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Underwater acoustic pressure transducers measure pressure fluctuations, a

scalar parameter of the acoustic field. Acoustic vector sensors contain an omni-

directional pressure transducer (omni) and also bi- or tri-axial sensing elements

that respond to either the particle velocity or pressure gradient of the acoustic field;

which are vector quantities. The amplitude of the signal output of each directional

channel of a vector sensor is proportional to the orientation relative to the direction

of acoustic pressure propagation. The ratio of the signal amplitudes between two

directional channels and the cross-spectra between the vector sensor omni and

directional channels enable one to estimate the bearing to the source from a single

point measurement. In order to accurately estimate the bearing across the usable

frequency band of the vector sensor, the complex sensitivities of the omni and

directional channels must be known. Since there is no standard directional reference

transducer for a comparative calibration, the calibration must be performed in

an acoustic field with a known relationship between the acoustic pressure and

the acoustic particle velocity. Free-field calibrations are advantageous because

this relationship is known for both planar and spherical wave fronts. However,
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reflections from waveguide boundaries present a practical limitation for free-field

calibrations, especially at low frequencies. An alternative approach is to perform

calibration measurements in a standing-wave field, where the relationship between

pressure and particle velocity is also known. The calibration facility described

in this thesis is composed of a laboratory-based, vertically-oriented, water-filled,

elastic-walled waveguide with a piston velocity source at the bottom end and a

pressure release boundary condition at the air/water interface at the top end. Some

of the challenges of calibrating vector sensors in such an apparatus are discussed,

including designing the waveguide to mitigate dispersion, mechanically isolating the

apparatus from floor vibrations, understanding the impact of waveguide structural

resonances on the acoustic field, and developing the calibration algorithms. Data

from waveguide characterization experiments and calibration measurements are

presented along with engineering drawings and calibration software.
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Chapter 1

Introduction

1.1 Underwater Electroacoustic Receivers

Modern underwater electroacoustic receivers are ubiquitous and utilize

various transduction methods to convert acoustic pressure into electrical signals.

Pressure transducers are one of the most common types of underwater electroacous-

tic receivers. Piezoelectric materials are typically utilized to transduct acoustical

waves into electrical signals where the amplitude of these signals is proportional to

the acoustic pressure field to which the sensor is subjected [1]. Pressure tranducers

are designed to measure the scalar pressure field, and therefore a single pressure

transducer cannot reveal the direction to the source. However, source direction

can be discerned by using signal processing techniques such as beamforming on the

signals generated by multiple pressure transducers combined into a linear or planar

array [2]. Linear arrays enable one to determine the bearing to a source but with

ambiguity between which side of the array the signal is coming from in addition

to depression and elevation angle ambiguities [3]. Moreover, planar arrays can

require significant signal processing to find the direction to a source [4]. Another

type of electroacoustic receiver is known as a vector sensor whose electrical signal

amplitude is dependent on the relative orientation between its directional response

axis and the acoustic source. This type of sensor allows directional information to

be determined at a single point in space [5].
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Acoustic vector sensors are often comprised of two or three spatially co-

located, orthogonally-oriented, identical (ideally) velocity hydrophones where each

hydrophone responds to either pressure gradient or directly to particle velocity,

both of which are vector quantities, in one Cartesian component of the acoustic

intensity field. Additionally, a single pressure hydrophone is typically co-located

with the directional channels [6]. Directional channel transduction methods include

inertial magnets, piezoelectric unimorphs, and accelerometers [7, 8]. The omni

provides a phase reference for each directional channel where the user computes the

cross-spectra between the directional channels and the omni channel in order to

determine the bearing to a source [9]. The directional channels can be beamformed

in order to achieve processing gain while multiple vector sensors can be combined

on an array in order to achieve additional processing gain. Common applications

of underwater acoustic vector sensors are anti-submarine warfare, harbor security,

marine mammal research, and other underwater tracking applications [10–12].

1.2 Calibration of Underwater Electroacoustic Receivers

In order to quantify how the sensor’s electrical output signal correlates with

the acoustic pressure input, an electroacoustic receiver must be calibrated. This

correlation is called a sensitivity function and the units are typically stated in

V/µPa for pressure hydrophones and either V/µPa or V/m/s for vector sensors.

Two calibrations are typically performed for acoustic receivers: on-axis receive

voltage sensitivity (RVS), or simply receive sensitivity, and directivity measure-

ments [13]. The receive sensitivity calibration is a measure of the device under

test’s (DUT) complex voltage response to the acoustic pressure field as a function

of frequency where the DUT, source, and any reference sensor is held stationary
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Figure 1.1: Illustration of the receive voltage sensitivity (RVS) of a Teledyne
RESON TC4013 hydrophone [14].

and at a known position. The relative orientation between the DUT and the source

will typically be such that the maximum signal level will be achieved from both

the DUT and the source. An example of a receive sensitivity calibration provided

by Teledyne RESON for a TC4013 hydrophone can be seen in Fig. 1.1. Receive

sensitivity calibrations are generally produced in a field that is free of reflecting

bodies and in the acoustic far-field of the source.

Directivity measurements are made in order to quantify the angular depen-

dence of the DUT to the acoustic field. Depending on the intended use, one may

desire the receiver to be highly directional or omnidirectional. In the case of vector

sensors, one desires the sensitivity of the directional channels to be dependent on

arrival angle in order to determine the bearing to the source. Directivity patterns
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Figure 1.2: Illustration of a directivity pattern of a typical USRL pressure-gradient
vector sensor at 4 kHz from [13].

are typically presented at a single frequency where the RVS as a function of angle

is normalized by the on-axis receive sensitivity at that frequency. Hence for a plot

stated in decibels, the off-axis response will be some “dB down” from the on-axis

sensitivity [13]. Fig. 1.2 shows a directivity pattern for a typical Underwater Sound

Reference Laboratory (USRL) pressure-gradient vector sensor at 4 kHz. From

the figure, it is clear that the sensitivity of this sensor is highly directional at

this frequency where the off-axis response is approximately 24 dB down from the

on-axis response.

Acoustic receivers can be calibrated using a variety of techniques including

comparison, reciprocity, two-projector null, and impedance methods [13]. For the

sake of brevity and relevance to the vector sensor calibrations, only comparison

4



calibration techniques will be detailed in this thesis.

A common comparison calibration method is called the substitution method.

This calibration technique is performed by first placing a calibrated transducer

into a low-noise environment, subjecting it to acoustic pressure, and recording the

open-circuit voltage response. Next, the calibrated transducer is replaced by the

DUT, the DUT is subjected to the same acoustic pressure as for the calibrated

transducer, and the recorded open-circuit voltage response is compared to the

calibrated transducer. This method produces accurate results as long as the

acoustic pressure field can be controlled and the transducers can be positioned

precisely in order to minimize differences between measurements. A variation of

the comparison method is to simultaneously subject both the standard transducer

and DUT to the acoustic pressure field and record the transfer function between

the two transducers. One advantage of this method includes the ability to ensure

accurate positioning of the acoustic centers of the two transducers next to each

other. Additionally, both transducers will be subjected to the same transient

fluctuations in the acoustic pressure field that can introduce errors when using

the true substitution method. On the other hand, this method can introduce

errors when the presence of one transducer affects the pressure field that the

other transducer is subjected to and vice-versa, or when the distance between the

acoustic centers of the two transducers is no longer small compared to an acoustic

wavelength. The comparison method is typically used to calibrate acoustic vector

sensors to a reference pressure transducer and will be the case for all calibrations

presented in this thesis.

The process of calibrating an acoustic vector sensor begins with performing

5



a comparison calibration between its omni hydrophone and an omnidirectional

reference transducer. The subsequent directional channel calibrations are then

determined by making a comparison calibration between each directional channel

and the omni channel of the vector sensor [15]. This makes the use of simultaneous

comparison calibration methods particularly useful since both the reference, omni,

and directional channels will inherently be subjected to the same acoustic pressure

field. Free-field vector sensor calibrations often require a very low noise field that

is also free of reflecting surfaces. This requirement is difficult to achieve in practice,

especially at low frequencies where the wavelengths can be on the order of tens of

meters.

An alternative to a free-field, progressive-wave calibration is one performed

in a standing-wave pressure field. A standing-wave field is created when two

progressive waves at the same frequency and amplitude propagate in antiparallel

directions. The two progressive waves interfere with each other constructively

and destructively as a function of frequency and position along the propagation

direction. Standing-wave fields can be used for vector sensor calibrations since

they are easily created in a waveguide where the boundary conditions are well

understood, the apparatus can be housed in a laboratory where the environment

can be closely controlled, and the waveguide can be isolated from spurious noise

sources.

1.3 Thesis Objectives

As a research component for this thesis, a vertically-oriented, water-filled,

steel waveguide was designed and constructed. The waveguide is positioned within
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a support frame and the system resides in a climate-controlled laboratory. The

waveguide is decoupled from the floor by the use of air springs and is isolated from

the frame by compliant straps. The waveguide is terminated at the lower end with

a piston velocity source and on the upper end by a pressure release surface created

by the air/water interface. The reference hydrophone and DUT are positioned by a

computer-controlled linear actuator and all transducers are isolated from the frame

and linear actuator motion by a mass-spring-damper system. Calibration data is

collected and processed by a dynamic signal analyzer and is then downloaded and

recorded on a personal computer (PC) where it is post-processed using MATLAB

[16].

The organization of this thesis follows chronologically with the development

of the calibration apparatus. It begins in Ch. 2 with a discussion of standing waves

and waveguide theory along with the methodology used to design the calibration

system, including theory used to predict phase velocity in an elastic waveguide.

Chapter 3 describes the measurements conducted in order to characterize the

apparatus. Measurements include determination of appropriate source signal types,

phase velocity measurements, acoustic pressure measurements and computation

of pressure gradients, planar acoustic pressure measurements taken in order to

determine the degree of planarity of the wavefront, vibration isolation testing,

two-dimensional structural mode measurements of the piston, and structural

mode measurements used to visualize the three-dimensional modes of the waveg-

uide. Chapter 4 describes the measurement procedures for calibrating pressure

hydrophones and vector sensors, the post-processing algorithm used to relate the

raw standing-wave measurement data to plane wave results, and validation of cali-

brations performed in the waveguide by comparing them to calibrations performed

7



in a free-field. Chapter 5 summarizes the research and provides a conclusion to

this thesis and suggests future development. Finally, the appendices include design

computations, instructions on how to perform comparison calibrations for pressure

hydrophones and vector sensors in the apparatus, the post-processing algorithm

used to correct the standing-wave field calibrations to free-field calibrations and

generation of plots, and engineering drawings to construct an identical system.
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Chapter 2

Theory and Design of Apparatus

The design of a standing-wave calibration apparatus required the knowl-

edge of the physics of standing-wave fields, general waveguide theory and elastic

waveguide theory, and equivalent circuit modeling of mechanical systems. Addi-

tionally, the complicated nature of the sound-structure interaction between the

waveguide walls and the acoustic pressure field within the waveguide required finite

element analysis (FEA) to predict three-dimensional modes of the waveguide. This

chapter is divided into two main sections where Sec. 2.1 contains a discussion of

standing-wave theory and rigid- and elastic-walled waveguide theory. Section 2.2

describes how the theory delineated in Sec. 2.1 guided the waveguide design and

details the design of the subassemblies of the calibration apparatus.

2.1 Discussion of Theory

This section describes the theory used to develop the standing-wave appa-

ratus. It begins in Sec. 2.1.1 with a derivation of the expressions for the acoustic

pressure of a standing-wave field with a velocity boundary condition at one end and

a pressure release boundary condition at the opposite end. Section 2.1.2 introduces

waveguide theory for both rigid- and elastic-walled, cylindrical waveguides.
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2.1.1 Standing-Wave Theory

Standing plane waves are created by the superposition of two antiparallel

progressive plane waves. Such a wave field is created in the presence of reflecting

boundaries and the details of the pressure fields are prescribed by the boundary

conditions. For the purpose of this thesis, consider a pressure field in a rigid-walled

pipe where one end is prescribed by a velocity boundary condition and the other

end is a pressure release boundary. Such a system can be conceptualized by placing

a rigid piston at the end of a vertically-oriented, water-filled pipe of length l in

meters. The following derivation follows closely with that presented in Ch. 4

of Ref. [17] and makes use of the same nomenclature where the time harmonic

velocity boundary condition can be described by

u(0, ω, t) = u0e
jωt, (2.1)

where u0 is the velocity amplitude in meters per second, j =
√
−1, ω is the

frequency in rad/s, and t represents time in units of seconds. The depth below the

air-water interface, d, is described by

d = l − x, (2.2)

where x is the distance from the point of interest to the velocity source in meters.

Next, the pressure and particle velocities are described by

p(x, ω, t) = P (x)ejωt, (2.3)

and

u(x, ω, t) = U(x)ejωt, (2.4)
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respectively, where P and U are typically complex-valued functions. In order to

determine the expressions for P and U , one must first substitute Eq. (2.3) into

the linearized wave equation for pressure,

c20
∂2p

∂x2
− ∂2p

∂t2
= 0, (2.5)

where c0 is the speed of sound of the fluid. The result is the Helmholtz equation

whose solution is

P = Ae−jkx +Bejkx, (2.6)

where A and B are coefficients whose values are determined by the boundary

conditions and k = ω/c0 is the acoustical wave number. From this, the expression

for U can be determined as

U =
A

Z0

e−jkx − B

Z0

ejkx, (2.7)

where

Z0 =
P

U
, (2.8)

and is the characteristic impedance of the fluid inside the pipe. Now, substitute

Eq. (2.2) into Eqs. (2.6) and (2.7) to express P and U relative to the distance

from the air/water interface. Eqs. (2.6) and (2.7) then become

P = Ae−jklejkd +Bejkle−jkd, (2.9)

and

U =
A

Z0

e−jklejkd − B

Z0

ejkle−jkd. (2.10)
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Next, the incident and reflected wave amplitudes can be expressed as P+ = Ae−jkl

and P− = Bejkl, respectively. Substitution of these expressions into Eq. (2.10)

and using Eq. (2.8) can recast Eq. (2.10) as

U = U+ejkd + U−e−jkd, (2.11)

The amplitudes of P+ and P− can be used to determine the reflection coefficient

by

R =
P−

P+
, (2.12)

where an approximate value of R for an air/water interface from the perspective

of the water is −1. Since P− = RP+, Eq. (2.9) can be recast as

P = P+(ejkd +Re−jkd). (2.13)

Substitution of R into Eq. (2.13) and rearranging results in

P/P+ = ejkd − e−jkd, (2.14)

and a similar rearrangement of Eq. (2.11) results in

U/U+ = ejkd + e−jkd. (2.15)

Now, substitute d = l − x back into Eq. (2.15) and use Euler’s formula to express

U in a trigonometric form as

U = 2U+ cos(k(l − x)), (2.16)

and substitute Eq. (2.16) into Eq. (2.4) to get

u(x, ω, t) = 2U+ cos(k(l − x))ejωt. (2.17)

12



Now, implement the boundary condition u(0, ω, t) = u0e
jωt and rearrange to solve

for U+ as

U+ =
u0

2 cos(kl)
, (2.18)

and, finally, substitute the expression for U+ into Eq. (2.17) to recover an expression

for the particle velocity at any point in the field as

u(x, ω, t) = u0
cos(k(l − x))

cos(kl)
ejωt. (2.19)

Euler’s equation states that for an unknown impedance, the relation between

the acoustic pressure and particle velocity of a one-dimensional plane wave is

u(x, ω, t) =
−1

jωρ0

∂p(x, ω, t)

∂x
, (2.20)

where ρ0 is the density of the fluid. Using this expression, it can be found that

the equation for the acoustic pressure at any point in the field is

p(x, ω, t) = jρ0c0u0
sin(k(l − x))

cos(kl)
ejωt. (2.21)

The impedance of the standing-wave field can be determined by substituting

Eqs. (2.19) and (2.21) into Eq. (2.8) and is

Z(x, ω)sw = jρ0c0 tan(k(l − x)). (2.22)

An obvious feature of standing waves is the existence of local maxima and

minima in the acoustic pressure and particle velocity fields due to the constructive

and destructive interference of the antiparallel progressive waves. The resultant

pressure field can be cast as the transfer function between the acoustic pressure

and the source velocity as

Hpvel(x, ω) =
p(x, ω, t)

u(0, ω, t)
= jρ0c0

sin(k(l − x))

cos(kl)
. (2.23)
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Figure 2.1: Transfer function between acoustic pressure and piston velocity of a
standing wave field with velocity and pressure release terminations at a depth of
1.5 m.

