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ABSTRACT 

 

Nuclear Fuel Cycle Transition Analysis Under Uncertainty 

 

Urairisa Birdy Phathanapirom, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Erich A. Schneider 

 

 Uncertainty surrounds the future evolution of key factors affecting the 

attractiveness of various nuclear fuel cycles, rendering the concept of a unique optimal fuel 

cycle transition strategy invalid. This work applies decision-making under uncertainty to 

fuel cycle transition analysis, demonstrating a new, systematic methodology for choosing 

flexible, adaptable hedging strategies that yield middle-of-the-road results until 

uncertainties are resolved.  

A case study involving transition from the current once-through light water reactor 

(LWR) fuel cycle to one relying on continuous recycle in fast reactors (FRs) is cast as a 

no-data decision problem. The transition is subject to uncertainty in the cost of spent 

nuclear fuel (SNF) and high-level waste (HLW) disposal in a geologic repository, slated to 

open some years into the future. Following the repository open date, the cost of SNF and 

HLW disposal is made known, and may take on one of five possible values.  

Strategies for the transition are enumerated and simulated using VEGAS, a systems 

model of the nuclear fuel cycle that solves for its material balance and applies input cost 

data to calculate the associated annual levelized cost of electricity (LCOE). Perfect 
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information strategies are found using the lowest average, maximum, and integrated LCOE 

objective functions. The loss in savings for following a strategy other than the perfect 

information strategy is the “regret” which is calculated by evaluating the performance of 

each strategy for every end-state. Hedging strategies are then selected by either minimizing 

the maximum or the expected regret.  

Generally, the optimal hedging strategy identified using the decision methodology 

suggests a partial transition to a closed fuel cycle prior to the repository open date. Once 

the repository opens, the transition may be abandoned or accelerated depending on which 

disposal cost outcome is realized. The lowest average and integrated LCOE objective 

functions perform similarly; however, the lowest maximum LCOE objective function 

appears overly sensitive to aberrations in the annual LCOE that arise due to idle 

reprocessing capacity. The minimax regret choice criterion is shown to be more 

conservative than the lowest expected regret choice criterion, as it acts to hedge against the 

worst-case outcome.  

By following a hedging strategy, agents may alter their fuel cycle strategy more 

readily once uncertainties are resolved. This results since hedging strategies provide 

flexibility in the nuclear fuel cycle, preserving what options exist. To this end, the work 

presented here may provide guidance for agent-based, behavioral modeling in fuel cycle 

simulators, as well as decision-making in real world applications.  
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Chapter 1:  Introduction 

Uncertainty surrounds the evolution of key factors affecting the attractiveness of 

nuclear fuel cycle options. Large uncertainties in the cost, performance and even 

availability of advanced fuel cycle technologies may drive the timing of future choices and 

alter the available options and the criteria by which they are evaluated. Hence a single 

optimal strategy for transitioning from one nuclear fuel cycle to another does not exist.  

Previous work in the area of fuel cycle transition analysis recognizes these 

uncertainties and call for “flexible” or “agile” fuel cycle options (Havlíček, 2008), (Piet et 

al., 2006). However, no clear methodology has emerged for selecting such a fuel cycle. 

Fuel cycle transition analyses have instead primarily employed the “scenarios” approach, 

which assumes that decision-makers would be able to correctly guess the future state of 

uncertain parameter(s). In effect, this approach ignores uncertainties or at best handles 

them in such a way that gives rise to inflexible courses of action.  

The work presented in this thesis applies decision-making under uncertainty to fuel 

cycle transition analysis. Decision-making under uncertainty provides a systematic 

framework for choosing flexible transition strategies, termed “hedging” strategies, which 

yield middle-of-the-road results until uncertainties can be resolved. These hedging 

strategies are found using realistic depictions of uncertainty and limited information about 

the future, and are chosen in such a way as to reduce substantial losses if the state of nature 

that prevails is different than that which was expected. 

A case study involving transition from the current once-through light water reactor 

(LWR) fuel cycle to one relying on continuous recycle in fast reactors (FRs) is cast as a 

no-data decision problem, in which it is impossible to gain information about the state of 

nature that will ultimately prevail. The transition is subject to uncertainty in the cost of 
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spent nuclear fuel (SNF) and high-level waste (HLW) disposal in a geologic repository 

slated to open some years into the future. The cost of SNF and HLW disposal will be made 

known at the repository open date and may take on five possible states of nature. 

Strategies for transitioning toward continuous recycle in FRs are enumerated using 

VEGAS, a systems model of the nuclear fuel cycle that solves for its material balance. 

VEGAS builds FRs at the maximum rate allowable based on existing LWR used fuel (UF)1 

reprocessing capacity, and so a simulation is fully specified by its reprocessing capacity 

expansion profile. By applying input cost data to the material balance, VEGAS calculates 

the annual levelized cost of electricity (LCOE) for various reprocessing capacity expansion 

profiles. Using three different objective functions (the lowest average, maximum and 

integrated LCOE), perfect information strategies are determined. This is the so-called 

scenarios approach, which assumes that the end-state realized after the repository open date 

is known, and agents may choose to transition the fuel cycle in an optimal way based on 

the chosen objective function. The methodology given in this thesis instead evaluates the 

performance of each reprocessing capacity expansion profile for every possible end-state. 

The profile that performs best on the average for each end-state based on two different 

choice criteria (the minimax and expected regret) are then the chosen hedging strategy.  

By following a hedging strategy, agents may alter their fuel cycle strategy more 

readily once uncertainties are resolved. This results since hedging strategies provide 

flexibility in the nuclear fuel cycle, preserving what options exist in the nuclear fuel cycle. 

Said differently, the “best” option may be the option that avoids foreclosing other options 

(Hamilton et al., 2012). To this end, the work presented here may provide guidance for 

                                                 
1 “Used fuel” is another term for “spent fuel”. The difference arises from a policy issue of whether to regard 

the material as a resource or a waste. In this thesis, used fuel is used when referring to reprocessing/recycling 

of material, whereas SNF is used when referring to disposal of material. 
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agent-based, behavioral modeling in fuel cycle simulators, as well as decision-making in 

real world applications.  

Chapter 2 provides an introduction to the elements of decision theory utilized in 

this work, specifically defining key phrases such as imperfect knowledge and limited 

foresight. The no-data decision problem is described, as are techniques used for solving it. 

A review of nuclear-related studies that make use of decision analysis is also provided. 

Chapter 3 motivates and describes the transition scenario examined in this thesis. The 

VEGAS fuel cycle simulator tool used in the analysis is reviewed, and documentation of 

major inputs is given in Appendix A. The methodology for selecting optimal transition and 

hedging strategies is also presented. Chapter 4 gives the results from the reference 

transition scenario, as well as sensitivity studies involving varying the ratio between HLW 

and SNF disposal costs and FR capital costs. Chapter 5 draws conclusions based on the 

work presented.  
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Chapter 2:  Background 

The work presented in this thesis aims to identify optimal transition strategies for 

nuclear fuel cycles given realistic depictions of uncertainty and limited information about 

the future. Optimal strategies are identified using a framework provided by compiling 

decision theoretic tools and systems models of the nuclear fuel cycle. The combination of 

decision theory and systems analysis has been termed decision analysis (Huang et al., 

1995). This work may then be viewed as an application of decision analysis. Early 1960s 

studies that incorporated decision analysis dealt with decision making in oil and gas 

exploration (Grayson, 1960), (Kaufman, 1963). Following these initial studies, decision 

analysis has reached many different applications due to advancement to different forms, 

each with a unique focus (Huang et al., 1995).  

This chapter is divided into three sections. The first section serves to introduce the 

elements of decision theory utilized in this work, specifically defining key phrases such as 

imperfect knowledge and limited foresight, as well as provide an example of the no-data 

decision problem. The second section presents an overview of past techniques utilized in 

solving the no-data decision problem. The third section reviews past nuclear-related studies 

that utilize decision analysis.  

2.1 DECISION MAKING WITH IMPERFECT KNOWLEDGE 

Modern decision theory provides a systematic approach to choosing between 

alternative courses of action under conditions of imperfect knowledge. (Nykvist, 2005)2 

identifies two key components to knowledge: information and foresight. Information refers 

to knowledge of how key future events will unfold, e.g. if a CO2 emissions cap will be 

                                                 
2 Some citations use the spelling “Nyqvist”.  
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imposed, whereas foresight refers to knowledge of how current actions or investments will 

affect the future, e.g. if building a nuclear instead of coal-fired power plant will later result 

in savings of 𝑥 or 𝑦 dollars. Imperfect knowledge may refer to either, or both, of these 

components, see Fig. 2.1. Agents who act with imperfect information, referred to as 

conditions of uncertainty, may be unaware of the level at which CO2 emissions will be 

capped. Likewise, agents acting with imperfect foresight, more commonly referred to as 

limited foresight, may choose to forego building a nuclear power plant and choose instead 

the coal fired plant because it is cheaper in the short-term. 

 
Fig. 2.1. Components of knowledge and their limiting cases. 

Many energy system models are formulated in the limiting case of perfect 

knowledge (Azar et al., 2003), (EIA, 2009), (IEA, 2013), (Loulou et al., 2004). Under these 

conditions, producers and consumers optimize the energy system (typically through global 

cost minimization) over the simulation time period with perfect foresight and information 
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of future economic and technological developments. The scenario created by these models 

should not be considered a forecast of the future, but rather a best-case scenario description 

of future developments, meant to provide guidance about how to achieve the best-case. In 

the other extreme, energy system models may operate under conditions of myopia, where 

short-sighted producers and consumers optimize their welfare in each time step of the 

simulation with no regard for how decisions made now will affect their future (Keppo et 

al., 2009), (Martinsen et al., 2006), (Nykvist, 2005). Completely myopic agents may be 

viewed as an extreme case of limited foresight, where the planning horizon is bounded by 

the coarsest time step available in the model. In this way, limited foresight actually imposes 

conditions of imperfect information on the system. In reality, decision makers act under 

conditions of imperfect knowledge in the domain between the extremes of perfect 

knowledge and complete myopia.  

The work presented in this thesis assumes conditions of imperfect information, 

similar to the no-data decision problem found in decision theory. The no-data problem is 

one in which no experiment is readily available as a way of gaining information about the 

state of nature that will prevail. These problems consist of four components: (1) the 

available actions that can be taken, (2) the states of nature (or end-states) which may occur, 

(3) the consequences of each combination of action and state of nature (known as a state-

act pair), and (4) a choice criterion by which the decision maker solves the final problem 

of choice.  

The Wet or Dry problem is described here as an illustration of the no-data problem, 

adapted from the original presented in (Halter and Dean, 1971). Each year, California 

Thompson Seedless grape growers must choose how to produce and market their grapes. 

Thompson Seedless grapes are appropriate for either canning, fresh table consumption, 

wine production, or for sun-drying into raisins. The amount of land appropriated for 
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canning grapes and table grapes must be assigned at the beginning of the season, but the 

remainder of the crop can be shifted late in the season to either wine grapes or to raisins. 

The industry commonly refers to this shift as “going wet or dry.” The two available actions 

to a grower may be to allocate all of his acreage for raisins, or all of his acreage for wine 

crush: 
𝑎1  = allocate all acreage for raisins, or 

𝑎2  = allocate all acreage for wine crush. 

The consequences of the grower’s action depend primarily on weather conditions 

and prices. At the time the grower chooses an action, he knows neither of these conditions, 

and he has no way of forecasting prices or of forecasting the weather. Raisins are sun-dried 

completely in the open, and rain during the drying period can inflict heavy losses on the 

grower who is going dry. Similarly, for the grower who is going wet, grapes remain on the 

vines several weeks longer than their dried counterpart, and there is very little chance of 

going dry after waiting for that period. The states of nature that may occur are all 

combinations of both weather conditions (rain or no rain) and relative prices (prices favor 

raisins or prices favor wine crush): 

𝜃1 = prices favor raisins; no rain, 

𝜃2 = prices favor raisins; rain, 

𝜃3 = prices favor wine crush; no rain, and 

𝜃4 = prices favor wine crush; rain. 

