such that

Eij =

(
ai +

3

2
a2i

)
δij, (2.10)

32



where δij is the Kronecker delta, defined as

δij =

{
1 if i = j

0 if i 6= j
. (2.11)

Equation (2.8) describes locally a pure dilation of the inclusion [64].

The strain in Eq. (2.10) can therefore be expressed in terms of volumetric

strain, or dilatation, denoted by εv. Volumetric strain is defined as change in

volume, v, normalized by the equilibrium volume, V0. The change in volume

is the difference between the instantaneous volume, V , and the equilibrium

volume, such that the volumetric strain is εv = (V −V0)/V0. Since the SAMM

inclusion is modeled as a sphere, the volumetric strain depends on the instan-

taneous radius, Ri and the equilibrium radius Ri0 ,

εvi =

(
Ri

Ri0

)3

− 1. (2.12)

The equilibrium radius corresponds to a deformation-free configuration with

no external forces imposed upon the system. The volumetric strain is simply

related to the Lagrangian strain tensor, such that

εvi = Ekk = 3ai +
9

2
a2i . (2.13)

Therefore, Eij = 1
3
εviδij, and the expression for the pressure of the inclusion

in Eq. (2.7) can be expressed as

Pi = −1

3
Bii −

1

9
Ciiklδklεvi −

1

54
Diiklmnδklδmnε

2
vi

− 1

486
Miiklmnopδklδmnδopε

3
vi, (2.14)
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where the subscript i denotes that the variables refer to the inclusion. The first

term in Eq. (2.14), 1
3
Bii, corresponds to a pre-pressurization due to an external

force imposed on the system when the strain in the reference configuration is

zero. For the purpose of the present thesis, this term is considered to be the

equilibrium hydrostatic pressure, defined as

Pi0 = −1

3
Bii. (2.15)

The subscript 0 indicates that Eq. (2.15) refers to an equilibrium term. How-

ever, the pre-stress could be induced by other means, such as thermal or piezo-

electric. The second term in Eq. (2.14) corresponds to linear elasticity. In the

limit for a linear, isotropic, elastic solid, the stiffness tensor can be expressed

as a function of the bulk modulus, K, and the shear modulus, µ, such that

Cijkl = Kδijδkl +
1

3
µ (3δikδjl + 3δilδjk − 2δijδkl) . (2.16)

From Eq. (2.16) and the properties of the Kronecker delta,

1

9
Ciijkδjk = Ki. (2.17)

The quantity, Ki, is the bulk modulus of the SAMM inclusion. The third terms

in Eq. (2.7) characterizes the second order stiffness, which is nonlinear. This

term could be expressed as a function of the Landau coefficients [65], however,

that is unnecessary for the purpose of the present work. Instead a nonlinear,

second order stiffness modulus, K ′i , is defined as linear combinations of the

higher order elastic terms, such that

K ′i = − 1

27
Diiklmnδklδmn. (2.18)
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Similarly, a nonlinear, third order stiffness modulus, K ′′i , is defined to charac-

terize the last term in Eq. (2.7),

K ′′i =
1

81
Miiklmnopδklδmnδop. (2.19)

The expressions in Eq. (2.15)–(2.19) are combined to provide a simplified equa-

tion for pressure as a function of the state variable, εvi,

P = Pi0 −Kiεvi +
1

2
K ′iε

2
vi −

1

6
K ′′i ε

3
vi. (2.20)

As previously stated, defining global nonlinear stiffness parameters may

not correctly capture the behavior of a nonlinearly deforming body. Therefore,

the coefficients, Ki, K
′
i , and K ′′i , are effective elastic constants that vary locally

depending on the hydrostatic pressure, Pi0 , applied to the SAMM inclusion.

Their values are obtained by considering small perturbations about the im-

posed pre-strain. It is also worth noting that the relationship between the

Lagrangian strain tensor and the volumetric strain is an infinitesimal strain

theory definition that is not valid for arbitrary finite strains, even if they are

spherically symmetric [62]. However, by considering only small perturbations,

the use of volumetric strain in defining the constitutive relationship between

pressure and strain provides a reasonable approximation of the nonlinear re-

sponse of the SAMM inclusions. Future work may consider more accurate

models for large deformations using finite elasticity.

The small perturbations are considered about some volumetric pre-

strain, denoted by ε̄vi, imposed on the SAMM inclusion. The pre-strain has
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the same form as Eq. (2.12), and is defined as

ε̄vi =

(
Ri

Ri

)3

− 1. (2.21)

In Eq. (2.21), the strain corresponds to a new equilibrium radius, R̄i, instead

of Ri0 . The governing constitutive relationship for the inclusion pressure can

then be written as a function of both εvi and ε̄vi,

Pi = Pi0 −Ki (εvi − ε̄vi) +
1

2
K ′i (εvi − ε̄vi)2 −

1

6
K ′′i (εvi − ε̄vi)3 . (2.22)

The values of the coefficients, Ki, K
′
i , and K ′′i , change as the hydrostatic

pressure, Pi0 , forces the SAMM inclusion to different equilibrium volumetric

strains.

2.3 Representative SAMM Inclusion Response

The data obtained from FEM are the displacement from the initial

radius and the resulting strain energy density in the SAMM inclusion. The

output from an example inclusion geometry is shown in Fig. 2.5. The FEM

is implemented with displacement boundary conditions. This implies that

the analysis represents displacement controlled behavior where the SAMM

inclusion is subjected to incremental displacement and the FEM provides the

corresponding strain energy resulting from that imposed deformation. All the

curves presented in Sections 2.3.1 and 2.3.2, as well as the remainder of this

thesis, correspond to the same representative SAMM inclusion.
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Figure 2.5: Fourth order strain energy density function versus displacement in
mm for a single SAMM inclusion from FEM.

2.3.1 Overall Behavior

The strain energy density versus imposed displacement data has been

transformed to pressure versus volumetric strain based on relationships in

Section 2.2. The pressure in MPa is plotted as a function of the change in

volume Vi − Vi0, normalized by the initial volume, Vi0, in Fig. 2.6. The neg-

ative values of (Vi − Vi0)/Vi0 represent negative strain as the instantaneous

volume, Vi, is smaller than the equilibrium volume. In the figure, the blue

dots on the pressure-volumetric strain curve correspond to the diagrams with
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the same letter located above and below the constitutive curve. Details re-

garding the loading condition are described below. The diagrams, which are

obtained directly from the FEM, depict the deformed shape of the inclusion

cross-section for various radial displacement values. Any perception that the

inclusion components overlap is due to an exaggerated scaling of the defor-

mation that allows the changes in the microstructure to be readily apparent.

They are not from physical interference between the components. The strain

magnitudes at different displacements from the equilibrium radius are reflected

in the color gradient; minimum strain corresponds to the dark blue color and

maximum strain is represented by dark red.

Since the FEM is displacement controlled, pressure is the dependent

variable, allowing the subsequent pressure-volumetric strain curve to be non-

monotonic. However, the loading conditions considered here are pressure,

or stress, controlled. The volumetric strain is contingent upon the pressure

response, which is now path dependent. The overall behavior of the SAMM

inclusion follows the path delineated by the red arrows, instead of explicitly

following the black curve.

Zero displacement, or zero strain, occurs at the position denoted by (a).

The inclusion diagram is a solid, dark blue color. As the pressure increases,

the inclusion deforms until it reaches the position denoted by (b). At this

location, the inclusion is compressed more than in state (a) and the outer

components therefore have a lighter blue color. An essential nonlinearity,

where the linear stiffness is zero and only the nonlinear moduli characterize
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Figure 2.6: Pressure in MPa as a function of volume corresponding to six
deformed states of SAMM inclusion that demonstrate the snapping response.
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the response, occurs at position (b), also defined as a limit point [66]. When the

inclusion is displaced to (b), any increase in pressure will require the inclusion

to snap through to location (c), which has the same pressure magnitude but a

much larger strain magnitude. At point (c), the inclusion is more compressed

than in state (b) as indicated by the bright red color. As the SAMM inclusion is

further deformed, it becomes continuously more compressed. At location (d),

the inclusion is a dark red color, corresponding to the largest strain magnitude

for this data.

A response similar to the behavior just described for loading the sys-

tem occurs when unloading the system. Starting from state (d), a reduction

in pressure allows the SAMM inclusion to expand along the pressure-volume

curve until it reaches state (e), another limit point with an essential nonlinear-

ity. The limit point at this position occurs for a lower pressure magnitude than

the limit point at location (b). The microstructure at point (e) is now yellow.

Once again, a small pressure decrement will force the SAMM inclusion to snap

from position (e) to (f). The microstructure is now a dark blue color again,

indicating that during unloading of the system, for the same pressure magni-

tude, the strain magnitudes are much smaller. The SAMM inclusion would

then continue to expand back to state (a). Because the constitutive curve

follows different paths when the system is loaded and unloaded, the path de-

pendent behavior corresponds to an inelastic response that can be described

locally using perturbation techniques of nonlinear elasticity for small-but-finite

deformations about a given configuration.
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The locally positive and negative stiffness regimes of the SAMM inclu-

sion are readily apparent from Fig. 2.6. Since stiffness is the first derivative

of stress with respect to strain, and pressure is negative stress, stiffness is

proportional to the negative first derivative of pressure with respect to strain,

K ∝ −∂P/∂εv [62]. For the displacement-controlled constitutive relationship

depicted by the black curve in Fig. 2.6, the sections between points (a) and (b)

and between (d) and (e) have a negative slope and thus correspond to positive

stiffness, whereas the positive slope between points (b) and (e) is indicative of

negative stiffness.

2.3.2 Local Coefficients

The hydrostatic pressure as a function of volumetric strain is shown

in Fig. 2.7, and estimates of the effective elastic parameters, Ki, K
′
i and K ′′i ,

corresponding to Pi0 are shown in Figs. 2.8–2.10. The values are obtained by

considering a pre-strain corresponding to the displacements shown in Fig. 2.5.

The coefficients are then fitted to a fourth order strain energy density function

for small perturbations about this pre-strain.

Figure 2.7 presents the hydrostatic pressure that will pre-strain the

SAMM inclusions to these states. The constitutive relation shown in Fig. 2.6

is also plotted on Fig. 2.7 as the solid grey line. As expected, the two cubic

non-monotonic curves are identical. This is because the coefficients are ob-

tained through perturbation theory utilizing a Taylor series expansion. When

evaluating the pressure response given by Eq. (2.22) at each pre-strain where
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Figure 2.7: Hydrostatic pressure, Pi0 , for small perturbations about a volu-
metric pre-strain imposed on the SAMM incluison.

εvi = ε̄vi, Pi = Pi0 must be true. The grey line extends to further volumetric

strain magnitudes than the black curve because of how the coefficients are

obtained. The fitting technique involves several data points on either side of

the chosen pre-strain, and therefore, the hydrostatic pressure obtained from

the fitting, as well as the coefficients presented in the following figures, encom-

passes a smaller range of volumetric strain values. Additionally, the vertical

red dashed lines shown in Fig. 2.7 correspond to the limit points, positions (b)

and (e) from Fig. 2.6, where the SAMM inclusion will snap through to a higher
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Figure 2.8: Local linear stiffness, Ki, for small perturbations about a volumet-
ric pre-strain imposed on the SAMM inclusion.

or lower strain configuration, respectively, for the same imposed pressure as

described in Section 2.3.1.

The local linear stiffness of the SAMM inclusion is attained for every

volumetric pre-strain, as plotted in Fig. 2.8. The shape of the curve resembles

that of a quadratic function. Because the linear bulk modulus is approximated

as the negative first derivative of pressure, which is a cubic function, the

quadratic shape is expected. It is not, however, a perfect quadratic, which will

become more apparent with the higher order derivatives presented in Figs. 2.9
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and 2.10. As the pre-strains move away from the essential nonlinearities within

the positive stiffness regions of Fig. 2.8, Ki appears to follow fairly straight

lines. These traits are attributed to how much curvature is present in the

pressure curve shown in Fig. 2.7. Furthermore, the sign of Ki can either be

positive or negative, which is the feature contributing to the high interest in

the SAMM inclusions. As Ki transitions from the positive to negative region

or vice versa, there exists a pre-strain with zero linear stiffness, or an essential

nonlinearity. The essential nonlinearities occur at the intersection of the red

dashed lines, explicitly delineating the locally positive and negative stiffness

regimes.

Figure 2.9 shows the second order elastic modulus, K ′i , as a function

of the volumetric pre-strain. The curve is monotonic, spanning from negative

to positive values as the magnitude of the volumetric strain increases. If the

linear stiffness in Fig. 2.8 were a perfect quadratic function, then K ′i would

show a straight line of constant slope. This is because the nonlinear, second

order stiffness is approximated by taking the first derivative of Ki with respect

to strain. Instead, there are finite, linear sections of K ′i connected to form

the curve shown in Fig. 2.9. Because K ′i transitions from positive to negative,

there exists a pre-strain where Ki = 0, which occurs within the negative linear

stiffness regime.

Figure 2.10 shows the third order elastic modulus, K ′′i , as a function of

the volumetric pre-strain. The shape of the figure is less intuitive than that

of the previous figures. Once again, if Fig. 2.8 depicted a perfect quadratic
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Figure 2.9: Local second order modulus, K ′i , for small perturbations about a
volumetric pre-strain imposed on the SAMM inclusion.

function, K ′′i , which represents the negative first derivative of K ′i or the nega-

tive second derivative of Ki, would be constant. Although there are sections

of Fig. 2.10 that are roughly constant horizontal lines, the magnitude of K ′′i

fluctuates for different volumetric pre-strains. Figure 2.10 does, however, only

reflect positive values of K ′′i , due to the monotonic nature of K ′i in Fig. 2.9.

Therefore, the nonlinear, third order stiffness modulus exists for every volu-

metric pre-strain. The strong nonlinearity will occur for any SAMM inclusion

that obeys a quartic strain energy density function with potential wells, such
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Figure 2.10: Local third order modulus, K ′′i , for small perturbations about a
volumetric pre-strain imposed on the SAMM inclusion.

as the one shown in Fig. 2.5.

The concept of relating the linear, quadratic, and cubic stiffness param-

eters through derivatives is routed in describing the system through a Taylor

series expansion. For the representative SAMM element, this leads to K ′i being

an order of magnitude larger than Ki and K ′′i reaching two orders of magni-

tudes larger Ki. Both Figs. 2.8 and 2.9 are presented in terms of MPa, while

K ′′i is presented on the scale of GPa. The vertical red dashed lines indicat-

ing the pre-strains at zero linear stiffness in Fig. 2.8 are also present in both
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Figs. 2.9 and 2.10. Although the presence of the red dashed lines does not offer

any insight into the unique nonlinear behavior of the SAMM inclusions, the

essential nonlinearities will be of particular interest in Chapter 3. Therefore,

it is worth noting that at the essential nonlinearities, K ′i may assume either

positive or negative values and that the magnitudes of both K ′i and K ′′i can

vary. This will contribute to different macroscopic responses that are explored

in detail in the following chapter.

2.4 Summary

Throughout the chapter, a fundamental understanding of the SAMM

inclusions of interest are analyzed from the standpoint of nonlinear elasticity.

This requires locally describing the deformation due to an imposed pressure

through standard perturbation theory techniques involving Taylor series ex-

pansions. The data, originally obtained from an FEM approach, presents

the response for one representative SAMM inclusion. All subsequent com-

putational analysis will refer to the same SAMM inclusion presented in this

chapter. The coefficients, Ki, K
′
i and K ′′i , are necessary to characterize a

heterogeneous medium that contains some volume fraction of the SAMM in-

clusions. The following two chapters will apply the linear and nonlinear elastic

moduli to standard formulations in acoustics to assist in understanding their

response on both the microscale and macroscale from a nonlinear acoustical

and dynamical standpoint.
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Chapter 3

Acoustic Nonlinearity

This chapter focuses on the modeling tools necessary to describe the

behavior of an acoustic wave propagating through a heterogeneous medium

comprised of the SAMM inclusions embedded in an elastic matrix material.

In order to gain an understanding of the overall macroscopic behavior, two

homogenization techniques are considered. Both rely upon knowing the prop-

erties of a single SAMM inclusion, as given for the representative element

presented in Section 2.3, and the surrounding matrix material. The nonlin-

ear acoustical behavior of the inclusion is further considered here. The first

homogenization approach, derived from a simple mixture law, is readily avail-

able from nonlinear acoustics and is more applicable to fluids. Thus a second

method, which is based upon a Hashin-Shtrikman scheme and draws heav-

ily from nonlinear elasticity, is applied to more accurately characterize the

effective medium. In both cases, acoustical parameters of nonlinearity are

presented to understand the response of the heterogeneous material and then

utilized to determine the behavior of a propagating acoustic wave. While

many aspects of the two methods are understood, applying them to compos-

ite materials containing SAMM inclusions provides a detailed description of

the nonlinear multiscale physics with an overall material response that dif-
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fers from that of conventional materials. The material models can therefore

be used in conjunction with existing FEM of SAMM inclusion to generate a

desired, nonlinear material response.

3.1 Acoustic Nonlinearities

Several equations of state used in nonlinear acoustics to relate pressure,

density, and volume are presented here. The theory is extended to include

cubic nonlinearities, which are negligibly small in comparison to quadratic

nonlinearities for most materials and therefore reasonably discarded as in-

significant. However, the higher order terms must be maintained with the

SAMM inclusions because the constitutive relationship, introduced in Section

2.2, is a cubic function that has a strong dependence on a nonlinear, third

order elastic modulus, K ′′i . The significance of the cubic nonlinearity will be

illustrated through comparisons with conventional materials.

3.1.1 State Equations

The standard isentropic equation of state utilized in nonlinear acoustics

is derived from the Taylor series expansion of change in pressure as a function

of change in density and assumes the following form [67]:

p

ρ0c20
=

(
ρ′

ρ0

)
+

B

2A

(
ρ′

ρ0

)2

+
C

6A

(
ρ′

ρ0

)3

+ · · · , (3.1)

where p is the acoustic pressure, ρ, ρ0, and ρ′ are instantaneous, ambient and

excess density, respectively, such that ρ = ρ0 + ρ′, and c0 is the linear small
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signal sound speed. The parameters of nonlinearity,B/A, C/A, etc., describe

the degree of nonlinearity in the equation of state, and consequently also the

deviation of the finite amplitude sound speed from its equilibrium, small signal

value c0 .

In Section 2.2, the SAMM inclusions were presented in terms of elastic-

ity. In order to analyze them from a nonlinear acoustic standpoint, it is useful

to relate the state equation in Eq. (3.1) as a function of other variables. One

such relation expresses excess density, ρ′, as a function of acoustic pressure, p.

The form is derived by rearranging Eq. (3.1), such that the linear term in ρ′

appears on the left-hand side,

ρ′ =
p

c20
− 1

ρ0

B

2A
(ρ′)

2 − 1

ρ20

C

6A
(ρ′)

3
, (3.2)

and then substituting the expansion of ρ′ into the quadratic and cubic terms

on the right-hand side of Eq. (3.2),

ρ′ =
p

c20
− 1

ρ0

B

2A

[
p

c20
− 1

ρ0

B

2A
(ρ′)

2 − 1

ρ20

C

6A
(ρ′)

3

]2
− 1

ρ20

C

6A

[
p

c20
− 1

ρ0

B

2A
(ρ′)

2 − 1

ρ20

C

6A
(ρ′)

3

]3
. (3.3)

Equation (3.2) is repeatedly substituted into the ρ′ terms on the right-hand

side of Eq. (3.3) until all terms up to third order are functions of p instead of

ρ′. Any terms higher than third order are discarded. Regrouping like terms

provides the desired density-pressure relation with ρ′ expressed explicitly in

terms of p,

ρ′ =
p

c20
− 1

ρ0c40

(
B

2A

)
p2 − 1

ρ20c
6
0

[
C

6A
− 1

2

(
B

A

)2
]
p3. (3.4)
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Equation (3.4) is used in Appendix A.1 to derive the full three-dimensional

wave equation that accounts for quadratic and cubic nonlinearities of the

medium.