Figure 2.1 shows the magnitude of Hpvel(x, ω) at a depth of 1.5 m below the

air/water interface as a function of frequency where both the dynamic range and

the harmonic relation of the peaks and nulls of the acoustic pressure are apparent.

2.1.2 Waveguide Theory

An acoustic standing-wave field can be created in a waveguide, which is

an environment where both progressive and standing-waves can coexist. As an

example, consider a semi-infinite, rigid-walled pipe with a piston velocity source at

one end. If the velocity source excites the system in an orientation other than one

14



that is parallel with the axis of revolution of the waveguide, both progressive and

standing waves can exist in the pipe. Section 2.1.2.1 will introduce the reader to

the physics of semi-infinite, rigid-walled, cylindrical waveguides where the author

closely follows the content and uses the same nomenclature as found in Ch. 6-D

and Ch. 12 of Ref. [17]. Section 2.1.2.2 provides a qualitative discussion of the

effects of an elastic-walled, cylindrical waveguide on the acoustic field.

2.1.2.1 Physics of a Rigid-Walled, Cylindrical Waveguide

For a fluid-filled, rigid-walled, cylindrical waveguide the general expression

for acoustic pressure in the fluid within the waveguide is

p(r, θ, z, ω, t) =

{
Jm(krr)

Nm(krr)

}{
cos(mθ)

sin(mθ)

}{
ejβz

e−jβz

}{
ejωt

e−jωt

}
, (2.24)

where Jm(krr) is the Bessel function of the first kind and Nm(krr) is the Neumann

function and are dependent on the radial wave number kr and radial position r.

Further, β is the frequency-dependent wave number inside the waveguide, and z

is the position along the axis of revolution of the waveguide. The trigonometric

functions found in the second bracket describe the angular dependence of a given

mode m which can have an integer value of 0 to ∞. The dispersion relation

describes the frequency dependence of the wave number and is defined as

β2 = (w/c0)
2 − kr2, (2.25)

for a cylindrical waveguide. In order to describe the example system, one simplifies

the general solution found in Eq. (2.24) by eliminating terms as prescribed by

the boundary conditions. This is accomplished by elimination of Nm(krr) due

to the inclusion of the origin, ejβz to describe wave propagation in the positive
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z direction only, and e−jωt to match the source condition. Furthermore, for a

rigid-walled pipe, the boundary condition at the fluid-wall interface of the pipe,

r = a, is u(r)(kra) = 0 and is satisfied by choosing

kr = α′mn/a, (2.26)

where α′mn is the nth zero of J ′m which is tabulated in Table 2.1. The full solution

for the acoustic pressure for the given boundary conditions becomes

p =
∞∑
m=0

∞∑
n=1

Jm

(
α′mnr

a

)
[Amn cos(mθ) +Bmn sin(mθ)]ej(ωt−βmnz), (2.27)

where the terms Amn and Bmn are modal coefficients and are determined by

the source. Substitution of Eq. (2.26) into Eq. (2.25) produces the dispersion

relationship

βmn =
√

(ω/c0)2 − (α′mn/a)2, (2.28)

and the phase velocity is

cphmn =
ω

βmn
. (2.29)

Substitution of Eq. (2.28) into Eq. (2.29) and rearranging results in

cphmn =
c0√

1− (α′mnc0/2πfa)2
, (2.30)

where f is the frequency in Hz. From inspection of Eq. (2.30), it can be seen that

at very high frequencies the phase velocity in the waveguide will approach that

of the intrinsic speed of sound of the fluid inside the waveguide. However, as the

frequency is decreased, the phase velocity increases until it reaches a singularity at

f c
mn =

α′mnc0
2πa

, (2.31)
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Table 2.1: Zeros of Bessel functions: roots α′mn of J ′m(x).

n m = 0 m = 1 m = 2 m = 3 m = 4

1 0 1.841 3.054 4.201 5.318

2 3.832 5.331 6.706 8.015 9.282

3 7.016 8.236 9.969 11.346 12.682

4 10.173 11.706 13.170 14.586 153964

5 13.324 14.864 16.348 17.789 19.196

where f c
mn is the mode-dependent cutoff frequency. At frequencies below cutoff for

a given mode, the wave number is imaginary and no progressive waves are able to

propagate along the waveguide. Instead, only evanescent waves exist.

In the case of a standing-wave calibration apparatus, the only desired mode

is the plane wave mode, or the mode associated with m = 0. This ensures that

only waves propagating along the axis of revolution of the waveguide are excited.

Additionally, the plane wave mode can exist to zero frequency as determined from

Eq. (2.31) when α′mn = 0 and allows the low frequency limit within the waveguide

to be determined by the source since, when m = 0 and n = 1 from Table 2.1, and,

from Eq. (2.31), f cmn = 0 Hz. In the case of a rigid-walled waveguide, the phase

velocity of the plane wave mode will be that of the intrinsic speed of sound in the

free fluid as seen in Eq. (2.30).

2.1.2.2 Elastic-Walled, Cylindrical Waveguide

For a real waveguide filled with water, the acoustic impedances of water and

that of most elastic solids are similar enough that the walls cannot be approximated

as rigid and the motion of the waveguide walls must be considered [18–20]. Signifi-
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cant research into axisymmetric wave propagation in liquid-filled, elastic-walled

cylinders has been performed and, for this thesis, the disperion relation developed

by Del Grosso [21] and later simplified by Lafleur and Shields [22] has been used

for the basis of the waveguide design. The expressions derived by Lafleur and

Shields are not repeated in this thesis but the MATLAB code that solves these

expressions is contained in Appendix A.1 and is referred to as the Lafleur and

Shields algorithm for the remainder of this thesis. A qualitative description of

the theory is contained in the remainder of this section and establishes a design

methodology when using the Lafleur and Shields algorithm to design a cylindrical,

water-filled waveguide.

As described in Sec. 2.1.2.1, the phase velocity for the plane wave mode in a

rigid-walled waveguide is that of the free-field speed of sound of the medium within

the waveguide. For a fluid-filled, elastic-walled waveguide the phase velocity for

the plane wave mode (designated the ET0 mode by Del Grosso, where E denotes

an elastic wall and T denotes that the wall is of finite thickness) will be reduced

from that of the free-fluid. This is due to the motion of the elastic waveguide

wall under the influence of the acoustic pressure where the compliance of the

wall is higher than that of the fluid. Additionally, the waveguide wall motion

induces radial particle motion within the fluid of the waveguide which causes

the axial wavefront to become non-planar. The degree of non-planarity can be

assessed by the relative deviation of the phase velocity from the intrinsic speed of

sound of the fluid. Therefore, as a design metric, it is desirable to achieve phase

velocities in the waveguide as close as possible to that of the intrinsic speed of

sound of the fluid in order to minimize the amplitude of the radial particle motion

for the ET0 mode. The next higher-order mode of an elastic-walled waveguide
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(designated the ET1 by Del Grosso) also exists to zero frequency and is caused by

the coupling between the waveguide walls and the included fluid. While exciting

this mode is unavoidable, it is possible to minimize its amplitude by using a planar,

longitudinally-vibrating piston, by ensuring that the acoustic source is isolated

from the waveguide walls, and by choosing a waveguide length that places the

lowest longitudinal standing-wave mode present for ET1 above the frequency range

of interest when using ET0 [23].

Figure 2.2 compares the differences in the first four modes of an elastic-

walled waveguide computed from the Lafleur and Shield algorithm to the first two

longitudinal modes of a rigid-walled waveguide computed from Eq. (2.30) using

the parameters described in Table 2.2 for a 16 inch Schedule 120 pipe. Figure 2.2

shows that the first two modes of the elastic-walled waveguide, ET0 and ET1,

exist to zero frequency and that the phase velocity of the plane wave mode of the

rigid-walled waveguide, (0,1), equals the intrinsic speed of sound of the fluid. Also,

Fig. 2.2 illustrates the cutoff phenomena exhibited by the higher-order modes of

both the rigid- and elastic-walled waveguides.

The following trends in the prediction of the phase velocity of the ET0

mode were observed and are listed to provide “rules of thumb” for designing a

cylindrical, water-filled, elastic-walled waveguide:

� for a given diameter and wall thickness, the phase velocity is proportional to

the speed of sound in the pipe material

� for a given diameter and material, the phase velocity is proportional to the

wall thickness
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Figure 2.2: Comparison of modal phase velocities for a steel, water-filled waveguide
with 0.344 m inside diameter and 0.406 m outside diameter when modeled as a rigid-
and elastic-walled waveguide. Model input parameters are shown in Table 2.2.

� for a given wall thickness and material, the phase velocity is indirectly

proportional to the waveguide diameter.

From the observed trends, the phase velocity inside the waveguide will

approach the intrinsic speed of sound in the fluid when the inside diameter is

minimized and the wall thickness and speed of sound of the waveguide material are

maximized. The design goal of maximizing the phase velocity within the waveguide

must be balanced with engineering considerations such as the size of the DUT to

be measured and the cost and availability of waveguide materials.
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Figure 2.3: Illustration of waveguide, source, and isolation systems.

2.2 Design of Apparatus

The design of this apparatus, as with most engineering designs, was an

iterative process. The apparatus is an electro-mechano-acoustical system composed

of the waveguide, a source, and isolation and data collection subsystems. Figure 2.3

illustrates the waveguide, source, and isolation systems.

The remainder of this chapter is devoted to the design of the apparatus. It

begins in Sec. 2.2.1 with a description of the design of the waveguide. Section 2.2.2

contains a discussion of the methods used to design the source. Next, Sec. 2.2.3
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describes the waveguide and sensor mechanical isolation systems. Section 2.2.4

discusses the three-dimensional sound-structure interaction FEA modeling of the

acoustic pressure field and, lastly, Sec. 2.2.5 contains a description of the reference

hydrophone, sensor positioning system, and data collection system.

2.2.1 Design of Waveguide

The waveguide was the first subsystem designed. For this component,

the author was constrained by the practical limits of cost and availability of

candidate waveguide materials in addition to the dimensions of the laboratory

space. Literature reviews of prior art indicated that usable circular cross-section

pipe materials range from thin-walled polyvinyl chloride to thick-walled steel

[15, 24]. It was the author’s intention to create an apparatus that could calibrate

vector sensors as large as 0.1 m in diameter from frequencies at or near the

infrasonic range up to several kHz. To this end, the following criteria as delineated

by McConnell [15] were applied:

� the size of the DUT must be small when compared to a wavelength based

on the phase velocity in the waveguide

� the size of the DUT must be small when compared to the diameter of the

waveguide so that it does not obstruct the acoustic field within the waveguide

� the wavefronts must be sufficiently planar to minimize the difference between

the acoustic field at the DUT and at the reference hydrophone.

As laid out in the elastic-walled waveguide discussion presented in Sec. 2.1.2.2,

the waveguide diameter, wall thickness, and material will determine the phase
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velocity of a water-filled waveguide and, subsequently, the usable frequency band

of the apparatus. Moreover, both the waveguide walls and source piston are

susceptible to structural vibrations that may alter the usable frequency band and

must be considered in the design of the apparatus. Sec. 2.2.1.1 describes the

process of material selection and the determination of diameter and wall thickness,

and Sec. 2.2.1.2 illustrates how the phase velocity affects the acoustic pressure

field within the waveguide.

2.2.1.1 Phase Velocity Estimation

Since it is desirable that the calibration apparatus operate in the widest

frequency band possible, it was important for the phase velocity to be as close

to the intrinsic speed of sound as possible in order to maximize the acoustic

wavelength for a given frequency. For this reason, waveguides constructed from

polymers were excluded from consideration since their high compliance would

significantly reduce the phase velocity. Additionally, aluminum pipes of large cross-

section were difficult to find and were limited to 12 inch outside diameters [25]

and stainless steel pipes were prohibitively expensive. Consequently, the author

focused on analyzing seamless structural steel pipes with outside diameters in the

range of 12 to 16 inches due to their relatively low cost, wide availability, and high

fabrication quality [26, 27]. The phase velocities for 12 inch Schedule 120, 14 inch

Schedule 120, and 16 inch Schedule 120 pipes were estimated by the Lafleur and

Shields algorithm using the parameters shown in Table 2.2 and the results are

shown in Fig. 2.4 for the first three modes: ET0, ET1, and ET2. Figure 2.4 also

shows that similar phase velocities could be obtained for the ET0 mode in the

three pipes between 0 and 5000 Hz. In order obtain a closed-form expression for
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Table 2.2: Input parameters to the Lafleur and Shields algorithm. Material param-
eters are the densities of steel and water ρp [28] and ρw, respectively, compressional
and shear speed of sound in steel cc and cs, respectively, and speed of sound of
pure water at 24◦ C cw. Pipe dimensions are inner radius a and outer radius b
from Ref. [26].

Material properties Pipe dimensions (m)

pipe water Nominal size b a

ρp 7850 (kg/m3) ρw 997 (kg/m3) 12 inch Sch. 120 0.162 0.137

cc 5583 (m/s)a cw 1494 (m/s) 14 inch Sch. 120 0.178 0.15

cs 3178 (m/s)b 16 inch Sch. 120 0.203 0.172

a Computed from cc =
√

E(1−ν)
ρp(1+ν)(1−2ν) [29] where E is the elastic modulus and

ν is Poisson’s ratio. Material properties from Ref. [28].
b Computed from cs =

√
G
ρp

[29] where G is the shear modulus from Ref. [28].

the phase velocity as a function of frequency for the ET0 mode of the 16 inch

Schedule 120 pipe, a polynomial curve fitting routine in MATLAB was used to

parameterize the curve of that mode shown in Fig. 2.4 as

cphET0 = −7.39× 10−6(ω/2π)2 + 0.0018(ω/2π) + 1397, (2.32)

and is valid in a frequency band from 20 to 2000 Hz at 24◦C. Figure 2.4 also

illustrates the existence of the ET1 mode at zero frequency where the amplitude

of this mode was minimized by isolating the source piston from the walls of the

annular plate using o-rings as will be described in Sec. 2.2.2.1.

In addition to the effect of phase velocity, the practical upper limit of the

waveguide internal diameter also depends on the cutoff frequency of the first cross

mode, labeled ET2 in Fig. 2.4. These modes are highly non-planar and must

be avoided. The lowest cutoff frequency of the ET2 modes for the three pipes

analyzed occurs at approximately 4250 Hz for the 16 inch Schedule 120 pipe.
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2.2.1.2 Acoustic Pressure Field Estimation

Axial acoustic resonance frequencies in a standing-wave field are determined

by the phase velocity, waveguide length, and source impedance. A simple model of

the acoustic pressure field can be determined from knowledge of the phase velocity

inside the waveguide as determined by the Lafleur and Shields algorithm. For the

standing-wave apparatus, the maximum length of the waveguide was limited by

the ceiling height of the laboratory in which the waveguide is housed. The location

chosen for the calibration apparatus was a large assembly building with a ceiling

height of approximately 7.5 m that contains a mezzanine approximately 3.5 m

above the floor. From the mezzanine, an operator can easily access the top of the

waveguide in order position the reference hydrophone and the DUT for calibration
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work. From these dimensions, it was decided that the laboratory could support

a 4 m long waveguide and also have enough vertical clearance to add a scanning

system capable of reaching depths of 1.5 m in the waveguide.

Since the source impedance was unknown at this point in the design,

the transfer function between the acoustic pressure and the source velocity was

computed in order to understand where the pressure extrema would occur in depth.

To that end, the transfer function of Eq. (2.23) was recast

Hpvel(x, ω) =
p(x, ω, t)

u(0, ω, t)
= jρ0ceff

sin(keff(l − x))

cos(keff l)
, (2.33)

where

keff =
ω

ceff
+ (1− j)αwalls, (2.34)

ceff is the frequency-dependent phase velocity as determined by the Lafleur and

Shields algorithm and can be represented by cphET0 from Eq. (2.32), and αwalls

accounts for the viscous loss from the interaction between the waveguide walls and

the water, characterized by [23]

αwalls =
1

a

√
µω

2ρ0c2eff
, (2.35)

where µ is the viscosity of water and is 0.907×10−3 kg/(m·s) at 24◦C. The transfer

function, Hpvel(x, ω) is shown in Fig. 2.5 and illustrates the existence of the extrema

in the acoustic pressure field. From Fig. 2.5, the pressure maxima are equally

spaced in frequency and the number of pressure nulls for a given frequency as a

function of depth is proportional to frequency. Additionally, nulls in the acoustic

pressure field are absent in the region between the air/water interface and a depth

of approximately 0.5 m between 0 and 2000 Hz.
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Figure 2.5: Transfer function as determined by the analytical model between
acoustic pressure and piston velocity as a function of frequency and depth below
the air/water interface in the waveguide.