The choice criterion for the Wet or Dry problem is chosen as dollars profit per acre. 

The profits table for this problem is shown in Table 2.1. Each cell entry is determined by 

budgeting analysis utilizing the relevant prices, damage factors, and costs for the associated 

action and state of nature. The grower assigns probabilities 𝑃(𝜃𝑖) to the various states of 

nature based on past experiences. Given these probability assignments, the grower can 

calculate the expected value of each action. His strategy would then be to allocate his entire 
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crop to raisins, or “go dry”. Of course, a different set of probabilities could lead to a 

different action as optimal. 

Table 2.1. Profits table for Wet or Dry problem. 

 Actions  

 All Raisins (a1) All Wine (a2)  

States of Nature Dollars Profit Per Acre P(θi) 

Prices favor raisins; no rain θ1 60.20 18.50 0.42 

Prices favor raisins; rain θ2 -3.88 14.80 0.32 

Prices favor wine crush; no rain θ3 28.00 41.96 0.21 

Prices favor wine crush; rain θ4 -23.20 33.57 0.05 

Expected profit per acre 28.76 22.97 -- 

2.2 SOLVING THE NO-DATA PROBLEM 

Several techniques have been proposed to address the no-data problem. These 

techniques are summarized in (Gorenstin et al., 1993) and are described for the two-stage 

problem, in which there is one state of nature for the first stage and two possible states of 

nature for the second stage; however, they may generalize to problems with a larger number 

of stages and states of nature. In this way, agents using the techniques described here act 

with perfect foresight but limited information.  

1. Deterministic equivalent: In stochastic programming, the Deterministic 

Equivalent Problem is formulated by replacing random variables (all possible states of 

nature) with their expected values (Birge and Louveaux, 2011). The first-stage decisions 

are made based on the expected prevailing state of nature and represent the expected value 

solution. In the second stage, when the prevailing state of nature is realized, the second-

stage decision must be taken.  

(Nykvist, 2005) examines the effect of limited foresight on the global energy 

system model GET (Azar et al., 2003). In its original formulation, the GET model solves 
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for a globally aggregated fuel mix across three end-use energy sectors which provides the 

lowest energy system cost while meeting a CO2 emissions cap in the year 2100. Nykvist 

imposes limited foresight by dividing the simulation time period into 𝑇 time steps, and for 

each time step 𝜏 a local optimal solution is found. For the following time step 𝑡𝜏+1, the 

initial state is defined by the results of the previously executed optimization. By 

implementing limited foresight in this way, the CO2 emissions goal of 2100 is not visible 

at the beginning of the GET simulation and has no effect on the decision making. With this 

formulation of GET, Nykvist demonstrates that the costs of realizing a CO2 target of year 

2100 increase with shorter allotted foresight.  

Using a similar formulation, (Leibowicz et al., 2012) develops a two-stage 

framework for the energy-economic model MARKAL (Loulou et al., 2004) to examine 

effects of uncertainty3 in nuclear electricity costs on the optimal electricity generation 

technology mix. A standard MARKAL run configures the energy system in order to 

minimize the net total cost of the system with full knowledge of future events. In the two-

stage framework, MARKAL is run over the entire time horizon without any change in costs 

in the year 2030 (base run); following, MARKAL is re-run assuming a change in nuclear 

electricity costs beginning in year 2030, using results from the base run prior to year 2030. 

Leibowicz concludes that carbon mitigation not heavily reliant on nuclear power is 

economically inefficient.  

The primary issue with the deterministic equivalent approach is that the optimal 

plan in the first stage is only optimal under the assumption that the future conditions will 

occur as expected. For example, the limited foresight formulation of MARKAL, SAGE 

(Loulou et al., 2004) will not properly respond to a constraint representing the total reserves 

                                                 
3 (Leibowicz et al., 2012) actually claims to examine the effect of limited foresight on the optimal electricity 

generation technology mix. However, for consistency with Section 2.1, this has been changed to uncertainty.   
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of a resource such as gas or coal if the constraint doesn’t come into effect within the 

relevant time horizon. SAGE instead uses as much gas or coal as needed in each period, 

without any planning ahead for this eventuality, until the period when the reserve is 

exhausted.  

2.  Scenarios: The optimal plan is found for all 𝑁 possible scenarios, obtaining a set 

of 𝑁 solutions. The number of scenarios is determined by taking all available combinations 

of possible states of nature. In this way, the scenarios approach assumes perfect information 

by assuming that 𝑁 decision-makers would be able to guess the correct state of nature that 

will prevail. A single optimal plan is constructed by observing similarities and trends in 

the 𝑁 set of solutions which can be expected to perform well under all scenarios.  

(Draper, 2001) presents a limited foresight variant of the CALVIN model (Lund et 

al., 1999), an optimization model of California’s inter-tied water system. Draper imposes 

limited foresight in the CALVIN model in a similar manner to Nykvist in the GET model. 

In the CALVIN model, historical hydrologic data is exogenously applied and economic 

drivers are used to allocate water from California’s surface and ground water supplies to 

minimize the water shortage cost. This hydrologic data set is chosen due to its availability 

and supposed representation of the range of possible flows and their implicit spatial and 

temporal correlation structure. This range may be viewed as offering different scenarios of 

hydrologic conditions, and reservoir operating rules are then derived using “a mixture of 

statistical tools and engineering judgment” from the model output.  

The limitation of the scenarios approach is the difficulty of constructing a single 

strategy which is adequate “on the average” for all scenarios. For example, if one were to 

optimize the energy generation technology mix for two differing energy demand growth 

scenarios, the two scenarios will produce very different recommendations on technology 

investments. Typically, there are no easy guidelines for constructing a strategy that is 



 11 

adequate on the average for both scenarios. The only exception are “robust” strategy 

components that are part of the optimal strategy in both scenarios. Indeed, some studies 

simply present optimal strategies for different scenarios, with no effort made to aggregate 

the strategies (IEA, 2013), (Leibowicz et al., 2012). 

(Rockafellar and Wets, 1991) investigate this problem in the abstract, formulating 

a “Progressive Hedging Algorithm” that averages solutions from the scenarios approach to 

determine a solution which is in some sense good for the underlying problem. The 

algorithm’s fundamental idea is to add the only constraints that tie together the different 

scenarios to the objective function via Lagrange multipliers, creating a function that may 

be decomposed. While the algorithm has been successfully applied to various topics such 

as market production planning and network flow problems (Escudero et al., 1993), (Mulvey 

and Vladimirou, 1991), it is not applicable in the case of nuclear fuel cycle simulators. The 

algorithm is constructed for a stochastic linear program (LP), whereas fuel cycle simulators 

are formulated as systems tools that track resource flows.  

3.  Stochastic optimization: Stochastic programming is a means to remedying the 

weaknesses of the scenarios approach; it determines a unique strategy which is optimal “on 

the average” for all scenarios by explicitly embedding uncertainties as future bifurcations 

with assigned probabilities within a single coherent formulation, termed a stochastic model.  

 (Loulou et al., 2004) presents a stochastic programming variant of the standard 

MARKAL model. In this model, multiple scenarios are represented within the stochastic 

model. The example given by Loulou concerns the greenhouse gas (GHG) emissions from 

the Quebec energy system, which is subject to an upper bound on its cumulative GHG 

emissions over the time period 2000 to 2030. However, the upper bound may take on any 

of four values, each with a specific probability of occurrence, and is resolved in 2015. The 

optimal hedging strategy is then found based on the expected cost choice criterion. This 
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strategy takes into account that any of the four possible states of nature may occur, and 

chooses a middle-of-the-road path until the uncertainty is resolved, see Fig. 2.2, states of 

nature 1-4. This is in contrast to the scenarios approach, in which there would exist four 

optimal strategies from 2000 to 2015, none of which may match the optimal hedging 

strategy, see Fig. 2.2, scenarios 1-4. Loulou does mention that the commonly used expected 

cost choice criterion presupposes that probabilities of event outcomes are available and that 

the decision maker is risk neutral; both of these assumptions are debatable. Risk, sometimes 

termed regret, refers to the difference between the largest gain and that which the decision 

maker receives. One practical limitation of the stochastic programming approach is the 

growth in model size as the number of event bifurcations increases, which may prove 

impractical with finite computing power.  

(Gilbert and Richels, 1981) estimate the expected economic value of the United 

States (U.S.) Department of Energy (DOE) National Uranium Resource Evaluation 

Program (NURE) using ETA-MACRO, a nonlinear program that allows for energy-

economy interactions, cost-effective conservation of energy, interfuel substitution, and 

new energy supply technologies (Manne, 1979). The main output of the NURE program is 

information about the distribution of uranium resources at the cost of several million 

dollars. The net benefit of this information is estimated using a stochastic model of future 

nuclear power development that allows for five policy decisions: parallel development of 

both a fast breeder reactor (FBR) and an advanced converter reactor (ACR), development 

of just one type, wait, or stop (see Fig 2.3). After an initial decision is made, a filtration of 

future decisions occurs (example: if a FBR demonstration plant is built today, a successor 

FBR, labelled CBR-1, may be built in 20 years, but not a successor ACR plant, labelled 

ACR-1). The ensuing decision tree, a model of decisions and their possible outcomes (see 
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Fig. 2.3), is often associated with Real Options Valuation or Real Options Analysis (ROV 

or ROA), which extends from decision making under uncertainty.  

 
Fig. 2.2. Optimal GHG trajectories found under stochastic model (states of nature 1-4) 

and scenario analysis (scenarios 1-4). Adapted from: (Loulou et al., 2004) 

The ROA approach allows for flexibility in decision making and is largely applied 

to the analysis of investment projects (Yao and Jaafari, 2003). Prior to ROA, valuation of 

projects was made based on a “go/no-go” decision approach to the entirety of a project at 

the time of project feasibility studies and approval. The ROA approach allows for real 

options or courses of action available to decision makers, which include deferring, scaling 

down, staging, or even abandoning projects in response to additional information, such as 

market conditions. In this way, proactive risk management is integrated into the analysis 

of investment projects. In the example provided by (Gilbert and Richels, 1981), options 

(enumerated in Fig. 2.3) include building demonstration FBR or ACR plants, and 
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information of uranium resources provided through the NURE project influence which 

options are realized.   

 
Fig. 2.3. Decision tree of alternative nuclear fuel cycles. Source: (Gilbert and Richels, 

1981) 

2.3 DECISION MAKING IN THE NUCLEAR FUEL CYCLE 

(Zhou et al., 2006) reviews 252 publications that use decision analysis in energy 

and environmental modeling. Of these publications, the share of nuclear-related studies has 

been as high as 30 percent (from 1975 to 1984), with a later decline to 7 percent (from 

1995 to 2004), covering a wide variety of topics. A selection of examples are related below. 

(Evans, 1984) applies probabilistic decision analysis utilizing a LP model (Evans, 

1981) in order to estimate the likelihood of a net benefit from the Sizewell B pressurized 

water reactor project in the UK. In a scenarios-like approach, two runs of the LP are 

contrasted, one with and one without the Sizewell B project. Both LP runs strategically 
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sample from the complete space of uncertain parameters in order to derive sensitivities in 

the overall outcomes.  

The ROA approach is taken in (Rothwell, 2006) in order to estimate the net present 

value of building new nuclear power plants, specifically an Advanced Boiling Water 

Reactor in Texas. Uncertainties are modeled using Monte Carlo simulation, and various 

risk premiums (the minimum amount by which the expected return on a risky action must 

exceed the known return on a risk-free action in order for decision makers to select the 

risky action) are derived that would trigger investment in new nuclear power plants.  

(Gregory and Lichtenstein, 1987) critique two reports concerning the site selection 

for characterization of a potential U.S. HLW repository. The first report, (DOE, 1986), 

evaluates five potential sites using a multiattribute utility analysis (MUA), designed to aid 

in the selection process. MUA explicitly considers multiple criteria in decision-making by 

weighting attributes based on relevance and constructed value functions for those attributes 

based on a prior distribution of preferences.  The attributes included in (DOE, 1986) are 

worker and public fatalities; and aesthetic, archaeological, biological, and socioeconomic 

impacts. However, despite ranking the five potential sites based on these attributes, the 

second report, (DOE, 1986a) recommended three sites ranked first, third, and fifth in 

(DOE, 1986). Gregory and Lichtenstein point out a key issue surrounding MUA: some 

decision analysts state that decision aids like MUA should not dictate policy but should be 

viewed merely as providing information to the decision maker. 