The effective behavior of the representative SAMM inclusion obtained

from FEM is expressed in terms of pressure and volumetric strain in Section

2.2 [21]. It is therefore useful to rewrite Eq. (3.1) in terms of volume, or

volumetric strain, using the relation [62]

ρ′

ρ0
= − v

v + V0
= − εv

1 + εv
(3.5)

in order to relate the effective stiffness of the SAMM inclusion to the acoustic

parameters of nonlinearity. The desired expression is obtained by inserting the

binomial expansion of the right-hand side of Eq. (3.5) up to third order into

Eq. (3.1), which yields

p

K
= −εv +

(
1 +

B

2A

)
ε2v −

(
1 +

B

A
+

C

6A

)
ε3v, (3.6)

where K = ρ0c
2
0 is the bulk modulus. Equation (3.6) is the stiffness form of

the equation of state.

The compliance form of the state equation is also of interest here.

The same recursive substitution method used to derive Eq. (3.4) is applied

to Eq. (3.6). Retaining only terms up to third order in pressure yields

εv = − p

K
+

(
1 +

B

2A

)( p
K

)2
+

[
C

6A
− 1

2

(
B

A

)2

− B

A
− 1

]( p
K

)3
. (3.7)

This form of the state equation will be useful in characterizing the effective

parameters of a media containing SAMM inclusions.
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Comparing Eqs. (2.20) and (3.6) permits one to relate the SAMM in-

clusions stiffness coefficients, Ki, K
′
i and K ′′i , to the parameters of nonlinearity

to obtain values of B/A and C/A that pertain to one single inclusion,(
B

A

)
i

=
K ′i
Ki

− 2 (3.8)

and (
C

A

)
i

=
K ′′i
Ki

− 6
K ′i
Ki

+ 6. (3.9)

3.1.2 Parameters of Nonlinearity

The coefficient of nonlinearity β was introduced to characterize the

quadratic nonlinearity in a progressive sound wave in a medium, where [67]

β = 1 +
B

2A
. (3.10)

The “1” in Eq. (3.10) is a convection term due to geometric nonlinearity in the

continuity equation, while the B/2A accounts for material nonlinearity [68].

For elastic solids, the coefficient of nonlinearity is calculated using the Landau

coefficients, A, B, and C, which are referred to as third order elastic constants,

the bulk modulus, K, and the shear modulus, µ, [67]

β = −
(

3

2
+

A + 3B + C

K + 4
3
µ

)
. (3.11)

The nonlinearity parameter for an elastic solid approaches the form for an

inviscid fluid, where K = A = ρ0c
2
l , A = 0, B = −A and C = (A−B) /2,

and thus Eq. (3.11) reduces to β = 1 + B/2A [69]. Such an approximation
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is applicable particularly to elastic solids characterized by µ/K � 1. Elastic

solid materials of this type are considered in the present research. Due to the

nature of the derivation, the ratio B/A and Eq. (3.10) typically only describe

the quadratic nonlinearity of liquids. However, by equating Eq. (3.10) and

(3.11), an estimate of B/A for a solid material could be obtained.

In the same regard, the coefficient of nonlinearity γ is introduced here

to characterize the nonlinearity at third order in a medium,

γ =
3

2

[
C

6A
− 1

2

(
B

A

)2

− 7B

6A
− 4

3

]
. (3.12)

The form of Eq. (3.12) comes from the derivation of the one dimensional

evolution equation for plane, progressive waves presented in Appendix A.2.

Although coefficients of nonlinearity have been previously considered for cubic

nonlinearity, e.g. Refs. [70, 71], the expressions include fourth-order elastic

constants, which are difficult to obtain and rarely reported in the literature.

Consideration of such coefficients describing cubic nonlinearity is therefore

beyond the scope of the present work.

Table 3.1 shows estimates of the bulk modulus, K, in GPa, B/A, C/A,

and C/B for some example fluids, solids, and mixtures containing bubbles ob-

tained from the references cited in the table. The most common values of B/A

are shown in the table for the organic and biological media in the first eleven

rows; all are small and positive, falling within the range of 5 to 12. The excep-

tion is air, which has an even smaller B/A value of less than 1. However, it is

possible to obtain large B/A, which is the case for rocks and bubbly liquids.
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Material K [GPa] B/A C/A C/B Ref.

Air 1.21 0.4 – – [72]

Water 2.19 5 32 6.4 [73]

Ethanol 1.11 10.5[72] 165.9 15.8 [73]

Benzene 1.54 9[72] 89.99 10 [74]

Methanol 1.00 9.6[72] 98.96 10.3 [74]

Octane 1.01 11.3 159.44 14.1 [74]

Pig Liver 2.54 6.7[67] 116.5 17.4 [75]

Canine Spleen 2.48 6.8[67] 108.9 16 [75]

Canine Kidney 2.46 7.2[67] 112.8 15.7 [75]

Pig Fat 2.12 10.9[67] 102.2 9.4 [75]

Whole Porcine Blood 2.56 6.2[67] 42.1 6.8 [74]

Limestone 1083 29.6 1077.9 – – [76]

Westerly Granite 29.9 2469 – – [76]

Massilon Sandstone 6.1 5066.7 – – [76]

Pyrex Glass 31.0 −10.78 – – [77]

Fused Silica 78.39 −9.91 – – [78]

Water with φ = 1% gas
bubbles

0.01 236.9 – – [79]

Water with φ = 0.1%
gas bubbles

0.13 2116.8 – – [79]

Water with φ = 0.01%
gas bubbles

0.86 8836.4 – – [79]

Microspheres in Castor
Oil at P ' 75 kPa

0.04 −6398 – – [80]

Microspheres in Castor
Oil at P ' 88 kPa

0.13 −3000 – – [80]

Table 3.1: Bulk modulus, B/A, C/A and C/B for example fluids, solids, and
mixtures containing bubbles from the references denoted in the last column
unless otherwise noted in the table cells.
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The parameters of nonlinearity for the three example rocks, Limestone 1083,

Westerly Granite, and Massilon Sandstone, are determined from information

provided from Ref. [76] using Eqs. (3.10) and (3.11). It is worth noting that

the nonlinearity of rocks is rarely described using B/A notation, but is done

so here as a convenience to compare the behavior of different materials. The

results show that rock can have parameters of nonlinearity on the order of

103, due to inhomogeneities caused by micro-cracking, which is much greater

than for the biological and organic materials. Bubbly liquids also enhance the

nonlinearity parameters. The three examples of water containing air bubbles

in Table 3.1 are determined using the information provided in Ref. [79] for

three volume fractions of bubbles in water: φ = 1%, φ = 0.1%, and φ = 0.01%.

Furthermore, it is possible to obtain negative values of B/A. Some materials,

such as Pyrex glass [77] and fused silica [78], naturally have a negative param-

eter of nonlinearity. Other instances of negative have been reported in fluids

in the proximity of a critical point during a phase transformation [81].

Phase transformation can lead to simultaneously large and negative

parameters of nonlinearity. Such a response was measured by Trivett et al.

for an increasing applied hydrostatic pressure to a heterogeneous media com-

prised of castor oil and encapsulated microspheres [80]. In the experiment,

a hydrostatic pressure was imposed on the mixture of castor oil containing

hollow microspheres and was increased until the thin elastic shells of the mi-

crospheres buckled. The result was an abrupt reduction in the stiffness of the

microspheres and an associated decrement in the sound speed in the mixture,
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which gave rise to large and negative values for B/A. Two values of hydrostatic

pressure and the subsequent sound speed and parameter of nonlinearity mea-

sured from their experiment appear in Table 3.1, where B/A = −6398 is the

peak value, occurring roughly when P ' 75 kPA. In terms of elastic energy,

buckling phenomena display very similar behavior to phase transformation.

Because the SAMM inclusions rely on buckling phenomena to generate their

unique performance, it is therefore anticipated that the SAMM inclusions may

enable the generation of large and negative values of B/A.

Values of C/A are less commonly reported in the literature and thus

only appear in Table 3.1 for the organic and biological media. The largest value

shown in the table is the value of C/A for ethanol, 165.9. The magnitudes

of cubic nonlinearities are often small enough that their effects are negligible

in comparison to quadratic nonlinearities [73]. At most, C/A is an order of

magnitude larger than the values of B/A for that same material. As a point of

reference for the quadratic and cubic nonlinearity to be considered in Section

3.2, the ratio C/B is also calculated in Table 3.1. The largest magnitude is

17.4, which is the ratio of C/B for pig liver. For the cubic nonlinearity to have

a significant effect, the ratio C/B must be several orders of magnitude larger

than the ones shown in Table 3.1.

3.2 Homogenization

The macroscopic behavior of a heterogeneous material containing sub-

wavelength SAMM inclusions is one of the primary interests of the present re-
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search. The effective properties of a heterogeneous material containing SAMM

inclusions is explored in the following section using two different methods. A

schematic of the multiscale model considered here is diagrammed in Fig. 3.1.

Figure 3.1(a) depicts the macroscale, where the heterogeneous medium is a

representative volume element with radius R∗, surrounded by some matrix

material. The mesoscale, depicted in Fig. 3.1(b), is an intermediate scale

between the microscale and macroscale showing a dilute concentration of ran-

domly dispersed inclusions that are perfectly bonded to the matrix. The inclu-

sions are assumed to be non-interacting. The microscale is then represented

in Fig. 3.1(c) as one single inclusion of radius Ri embedded in the matrix.

The scale of the inclusion is assumed to be much smaller than the wavelengths

of an acoustic disturbance propagating in both the matrix and the effective

medium, such that k∗Ri � 1 and kmRi � 1, as well as the wavelength of the

highest harmonic, where khrmRi � 1. The subscripts on the acoustic wave

number, k, refer to the effective medium, matrix, and highest harmonic of

interest, respectively.

The volume fraction of SAMM inclusions within the effective medium

at ambient pressure is given by

φ =
NVi0
V∗0

= N

(
Ri0

R∗0

)3

, (3.13)

where N is the number of inclusions, Vi0 and Ri0 correspond to the equilibrium

volume and radius of one inclusion, and V∗0 and R∗0 refer to the equilibrium

volume and radius of the entire effective medium. Throughout the remainder
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Figure 3.1: Multiscale model for an effective medium containing a dilute con-
centration of inclusions showing the macroscale, mesoscale and microscale.

of the thesis, the effective medium will always be denoted by an ∗, the SAMM

inclusion by the subscript i, and the matrix material by the subscript m.

3.2.1 Mixture Law Homogenization Approach

An initial estimate of the effective coefficients of nonlinearity, denoted

by β∗ and γ∗, is obtained here using the immiscible mixture law. Originally

developed by Apfel [82] and later corrected by Everbach et al. [83, 84], the

mixture law provides a homogenization technique that has been applied to

emulsions, defined as immiscible fluid mixtures, such as gas bubbles in water

or oil. The approach is also applied to compositions of nearly incompress-

ible biological tissues that can be modeled as fluid-like media. However, the

method is only valid for µ/K � 1, and is thus not as well suited for suspensions

(solids suspended in a fluid) or composite elastic materials.
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3.2.1.1 Theoretical Formulation

For a composite medium with n immiscible components, the mixture

law relies upon the following assumptions: (i) both the homogenized medium

and each of the n components undergo the same change in pressure p, and

thus each individually obey Eq. (3.7); and (ii) the total change in volume

of the homogenized medium, v∗, is the summation of the respective volume

changes of each of the n components. The total change in volume of the

effective medium, as given in Eq. (3.7), is expressed in terms of β∗ and γ∗ from

Eqs. (3.10) and (3.12), such that

v∗
V0

= − p

K∗
+
β∗p

2

K2
∗

+
(2γ∗ + β∗) p

3

3K3
∗

. (3.14)

The second assumption requires

v∗
V∗0

= −p
n∑
h=1

φh
Kh

+ p2
n∑
h=1

φhβh
K2
h

+ p3
n∑
h=1

φh (2γh + βh)

3K3
h

, (3.15)

where φh is the volume fraction of each component of the heterogeneous

medium. The two assumptions dictate that Eq. (3.14) be equal to Eq. (3.15).

The effective medium of interest has n = 2 components: the SAMM inclusions

and the matrix material. Equating like terms of the same order of pressure

for the two phase medium provides the following expressions for the effective

bulk modulus, K∗,

Kml
∗ =

Km

1 + φ

(
Km

Ki

− 1

) , (3.16)
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and coefficients that characterizes quadratic nonlinearity,

βml
∗ =

(
Kml
∗
Ki

)2

βiφ+

(
Kml
∗
Km

)2

βm (1− φ) , (3.17)

and cubic nonlinearity,

γml∗ =
1

2

[(
Kml
∗
Ki

)3

φ (2γi + βi) +

(
Kml
∗
Km

)3

(1− φ) (2γm + βm)− βml
∗

]
.

(3.18)

For these estimates of the effective material properties, the superscript ml

indicates that the parameters are obtained using the mixture law approach.

Equations (3.16)–(3.18) are equivalent to those that appear in Ref. [84], which

expresses the effective parameters in terms of B/A and C/A. Equations (3.17)

and (3.18) are related to B/A and C/A through the expressions(
B

A

)
∗

= 2 (β∗ − 1) (3.19)

and (
C

A

)
∗

= 2
(
2γ∗ + 3β2

∗ − 5β∗ + 3
)
. (3.20)

3.2.1.2 Mixture Law Homogenization Results

The nonlinearity of an effective medium containing the SAMM inclu-

sions is now explored. The expressions for the effective (B/A)ml∗ and (C/A)ml∗

are obtained from βml
∗ and γml∗ through Eqs. (3.17)–(3.20). For simplicity,

the matrix material is taken to be water, and the values of Km, (B/A)m and

(C/A)m are given in Table 3.1. The coefficients of nonlinearity of the repre-

sentative SAMM inclusion, βi and γi, as given by Eqs. (3.8)–(3.10) and (3.12),
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depend on local stiffness parameters, Ki, K
′
i , and K ′′i . In Section 2.3.2, Ki, K

′
i ,

and K ′′i were obtained from the FEM data, as shown in Figs. 2.8–2.10. The

nonlinear elastic parameters for the SAMM inclusion, which vary with strain,

and the parameters describing the matrix, which are constant, are then used to

obtain Kml
∗ , (B/A)ml∗ , and (C/A)ml∗ in Figs. 3.2–3.5. Because the parameters

of stiffness and nonlinearity of the SAMM inclusion rely heavily on their strain

state, the effective parameters of nonlinearity and bulk modulus also depend

on the volumetric pre-strain of the SAMM inclusion. For the example effective

medium, the volume fraction of SAMM inclusions in the matrix is φ = 1%.

The computed values for the effective B/A are plotted in Fig. 3.2 as a

function of the change in volume on the SAMM inclusion scale. The x-axis

represents the pre-strain from the equilibrium volume, Vi0 , when no external

forces are applied. As the applied pre-strains approach the states correspond-

ing to zero linear stiffness on the microscale, denoted by the vertical red dashed

lines, the macroscale nonlinearity parameter, (B/A)∗, approaches positive or

negative infinity. The vertical black lines that line up with the red dashed lines

at the essential nonlinearities are asymptotes that indicate the value of (B/A)∗

flipping from negative to positive values, or vice versa. The exact magnitudes

at the essential nonlinearities are dependent on how close the magnitude of Ki

is to 0.

The behavior is similar to the buckling of the encapsulated microspheres

from Ref. [80] that was discussed in Section 3.1.2. As the pre-strain on the

SAMM inclusions increases, like the hydrostatic pressure on the microspheres,
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Figure 3.2: (B/A)∗ derived from the mixture law with φ = 1% SAMM inclu-
sions in water.

the stiffness changes. The magnitude of (B/A)∗ becomes very large for both

the SAMM inclusion and the encapsulated microspheres as the imposed ex-

ternal forces approach the pre-strained state that will induce buckling. It is

worth noting that the SAMM inclusion undergoes a perfectly recoverable de-

formation. Although Trivett et al. also described the process of the buckling

of the microspheres as “reversible and repeatable” unless the hydrostatic pres-

sure is imposed for an extended time frame [80], microspheres are more likely

to get destroyed due to a hydrostatic loading process than the SAMM inclu-
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Figure 3.3: (C/A)∗ derived from the mixture law with φ = 1% SAMM inclu-
sions in water.

sions. Furthermore, the SAMM inclusions exhibit a large response for multiple

pre-strains, corresponding to the two limit points where the snapping will oc-

cur. Even at pre-strains away from the essential nonlinearities, the values of

(B/A)∗ are still significantly larger than B/A for organic and biological media

given in Table 3.1.

Figure 3.3 shows a similar behavior for computed values of (C/A)∗.

Once again, as the SAMM inclusion approaches a configuration that corre-

sponds to zero linear stiffness, the magnitudes of (C/A)∗ become larger. In
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Figure 3.4: (C/B)∗ derived from the mixture law with φ = 1% SAMM inclu-
sions in water.

order to emphasize the significance of the cubic nonlinearity, the ratio (C/B)∗

is shown as a function of volumetric strain. For the range of imposed pre-

strains considered in Fig. 3.4, there are volumetric strains that correspond to

(C/B)∗ ∼ 0. Thus, (C/A)∗ is much smaller than (B/A)∗ at these volumetric

strains because the zero of (B/A)∗ does not coincide with the zeros of (C/A)∗.

The magnitude of (C/B)∗ becomes the largest within negative stiffness regime

of the SAMM inclusion, occurring for the volumetric strains between the ver-

tical red dashed lines. Recall from Table 3.1 that the largest ratio of C/B

64



Figure 3.5: K∗ derived from the mixture law with φ = 1% SAMM inclusions
in water.

for conventional materials currently reported was only 17.4. The ratios of

(C/B)∗ in Fig. 3.4 obtain much larger magnitudes. Therefore, one expects the

macroscopic response of the heterogeneous medium to exhibit strong cubic

nonlinearities due to the SAMM inclusions.

Qualitatively, the behavior shown in Figs. 3.2–3.4 is exactly as expected;

as pre-strain approaches zero linear inclusion stiffness, the nonlinearity of the

SAMM inclusion and subsequently, the effective medium, increases. However,

the behavior of the effective bulk modulus, as presented in Fig. 3.5, does not
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completely describe the system of interest. The effective bulk modulus in

Eq. (3.16) is also obtained from the volume average of a Reuss composite

in continuum mechanics, which is known to underestimate the effective bulk

modulus of composites for all but a few very specific cases [2].

The effective bulk modulus plotted in Fig. 3.5 indicates that for cer-

tain ranges of pre-strain, the negative values of the effective linear stiffness of

the SAMM inclusions, Ki, induces a negative effective bulk modulus of the

heterogeneous medium. The vertical red dashed lines once again correspond

to the essential nonlinearities of the SAMM inclusions. However, as evident

in Fig. 3.5, K∗ becomes negative for the pre-strains between the vertical red

dashed lines and thus the signs of Ki and K∗ are the same. A negative value

of the effective medium implies that the medium is unstable for these strain

values [62]. Such a medium will not support wave motion because it leads

to a purely imaginary sound speed (i.e., evanescent waves). For a fluid, the

mixture law is a reasonable description of the effective behavior, but for cer-

tain properties of the surrounding elastic matrix, an element with a negative

stiffness phase can be stably constrained to generate an overall, positive ef-

fective stiffness of the composite [6]. Upon reviewing the assumptions made

for the mixture law approach, it is clear that conservation of volume holds for

any material regardless of the constituents, but the requirement of continuity

of pressure in all materials does not account for an elastic body’s ability to

resist shearing deformation. It is therefore of interest to derive a model for

the effective behavior of an elastic medium containing SAMM inclusions. Any
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such model must account for the shear modulus in the elastic matrix material

in order to stabilize the SAMM materials when Ki < 0. Section 3.2.2 presents

the adoption of a Hashin-Shtrikman scheme to describe a nonlinear inclusion

up to third order within an elastic matrix with a non-zero shear modulus.