The voltage response of pressure gradient and accelerometer-based vector

sensors is proportional to the pressure gradient of the acoustic field to which they

are subjected. Due to the presence of peaks and nulls in the acoustic pressure of a

standing-wave field, peaks and nulls will also occur in the pressure gradient field.

The spatial derivative of Eq. (2.33) taken along the waveguide axis of revolution is

∂Hpvel(x, ω)

∂x
= −ωρcos(keff(l − x))

cos(keff l)
, (2.36)

and the magnitude of this transfer function is displayed in Fig 2.6. An apparent

27



0.5

1

1.5

2

2.5

3

3.5

Frequencyo8Hz7

D
ep

th
o8

m
7

A
xi

al
od

er
iv

at
iv

eo
of

oH
pv

el
o8

dB
or

eo
[1
μP

a/
m

/s
]/

m
7

280

270

260

250

240

230

220

210

200
0 500 1000 1500 2000 2500 3000

Figure 2.6: Axial derivative of the transfer function as determined by the analytical
model between acoustic pressure and piston velocity (pressure gradient field) as a
function of frequency and depth below the air/water interface in the waveguide.

feature of the pressure and pressure gradient fields are that the axial locations of

the nulls in the pressure gradient field at a given frequency occur at the pressure

field maxima and vice versa.

In addition to pressure-gradient and accelerometer-based vector sensors,

the apparatus needed to be able to produce calibrations of geophone-based vector

sensors, whose response is proportional to particle velocity. As with pressure-

gradient vector sensors, the ability to produce calibrations of geophone-based
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vector sensors depends on the ability to identify the locations of nulls in the

particle velocity field. The transfer function between particle and piston velocities

as a function of depth in the waveguide can be computed by combining Eq. (2.19)

with Eq. (2.1) and accounting for the frequency-dependent phase velocity

Huvel(x, ω) =
u(x, ω, t)

u(0, ω, t)
=

cos(keff(l − x))

cos(keff l)
, (2.37)

where the locations of the peaks and nulls are the same as for the pressure gradient

field.

The existence of pressure and pressure gradient nulls significantly reduces

the number of regions in which vector sensor calibration measurements can be

performed since the acoustic field is rapidly changing in these regions. Inspection

of Figs. 2.5 and 2.6 reveals the only region that is free of nulls in the acoustic field

across the entire frequency band is that region between the air/water interface and

the shallowest null in the pressure gradient and particle velocity fields. For this

reason, vector sensor calibration measurements will be performed in the region

just below the air/water interface.

Additional inspection of Figs. 2.5 and 2.6 reveals that the highest frequency

region approximately 0.1 m wide that is unaffected by nulls in the acoustic

field occurs around 2 kHz and sets a practical high frequency limit for performing

calibration measurements in the standing-wave apparatus. From this high frequency

limit, the bandwidth of the waveguide is 0 to 2000 Hz where the low-frequency limit

of the apparatus will be bounded by the source. Since the high frequency limit of

the standing-wave apparatus was determined by the axial distance between the

air/water interface and the shallowest null in the pressure gradient field, the largest

of the three pipes analyzed, 16 inch Schedule 120, was chosen for the waveguide
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since it maximized the ratio of waveguide inner diameter to DUT diameter while

exhibiting a similar ET0 mode phase velocity to the smaller pipes analyzed. For

completeness, corrosion was mitigated by hot-dip galvanizing the steel waveguide

weldment.

2.2.2 Source Design

The theory of standing wave fields laid out in Sec. 2.1.1 requires a velocity

source at the lower terminus of the waveguide to reduce the first resonance frequency

so that it occurs when l = λ1A/4, where λ1A is the acoustic wavelength at the first

resonance frequency. Such a source can be designed with a shaker attached to a

piston that is allowed one degree of freedom along the axis of revolution of the

waveguide where the following criteria are met:

� the piston/shaker assembly is capable of producing a sound pressure level

(SPL) in the waveguide that allows for near-unity coherence across the

frequency band of interest for DUT calibration measurements

� the piston design does not support structural modes in the frequency band

of interest

� the piston/shaker assembly is sufficiently isolated from the waveguide walls

� the piston/shaker assembly is isolated from the floor

� the piston/surround assembly is capable of supporting the weight of 4 m of

water.

To meet the aforementioned criteria, the design shown in Fig. 2.7 was

conceived. A flange is welded to the bottom end of the waveguide and accommo-
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Figure 2.7: Cross-sectional view of the waveguide, piston, base and bore o-rings,
annular plate, diaphragm, and shaker.

dates the bolting of a large, annular plate which supports an aluminum piston.

The piston is isolated from the annulus by light-fitted bore o-rings and piston

compliance is provided by a base o-ring that resides between the piston and a lip on

the annular plate. The design of the piston required a balance between maximizing

stiffness while minimizing mass in order to support the weight of the water and to

avoid supporting structural modes while minimizing the mass-induced impedance

of the source. A thin diaphragm between the waveguide flange and annular plate

rests above the piston and acts as a water-tight seal without significantly impeding

the motion of the piston.
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2.2.2.1 Piston Design

The first component of the piston/shaker assembly to be designed was

the piston. As mentioned in Sec. 2.2.2, the piston should be sufficiently stiff so

that any structural modes of the piston would occur above the high frequency

limit of the waveguide (2 kHz) and to support the weight of 4 m of water across

the piston face. Candidate piston materials included 304 stainless steel, grade

2 titanium, and 6061-T6 aluminum. As a first order approximation, the author

down-selected from these candidates by determining the material whose mass and

stiffness would maximize the resonance frequency of a one-dimensional simple

harmonic oscillator,
√
ks/mw, where ks is the spring stiffness and is proportional

to the elastic modulus of the material, E, and mw is the mass of the weight and

is proportional to the density of the material, ρ. Therefore the resonance of a

one-dimensional simple harmonic oscillator fres is proportional to
√
E/ρ. The yield

strength, σs, of the three candidate materials is very similar, and therefore, the

geometry of the piston design would not need to change for each piston material

to accommodate supporting the weight of the water. The pertinent mechanical

properties of the candidate piston materials and the results of the one-dimensional

oscillator calculation are included in Table 2.3 where it is shown that 6061-T6

aluminum has the highest equivalent one-dimensional resonance frequency, but

only nominally. Other benefits associated with the choice of aluminum for the

piston material were its low mass and cost and high machinability, and therefore,

it was chosen for the piston material.

The geometry of the piston is axisymmetric where the piston/water interface

was chosen to be as flat as possible in order to avoid exciting any waveguide modes
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Table 2.3: Candidate piston material properties

Material E (GPa) ρ (kg/m3) σs (MPa)
√
E/ρ (Hz)

6061-T6 aluminum [30] 68.9 2700 276 5052

304 stainless steel [31] 193 8000 205 4911

Gr. 2 Titanium [32] 102.7 4510 280 4772

other than the ET0 mode. The geometry of the back side of the piston was chosen

so that the piston mass around the outer circumference would be minimized and

the stiffness would be biased towards the piston center. The back side of the piston

resembles that of a loudspeaker cone. A detailed engineering drawing can be found

in Appendix D.1.

To ensure that the lowest structural mode of the piston was above 2 kHz,

an ANSYS DesignSpace [33] eigenfrequency finite element analysis (FEA) was

performed where the piston was modeled in vacuo with free edges. The model

predicted that the first non-rigid body mode is one of a twisting type and occurs

at approximately 2.1 kHz. This fundamental mode shape is consistent with plate

vibration theory [34] and an image of this mode shape can be seen in Fig. 2.8. It

should be noted that the outside diameter of the final piston design was 0.266 m

and was smaller than the inside diameter of the pipe (0.344 m) in order to increase

the frequency at which the lowest non-rigid body mode of the piston appears.

The reduction in piston diameter from that of the waveguide wall will result in a

reduction of the volume velocity of the water within the waveguide and, therefore,

also a reduction of the acoustic pressure by the proportion Apiston/Apipe where Ai

is the area of each.
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Figure 2.8: First non-rigid mode of the source piston as computed from ANSYS
eigenfrequency analysis.

2.2.2.2 Compliance from O-ring

The compliance of the piston/shaker assembly was provided by an o-ring

between the bottom of the piston and the lip on the annular plate. The o-ring is

a Shore A durometer Buna-N rubber Parker 2-449 [35] and its dimensions were

chosen so that they fit within the annular plate. The deflection as a function of

load from the water on this o-ring was estimated by [36]

F

πDdoE
= 1.25δ3/2 + 50δ6, (2.38)

where δ = ∆d/do, ∆d is the compression of the o-ring, do is the o-ring cross-section

diameter, D is the o-ring mean diameter, F is the force applied to the o-ring,

and E is the elastic modulus of the o-ring material. The elastic modulus of an

elastomer can be estimated from the Shore A hardness SHA by [37]

E =
1− ν2

2RC3

C1 + C2SHA

100− SHA

(2.6− 0.2SHA)106, (2.39)
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where ν is the Poisson’s ratio of the material, R is the radius of the indenter and

is 0.395 mm, and C1, C2, and C3 are constants and are equal to 0.549 N, 0.07516

N, and 0.025 mm, respectively. Solving Eq. (2.38) for the o-ring deflection ∆d and

relating that to the equation for a force on a spring, F = −ks∆d, allows one to

estimate the stiffness of the o-ring and results in 2.9 kN/m. For completeness, the

FEA result shown in Fig. 2.8 was repeated using an elastic boundary condition

with the stiffness found from the above calculation. Since the results were very

similar to that of the free edge computation, they are not presented here.

2.2.2.3 Shaker Selection

An inertial shaker was appropriate for the piston/shaker assembly since

it attaches directly to the piston, does not require careful alignment between

the piston and the shaker armature centers, and is isolated from the floor (since

it does not require a base support). Trade studies of commercial off-the-shelf

(COTS) inertial shakers showed that many manufacturers offer shakers designed

to operate at their resonance frequency and not over a wide band of frequencies.

The selected shaker was a Labworks Inc. FG-142 inertial shaker with an operating

band spanning 20 to 3000 Hz [38].

As a first order approximation of the mechanical mass induced on the piston

by the acoustic load, equivalent circuit elements for the radiation impedance of a

plane piston into the end of a long tube as described by Beranek were used [39].

For values of kap < 0.5, where k is the acoustical wave number and ap is the piston

radius, the acoustic mass in the mechanical mobility domain can be described as

MM = 1.927a3pρ, (2.40)
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and has a value of 4.53 kg for this system. For completeness, it should be noted

that kap at 2 kHz is 1.19, which is outside of the valid range for Eq. (2.40) but was

determined to be a close enough approximation in order to estimate the parameters

needed by the shaker. The mechanical mass of the piston was estimated from a

PTC, Inc. Creo [40] CAD model and was found to be 4.53 kg. From these two

masses, the shaker transfer function between output acceleration ẍshaker and input

voltage ein was estimated from a Labworks Inc. equivalent circuit model and the

results are shown in Fig. 2.9. Inspection of Fig. 2.9 reveals a large resonance at

approximately 2 kHz. Manufacturing variances in the construction of this shaker

could result in a shift in the resonance frequency and it was decided that in-band

resonance of the shaker would be eliminated by reducing the mass of the piston if

it was found to be problematic.

2.2.3 Isolation Systems

A mass-spring-damper isolation system was designed in order for the waveg-

uide to be isolated from spurious noise sources from the laboratory floor. To this

end, the waveguide was supported within a frame using compliant straps and rests

on four air springs. Additionally, the reference hydrophone and DUT support

structure is isolated from the linear actuator by a mass-spring-damper isolation

system. Engineering drawings of the waveguide and sensor isolation systems can

be seen in Appendices D.1 and D.5, respectively and Sec. 2.2.3.1 and Sec. 2.2.3.2

detail the designs for each isolation system.
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Figure 2.9: Predicted transfer function between shaker output acceleration and
input voltage for a Labworks Inc. FG-142 inertial shaker.

2.2.3.1 Waveguide Isolation System

A mechanical model and the corresponding equivalent circuit model in the

mechanical mobility domain, as seen in Figs. 2.10(a) and 2.10(b), respectively,

were created to determine the appropriate spring compliance of the waveguide

isolation system. The transfer function between the waveguide and floor velocities

was computed from the equivalent circuit model

uwg

ufloor
= 1− 1

1 +Rm,sus/jωMwg − 1/ω2Cm,susMwg

, (2.41)

where uwg and ufloor are the velocities of the waveguide and the floor, respectively,

Rm,sus is the resistance of the suspension, Mwg is the water-filled waveguide mass,

and Cm,sus is the compliance of the suspension. The waveguide mass with water
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Figure 2.10: Waveguide isolation system: (a) mechanical model, (b) equivalent
circuit model.

was estimated to be 1725 kg from the CAD model. The lowest usable frequency of

the calibration system was determined by the source to be 20 Hz and it was desired

to design a suspension system that would reject at least 90% of any spurious floor

vibrations at and above this frequency. To this end, a transmissibility curve was

generated from Eq. (2.41) where the waveguide isolation system compliance and

resistance were provided by four Firestone 255-1.5 air springs in parallel where

the air spring internal pressure was 60 psig [41]. Figure 2.11 shows that for light

damping, 40 dB of velocity attenution is attainable at 20 Hz.

2.2.3.2 Sensor Isolation System

The reference hydrophone and DUT must be suspended in the water-

filled waveguide and mechanically isolated from waveguide wall, support frame,

and actuator vibrations to accurately perform calibration measurements. The

apparatus required to suspend the transducers must be modular enough to allow
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Figure 2.11: Predicted transmissibility curves of waveguide isolation system for a
range of suspension mechanical resistances Rm,sus.

the operator to affix various sizes of transducers and to provide flexibility in the

placement of a reference hydrophone. For the design of this system, the author

found inspiration from microphone shock isolators frequently used in recording

studios and an overview of this system is seen in Appendix D.5.

As with the waveguide isolation system, the sensor isolation system is also

a mass-spring-damper system and is designed to be a mechanical low-pass filter

where the frequency response can be predicted using an equivalent circuit model

in the mechanical mobility domain. The resistive component, which is not shown

in Appendix D.5, is comprised of craft stuffing adhered between the frame and

the sensor isolation mass. The damping provided from the resistive element was

tuned in order to make the isolation mass critically damped. The equivalent circuit
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model for the sensor isolation system is identical to that of the waveguide isolation

and is not repeated here. Similarly, the transfer function between the isolation

frame velocity and the isolation mass velocity is

uiso
uframe

= 1− 1

1 +Rstuff/jωMiso − 1/ω2CeqspringMiso

, (2.42)

where uiso and uframe are the velocities of the isolation mass and the frame, respec-

tively, Rstuff is the resistance provided by the craft stuffing, Miso is the mass of the

isolation mass, and Ceqspring is the compliance of the combination of all springs in

parallel. The mass of the isolation mass was estimated from the CAD model to be

11.25 kg and the equivalent stiffness of the springs was 620 N/m. For a critically

damped system, the mechanical resistance can be determined from

Rm = 2
√

1/CeqspringMiso. (2.43)

From these parameters, the transmissibility curve was computed and was found to

provide 49 dB of attenuation at 20 Hz as seen in Fig. 2.12.