A quantitative model for decision making in nuclear safeguards based on a trade-

off between risk diversion and the cost of reducing the risk is presented in (Judd and 

Weissenberger, 1982). Uncertainties are accounted for in a diversion model (which 

enumerates the type of attempts to divert special nuclear material) and a consequence 

model (which gives values to consequences of successful diversion attempts), both of 
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which are affected by the proposed safeguards technology. Then, if the expected value of 

consequences exceeds the cost of the safeguards technology, it is suggested that the 

safeguards technology is employed.  

Fewer applications of decision analysis are found in the development of the nuclear 

fuel cycle. This is despite the number of uncertainties that exist regarding the nuclear fuel 

cycle (e.g. demand growth rates, economic costs, and uranium resource availability) and 

the systematic framework for handling these uncertainties which is offered by decision 

analysis. Nonetheless, three applications of decision analysis to the development of nuclear 

power are described below.  

(Gilbert and Richels, 1981), discussed previously in Section 2.2, estimate the 

expected economic value of the U.S. DOE NURE program. Similarly, (Manne and Richels, 

1978) utilize the ETA-MACRO program to evaluate alternative R&D strategies regarding 

the U.S. breeder reactor program with respect to uranium supply, energy demand growth, 

environmental constraints on coal and shale oil production, and the availability of 

alternative energy sources. Individual respondents’ subjective probabilities obtained 

through questionnaires are used for distributions on critical uncertainties. The authors 

found that, in general, a positive expected dollar benefit was predicted from any breeder 

development program, despite the possible risk of unnecessarily incurred research and 

development costs if breeder reactors are never brought into widespread commercial use.  

(Kunsch and Teghem, 1987) take a MUA approach to the decision to reprocess 

SNF utilizing STRAtegy for the Nuclear Generation of Electricity (STRANGE), a 

stochastic LP (Teghem et al., 1986). The examined criteria include production costs, 

energy independence, commercial balance, and national technological level. An optimal 

strategy between reprocessing and disposing SNF is determined for each pair of objectives 

(either minimize NU needs or minimize costs) and scenarios. The “first compromise” is 
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found between the two optimal strategies using the minimax principle (Wald, 1945), in 

which the maximum regret is minimized. The scope of the work presented is limited to fuel 

cycle policy in the short term (20-30 years).  

(Pierpoint, 2011) presents a MUA for the selection of transition strategies for the 

nuclear fuel cycle. A 100 year time period is simulated using the Flexible Advanced 

Nuclear Technology Simulation by Year (FANTSY) model (written by the author) and a 

decision analytic model of the U.S. nuclear fuel cycle is applied following the simulation. 

In general, Pierpoint considers continuation of the once-through LWR fuel cycle versus 

gradual or rapid FR capacity expansion. A multiattribute utility function is created 

consisting of a cost metric (total system cost, discounted to the present year) and waste 

metric (SNF, transuranics (TRU), and fission product (FP) masses). The value of a 

scenario, consisting of a combination of decision values and uncertainties, is calculated 

following a FANTSY simulation. Optimal strategies are chosen through minimization of 

the multiattribute utility function following enumeration of all scenarios in FANTSY. 

Some conclusions drawn from Pierpoint’s study may be influenced by the choice of 

decision criteria, specifically the cost metric. Pierpoint indicates that partial FR builds early 

in the simulation and full FR builds late in the simulation are preferred due to steep 

discounting of costs for reactors built later in the simulation. Infinite capacity of supporting 

fuel cycle technologies are also assumed, which may lead to idle capacity following initial 

start-up in a real world situation.  

Earlier fuel cycle analysis methodologies have taken the “scenarios” approach, 

discussed in Section 2.2. While the scenarios approach may provide insight into how the 

fuel cycle may evolve over time, it is constrained by the modelers’ judgment. The scenarios 

modeled are often limited in number and reflect the states of nature which the modeler 

believes within reason may occur. With the scenarios approach, there is no systematic 
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approach to varying scenario parameters in an attempt to seek the “best” option for fuel 

cycle development.  

(Yacout et al., 2004) examines maintaining the level of nuclear capacity throughout 

the century under four different scenarios: once-through LWR with spent fuel separation 

only, single mixed-oxide (MOX) recycle, and single and double tier transmutation systems. 

The single tier system involves recycling into MOX fuel for advanced LWRs, whereas the 

double tier system includes an initial MOX fuel pass, followed by continuous transuranic 

recycle in FRs. Scenarios are further enumerated through a range of reprocessing capacities 

and inclusion of a modest-growth scenario (1.5 percent), and are modeled using DYMOND 

(DOE, 2002) and DANESS (Van Den Durpel et al., 2003), and verified by NFCSIM 

(Schneider et al., 2005). Impacts on repository performance for each scenario are examined 

through assessment of the waste heat load. Similarly, the Dynamic Systems Analysis 

Report for Nuclear Fuel Recycle (DSARR) (Dixon et al., 2008), examines systems costs, 

uranium resource impacts, and waste management impacts involved in transitioning fuel 

cycles from the current once-through. Scenarios examined include once-through; single 

tier recycling in FRs only; and two tier recycling, first in LWRs, and then in FRs, using 

VISION (Yacout et al., 2006). Impacts due to variations in reprocessing capacity deployed 

and rate of deployment, FR conversion ratio, and demand growth are investigated for each 

scenario. 

(Kim and Edmonds, 2007) utilize ObjECTS-MiniCAM to estimate the value of 

nuclear energy for future CO2 mitigation. ObjECTS-MiniCAM4 is a long-term, global 

integrated assessment model of energy-economic interactions and GHG emissions (Kim et 

                                                 
4 The Object-oriented Energy, Climate, and Technology Systems (ObjECTS) framework is key to allowing 

expansion of nuclear fuel cycle simulation capabilities in the ObjECTS-MiniCAM model. The ObjECTS 

framework allows for modular integrated assessment modeling, similar to the Cyclus nuclear fuel cycle 

simulator project (Wilson et al., 2012). 
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al., 2006). While the energy-economic interactions operate similarly to MARKAL, 

ObjECTS-MiniCAM is unique in that it not only models the global energy system, but also 

the nuclear fuel cycle. Kim and Edmonds have extended the fuel cycle simulation 

capabilities of ObjECTS-MiniCAM in order to track waste production and composition, 

reprocessing, and subsequent reuse or disposal of UF components. Kim and Edmonds 

evaluate two groups of nuclear power technologies: currently operating LWRs and 

advanced LWRs (ALWRs), both assumed to utilize a once-through fuel cycle, despite 

reprocessing capabilities available in the model. A reference long-term energy demand 

trajectory is constructed, and several emissions constraints (including zero constraint) that 

stabilize the atmospheric CO2 concentration with and without new nuclear deployment are 

applied. Comparison of these cases allows estimation of the value of nuclear energy for 

mitigating CO2 emissions, as well as exploration of the challenges associated with large 

scale deployment of nuclear power in an emissions constrained world.  

The work presented in this thesis offers a new perspective on handling uncertainty 

in analyses regarding the nuclear fuel cycle. This perspective is informed by the field of 

decision theory, namely its applications of decision making under uncertainty and ROA. 

In general, decision making has never been handled in this way in fuel cycle transition 

analysis. While (Pierpoint, 2011) does attempt to confront the challenge of decision making 

under uncertainty, the approach is largely different than that taken here. A methodology is 

presented for selecting hedging strategies for fuel cycle expansion when uncertainties exist 

in fuel cycle parameters. These hedging strategies take a “middle-of-the-road” path until 

either more information may be known, or the uncertainties are resolved. This work is 

intended to lay the foundations for implementing autonomous, dynamic decision making 

within fuel cycle simulators.  
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Chapter 3:  Methodology 

In this chapter, motivation is given for the transition scenario examined in this 

work. First, the scenario is described and cast as a no-data decision problem. The basic 

functionalities and inputs to the VEGAS fuel cycle simulator is described. Appendix A 

provides more detailed documentation of inputs to the VEGAS tool for the transition 

scenario examined here. Finally, a methodology for selecting the optimal transition and 

hedging strategies is presented.  

3.1 IMPERFECT KNOWLEDGE AND THE NUCLEAR FUEL CYCLE 

The transition scenario studied in this work is motivated by the Spent Nuclear Fuel 

Recycling Program Plan report to Congress (DOE, 2006). This report describes the SNF 

Recycle System initially identified by DOE as a pathway to incorporating continuous fuel 

recycling into the U.S. nuclear fuel cycle in order to recover more energy and reduce waste, 

depicted in Fig. 3.1. In the SNF Recycle System, LWR SNF from past and existing LWRs 

is separated into FPs for storage and subsequent disposal, uranium for reuse or storage, and 

TRU elements. TRU elements are then burned in FRs, producing electricity while 

achieving partial TRU destruction. FR spent fuel is subsequently separated into the same 

three streams: U, FPs, and TRU. The separated TRU is then recycled and again burned in 

FRs. This closed fuel cycle is aimed at fissioning the initial TRU inventory in legacy SNF 

while also accepting new TRU from the LWR SNF. More details of the SNF Recycle 

System are provided in (DOE, 2006).  

One key source of uncertainty regarding the proposed fuel cycle in (DOE, 2006) is 

the cost of SNF and HLW disposal in a geologic repository (Dixon et al., 2008). Given this 

uncertainty, the potential benefits of a transition from the current once-through LWR cycle 

to one similar to the SNF Recycle System are unclear. If the cost of disposal proves to be 
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inexpensive, the transition could be delayed or even abandoned at the expense of requiring 

more repository space. Alternatively, if the cost of disposal proves high, it would likely be 

optimal to pursue an aggressive schedule for closing the fuel cycle to ensure that enough 

reprocessing and FR capacity can be installed to minimize the need for repository space.  

 
Fig. 3.1. Schematic of SNF Recycle System. Source: (DOE, 2006) 

The scenario examined in this work is described in the following text. Simulating 

transition strategies between once-through and continuous FR recycle while incorporating 

the uncertainty in SNF and HLW disposal costs gives rise to a no-data decision problem. 

Each stage is defined as the time interval between bifurcation points. The simulation time 

period, from 2015 to 2100, is divided by three bifurcation points, creating four discrete 

stages (Fig. 3.2). A repository is slated to open in the year 2070, whose operating costs 

may take on five different end-states.   

At the beginning of the simulation in year 2015, the current 100 GWe fleet of LWRs 

is operating on the traditional once-through fuel cycle. The demand growth rate for nuclear 

electricity is 2 percent per year. Leading up to year 2030, two events occur which may alter 
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the existing fuel cycle: (1) UF reprocessing technology becomes commercially available, 

and (2) an independent federal authority is appointed for implementing a nuclear waste 

management program. The introduction of an independent federal authority is supported 

by both public opinion (NEI, 2013) and the American Nuclear Society (ANS, 2009). 

Creation of an independent authority is expected to aid in “scientifically sound and 

technically informed decision making in the U.S. nuclear fuel cycle policy,” specifically 

allowing for long-range planning (ANS, 2009). If such an authority were to materialize, it 

may be reasonable that it would advocate a closed fuel cycle to achieve better uranium 

resource and repository space utilization.  