3.2.2 Hashin-Shtrikman Approach

Hashin and Strikman rigorously derived bounds, termed the Hashin-

Shtrikman bounds, for the effective elastic moduli for a heterogeneous material,

which, along with its constituents, obeys linear elasticity [85]. For a two-phase

medium, the composite is modeled as a sphere surrounded by a shell. The

upper and lower bounds can be obtained simply by applying continuity of

normal displacement and normal stress at the inclusion-shell and shell-effective

medium boundaries, providing four equations and four unknowns that give rise

to an expression for the effective bulk modulus [2]. The Hashin-Shtrikman

approach is adapted here for a SAMM inclusion embedded in a matrix and

extends the model to include nonlinear elasticity.

Consider the representative volume element shown in Fig. 3.6. In

Fig. 3.6(a), a nonlinear inclusion with known elastic parameters and radius

Ri0 is embedded in some infinite matrix with known elastic parameters. The

dashed circle of radius R∗0 is an representative volume element encompass-

ing the entire inclusion and some of the matrix that is homogenized as an

effective medium surrounded by the matrix, as shown in Fig. 3.6(b). The ef-

fective elastic parameters, K∗, K
′
∗ and K ′′∗ , are the unknowns obtained from
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(a) Matrix-Inclusion (b) Matrix-Effective Medium

Figure 3.6: Schematic of homogenization using a Hashin-Shtrikman homoge-
nization scheme.

this derivation.

3.2.2.1 Theoretical Formulation

The SAMM inclusion, matrix material, and effective medium are as-

sumed to undergo large deformations. Therefore, the geometrical nonlinear-

ities of the deformation must be described using finite elasticity. However,

nonlinear deformations are more complicated than the behavior modeled by

linear elasticity because few closed-form solutions exist for general cases of

finite deformations. One simplifying assumption utilized here is that all de-

formations are spherically symmetric. A summary of six classes of elastic

materials with closed form solutions for spherically symmetric deformations

are presented in Ref. [86] with more details available in the references therein.
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The simplest model is Class I, which describes harmonic materials that de-

forms such that the deformation gradient is always symmetric [87]. The radial

displacement for a harmonic material is given by

umr = amr +
bm
r2
, (3.21)

where am and bm are constants describing the deformation in the matrix and r

is the Lagragian radial coordinate. Even though the deformation is nonlinear,

the strain energy density and subsequent stress-strain constitutive relationship

can still be linear. From Ref. [6], the strain energy density for a linear harmonic

material can be expressed as

E m =
1

2

(
Km +

4

3
µm

)
λ2rr + 2

(
Km −

1

3
µm

)
λ2θθ

+ 2

(
Km −

2

3
µm

)
λrrλθθ − 3Km (λrr + 2λθθ) , (3.22)

where λrr, λθθ, and λφφ are the invariants of the deformation gradient, with

λθθ = λφφ for the case of a spherically symmetric deformation. The invariants

are given by

λrr = 1 + am −
2bm
r3
, λθθ = 1 + am +

bm
r3
. (3.23)

The relationship for Cauchy stress in terms of strain energy density and the

invariants of the deformation gradient are given by [86]

σij =
λij

λrrλθθλφφ

∂E

∂λij
, (3.24)

where the repeated indices, ij, do not indicate a summation. Differentiating

Eq. (3.22) with respect to λrr and substituting the relations given in Eq. (3.23)
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into Eq. (3.24) reduces the radial component of the Cauchy stress to

σm
rr =

(
am +

bm
r3

+ 1

)−2(
3Kmam − 4µm

bm
r3

)
. (3.25)

Additional information regarding the derivation of the radial displacement and

radial Cauchy stress for the harmonic material is in Appendix B.

The effective elastic moduli are obtained by satisfying continuity con-

ditions at the inclusion-matrix and matrix-effective medium interfaces. Ex-

pressions for the radial displacement and radial Cauchy stress describing the

SAMM inclusion and effective medium are therefore necessary. The behavior

of the SAMM inclusion was described in Section 2.2. The radial displacement

is given in Eq. (2.8). From Eqs. (2.5), (2.10), and (2.17)–(2.19), the radial

Cauchy stress of the SAMM inclusion is expressed as

σi
rr = 3

[
Ki

(
ai +

3

2
a2i

)
− 3

2
K ′i

(
ai +

3

2
a2i

)2

+
3

2
K ′′i

(
ai +

3

2
a2i

)3
]
, (3.26)

where the pressure offset Pi0 is taken to be zero.

The expressions describing the deformation of the effective medium

have the same form as those of the SAMM inclusion. Therefore, the radial

displacement is

u∗r = a∗r, (3.27)

and the radial Cauchy stress is

σ∗rr = 3

[
K∗

(
a∗ +

3

2
a2∗

)
− 3

2
K ′∗

(
a∗ +

3

2
a2∗

)2

+
3

2
K ′′∗

(
a∗ +

3

2
a2∗

)3
]
. (3.28)
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Continuity of radial displacement at the interface between the SAMM

inclusion and the matrix, uir(r = Ri0) = umr (r = Ri0), yields

bm
R3

i0

= ai − am. (3.29)

Similarly, continuity of radial displacement at the interface between the effec-

tive medium and the matrix, u∗r(r = R∗0) = umr (r = R∗0), provides

bm
R3
∗0

= a∗ − am. (3.30)

Combining Eqs. (3.29) and (3.30), and using the definition of volume fraction

from Eq. (3.13) with N = 1 gives rise to the expression

a∗ = φai + (1− φ) am. (3.31)

Continuity of radial stress at the interface between the SAMM inclusion

and matrix, σi
rr(r = Ri0) = σm

rr(r = Ri0), provides

Ki

(
ai +

3

2
a2i

)
− 3

2
K ′i

(
ai +

3

2
a2i

)2

+
3

2
K ′′i

(
ai +

3

2
a2i

)3

=
(
1 + 2ai + a2i

)−1 [(
Km +

4

3
µm

)
am −

4

3
µmai

]
. (3.32)

The term bm is eliminated in Eq. (3.32) through the use of Eq. (3.29). Since the

radial stress of the SAMM inclusion is a third order expansion, the effective

parameters only require the retention of terms to third order with respect to

ai, (
Ki +

4

3
µm

)
ai +

1

2
(7Ki − 3K ′i) a

2
i +

1

2
(8Ki − 15K ′i + 3K ′′i ) a3i

'
(
Km +

4

3
µm

)
am. (3.33)
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At the matrix-effective medium interface, continuity of radial stress

must once again be satisfied, such that σ∗rr(r = R∗0) = σm
rr(r = R∗0). By

retaining terms only up to cubic order of a∗, the relation for continuity of

normal stress reduces to(
K∗ +

4

3
µm

)
a∗ +

1

2
(7K∗ − 3K ′∗) a

2
∗ +

1

2
(8K∗ − 15K ′∗ + 3K ′′∗ ) a

3
∗

'
(
Km +

4

3
µm

)
am. (3.34)

The right-hand side of Eqs. (3.33) and (3.34) are identical, and thus

one can equate their left-hand sides. In order to derive expressions for the

effective elastic moduli, a∗ must be expressed as a function of the unknown ai

and the known inclusion and matrix parameters. First, an expression for am

as a function of ai is derived from Eq. (3.33), such that

am =

(
Ki + 4

3
µm

)
ai + 1

2
(7Ki − 3K ′i) a

2
i + 1

2
(8Ki − 15K ′i + 3K ′′i ) a3i(

Km + 4
3
µm

) . (3.35)

Substituting Eq. (3.35) into Eq. (3.31) provides the desired expression for a∗,

a∗ =

(
Km +

4

3
µm

)−1{[
φ (Km −Ki) +

(
Ki +

4

3
µm

)]
ai

+
1

2
(1− φ)

[
(7Ki − 3K ′i) a

2
i + (8Ki − 15K ′i + 3K ′′i ) a3i

]}
. (3.36)

The desired expression is obtained by combing Eq. (3.33) with Eq. (3.34) while

making use of the expression for a∗ given by Eq. (3.36). If terms higher than

a3i are discarded when taking the square and cube of Eq. (3.36), then the result

is a function of the known SAMM and matrix moduli, unknown coefficients ai
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and unknown effective elastic moduli:(
Ki +

4

3
µm

)
ai +

1

2
(7Ki − 3K ′i) a

2
i +

1

2
(8Ki − 15K ′i + 3K ′′i ) a3i

=

(
K∗ +

4

3
µm

)(
Km +

4

3
µm

)−1{[
φ (Km −Ki) +

(
Ki +

4

3
µm

)]
ai

+
1

2
(1− φ)

[
(7Ki − 3K ′i) a

2
i + (8Ki − 15K ′i + 3K ′′i ) a3i

]}
+

1

2
(7K∗ − 3K ′∗)

(
Km +

4

3
µm

)−2{[
φ (Km −Ki) +

(
Ki +

4

3
µm

)]2
a2i

+ (1− φ) (7Ki − 3K ′i)

[
φ (Km −Ki) +

(
Ki +

4

3
µm

)]
a3i

}
+

1

2
(8K∗ − 15K ′∗ + 3K ′′∗ )

(
Km +

4

3
µm

)−3
×
[
φ (Km −Ki) +

(
Ki +

4

3
µm

)]3
a3i . (3.37)

If ai = 0, Eq. (3.37) is trivially satisfied. Thus to avoid the trivial

solution, all terms at each respective order of ai must equal zero. The effective

bulk modulus is obtained by equating all terms at first order, such that

K∗ =
Km

(
Ki + 4

3
µm

)
− 4

3
µmφ (Km −Ki)(

Ki + 4
3
µm

)
+ φ (Km −Ki)

. (3.38)

The expression in Eq. (3.38) is identical to the effective bulk modulus derived

from the Hashin-Shtrikman bounds in linear elasticity and is restricted to

values that range from Km and Ki as the volume fraction spans 0 to 1 [85].

The bounds are obtained by assuming that each material in the composite has

positive stiffness, and the overall effective medium is therefore stable when

unconstrained. However, since it has been show that it is possible to achieve
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a stable composite by constraining the SAMM inclusions within the negative

stiffness regime, the effective bulk modulus given by Eq. (3.38) may fall outside

the expected Hashin-Shtrikman bounds, providing enhanced stiffness [6].

By equating all terms at second order, it is found that the effective

modulus K ′∗ is given by

K ′∗ =
7

3
K∗ −

(7Ki − 3K ′i)
(
Km + 4

3
µm

) [
φ
(
K∗ + 4

3
µm

)
+ (Km −K∗)

]
3
[
φ (Km −Ki) +

(
Ki + 4

3
µm

)]2 . (3.39)

Similarly, the third order effective modulus is

K ′′∗ = 5K ′∗ −
8

3
K∗ −

(1− φ) (7K∗ − 3K ′∗)
(
Km + 4

3
µm

)
(7Ki − 3K ′i)

3
[
φ (Km −Ki) +

(
Ki + 4

3
µm

)]2
+

(8Ki − 15K ′i + 3K ′′i )
(
Km + 4

3
µm

)2 [
φ
(
K∗ + 4

3
µm

)
+Km −K∗

]
3
[
φ (Km −Ki) +

(
Ki + 4

3
µm

)]3 .

(3.40)

Because the constitutive relationships for the SAMM inclusion and ef-

fective medium have the same form, the acoustic nonlinearities, (B/A)∗ and

(C/A)∗, are similar to those shown in Eqs. (3.8) and (3.9):(
B

A

)
∗

=
K ′∗
K∗
− 2 (3.41)

and (
C

A

)
∗

=
K ′′∗
K∗
− 6

K ′∗
K∗

+ 6. (3.42)

3.2.2.2 Nonlinear Hashin-Shtrikman Homogenization Results

The effective bulk modulus and nonlinearity parameters are plotted

in Figs. 3.7–3.9 comparing the response for an effective medium containing
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φ = 1% SAMM inclusions embedded in an elastic matrix with bulk modulus

Km = 2 GPa and four different Poisson’s ratios: νm = 0.5, ν = 0.4995,

νm = 0.4991, and νm = 0.4989. The values are obtained by first finding the

effective stiffness moduli, K∗, K
′
∗, and K ′′∗ , given by Eqs. (3.38)–(3.40). The

effective parameters depend on the local SAMM inclusion linear and nonlinear

stiffness moduli, Ki, K
′
i , and K ′′i , given in Figs. 2.8–2.10. Then, K∗, K

′
∗, and

K ′′∗ , which are functions of the imposed microscopic pre-strain, are used in

Eqs. (3.41) and (3.42).

In Figs. 3.7–3.9, the intersection of the black dashed lines correspond to

the location of the essential nonlinearities of an unconstrained SAMM inclusion

and the area within the two vertical black dashed lines represents the locally

negative stiffness regime on the microscale. The blue curves represent the

limit of no shear stress. For that case, the effective parameters of nonlinearity

and bulk modulus approximated by the mixture law shown in Figs. 3.5–3.3

are very similar to their analogous coefficients determined with the Hashin-

Shtrikman approach, but they are not identical. The difference is anticipated

because the mixture law is equivalent to the Reuss bound, which is derived

by assuming equality of stress in all constituent materials. The Reuss bound

is known to underestimate the effective bulk modulus when compared to the

Hashin-Shtrikman method and therefore, it is expected that the computed

values of (B/A)∗ and (C/A)∗ differ between the two methods.

The green lines represent a Poisson’s ratio of νm = 0.4995, which cor-

responds to µm = 1.9 MPa. K∗ still becomes negative for some values when
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Figure 3.7: K∗ derived from the Hashin-Shtrikman approach with φ = 1%
SAMM inclusions for Km = 2 GPa and νm = 0.5, ν = 0.4995, νm = 0.4991,
and νm = 0.4989.

Ki is negative, as shown in Fig. 3.7, but there are also positive values of K∗

when Ki is negative. The positive values of K∗ between the two vertical black

dashed lines indicate that the matrix is capable of constraining the represen-

tative SAMM inclusion with negative stiffness behavior for some, but not all,

microscopic pre-strains. Decreasing the Poisson’s ratio to νm = 0.4991 in-

creases the shear modulus to µm = 3.7 MPa, as denoted by the red lines. The

matrix is now stiff enough to constrain the SAMM inclusion within the entire

microscopic negative stiffness regime. Therefore, the effective bulk modulus
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Figure 3.8: (B/A)∗ derived from the Hashin-Shtrikman approach with φ = 1%
SAMM inclusions for Km = 2 GPa and νm = 0.5, ν = 0.4995, νm = 0.4991,
and νm = 0.4989.

given by the red curve in Fig. 3.7 is always positive and the effective medium

will be stable over all ranges of inclusion pre-strain. The value νm = 0.4991

represents a threshold for which the Poisson’s ratio is small enough to ob-

tain K∗ > 0 for all pre-strains. Further decreasing the Poisson’s ratio to

νm = 0.4989, which corresponds to µm = 4.3 MPa, causes the minimum values

of K∗ to shift upwards. This is shown via the purple curve.

Computed values of (B/A)∗ for the same four Poisson’s ratios are plot-

ted as a function of SAMM inclusion pre-strain in Fig. 3.8, while values of

(C/A)∗ are shown in Fig. 3.9. Both effective parameters of nonlinearity can
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Figure 3.9: (C/A)∗ derived from the Hashin-Shtrikman approach with φ = 1%
SAMM inclusions for Km = 2 GPa and νm = 0.5, ν = 0.4995, νm = 0.4991,
and νm = 0.4989.

attain positive and negative values. The blue and green curves, corresponding

to νm = 0.5 and νm = 0.4995, respectively, become very large, approaching

positive or negative infinity as the pre-strain approaches values when K∗ = 0.

For νm = 0.5, the asymptotic behavior occurs at the essential nonlinearities

of the SAMM inclusion, as described in Section 3.2.1.2. However, when the

SAMM inclusion is in the negative stiffness regime, the essential nonlineari-

ties of K∗ shift towards each other until the shear modulus is large enough

to constrain the SAMM inclusion for any pre-strain. The behavior results

from the fact that (B/A)∗ and (C/A)∗ are proportional to K−1∗ as shown in
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Eqs. (3.41) and (3.42), respectively. The pre-strains for which the parameters

of nonlinearity become very large differ for νm = 0.5 and νm = 0.4995,

and thus the larger magnitudes of (B/A)∗ and (C/A)∗ correspond to the es-

sential nonlinearity of the effective medium. As the Poisson’s ratio becomes

large enough to constrain the entire negative stiffness regime of the SAMM

inclusion, the ratio (B/A)∗ becomes bounded, as indicated by the red curve,

for νm = 0.4991, and the purple curve, with νm = 0.4989 in Fig. 3.8. The peak

magnitude of (B/A)∗ therefore decreases for decreasing Poisson’s ratio. A sim-

ilar boundedness for (C/A)∗ is apparent in Fig. 3.9. This is a prime example

of the ability to tune the response of the SAMM inclusion. The values of νm

required to stably constrain the entire microscopic, negative stiffness regime

will vary depending on the material properties and geometry of the SAMM

inclusion. The microstructure can therefore be optimally designed to achieve

large nonlinearity for a specific matrix material.

Figure 3.10, which shows the ratio (C/B)∗ for the same four Poisson’s

ratios versus the microscopic volumetric strain, clearly illustrates the signifi-

cance of the cubic nonlinearity in comparison with the quadratic nonlinearity.

The three curves are very similar and become nearly identical for some pre-

strains while diverging for others. It is worth noting that the vertical lines near

εvi = −0.2 that correspond to (C/B)∗ asymptotically approaching positive or

negative infinity also occur at this volumetric strain for (C/B)ML
∗ in Fig. 3.4.

This volumetric strain corresponds to the location of the local minima in both

the microscopic and macroscopic stiffness curves, which clearly occurs at the

79



Figure 3.10: (C/B)∗ derived from the Hashin-Shtrikman approach with φ =
1% SAMM inclusions for Km = 2 GPa and νm = 0.5, ν = 0.4995, νm = 0.4991,
and νm = 0.4989.

same microscopic pre-strain regardless of the properties of the surrounding ma-

trix. Therefore, when the matrix is stiff enough to stably constrain the SAMM

inclusion, the cubic nonlinearity for the effective medium are much more sig-

nificant than the cubic nonlinearity for the conventional material presented in

Table 3.1.
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3.3 Nonlinear Macroscopic Behavior

In the previous section, the macroscopic parameters of nonlinearity

were expressed as a function of change in volume on the microscale. The

macroscopic strain is highly contingent upon its constituents and by instead

using the microscopic strain, the previous analysis allows both homogenization

methods to be compared on the same scale. However, the strain magnitudes

on the macroscale are of interest to describe the overall effective behavior of

the heterogeneous medium. In Section 2.2 it was found that the volumetric

strain and coefficient ‘ai’ for the SAMM inclusion are related via the expression

εvi = 3ai + 9
2
a2i . Since the constitutive relationship for the effective medium

is of the same form as the SAMM inclusion, the volumetric strain, εv∗ , and

coefficient, a∗, on the macroscale will obey the same relation, εv∗ = 3a∗+ 9
2
a2∗.