2.2.4 Three-Dimensional Finite Element Analysis of Waveguide

A three-dimensional sound-structure interaction finite element numerical

model was created in COMSOL (a commercially available software package [40]),

so that the effects of the waveguide structural modes on the acoustic pressure

field within the waveguide were understood. The geometric model was designed in

Creo and imported into COMSOL where the waveguide and welded flange, water,

piston, annular plate, and stiffness of the spring isolators were modeled. Both

structural displacement eigenfrequency and frequency-dependent acoustic pressure

models were created and both models shared the same geometry, materials, and
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Figure 2.12: Predicted transmissibility curve for the sensor isolation system.

mesh. The eigenfrequency study allows the user to construct a fast and concise

method of identifying all of the modal frequencies of the water-filled waveguide

but the model was not constructed in a manner that would allow one to estimate

the acoustic pressure field within the water. The eigenfrequency study estimated

all modes within a frequency band regardless of whether or not the waveguide

source condition would excite a particular mode. In the frequency-dependent

acoustic pressure model, the waveguide was excited by prescribing an acceleration

on the source piston through a user-specified frequency band and the acoustic

field at each frequency was determined. The results of the eigenfrequency and

frequency-dependent acoustic pressure models are described in Sec. 2.2.4.1 and

Sec. 2.2.4.2, respectively.
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2.2.4.1 Results of Eigenfrequency Analysis

The frequency band of the standing-wave apparatus was determined to

be 20 Hz to 2 kHz from the previous analysis, therefore it was imperative that

the structural modes be known throughout this frequency band. The results of

this analysis predicted a number of mode shapes for a freely vibrating waveguide

including those described as axial bending, axisymmetric, and circumferential. The

eigenfrequencies and related mode shapes are listed in Table 2.4, four of the mode

shapes are illustrated in Figs. 2.13(a)-2.13(d), and illustrations of all mode shapes

predicted are presented in Appendix A.3.

2.2.4.2 Results of Frequency-Dependent Acoustic Pressure Analysis

The frequency-dependent acoustic pressure model investigated the effects

of the waveguide structural modes on the acoustic field in the range of 20 to

2150 Hz in 5 Hz increments. The model prescribed a 1 m/s2 frequency-independent

acceleration on the base of the piston in order to ensonify the waveguide and a

two-dimensional cross-section of the acoustic pressure field inside the waveguide

computed by COMSOL was exported for post-processing in MATLAB. Since the

piston acceleration in the COMSOL model is unity, the data are equivalent to

the transfer function between acoustic pressure and source acceleration. A simple

conversion from acceleration to velocity can be performed by multiplying the

transfer function by jω and the converted result as a function of depth in the

waveguide and frequency is shown in Fig. 2.14. Comparison between Fig. 2.14

and Fig. 2.5 reveals features from potential structural modes of the waveguide

at 555, 1080, and 1785 Hz. These frequencies do not correlate perfectly with

the frequencies at which the eigenfrequency study predicted modes but these
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Table 2.4: Eigenfrequencies and mode shapes of the waveguide as predicted by the
COMSOL eigenfrequency model. Acoustic field disruptions were predicted by the
COMSOL frequency-dependent acoustic pressure model.

Frequency (Hz) mode shape predicted to disrupt acoustic field

109 axial bending no

282 axial bending no

313 torsional no

393 piston rocking no

500 bending/circumferential no

517 bending/circumferential no

520 circumferential no

524 circumferential no

535 bending/circumferential no

543 circumferential no

581 circumferential no

645 circumferential no

651 circumferential no

659 torsional/axisymmetric no

733 circumferential no

748 circumferential no

761 circumferential no

857 circumferential no

1024 axisymmetric no

1401 axisymmetric no

1776 axisymmetric yes
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(a)y282yHzybendingymode. (b)y313yHzytorsionalymode.

(c)y543yHzycircumferentialymode. (d)y1776yHzyaxisymmetricymode.

Figure 2.13: Illustration of four of the mode shapes of the water-filled waveguide
as computed by the COMSOL eigenfrequency model.
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discrepancies could be related to the difference in the frequency resolution between

the two models and possibly compounded by the differences in the frequency

response of the freely vibrating and driven waveguide. Also note that since a finite

source distribution was used in the frequency-dependent acoustic pressure model,

only a subset of the modes found in the eigenfrequency analysis will be excited.
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Figure 2.14: Predicted transfer function between acoustic pressure and piston
velocity along the axis of revolution of the waveguide as determined from the
COMSOL frequency-dependent acoustic pressure model. The arrows at the top of
the figure highlight the predicted disruptions to the acoustic field at 555, 1080,
and 1785 Hz.

In order to understand the radial particle velocity within the waveguide,

the pressure gradient along the length and across the radius of the waveguide was

computed numerically in MATLAB from the COMSOL two-dimensional pressure

data using a five-point finite difference method. The ratio between the axial and
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radial pressure gradients was then computed to visualize the relative importance of

radial particle motion. The off-axis response of a vector sensor directional channel

can be up to 40 dB lower than the on-axis response and, therefore, a threshold of

40 dB was used to find what eigenfrequencies of the waveguide disrupt the acoustic

field enough to affect vector sensor calibrations. Figure 2.15 shows the results of

the calculation of the ratio of axial pressure gradient to radial pressure gradient

where Fig. 2.15(a) illustrates a frequency where there is at least 40 dB between the

axial and radial pressure gradients in the region where calibration measurements

are performed. Calibration measurements at this frequency should produce valid

results since the volume of the maroon-colored region near the air/water interface

encompasses both the reference hydrophone and a 0.1 m diameter DUT. However,

Figs. 2.15(b)-2.15(e) illustrate four frequencies where calibrations will likely produce

inaccurate results due to high radial pressure gradients and, therefore, non-planar

wavefronts near the air/water interface. Non-planar wavefronts can lead to errors in

calibration measurements since the acoustic pressure at the reference hydrophone

and DUT will not be the same due to the radial offset between the two devices.

2.2.5 Reference Hydrophone, Sensor Positioning, and Data Collection
Systems

All data acquisition from the waveguide is automated by a PC-based

LabVIEW [42] software program. The software was designed so that the operator

enters the desired test parameters, places all sensors in the desired orientation and

location, and initiates the test. The software then sends the test parameters to a

four-channel Agilent 35670A signal analyzer [43] and waits until the signal analyzer

has completed the measurement. Once the measurement is finalized, the data are
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Figure 2.15: Ratio of axial pressure gradient to radial pressure gradient computed
from COMSOL frequency-dependent acoustic pressure model. (a) Frequency at
which calibrations will likely produce valid results. (b)-(e) Frequencies at which
calibrations may not produce valid results.

transferred to the PC through a general purpose interface bus (GPIB) and are

stored for post-processing. The signal analyzer is used to generate the source signal,

collect the time series data, and process the time series data into the frequency

domain. Sections 2.2.5.1, 2.2.5.2, and 2.2.5.3 detail the design and selection of

the reference hydrophone, sensor positioning system, and data collection system,

respectively.
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2.2.5.1 Reference Hydrophone

Data collection for both DUT calibration measurements and waveguide

characterization testing required the use of a small, omnidirectional hydrophone

in order to quantify the acoustic field with minimal disruption. The reference

hydrophone, shown in Fig. 2.16, is a Teledyne RESON TC4013 omnidirectional

hydrophone with a EC6067 conditioning charge amplifier [14, 44]. This transducer

was chosen for the reference hydrophone because of its small size (9.5 mm diameter

by 25 mm length) and use in previous literature [15, 45]. A water-filled stainless

steel sheath was used to house the hydrophone cable to reduce its interaction with

the acoustic field and to accurately position the sensor. Two TC4013 hydrophones

and preamps were purchased for the system where each hydrophone/preamp

combination was calibrated in the waveguide to a NUWC H52 reference hydrophone

[46] and was marked to ensure only the calibrated hydrophone/preamp pair is

used in subsequent measurements.

2.2.5.2 Sensor Positioning System

As mentioned in Sec. 2.2.3.2, the reference hydrophone and DUT are

suspended from the sensor isolation system. The depth of the sensors is controlled

using a Parker ERV5 series linear actuator [47] that is mounted to a support

frame that rests above the waveguide and a schematic of this assembly is shown in

Appendix D.1. A stepper motor provides the motion of the linear actuator and

the stepper motor, motor controller, and linear actuator were specified and the

motion-control software was written by SISU Devices [48] for the author. Initial

testing of the apparatus showed that electromagnetic interference (EMI) produced

by the stepper motor controller was capable of corrupting acoustic measurements
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and so an Inertia Dynamics MPC power-off brake [49] was installed so that the

controller could be placed in a disabled mode during measurements without the

carriage on the linear actuator moving due to the weight of the sensor isolation

system.

2.2.5.3 Data Collection System

preamp
preamp

PC

signal
analyzer

power amp

DUT

piston

shaker

reference
hydrophone

water-filled
waveguide

linear
actuator

Figure 2.16: Schematic diagram of the data collection system.

The data collection system is comprised of the reference hydrophone and

DUT including any preamps, Agilent 35670A signal analyzer, linear actuator,

and a PC loaded with the LabVIEW control software. A schematic of the data

collection system set up for calibration measurements is shown in Fig. 2.16.

49



The LabVIEW control graphical user interface (GUI) was designed so that

the operator could easily set up and document test parameters and notes. Test set

up parameters include

� source signal type and amplitude

� frequency band and resolution

� depth of water in waveguide

� percent dissolved oxygen content in water

� sensor depths and number of depth positions (used for waveguide characteri-

zation measurements)

� sensor types, sensitivities, and gain for each channel

� voltage range for analog to digital converter (ADC) on signal analyzer.

All parameters are recorded for post-processing and for reference at a later date.

A “jog motor” subpanel of the data collection system allows the operator

to move the linear stage in a very precise and controllable manner. This allows one

to accurately orient and position the acoustic centers of the reference hydrophone

and the DUT at the air/water interface before lowering the sensors to the test

depth desired by the operator. The operator can create a “home” position of the

sensors at either the air/water interface or at the test depth and these metadata

are stored along with the acoustic data from the subsequent measurement. The

main, jog motor, and ADC voltage range GUIs can be seen in Figs. B.1, B.2, and

B.3 in Appendix B, respectively.
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Chapter 3

Apparatus Characterization

System characterization measurements were taken once the standing-wave

apparatus was built and assembled. This chapter is organized in a manner to

describe each set of measurements where Sec. 3.1 describes the determination of

an appropriate apparatus stimulus signal, Sec. 3.2 details the process used to bring

the water-filled waveguide to an equilibrium state, Sec. 3.3 presents the results of

waveguide phase velocity measurements, Sec. 3.4 discusses the measured acoustic

fields within the waveguide, Sec. 3.5 delineates the measurements to ensure that the

wavefronts are sufficiently planar for calibration measurements, Sec. 3.6 details the

measurements to determine the effectiveness of the waveguide and sensor isolation

systems, Sec. 3.7 describes the measurements to ensure that the piston does not

support structural modes in the operating frequency band, and Sec. 3.8 identifies

the structural modes that disrupt the acoustic field within the waveguide.

3.1 Determination of Apparatus Stimulus Signal

The Agilent 35670A dynamic signal analyzer is used to generate the appa-

ratus stimulus signal and allows the user to choose from numerous source signal

types including: band-limited white noise, linear and logarithmic periodic chirps,

burst chirp, single-frequency sine wave, and swept-sine. It is up to the user to

determine the appropriate method based on system linearity and time to reach
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steady-state [50]. Each signal type provides benefits for various system measure-

ment needs. This thesis will describe two measurement/processing types used

to characterize the apparatus: periodic chirps processed using a Fast Fourier

Transform (FFT) and swept-sine measurements.

In order to take advantage of fast measurement times, the first stimulus

signal type used for the apparatus characterization measurements was the periodic

chirp. During this testing, it was found that the displacement of the reaction mass

of the inertial shaker was high enough to hit the stops below 25 Hz when exciting

the system using the peak excitation voltage allowed by the shaker, therefore the

lowest excitation frequency was set at 25 Hz. The period chirp frequency band

was 25 to 1625 Hz, due to the number of record lines of the signal analyzer, and

the measurement was averaged 20 times with no windowing. The ambient noise

measurement was taken by repeating the periodic chirp measurement only with the

source amplifier turned off. Next, the waveguide was ensonified using a swept-sine

signal with the same input signal amplitude as for the periodic chirp where the

test frequency band was 25 to 2000 Hz. The measurement was repeated with the

source amplifier turned off in order to record the ambient noise. The spectral

levels of both the ensonified and quiet measurements at a depth of 0.5 m below

the air/water interface was computed and are shown in Fig. 3.1.

From Fig. 3.1, the dynamic range of the spectral levels in the standing-wave

field is the same for the both the swept-sine and periodic chirp measurements,

which indicated that the sweep rate of the periodic chirp was slow enough to allow

the apparatus to reach steady-state. Additionally, the SNR for both measurement

types is at least 10 dB throughout the test frequency band where, as discussed in
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Figure 3.1: Comparison of the spectral levels measured in the waveguide using
swept-sine and periodic chirp stimuli.

Sec. 4.2, this value is used as the SNR threshold in post-processing calibration mea-

surements. While the standing-wave apparatus reached steady-state using periodic

chirps, the swept-sine measurement type was chosen for most subsequent system

characterization measurements and for all calibration measurements presented in

this thesis since it avoids the high transients found in periodic chirps.

3.2 Methodology for Obtaining a Repeatable Acoustic Field

The water in the waveguide is drained when not in use to reduce corrosion.

Once the waveguide is filled with tap water, it is desired that acoustic field within

the waveguide be repeatable and time-invariant for up to five consecutive days.
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To accomplish this, the dissolved oxygen content of the water must be minimized,

the water must come to thermal equilibrium with the waveguide, and the water

level in the waveguide must remain constant.

Degassing the water (which removes existing bubbles and prevents formation

of new bubbles) in the waveguide is accomplished by sealing the top and bottom

ends of the waveguide and evacuating the air via a vacuum pump. A vacuum

is also required at the bottom of the waveguide since the water column is not

deep enough to maintain positive gage pressure above the piston when a vacuum

exists above the waterline and should be applied prior to evacuating the air above

the waterline. Testing revealed that holding a vacuum of at least 27 mm Hg

for 30 minutes while continuously mixing the water using a submersible pump

consistently reduced the dissolved oxygen content from approximately 85% to

roughly 40% of full saturation which then could be maintained for up to five days.

A schematic of the degassing hardware can be found in Appendix D.7.

In addition to degassing, the water must be allowed to come to thermal

equilibrium with the waveguide to produce a repeatable acoustic field. It was found

that the time to reach thermal equilibrium varies throughout the year where during

the summer months, the water is typically very close to room temperature as it

flows from the spigot, but can take several hours for the water to reach thermal

equilibrium with the waveguide during the winter. Additionally, a significant

temperature gradient exists in the laboratory during the late summer months. The

temperature at the bottom and top of the waveguide were measured to be 25.6

and 29.7◦ C, respectively. The speed of sound in pure water at these temperatures

are 1498 and 1508 m/s, respectively, which is a difference of 0.7% and therefore
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the effect of the temperature gradient on the phase velocity was ignored.

As a rule of thumb, the process of changing the water in the waveguide

is: pump the water out of the waveguide using a submersible pump, refill the

waveguide with tap water, cover the waveguide and hold a vacuum of at least

27 mm Hg for at least 30 minutes, release the vacuum, remove the sealing plates,

and let the water sit overnight. This process brings the water in the waveguide to

a repeatable state for up to five days at any point in the year. Lastly, evaporation

at the air/water interface reduces the water level over time. Consequently the

water level should be carefully measured and reset daily during testing.

3.3 Phase Velocity Measurements

Frequency-dependent phase velocity measurements were made after the

system was degassed and allowed to reach a thermal equilibrium temperature of

26.4◦ C. These measurements were accomplished by placing the acoustic center of a

Teledyne RESON TC4013 hydrophone at 2.000 m ± 0.002 m below the air/water

interface without a cable sheath and exciting the piston using a single-frequency,

single-cycle tone burst in the range of 400 to 2000 Hz in 100 Hz increments and

capturing the first and second arrivals of the acoustic pressure signal. The first

arrival of the signal traveled from the source at the bottom of the waveguide and

the second arrival was caused by the reflection of the first signal arrival from the

air/water interface. For this measurement, the low frequency limit of 400 Hz was

determined by the acoustic wavelength short enough to be resolved at the test

depth. The acoustic signals from the hydrophone were recorded using a Tektronics

TDS2004C digital oscilloscope [51] and the data were downloaded to a PC and
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post-processed in MATLAB by manually identifying the first and second arrivals,

inverting and cross-correlating the second arrival with the first arrival in order

to find the lag time τ(ω) between the two pulses, and finally computing the

frequency-dependent phase velocity cphmeasured = 2d/τ(ω) where d was the distance

of the hydrophone below the air/water interface. For completeness, the diameter

of the waveguide and the low frequencies at which it operates does not require

a hydrophone cable sheath to prevent disruptions to the acoustic field within

the waveguide that has been necessary for smaller diameter, higher frequency

waveguides in previous literature.