 

 
Fig. 3.2. Evolution of information on SNF and HLW disposal costs. Dashed lines indicate 

cost outcome uncertainty. 
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The uncertainty in the final SNF and HLW disposal costs for a geologic repository 

is depicted in Fig. 3.2. This uncertainty is the greatest at the beginning of the simulation, 

in stages 1 and 2, when all end-states are viewed as possible. Decisions made through the 

end of stage 2 are subject to this uncertainty. At the beginning of stage 3, the uncertainty 

in the final disposal costs is narrowed (shown at the bifurcation point between stages 2 and 

3 in 2050) through information made available, which may come in the form of engineering 

studies, repository construction data, etc. Decisions made during stage 3 utilize this new 

information that acts to filter the possible outcomes for the final disposal costs. For 

example, if this preliminary information indicated that the final disposal cost was higher 

than the original medium expected value, it is assumed that the probability of the low or 

medium-low end-states occurring is zero (dashed lines from the medium-high expected 

cost in Fig. 3.2 only reach the medium, medium-high, and high end-states). At the 2070 

resolution date (beginning of stage 4), the repository opens and final disposal costs are 

fixed until the foreseeable future, represented by solid lines in Fig. 3.2. Then, decisions in 

stage 4 are made with this information, and agents may choose to alter their fuel cycle 

policy accordingly.  

3.2 VEGAS NUCLEAR FUEL CYCLE SIMULATOR 

VEGAS, a dynamic simulation tool for the nuclear economy, was reviewed in 

(Juchau et al., 2010)5. It is encoded in Java, and a MATLAB script is available for use in 

generating output data plots. The alpha version was originally developed as a lightweight, 

fast-executing platform for scoping nuclear fuel cycle scenarios in order to select a few for 

more detailed analysis using a simulator such as NFCSim (Schneider et al., 2005). 

Likewise, the VEGAS code is chosen here as the analysis platform as it provides a physical 

                                                 
5 Contact: eschneider@mail.utexas.edu for questions and comments concerning the VEGAS nuclear fuel cycle 

simulator. 

mailto:eschneider@mail.utexas.edu
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and economic model of the nuclear fuel cycle while offering a reduced runtime over more 

detailed fuel cycle systems tools. A reduced runtime is achieved by foregoing distinctions 

between reactors and fuel cycle facilities of the same general type, tracking material as 

continuously flowing streams rather than discrete batches, consolidating material flows 

into essential components (U, Pu, minor actinide (MA), and FP mass flows), and omitting 

radioactive decay.  

Available to each VEGAS simulation are customizable6 reactor types, as well as a 

legacy stockpile of SNF7. Reactor types are subcategorized by recycling tier: tier 0 reactors 

use virgin feed only, tier 1 reactors operate on a thermal-neutron spectrum and at least some 

feed comes from tier 0 or 1 fuel discharges, and tier 2 reactors operate on a fast-neutron 

spectrum with at least some feed coming from tier 0 or 1 fuel discharges. Five front end (U 

mining and milling, conversion to UF6, enrichment, fuel fabrication, and transportation to 

reactor site) and seven back end (SNF storage, transportation, and disposal; UF 

reprocessing; and HLW vitrification, storage, and disposal) fuel cycle technologies are 

included in each simulation. However, the number and type of front and back end fuel 

cycle technologies is also fully customizable8. The VEGAS simulator deploys generating 

capacity based on a user-defined electricity generation profile using the inputs listed in 

Table 3.1. New reactors are deployed in the VEGAS simulation to handle retirement of old 

                                                 
6A mass flow connecting the input front and back end fuel cycle technologies must be defined for each input 

reactor type.  
7 The legacy stockpile of SNF is set to 0 for the scenarios in this work. A technical review by Oak Ridge 

National Laboratory found that approximately 98 percent of the total current inventory of commercial SNF 

may be disposed without the option for retrievability for reuse or research purposes (Wagner et al., 2013). 

The review is meant to support a comprehensive national fuel cycle strategy, and notes that disposal of the 

legacy stockpile does not presuppose that it has no value. 
8 See 6. 
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reactors and demand changes, according to the input “Try To Build” scenario (i.e. try to 

build 75 percent LWRs and 25 percent FRs starting in year 20509).  

Table 3.1. Electricity generation profile input data 

Item Unit (data type) 

A. Initial reactor fleet data 

Initial Generation Capacity GWe (integer) 

Year Initial Fleet Begins Retiringa yr (integer) 

Year Initial Fleet Finishes Retiringa yr (integer) 

B. Initial generating capacity 

Capacity Datab reactor number (integer), % (float) 

C. Exogenous demand for nuclear energy 

Target Generation Capacityc GWe (integer) 

Growth Rated %/yr (float) 

D. Reactor “Try To Build” scenario 

Try To Builde yr (integer); reactor number (integer), % (float) 
a Initial fleet retires at a constant rate during this interval 
b Sum of percentages for initial capacity data must add to 100; any number of reactor-percentage pairs may be specified 
c Linear growth from previous year is assumed to reach target generating capacity at specified year  
d Demand growth rate applied to this and subsequent years 
e Try to deploy this breakdown of reactor generating capacity; any number of reactor-percentage pairs may be 

specified. Will default to lower-tier facility is feed unavailable. 

The annual U, Pu, and MA requirements for fresh reactor fuel in units of kg (U, Pu, 

or MA) per kWe is derived using Eq. 3.1 and reactor inputs from Table 3.2A. Note, the 

demand for the three different fuel components is determined by applying Eq. 3.1 with the 

corresponding value for x, shown in Table 3.2B. 

 
𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 =

𝑥 ⋅ 𝑐

𝛽 ⋅ (1 − 𝑟) ⋅ 𝜂 ⋅ 103
 Eq. 3.1 

                                                 
9 In this scenario, VEGAS would build 3 LWRs, then a FR (assuming their generating capacities are equal), 

then 3 more LWRs, before another FR. Otherwise, if the demand increased each year by the generating 

capacity of a single reactor, only LWRs would be built. Using this list for reactor orders, VEGAS would build 

a FR in the 4th year.  
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Given the demand for reactor fuel components, the VEGAS code ensures that fuel 

requirements are fulfilled each year using the algorithm depicted in Fig. 3.3 and is 

described in the following text. The highest tiered reactor’s fuel demand is processed first 

according to its reprocessing hierarchy. The reprocessing hierarchy associated with each 

reactor determines the order that UF is reprocessed from other reactors in order to obtain 

fresh fuel for that reactor. For example, if the reprocessing hierarchy for Reactor 1 is “2, 3, 

4”, UF from Reactor 2 is reprocessed first to obtain fuel required by Reactor 1, then Reactor 

3, and then Reactor 4. The amount of U, Pu, and MA from reprocessing is determined by 

a reprocessing efficiency and output fuel recipe (see Table 3.2B). The reprocessing 

efficiency is determined by Eq. 3.2 using a user-input percent of feed loss value, p. If 

enriched U is required for a reactor, the amount of NU and SWU1 required to achieve that 

demand is calculated using a 235U tails assay defined by the user.   

 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1 −
𝑝

100
 Eq. 3.2 

Table 3.2. Selected reactor inputs for VEGAS 

A. Reactor power variables   

 Unit (data type) 

Plant Size (s) MWe (integer) 

Thermal Efficiency (η) 
MW𝑒

MW𝑡
 (float) 

Recirculating Power (r) 
MWe  recycled to plant systems

MWe  produced
 (float) 

Discharge Burnup (β) 
MWd𝑡

kg IHM
 (integer) 

Availability (c) Load factor (float) 

B. Reactor fuel recipe  

 
U 

[kg/kg IHM] 

Pu 

[kg/kg IHM] 

MA 

[kg/kg IHM] 

Input Fractional Composition 𝑥𝑈 𝑥𝑃𝑢 𝑥𝑀𝐴 

Output Fractional Compositiona 𝑦𝑈 𝑦𝑃𝑢 𝑦𝑀𝐴 
a Fission product fraction in output is obtained as yFP = 1 – yU – yPu – yMA  
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Fuel requirements may be limiting in either of two cases: (1) the heavy metal yield 

from reprocessing all UF in a reactor’s hierarchy is insufficient to fulfill the demand, or (2) 

the heavy metal yield from utilizing all reprocessing capacity for that reactor’s tier is 

insufficient to fulfill the demand. If either of these two cases occur, the most recently-built 

reactor of the type lacking fuel is removed from the electricity generation profile and is 

replaced with equivalent generating capacity from a reactor(s) of a lower tier. A prioritized 

list of lower-tier reactors is supplied by the user. The last entry in the list must be a tier 0 

reactor that uses U fuel, of which there is an unrestricted supply. This new electricity 

generation profile is then used to define a new U, Pu, and MA demand profile, and the 

algorithm continues until all reactor fuel demands can be met. 

3.2.1 VEGAS LEVELIZED COST OF ELECTRICITY CALCULATION 

Each VEGAS simulation calculates the annual LCOE in cents per kWh of electricity 

produced.  The LCOE is the price at which electricity must be generated in order to break 

even over the lifetime of the simulation10 and consists of three components: front end fuel 

cycle charges, back end fuel cycle charges, and reactor charges. Default unit costs are 

assigned to each distinct fuel cycle process in VEGAS, though unit costs may also be 

associated with a given reactor technology. For example, FR fuel fabrication may be 

assigned a larger unit cost than LWR fuel fabrication due to difficulty of fuel handling. 

Unit costs are given in dollars per unit of mass throughput, typically  

kg U, IHM, or SWU. An independent unit cost is defined for separated actinide (TRU) 

storage and disposal. Reactor cost inputs are broken into capital costs (dollars) and annual 

                                                 
10 Simulations are carried out through an additional lifetime of the longest operating facility to ensure liability 

costs are accounted for. For example, results from VEGAS simulations in this study are analyzed for the time 

period [2015, 2100], but an actual simulation is carried through to 2160, assuming a reactor operating lifetime 

of 60 years. Otherwise, a FR may be built at the “end” of the time period despite a fuel shortage occurring in 

the future.  
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operations and maintenance costs (dollars per year). In addition, an option has been added 

for calculation of fuel cycle unit costs using a similar method.  

 
Figure 3.3. Reactor fuel fulfillment algorithm. 
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Front-end and back-end mass flows are used to calculate the total fuel cycle cost 

(𝐶𝐹𝐶) by Eq. 3.3: 

 𝐶𝐹𝐶 =  ∑ 𝑀𝑖 ⋅ 𝑈𝐶𝑖 ⋅ 𝑃𝑉𝐹𝑖
𝐼
𝑖=1 , 3.3 

where 𝑖 = 1, 2… I indexes fuel cycle technologies, 𝑀𝑖 is the mass throughput of the 𝑖𝑡ℎ 

technology, 𝑈𝐶𝑖 is the unit cost of the 𝑖𝑡ℎ technology, and 𝑃𝑉𝐹𝑖 is the present value function 

(PVF) of the 𝑖𝑡ℎ technology. The PVF discounts the charge to the year the technology was 

employed through lead and lag times input to the VEGAS simulation. Back-end costs are 

assumed to be covered by a sinking fund from revenues generated while the fuel is in 

reactors producing electricity. However, the risk-free rate of return is set to zero percent11 

to avoid results that are driven by discounting-driven benefits associated with deferring a 

future liability. These back-end costs are not determined until the end of a VEGAS 

simulation when unit costs are applied to mass flows (part of the Fig. 3.3 “Print annual 

reports” process).  