Through the method of recursive substitution used to derive the state

equations in Section 3.1.1, one finds

ai =
1

3

(
εvi −

1

2
ε2vi +

1

2
ε3vi

)
, (3.43)

where terms are retained only up to third order with respect to εvi. An expres-

sion for am is obtained as a function of εvi and the inclusion and matrix elastic

constants, all of which are known quantities, by following the same derivation

from Section 3.2.2.1. This function of am is substituted into Eq. (3.31) to ob-

tain an expression for a∗ in terms of known parameters. Using the relation

εv∗ = 3a∗+
9
2
a2∗, the macroscopic volumetric strain to third order in εvi is found
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to be

εv∗ = (3Km + 4µm)−2
{

[3φ (Km −Ki) + 3Ki + 4µm] (3Km + 4µm) εvi

+
1

2

{
[φ (3K ′i − 4Ki − 3Km)−K ′i + 4Ki − 4µm] (3Km + 3µm)

+ [3φ (Km −Ki) + 3Ki + 4µm]2
}
ε2vi

+
1

6

{ [
3φ (3Ki + 4Ki − 3Km) +K2

i − 4Ki + 4µm

]
[3φ (Km −Ki)

+3Ki + 4µm] +
[
φ (9Km − 3K ′′i + 6Ki − 4Ki)

+ 3K ′′i + 6K ′′i + 4K ′i + 12µm

]
(3Km + 4µm)

}
ε3vi

}
. (3.44)

As expected, the effective volumetric strain depends on the constitutive prop-

erties of the matrix, as well as local coefficients that describe the SAMM

inclusion for each pre-strain. The overall constitutive curve for the effective

medium is described using an equation equivalent to Eq. (2.22) that instead

describes the macroscale,

P∗ = P∗0 −K∗ (εv∗ − ε̄v∗) +
1

2
K ′∗ (εv∗ − ε̄v∗)2 − 1

6
K ′′∗ (εv∗ − ε̄v∗)3 . (3.45)

Similar to the microscale response, there exists a pre-strain that is imposed

on the heterogeneous material, denoted by ε̄v∗ , due to an external hydrostatic

pressure, P∗. The value of ε̄v∗ is obtained form Eq. (3.44) by replacing εvi with

ε̄vi.

An overall constitutive curve for the macroscopic response of the het-

erogeneous medium can be constructed from Eq. (3.45). Figure 3.11 shows

the macroscopic response predicted for the same four values of Poisson’s ratio

considered in Section 3.2.2.2: ν = 0.5, ν = 0.4995, ν = 0.4991, and ν = 0.4989,
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Figure 3.11: Pressure-volume relationship for the overall macroscopic response
as a function of the local perturbations on the microscale with φ = 1% SAMM
inclusions for Km = 2 GPa and νm = 0.5, ν = 0.4995, νm = 0.4991, and
νm = 0.4989.

which are shown in blue, green, red and purple, respectively. The region be-

tween the two vertical dashed lines of the same color indicate the microscopic

negative stiffness regime of the SAMM inclusion for the constitutive curve of

the same color. Near zero strain, the four curves appear very similar; all four

are very linear and the differences between them are nearly indistinguishable

on this scale. The response is more clearly seen in Fig. 3.12, which zooms in

to show the pressure-volume relationship near zero strain. There is a visible,

albeit marginal, difference in the slopes of the four curves. The blue curve is
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Figure 3.12: Pressure-volume relationship near zero strain for the overall
macroscopic response as a function of the local perturbations on the microscale
with φ = 1% SAMM inclusions for Km = 2 GPa and νm = 0.5, ν = 0.4995,
νm = 0.4991, and νm = 0.4989.

the steepest, representing a matrix with νm = 0.5. Although it is the softest

matrix material considered here, the response becomes nonlinear more quickly

than for the matrix materials with smaller Poisson’s ratio, as evident by the

curvature of the blue curve in Fig. 3.12. The cause is the larger magnitudes

of the nonlinear terms for νm = 0.5 than for the other three Poisson’s ratios

when considering the same volumetric strain, as demonstrated by (B/A)∗ and

(C/A)∗ in Figs. 3.8 and 3.9, respectively. The larger nonlinearities, there-

fore, contribute to the steeper slope near zero strain even though the effective
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medium is the least stiff. The purple curve for νm = 0.4989 has the least steep

slope, but remains linear over a larger range of strain values due to the smaller

magnitudes of the nonlinear terms. The red curve, for νm = 0.4991 is only

slightly more steep than the purple curve. The green curve, for νm = 0.4995,

falls within the blue and red curves.

The four curves diverge more rapidly as the strain magnitudes increase,

as evident in Fig. 3.12. The blue curve shows the highest degree of non-

monotonicity, corresponding to a negative stiffness regime on the macroscale

that cannot constrain the SAMM inclusions. The green curve is also non-

monotonic with a range of macroscopic strain where the response displays

negative stiffness. The red and purple curves, however, are monotonic because

the matrix fully constrains the SAMM inclusions within the negative stiffness

regime. The behavior displayed in Fig. 3.11 is consistent with that described in

Section 3.2.2.2. It is also important to note that for larger strain magnitudes,

the response of the effective medium is once again linear, but with reduced

stiffness for all four Poisson’s ratios when compared to the behavior near the

zero pre-strain configuration.

The magnitudes of the strain for the effective medium in Fig. 3.11 are

more than an order of magnitude smaller than those of a single SAMM in-

clusion shown in Figs. 3.7–3.9. For the matrix with ν = 0.4989, the former

peaks at εv∗ ∼ −0.016, while the latter peaks at εvi ∼ −0.5. The differ-

ence in magnitudes indicates that the macroscopic strain necessary to induce

a cubically nonlinear response on the microscale is not that large. For the
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representative SAMM inclusion constrained in a matrix with ν = 0.4989, it is

less than −1.6%, where the negative stiffness regime for the SAMM inclusion

occurring for a macroscopic strain range of less than −1%. Therefore, it is

reasonable to be able to physically induce the increased nonlinear response in

a heterogeneous medium that contains SAMM inclusions.

3.3.1 Comparison with Conventional Materials

Ashby charts are used in mechanical design for material selection be-

cause they provide a direct comparison of materials for a desired property

space. The charts are scatter plots for wide a range of materials, e.g. met-

als, polymers, and composites, with two different properties, such as stiffness

and density, represented by the two axes. The material maps are adopted in

the present work for presentation of the acoustic nonlinearities as a function

of stiffness. Figures 3.13 and 3.14 are Ashby charts for |B/A| and |C/A|,

respectively, plotted on a log-log scale as a function of stiffness. The |B/A|

and |C/A| values for the conventional materials—organic and biological media,

pyrex glass, fused silica, rock, and bubbly liquids—are obtained from Table 3.1

and are represented by the solid circles. From Section 3.2.2.2, the magnitude

and sign of B/A and C/A for composites containing SAMM inclusions can

vary drastically. Representative values of the nonlinearity parameters, de-

noted with ×, are taken from the curves in Figs. 3.8 and 3.9 for νm = 0.4991.

The positive values of B/A or C/A are shown in black, while the negative val-

ues are in red. It is worth emphasizing that both the sign and the magnitude
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Figure 3.13: Ashby plot for various |B/A| parameters.

of the parameters of nonlinearity and the corresponding stiffness magnitudes

rely heavily on the properties of the matrix and the inclusion. Therefore, a

wide range of effective properties may be achievable by considering various

matrix or inclusion materials. The composites with SAMM inclusions shown

in Figs. 3.8 and 3.9 represent one limited example.

For the example, the stiffness and quadratic nonlinearity associated

with the SAMM inclusions are very similar to those of the bubbly liquids as

illustrated by the overlapping regions of interest in Fig. 3.13. However, the

gas bubbles have a finite life span and are unstable [88]. On the other hand,
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Figure 3.14: Ashby plot for various |C/A| parameters.

the heterogeneous material with SAMM inclusions can be stabilized and offer

the ability to tune the system for a desired response.

The significance of the cubic nonlinearities are highly apparent in

Fig. 3.14 because there are so few measurements of C/A in conventional mate-

rials. Although the example composite containing SAMM inclusions is not as

stiff as the organic and biological media in the strain range where cubic non-

linearities are prominent, the magnitude of the parameter C/A is increased by

3 to 5 orders of magnitude. Tuning the initial SAMM inclusion behavior may

lead to a stiffer composite that still possess enhanced nonlinearities. Further-
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more, the values of C/A can also be negative, which the author has yet to find

reported in the limited literature that discusses values of C/A.

3.4 Propagation Model

A wave equation that accounts for cubic nonlinearities is necessary to

model propagation in the heterogeneous media of interest. A lossless form of

the wave equation that accounts for both quadratic and cubic nonlinearity is

found in [89]. For a lossy medium, the terms accounting for absorption are

the same as for the Westervelt equation. The one-dimensional wave equation

for plane, progressive waves that accounts for viscous loss, and quadratic and

cubic nonlinearity is therefore given by

∂2p

∂x2
− 1

c20

∂2p

∂t2
= − δ

c40

∂3p

∂t3
− β

ρ0c40

∂2p2

∂t2
− 2γ

3ρ20c
6
0

∂2p3

∂t2
, (3.46)

where δ is the diffusivity of sound, and β and γ are defined in Eqs. (3.10) and

(3.12). The derivation of Eq. (3.46) is provided in Appendix A.1.

3.4.1 Evolution Equation

It is also useful to derive a one dimensional evolution equation for pro-

gressive waves similar to the Burgers equation, but that accounts for cubic

nonlinearity. In nonlinear acoustics, small terms are additive at leading order,

and thus the evolution equation desired can be expressed as three separate

differential equations, one corresponding to each term on the right-hand side

of Eq. (3.46). All three equations have the d’Alembertian operator on the
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left-hand side [3]. The evolution equation is derived by introducing a retarded

time frame, τ = t − x/c0, where the coordinate frame now moves with the

evolving wave. Only terms at the lowest order, as determined by transforming

the x-coordinate to a slow scale corresponding to τ , for each respective equa-

tion is retained. See Appendix A.2 for the derivation of the following three

separate evolution equations.

The evolution equation for a lossy, linear wave equation characterizing

thermoviscous absorption is given by [90]

∂p

∂x
=

δ

2c30

∂2p

∂τ 2
. (3.47)

The diffusivity of sound, δ, is related to the thermoviscous attenuation coeffi-

cient, α, through the relation α = δω2/2c30.

The evolution equation accounting for quadratic nonlinearity is [90]

∂p

∂x
=

βp

ρ0c30

∂p

∂τ
. (3.48)

Including both the effects of thermoviscous absorption and quadratic nonlin-

earity in the derivation of an evolution equation yields the well known Burgers

equation.

The evolution equation involving only cubic nonlinearity is [71]

∂p

∂x
=

γp2

ρ20c
5
0

∂p

∂τ
. (3.49)

Since the time scale is the same for each of the three separate evolution equa-

tions, the right-hand sides of Eqs. (3.47), (3.48) and (3.49) are added together

90



to create one evolution that can be equation used to model the combined ef-

fects of absorption and quadratic and cubic nonlinearity on the propagation

of plane progressive waves:

∂p

∂x
=

δ

2c30

∂2p

∂τ 2
+

(
βp

ρ0c30
+
γp2

ρ20c
5
0

)
∂p

∂τ
. (3.50)

Higher orders of nonlinearity (quartic, etc.) in the equation of state appear

simply as higher powers of p within the parentheses. In the absence of losses,

for any order of nonlinearity, the resulting simple wave is described by an

augmented form of the Poisson solution.

3.4.2 Shock Formation Distance

The shock formation distance is the location where a vertical tangent

first forms in a finite-amplitude wave propagating in a lossless fluid [3]. The

infinite vertical tangent is expressed mathematically by ∂p/∂τ = ∞. The

shock formation distance can be found using the following form of the Poisson

solution:

p = f

(
τ − βxp

ρ0c30
− γxp2

ρ20c
5
0

)
. (3.51)

The derivative of Eq. (3.51) with respect to retarded time is

∂p

∂τ
=

f ′ρ0c
3
0

ρ0c30 − x
(
βf ′ +

2γff ′

ρ0c20

) , (3.52)
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where f ′ is the derivative of f with respect to its argument. A vertical tangent

occurs at the location x for which the denominator equals zero, and thus

x =
ρ0c

3
0

βf ′ +
2γff ′

ρ0c20

. (3.53)

Depending on the source waveform f , different parts of the distorted waveform

may develop a vertical tangent at different locations. The shock formation

distance, x̄, is defined to be the location of the first vertical tangent, which

occurs when the denominator of Eq. (3.53) is at a maximum:

x̄ =
ρ0c

3
0(

βf ′ +
2γff ′

ρ0c20

)
max

. (3.54)

For illustration we calculate the shock formation distance of an initially

sinusoidal source waveform, f = p0 sinωτ . The relations

f ′ = p0ω cosωτ

and

ff ′ = p20ω sinωτ cosωτ =
1

2
p20ω sin 2ωτ

are used in conjunction with Eq. (3.54) to obtain the shock formation distance

for a sinusoidal source function given as

x̄ =
1

[βMk cosωτ + γM2k sin 2ωτ ]max

. (3.55)

Here, M = p0/ρ0c
2
0 is the acoustic Mach number and k = ω/c0 is the wavenum-

ber at the source frequency. The shock formation distance is easily obtained
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if either quadratic or cubic nonlinearity is negligible. First consider the case

of pure quadratic nonlinearity, which is obtained with γ = 0. The extrema of

the denominator occur for ωτ = nπ. If β > 0, then the maxima occur for all

odd multiples of n, and x̄ = 1/βMk. Conversely, when β < 0, the denomina-

tor is a maximum for all even multiples of n, and thus x̄ = −1/βMk. Since

β < 0, the shock formation distance is still positive. Thus, for only quadratic

nonlinearity,

x̄quad =
1

|β|Mk
. (3.56)

Equation (3.56), without the absolute value notation, is the traditional expres-

sion for the shock formation distance in fluids. The behavior of an initially

sinusoidal waveform at the shock formation distance is shown in Fig. 3.15.

The source waveform appears in black and the distorted shape at x = x̄ is

shown in blue for a purely positive quadratic nonlinearity. At ωτ/2π = ±1/2,

a vertical tangent appears in the blue curve. If the nonlinearity is negative,

the waveform will become multivalued at different ωτ .

Unlike the case for purely quadratic nonlinearity, a waveform will be-

come multivalued at two points in the waveform (per fundamental cycle) when

propagating through a medium with purely cubic nonlinearity. If only cubic

nonlinearity is considered, extrema of the denominator of Eq. (3.55) occur at

ωτ = π (2n+ 1) /4. If γ > 0, then the denominator is a maximum for all even

n, which yields x̄ = 1/γM2k. For γ < 0, the maximum of the denominator oc-

curs at all odd n, and thus x̄ = −1/γM2k, where x̄ is once again still positive.
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Figure 3.15: The distorted waveform at x = x̄ for an initially sinusoidal source
waveform due to purely positive quadratic nonlinearity.

Therefore, the shock formation distance for only cubic nonlinearity is

x̄cubic =
1

|γ|M2k
. (3.57)

An expression similar to Eq. (3.57) appears in Ref. [71] to characterize the

shock formation distance of nonlinear shear waves. Figure 3.16 shows the

initially sinusoidal source waveform, denoted by the black curve, and the dis-

torted waveform at the shock formation distance due to purely positive cubic

nonlinearity. The vertical tangents occur at ωτ/2π = (mπ/4 + 1/2) /2π for

m = 1, 5,−3, 7. If the cubic nonlinearity is negative, the two shocks will form
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Figure 3.16: The distorted waveform at x = x̄ for an initially sinusoidal source
waveform due to purely positive cubic nonlinearity.

at different ωτ .

The expression for the shock formation distance is not as simple as the

limiting cases when accounting for both quadratic and cubic nonlinearity. The

maximum of the denominator in Eq. (3.55) occurs when the derivative of the

expression in the denominator with respect to time is equal to zero:

kMω [−β sinωτ + 2Mγ cos 2ωτ ] ≡ 0. (3.58)

95



or

sinωτ

cos 2ωτ
= 2

Mγ

β
. (3.59)

Note that the right-hand side of Eq. (3.59) depends upon the ratio of the shock

formation distances for the purely cubic and purely quadratic cases, such that

Mγ

β
=
x̄cubic
x̄quad

. (3.60)

Thus, if the right-hand side of Eq. (3.59) is equal to ±2, then the medium is

characterized by equal parts quadratic and cubic nonlinearity.

In Fig. 3.17, the left-hand side of Eq. (3.59) is shown in black and two

example values of the right-hand side are plotted, the blue is for 2Mγ/β = 2

and the red is for 2Mγ/β = −2. This example therefore corresponds to equal

contributions of quadratic and cubic nonlinearity. The blue dashed line, for

which β = Mγ, corresponds to both positive or both negative nonlinear-

ity, whereas the red dashed line, with β = Mγ, represents a positive cubic

but negative quadratic nonlinearity, or vice versa. For both of the limiting

cases, the maxima occur at every other extrema given by the denominator in

Eq. (3.55). The same is true here. Consider first the intercepts between the

black curve and blue dashed line, which are labeled 1 though 4 from left to

right in blue. The maximum values for the case β = Mγ occur for point 1,

where ωτ = −0.3404 and point 3, where ωτ = 0.101; the other two points are

local minima. The intercepts between the red dashed line and the black curve,

which corresponds to β = −Mγ, are labeled 1 through 4 in red from left to
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Figure 3.17: The left-hand side of Eq. (3.59) plotted as a function of ωτ and
two example values of for the right-hand side of Eq. (3.59), 2Mγ/β = ±2 .

right. The maximum for this case occur at point 2, for which ωτ = − 0.101,

and point 4, where ωτ = 0.3404.

Because there are two maximum values that satisfy Eq. (3.55), two

points on the initially sinusoidal waveform will become multivalued. This was

the case for purely cubic nonlinearity. However, unlike the purely cubic nonlin-

earity case, when the two maximum values obtained from Fig. 3.17 are substi-

tuted into Eq. (3.55), two different values of x̄ could be obtained. Thus, the two

components of the waveform that become multivalued do so at different dis-

tances from the source. The shock formation distance refers to the shortest dis-
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Figure 3.18: The distorted waveform at x = x̄ for an initially sinusoidal source
waveform due to equal contributions of quadratic and cubic nonlinearity (β =
Mγ).

tance that will result in a multi-valued waveform. Therefore, for both β = Mγ

and β = −Mγ, the shock formation distance is given by x̄ = 0.5681/βMK.

The second shock is formed at distance x̄2 = 2.710/βMk = 4.77x̄. Figure 3.18

shows the behavior of the mixed order nonlinearity given by the blue dashed

line in Fig. 3.17. Only one point on the waveform (per fundamental cycle) is

forming a shock at x = x̄. If the wave were to propagate further from the

source, part of the negative pressure amplitude would also become multival-

ued. A similar response is expected for the case denoted by the red dashed
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line, but a different point on the waveform becomes multivalued due to the

waveform steepening in the opposite direction.

Shock formation distance is an important metric of understanding the

nonlinearity associated with a medium. When absorption is accounted for,

attenuation will damp the waveform before it becomes multivalued, but the

qualitative dependence on x̄ still applies to a lossy, nonlinear medium.