The sampling frequency of the oscilloscope was 250 kHz which translated

to a period of 4 µs between samples. As mentioned in the preceding paragraph,

the resolution to which d could be measured was ± 0.002 m. The uncertainty

arising from both the temporal and spatial resolution of the measurement was

computed and is displayed as error bars in Fig. 3.2. The result of the phase velocity

measurement is within 1% of that predicted by the Lafleur and Shields algorithm

for a water/waveguide temperature of 26.4◦ C.

3.4 Acoustic Pressure Field Measurements

Acoustic pressure measurements were made in order to verify the estimates

of the acoustic pressure fields detailed in Sec. 2.2.1.2. For this measurement, a

Teledyne RESON TC4013 hydrophone was suspended under the sensor isolation

mass by a water-filled stainless steel sheath (with an outside diameter and wall

thickness of 9.5 and 1.2 mm, respectively) and was scanned along the waveguide

axis of revolution, the waveguide was ensonified using the peak excitation voltage
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Figure 3.2: Comparison of measured phase velocity to that predicted by the Lafleur
and Shields algorithm.

allowed by the shaker, and the acoustic pressure was recorded throughout a

frequency band from 25 to 2000 Hz at each depth ranging from 0 to 1500 mm in

5 mm increments. The piston velocity was measured using a Polytec OFV-505

single point last doppler vibrometer (LDV) with OFV-5000 controller [52] and

was recorded simultaneously with the acoustic pressure at a single point on the

piston that is representative of the spatially averaged piston velocity. The transfer

function between the measured acoustic pressure and piston velocity Hpvel,meas was

computed as a function of hydrophone depth and frequency and the results are

shown in Fig. 3.3.

Careful inspection of Fig. 3.3 and Fig. 3.4 revealed disruptions in the

acoustic pressure field at 536, 543, 555, 565, 575, 1208, and 1733 Hz. Several of
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these frequencies had been identified from the COMSOL eigenfrequency model

as structural modes of the waveguide in Table. 2.4 and the COMSOL frequency-

dependent acoustic pressure model seen in Fig. 2.15.
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Figure 3.3: Transfer function between the measured SPL along the waveguide axis
of revolution and piston velocity. The arrows at the top of the figure highlight the
disruptions to the acoustic field in a frequency band from 536 to 580 Hz, 1208,
and 1733 Hz.

Since the image plots of the transfer function between the acoustic pressure

and piston velocity seen in Figs. 2.5 and 3.3 are not conducive for comparisons

made on the same figure, Fig. 3.4 was created to illustrate the agreement between

the predicted transfer function Hpvel described by Eq. (2.33) and the measured

transfer function Hpvel,meas at a depth of 0.500 m below the air/water interface.

With the exception of the discrepancies seen between 536 and 580 Hz, 1208, and

1733 Hz, Hpvel,meas and Hpvel agree very well. Additionally, Hpvel does not capture
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the effects of attenuation via mechanisms other than viscous losses between the

water and the waveguide walls at the acoustic resonance frequencies but the

agreement between the measurement and the model was deemed sufficient, and

hence these losses were ignored.
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acoustic pressure and piston velocity along the waveguide axis of revolution
0.500 m below the air/water interface. The arrows in the figure highlight the
disruptions to the acoustic field in a frequency band from 536 to 580 Hz, 1208,
and 1733 Hz.

The levels of the acoustic pressure and pressure gradient fields from the

same measurement as presented in Fig. 3.3 were processed in order to determine the

peak acoustic pressure levels capable in the standing-wave apparatus and to verify

the locations of pressure and pressure gradient nulls. The axial pressure gradient

was determined from the measured data by computing the spatial derivative along
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the axis of revolution using the same five-point finite difference algorithm as used

to compute the axial and radial pressure gradients presented in Fig. 2.15. The

measured SPL and computed pressure gradient are shown in Figs. 3.5(a) and (b),

respectively, where the dashed lines in both figures illustrate the region where

calibration measurements are made, 0.025 to 0.125 m below the air/water interface.

Figure 3.5(a) shows the lowest acoustic resonance frequency in the waveguide occurs

at 54 Hz and the remaining axial resonance frequencies are spaced approximately

164 Hz apart. The SPL range for the depths and frequencies measured spans

88 to 181 dB re 1 µPa. In the region where calibration measurements will be

made, the SPL varies between 88 and 174 dB re 1 µPa. Figure 3.5(b) shows the

locations of nulls in the pressure gradient field near the air/water interface and

confirms the resulting depth limitation for calibration measurements as determined

in Sec. 2.2.1.2.

3.5 Planar Wave Front Measurement

Significant efforts were made in the design of the waveguide to reduce the

amplitude of radial particle motion of the ET0 mode to maximize the degree of

wavefront planarity. A measurement of the degree of wavefront planarity was

achieved by ensonifying the waveguide and recording the acoustic pressure while

scanning a Teledyne RESON TC4013 hydrophone parallel to the axis of revolution

of the waveguide between depths of 0.025 to 0.125 m in 0.010 m increments at 13

discrete positions across the inner diameter of the waveguide in 0.025 m increments.

The order in which the radial positions were scanned was randomized in order to

mitigate any time-dependent effects on the measured acoustic field. The data were
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recorded using an Agilent 35670A signal analyzer and downloaded to a PC for

post-processing in MATLAB.

The resulting data were processed by normalizing the measured acoustic

pressure at each radial position, depth, and frequency, pmeas(r, d, ω), by the in-

coherently averaged pressure across the diameter for each depth and frequency,

p̄dia(d, ω), as

pnorm(r, d, ω) =
pmeas(r, d, ω)

p̄dia(d, ω)
, (3.1)

where

p̄dia(d, ω) =
N∑
n=1

|pmeas(rn, d, ω)|
N

, (3.2)

and the results for selected frequencies are shown in Fig. 3.6. For most frequencies,

the measured wavefront was planar to within 1 dB. The plots between 536 and

580 Hz show a band of frequencies that are highly non-planar and are presumed

to be caused by structural modes of the waveguide walls. Therefore, the frequency

band spanning 536 to 580 Hz will be omitted from the reported calibration

measurements. The figures above 1600 Hz show the effects of increased radial

particle velocity on the wavefront but the variation was on the order of less than

1 dB across the waveguide inner diameter and, therefore, was found to be suitable

for calibration measurements up to 2 kHz.

The normalized acoustic pressure from Eq. (3.1) was found to be consistent,

for most frequencies, as a function of the depths measured therefore pnorm(r, d, ω)

was incoherently averaged across all measured depths so that the data could be

reduced to three dimensions to create the image plot shown in Fig. 3.7. Figure 3.7

illustrates that the wavefronts are planar within 1 dB for most frequencies and
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3.6 Vibration Isolation Testing

Measurements were performed to verify the effectiveness of the waveguide

and sensor isolation systems. For these measurements, calibrated velocimeters were

placed on the waveguide or sensor isolation mass where the waveguide isolation

system was manually excited and the sensor isolation system was excited with a

moving-coil shaker. Sections 3.6.1 and 3.6.2 discuss these measurements and the

results of the waveguide and sensor isolation systems testing, respectively.

3.6.1 Waveguide Isolation System Measurements

The waveguide isolation system as described in Sec. 2.2.3.1 is a low-pass

mechanical filter created from a mass-spring-damper system. In the design phase
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of this isolation system, both the mass of the water-filled waveguide and the

compliance of the air springs were estimated but the resistance produced by the

viscoelastic effects of the air springs was unknown. The predicted transmissibility

curves in Fig. 2.11 show a range of values for the mechanical resistance and their

effect on vibration attenuation as a function of frequency. Several attempts were

made to measure the transmissibility of the waveguide isolation system by exciting

the waveguide using an eccentrically-loaded Vibco SCR-1000 shaker [53] in a

frequency band spanning 2 to 20 Hz while measuring the waveguide and waveguide

support frame velocities using the calibrated velocimeters. These attempts failed

to produce meaningful results because the transverse vibrational modes were also

excited by the shaker. Then, a Labworks Inc. ET-126HF moving-coil shaker

was employed in an attempt to excite modes only along the axis of revolution

of the waveguide. However, this shaker did not provide adequate SNR on the

velocimeters.

Since attempts to measure the transmissibility of the waveguide isolation

system by driving the system failed to produce meaningful results, the isolation

system was instead excited by pushing lightly once on the base of the waveguide

by hand and recording the response of a velocimeter mounted to the welded flange

at the lower end of the waveguide using a Tektronix TDS2004C digital oscilloscope.

The time-series data were downloaded onto a PC and post-processed in MATLAB

using the log-decrement method to determine both the resonance frequency of the

isolation system and the mechanical resistance provided by the air springs.

The log decrement method can be used to find the damping ratio of under-

damped, unforced systems in the time domain where the damping ratio can be used
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to find the mechanical resistance. The damping ratio ζ of a mass-spring-damper

system is defined as

ζ =
Rm

Rc

, (3.3)

where Rm is the mechanical resistance of the system and Rc is the mechanical

resistance for a critically damped system with the same mass and spring stiffness

and is

Rc = 2Mmechω0, (3.4)

where Mmech is the mechanical mass and ω0 is the natural frequency of the

undamped system. The log decrement method from Ref. [54] is

ln

(
x(t)

x(t) + nT

)
=

2πnζ√
1− ζ2

, (3.5)

where x(t) is the signal amplitude at time t, T is the period of one cycle of the

under-damped signal, and n is an integer from 1 to ∞. Equation (3.5) can be

simplified by neglecting the ζ2 term on the right-hand side and can be recast as

ζ ≈ 1

2πn
ln

(
x(t)

x(t) + nT

)
, (3.6)

and is valid for ζ < 0.2. Figure 3.8 shows the measured waveguide velocity as a

function of time where the highlighted maximum at 3.51 seconds was used as x(t)

in Eq. (3.6) and the damping ratio was computed between this point and each

successive highlighted maxima to 11.26 seconds. The mean value for the damping

ratio of the waveguide isolation system ζm,sus was 0.0091 with a standard deviation

of 0.00045.
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Equations (3.3) and (3.4) were combined with the expression for the un-

damped natural frequency of a damped system

ω0 =
ωd√

1− ζ2
, (3.7)

where ωd is the natural frequency of the damped system and were recast to find

the expression for the mechanical resistance of the waveguide isolation system as

Rm,sus = 2ζm,susMwg
ωd√

1− ζ2
, (3.8)

where the natural frequency of the damped system can be found from the reciprocal

of the period T from the time-series data and is 2.45 Hz. From Eq. (3.8), the

mechanical resistance of the waveguide isolation system is estimated to be 483
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kg/s and, therefore, the transmissibility of the waveguide isolation system was

estimated to follow the curve in Fig. 2.11 for Rm,sus = 1000 kg/s.

3.6.2 Sensor Isolation System Measurements

The transmissibility of the sensor isolation system described in Sec. 2.2.3.2

was measured using a Labworks Inc. ET-126HF shaker attached to the corner of

the sensor isolation frame shown in Fig. 3.9 where a calibrated Wilcoxon Research

793V-5 velocimeter [55] was attached to the center of the sensor isolation mass

and a Wilcoxon Research 786A accelerometer was attached at four equally-spaced

points around the perimeter of the sensor isolation frame. Each Wilcoxon Research

sensor utilized a Wilcoxon Research P702B power unit/amplifier that includes an

user-selectable integrator circuit by which the accelerometer signal was integrated

to be proportional to velocity. The sensor isolation frame was excited using a

periodic chirp in a frequency band from 1 to 51 Hz and the transfer function

between the two sensors was recorded by an Agilent 35670A signal analyzer. The

data were then downloaded to a PC and post-processed using MATLAB. The

frequency band of this measurement was limited to 51 Hz since the structural modal

density of the sensor isolation frame was very high above this limit. Figure 3.10

shows the results of this measurement where the resonance frequency of the mass-

spring-damper system is approximately 7 Hz, which is higher than what was

predicted in the transmissibility curve in Fig. 2.12. Regardless, the sensor isolation

system provided 23.6 dB of velocity attenuation at 25 Hz which was deemed

sufficient for calibration measurements. The vertical gray line at approximately

5 Hz in Fig. 3.10 illustrates the frequency at which the coherence falls below 0.95

and data at frequencies below this line are prone to measurement error.
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Figure 3.9: Simplified image of the sensor isolation system highlighting the locations
of the shaker and velocimeters. Positions 1 to 4 show the measurement locations
of the frame velocity.

3.7 Measured Piston Modes

Measurements to verify that the source piston does not support structural

modes in the apparatus design frequency band and to attempt to verify the ANSYS

FEA eigenfrequency model were performed in situ at frequencies between 25 and

2500 Hz using a Polytec OFV-505 single point LDV with an OFV-5000 controller.

Figure 3.11(a) illustrates the measurement setup where the laser head rested on

the laboratory floor and the laser beam was positioned on the back side of the

piston using a mirror tilted at a 45◦ angle. A grid pattern similar to what is shown

in Fig. 3.11(b) was sketched onto the backside of the piston where the mirror and

laser head were repositioned on a point on the grid between each measurement,
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Figure 3.10: Measured transmissibility of sensor isolation system. (a) Coherence of
the measurement at each velocimeter position on the frame. (b) Transmissibility
determined at each velocimeter position on the frame. (c) Coherent average of
transmissibility at each velocimeter position on the frame.

the waveguide was ensonified using the peak excitation voltage allowed by the

shaker, and the transfer function between the piston velocity measured by the

LDV and the shaker drive voltage was measured using an Agilent 35670A signal

analyzer at a total of 127 positions across the piston. The data were downloaded

after each measurement to a PC for post-processing in MATLAB.

The transfer function between the measured piston velocity and drive

voltage was coherently averaged for all points measured and the averaged transfer

function was used to normalize the transfer function at each individual measurement

point. The normalized transfer functions across the back side of the piston were
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Figure 3.11: (a) Schematic of the LDV setup for the piston velocity measurement.
(b) Illustration of measurement points on the bottom of the piston.

plotted for each frequency tested and the author manually searched over the

frequency band for structural mode shapes. The result of this search concluded

with the identification of several operating deflection shapes shown in Fig. 3.12.

The mode in Fig. 3.12(a) was identified as a rigid-body rocking mode,

Fig. 3.12(b) is a rigid-body flapping mode, Fig. 3.12(c) is a bending mode across

the piston diameter, and Fig. 3.12(d) is a circumferential mode. The piston mode

shape at 1862.7 Hz is within the apparatus design frequency band but it does not

appear to disrupt the acoustic pressure in the waveguide shown in Fig. 3.5(a). For

completeness, the mode shape predicted in the ANSYS FEA eigenfrequency model

was not identified.

An additional result of this measurement is that the spatially-averaged

piston velocity was measured. This allowed for a more accurate estimate of

the volume velocity within the waveguide and increased agreement between the

measured and predicted transfer function between the piston velocity and acoustic

pressure shown in Fig. 3.4.
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Figure 3.12: Measured modes of apparatus source piston.

3.8 Measured Three-Dimensional Structural Modes of the
Waveguide

Prior to construction of the waveguide, COMSOL sound-structure inter-

action FEA models predicted the existence of structural modes of the waveguide

where several of these modes could be disruptive to the acoustic pressure field.
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Acoustic pressure measurements taken in the waveguide confirmed the disruption

at various frequencies where the modes in the frequency band between 536 and

580 Hz appeared to disrupt the acoustic pressure field the most as shown in Fig. 3.3

and in the wavefront planarity measurements shown in Figs. 3.6 and 3.7. In order

to identify the structural mode shapes of the waveguide walls, surface-normal accel-

eration measurements were made along the length of the water-filled waveguide in

0.1 m increments and in eight circumferential positions around the waveguide for

a total of 320 measurement points. The transducer employed for the measurement

was an Dytran Instruments, Inc. 3100A accelerometer [56] with a magnetic base.

The waveguide was ensonified with a swept-sine signal in a frequency band from

40 to 1250 Hz while recording the transfer function between the accelerometer and

the shaker drive signal using an Agilent 35670A signal analyzer. At the completion

of each measurement, the data were downloaded onto a PC and post-processed

using MATLAB.