While default unit costs for fuel cycle technologies are typically employed for  

Eq. 3.3, an option for dynamic calculation of fuel cycle technology unit costs from capital 

and operating costs, adapted from the Generation-IV Economic Modeling Working Group 

(EMWG, 2007), has been added. This dynamic unit cost calculation is employed for LWR 

UF reprocessing12; Table 3.3 lists the data and parameters for this calculation. The option 

for dynamic calculation of unit costs may be chosen by specifying four parameters for a 

given fuel cycle technology: (1) the plant size (𝑀𝑐), (2) the annual capital cost repayment 

(𝐴𝐶𝐶), (3) the fixed operations and maintenance (𝐹𝑂𝑀) charge, and (4) the variable 

                                                 
11 See (Arrow et al., 1996) discussion on the prescriptive approach to determining the appropriate discount 

rate for long-range planning. 
12 This feature is added only to tier 0 reprocessing capacity. Tier 2 reprocessing capacity (for FRs) is assumed 

wholly adequate corresponding to builds of co-located reprocessing and fuel fabrication facilities. This 

technology has previously been demonstrated at the Idaho Integral Fast Reactor facility adjacent to EBR-II 

(Shropshire et al., 2009). 
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operations and maintenance (𝑉𝑂𝑀) charge. In addition, a capacity profile for the 

technology in throughput per year for each year in the simulation must be defined. The 

𝐴𝐶𝐶 is calculated using Eq. 3.4: 

 𝐴𝐶𝐶 = (𝑇𝑂𝐶 + 𝐼𝐷𝐶) × 𝐴𝐹, 3.4 

where the interest during construction (𝐼𝐷𝐶) is given in Eq. 3.5,   

 𝐼𝐷𝐶 = ∑ 𝑇𝑂𝐶 × 𝑓𝑖[(1 + 𝑟)𝑇𝑐−𝑖 − 1
𝑇𝑐−1
𝑖=0 ], 3.5 

and the amortization factor (𝐴𝐹) is given in Eq. 3.6,  

 𝐴𝐹 =
𝑟

1−(1+𝑟)−𝑇𝑜
 . 3.6 

Finally, the unit cost is calculated using Eq. 3.7, 

 𝑈𝐶 =
𝐴𝐶𝐶+𝐹𝑂𝑀

𝑀
+ 𝑉𝑂𝑀. 3.7 

According to Eq. 3.7, the unit cost is minimized if the facility is operating at its maximum 

capacity (𝑀𝑐 = 𝑀). Otherwise, the unit cost increases as the facility’s actual throughput 

drops below the facility’s maximum capacity. In this way, a penalty is imposed for capacity 

underutilization, ensuring that reprocessing capacity expansion profiles with excessive idle 

capacity are not falsely identified as cost-effective. As 𝐴𝐶𝐶 and 𝐹𝑂𝑀 are defined for a 

single facility, specifying the maximum throughput of a fuel cycle facility allows for 

correct calculation of unit costs for multiple facility capacities.  

The second component of the LCOE consists of reactor costs (𝐶𝑟𝑒𝑎𝑐𝑡𝑜𝑟) that are 

simply the sum of their respective 𝐴𝐶𝐶 and 𝐹𝑂𝑀 charges, Eq. 3.8: 

 𝐶𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = 𝐴𝐶𝐶 + 𝐹𝑂𝑀. 3.8 
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For reactor costs, VEGAS calculates the 𝐴𝐶𝐶 from user-inputs in Table 3.3 𝑇𝑂𝐶, 𝑇𝑜, 𝑇𝑐, 

and 𝑟. 𝑉𝑂𝑀 costs consist of reactor fuel costs, which are omitted in 𝐶𝑟𝑒𝑎𝑐𝑡𝑜𝑟 as they are 

accounted for in 𝐶𝐹𝐶.  

Given 𝐶𝐹𝐶 and 𝐶𝑟𝑒𝑎𝑐𝑡𝑜𝑟 specified in cents, the annual LCOE is then given by Eq. 

3.9: 

 𝐿𝐶𝑂𝐸 =
𝐶𝐹𝐶+𝐶𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝐸
, 3.9 

where E is the total amount of electricity produced in that year in kWh.  

Table 3.3. Unit cost calculation parameters 

Symbol Unit Definition 

TOC $ Total overnight cost 

FOM $/yr Fixed operations and maintenance cost 

VOM $/kg Variable operations and maintenance cost 

Tc yr Duration (years) of construction 

To yr Duration (years) of operation 

M kg/yr 
Annual production (throughput) of product in kg of basis unit per yr: 

technology-specific basis unit may be U, IHM, SWU, etc. 

Mc kg/yr Maximum production (throughput) of product in kg of basis unit per yr 

fi - 
Fraction of TOC expended in year i of construction (summing fi over 

all years i = 1, 2… Tc equals 1.0) 

r 1/yr Real discount rate 

AF 1/yr (calculated) Capital cost amortization factor 

IDC $ (calculated) Interest during construction 

ACC $/yr (calculated) Amortized annual capital cost 

UC $/kg (calculated) Unit cost of product 

3.3 APPROACH TO THE NO-DATA PROBLEM 

The VEGAS nuclear fuel cycle simulator tool, described in Section 3.2, is used to 

obtain the LCOE for the various fuel cycle transition strategies. Given the scenario 

described in Section 3.1, the objectives are two-fold: to identify optimal strategies under 
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conditions of perfect information and to identify optimal hedging strategies under the limits 

of imperfect information.  

A description of the suite of VEGAS simulations performed for the fuel cycle 

transition analysis performed in this work is given in the first subsection. Then, the 

procedure for identifying strategies under perfect and imperfect information conditions 

from the VEGAS simulations is described.  

3.3.1 DESCRIPTION OF VEGAS SIMULATIONS 

Full documentation of input parameters to the VEGAS simulator used in the 

transition scenario examined here is provided in Appendix A. An overview of the scenario 

is given in Section 3.1.  

Each of the five states of nature that may occur (the five end-states depicted in  

Fig. 3.2) is simulated in VEGAS, creating five families of simulations, 𝑆𝑖 with 𝑖 = 1, 2… 5. 

Table 3.4 gives the cost data for each end-state, along with their associated probabilities. 

The low, medium-low, and medium disposal cost outcomes represent engineering 

estimates and are taken from the low, nominal, and high estimates from the Advanced Fuel 

Cycle Cost Basis report (Shropshire et al., 2009). The medium-high and high disposal cost 

outcomes represent unforeseen issues with building and operating a geologic repository. 

The highest disposal cost outcomes are taken as 3 and 10 times the nominal disposal costs 

given in (Shropshire et al., 2009). The ratio between disposal costs of SNF and vitrified, 

FP-loaded HLW is taken as the median ratio of those presented in (Shropshire et al., 2009). 

The median ratio between disposal costs of HLW to SNF is approximately 8 and is applied 

with costs for SNF as a baseline.  

For each possible end-state, a subset of simulations is performed for each 

reprocessing capacity expansion strategy. The individual strategies arise as follows: at each 

10 year increment beginning in 2030 and ending with the simulation in 2100, a 
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1000 tIHM/yr LWR UF reprocessing facility may be built or not built (see Fig. 3.4). Thus, 

there are 128 possible reprocessing capacity expansion profiles, each of which are 

simulated for each end-state 𝑖. Finally, the entire set of simulations, S, is indexed over the 

5 end-states by 𝑖 and 128 expansion profiles by 𝑗, giving a total of 640 simulations, 𝑆𝑖𝑗 , 

with 𝑖 = 1, 2…5 and 𝑗 = 1, 2…128.  

Table 3.4. SNF and HLW Disposal Costs 

 Disposal Costs  

End-states 
SNF 

($/kg IHM) 

HLW 

($/kg IHM in HLW) 
Probability13 

Low 400 3,200 1
9⁄  

Medium-Low 650 5,200 2
9⁄  

Medium 1,000 8,000 1
3⁄  

Medium-High 1,950 15,600 2
9⁄  

High 6,500 52,000 1
9⁄  

In Fig. 3.4, information is made known at times 2050 and 2070 (the addition of “δ” 

symbolizes that the information made available that year cannot affect the build/no-build 

decision since construction must begin prior to that year).  However, information made 

known in 2050 affects decisions made later in 2060 and 2070. Likewise, information 

learned in 2070 affects decisions made in 2080 and 2090. This may be seen as a ROA 

approach, as agents may adopt a “wait-and-see” strategy until the uncertainty in disposal 

cost outcomes is lessened or resolved. Fig. 3.4 may be supplemented by Fig. 3.2, where 

the chance nodes of Fig. 3.4 (yellow circles) correspond to bifurcation points between 

stages in Fig. 3.2.  

                                                 
13 The probabilities for each disposal cost end-state occur through the filtration of possible outcomes 

depicted in Fig. 3.2. In year 2050, information indicates whether disposal costs are expected to be low, 

median or high, each with a probability of 1 3⁄ . This estimate affects the possible end-states moving forward 

in time. For example, if given a high estimate, end-states 3, 4, and 5 are accessible, each with a probability 

of 1 3⁄ . Applying these probabilities to the branches in Fig. 3. 2 gives the values shown in Table 3.4. 
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Fig. 3.4. Reprocessing capacity expansion strategies 
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3.3.2 TRANSITION STRATEGIES UNDER PERFECT INFORMATION 

 For each of the five states of nature that may occur (corresponding to the five end-

states listed in Table 3.4), three transition strategies corresponding to distinct objective 

functions will be identified as optimal. The three objective functions aim to minimize the: 

(1) average LCOE, (2) maximum LCOE, and (3) energy-integrated LCOE. Let 𝑐𝑘
𝑖,𝑗

 be the 

calculated LCOE for the 𝑖th end-state, the 𝑗th expansion profile and the 𝑘th year, 𝑘 = 1, 

2… 𝑁14. Then, for the five possible final disposal costs, the three optimal transition 

strategies under perfect information are defined as follows: 

 Lowest average LCOE 

𝑗1,𝑖
∗ = argmin

𝑗

1

𝑁
∑ 𝑐𝑘

𝑖,𝑗

𝑁

𝑘=1

 

 Lowest maximum LCOE 

𝑗2,𝑖
∗ = argmin

𝑗
{max

𝑘
𝑐𝑘

𝑖,𝑗
} 

 Lowest integrated LCOE 

𝑗3,𝑖
∗ = argmin

𝑗
 ∑ 𝑐𝑘

𝑖,𝑗

𝑁

𝑘=1

𝐸𝑘 , 

where 𝐸𝑘 is the electricity produced in year 𝑘. The strategy 𝑗 that is found as optimal is 

then denoted 𝑗𝛼,𝑖
∗  for the 𝛼 objective function (𝛼 = 1, 2, 3) and 𝑖th end-state.  

Each objective function is applied to the 𝑆𝑖𝑗 suite of simulations, obtaining 15 𝑗∗ 

perfect information strategies (see Fig. 3.5). These strategies represent those which perform 

the best for each final disposal cost outcome and objective function. 

                                                 
14 The value of N is 86, corresponding to 86 years from 2015 to 2100 in a simulation. 
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3.3.3 HEDGING STRATEGIES UNDER IMPERFECT INFORMATION 

Given the 𝑗𝛼,𝑖
∗  optimal transition strategies found under perfect information, it is 

then possible to identify optimal hedging strategies under imperfect information. The 

regret (𝑟) for following a different strategy other than the perfect information strategy 

represents foregone savings. The regret is calculated differently for each objective 

function; for the lowest average and maximum LCOE objective functions, 𝑟 has units of 

cents per kWh of electricity produced, whereas for the lowest integrated LCOE objective 

function, 𝑟 has units of dollars. The regrets are defined as follows: 

 lowest average LCOE 

𝑟1 =
1

𝑁
(∑ 𝑐𝑘

𝑗,𝑖

𝑁

𝑘=1

− 𝑐𝑘

𝑗1,𝑖
∗

) 

 lowest maximum LCOE 

𝑟2 = max
𝑘

𝑐𝑘
𝑖,𝑗

− max
𝑘

𝑐𝑘

𝑗2,𝑖
∗

 

 lowest integrated LCOE 

𝑟3 = ∑ 𝑐𝑘
𝑖,𝑗

𝑁

𝑘=1

𝐸𝑘 − 𝑐𝑘

𝑗3,𝑖
∗

𝐸𝑘 

Two choice criteria 𝑔𝛽 with β = 1, 2 are used to select the optimal hedging strategies: (1) 

the minimax regret, and (2) the expected regret. The first choice criterion is independent of 

the probability distribution on the cost outcomes, whereas the second criterion is heavily 

dependent on the probability distribution of the cost outcomes. The two choice criteria are 

defined as follows: 
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 Minimax regret 

𝑔1,𝛼
∗ = argmin

𝑗
{max

𝑖
𝑟𝛼} , 

 

 Lowest expected regret 

𝑔2,𝛼
∗ = argmin

𝑗
∑ 𝑃𝑖

𝐼

𝑖=1

𝑟𝛼, 

where the notation 𝑔𝛽,𝛼
∗  indicates that the β choice criterion is applied to the subset of 𝑗𝛼,𝑖

∗  

strategies, 𝑃𝑖 is the probability of the 𝑖th end-state occurring (see Table 3.4), and 𝐼 is the 

total number of end-states, 5. Six hedging strategies will be identified for stage 215 of the 

simulation (Fig. 3.2), corresponding to the three objective functions 𝑗𝛼 and the two choice 

criteria 𝑔𝛽 (see Fig. 3.5). These hedging strategies account for the uncertainty in which 

disposal cost will be realized in 2070, the repository opening date.  