3.4.3 Dimensionless Evolution Equation

In order to model the propagation of an incident acoustic wave, an algo-

rithm for solving the wave equation must be implemented. The computational

methods utilized here requires a dimensionless wave equation. Typical means

of non-dimensionalizing Eq. (3.50) employ dimensionless pressure P ≡ p/p0,

distance σ ≡ x/x̄ and time θ ≡ ωτ , where x is the distance from a source

located at x = 0, p0 is the acoustic pressure amplitude at the source, and ω is

the angular frequency of the source. Equation (3.50) can now be converted to

a dimensionless form,

∂P

∂σ
= αx̄

∂2P

∂θ2
+

(
βp0ωx̄P

ρ0c30
+
γp20ωx̄P

2

ρ20c
5
0

)
∂P

∂θ
. (3.61)

The fraction multiplying the second time derivative on the right-hand side of

Eq. (3.61) is the reciprocal of the Gol’dberg number, Γ. The Gol’dberg number

is a measure of the nonlinear effects relative to thermoviscous effects and is

defined as [3]

Γ =
1

αx̄
. (3.62)
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The terms inside the parentheses in Eq. (3.61) account for the nonlinear dis-

tortion. For simplicity, the following coefficients N1 and N2 are defined as

N1 = βMkx̄ =
1

[cosωτ + γM/β sin 2ωτ ]max

(3.63)

and

N2 = γM2kx̄ =
1

[β/γM cosωτ + sin 2ωτ ]max

. (3.64)

The magnitudes of N1 and N2 dictate the distorted shape of the propagating

wave due to the nonlinearity, while the signs of N1 and N2, which directly relate

to the signs of β and γ, respectively, correspond to the direction in which

different portions of the wave distort. In the absence of cubic nonlinearity,

γ = 0 and N2 = 0, while N1 = ±1 depending on whether β is positive of

negative. Conversely, if β = 0 (no quadratic nonlinearity), then N1 = 0 and

N2 = ±1 depending on the sign of γ.

The following dimensionless evolution equation is obtained by combin-

ing Eqs. (3.61)–(3.64):

∂P

∂σ
=
(
N1P +N2P

2
) ∂P
∂θ

+
1

Γ

∂2P

∂θ2
. (3.65)

3.4.4 Simulations of Waveform Distortion

Equation (3.65) is solved computationally via a time domain code origi-

nally developed by Lee and Hamilton [91, 92] to solve the Burgers equation and

the Khohklov-Zabolotskaya-Kuznetsov (KZK) equation. See also Cleveland et

al. for further discussion of this approach [93]. The previously developed code
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is augmented in the present work to account for cubic nonlinearities as de-

scribed in Appendix C. Representative values of N1 and N2 are explored in

Figs. 3.19–3.24 to illustrate the effects nonlinearity on a propagating acoustic

wave. Some attenuation must be present in the code for it to correctly capture

the distortion of the propagating acoustic waves beyond the shock formation

distance and therefore a Gol’dberg number of Γ = 100 is chosen. For Γ � 1,

the effects of dissipation near the shock formation distance are small. Thus,

Γ = 100 corresponds to a small amount of absorption that allows the code

to model the nonlinear response correctly. Each plot shows two cycles of a

sinusoidal pressure wave at the source, σ = 0, and at three dimensionless dis-

tances from the source, σ = 1, σ = 3, and σ = 5. Note that σ = 1 depicts

the distorted waveform at the shock formation distance. The vertical black

dashed lines indicate the zero crossings of the initial sinusoidal pressure wave.

Figure 3.19 shows the distortion of the acoustic wave for N1 = 1 and

N2 = 0 and represents the behavior typically studied with propagation through

a nonlinear medium possessing only positive, quadratic nonlinearity. As the

wave propagates away from the source, the component of the wave with a pos-

itive amplitude has a higher propagation speed and conversely the component

of the wave with a negative amplitude has a lower propagation speed. The

waveform has developed into a sawtooth profile for σ ≥ 3. Attenuation in the

medium reduces the amplitude of the wave. In Fig. 3.20, the distortion of the

acoustic wave for N1 = −1 and N2 = 0 is plotted. The sinusoid steepens into a

sawtooth wave in the opposite direction from that observed in Fig. 3.19. The
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Figure 3.19: Positive, purely quadratic nonlinear distortion of an initially si-
nusoidal propagating wave with N1 = 1, N2 = 0 and Γ = 100.

behavior in Fig. 3.20 depicts a rarefaction shock, as opposed to the compres-

sion shocks in Fig. 3.19. Rarefaction shocks with quadratic nonlinearity are

studied in detail in the literature in, for example, Refs. [81] and [94].

Figures 3.21 and 3.22 illustrate the distortion when cubic nonlinearity

dominates. The distortion of compressions shocks is extensively analyzed in

Ref. [95]. Unlike with quadratic nonlinearity, the distorted wave with cubic

nonlinearity is no longer symmetric. In addition, one observes two shocks per

cycle, as noted in Section 3.4.2. When N1 = 0 and N2 = 1, as in Fig. 3.21,
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Figure 3.20: Negative, purely quadratic nonlinear distortion of an initially
sinusoidal propagating wave for N1 = −1, N2 = 0 and Γ = 100.

the zero crossings of the waveform shift to the left as the wave steepens with

increasing distance from the source. If N1 = 0 and N2 = −1, as shown

in Fig. 3.22, the waveforms steepen in the opposite direction and the zero

crossings of the rarefaction shocks now shift to the right. The amplitude of

the acoustic wave is reduced as it propagates due to attenuation, as it was the

case for purely quadratic nonlinearity.

In nonlinear acoustics, the propagation of an acoustic wave is typi-

cally limited to purely quadratic or purely cubic nonlinearity. For example,
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Figure 3.21: Positive, purely cubic nonlinear distortion of an initially sinusoidal
propagating wave for N1 = 0, N2 = 1 and Γ = 100.

distortion of a propagating wave in a fluid usually requires only quadratic

nonlinearity to describe the behavior [73]. Conversely, the distortion of shear

waves in an elastic body correspond to a medium with only cubic nonlinearity

[95]. Analysis of the distortion of an acoustic wave that has a combination

of quadratic and cubic nonlinearity is therefore limited with respect to tradi-

tional materials. It was of interest, however, in the study of superfluid 3He-B

by Garrett [96]. Garrett shows waveforms for purely positive quadratic non-

linearity, purely negative cubic nonlinearity, and a mixture of the two. The

SAMM inclusions offer the possibility to generalize the distortion to any com-
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Figure 3.22: Negative, purely cubic nonlinear distortion of an initially sinu-
soidal propagating wave for N1 = 0, N2 = −1 and Γ = 100.

bination of positive or negative quadratic and cubic nonlinearities. Examples

of two of possible combinations are shown in Figs. 3.23 and 3.24.

Different points on the same initial waveform form shocks depending

on the relative magnitudes and signs of N1 and N2. For example, Fig. 3.23

shows the distorted waveform for N1 = 0.4 and N2 = 0.6. The waveform is still

non-symmetric, but only the zero crossing with positive slope shifts, in this

case to the left. The zero crossing of the initial waveform is at ωτ/2π = ±n/2

for any integer n and is represented by the vertical black dashed lines. The
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Figure 3.23: Positive, mixed order nonlinear distortion of an initially sinusoidal
propagating wave for N1 = 0.4, N2 = 0.6 and Γ = 100.

positive slope of the waveform steepens into one shock for σ > 1, but as

the wave propagates further from the source, the negative amplitude of the

negative slope component also begins to steepen, near ωτ/2π = 0.1,−0.9,

due to the cubic nonlinearity. The second shock will not develop until the

wave propagates beyond the second shock formation distance. Figure 3.24

shows waveforms for N1 = 0.6 and N2 = −0.4. The zero crossings shift to

the right because N2 is negative, but only one nearly multivalued shock forms

for the chosen σ. Another shock will form once the wave propagates to the

second shock formation distance, which is greater than x = 5x̄ for this case.
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Figure 3.24: Positive and negative, mixed order nonlinear distortion of an
initially sinusoidal propagating wave for N1 = 0.6, N2 = −0.4 and Γ = 100.

If either N1 or N2 is negative, for N2 6= 0, the zero crossings will shift to the

right but if both are positive, they will shift to the left. Therefore, a wide

variety of distorted waveforms are achievable due to combinations of signs and

magnitudes of N1 and N2.

The purpose of presenting these examples of waveform distortion is

to emphasize that the SAMM inclusions can be designed and tuned with an

imposed macroscopic pre-strain to elicit a wide range of desired nonlinear

responses. Embedding the SAMM inclusions within a matrix results in a
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composite material that has enhanced nonlinearity that may be useful for a

variety of wave manipulations applications. It is also worth noting that the

attenuation associated with the effective medium was arbitrarily chosen as

a small value. Although doing so is important to understand the nonlinear

response, the actual damping associated with this effective medium is also

unknown. Chapter 4 lays the foundation for developing a metric to quantify

how energy is dissipated from a propagating acoustic wave in a heterogeneous

material containing SAMM inclusions. The additional knowledge of knowing

about material damping will provide a higher physical understanding of the

heterogeneous material and allow the model presented in this chapter to be

more readily used as a design tool for the fabrication of physically realizable

SAMM inclusions for a desired application.
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Chapter 4

Nonlinear Dynamics

The nonlinear dynamics associated with the snapping behavior of the

SAMM inclusions when subjected to an external forcing acoustic pressure are

presented here. The primary objective is to generate a model capable of cap-

turing the response of a single SAMM inclusion, as well as a heterogeneous

material that contains a dilute concentration of these inclusions. The approx-

imate multiscale model, presented in detail in Section 3.2, decouples the equa-

tions of motion on each scale. Understanding the resulting nonlinear dynamic

response of both the microscale and macroscale will allow for characterization

of the damping associated with the entire effective medium.

4.1 Dissipation of Energy

The concept of energy dissipation is well understood within linear elas-

ticity and is illustrated in Fig. 4.1. The red curve in Fig. 4.1(a) represents the

amplitude, normalized by its maximum value, for an imposed sinusoidal strain

field as a function of time. The resulting stress field is also a sinusoid, but is

out of phase with the strain by some phase lag, δ. Figure 4.1(a) shows the

amplitude of the time harmonic stress for two different phase lags. The blue
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(a) Stress and strain amplitudes versus time

(b) Stress versus strain

Figure 4.1: Linear stress-strain relationships for a sinusoidal strain and stress
for two different phase lags, δ = 0.2 rad and δ = 1.2 rad.
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curve is the stress for δ = 0.2 rad, indicating a small delay between the impo-

sition of the strain, E, and the resulting stress, σ. The stress curve shown in

green with δ = 1.2 rad is shifted further from the strain curve than the stress

with the smaller phase lag. The phase lag creates a hysteresis loop when the

stress is plotted as a function of strain. The elliptic Lissajous figure is shown

in the stress-strain curve in Fig. 4.1(b). The blue curve represents δ = 0.2 rad,

whereas the green curve is for δ = 1.2 rad. The area outlined by the curves

is related to the energy dissipated per cycle [97]. The green curve encloses a

larger area, thus dissipating more energy.

Conventional materials found in nature cannot achieve both high stiff-

ness and high loss and thus there exists a trade-off between the two material

features. Acoustic metamaterials with negative elastic moduli, however, have

the ability to enhance both the stiffness of and the energy dissipated within

the composite material as highlighted in Section 1.3.1.2 [6]. Although stiffness

and damping are more difficult to quantify with nonlinear elasticity, the area

traced out in stress-strain space, or pressure-volumetric strain space, provides

a metric of the energy dissipated by the nonlinear medium, while the stiff-

ness is approximated using a tangent or secant approximation of the slope of

the stress-strain response around a local configuration, as described in Sec-

tion 2.1.2. The present chapter develops approximations of the two metrics

for a heterogeneous medium consisting of SAMM inclusions embedded in a

continuous host material.
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4.2 Inclusion Dynamics of Rayleigh-Plesset Form

The dynamics of bubbles entrained in a fluid medium has been widely

studied in the field of acoustics to understand important phenomena in re-

search areas such as underwater sound propagation [79] and biomedical ul-

trasonics [88]. In most cases, the configuration of interest consists of a gas

bubble, either free or encapsulated with a thin shell, within a fluid or fluid-

like solid. When an external pressure is applied to the bubble, the internal

pressure required to keep the bubble in quasi-static equilibrium must change,

causing the radius to expand or contract [98]. The same occurs for the SAMM

inclusions of interest. The internal pressure required to maintain equilibrium

for a forced SAMM inclusion corresponds to the location on the constitutive

pressure-volumetric strain curve. The dynamic response of a bubble is most

simply modeled as a forced nonlinear oscillator through the Rayleigh-Plesset

equation. A modified version of this nonlinear differential equation is adapted

here to describe the change in volume of the SAMM inclusions.

The general dynamical system considered is shown in Fig. 4.2. The

schematic represents any sphere embedded in a surrounding matrix undergoing

some radial deformation due to a pressure, P∞, imposed far away from the

inclusion. The system of interest describes bubbles, as well as the dynamics of

both a single SAMM inclusion and an effective medium that contains SAMM

inclusions. For the sphere embedded in a matrix material, the instantaneous

radius of the sphere, R, will change as a function of time due to the total

pressure on the surface of the sphere, Ptotal.
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Figure 4.2: Schematic of the general dynamic system for a sphere embedded
in a matrix material.

The nonlinear, second order differential equation describing the dynam-

ics of a sphere embedded in a viscoelastic matrix material is of Rayleigh-Plesset

form. The derivation, which appears in Appendix D using a Lagrangian ap-

proach for convenience, follows from Refs. [99], [100], and [101], using several

assumptions. The sphere is assumed to be lossless. Thus, the damping is

added to the overall system only through the viscoelastic matrix material,

which is modeled as a lossy, linear, and nearly incompressible elastic medium.

Recall from Section 3.2 that the size of the inclusion is much smaller than the

wavelength of a propagating acoustic wave through the matrix. Because of

this assumption, radiation losses from the inclusion’s oscillations can be ne-

glected and the matrix can reasonably be modeled as a nearly incompressible

elastic solid. Additionally, the mass of the bubble itself is typically ignored

because the surrounding material, either a fluid or nearly incompressible solid,
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is typically orders of magnitude more dense than the gas within the bubble.

The kinetic energy of the gas is therefore negligibly small in comparison to

that of the matrix [98]. As a first approximation, effects due the density of

the SAMM inclusions and effective medium will also be neglected. Using these

assumptions, one obtains the following equation of Rayleigh-Plesset form,

RR̈ +
3

2
Ṙ2 =

Ptotal

ρm
− 4ηm

ρm

Ṙ

R
, (4.1)

where ρm is the density of the matrix, ηm is the shear viscosity of the matrix,

and the dots indicate derivatives with respect to time. The total pressure,

Ptotal, is evaluated at the surface of the inclusion. The specific form of Ptotal

for the single SAMM inclusion and effective medium will be presented in the

following sections.

4.2.1 SAMM Inclusion

The simplest way to model the dynamics of the system is to decouple

the length scales such that the microscale and macroscale are modeled inde-

pendently. Thus in the present research, the dynamic response of the effective

medium is not influenced by the behavior of the SAMM inclusions, and vice

versa. The first case considers the oscillations of one SAMM inclusion embed-

ded in the nearly incompressible matrix, which is schematized in Fig. 4.3. The

total pressure at the interface between the inclusion and matrix is comprised of

three components: (i) the pressure infinitely far away from the inclusion, P∞,

may include a constant static pressure, a time-harmonic, acoustic pressure, or

both; (ii) the pressure due to the shear stress of the elastic matrix, P i
m, which
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Figure 4.3: Schematic of the dynamic system for one SAMM inclusion in
matrix material.

is derived with further details in Appendix D, assumes the following form

P i
m = −4

3
µmεvi, (4.2)

where µm is the shear modulus and the superscript i on P i
m indicates that the

effective pressure due to the deformation of the matrix is evaluated at the sur-

face of the inclusion; and (iii) the internal pressure from the SAMM inclusion

itself, which is found using the assumed constitutive pressure-volumetric strain

relationship introduced in Section 2.2 and is repeated here for convenience,

Pi = Pi0 −Kiεvi +
1

2
K ′iε

2
vi −

1

6
K ′′i ε

3
vi. (4.3)

The resulting approximate expression describing the forced dynamics of the

inclusion is of the same as Eq. (4.1):

RiR̈i +
3

2
Ṙ2

i =
Pi + P i

m − P∞
ρm

− 4ηm
ρm

Ṙi

Ri

. (4.4)
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Comparing a linearized form of Eq. (4.4) with the general linear oscil-

lator due to a forcing function, F (t), as given by [55]

z̈ +
ω0

Q
ż + ω2

0z = F (t) , (4.5)

allows characterization of the natural frequency of the system, ω0, and the

quality factor of the system, Q. Linearizing Eq. (4.4) by letting Ri = Ri0 + x,

where x is a small perturbation from the equilibrium radius, Ri0 , provides the

following:

ẍ+
4ηm
ρmR2

i0

ẋ+
3Ki + 4µm

ρmR2
i0

x = − P∞
ρmR2

i0

. (4.6)

The natural frequency of the system, ωi0 has two components: ωi and ωm.

The first corresponds to the natural frequency of the SAMM inclusion, ωi,

when embedded in a nearly incompressible matrix in the limit of zero shear

modulus, and the second is the oscillation frequency of a spherical cavity in

the matrix, ωm, such that ω2
i0

= ω2
i + ω2

m. The frequencies are obtained by

comparing Eqs. (4.5) and (4.6), to yield

ω2
i =

3Ki

ρmR2
i0

(4.7)

and

ω2
m =

4µm

ρmR2
i0

. (4.8)

Likewise, an expression for the quality factor, which is a damping characteri-

zation metric that is inversely proportional to the rate of energy loss relative
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to energy stored in a resonator, is

Qi =
ρmR

2
i0
ωi0

4ηm
. (4.9)

It is helpful to express Eq. (4.4) in a dimensionless form for computa-

tional efficiency. Defining a dimensionless radius, Ri = Ri/Ri0 , a dimensionless

velocity, Si = Ṙi, and a dimensionless time τ = ωit/2π allows Eq. (4.4) to be

expressed as

ω2
i R

2
i0

4π2
RiṠi +

3

2

ω2
i R

2
i0

4π2
S2
i =

Pi + P i
m − P∞
ρm

− 4ηm
ρm

ωi

2π

Ṙi

Ri

. (4.10)

The dimensionless expression of Rayleigh-Plesset form, which is obtained

through use of the expressions in Eqs. (4.7) and (4.9) in Eq. (4.10) and by

solving for Ṡi, is solved as a pair of coupled, first order ordinary differential

equations, given by

Ṙi = Si (4.11)

Ṡi = −3

2

Si
2

Ri

+
4π2

3KiRi

(Pi + P i
m − P∞)− 2π

Qi

√
1 +

4µm

3Ki

Si

Ri
2 . (4.12)

Note that it is possible to derive a non-dimensional form of Eq. (4.4)

that differs from Eq. (4.12), particularly by redefining τ . In Eq. (4.12), time

is nondimensionalized with respect to the natural frequency of the SAMM

inclusion. This frequency was chosen in order to clearly illustrate that the

dynamical behavior of interest occurs even when the frequency of the acoustic

driving pressure is well below the resonance frequency of the SAMM inclusion.

For example, assume the driving pressure is a sinusoidal function, such that
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P∞ = p0 sinωt, where ω is the frequency of the driving pressure. In terms of

τ and a dimensionless drive frequency defined as ω̄ = ω/ωi, the pressure at

infinity is then

P∞ = p0 sin 2πω̄τ. (4.13)

Expressing ω̄ as a function of ωi, instead of ωi0 , defines the acoustic driving fre-

quency as some percentage of the resonance frequency of the SAMM inclusion.

For example, if ω̄ = 0.1, then the resulting dynamical response corresponds

to frequencies well below the resonance of the SAMM inclusion. Recall from

Chapter 1 that the frequency range in which some acoustic metamaterials

operate efficiently is often limited to near resonance. Using a time scale non-

dimensionalized by ωi emphasizes that the snapping dynamical behavior is

not limited to a range near the SAMM resonance frequency, indicating more

versatility than other acoustic metamaterials. The subresonant behavior will

be illustrated in Section 4.3.