In order to identify the structural eigenfrequencies of the waveguide, a mode

indicator function, shown as the black curve in Fig. 3.13(a), was constructed. The

mode indicator function (MIF) [57] was created by averaging the magnitude of

the measured transfer function both along the circumference and the length of the

waveguide at each measurement position. The resulting average helps to visualize

the eigenfrequencies of the water-filled waveguide and to identify high amplitude

structural modes. Additionally, the red curve in Fig. 3.13(a) is the average acoustic

pressure measured within the waveguide at depths from 0 to 1.5 m in 0.0375 m

increments. The inclusion of this curve illustrates the motion of the waveguide wall

under the influence of the acoustic pressure inside the waveguide. The image plot

shown in Fig. 3.13(b) was created by averaging the accelerometer data across the
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circumference of the waveguide at each axial measurement position. The averaged

magnitude was then color-mapped as a function of axial position and frequency

to visualize the modal nodes and anti-nodes along the length of the waveguide.

Figure 3.13(b) illustrates that a region of high modal density of the waveguide

wall exists between 536 and 592 Hz and this frequency band roughly corresponds

with the frequency band of non-planar wave fronts shown in Figs. 3.6 and 3.7.

Additionally, the modes at 277.5 and 747.9 Hz are two examples of mode shapes

with multiple nodes and anti-nodes along the length of the waveguide where the

full mode shapes are included in Fig. 3.14. The mode shapes in the 536 to 592 Hz

band in Fig. 3.14 confirms the existence of high amplitude waveguide structural

modes in the region where calibration measurements are performed and, therefore,

calibration data within this frequency band are deemed to be unusable.
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Chapter 4

Calibration of Underwater Electroacoustic

Receivers in a Standing-Wave Apparatus

As described in Sec. 1.2, underwater electroacoustic receivers can be cali-

brated in a standing-wave apparatus using a comparison method. This chapter

details the process of calibrating underwater electroacoustic receivers in such an

apparatus where Sec. 4.1 provides a brief overview of the steps taken to make a

calibration measurement in the waveguide, Sec. 4.2 describes the algorithm used to

post-process the raw standing-wave calibration measurement data and derives the

correction factor to relate these data to plane wave, free-field conditions. Sec. 4.3

describes the sources of error in the standing-wave calibration measurements, and

Sec. 4.4 presents comparisons of a pressure hydrophone, pressure-gradient vector

sensor, and accelerometer-based vector sensor calibration measurements taken in a

standing-wave field to those taken in a free-field.

4.1 Calibration Measurement Procedure

This section gives a brief overview of how to prepare the standing-wave

apparatus to perform calibration measurements. A detailed measurement procedure

is contained in Appendix B.

The calibration measurement setup of an underwater electroacoustic receiver

can be performed once the standing-wave apparatus is prepared as described in
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Sec. 3.2. First, the acoustic centers of the fully-submerged reference hydrophone

and the DUT are carefully placed at the same depth within a region 0.025 to

0.125 m below the air/water interface. Next, the operator ensures there are no

bubbles on the surfaces of either transducer, verifies that the acoustic source level

does not overload any preamplifier by ensonifying the waveguide and observing

the output of all desired channels of each transducer on an oscilloscope, and

appropriately sets the input voltage range of the analog-to-digital converter (ADC)

on the signal analyzer. The Agilent 35670A signal analyzer computes the transfer

function between all recorded channels relative to channel 1, to which the reference

hydrophone is connected. Next, an ambient noise measurement is taken with

the source amplifier turned off, and then the measurement is repeated with the

source turned on. Finally, once the calibration measurement has been completed,

the data are downloaded to a PC where they are post-processed using MATLAB.

Calibration computations of the omni and directional channels of a vector sensor

are performed from the same measurement where the post-processing algorithm

first processes the vector sensor omni channel sensitivity relative to the reference

hydrophone followed by the directional channel sensitivity relative to the calibrated

vector sensor omni.

4.2 Calibration Measurement Post-Processing Algorithm

Comparison calibration measurements are post-processed by compensating

for signal gain on each transducer, relating the measured voltage of the reference

hydrophone to the acoustic pressure through its sensitivity and then correcting

for the differences in the acoustic impedance between free and standing-wave

fields. The complex DUT sensitivity MDUT can be found from the calibration
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measurement transfer function by

MDUT = Ξsw(d, ω)

(
eout,DUTGrefMref

eout,refGDUT

)
, (4.1)

where eout,DUT is the voltage output of the DUT, Gi is the gain applied to each

transducer, eout,ref is the voltage output of the reference hydrophone, Mref is the

sensitivity of the reference hydrophone, and Ξsw(d, ω) is the correction term to

relate the standing-wave measurement to the free field. Ξsw(d, ω) is unity for

pressure hydrophones and is derived below for vector sensor directional channels.

The directional-channel correction term for a standing-wave field is necessary

since the frequency response (transfer function) measured between the vector sensor

directional channels and reference hydrophone channel depends on the acoustic

impedance of the field in which it is measured. The correction factor is derived

by determining the difference between the acoustic impedance of a standing-wave

field and a plane wave in a free field. The acoustic impedance at any point in a

standing-wave field was derived in Sec. 2.1.1 where Eq. (2.22) is repeated here for

convenience

Z(x, ω)sw = jρ0c0 tan(k(l − x)), (4.2)

which differs from the free-field, plane wave acoustic impedance

Zff = ρ0c0, (4.3)

by j tan(k(l − x)). Therefore

Ξsw(x, ω) =
Z(x, ω)sw

Zff

= j tan(k(l − x)). (4.4)
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Substitution of d = l − x and accounting for the complex phase velocity within

the waveguide from Eq. (2.34) will recast Eq. (4.4) as

Ξsw(d, ω) = j tan(keffd), (4.5)

where the complex correction factor accounts for both magnitude and phase

differences between the acoustic impedance of standing-waves and plane waves in

a free field.

The calibration algorithm uploads the linear spectra of all channels and the

transfer functions between the DUT channels and the reference hydrophone for

both the ambient noise and ensonified measurements along with the accompanying

metadata such as measurement depth, transducer preamplifier gain, and sensitivity

of the reference transducer. The calibrations are then computed as follows:

1. The signal-to-noise ratio between the ensonified and ambient data SNRi is

computed from the linear spectra of each channel and for all frequency bins

measured

SNRi = 20 log

(
eout,i,ens
eout,i,amb

)
, (4.6)

where eout,i,ens and eout,i,amb are the ensonified and ambient voltage output

levels, respectively, of each channel measured.

2. The transfer function between the DUT omni channel and the reference

hydrophone is used to determine the sensitivity of the DUT omni where

Eq. (4.1) is recast as

MDUT,omni =

(
eout,DUT,omniGrefMref

eout,refGDUT,omni

)
, (4.7)
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where eout,DUT,omni is the voltage output and GDUT,omni is the applied gain

for the DUT omni channel.

3. The signal analyzer computes the transfer function between the DUT di-

rectional channel and the reference hydrophone but the complex sensitivity

of the DUT directional channel relative to the DUT omni is the desired

output from the calibration. To this end, the transfer function between the

DUT directional channel and the reference hydrophone is normalized by the

transfer function between the DUT omni and the reference hydrophone

HDUT,dir/omni =
eout,DUT,dirGref/eout,refGDUT,dir

eout,DUT,omniGref/eout,refGDUT,omni

=
eout,DUT,dirGomni

eout,DUT,omniGdir

, (4.8)

where eout,DUT,dir is the voltage output and GDUT,dir is the applied gain for the

DUT directional channel. The complex sensitivity of the directional channel

is determined by applying the absolute value of the DUT omni sensitivity

MDUT,omni determined from Eq. (4.7) and the standing-wave impedance

correction factor Ξsw to the transfer function HDUT,dir/omni determined from

Eq. (4.8) as

MDUT,dir = j tan(keffd)
eout,DUT,dirGomni

eout,DUT,omniGdir

|MDUT,omni|, (4.9)

An SNR threshold of 10 dB is typically used for calibrations where any

frequency bin whose SNR for any measured channel does not meet this threshold

is not displayed in the calibration curve. Additionally, calibration data in the 536

to 592 Hz frequency band is discarded from the calibration result due to the non-

planar wavefronts induced by the structural resonance of the waveguide. Finally,

the magnitude and phase of the free-field-corrected receive voltage sensitivity
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(RVS) is plotted in dB re 1 V/µPa and degrees, respectively, and the complex

calibration data is stored. The MATLAB code of the calibration algorithm is

contained in Appendix C.

4.3 Sources of Calibration Error

Comparison calibration measurements in any acoustic field are susceptible

to errors arising from non co-located transducers, disruptions of the acoustic field

due to the inclusion of either the DUT or the reference hydrophone, inclusion of

bubbles on either transducer, and the effects of water temperature fluctuations.

As described throughout this thesis, calibration measurement errors in

a standing-wave apparatus can be caused by non-planar wavefronts within the

waveguide. Additionally, calibration error associated with placing a DUT omni

hydrophone and reference hydrophone at different depths can be estimated from the

ratio between the acoustic pressure at the two transducer depths in the waveguide.

The ratio is cast by substituting Eq. (2.2) into Eq. (2.21) and dividing the pressure

at each depth as

εd,mismatch =
sin(keffdDUT)

sin(keffdref)
(4.10)

where dDUT and dref are the depths of the DUT and reference hydrophone, re-

spectively. The error as a function of depth mismatch and frequency is shown

in Fig. 4.1 for a reference hydrophone depth of 0.075 m and depth mismatch of

0.001 to 0.005 m in 0.001 m increments. As shown in the figure, the calibration

measurement error from depth mismatch is approximately 0.11 dB per millimeter

of position error. Also, the frequency dependence of the error increases with with

increasing position error.
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Figure 4.1: Estimated error in calibration measurement εd,mismatch for two pressure
hydrophones placed at different depths and vector sensor directional channel
post-processing error εd from incorrect depth for d = 0.075 m.

Additionally, inaccuracies in the depth measurement of a co-located refer-

ence hydrophone and DUT will introduce errors in the calibration of vector sensor

directional channels. The correction term Ξsw shown in Eq. (4.5) is dependent on

the depth of the reference hydrophone and the DUT below the air/water interface.

The calibration measurement error generated from an incorrect depth placement is

εd =
tan(keffdDUT)

tan(keffd)
, (4.11)

where the magnitude of the calibration measurement error for a depth error of

0.001 to 0.005 m in 0.001 m increments when d = 0.075 m is shown in Fig. 4.1

and is also approximately 0.11 dB per millimeter of depth error. The frequency

dependence of the calibration measurement error associated with incorrect depth
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placement is greater than for the error associated with the DUT and reference

hydrophone placed at two different depths.

Finally, the equilibrium water temperature in the waveguide can vary

throughout the year between approximately 18 to 30◦ C. Consequently, the phase

velocity in the waveguide also has a seasonal dependence. The maximum, minimum,

and median temperature-dependent phase velocities are shown in Fig. 4.2. The

median estimated phase velocity at 24◦ C, described by Eq. (2.32) and shown

in Fig. 4.2, is used to compute keff in the post-processing algorithm. However,

the algorithm does not account for the temperature-dependent shift in the phase

velocity. The phase velocities for the temperature extremes vary from the median

phase velocity by approximately 14 m/s, which is 1% of the peak median phase

velocity. Error introduced by the water temperature uncertainty is ignored since

this effect induces magnitude errors on the order of 0.1 dB.

The author’s experience with performing calibration measurements in the

standing-wave apparatus has shown that the expected positional accuracy is±2 mm

for both the depth of the DUT and the co-location of the DUT omni and reference

hydrophone. Therefore, the nominal error associated with εd and εd,mismatch is

0.22 dB each. These errors and the error introduced from the water temperature

uncertainty combine for an estimated total measurement uncertainty of 0.54 dB

plus the uncertainty of the sensitivity of the reference hydrophone for calibration

measurements performed in the standing-wave apparatus.
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Figure 4.2: Comparison of predicted phase velocities for three equilibrium temper-
atures in the standing-wave apparatus.

4.4 Measurement Validation

Comparison calibration measurements of a pressure hydrophone, a pressure-

gradient vector sensor, and an accelerometer-based vector sensor were made in

the standing-wave apparatus. The pressure hydrophone and pressure-gradient

vector sensor were then calibrated in a free field at the Lake Travis Test Station

(LTTS) of Applied Research Laboratories: The University of Texas at Austin

(ARL:UT) [58] and the accelerometer-based vector sensor was calibrated in a large

tank at ARL:UT in order to validate the standing-wave calibration measurement

procedure and post-processing algorithm. The remainder of this section describes

the free-field measurement procedures, derives the correction factor for free-field
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calibration measurements of vector sensors when the receiver is not in the geometric

far-field of the source, compares the results between standing-wave and free field

calibration measurements, and provides a discussion of the author’s experience

with calibration measurements performed in a free field and in the standing-wave

apparatus.

4.4.1 Pressure Hydrophones

The first transducer calibration measurement performed in the standing-

wave apparatus was a Teledyne RESON TC4013 pressure hydrophone. The

standing-wave correction factor Ξsw for this transducer type is unity. Additionally,

the Teledyne RESON TC4013 is not calibrated below 5 kHz from the manufacturer

and this transducer was purchased as the reference hydrophone for the apparatus

due to its small size. The Teledyne RESON TC4013 was calibrated in a 25 to

2000 Hz frequency band in the standing-wave apparatus using a NUWC H52

standard hydrophone following the procedures delineated in Appendix B and

post-processed using the steps described in Sec. 4.2.

A free-field calibration was also performed at LTTS using a NUWC J9

projector and a NUWC H52 standard hydrophone (this was a different hydrophone

than what was used in the standing-wave apparatus) where the measurement setup

is illustrated in Fig. 4.3. Both the Teledyne RESON TC4013 and the NUWC

H52 were placed at a depth of approximately 3 m (the depth was limited by

the Teledyne RESON TC4013 cable length) and the source/receiver distance was

estimated to be 1.9 m ±0.1 m. The 10 cm uncertainty resulted because the

transducer locations are set at the surface and then the entire measurement setup

is lowered to the measurement depth. Precise control of the transducer locations
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is not possible at the current LTTS facility. The Teledyne RESON TC4013 and

NUWC H52 hydrophones were ensonified using a 30 ms tone burst at a single

frequency over a 100 to 2000 Hz frequency band in 25 Hz increments. The tone

burst was repeated four times at each frequency and the data were averaged and

stored for post-processing in LabVIEW. The recorded data was post-processed by

gating the received signal from both the Teledyne RESON TC4013 and NUWC

H52 with the edges of the gate corresponding to the arrival of the direct path of the

acoustic wave and the arrival of the surface reflection. The signal amplitude at each

frequency was determined by a peak detection algorithm, the mean value of the

amplitude of the peaks was calculated at each frequency, and the transfer function

between the Teledyne RESON TC4013 and the NUWC H52 was computed in order

to determine the sensitivity of the Teledyne RESON TC4013. The comparison

between the calibration measurements performed in the apparatus and at LTTS

are shown in Fig. 4.4. Figure 4.4 shows that the two calibration measurements

agreed within 0.6 dB within the overlapping frequency band.

4.4.2 Pressure-Gradient Vector Sensors

The next transducer calibrated was a pressure-gradient vector sensor de-

signed as an engineering prototype at ARL:UT. The transducer was calibrated

in both the apparatus and at LTTS. The calibration measurement in the waveg-

uide was performed at a depth of 0.078 m and utilized the calibrated Teledyne

RESON TC4013 as the reference hydrophone and the calibration measurement

was post-processed as described in Sec. 4.2. The calibration measurement made

at LTTS was performed at a depth of 9 m using a NUWC J9 projector where

the source/receiver distance was 1.9 m ± 0.1 m, the reference was a NUWC
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Figure 4.3: Illustration of calibration measurement setup of the Teledyne RESON
TC4013 hydrophone calibration of LTTS.

H52 standard hydrophone, and the speed of sound in the water was measured

to be 1491 m/s. The transducers were ensonified and post-processed using the

same gated-burst technique as described in Sec. 4.4.1. First, the omni channel

of the DUT was calibrated to the NUWC H52 standard hydrophone. Next, the

NUWC H52 was removed and the directional channels of the DUT were calibrated

using the calibrated DUT omni channel as the reference. The directional channel

calibrations were post-processed at LTTS using the same technique as for the DUT

omni channel.

The conditions at LTTS on the day the pressure-gradient vector sensor and

Teledyne RESON TC4013 pressure hydrophone were calibrated were conducive to

more accurate calibration measurements due to low ambient acoustic noise levels

in Lake Travis. The measurement was performed on 30 October, 2013 on a very
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calm day with no recreational boat traffic.