At the beginning of stage 3, more information is made available about the final cost 

of disposal in the repository, which allows for a filtration of the possible outcomes. 

Therefore, eighteen total hedging strategies are found for stage 3, corresponding to the 

three objective functions 𝑗𝛼, the two choice criteria 𝑔𝛽, and the three filtrations. The 

procedure for identifying the hedging strategies in stage 3 is not explicitly defined here. 

Simply put, a new set of 𝑗𝛼,𝑖
∗  perfect information strategies is identified, but with the 

strategies 𝑆𝑗 restricted to those that follow the hedging strategy employed in stages 1 and 2 

until the 2050 date. Then the hedging strategies in stage 3 are identified among the 𝑆𝑗 subset 

of strategies using the new set of 𝑗𝛼,𝑖
∗  perfect information strategies. Following the 

                                                 
15 There are no decisions made in stage 1 as only the once-through LWR fuel cycle may be followed. 

Therefore, stage 1 has no bearing on the hedging strategy identified. 
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resolution date (repository open date), a unique strategy is followed in stage 4 for each 

possible final SNF and HLW disposal cost.  

 
Fig. 3.5. Perfect information and hedging strategies during simulation time frame.  
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Chapter 4:  Results 

This chapter presents results from the reference transition scenario discussed in 

Chapter 3. In addition, two sensitivity studies were performed which focus on varying the 

ratio between HLW and SNF disposal costs and FR capital costs. The methodology 

reviewed in Chapter 3 could be extended to include these, as well as other, uncertainties as 

part of the decision framework, and may be the subject of future work.  

Each scenario is defined by input data for the VEGAS fuel cycle simulator found in 

Appendix A. The data includes electricity generation profiles, reactor power parameters 

and fuel input/output recipes, fuel cycle unit costs, and reactor capital costs. The primary 

data relevant for each scenario is presented along with the corresponding subsection.  

4.1 REFERENCE SCENARIO 

A summary table of the reference transition scenario input parameters is given in 

Table 4.1. A full description of the reference scenario is given in Chapter 3 with VEGAS 

input parameters available in Appendix A. This scenario considers a transition from the 

current once-through LWR fuel cycle to one in which separated TRU from LWR UF is 

continuously recycled in FRs. The VEGAS simulation begins in 2015 with the current  

100 GWe LWR fleet, a nuclear electricity demand growth rate of 2 percent per year, and a 

geologic waste repository slated to open in 2070. The VEGAS simulations are carried out 

through 2160 (an additional lifetime of the longest operating facility) to ensure liability 

costs are accounted for. However, only the 2015 to 2100 period is used for the decision 

analysis.  

At each 10 year increment beginning in 2030 and ending in 2100, a 1,000 tIHM/yr 

LWR UF reprocessing facility may be built or not built; a total of 7 units may be added 

this way. Since VEGAS builds FRs at the maximum rate that the existing reprocessing 
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capacity supports, a simulation is fully specified by its reprocessing capacity expansion 

profile.  

Table 4.1. Summary of reference scenario input parameters. 

Year Item Value Unit  Reactor Type 

A. Simulation Parameters 

2015 Start Year 2015 yr - 

2100 Decision-making End Year 2100 yr - 

2160 Simulation End Year 2160 yr - 

2015 Legacy SNF Stockpile 0.0 tIHM - 

2015 Electricity Demand Growth Rate 2.0 %/yr - 

2070 Repository Open Date 2070 yr - 

B. Reactor Fleet Data 

2015 Initial Generation Capacity 100 GWe - 

2015 Initial Capacity Data 100 % PWR 

2020 Year Initial Fleet Begins Retiring 2020 yr - 

2050 Year Initial Fleet Finishes Retiring 2045 yr - 

- New Reactor Lifetime 60 yr - 

- Reactor Construction Time 4 yr - 

C. Reactor “Try To Build” scenario 

2015 Try To Build 100 % PWR 

2020 Try To Build 100 % APWR 

2030 Try To Build 
50 % APWR 

50 % FR 

The costs of SNF and HLW disposal in the repository are uncertain, with the five 

possible end-state cost outcomes and their respective probabilities given in Table 4.2. For 

the reference scenario, the ratio between HLW and SNF disposal costs is 8, the 

approximate median ratio given in (Shropshire et al., 2009). The VEGAS simulator delays 

calculating the annual LCOE until the end of the simulation period, when it uses mass 

flows to determine if fuel was disposed or reprocessed. Back end costs are ascribed to the 

year that fuel is discharged, and are calculated using a zero percent discount rate. 
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Table 4.2. SNF and HLW Disposal Costs 

End-states 
SNF 

($/kg IHM) 

HLW 

($/kg IHM in HLW) 
Probability 

Low 400 3,200 1
9⁄  

Medium-Low 650 5,200 2
9⁄  

Medium 1,000 8,000 1
3⁄  

Medium-High 1,950 15,600 2
9⁄  

High 6,500 52,000 1
9⁄  

Fig. 4.1 gives the annual LCOE for each reprocessing capacity expansion profile 

and the medium-low, medium-high and high SNF and HLW disposal cost end-states16. The 

two groupings of data points in Fig. 4.1a-c roughly correspond to disposal and reprocessing 

of LWR UF. The solid white line extending from 2015 to 2100 in Fig. 4.1a-c coincides 

with the once-through fuel cycle, in which all UF is directly disposed and no reprocessing 

facilities are ever built. If a single reprocessing unit is built during the simulation, the 

LCOE in 2015 is elevated (Fig. 4.1a-b) or drops (Fig. 4.1c), depending on the relative costs 

of reprocessing and disposal, since the oldest UF is reprocessed first. For cases where up 

to 3 reprocessing units are built, the installed reprocessing capacity is insufficient to sustain 

a complete transition to the synergistic LWR-FR fuel cycle that is achieved when a larger 

number of reprocessing units are built. In these situations, the LCOE will eventually 

approximate that of the direct disposal strategy as fuel discharged past a certain date is no 

longer reprocessed. However, since some UF was reprocessed, the LCOE remains elevated 

(Fig. 4.1a-b) or deflated (Fig. 4.1c) due to existing FR infrastructure.   

                                                 
16 Data for the low and medium end-states do not differ significantly from that of the medium-low end-state, 

and so were excluded from Fig. 4.1. Similarly, the trends seen and discussed from the medium-low end-state 

are also observed in the low and medium end-states, and are excluded from the text.  
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Fig. 4.1. Annual LCOE for all reprocessing capacity expansion profiles and  

(a) medium-low, (b) medium-high and (c) high SNF and HLW disposal cost outcomes. 
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For the medium-low and medium-high disposal cost outcomes (Fig. 4.1a-b), a 

reprocessing-based fuel cycle is costlier than the direct disposal strategy, whereas for the 

high disposal cost outcome, the opposite is true (Fig. 4.1c). Relative to Fig. 4.1a however, 

when the medium-high disposal cost outcome is realized, the relative different between the 

reprocessing-based and direct disposal fuel cycles is lessened. For both the medium-high 

and high outcomes, the LCOEs are elevated due to the higher cost of disposal. 

Early in the simulation the LCOE decreases from 2020 to 2045 due to retirement 

of existing LWRs, which are replaced with advanced LWRs that benefit from increased 

burnup. This trend is most readily seen in the case where no reprocessing capacity is 

installed (bottom white line of Fig. 4.1a-b; top white line of Fig. 4.1c) and all LWR fuel is 

directly disposed. The trend is most dramatic in Fig. 4.1c where the end-state realized is 

the high disposal cost. Here, the higher disposal cost amplifies the benefit from changeover 

to more fuel efficient reactors.  

The number of years’ worth of UF reprocessed is heavily dependent on when UF 

reprocessing facilities are built. In Fig. 4.1, the earliest the shift in the LCOE is seen is 

approximately 2030. Here, a single reprocessing unit is built in 2090, allowing for UF 

generated between 2015 and 2030 to be reprocessed. However, if the unit is built earlier 

than 2090, UF generated in years following 2030 may be reprocessed, due to a longer 

operating time of the facility during the simulation.  

Fig. 4.2 gives the dynamically calculated reprocessing unit cost for each of the 

reprocessing capacity expansion profiles, plotted against the year the fuel was reprocessed. 

For cases where 6 or more reprocessing units are built by 2080, a sharp increase in the 

LCOE is seen (Fig 4.1) due to elevated reprocessing unit costs (Fig. 4.2). Then, if another 

reprocessing unit is built in 2090, its capacity is heavily underutilized as the existing units 
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suffice to reprocess all LWR UF. This underuse causes the reprocessing unit cost to 

increase dramatically.  

 
Fig. 4.2. Dynamically calculated reprocessing unit cost for all reprocessing capacity 

expansions profiles (multi-colored dots) for year fuel reprocessed. Black dashed line 

represents the frequently employed default unit cost. 

For each of the disposal cost outcomes except the high outcome, the perfect 

information strategy is to directly dispose LWR fuel while refraining from building any 

reprocessing facilities. Said differently, if agents knew that the disposal cost finally 

revealed in 2070 would be the low, medium-low, medium or medium-high end-state, they 

would not move forward with a transition to a reprocessing-based fuel cycle. However, the 

perfect information strategies for the high end-state entail a transition to the reprocessing-

based fuel cycle, see Fig. 4.3. The strategies selected by the 3 objective functions each call 

for the construction of 4 1,000 tIHM/yr reprocessing units. These strategies may not seem 

to be an aggressive transition to the reprocessing-based fuel cycle, but, as shown in Fig. 

4.2, building up to 6 or 7 reprocessing units may lead to elevated costs due to idle capacity.  
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Fig. 4.3. Perfect information strategies for high disposal cost outcome. Green squares 

indicate construction of a reprocessing unit; white squares indicate foregone build 

opportunity. 

The LCOE for the three perfect information strategies of Fig. 4.3 is shown in  

Fig. 4.4. The strategy selected by the lowest average LCOE objective function has 

sufficient reprocessing capacity to reprocess LWR UF discharged prior to 209917. A sharp 

increase in the LCOE is seen in years 2099 and 2100 as fuel discharged in these years is 

primarily disposed. Conversely, sufficient reprocessing capacity is installed by the strategy 

identified by the lowest integrated LCOE objective function. While the only difference 

between the two strategies is timing of the second reprocessing unit addition, the slight 

change allows for all fuel to be reprocessed during the decision-making time period when 

the second unit is built earlier. As a matter of fact, both strategies selected through the 

lowest average and lowest integrated LCOE objective functions enjoy a lower LCOE 

through a majority of the decision-making time period. However, due to elevated 

reprocessing unit costs early in the simulation, and insufficient reprocessing capacity near 

the end of the decision-making time period (in the case of the lowest average LCOE 

objective function), neither of these strategies is selected by the lowest maximum LCOE 

objective function.  

                                                 
17 The optima selected through the various objective functions can be heavily influenced by both the 

simulation time period and the decision-making time period. In this case, reprocessing units operating past 

the current simulation time period  (2015 to 2160) may eventually reprocess the fuel discharged in 2100 (the 

end of the decision-making time period).  
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Fig. 4.4. LCOE for perfect information strategies corresponding to high end-state. 

The optimal hedging strategies for each objective function and choice criterion pair 

are shown in Fig. 4.5, along with the regrets accumulated by the hedging strategies selected 

and the end-states realized. The strategies identified using the minimax regret choice 

criterion suggest building more reprocessing capacity than in the case of the expected regret 

choice criterion. This follows as the minimax regret choice criterion is independent of the 

probability distribution on the possible end-states, and instead acts to minimize the regrets 

seen in a worst-case scenario. On the other hand, the expected regret choice criterion is 

heavily dependent on the probability distribution. The hedging strategies identified using 

this choice criterion reflect that the perfect information strategies for 4 out of the 5  

end-states (with a collective 8
9⁄  probability of transpiring) advocate that no transition be 

made. While the average regret across all end-states is lower for the expected regret choice 

criterion, when a nonzero regret is incurred for an end-state, it is typically larger than the 

regret seen using the minimax regret choice criterion. This occurs when the high disposal 

cost outcome is the end-state realized, and reprocessing units must be built quickly in order 

to “catch up”.  
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Fig. 4.5a. Reference scenario optimized transition for minimax regret choice criterion. 