4.2.2 Nonlinear Effective Medium Response

For an effective medium described as a decoupled, single scale dynami-

cal system, the nonlinear response can be modeled in a manner similar to that

presented in the previous section for the SAMM inclusion. The schematic in

Fig. 4.4 depicts a spherical inclusion undergoing the deformation, where the

inclusion now represents an effective medium that contains a dilute concen-

tration of SAMM inclusions embedded in the matrix material. In this case,

the dynamical response is well represented using Eq. (4.1) with the effective
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Figure 4.4: Schematic of the dynamics for a sphere of the effective medium
embedded in a matrix material.

material parameters substituted in for the inclusion:

R∗R̈∗ +
3

2
Ṙ2
∗ =

P∗ + P ∗m − P∞
ρm

− 4ηm
ρm

Ṙ∗
R∗
. (4.14)

The subscript ∗ now refers to the instantaneous radius of the effective medium,

while the superscript ∗ on P ∗m indicates the effective pressure contributions of

the matrix on the surface of the effective medium. Thus, the effective pressure

of the matrix material is given by

P ∗m = −4

3
µmεv∗ . (4.15)

The internal pressure of the effective medium is a third order expansion with

respect to macroscopic volumetric strain, such that

P∗ = P∗0 −K∗εv∗ +
1

2
K ′∗ε

2
v∗ −

1

6
K ′′∗ ε

3
v∗ . (4.16)
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The nonlinear stiffness parameters, K∗, K
′
∗, and K ′′∗ , are obtained from the

Hashin-Shtrikman method detailed in Section 3.2.2.1. Therefore, the dynamics

on the macroscale necessarily correspond to the quasi-static limit that is only

accurate for frequencies well below the resonance of a single SAMM inclusion.

Just as with the SAMM inclusion, a resonance frequency and quality

factor describing the effective medium are obtained by comparing the small

amplitude limit of Eq. (4.14) with that of a linear oscillator described in

Eq. (4.5). Linearizing Eq. (4.14) with R∗ = R∗0 + y, where y is a small

perturbation from the equilibrium radius R∗0 of the effective medium provides

ÿ +
4ηm
ρmR2

∗0
ẏ +

3K∗ + 4µm

ρmR2
∗0

y = − P∞
ρmR2

∗0
. (4.17)

The natural frequency of the effective medium surrounded by an elastic medium

with zero shear modulus is

ω2
∗ =

3K∗
ρmR2

∗0
. (4.18)

The other component of the natural frequency of the system can be expressed

in terms Eq. (4.8). R∗0 can be expressed as a function of Ri0 due to the ex-

pression for volume fraction given in Eq. (3.13), such that R2
∗0 = (N/φ)2/3R2

i0
.

The natural frequency of the effective medium system is then

ω2
∗0 = ω2

∗ + ω2
m

(
φ

N

)2/3

, (4.19)

where ωm is defined in Eq. (4.8). Matching terms in Eq. (4.5) and (4.17) yields

a quality factor, Q∗, given by

Q∗ =
ρmR

2
∗0ω∗0

4ηm
. (4.20)
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Although the two scales are decoupled, the behavior of a SAMM inclu-

sion still affects the response on the macroscale if the same non-dimensional

time is used. The same expression for time, τ = ωit/2π, is used in order

to understand the behavior on the macroscale in relation to the behavior on

the microscale, especially when considering the same external forcing pressure.

Through use of the dimensionless radius R∗ = R∗/R∗0 = (R∗/Ri0) (φ/N)1/3,

Eq. (4.14) becomes:

ω2
iN

2/3R2
i0

4π2φ2/3
R∗Ṡ∗ +

3

2

ω2
iN

2/3R2
i0

4π2φ2/3
S2
∗ =

P∗ + P ∗m − P∞
ρm

− 4ηm
ρm

ωi

2π

Ṙ∗

R∗
, (4.21)

where time derivatives are now with respect to τ . Rearranging Eq. (4.21) for

Ṡ∗ yields

Ṡ∗ = −3

2

S2
∗

R∗
+

4π2φ2/3

ω2
iN

2/3R2
i0
ρmR∗

(P∗ + P ∗m − P∞)

−4ηm
ρm

4π2φ2/3

ω2
iN

2/3R2
i0

ωi

2π

Ṙ∗

R2
∗
. (4.22)

One can then make use of the expressions in Eqs. (4.7) and (4.9) in Eq. (4.22)

to find the following dimensionless expression of Rayleigh-Plesset form for the

dynamical response of the effective inclusion,

Ṙ∗ = S∗, (4.23)

Ṡ∗ = −3

2

S2
∗

R∗
+

4π2

3KiR∗

(
φ

N

)2/3

(P∗ + P ∗m − P∞)

− 2π

Qi

√
1 +

4µm

3Ki

(
φ

N

)2/3
Ṙ∗

R2
∗
. (4.24)

Once again, it is possible to obtain different dimensionless forms for Eq. (4.24).

The nondimensionlization chosen here is consistent with that of the single
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SAMM inclusion case, which allows a more direct comparison between the

two length scales for the same initial conditions.

4.3 Nonlinear Dynamics Results

The nonlinear dynamic response of both a single SAMM inclusion in

a continuous matrix and an effective medium inclusion in a matrix are ob-

tained by integrating the coupled equations given by Eqs. (4.11) and (4.12)

and Eqs. (4.23) and (4.24) using a fourth order Runge-Kutta ordinary differ-

ential equation solver. For simplicity, static values of the elastic parameters

Ki, K
′
i , and K ′′i obtained from a global fit of the constitutive curve shown

in Fig. 2.6 are chosen. The fit yields Ki = 16.93 MPa, K ′i = −189.03 MPa,

and K ′′i = 809.76 MPa. Similarly, the elastic parameters of the effective in-

clusion are chosen by fitting the constitutive curve shown in Fig. 3.11 for

ν = 0.4991. A fit of that response yields K∗ = 116.59 MPa, K ′∗ = −22.44 GPa,

and K ′′∗ = 4.18 TPa. Recall from Section 2.1.2 that the use of global coeffi-

cients may be too simple for the complicated nonlinear behavior of the SAMM

inclusions. However, the use of static values allows for a simpler, decoupled

multiscale system, which will serve as a first approximation of the nonlinear

system in order to provide insight into the complicated snapping behavior.

Note that even though the effective medium dynamics are solved for indepen-

dently of the SAMM inclusion, certain input parameters on the macroscale

depend on constants from the microscale. For example, Ki and Qi appear

in Eq. (4.24) due to the nondimensional time chosen, but the parameters are
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constants.

The present work considers a heterogeneous material containingN = 20

SAMM inclusions comprising φ = 1% of the total volume. With the assumed

parameters of the matrix material and SAMM inclusion, it is possible to con-

strain each inclusion to its negative stiffness regime while maintaining stability

of the overall effective medium.

For all cases considered, the initial radii of the SAMM inclusion and

effective medium are their equilibrium radii, Ri0 and R∗0 , indicating zero vol-

umetric strain, and the initial velocity of both is 0. In order to emphasize that

the simulated dynamics represent subresonant SAMM inclusion behavior, the

acoustic pressure at infinity is assumed to be a sinusoid with dimensionless

drive frequency ω̄ = 0.1. Other parameters, such as quality factor, Qi, and

amplitude of the acoustic driving pressure, p0, will vary with the cases pre-

sented in Sections 4.3.1–4.3.3.

The solution for an oscillator has two components; one is transient and

the other is steady state. The transient component is characterized by a com-

plicated, non-periodic response due to the contribution of other frequencies.

The transient occurs immediately after an external force is applied, but decays

to zero for some finite time after the initial disturbance. On the other hand,

the steady state response tends to correspond to a system oscillating at the

driving frequency of the forcing function [98]. However, the two regimes are

not as simply defined when the nonlinear dynamics of a system are consid-

ered. For example, transient chaos may occur where the random-like response
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remains present over large time periods [58]. It is possible that steady-state

oscillations, where the motion follows the same path for each period, may not

be obtained over the time scales considered, which is the case in Section 4.3.2.

Further, when a bistable oscillator is driven at a forcing frequency much less

than the natural frequency of the oscillator, there are two time scales that de-

scribe the steady state oscillations [102]. A slow time scale, corresponding to

the frequency of the driving force as previously described, is indicative of the

overall shape. A fast time scale is responsible for any other oscillations present

in the dynamic response. For example, there may be additional disturbances

that ring down near the maxima or minima of the slow scale oscillations. Such

a response with fast and slow time scales is shown in Section 4.3.1.

4.3.1 Single SAMM Inclusion

The first three figures in this section compare the response for a single

SAMM inclusion embedded in a continuous matrix material that is driven at

different acoustic pressure amplitudes for Qi = 2. The transient component

has been removed to clearly see the steady state response of interest. Fig-

ure 4.5 shows the instantaneous radius normalized by the equilibrium radius

for a single SAMM inclusion versus dimensionless time ωit. The blue curve

is the lowest drive pressure, p0 = 0.5 MPa, and represents the response of

an SAMM inclusion operating within a linear section of the constitutive re-

lation. To better see the response, Fig. 4.5(b) shows just the behavior for

p0 = 0.5 MPa with a more zoomed in y-axis. This response is as expected for
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Figure 4.5: Normalized radius of SAMM inclusion versus dimensionless time
for p0 = 0.5 MPa, p0 = 1.9 MPa, and p0 = 3.8 MPa and Qi = 2.
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a linear oscillator; the radius fluctuates for small magnitudes about Ri = Ri0

in a smooth and sinusoidal manner. As the pressure amplitude increases, the

radius expands and contracts to larger magnitudes of Ri, pushing the SAMM

inclusion into nonlinear regimes of its constitutive response. The green curve,

which corresponds to p0 = 1.9 MPa, accounts for quadratic nonlinearities and

is shown more clearly in Fig. 4.5(c). The red curve is the highest drive pressure

considered, p0 = 3.8 MPa. For the higher pressure amplitude, the SAMM in-

clusion now operates within the fully cubic non-monotonic constitutive curve.

While the blue curve is smooth, the green and red curves have addi-

tional oscillations. These transient oscillations on the fast time scale occur

when the SAMM inclusion snaps from one configuration to another. For the

p0 = 1.9 MPa drive amplitude (the green curve), the overall oscillations go

from about 0.93 to 1.03, with additional oscillations occurring near Ri = Ri0.

For p0 = 3.9 MPa (the red curve), the overall oscillations go back and forth

from 0.8 to 1.03, and the fast scale transient oscillations are present near the

minimum and maximum of the overall response. By decreasing the quality

factor, the amount of damping in the matrix increases and the curves will

smooth out to eliminate the fast scale transient response.

Aside from the high frequency oscillations associated with snapping,

one also notes that while the low drive response is nearly symmetric about

Ri = Ri0, the behavior at the higher drive pressure is very asymmetric. As

the drive pressure increases, the maximum change in radius from equilibrium

as the SAMM inclusion expands differs from the change in radius for com-
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pression. The asymmetry of the radial oscillations is expected for nonlinear

oscillators and is also observed in the nonlinear behavior associated with a gas

bubble. In the low amplitude limit for driving pressure, a gas bubble should

respond like a linear oscillator, but for higher pressure magnitudes, the re-

sponse becomes non-symmetric about its equilibrium [98]. Such features are

further exemplified in Figs. 4.6 and 4.7, which show the normalized radial ve-

locity versus normalized radius and the total pressure at the inclusion-matrix

interface versus volumetric strain, respectively. Additionally, it is worth not-

ing that all three pressure amplitudes induce a seemingly periodic response.

Once the initial transient component has decayed to zero, each curve shows

the SAMM inclusion periodically forced to the same radii during each period

defined by the slow time scale.

The phase space shown in Fig. 4.6(a) plots the normalized velocity for a

single SAMM inclusion versus the dimensionless radius for the same three pres-

sure magnitudes shown in Fig. 4.5. Because the dimensionless radius and ve-

locity are much larger for p0 = 3.8 MPa, a zoomed in version of p0 = 0.5 MPa

is shown in Fig. 4.6(b), while a zoomed in version of p0 = 1.9 MPa is shown

in Fig. 4.6(c). Phase space is a valuable tool for studying nonlinear dynamics.

It provides an assessment of a variety of characteristics of motion, such as

whether the solution corresponds to movement that is recurrent, restricted to

some region, attracted to some stability point, and so forth [63]. Although

phase space is represented in terms of two variables, position and velocity, it

also has a time dependence. Thus the trajectories traced out are necessar-
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Figure 4.6: Normalized velocity of SAMM inclusion versus normalized radius
for p0 = 0.5 MPa, p0 = 1.9 MPa, and p0 = 3.8 MPa and Qi = 2.
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ily non-intersecting, which would be apparent if Fig. 4.6 is plotted in three

variables as a projection through time [58]. Consider first the blue curve in

Fig. 4.6, which is only the steady state response. It traces out approximately

the same path for each period as indicated by the single ellipsoidal shape. Sim-

ilarly, the green curve also periodically traces out the same path, though the

phase space for p0 = 1.8 MPa differs from that for p0 = 0.5 MPa. The same

is also true for p0 = 3.8 MPa; the red curve also repeats, but the phase space

is different than the blue and green curves. This clearly indicates the period-

icity of the forced oscillations for a single SAMM inclusion for each acoustic

pressure amplitude. The increase in area traced out by the phase space tra-

jectories also increases for forcing amplitude. The period of the oscillations, as

defined by the slow time scale, is the same for all three cases, while the maxi-

mum magnitude of the radius increases with forcing pressure. Therefore, the

SAMM inclusion oscillates more quickly to attain the larger volume changes

over the same time period. Although the time period is the same, the fre-

quency content of these oscillations differs with forcing amplitude. The jagged

kinks occurring in Fig. 4.6 appear in the phase space when there is a sharp

cusp, such as in the green curve, or when the trajectory appears to cross itself,

as with the loops present in the red curve. The blue curve traces out a near

ellipse that is characteristic of a linear oscillator.

The total microscopic pressure, P i
total = Pi + P i

m − P∞, is plotted in

Fig. 4.7(a), where zoomed in plots for p0 = 0.5 MPa and p0 = 1.9 MPa are

once again shown in Fig. 4.7(b) and (c), respectively. For p0 = 0.5 MPa,
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Figure 4.7: Total pressure of SAMM inclusion versus volumetric strain for
p0 = 0.5 MPa, p0 = 1.9 MPa, and p0 = 3.8 MPa and Qi = 2.
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Figure 4.8: Pressure due to a single SAMM inclusion, the matrix on the surface
of the SAMM inclusion, and the forcing pressure at infinity versus volumetric
strain for p0 = 3.8 MPa and Qi = 2.

the total pressure as a function of volumetric strain is very nearly an ellipse,

further indicating a linear response. As the pressure increases, so does the

area traced out by the total pressure curve. The area is representative of the

damping associated with one single SAMM inclusion. Therefore, the more

nonlinear the SAMM inclusion response, the larger the area traced out by the

total pressure and the more energy dissipated.

It is informative to examine the partial pressures that contribute to the
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total pressure plotted in Fig. 4.7. The pressure due to the SAMM inclusion, Pi,

pressure due to the matrix at the surface of the inclusion, P i
m, and pressure at

infinity, P∞, are all plotted in Fig. 4.8 for p0 = 3.8 MPa. As described earlier,

the amplitude of the acoustic drive pressure is large enough to force the SAMM

inclusion to operate about the fully cubic nonlinear constitutive curve, shown

in blue. The non-monotonic response clearly indicates regimes of both positive

and negative stiffness. The effects of the shear pressure due to the matrix is

shown in green and is linear as expected. The magnitude of P i
m is of comparable

magnitudes to Pi, indicating that even for a nearly incompressible matrix

with ν = 0.4991, the effects of shear can be fairly significant depending on

the SAMM inclusion microstructure. The red curve represents the sinusoidal

forcing function. While the center area is somewhat ellipsoidal, the oscillatory

features for a volumetric strain greater than 0 and near −0.5 corresponding to

the transient behavior due to the fast time scale.

4.3.2 Effective Medium with SAMM Inclusions

It is difficult to obtain a clear dynamic response when considering both

the microscale and macroscale because of the difference in magnitudes between

the two length scales. The acoustic driving pressure amplitude must be large

in order to induce an observable deformation. However, even if the resulting

plots showed a change in volume, the nonlinear behavior may still be diffi-

cult to see. Therefore, the following plots show the response of the effective

medium with Qi = 2 at just the higher pressure amplitude, p0 = 3.8 MPa.
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Figure 4.9: Normalized radius of the effective medium versus dimensionless
time for p0 = 3.8 MPa and Qi = 2.

The instantaneous radius normalized by the equilibrium radius for the effec-

tive medium is plotted as a function of dimensionless time, ωit in Fig. 4.9. For

the time scale considered, the overall response has jagged oscillations, which

are non-periodic and suggestive of chaos. The pressure amplitude also induces

very small changes in radius for the effective medium in comparison to the

changes observed for the single SAMM inclusion as shown in Fig. 4.5. Fur-

ther reducing the quality factor will smooth out the random-like oscillations

to induce a steady state behavior. Additionally, the oscillations are once again
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Figure 4.10: Normalized velocity versus normalized radius of the effective
medium for p0 = 3.8 MPa and Qi = 2.

non-symmetric about R∗ = R∗0 .

The normalized velocity versus normalized radius for the effective

medium is shown in Fig. 4.10. The nature of the macroscale oscillations

suggesting chaos is more readily apparent from this figure. Since the two-

dimensional phase space does not periodically trace over itself, the motion

does not repeat like it does for a single SAMM inclusion. Decreasing damping

would smooth out these oscillations to induce a more recurrent motion for the

effective medium as a whole.
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Figure 4.11: Total macroscopic pressure for effective medium versus volumetric
strain for p0 = 3.8 MPa and Qi = 2.

The total macroscopic pressure, P ∗total = P∗ + P ∗m − P∞, is plotted as a

function of the macroscopic volumetric strain in Fig. 4.11. The macroscopic

volumetric strain is an order of magnitude smaller than then microscopic vol-

umetric strain. A change in volume as small as 3% for the effective medium

induces large displacements for each SAMM inclusion that correspond to mi-

croscopic volumetric strain values as large as 50%. Despite the small defor-

mations on the macroscale, the response still corresponds to a cubic nonlinear

constitutive relationship. Once again, the area traced out by this curve cor-

responds to the total energy dissipated. However, the non-periodic dynamic
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Figure 4.12: Pressure due to a the effective medium, the matrix at the effective
medium boundary, and the forcing pressure at infinity versus volumetric strain
for p0 = 3.8 MPa and Qi = 2.

response means that the total pressure does not trace out the same curve every

‘cycle’. Herein lies the difficulty of quantifying the loss with nonlinear elastic-

ity; the irregular response is difficult to track. The area traced out by each

curve over one cycle is thus summed to obtain the total energy dissipated.

Figure 4.12 presents each pressure that contributes to the total pressure

on the macroscale separately. The blue curve is a monotonic, cubic constitu-

tive curve for the effective medium, corresponding to P∗. Locally, the slope is

always negative, indicating positive stiffness that represents a stable hetero-
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geneous material. The green curve shows shear effects of the matrix at the

surface of the effective medium. On this scale, the magnitude of P ∗m appears

to be zero, illustrating that it is negligibly small in comparison to P∗ and P∞.

The chaotic response manifests itself in the acoustic driving pressure, P∞, due

to the time dependence.

4.3.3 Comparing Effective Medium with SAMM Inclusions and Air
Filled Voids

The present work only considers the energy dissipated from a qual-

itative standpoint. In order to understand the enhanced effects, the total

macroscopic pressure for an effective medium that contains SAMM inclusions

is compared with a more conventional composite, a visocelastic matrix mate-

rial that contains randomly dispersed air filled voids. The composite with air

filled voids is modeled using Eq. (4.24), with the higher order terms K ′∗ = 0

and K ′′∗ = 0 and the static bulk modulus calculated from Eq. (3.38) with

Ki = 1.01 (105). The void fraction is still φ = 1% with N = 20 air filled voids

within a matrix with the same properties, Km, νm, and ηm, considered for the

effective medium with SAMM inclusions presented in Section 4.3.2.