The source/receiver distance for the directional channel calibration at LTTS

was such that the acoustic wave was propagating spherically but the frequency

response of vector sensor directional channel calibrations are presented for plane

waves. The reason for this source/receiver distance was to both increase the SNR

of the measurement and to increase the time between the initial direct path and

surface-reflected arrivals. This leads to measurements in the geometric near field

of the source which must be corrected. The correction factor is determined by

the difference in the acoustic impedance between plane and spherical waves. The
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acoustic impedance of spherical waves from Ref. [17] is

Zsph =
ρ0c0

1 + 1/jkrsr
, (4.12)

where rsr is the distance from the observation point to the source. The free field

spherical-to-plane wave correction factor for a vector sensor directional channel is

Ξff,sph =
Zff

Zsph

. (4.13)

Equation (4.13) can be recast by substituting Eqs. (4.3) and (4.12) as

Ξff,sph =
1

1 + 1/jkrsr
, (4.14)

where Ξff,sph is shown in Fig. 4.5(a) for a range of source/receiver distances and

frequencies using a speed of sound of 1491 m/s. Figure 4.5(a) shows that the

impedance difference between spherical and plane waves are significant for small

values of krsr. Figure 4.5(b) illustrates the correction factors for a source/receiver

distance of 1.9 m and 1491 m/s speed of sound and for a source/receiver distance

of 0.8 m and 1499 m/s speed of sound used in Ξff,sph for the calibration described

in Sec. 4.4.3. The correction factor required for the pressure-gradient vector

sensor calibration measurement described here is the curve for the source/receiver

distance of 1.9 m. Figure 4.5(b) shows that at the low frequency limit of the LTTS

calibration measurement, the error in the uncorrected magnitude is 4 dB while

the phase error is 51◦.

Figure 4.6 shows the comparison between the free field, plane-wave-corrected

calibration measurements made in the standing-wave apparatus and at LTTS. The

magnitude of the two calibrations agree within 1 dB at most frequencies above

200 Hz but errors in the measurement of the source/receiver distance may have
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led to the discrepancy seen between the two curves at the lower frequencies. The

LTTS calibration facility does not provide phase calibrations of vector sensors but

does provide the time series data for the calibration measurement. From this data,

the author estimated the phase of the directional channel by cross-correlating the

DUT omni and directional channel signals for each frequency measured in order to

determine the time delay between the two channels. This delay was then related to

the period of the signal at each frequency in order to estimate the phase difference

in degrees. The ripples in the LTTS phase measurement are caused by noise in

the cross-correlation approach.
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Figure 4.6: Comparison of the results of a pressure-gradient vector sensor calibra-
tion measurement between the standing-wave apparatus and at LTTS.
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4.4.3 Accelerometer-Based Vector Sensors

Calibration measurements of an accelerometer-based vector sensor were

made in both the standing-wave apparatus and the large tank at ARL:UT. The

make, model, and RVS levels of the vector sensor are suppressed at the request of

the manufacturer but a quantitative comparison between standing-wave and free

field calibration measurements can still be presented by relating the magnitude of

the RVS of the calibrations to an arbitrary reference.

The calibration measurement of the accelerometer-based vector sensor was

made in the waveguide at a depth of 0.075 m using the calibrated Teledyne RESON

TC4013 as the standard. The calibration measurement was post-processed using

MATLAB in the same manner as described in Sec 4.4.2. The omni channel of the

DUT was calibrated to the Teledyne RESON TC4013 standard and then a single

directional channel was calibrated to the DUT omni. The free field calibration

measurement was performed at a depth of 3.4 m in a cylindrical tank of 18 m

diameter and 12 m depth using a NUWC J13 projector as the source, the calibrated

Teledyne RESON TC4013 as the reference hydrophone, a source/receiver distance

of 0.8 m, and a speed of sound estimate of 1499 m/s from the measured water

temperature. The DUT and reference hydrophone were ensonified in a frequency

band from 600 to 2000 Hz in 100 Hz increments using a 10 cycle tone burst where

the lowest frequency measured was limited by the shallow test depth. The data

were recorded using a Tektronix TDS2004C oscilloscope where each tone burst

was time-averaged 64 times and the data were downloaded at the end of each test

to be post-processed using MATLAB. First, the DUT omni was calibrated to the

Teledyne RESON TC4013 reference hydrophone and then the DUT directional
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channel was calibrated to the DUT omni.

The data were post-processed in MATLAB by computing the FFT of each

channel and then computing the transfer function between the unknown channel

and the reference. The magnitude and phase of this transfer function was computed

and each were corrected for the impedance difference between spherical and plane

waves. The correction factor Ξff,sph for the source/receiver distance of 0.8 m and

speed of sound of 1499 m/s is shown in Fig. 4.5(b). This figure illustrates the error

in the uncorrected tank calibration measurement to be as high as 10 dB for the

magnitude and 70◦ for the phase.

The comparison of the calibration measurements performed in the standing-

wave apparatus and in the large tank are shown in Fig. 4.7. Figure 4.7 shows that

the two calibration measurements agree within 1 dB between 600 and 1400 Hz

but begin to deviate above 1400 Hz. The discrepancy is possibly due to co-

location errors between the DUT and the reference hydrophone for the DUT omni

calibration.

4.4.4 Commentary on Calibration Measurements

The author has obtained significant experience in conducting low fre-

quency calibration measurements of underwater electroacoustic receivers before

and throughout the development of the standing-wave apparatus. This experience

has shown the level of difficulty in obtaining accurate calibration results when per-

formed in a free field. Sources of measurement error in any comparison calibration

include high levels of both persistent and transient acoustic noise, electromagnetic

interference (especially at power line frequencies), and inaccurate co-location of the
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Figure 4.7: Comparison of the results of an accelerometer-based vector calibration
measurement between the standing-wave apparatus and in a large tank.

DUT and reference hydrophone. It was found that these error sources generally

have been easier to control when performed in a laboratory-based standing-wave

apparatus than for a free field. Additionally, calibration measurement limitations

associated only with free field calibrations include the ability to obtain and main-

tain accurate measurements of the source/receiver distance, the effects of reflecting

bodies such as facility boundaries and fish, and the ability for the source and

receiver to reach a steady-state response within the time between the arrivals of

the direct path and surface-reflected wavefronts.
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Chapter 5

Conclusion and Future Work

This thesis has presented the development of a laboratory-based, standing-

wave apparatus to perform comparison calibration measurements of underwater

electroacoustic receivers. Calibration measurements performed in such an appara-

tus allow one to mitigate some of the difficulties associated with free field calibration

measurements such as reducing ambient noise levels, precisely co-locating the DUT

and the reference hydrophone, determining and maintaining the source/receiver

distance, and avoiding interference from reflecting bodies.

The development of the standing-wave apparatus began with analytical and

numerical modeling of a standing-wave field inside an elastic-walled waveguide. The

result of this modeling was a 4 m long, vertically-oriented, water-filled waveguide

constructed from a 16 inch Schedule 120 steel pipe with a pressure release boundary

condition at the top and a velocity boundary condition at the bottom. Modeling

showed that this apparatus would support propagation of the ET0 (near-plane

wave) mode to zero frequency with minimal dispersion. Additionally, the high

frequency limit for calibration measurements of a DUT with a diameter of 0.1 m

was determined to be 2000 Hz and was limited by the size of a region within the

waveguide that was free of nulls in both the pressure and pressure gradient fields.

Three-dimensional FEA models of the water-filled waveguide were created in order
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to identify its structural modes and anticipate their effects on the acoustic pressure

field within the waveguide.

A velocity source was designed using a piston/shaker assembly. The piston

was designed in a manner to decouple its motion from the waveguide walls in

order to reduce the amplitude of the ET1 mode. The operating frequency band of

the selected shaker was 20 to 3000 Hz, therefore, the design frequency band for

calibration measurements in the standing-wave apparatus is 20 to 2000 Hz.

Vibration isolation systems for the waveguide and sensors were designed

utilizing mass-spring-damper systems in order to reduce the amplitude of spurious

vibrations. The sensor isolation system is mounted to a vertically-oriented linear

actuator that allows one to accurately position the DUT and reference transducer

within the waveguide. The calibration measurement data are collected using an

Agilent 35670A signal analyzer and the analyzer, linear actuator, and measurement

parameters are automated using a LabVIEW software program.

The standing-wave apparatus was characterized using a series of measure-

ments. A swept-sine source signal type was chosen for calibration and characteri-

zation measurements since it avoids the high transients associated with periodic

chirps. During these measurements, it was found that the displacement of the

moving mass within the source shaker was high enough to hit the stops at frequen-

cies below 25 Hz. Therefore, the apparatus calibration measurement frequency

band is limited to 25 to 2000 Hz.

The acoustic field within the waveguide is made repeatable by degassing the

tap water, allowing the system to reach thermal equilibrium with the waveguide,

and ensuring that the water level within the waveguide remains constant. Phase
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velocity measurements were performed to verify the phase velocity predicted by

the Lafleur and Shields algorithm where the measurements and predictions agreed

to within 1%.

Acoustic field measurements were performed in order to validate the an-

alytical model of the standing-wave field, identify the locations of nulls in the

pressure and pressure gradient fields, verify a region within the standing-wave field

suitable for calibration measurements, and determine the maximum obtainable

SPL within this region. The result of these measurements showed the analytical

model accurately predicted the acoustic field within the waveguide, and that a

region 0.025 to 0.125 m below the air/water interface was free of nulls in both the

pressure and pressure gradient fields. The range of SPL within this region is 88

to 174 dB re 1 µPa and is deemed sufficient for calibration measurements. The

planarity of the wavefront in the calibration measurement region was determined

by scanning a Teledyne RESON TC4013 hydrophone in depth and at 13 positions

along the diameter of the waveguide. The result from the measurement showed

that the wavefronts were planar to within 1 dB for all depths and radial positions

and throughout the 25 to 2000 Hz frequency band except between 536 to 580 Hz

and at 659 Hz.

Measurements to characterize the waveguide and sensor isolation systems

were performed and the results showed that both systems provided at least 20 dB

of vibration amplitude reduction at 25 Hz. Additionally, structural measurements

were made to determine the mode shapes of both the source piston and waveguide.

The result of these measurements showed a piston mode at 1863 Hz and several

structural modes of the steel pipe within a 536 to 592 Hz band. Correlation with
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acoustic measurements revealed that the piston mode does not disrupt the expected

acoustic field but that disruptions of the acoustic pressure field within the 536 to

580 Hz frequency band and at 659 Hz are caused by waveguide structural modes.

Finally, a standing-wave calibration measurement procedure and post-

processing algorithm were developed. Sources of measurement error for standing-

wave calibrations were identified and the total measurement uncertainty was

determined to be ± 0.54 dB. Comparison calibration measurements were per-

formed in both the standing-wave apparatus and in a free field for a Teledyne

RESON TC4013 pressure hydrophone, a pressure-gradient vector sensor, and

an accelerometer-based vector sensor. Correction factors for both standing- and

spherical- waves were derived to relate the results of vector sensor calibration

measurements in these acoustic fields to a plane wave field. The calibration results

for the transducers measured were presented and the agreement between the

standing-wave and free field results are within 0.6 dB for the pressure hydrophone,

1 dB for most frequencies above 200 Hz for the pressure-gradient vector sensor, and

within 1 dB between 600 and 1400 Hz for the accelerometer-based vector sensor.

Continued development of the standing-wave apparatus should include

performing calibration measurements of a geophone-based vector sensor in both

the standing-wave apparatus and in a free field, attempting to reduce the impact

of the structural resonance frequencies of the waveguide in the frequency band

between 536 and 592 Hz, and evaluating the feasibility of directivity measurements

in the standing-wave apparatus.
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Appendix A

Design Computations

A.1 Lafleur and Shields Algorithm

The following code is an adaptation of a code by Sagers, which was itself

an adaptation of the original code by Wilson.

clear all; clc;
% Script to calculate elastic waveguide phase speeds from
% Lafleur and Shields, JASA 97(3):1434-1445
%
% Maps out Cphase vs. Frequency by displaying the
% zero contour of Eq. 5
%
%
% Set C0m: the phase speeds that you are interested in observing
% C1 = intrinsic velocity of sound in fluid (m/s)
% Cc = compressional velocity of sound in solid (m/s)
% Cs = shear velocity of sound in solid (m/s)
%
% b = inner radius of cylinder (m)
% d = outer radius of cylinder (m)
% pl = density of liquid
% pw = density of cylinder wall material
%
% w = angular frequency (rad/s) - CAN BE AN ARRAY!!
% C0m = phase velocity of axisymmetric wave in system (m/s)

%% Input Parameters -----------------------------------------------

C0m = 800:5:7500; %Set sound speed range of ...
interest. (m/s)

fmax = 8000; %max value frequency (Hz)
fmin = 0; % start value frequency (Hz)
N = 100; % number of frequency steps
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% Material parameters

T = 24; %temperature of waveguide

C1 = BilaniukandWong(T); %Speed of sound of pure water

mat = 'A36';

switch(mat)
case 'PVC' %From McConnell Thesis Table 4.1

Y = 2.7e9; %GPa
nu = .5;
pw = 1295;
G = Y./(2*(1+nu));
Cc = sqrt((Y*(1-nu))/((pw*(1+nu)*(1-2*nu))));
Cs = sqrt(G/pw);
pw = 1295;

case 'al'
Cc = 6300;
Cs = 3173;
pw = 2800;

case 'ss'
Cc = 6100;
Cs = 3283;
pw = 9000;

case 'A36'
pw = 7850;
Cc = 5583;
Cs = 3178;

end

% Dimensional inputs
b = 13.562/2*.0254;
d = 8*.0254;

pl = 997;

%% Calculations ----------------------------------------------------
wf = 2*pi*fmax; % final frequency
w0 = 2*pi*fmin; % initial frequency
dw = (wf-w0)/(N-1);

sum = complex(zeros(N,length(C0m)));

for n = 1:N
n;
w = (n-1)*dw + w0;
f(n) = w/2/pi;
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sum(n,:) = LandS eqsolvr2(C0m,w,C1,Cc,Cs,b,d,pl,pw);
end

lambda = C1./f;

%% Rigid wall dispersion curve -------------------------------------
ap01 = 0;
ap02 = 3.832;
ap03 = 7.016;
ap04 = 10.173;
ap05 = 13.324;

c01 = C1./sqrt(1-(ap01*C1./(2*pi*f*b)).ˆ2); c01(c01<1) = NaN;
c02 = C1./sqrt(1-(ap02*C1./(2*pi*f*b)).ˆ2); c02(c02<1) = NaN;
c03 = C1./sqrt(1-(ap03*C1./(2*pi*f*b)).ˆ2); c03(c03<1) = NaN;
c04 = C1./sqrt(1-(ap04*C1./(2*pi*f*b)).ˆ2); c04(c04<1) = NaN;
c05 = C1./sqrt(1-(ap05*C1./(2*pi*f*b)).ˆ2); c05(c05<1) = NaN;

%% Plots -----------------------------------------------------------
figure()
clf
[C,h] = contour(f,C0m,real(sum)',[-0 0],'LineWidth',2,'Color',[0 ...

0 0]);
title('Phase Speed in 16" SCH 120 ...