Green squares indicate construction of a reprocessing unit; white squares indicate 

foregone build opportunity. 
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Fig. 4.5b. Reference scenario optimized transition for lowest expected regret choice 

criterion. Green squares indicate construction of a reprocessing unit; white squares 

indicate foregone build opportunity. 
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Only when the lowest average LCOE objective function and minimax choice 

criterion are used is reprocessing capacity added in stage 2 (2030 to 2050). Likewise, 

reprocessing capacity is only added in stage 3 (2060 and 2070 build dates) when the lowest 

integrated LCOE objective function and minimax choice criterion are applied. In both 

cases, the minimax choice criterion is shown to be more conservative than the expected 

regret choice criterion by choosing to build more reprocessing units and earlier in the 

simulation as a hedge against the high disposal cost outcome. However, if the high disposal 

cost does not transpire, the transition is abandoned. If the expected regret choice criterion 

is applied in these cases, agents instead choose to wait for more information in 2070, as 

they are hedging against the expected outcome, as opposed to the worst-case scenario.  

 
Fig. 4.6. Annual LCOE for optimal hedging strategies and high disposal cost end-state. 
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The annual LCOE and FR generating capacity for each of the strategies shown in 

Fig. 4.5 are given in Fig. 4.6 and Fig. 4.7, respectively. Again, the strategies selected using 

the lowest average and integrated LCOE objective functions have a lower LCOE through 

a majority of the decision-making period as compared to the strategy selected using the 

lowest maximum LCOE objective function. In all cases, the strategies selected have 

insufficient reprocessing capacity to reprocess all UF generated in this period. However, 

the strategy selected using the lowest maximum LCOE objective function allows only a 

small number of FRs (Fig. 4.7) to be built, keeping the LCOE lower when the changeover 

to direct disposal occurs. This is reflected in Fig. 4.1c where strategies that build less 

reprocessing capacity and later in the simulation benefit in terms of this objective function.  

 
Fig. 4.7. Annual FR generating capacity (GWe) for optimal transition strategies. 
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4.2 SENSITIVITY STUDY: RATIO BETWEEN HLW AND SNF DISPOSAL COSTS 

A significant factor affecting the benefit of transitioning toward continuous recycle 

in FRs is the ratio between the HLW and SNF disposal costs. HLW contains FPs and trace 

amounts of TRU which is dependent on the efficiency of the recycle process. At 

equilibrium, recycle in FRs may achieve a factor of 10 decrease in the volume of HLW 

(NEA, 2006) and factor of 50 decrease in the long-term decay heat production (Dixon et 

al., 2008), however this may be entirely offset if the cost of disposing HLW on a per-kg 

IHM basis is much higher than the cost of disposing SNF. Engineering estimates of the 

cost of HLW and SNF disposal from (Shropshire et al., 2009) are given in Table 4.3, with 

their calculated ratios. Lower HLW disposal costs may be achieved through higher FP 

loading of the HLW waste form or a higher heat loading of the geologic repository. For 

this sensitivity analysis, a ratio of 3 for the HLW to SNF disposal costs is used for 

illustration purposes. The resulting HLW and SNF disposal costs for the five  

end-states are given in Table 4.4; all other factors are kept constant from the reference 

scenario, discussed in Section 4.1. 

Table 4.3. SNF and HLW disposal cost estimates from (Shropshire et al., 2009) 

 Disposal Costs  

 
SNF 

($/kg IHM) 

HLW 

($/kg IHM in HLW) 

Ratio 

(HLW:SNF) 

Low 400 1,625 4.06 

Nominal 650 6,500 10.0 

High 1000 8,125 8.13 

Fig. 4.8 gives the annual LCOE for each reprocessing capacity expansion profile 

and the medium-low and high SNF and HLW disposal cost outcomes; the results from 

these two end-states (Fig. 4.1a and c) from the reference scenario are also given for 

comparison purposes. The overall distribution and trends of the LCOE data do not differ 

dramatically from those seen in the reference scenario, however, the cost of the 
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reprocessing-based fuel cycles is lowered due to cheaper HLW disposal. This is most 

readily seen when contrasting Fig. 4.8b and d. Here, the cost of the reprocessing-based fuel 

cycle is approximately 5 percent lower than in the reference case scenario, and when 

transition to the direct disposal fuel cycle occurs, costs are not elevated as much due to the 

existing FR infrastructure.   

Table 4.4. SNF and HLW Disposal Costs used in Section 4.2 sensitivity analysis 

 Disposal Costs 

End-states 
SNF 

($/kg IHM) 

HLW 

($/kg IHM in HLW) 

Low 400 1,200 

Medium-Low 650 1,950 

Medium 1,000 3,000 

Medium-High 1,950 5,850 

High 6,500 19,500 

Despite a lower HLW to SNF disposal cost ratio than in the reference scenario, the 

perfect information strategies for 3 out of the 5 end-states (low, medium-low, and medium) 

is again to directly dispose LWR fuel and forego building any reprocessing facilities. 

However, for 2 out of the 5 end-states (the medium-high and high end-states), different 

perfect information strategies arise, see Fig. 4.9. Fig. 4.10 gives the annual LCOE for the 

strategies shown in Fig. 4.9. For the medium-high HLW and SNF disposal cost outcome 

and the lowest average and maximum LCOE objective functions, the perfect information 

strategy calls for the construction of 2 1,000 tIHM/yr reprocessing units. However, the 

lowest integrated LCOE objective function still suggests no transition be made, due to a 

marginal increase in the integrated LCOE when even 2 units are built late in the simulation. 

For the high HLW and SNF disposal cost outcome, the perfect information strategies seek 

to build 4 reprocessing units. Again, with the lowest maximum LCOE objective function, 
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for the majority of the simulation a larger annual LCOE is realized, which is reflected in 

the higher average and integrated LCOE. 

 
Fig. 4.8. Annual LCOE for all reprocessing capacity expansion profiles and (a) medium-

low and (b) high end-states. Reference scenario (c) medium-low and (d) high end-states 

shown for comparison. 

The optimal hedging strategies for each objective function and choice criterion pair 

are shown in Fig. 4.11, along with the regrets accrued by the hedging strategies selected 

and the end-states realized. The strategies identified using the minimax regret choice 

criterion call for the construction of a single (lowest average and integrated LCOE 

objective functions) or two (lowest maximum LCOE objective function) before the 

revelation of addition cost information in 2050. However, if the information in 2050 

suggests a medium-low or medium expected disposal cost, the transition to the 
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reprocessing-based fuel cycle is abandoned until the 2070 resolution date. Then, if the 

medium-high disposal cost outcome is realized, the transition may be continued (if the 

lowest average or integrated LCOE objective function is applied).  

 
Fig. 4.9. Perfect information strategies for medium-high and high disposal cost outcomes. 

Green squares indicate construction of a reprocessing unit; white squares indicate 

foregone build opportunity. 

 
Fig. 4.10. LCOE for perfect information strategies corresponding to medium-high and 

high end-states. 
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Strategies identified using the expected regret choice criterion delay building any 

reprocessing units until more information is available in 2050. Here the collective 2
3⁄  

probability of the low, medium-low and medium end-states occurring influences the 

decision to delay building any reprocessing facilities before more information is available. 

Generally, a similar number of total units built is the same between the two choice criteria. 

However, there are two major exceptions. First, for the low, medium-low and medium end-

states, no units are built when the expected regret choice criterion is applied, whereas for 

the minimax regret choice criterion 1-2 units are built early in the simulation as a hedge 

against the medium-high and high end-states. Second, when the expected regret choice 

criterion is applied with the lowest maximum choice criterion, the transition to the 

reprocessing-based fuel cycle is delayed until 2080 when two units are built (medium-high 

end-state) or until 2090 when a single unit is built (high end-state), whereas when the 

minimax regret choice criterion is applied, the transition begins in 2050. Notice that post-

2070, the strategies presented are no longer hedging strategies, but simply perfect 

information strategies since the SNF and HLW disposal costs are made known in 2070. 

Choosing to delay the transition until 2090, as opposed to building 2 reprocessing units in 

2080 and 2090, increases the regrets incurred by approximately 30 percent. However, due 

to the chosen objective function, agents choose to delay building until 2090. In this 

situation, the lowest maximum LCOE objective function may be overly sensitive to 

aberrations in the annual LCOE.  

This sensitivity study indicates that a lower HLW to SNF disposal cost ratio 

(relative to the reference scenario) is required to begin a transition towards continuous 

recycle in FRs in stage 2 (between 2030 and 2050). Following 2070, the transition may be 

abandoned if the low, medium-low, or medium end-state is realized, or accelerated if the 

medium-high or high end-state is realized. 
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Fig. 4.11a. Section 4.2 scenario optimized transition for minimax regret choice criterion. 

Green squares indicate construction of a reprocessing unit; white squares indicate 

foregone build opportunity. 
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Fig. 4.11b. Reference scenario optimized transition for lowest expected regret choice 

criterion. Green squares indicate construction of a reprocessing unit; white squares 

indicate foregone build opportunity. 
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4.3 SENSITIVITY STUDY: FAST REACTOR CAPITAL COST 

Reactor capital costs account for a significant portion of the LCOE in the nuclear 

fuel cycle. In the reference scenario, when the direct disposal strategy is employed with a 

medium-low SNF disposal cost, reactor capital costs account for nearly 80 percent of the 

LCOE. As such, the relative difference in reactor capital costs between competing reactor 

types heavily influence which technology is selected. Engineering estimates of the 

overnight capital cost of LWRs and FRs from (Shropshire et al., 2009) are given in Table 

4.5. This sensitivity analysis employs the low FR capital cost of 3,000 $/kWe; all other 

factors are kept constant from the reference scenario, discussed in Section 4.1. Nominal 

values for both LWRs and FRs were used in the reference scenario.  

Table 4.5. LWR and FR overnight capital cost estimates from (Shropshire et al., 2009) 

 
LWR Overnight Capital Cost 

($/kWe) 

FR Overnight Capital Cost 

($/kWe) 

Low 2,300 3,000 

Nominal 3,500 4,200 

High 5,000 7,000 

 

Fig. 4.12a-c gives the annual LCOE for each reprocessing capacity expansion 

profile and the medium-low, medium-high and high SNF and HLW disposal cost 

outcomes; Fig. 4.12d-f repeat the results from these three end-states (Fig. 4.1a-c) from the 

reference scenario for comparison purposes. A clear difference is seen in the trends of Fig. 

4.12a-c and Fig. 4.12d-f. Here, the baseline costs for both the reprocessing-based and direct 

disposal fuel cycles are the same across any given end-state. However, in Fig. 4.11a-c the 

LCOE decreases later in the simulation once FRs are built, since FR capital costs are lower 

than LWR capital costs. Again, the construction of 6 or 7 reprocessing units may lead to 

elevated costs due to underutilized capacity, but to a lesser degree than in the reference 

scenario. 
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Fig. 4.11. Annual LCOE for all reprocessing capacity expansion profiles and (a) medium-

low, (b) medium-high and (c) high end-states. Reference scenario (d) medium-low, (e) 

medium-high and (f) high end-states shown for comparison 

Fig. 4.13 gives the perfect information strategies for the medium-high and high  

end-states; the perfect information strategies for the low, medium-low and medium  

end-states are again the direct disposal strategies. Fig. 4.14 gives the annual LCOE for the 

strategies shown in Fig. 4.13. For the medium-high end-state, the perfect information 

strategy either calls for an aggressive transition (lowest average and integrated LCOE 
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objective functions, with 6 1,000 tIHM/yr LWR UF reprocessing facilities built) or no 

transition at all (lowest maximum LCOE objective function). In the case when the lowest 

maximum LCOE objective function is applied, the added cost of reprocessing early in the 

simulation ensures that the transition never be selected (see Fig. 4.14). This results from 

assessing costs at the year fuel is in reactors producing electricity; reprocessing costs are 

ascribed to UF generated from earlier operating LWRs, before any benefit from 

transitioning to cheaper FRs may be seen. For the high end-state and the lowest average 

and integrated LCOE objective functions, the same transition strategy is recommended as 

in the case of the medium-high end-state. While the lowest maximum LCOE objective 

function suggests 4 reprocessing units be built, this strategy actually has the same 

maximum LCOE as the strategy identified by the lowest average and integrated LCOE 

objective functions. The algorithm used to find the maximum LCOE then finds the next 

maximum (see Fig. 4.14), resulting in the strategy shown in Fig. 4.13.  