The total macroscopic pressure for the SAMM inclusion and composite

with air filled voids with a quality factor of Qi = 0.1 and an acoustic pressure

of p0 = 3.8 MPa is shown in Fig. 4.13. The total pressure for composite with

air filled voids, shown in green, is an ellipse corresponding to a linear response

as expected. The effective medium with SAMM inclusions, plotted in blue,
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Figure 4.13: Total macroscopic pressure for an effective medium containing
SAMM inclusions and composite with air filled voids versus volumetric strain
for p0 = 3.8 MPa and Qi = 0.1.

traces out a much larger area than the green curve. The area traced out by the

hysteresis loops is representative of the energy dissipated within the system.

Therefore, there is more loss in the effective medium due to the SAMM in-

clusions. Furthermore, local approximations of stiffness for small disturbances

can be obtained from Fig. 4.13. The composite with air filled voids repre-

sented by the green curve lies more vertical than the effective medium with

SAMM inclusions, denoted by the blue curve. The steeper slope is indicative

of a higher local stiffness. Therefore, a heterogeneous medium with SAMM
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inclusions qualitatively demonstrates both a higher local stiffness and the dis-

sipation of more energy than its equivalent counterpart containing the same

volume fraction of air filled voids. However, the dissipation of energy is only

considered in a qualitative manner. Future work aims to quantify how much

energy is dissipated in a heterogeneous material containing SAMM inclusions

through some loss metric.

4.4 Discussion

The present chapter detailed a decoupled model for the SAMM inclu-

sion and a heterogeneous material containing SAMM inclusions that allowed

the dynamics of each system to be obtained independently. While this nonlin-

ear dynamic behavior is worth examining, the analysis here includes a variety

of simplifying assumptions that overlook some physical details of the SAMM

inclusion, most of which are due to decoupling the microscale and macroscale.

In reality, the oscillations of the SAMM inclusions will generate dissipation

within the effective medium, making it unrealistic to ignore dissipation with

the sphere that describes the macroscale. An additional damping term must be

added to Eq. (4.14) to account for energy dissipated by N SAMM inclusions.

Furthermore, the pressure imposed on the surface of the effective medium will

also influence the microscale. Thus the total pressure on the surface of the

inclusion, P i
total, will also include the effects of pressure due to the matrix

on the surface of the effective medium, P ∗m, and pressure due to the homoge-

nized medium itself, P∗. By implementing these additions into the governing

139



Rayleigh-Plesset type equation, the dynamics of the SAMM inclusion affect

the behavior of the effective medium and vice versa. It is worth noting regard-

less of these additions to the models, the effective parameters, K∗, K
′
∗ and K ′′∗ ,

are still obtained in the quasi-static limit via the Hashin-Shtrikman method

from Section 3.2.2.

Furthermore, the linear and nonlinear stiffness of both the SAMM in-

clusion and effective medium vary locally as a function of volumetric strain, or

radius, and a more accurate model would account for this. It is more difficult,

however, to utilize the locally changing coefficients with a decoupled model.

The use of locally varying stiffness, instead of the global parameters consid-

ered in the present chapter, will thus be implemented in future work with the

coupled system.

Another way to improve the model is to account for the mass of the

SAMM inclusion, which would add additional terms to obtain a governing

differential equation similar to that presented in Ref. [101]. The mass for the

effective medium could also be accounted for in the same way. The addition of

the mass terms could be used with the decoupled model presented throughout

the chapter, as well as the proposed coupled model to be investigated in future

work.

The behavior demonstrated by the effective medium is qualitatively

what was expected—a matrix containing SAMM inclusions was qualitatively

stiffer with a higher damping capacity than the same matrix with air filled

voids. However, a quantitative metric of characterizing the dissipation of en-
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ergy is desired to further understand the enhanced damping ability associated

with the SAMM inclusions. The goal is to develop a model to accurately un-

derstanding the dynamic behavior associated with the SAMM inclusions and

thus future work will investigate these simplifying assumptions in more detail

to determine their effects on the nonlinear material response.
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Chapter 5

Conclusion

5.1 Summary

The study of acoustic metamaterials has emerged in recent years as

a field of high interest because they offer the possibility to obtain material

properties outside the limits of those available with conventional materials.

The exotic properties may result in an increased ability to manipulate or tailor

the response of acoustic waves and lead to improved acoustic technologies,

such as superlenses, acoustic cloaks, phononic switches, and so forth. The

present thesis studied one specific type of acoustic metamaterial, known as

a snapping acoustic metamaterial, or SAMM, which possesses local regimes

of negative stiffness and effective material nonlinearity. The analysis builds

upon FEM used to describe the SAMM inclusions. Techniques are adapted

from nonlinear elasticity and nonlinear acoustics in order to develop analytical

models to investigate the behavior of the SAMM inclusions of interest. The

following paragraphs provide a detailed summary of the work presented in

each chapter.

Chapter 2 focused exclusively on the quasi-static elastic response of

the SAMM inclusions. The pressure-volumetric strain constitutive relation-
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ship for the SAMM inclusions was described using small perturbations about

imposed pre-strains. The approximation gives rise to strain-dependent linear

contributions to the SAMM stiffness that may be either positive or negative,

as well as high order stiffness terms that may induce hysteretic snapping.

The deformation of the representative SAMM element was shown through the

pressure-volumetric strain constitutive relationship and local stiffness param-

eters to provide insight into the response that could be obtained with the

SAMM inclusions.

Chapter 3 provided a great amount of detail on modeling an effective

medium containing a dilute concentration of non-interacting SAMM inclu-

sions. Two homogenization techniques were applied to obtain estimates of the

effective stiffness and acoustic nonlinearity of the heterogeneous material. The

first method adapted a mixture law, but the subsequent response provided un-

bounded acoustic parameters of nonlinearity resulting from the instability of

the effective medium predicted by this simple model. The inaccurate predic-

tion of the mixture law is due to the assumption that all materials in the mix-

ture offer no resistance to shear deformation. A second homogenization scheme

was therefore developed to address the shortcomings of the mixture law. The

second model modified the derivation of the linear Hashin-Shtrikman bounds

to include the effects of nonlinear elasticity. This model permitted certain

values of the shear modulus of the matrix to stabilize the effective medium by

constraining the SAMM inclusion in the locally negative stiffness regime. The

results presented in Chapter 3 indicate that the effective medium can simulta-
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neously exhibit large but bounded quadratic and cubic material nonlinearity.

Analysis of propagating waves in the presence of strong cubic nonlinearities

requires extending many of the standard nonlinear acoustics techniques to

third order. The work presented in this thesis therefore analyzed state equa-

tions, one-dimensional wave equations, and the shock formation distance for a

wave propagating in media with quadratic and cubic nonlinearities. Examples

of wave distortion for a traveling plane wave for several cases of quadratic

and cubic nonlinearity and a small amount of thermoviscous absorption were

provided to illustrate the responses that could be obtained with the SAMM

inclusions.

Chapter 4 developed a model to study the forced nonlinear oscilla-

tions of a SAMM inclusion and an effective medium consisting of a continuous

matrix with a dilute concentration of SAMM inclusions. The governing dif-

ferential equation is of the same form as the Rayleigh-Plesset equation that is

commonly used to study the dynamics of bubbles. A dimensionless form of the

equation was numerically integrated for both a single SAMM inclusion and the

effective medium. The matrix material considered had a shear modulus large

enough to fully constrain the negative stiffness regime of the SAMM inclu-

sion. The single SAMM inclusion was described using global parameters, and

the subresonant response for different forcing amplitudes were compared. All

three forcing amplitudes showed a periodic, steady state response that exhib-

ited large deformations on the microscale, but the snapping was only present

for the largest amplitude. The effective medium model also utilized global ef-
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fective parameters, which correspond to the same properties used to describe

the matrix and SAMM inclusion in the single SAMM inclusion dynamics case.

The simulation for dynamics of the effective medium revealed a chaos-like re-

sponse. The macroscale deformations were smaller, but still corresponded to

a cubically nonlinear effective medium. When a composite containing SAMM

inclusions was compared to a composite containing air filled voids, the former

was found to qualitatively dissipate more energy.

Although the behavior studied throughout this thesis is limited to the

analysis of one representative SAMM inclusion, the response shown through-

out Chapters 2–4 is as anticipated. The analyses may also be generalized

to different SAMM inclusion geometries, assuming the constitutive behavior

demonstrate regions of negative curvature of the strain energy response due

to an imposed deformation. The acoustic nonlinearities of a medium contain-

ing a low volume fraction of SAMM incsluions are shown to be much larger

than for most conventional materials, particularly with respect to cubic non-

linearity. It is important to note that the strain regions where one observes

enhanced acoustic nonlinearity correspond to microscopic negative stiffness

behavior that is stabilized by the surrounding elastic matrix material. One

observes that different regions of the nonlinear response give rise to a variety

of combinations for the quadratic and cubic nonlinearity, which can be either

positive or negative. Furthermore, the effective medium was also shown to

have an increased damping capacity. Although more research on the behavior

is necessary, the present thesis indicates that the SAMM inclusions studied

145



may be used to address some of the limitations commonly encountered with

conventional materials and therefore merit further investigation.

5.2 Future Work

The research presented here marks an initial investigation into the

unique nonlinear acoustic and dynamic response of a specific design for a

nonlinear snapping acoustic metamaterial. Therefore, there is a great deal left

to understand regarding the behavior of acoustic metamaterial elements with

engineered instabilities, some of which have been acknowledged throughout

the preceding chapters of the present thesis. The theoretical modeling tools

developed here were only applied to one specific SAMM inclusion. Altering

the material properties and sub-wavelength geometry of the microstructures

may perhaps lead to a different response for all of the computational results

presented in Chapters 2–4. For example, the acoustic nonlinearity attainable

may be further enhanced, a stiffer (or softer) matrix may be required to fully

constrain the negative stiffness regime on the microscale, or different ampli-

tudes of acoustic pressure would be necessary to elicit a desired acoustic or

dynamic response. The effective medium was also limited to a low volume frac-

tion of SAMM inclusions. For a heterogeneous material with a higher volume

fraction of SAMM inclusions, interactions between the inclusion would need

to be accounted for. A more complicated analytical model may be considered

in the future to capture the higher order scattering effects.

Specific limitations with the nonlinear dynamics model detailed in Chap-
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ter 4 were already outlined in Section 4.4, and future work aims to address

them through more complicated models that quantifies the energy dissipated.

Of highest interest is a coupled model that accounts for additional dissipation

on the macroscale due to the individual SAMM inclusion and the contributions

of the pressure at the effective medium-matrix interface at the microscale. The

model can then incorporate nonlinear stiffness parameters that vary locally as

a function of strain. Other future models will also include mass terms in the

Rayleigh-Plesset type equation for the SAMM inclusion. Note that the future

models will still be limited to an effective medium in the quasi-static regime

that is described through the Hashin-Shtrikman method. A different effective

medium theory is required to account for the resonant effects.

Further understanding of the response of the SAMM inclusions and a

heterogeneous material containing them will allow these metamaterials to be

applied to specific applications through the creation of physical systems and

devices. Experimental verification of the acoustic nonlinearities and damping

capacity of an effective medium containing the SAMM inclusions is therefore

necessary. The analytic models provided throughout this thesis can also be

compared to finite element models to verify their validity. Overall, the mod-

els developed here serve as tools to understand the influence of the nonlinear

microscale material behavior in an effort to design and physically create com-

posites with enhanced macroscopic properties in terms of nonlinearity, stiffness

and damping capacity in the future.
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Appendix A

Derivation of Lossy Wave Equation with

Quadratic and Cubic Nonlinearity

A.1 Wave Equation

The three-dimensional, lossy wave equation up to third order with re-

spect to nonlinearity is derived from conservation of mass,

∂ρ

∂t
+∇ · (ρu) = 0, (A.1)

conservation of momentum, including losses due to bulk viscosity, µb, and

shear viscosity, µ,

∇p+ ρ
∂u

∂t
+ ρu · ∇u = µ∇2u +

(
µb +

1

3
µ

)
∇ (∇ · u) , (A.2)

and the equation of state given in [67],

ρ′ =
p

c20
− 1

ρ0c40

(
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)
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6
0

[
C

6A
− 1

2

(
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)2
]
p3

− κ

ρ0c40

(
1
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− 1

cp

)
∂p

∂t
. (A.3)

Equation (A.3) differs from Eq. (3.4) because there is a Taylor expansion with

respect to entropy in addition to the expansion with respect to density, which

gives rise to the loss through the thermal conductivity, κ, isobaric specific
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heat, cp, and isochoric specific heat, cv. Expressing Eq. (A.1) in terms of

excess density provides

∂ρ′

∂t
+ ρ0∇ · u = −ρ′∇ · u− u · ∇ρ′. (A.4)

The medium is assumed to be linear with respect to losses and up to third order

with respect to nonlinearity. Substituting Eq. (A.3) into Eq. (A.4) eliminates

excess density from conservation of mass to obtain

1
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c20
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1
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B
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)
u · ∇p2. (A.5)

The following two vector identities

u · ∇u =
1

2
∇u2 − u×∇× u

∇ (∇ · u) = ∇u2 −∇×∇× u,

are used with u2 = u · u to express conservation of momentum in terms of

excess density, as given by

∇p+ ρ0
∂u

∂t
= −ρ′∂u

∂t
− ρ0

2
∇u2 − ρ′

2
· ∇u2 +

(
µb +

4

3
µ

)
∇2u

+ ρ0u×∇× u + ρ′u×∇× u

−
(
µb +

1

3
µ

)
∇×∇× u. (A.6)
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The velocity u for small disturbances can be expressed as the superposition

of three modes—acoustic, vorticity and entropy [90]. The last three terms in

Eq. (A.6) correspond to vorticity field in linear theory, which are negligibly

small unless within a thermoviscous boundary layer. If the boundary layer

thickness is much smaller than the acoustic wavelength, the last three terms

of Eq. (A.6) can be discarded, giving

∇p+ ρ0
∂u

∂t
= −ρ′∂u

∂t
− ρ0

2
∇u2 − ρ′

2
· ∇u2 +

(
4

3
µ+ µb

)
∇2u. (A.7)

See Ref. [90] for further details. Substituting Eq. (A.3) into Eq. (A.7), gives
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3
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Conservation of mass and momentum are combined into one wave equation by

subtracting the time derivative of Eq. (A.5) from the divergence of Eq. (A.8):
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− 1

cp

)
∂3p

∂t3
−
(

4

3
µ+ µb

)
∇2 (∇ · u)

= ∇ ·
[
− p
c20

+
1

ρ0c40

(
B

2A

)
p2
]
∂u

∂t
− ρ0

2
∇2u2 −∇ · p

2c20
∇u2

+
∂

∂t

(
p

c20
∇ · u

)
− 1

ρ0c40

(
B

2A

)
∂

∂t

(
p2∇ · u

)
+

1

c20

∂

∂t
(u · ∇p)− 1

ρ0c40

(
B

2A

)
∂

∂t

(
u · ∇p2

)
. (A.9)
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The wave equation given in Eq. (A.9) can be rewritten as

∇2p− 1

c20

∂2p

∂t2
+

κ

ρ0c40

(
1

cv
− 1

cp

)
∂3p

∂t3
−
(

4

3
µ+ µb

)
∇2 (∇ · u)

= − 1

ρ0c40

(
B

2A

)
∂2p2

∂t2
− 1

ρ20c
6
0

[
C

6A
− 1

2

(
B

A

)2
]
∂2p3

∂t2

+
∂

∂t
∇ ·
[
pu

c20
−
(
B

2A

)
p2u

ρ0c20

]
− ρ0

2
∇2u2 −∇ · p

2c20
∇u2

+∇ ·
[
− p
c20

+
1

ρ0c40

(
B

2A

)
p2
]
∂u

∂t
. (A.10)

The last term in Eq. (A.10), ∂u/∂t, can be rewritten by solving for ∂u/∂t in

Eq. (A.8) and retaining only lossless terms up to second order in pressure. This

is the same recursion method outlined in Section 3.1.1 used to find Eqs. (3.4)

and (3.7). The expression for ∂u/∂t is

∂u

∂t
= − 1

ρ0
∇p+

p

ρ20c
2
0

∇p− 1

2
∇u2. (A.11)

Equation (A.10) then becomes

∇2p− 1

c20

∂2p

∂t2
+

κ

ρ0c40

(
1

cv
− 1

cp

)
∂3p

∂t3
−
(

4

3
µ+ µb

)
∇2 (∇ · u)

= − 1

ρ0c40

(
B

2A

)
∂2p2

∂t2
− 1

ρ20c
6
0

[
C

6A
− 1

2

(
B

A

)2
]
∂2p3

∂t2

+
∂

∂t
∇ ·
[
pu

c20
−
(
B

2A

)
p2u

ρ0c20

]
+∇2

[
p2

2ρ0c20
− ρ20u

2

2
+

(
1 +

B

2A

)
p3

3ρ0c40

]
. (A.12)

If the loss terms in Eq. (A.12) are neglected, this wave equation is identical to

that presented in Ref. [89].
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Because the propagation of plane progressive waves in one direction is

of interest, Eq. (A.12) can be reduced to a function of pressure alone. The

second order impedance relationship between pressure and velocity is [3]

p = ρ0c0u+
1

2

(
1 +

B

2A

)
ρ0u

2. (A.13)

An expression for velocity as a function of pressure is easily obtained by solving

for u and substituting the expansion for u into the higher order terms, such

that

u =
p

ρ0c0
− 1

2

(
1 +

B

2A

)
p2

ρ20c
3
0

. (A.14)

The one dimensional wave equation then becomes

∂2p

∂x2
− 1

c20

∂2p

∂t2
+

κ

ρ0c40

(
1

cv
− 1

cp

)
∂3p

∂t3
−
(

4

3
µ+ µb

)
∂3u

∂x3

= − 1

ρ0c40

(
B

2A

)
∂2p2

∂t2
− 1

ρ20c
6
0

[
C

6A
− 1

2

(
B

A

)2
]
∂2p3

∂t2

+
∂2

∂t∂x

[
p2

ρ0c30
−
(

1

2
+

3B

4A

)
p3

ρ20c
5
0

]
+

(
5

6
+

5B

12A

)
p2

3ρ0c40

∂2p

∂x2
. (A.15)

A relation derived from Eqs. (A.11) and (A.13),

∂p

∂x
= − 1

c0

∂p

∂t
+

1

ρ0c30

(
1 +

B

2A

)
∂p

∂t
, (A.16)

the lossless wave equation,

∂2p

∂x2
=

1

c20

∂2p

∂t2
, (A.17)

and a relation derived from Eqs. (A.16) and (A.17),

∂3u

∂x3
= − 1

ρ0c40

∂3p

∂t3
, (A.18)
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are used to derive the one dimensional wave equation, only as a function of

pressure, given by

∂2p

∂x2
− 1

c20

∂2p

∂t2
+

1

c40

[
1

ρ0

(
4

3
µ+ µb

)
+
κ

ρ0

(
1

cv
− 1

cp

)]
∂3p

∂t3

= − 1

ρ0c40

(
1 +

B

2A

)
∂2p2

∂t2
− 1

ρ20c
6
0

[
C

6A
− 1

2

(
B

A

)2

− 7B

6A
− 4

3

]
∂2p3

∂t2

(A.19)

or

∂2p

∂x2
− 1

c20

∂2p

∂t2
+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p2

∂t2
− 2γ

3ρ20c
6
0

∂2p3

∂t2
, (A.20)

where the diffusivity of sound, δ, is

δ =
1

ρ0

(
4

3
µ+ µb

)
+
κ

ρ0

(
1

cv
− 1

cp

)
, (A.21)

β is defined as

β = 1 +
B

2A
, (A.22)

and γ is defined as

γ =
3

2

[
C

6A
− 1

2

(
B

A

)2

− 7B

6A
− 4

3

]
. (A.23)

A.2 Evolution Equation

As described in Section 3.4.1, the wave equation given in Eq. (A.20)

can be split into three differential equations to transform the wave equation

into a one dimensional evolution equation. Consider first the lossy linear wave
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equation:

∂2p

∂x2
− 1

c20

∂2p

∂t2
= − δ

c40

∂3p

∂t3
. (A.24)

To derive the evolution equation, a slow scale is introduced with retarded time

is τ = t − x/c0, and the corresponding slow scale of the spatial coordinate is

x1 = ε̃x. The parameter, ε̃, is on the order of both the pressure, p, and

diffusivity of sound, δ. Derivatives in time t and τ are the same, such that

∂n

∂tn
=

∂n

∂τn
, (A.25)

but derivatives in x are now a function of x1 and τ , such that

∂

∂x
= ε̃

∂

∂x1
− 1

c0

∂

∂τ
.