 
Fig. 4.13. Perfect information strategies for medium-high and high disposal cost 

outcomes. Green squares indicate construction of a reprocessing unit; white squares 

indicate foregone build opportunity. 
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Fig. 4.14. LCOE for perfect information strategies corresponding to medium-high and 

high end-states. 

The optimal hedging strategies for each objective function and choice criterion pair 

are shown in Fig. 4.15, along with the regrets accumulated by the hedging strategies 

selected and the end-states realized. Regardless of which choice criterion is applied, when 

the lowest integrated LCOE objective function is applied, 6 reprocessing units are built. 

Here, the regrets seen when no transition is started early in the simulation and either the 

medium-high or high end-state is realized dominate. Then, since FRs are sufficiently less 

expensive compared to LWRs, more reprocessing units are built later in the simulation to 

support more FR builds. The same situation happens when the lowest average LCOE 

objective function is applied, but only with the minimax regret choice criterion. 

Significantly fewer reprocessing units are built when the expected regret choice criterion 

is used with this objective function, since the 2
3⁄  probability of the low, medium-low and 

medium end-states dominates.  
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For cases where the lowest maximum LCOE objective function is applied, 

regardless of the choice criterion selected, the transition is delayed until after the 2070 

resolution date, and only began if the high end-state is realized. In terms of the lowest 

maximum LCOE objective function, agents benefit greatly by employing a wait-and-see 

strategy. Generally, the added costs of reprocessing are sufficient to ensure that strategies 

where the transition is started early are not selected (see Fig. 4.11a-b). However, if the high 

end-state is realized in 2070, agents may build reprocessing units in 2080 and 2090 and 

still benefit from moving towards the reprocessing-based fuel cycle. This results since costs 

are assessed the year that fuel is discharged. Fuel discharged in 2015 may be reprocessed 

later in 2080 when a reprocessing unit is built, and benefit from the cheaper disposal cost 

if the high end-state is realized (Fig. 4.11c). 

This sensitivity study indicates that if FR capital costs are sufficiently low, it is 

advantageous to begin an aggressive transition to the reprocessing-based fuel cycle as soon 

as possible regardless of the cost of disposal. Aside from results seen when the lowest 

maximum LCOE objective function is applied, agents do not truly hedge unless the lowest 

average LCOE objective function and lowest expected regret choice criterion are applied. 

For more expensive FR capital costs than those assumed in this sensitivity study, the 

strategy is consistently to wait as long as possible before starting to build reprocessing 

capacity.  
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Fig. 4.13a. Section 4.2 scenario optimized transition for minimax regret choice criterion. 

Green squares indicate construction of a reprocessing unit; white squares indicate 

foregone build opportunity. 
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Fig. 4.13b. Reference scenario optimized transition for lowest expected regret choice 

criterion. Green squares indicate construction of a reprocessing unit; white squares 

indicate foregone build opportunity. 
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Chapter 5:  Conclusion 

The work presented in this thesis has demonstrated a new methodology for handling 

uncertainty in fuel cycle transition analyses. A case study involving transition from the 

current once-through LWR fuel cycle to one relying on continuous recycle in FRs was 

presented. The transition is subject to uncertainty in the cost of SNF and HLW disposal in 

a geologic repository, set to open some years into the future. This transition scenario was 

cast as a no-data decision problem, where it is impossible to gain information about the 

state of the uncertain parameters that will ultimately prevail. In general, for this scenario 

and two sensitivity analyses involving varying the ratio between HLW and SNF disposal 

costs and FR capital costs, the transition suggested using the decision analytic framework 

is only a partial closing of the fuel cycle prior to the repository open date, when 

uncertainties are resolved. After information is made available, agents may choose to alter 

their strategy and continue or abandon the transition.  

The effect of objective functions (for selection of perfect information strategies) 

and choice criterion (for selection of hedging strategies) on the optimal strategies chosen 

was also examined. Generally, the lowest average and integrated LCOE objective functions 

perform similarly. However, the lowest maximum LCOE objective function appears overly 

sensitive to aberrations in the annual LCOE that arise due to idle capacity. This sensitivity 

leads to selection of strategies that perform poorly over a majority of the simulation as 

compared with the lowest average or integrated LCOE, except for a single year (or two) in 

the simulation. Because of this sensitivity, use of the lowest maximum LCOE objective 

function is not recommended for this application, but may sometimes be desirable when a 

risk-averse agent seeks to avoid a worst-case outcome despite its likelihood. The minimax 

regret choice criterion is shown to be the more conservative choice criterion over the lowest 
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expected regret choice criterion, as it is independent of the probability distribution on the 

outcomes. The minimax regret choice criterion instead acts to hedge against the worst-case 

outcome, instead of the expected outcome. 

Some limitations of the work presented here are discussed below: 

 The work presented in this thesis assumes perfect predictions (North, 1968). In 

essence, the results found using the VEGAS fuel cycle simulator are only as good as 

the simulator itself. However, no fuel cycle simulator or energy-economic model is 

fully capable of encompassing all factors involved in technological change, 

especially the effects of policy and technological spill-overs (Weyant and Olavson, 

1999).  

 While the methodology presented allows for explicit handling of imperfect 

information, it still places burden on the modeler to predict which states of nature 

may prevail. The results are then heavily reliant on realistic depictions of the future. 

Conclusions drawn from this analysis only include hedging against the outcomes 

which the modelers see as reasonably plausible. However, use of the minimax 

regret choice criterion may act to allay this burden as it only requires identification 

of a worst-case outcome.  

 The method for applying the decision-analysis in this thesis may prove 

prohibitively expensive if the number of options considered is increased 

significantly. Given the “brute force” approach taken in this thesis, where each 

option is directly enumerated using a systems model of the nuclear fuel cycle, the 

number of computations required scales by 𝑛𝑚, where 𝑛 is the number of end-states 

for an uncertain parameter and 𝑚 is the number of parameters. Alternatively, 

stochastic optimization may introduce avenues for decreasing the number of 

computations required. Specifically, randomized search methods may be used to 
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quickly search the parameter space. The stochastic optimization methodology may 

be implemented in future work as a look-ahead tool with a light-weight model of 

the nuclear fuel cycle (similar to the VEGAS tool) for further analysis by a more 

sophisticated fuel cycle simulator. Regardless, the number of metrics considered 

(different objective functions and choice criteria) have no bearing on the number of 

computations required since these are determined following completion of said 

computations.  

 The results presented represent decisions made if a single agent were acting with a 

long-term planning horizon, similar to a government entity. However, many agents 

act with a more short-sighted planning horizon. The issue of limited foresight may 

be the subject of future work. Here, simulations are optimized within the visible 

planning horizon of say 10 years from the beginning of the simulation. Then, the 

state of the system at the end of the planning horizon is saved, and used to initialize 

the optimization problem for the next 10 years. This process is repeated until the 

end of the simulation. 
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APPENDIX A: VEGAS SIMULATION INPUTS 

The primary simulation inputs for the VEGAS simulations described in Section 3 are 

documented here.  

Table A.1 gives initial reactor fleet data and the electricity demand profile for the 

simulation time period. Table A.2 lists reactor power parameters for each reactor appearing 

in the reference VEGAS simulation, as well as a reactor fuel recipe. Reference reactor 

overnight capital costs are given in Table A.3 with their corresponding table look-ups in 

(Shropshire et al., 2009).  

Table A.1. Electricity generation profile. 

Year Item Value Unit  Reactor Type 

A. Initial reactor fleet data 

2015 Initial Generation Capacity 100 GWe - 

2020 Year Initial Fleet Begins Retiring 2015 yr - 

2050 Year Initial Fleet Finishes Retiring 2045 yr - 

B. Initial generating capacity 

2015 Capacity Data 100 % PWR 

C. Exogenous demand for nuclear energy 

2015 Growth Rate 2.0 %/yr - 

D. Reactor “Try To Build” scenario 

2015 Try To Build 100 % PWR 

2020 Try To Build 100 % APWR 

2030 Try To Build 
50 % APWR 

50 % FR 
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Table A.2. Reactor input parameters 

A. Reactor power parameters 

 Value (Reactor Type)  

 (PWR)a (APWR)b (FR)a  

Plant Size (s) 900 1450 380 MWe 

Thermal Efficiency (η) 0.34 0.34 0.38 
MW𝑒

MW𝑡
  

Recirculating Power (r) 0.02 0.02 0.02 
MWe  recycled to plant systems

MWe  produced
  

Discharge Burnup (β) 51 60 134 
MWd𝑡

kg IHM
  

Availability (c) 0.90 0.90 0.82 Load factor 

B. Reactor fuel recipesc 

 Value (Reactor Type)  

 (PWR) (APWR) (FR)  

𝑥𝑈  1 1 0.6661  

𝑥𝑃𝑢  0 0 0.29571  

𝑥𝑀𝐴  0 0 0.03819  

𝑦𝑈  0.93439 0.92446 0.58709  

𝑦𝑃𝑢  0.01198 0.01242 0.23899  

𝑦𝑀𝐴  0.00100 0.00129 0.03144  
a From Appendix C in (Dixon et al., 2008).  
b From (NEA, 2006).  
c Fuel recipe from VISION input files; private correspondence J. Jacobson, Idaho National Laboratory. FR 

fuel recipe taken at equilibrium. 

 

Table A.3. Reactor overnight cost data 

Reactor Value Unit Source 

LWR/ALWR 3500 $/kWe Table R1-6 

FR 4200 $/kWe Table R2-3 
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All unit cost data is provided in Table A.4 and is obtained from (Shropshire et al., 

2009) unless otherwise noted. Source in Table A.4 indicates the table look-up for 

(Shropshire et al., 2009). 

Table A.4. Unit cost data 

Technology Value Unit Source 

Uranium Mining & Milling 75 $/kg U as U3O8 Table A1-22 

Conversion to UF6 10 $/kg U as U3O8 Table B-2 

Enrichment 110 $/SWU Table C1-5 

Fuel Fabrication 250 $/kg IHM Table D1-1-3 (for PWR) 

Transportation to Reactor 34 $/kg IHM Table O2-8 

SNF Storage 300 $/kg IHM Table E1-4 

SNF Transportation 92 $/kg IHM Table O1-7 

Reprocessinga 1850 $/kg IHM Table F1-4 (UREX +1a) 

SNF Disposal 650 $/kg IHM Table L-7 

HLW Disposal 6500 $/kg IHM in HLW Table L-8 

Separated Actinide Storage 440 $/kg/yr Table E3-7 

Separated Actinide Vitrification 

& Disposal 
5000 $/kg FP Table G-1 

a Includes HLW storage and vitrification 

Table F2/D2-7 of (Shropshire et al., 2009) gives a reference unit cost of $6,000/kg 

IHM for integral electrochemical processing of FR metal fuel, including FR fuel 

fabrication. Little cost data is available in which the two processes are separated. Unit costs 

for the two processes is obtained by applying a 2:3 ratio between fuel fabrication and 

reprocessing, obtained from (Platt, 2007), summarized in Table F2/D2-4 of (Shropshire et 

al., 2009). Table A.5 gives the resulting costs for FR fuel fabrication and UF reprocessing. 

Table A.5. Supplemental FR cost data 

Technology Value Unit 

Fuel Fabrication 2400 $/kg IHM 

Reprocessing 3600 $/kg IHM 
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