The second derivative with respect to x is:

∂2

∂x2
= ε̃2

∂2

∂x21
− 2ε̃

c0

∂2

∂τ∂x1
+

1

c20

∂2

∂τ 2
(A.26)

Equation (A.24) expressed in terms of the space and time derivatives given by

Eqs. (A.25) and (A.26) is

ε̃2
∂2p

∂x21
− 2ε̃

c0

∂2p

∂τ∂x1
= − δ

c40

∂3p

∂τ 3
. (A.27)

Since p and δ are both order ε̃, the first term on the left-hand side of Eq. (A.27)

is of order ε̃3, while the other two terms in the equation are of order ε̃2. On

the slow scale, only the lowest order of ε̃ is retained and the first term on

the left-hand side of Eq. (A.27) is therefore discarded. Additionally, ∂/∂τ is

common to all terms and cancels out. The wave equation is now given by

2ε̃

c0

∂p

∂x1
=

δ

c40

∂2p

∂τ 2
.
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After the spatial coordinate is transformed back to the coordinate x, the lossy

linear wave equation reduces to

∂p

∂x
=

δ

2c30

∂2p

∂τ 2
. (A.28)

The same transformations are applied to the lossless form of Eq. (A.20)

that accounts only quadraticr nonlinearities,

∂2p

∂x2
− 1

c20

∂2p

∂t2
= − β

ρ0c40

∂2p2

∂t2
. (A.29)

Applying Eqs. (A.25) and (A.26) to Eq. (A.29) gives rise to

ε̃2
∂2p

∂x21
− 2ε̃

c0

∂2p

∂τ∂x1
= − β

ρ0c40

∂2p2

∂τ 2
. (A.30)

Once again, only terms on the order of ε̃2 are retained. In terms of the coor-

dinate, x, the second order lossless wave equation simplifies to

∂p

∂x
=

βp

ρ0c30

∂p

∂τ
. (A.31)

The nonlinear, lossless wave equation with cubic nonlinearity

∂2p

∂x2
− 1

c20

∂2p

∂t2
=

2γ

3ρ20c
6
0

∂2p3

∂t2
, (A.32)

is now transformed to the slow scale. The retarded time τ is the same but

the spatial coordinate on the slow scale is now x2 = ε̃2x, where ε̃ once again

characterizes the order of pressure, p. The first derivative with respect to x is

∂

∂x
= ε̃2

∂

∂x2
− 1

c0

∂

∂τ
,
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and the second derivative with respect to x is

∂2

∂x2
= ε̃4

∂2

∂x22
− 2ε̃2

c0

∂2

∂τ∂x2
+

1

c20

∂2

∂τ 2
. (A.33)

After applying the derivatives from Eq. (A.25) and (A.33) to Eq. (A.29), the

nonlinear wave equation with cubic nonlinearity on the slow scale becomes

ε̃4
∂2p

∂x22
− 2ε̃2

c0

∂2p

∂x2∂τ
= − 2γ

3ρ20c
6
0

∂2p3

∂τ 2
. (A.34)

Once again only the lowest order of ε̃ is retained. Both the term on the

right-hand side of Eq. (A.34) and the second term on the left-hand side are of

order ε̃3. However, the first term is on the order of ε̃5 and is thus discarded.

After transforming Eq. (A.34) back to the x coordinate and canceling common

terms, the cubically nonlinear, lossless wave equation becomes

∂p

∂x
=

γp2

ρ20c
5
0

∂p

∂τ
. (A.35)

Since the time scales are the same, the right-hand side of Eqs. (A.28), (A.31)

and (A.35) are added together with ∂p/∂x on the left-hand side to obtain the

evolution equation for a plane progressive wave,

∂p

∂x
=

δ

2c30

∂2p

∂τ 2
+

(
βp

ρ0c30
+
γp2

ρ20c
5
0

)
∂p

∂τ
. (A.36)
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Appendix B

Harmonic Materials

A closed form solution for the deformation of harmonic materials was

derived independently by both Ogden [64] and Abeyarante and Horgan [103].

The former considers Biot stress, while the latter considers Cauchy stress.

Additional information can be found in Ref. [86] and the references therein.

In Ref. [6], the authors considered effective moduli for a linear inclusion em-

bedded in a nonlinear matrix undergoing nonlinear deformations. The strain

energy density assumed here simplifies that presented in Ref. [6] for the non-

linear matrix to a linear medium subjected to geometrical nonlinearities. The

derivations in terms of Biot stress are repeated here for convenience, and then

reformulated in terms of Cauchy stress.

A reference configuration is defined by (r, θ, φ) and a deformed configu-

ration is defined by
(
r̃, θ̃, φ̃

)
, where θ = θ̃ and φ = φ̃ due to radial symmetry.

The two configurations are related arbitrarily by

r̃ = f (r) r, θ = θ̃, φ = φ̃

and the deformation is

ur = (f (r)− 1) r, uθ = 0, uφ = 0. (B.1)

158



The deformation gradient tensor is [62]

F = I +∇u

and thus

F =

f ′r + f 0 0
0 f 0
0 0 f

 . (B.2)

The principal stretches are the diagonal terms of Eq. (B.2), such that

λrr = f ′r + f, λθθ = λφφ = f. (B.3)

For derivation purposes, it is simpler to consider the Biot stress, T . The

components of the Biot stress are related to the strain energy density, E , such

that [64]

Tij =
∂E

∂λij
. (B.4)

Equilibrium in the absence of body forces requires Tij,j = 0, which yields the

following three equations in spherical coordinates [64]:

∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
1

r sin θ

∂Trφ
∂φ

+
2Trr − Tθθ − Tφφ − Trθ cosφ

r
= 0, (B.5)

∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
1

r sin θ

∂Tθφ
∂φ

+
(Tθθ − Tφφ) cot θ + 3Trθ

r
= 0, (B.6)

∂Trφ
∂r

+
1

r

∂Tφθ
∂θ

+
1

r sin θ

∂Tφφ
∂φ

+
2Tθφ cot θ + 3Trφ

r
= 0. (B.7)

The stress tensor will have the same form as the deformation gradient given

in Eq. (B.2). Therefore, the only non-zero components of the stress tensor are
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Trr and Tθθ = Tφφ and Eq. (B.6) and (B.7) are trivially satisfied and Eq. (B.5)

reduces to

∂Trr
∂r

+
2

r
(Trr − Tθθ) = 0. (B.8)

The expression for the strain energy density of the nonlinear matrix assumed

in Ref. [6] is

E = c1I
3
1 + c2I

2
1 + c3I1 + c4 − c5I2 + c6I3 (B.9)

where I1, I2, and I3 are the principal invariants of the strain tensor of the

deformation gradient.

I1 = λrr + λθθ + λφφ,

I2 = λrrλθθ + λrrλφφ + λθθλφφ,

I3 = λrrλθθλφφ. (B.10)

If the matrix is assumed to be linear, the strain energy density is at most

second order with respect to the invariants, such that the stress is first order.

Therefore, c1 = 0 and c6 = 0. Expressing the strain energy density in terms

of invariants,

E = c2λ
2
rr + 2 (c2 − c5)λrrλθθ + (4c2 − c5)λ2θθ + c3 (λrr + 2λθθ) . (B.11)

Since c4 is a constant, it will not appear in the stress terms and it has also

been set to zero. From Eqs. (B.4), (B.10) and (B.11), and using λφ = λθ, the

stress components become

Trr = 2c2 (λrr + 2λθθ) + c3 − 2c5λθθ,

Tθθ = 2c2 (λrr + 2λθθ) + c3 − c5 (λrr + λθθ) ,
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and equilibrium occurs when

∂

∂r
[2c2 (λrr + 2λθθ) + c3 − 2c5λθθ] +

2c5
r

(λrr − λθθ) = 0

2c2
∂

∂r
(f ′r + 3f)− 2c5f

′ +
2c5
r
f ′r = 0

∂

∂r
(f ′r + 3f) = 0. (B.12)

The last equation given in Eq. (B.12) can be integrated to yield

f = 1 + a+
b

r3
(B.13)

Using Eq. (B.13) in Eq. (B.1) yields the following expression for the radial

displacement,

ur = ar +
b

r2
. (B.14)

Similarly, the principal stretches of the deformation gradient are now expressed

as

λrr = 1 + a− 2b

r3
, λθθ = 1 + a+

b

r3
. (B.15)

A linear stress-strain constitutive relationship for the harmonic material only

contains terms up first order with respect to the principal stretches. The strain

energy density is therefore second order with respect to the invariants. The

components of the strain tensor and the principal stretches are related such

that Eij = λij − 1. Thus, the Biot stress is [6]

Trr = 2c2Err + 2 (2c2 − c5)Eθθ + 6c2 + c3 − 2c5 (B.16)
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The reference configuration is stress-free, such that Err = Eθθ = 0 and

Trr = 0, which gives rise to

c3 = 2c5 − 6c2

The small strain limit of the radial stress is

Trr =

(
K +

4

3
µ

)
Err + 2

(
K − 2

3
µ

)
Eθθ. (B.17)

Equating Eqs. (B.17) and (B.16) allows c2 and c5 to be defined in terms of K

and µ, such that

c2 =
1

2

(
K +

4

3
µ

)
,

c5 =

(
K +

4

3
µ

)
−
(
K − 2

3
µ

)
= 2µ.

Expressions for the Biot stress, and strain energy density, can then be obtained

in terms of the elastic moduli, K and µ, as in Ref. [6], such that

Trr =

(
K +

4

3
µ

)
Err + 2

(
K − 2

3
µ

)
Eθθ, (B.18)

E =
1

2

(
K +

4

3
µ

)
λ2rr + 2

(
K − 2

3
µ

)
λrrλθθ

+ 2

(
K − 1

3
µ

)
λ2θθ − 3K (λrr + 2λθθ) . (B.19)

The present work considers the Cauchy Stress instead of the Biot Stress. The

radial component of the Cauchy stress is obtained from the strain energy

density by [86]

σrr =
1

λ2θθ

∂E

∂λrr
. (B.20)
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The radial component of the Cauchy stress is therefore,

σrr =
1

λ2θθ

[(
K +

4

3
µ

)
λrr + 2

(
K − 2

3
µ

)
λθθ − 3K

]
, (B.21)

or

σrr =

(
1 + a+

b

r3

)−2(
3Ka+

2µb

r3

)
. (B.22)

Equation (B.22) is the same expression used in Section 3.2.2.
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Appendix C

Time Domain Algorithm Including Cubic

Nonlinearity

The equation being modeled by the time domain code is

∂P

∂σ
=
(
N1P +N2P

2
) ∂P
∂θ

+
1

Γ

∂2P

∂θ2
, (C.1)

as given by Eq. (3.65). Operator splitting of Eq. (C.1) into one differential

equation for attenuation and another for nonlinear distortion, similar to what

was done to derive the evolution equation, is applied here. The two equations

are solved independently over spatial incremental step ∆σ, which is known as

the method of fractional steps. The analysis presented in Refs. [92] and [93]

demonstrates that solving these equations separately converges to the correct

answer for small enough step sizes.

C.1 Nonlinear Distortion

The dimensionless equation that models nonlinear distortion is

∂P

∂σ
=
(
N1P +N2P

2
) ∂P
∂θ

. (C.2)

This is solved analytically using the Poisson solution,

P (σ, θ) = F
[
θ + σ

(
N1P +N2P

2
)]
, (C.3)
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where F (θ) is the waveform at source, σ = 0. If the source is a sinusoid,

F (θ) = sin θ. Propagation of waveform as it steps forward from σ = 0 at ∆σ

increments is given by

P (σ + ∆σ, θ) = P
[
σ, θ + ∆σ

(
N1P +N2P

2
)]
. (C.4)

The dimensionless time is thus transformed according to

θk+1
i = θki −∆σ

[
N1

(
P k
i

)
+N2

(
P k
i

)2]
, (C.5)

where k corresponds to the current value of σ and k+1 corresponds to σ+∆σ.

The subscripts i refer to the time step, which goes from 1 to M . The code

cannot correctly model multivalued waveforms, thus θk+1
1 < θk+1

2 < ... < θk+1
M

must be true for all times. This means

∆σ <
∆θ

max |P k
i − P k

i−1|
. (C.6)

The times steps are no longer uniform and must be resampled via linear in-

terpolation.

C.2 Thermoviscous Absorption

The component of the algorithm accounting for absorption in the time

domain code remains unaltered, but is repeated below for convenience. The

linear, lossy, dimensionless evolution equation is given as

∂P

∂σ
=

1

Γ

∂2P

∂θ2
. (C.7)
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A Crank-Nicolson method using standard forward-space, centered time finite

differences is used to solve Eq. (C.7), such that

P k+1
i − P k

i

∆σ
=

1

2Γ (∆θ)2
(
P k+1
i+1 − 2P k+1

i + P k+1
i−1 + P k

i+1 − 2P k
i + P k

i−1
)
. (C.8)

Letting r = (∆σ)/[2Γ (∆θ)2], Eq. (C.8) can be rewritten as

−rP k+1
i−1 + (1 + 2r)P k+1

i − rP k+1
i+1 = rP k

i−1 + (1− 2r)P k
i + rP k

i+1, (C.9)

where P k+1 is the output solution vector to be solved for at each time step i and

P k is a vector of the output from the previous iteration at each time step, such

that (θk+1
i , P k+1

i ) becomes (θki , P
k
i ) at the next iteration, and

P k =
(
P k
1 , P

k
2 , ..., P

k
M

)T
. Thus, the system of equations is expressed as:

Atv · P k+1 = Btv · P k, (C.10)

where Atv and Btv are the following tridiagonal matrices:

Atv =


1 0
−r 1 + 2r −r

. . . . . . . . .

−r 1 + 2r −r
0 1

 , Btv =


1 0
r 1− 2r r

. . . . . . . . .

r 1− 2r r
0 1

 ,

from Eq. (C.9). P k+1 is calculated explicitly using the Thomas algorithm,

which is a simplified form of Gaussian elimination used to solve tridiagonal

systems of equations:

aiP
k+1
i−1 + biP

k+1
i + ciP

k+1
i+1 = di. (C.11)
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In Gaussian elimination, there is a change of coefficients such that

ei =

{
c1/b1 for i = 1

ci/ (bi − aiei−1) for i = 2, 3, ...,M
(C.12)

and

fi =

{
d1/b1 for i = 1

(di − aifi−1) / (bi − aiei−1) for i = 2, 3, ...,M
(C.13)

Backwards substitution provides the following expressions for P k+1
i ,

P k+1
i =

{
fM for i = M

fi − eiP k+1
i+1 for i = M − 1,M − 2, ..., 1

. (C.14)

P k+1
n then becomes P k

n for the next iteration in the algorithm.
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Appendix D

Derivation of Rayleigh-Plesset Type Equation

There are several ways to derive the Rayleigh-Plesset equation. The

following approach utilizes Lagrange’s equation, as outlined in Refs. [99] and

[100]:

d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= −∂Ψ

∂Ṙ
, (D.1)

where the Lagrangian, L = T −U , depends on the total kinetic energy T and

total potential energy U , Ψ is a dissipative function, and R is the instantaneous

radius. No component of the potential energy function, U , depends on time,

such that Eq. (D.1) reduces to

d

dt

(
∂T

∂Ṙ

)
− ∂T

∂R
= −∂U

∂R
− ∂Ψ

∂Ṙ
. (D.2)

The derivation implements the assumptions discussed in Section 4.2. The first

neglects the kinetic energy of the inclusion in both cases considered in Chapter

4. The mass of the inclusion can be accounted for easily, such as in Ref. [101],

and will be included in future work. However, for the present derivation, the

total kinetic energy is just that of the nearly incompressible matrix; thus [99]

Ttotal = Tm = 2πρmR
3Ṙ2. (D.3)
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The total potential energy on the surface of the sphere of interest is

thus the summation of the potential energy due to work done by any external

forces on the outer surface of the matrix, the strain energy of the surrounding

matrix material, and the internal strain energy the inclusion in general, which

may refer to a bubble, a SAMM element, or an effective medium. The work

done by the outer surface of the matrix due to some pressure, P∞, is given by

U∞ = P∞V0εv, (D.4)

where P∞ includes two components, an acoustic forcing pressure, Pac, and

a static pressure, P0 that serves as a ‘DC offset’ pressure. The pressure is

assumed to be incident infinitely far away from the surface of the sphere.

The stored energy from the incompressible elastic matrix is derived in

Ref. [99] up to second order in radius of the bubble, but only the linear approx-

imation is of interest here. The strain energy density of a nearly incompressible

matrix in terms of the shear modulus of the matrix, µm is thus expressed as

Em =
2

3
µm

(
R0

r

)6

ε2v. (D.5)

The potential energy of the matrix is found by integrating the strain energy

density given in Eq. (D.5) over the total volume of the matrix, originating

at the boundary of the sphere and ending at the outer surface of the matrix,

which is assumed to be infinitely far away, such that [99]

Um = 4π

∫ ∞
r=R0

Emr
2dr =

2

3
µmV0ε

2
v, (D.6)
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where R0, V0 and εv refer to the equilibrium radius, equilibrium volume and

volumetric strain of the sphere.

When deriving the Hashin-Shtrikman bounds in Section 3.2.2.1, both

the SAMM inclusion and effective medium obeyed a constitutive relationship

of the same form. This also applies to the potential energy, which can be

expressed as the following expansion

U = V0

(
1

2
Kε2v −

1

6
K ′ε3v +

1

24
K ′′ε4v

)
. (D.7)

The derivative of strain energy with respect to radius R as a function of pres-

sure, as required for Lagrange’s equation given in Eq. (D.2), is

−∂U
∂R

= 4πR2P. (D.8)

As a first level approximation, it is assumed that the only dissipation

comes from the incompressible matrix and the dissipation factor, as given in

Ref. [100], is

Ψm = 8πηmRṘ
2 (D.9)

where ηm is the shear viscosity of the matrix. Using Eqs. (D.2), (D.3), (D.8),

and the differentiation Eq. (D.9) with respect to Ṙ, yields a differential equa-

tion for change in radius as a function of time,

4πρmR
3R̈ + 6πρmR

2Ṙ2 = 4πR2Ptotal −
4ηm
ρm

Ṙ

R
,

which is commonly expressed as

RR̈ +
3

2
Ṙ2 =

Ptotal

ρm
− 4ηm

ρm

Ṙ

R
, (D.10)
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where the dots indicate derivatives with respect to time. The total pressure

is obtained by differentiating the strain energy with respect to R, as given

in Eq. (D.8). Differentiating Eq. (D.4) with respect to R provides a −P∞

contribution, whereas contributions to the total pressure for the matrix and

the inclusion are both positive due to how the pressure is defined. The total

pressure will have the following form in Chapter 4

Ptotal = Pi,∗ + Pm − P∞ (D.11)

where Pi,∗ is the internal pressure of either the SAMM inclusion or effective

medium and Pm is evaluated on the surface of the sphere.
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