Waveguide','FontSize',12,'FontWeight','bold')
ylabel('phase speed (m/s)','FontSize',12,'FontWeight','bold')
xlabel('frequency (Hz)','FontSize',12,'FontWeight','bold')
set(gca,'FontSize',12,'FontWeight','bold')
hold on
plot(f,C1.*ones(1,length(f)),'cy','LineWidth',2)

function [ c ] = BilaniukandWong( T )
% Speed of sound in pure water as a function of temperature
% Inputs: Water temperature in degrees C

c = 1.40238677*1e3 + 5.03798765.*T - 5.80980033*1e-2.* T.ˆ2 + ...
3.34296650*...
1e-4.* T.ˆ3 - 1.47936902 *1e-6 .*T.ˆ4 + 3.14893508 *1e-9 .*T.ˆ5;

end

function sum = LandS eqsolvr(C0m,w,C1,Cc,Cs,b,d,pl,pw)
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q0m = w./C0m;
kl = w/Cc;
kt = w/Cs;
k1 = w/C1;

X0m = b*sqrt(k1ˆ2-q0m.ˆ2);
Pm = sqrt(kl.ˆ2-q0m.ˆ2);
Tm = sqrt(kt.ˆ2-q0m.ˆ2);
Em = q0m.ˆ2 - kt.ˆ2/2;

Qm = ...
(pl*wˆ2*b*besselj(0,X0m))./(2*pw*Cs.ˆ2*X0m.*besselj(1,X0m));

% Define L terms
L00 Pm = besselj(0,d*Pm).*bessely(0,b*Pm) - ...

besselj(0,b*Pm).*bessely(0,d*Pm);
L00 Tm = besselj(0,d*Tm).*bessely(0,b*Tm) - ...

besselj(0,b*Tm).*bessely(0,d*Tm);

L01 Pm = besselj(0,d*Pm).*bessely(1,b*Pm) - ...
besselj(1,b*Pm).*bessely(0,d*Pm);

L01 Tm = besselj(0,d*Tm).*bessely(1,b*Tm) - ...
besselj(1,b*Tm).*bessely(0,d*Tm);

L10 Pm = besselj(1,d*Pm).*bessely(0,b*Pm) - ...
besselj(0,b*Pm).*bessely(1,d*Pm);

L10 Tm = besselj(1,d*Tm).*bessely(0,b*Tm) - ...
besselj(0,b*Tm).*bessely(1,d*Tm);

L11 Pm = besselj(1,d*Pm).*bessely(1,b*Pm) - ...
besselj(1,b*Pm).*bessely(1,d*Pm);

L11 Tm = besselj(1,d*Tm).*bessely(1,b*Tm) - ...
besselj(1,b*Tm).*bessely(1,d*Tm);

% Sum
sum = 1 + ( L11 Pm.*L00 Tm ).*( ...

(piˆ2.*q0m.ˆ2.*b.*d.*Pm.ˆ2.*Tm.ˆ2)./(8*Em.ˆ2) ) + ( ...
L11 Tm.*L00 Pm ).*( (piˆ2*b*d*Em.ˆ2)./(8*q0m.ˆ2) )...

+ ( L10 Pm.*L01 Tm + L01 Pm.*L10 Tm ).*( ...
(piˆ2*b*d*Pm.*Tm)./(8) )...

+ ( b*L11 Pm.*L10 Tm + d*(1+Qm*b).*L11 Pm.*L01 Tm ).*( ...
(piˆ2*Pm.ˆ2.*Tm)./(8*Em) - ...
(piˆ2*Pm.ˆ2.*q0m.ˆ2.*Tm)./(8*Em.ˆ2) )...

+( b*L11 Tm.*L10 Pm + d*(1+Qm*b).*L11 Tm.*L01 Pm ).*( ...
(piˆ2*Pm.*Em)./(8*q0m.ˆ2) - (piˆ2*Pm)./(8) )...

+( (1 + Qm*b).*L11 Tm.*L11 Pm ).*( (piˆ2*Pm.ˆ2)./(8*q0m.ˆ2) ...
+ (piˆ2*Pm.ˆ2.*q0m.ˆ2)./(8*Em.ˆ2) - ...
(piˆ2*Pm.ˆ2)./(4*Em) );
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A.2 Algorithm to Predict Acoustic Field within 16 inch
Schedule 120 Steel Waveguide

Code to compute transfer function between acoustic pressure and piston

velocity shown in Fig. 2.5, and Fig. 3.4 and transfer function between pressure

gradient and piston velocity shown in Fig. 2.6.

clear all; clc;

% Script to compute transfer function between acoustic pressure ...
and piston

% velocity in a waveguide constructed from a 16" Schedule 120 ...
steel pipe

%Define frequency vector
f = 1:5:2000;
w = 2*pi*f;

%Properties of waveguide
rho = 997; %density of water
c = -7.39e-6.*f.ˆ2+.0018.*f+1.397e3; %from Lafleur and ...

Shields alg.
rp = .133; %radius of piston
Sp = pi*rpˆ2; %area of piston
rt = .17; %inner radius of pipe
St = pi*rtˆ2; %area of inner pipe
l = 4; %length of pipe
mu = .907e-3; %viscosity of water
alpha = 1./rt.*sqrt(mu.*w./(2*rho.*c.ˆ2)); %attenation from ...

viscosity
k = w./c+ (1-1i).*alpha;

%% Compute frequency response in waveguide

dx = .005;
d = 0:dx:l;
for ii=1:length(d)

TF(ii,:) = Sp/St.*rho./1e-6.*c.*sin(k.*d(ii))./cos(k.*l);
end

%Compute pressure gradient in waveguide
for ii=1:length(d)
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grad(ii,:) = ...
-Sp/St.*rho./1e-6.*2*pi.*f.*cos(k.*d(ii))./cos(k.*l);

end

%% P l o t
ind = find(d == 4);
TFsm = TF(1:ind,:);
%
figure(),clf
imagesc(f,d(1:ind),20*log10(abs(TFsm)))
h1 = colorbar;
set(gcf,'Name','TF from Simple Model')
caxis([200 280])
xlabel('Frequency (Hz)','FontSize',12,'FontWeight','bold')
ylabel('Depth (m)','FontSize',12,'FontWeight','bold')
ylabel(h1,'dB re 1 uPa/m/s','FontSize',12,'FontWeight','bold')
set(gca,'FontSize',12,'FontWeight','bold')
title('Transfer Function Between Acoustic Pressure and Piston ...

Velocity')

figure(),clf
imagesc(f,d,20*log10(abs(grad)))
h1 = colorbar;
set(gcf,'Name','Gradient of TF from Simple Model')
caxis([200 280])
xlabel('Frequency (Hz)','FontSize',12,'FontWeight','bold')
ylabel('Depth (m)','FontSize',12,'FontWeight','bold')
ylabel(h1,'dB re 1 uPa/m/m/s','FontSize',12,'FontWeight','bold')
set(gca,'FontSize',12,'FontWeight','bold')
title('Axial Gradient of Transfer Function Between Acoustic ...

Pressure and Piston Velocity')

figure(),clf
plot(f,20*log10(abs(TF(101,:))),'r')
set(gcf,'Name',['TF from Simple Model at ', num2str(d(ind)), ' m'])

A.3 Three-Dimensional Mode Shapes of 16 inch Sched-
ule 120 Steel Waveguide Predicted by COMSOL
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Appendix B

Standing-Wave Apparatus Calibration

Measurement Procedure

The following procedure is to be performed for comparison calibrations in

the standing-wave apparatus once the waveguide has been prepared according to

Sec. 3.2:

1. Fill out the fields in the LabVIEW data collection system control GUI seen

in Fig. B.1. These fields include DUT name and serial number, calibration

measurement frequency band, source signal level, frequency resolution desired,

signal gain applied to all channels, water depth in waveguide, the measured

percent dissolved oxygen, and DUT depth under the air/water interface. The

transducer position is controlled through a LabVIEW position control GUI

shown in Fig. B.2.

2. Use a water-filled sheath to hold the reference hydrophone and house its

cable. Place only the reference hydrophone at the calibration depth for the

DUT, ensonify the waveguide, and measure the SPL at the test depth. This

measurement will be used to benchmark the acoustic field of the waveguide

without a DUT in order to determine if the DUT disrupts the acoustic field

when placed at the measurement depth.
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3. Suspend the DUT in a suitable manner for calibrations below the sensor isola-

tion mass and lower the transducer into the water until it is fully submerged.

Measure the water level in the waveguide and remove the volume of water

displaced by the DUT. This step is unnecessary for pressure hydrophones

and may be unnecessary for small vector sensors but is imperative for larger

vector sensors.

4. Level the DUT relative to the waterline to ensure that the desired transducer

response axis is parallel to the axis of revolution of the waveguide and

position the acoustic center of the DUT using the PC-controlled actuator to

the desired test depth, typically 0.075 m below the air/water interface. It is

important to perform this step with the DUT fully submerged in order to

account for any change in the position due to the compliance of the DUT

mounts.

5. Inspect all surfaces of the DUT and reference hydrophone to ensure no

bubbles are attached to either transducer. A small, water-filled syringe is

useful for removing bubbles from blind holes and pockets in either transducer.

6. Ensonify the waveguide and measure the SPL using the reference hydrophone

and compare this measurement to that taken without the DUT. Ensure

that the two measurements agree within 1 dB re 1 µPa across the frequency

band desired for the calibration measurement. Generally, if disruptions to

the acoustic pressure field occur, it is only at the high end of the measure-

ment frequency band and calibration measurements can still be performed

accurately but in a reduced frequency band.
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7. Ensonify the waveguide while observing the voltage output of the DUT

on an oscilloscope to ensure that any related transducer preamplifier does

not overload. Once the optimum SPL inside the waveguide is determined,

connect the DUT output to the signal analyzer, ensonify the waveguide,

and set the input voltage range of the analog-to-digital converter (ADC)

on the signal analyzer to ensure that the DUT and reference hydrophone

output voltages at the resonance frequencies of the waveguide are within

the half-range and maximum values of the ADC. The input voltage range is

entered in the LabVIEW ADC voltage range GUI shown in Fig. B.3.

8. Turn off the piston/shaker assembly power amplifier and record the ambient

noise of the DUT and the reference hydrophone. This data will be downloaded

to the PC and stored in order to determine the SNR of the ensonified

calibration measurement.

9. Ensonify the waveguide while ensuring that no channel overloads during the

measurement, record the voltages of the reference hydrophone and DUT

channels, and download them to a PC to be post-processed in MATLAB.

For a high sensitivity DUT, it is important to observe the ambient noise in

the laboratory to ensure that it does not change significantly during the test.

If a transient noise occurs during the calibration measurement, it is up to

the operator to consider repeating the measurement to ensure a satisfactory

SNR was achieved.

10. Run the post-processing algorithm and inspect the results. It is recommended

to perform the calibration measurement several times where the DUT is
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removed from and replaced in the water, the DUT is inspected and any bub-

bles are removed, and the DUT depth is verified between each measurement.

This process is to ensure that the results are repeatable.

11. Save the frequency vector and final complex calibration result.
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Figure B.3: LabVIEW ADC voltage range GUI.
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Appendix C

Standing-Wave Apparatus Calibration

Measurement Post-Processing Algorithm

% Script to post-process calibration measurements taken in the
% standing-wave apparatus at ARL

% Channel 1 is reference hydrophone
% Channel 2 is DUT omni
% Channel 3 is DUT directional channel
% Channel 4 N/C

% Both ensonified and ambient noise measurements must be taken
% with NO changes to setup between measurements

%%
clear all; clc;

%% Define path and file names to the *.tdms files
% Get path and filename to ambient noise measurement
[datafile.amb.filename,datafile.amb.pathname,¬] = ...

uigetfile('*.tdms','Select Ambient Noise file');

% Get path and filename to calibration measurement -----------
[datafile.cal.filename,datafile.cal.pathname,¬] = ...

uigetfile('*.tdms','Select Calibration Data file');

%% Read in the data files ------------------------------------
A = convert TDMS([datafile.amb.pathname ...

datafile.amb.filename]);
C = convert TDMS([datafile.cal.pathname ...

datafile.cal.filename]);
clc

%% Simple error checking --------------------------------------
if any(A(1,1).frequency.data 6= C(1,1).frequency.data)
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error('The frequency vectors in the AMBIENT and CALIBRATION ...
data files are different');

end

%% Default processing parameters --------------------------
f = A(1,1).frequency.data; % freq vector [Hz]
omega = 2*pi*f; % freq vector [rad/s]
c = -7.39e-6.*f.ˆ2 + 0.0018.*f + 1397; %phase velocity ...

estimated by L&S at 24 C [m/s]
a = .1722; %inner radius of ...

waveguide [m]
mu = .907e-3; %viscosity of water ...

at 24 C
alpha = (1/a)*sqrt(mu.*(2*pi*f)./(2*997.*(c).ˆ2)); %attenuation ...

from viscosity between water and wall
k = omega./c + (1-1i)*alpha; % complex wavenumber ...

from phase velocity and losses
d = A(1,end).Props.effective distance m ; %depth of DUT ...

below surface [m]

%% Process calibration data ---------------------------------
% Load calibration measurement data
% Need linear spectra and transfer functions

Npts.amb = numel(A)-1;
Npts.cal = numel(C)-1;

% Loop over channel number
for i = 1:4

Amb{i}.sensor.type = ...
eval(['A(1,end).Props.Channel ',num2str(i),' Device;']);

Amb{i}.sensor.brand = ...
eval(['A(1,end).Props.Channel ',num2str(i),' Options;']);

Amb{i}.gain.dB = eval(['str2double(A(1,end).Props.Channel ',...
num2str(i),' Gain);']);
Amb{i}.gain.lin = 10ˆ(Amb{i}.gain.dB/20);
Amb{i}.sens.dB = eval(['A(1,end).Props.Channel ',...
num2str(i),' Sensitivity;']);
Amb{i}.sens.lin = 10ˆ(Amb{i}.sens.dB/20);

Cal{i}.sensor.type = ...
eval(['C(1,end).Props.Channel ',num2str(i),' Device;']);

Cal{i}.sensor.brand = ...
eval(['C(1,end).Props.Channel ',num2str(i),' Options;']);

Cal{i}.gain.dB = eval(['str2double(C(1,end).Props.Channel ',...
num2str(i),' Gain);']);
Cal{i}.gain.lin = 10ˆ(Cal{i}.gain.dB/20);
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Cal{i}.sens.dB = ...
eval(['C(1,end).Props.Channel ',num2str(i),' Sensitivity;']);

Cal{i}.sens.lin = 10ˆ(Cal{i}.sens.dB/20);

% Loop over the number of measurement points and extract the data
for in = Npts.amb:-1:1

Amb{i}.spect.linsq(in,:) = ...
eval(['A(1,in).ch',num2str(i),' power spectrum.data;']);

Cal{i}.spect.linsq(in,:) = ...
eval(['C(1,in).ch',num2str(i),' power spectrum.data;']);

if i > 1
realtemp = eval(['C(1,in).c ',num2str(i),'...
1 frequency response real .data']);
imagtemp = eval(['C(1,in).c ',num2str(i),'...
1 frequency response imag .data']);
Cal{i}.spect.frf(in,:) = realtemp + 1j*imagtemp; ...

% Complex FRF relative to channel 1 [V/V]
end

clear realtemp imagtemp
end

end

%% Load in measured Reson calibration file --------------
load('Reson TC4013 SN 2212234 Sens.mat')
load('Reson TC4013 SN 2212263 Sens.mat')

% Linearize the Reson sensitivity
Reson.f = linspace(25,2000,801);

Reson.SN2212234.dB = Reson TC4013 SN 2212234 Sens;
Reson.SN2212234.lin = 10.ˆ(Reson.SN2212234.dB/20);
Reson.SN2212234.lin = interp1(Reson.f,Reson.SN2212234.lin,f);

Reson.SN2212263.dB = Reson TC4013 SN 2212263 Sens;
Reson.SN2212263.lin = 10.ˆ(Reson.SN2212263.dB/20);
Reson.SN2212263.lin = interp1(Reson.f,Reson.SN2212263.lin,f);

%% SNR computations ------------------------------------
% Check each channel
for i = 1:4

Cal{i}.SNR = 10*log10(abs(Cal{i}.spect.linsq))-...
10*log10(abs(Amb{i}.spect.linsq));
Cal{i}.SNRidx = find(Cal{i}.SNR < 10);

end

% find indices of 536-592 Hz band
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[¬,indres1] = min(abs(f-536));
[¬,indres2] = min(abs(f-592));

SNRidx = unique([Cal{1}.SNRidx Cal{2}.SNRidx ...
Cal{3}.SNRidx indres1:indres2]);

%% Calculations --------------------------------------------
ResonColor = 'yellow';
switch ResonColor

case 'red'
DUT.omni.sens = ...

(Cal{2}.spect.frf).*(Cal{1}.gain.lin./Cal{2}.gain.lin)...
.*Reson.SN2212263.lin;

case 'yellow'
DUT.omni.sens = ...

(Cal{2}.spect.frf).*(Cal{1}.gain.lin./Cal{2}.gain.lin)...
.*Reson.SN2212234.lin;

end

DUT.dir.sens = ((Cal{3}.spect.frf.*Cal{2}.gain.lin) ./ ...
(Cal{2}.spect.frf.*Cal{3}.gain.lin))...

.*abs(DUT.omni.sens).*(1j.*tan(k*d));

DUT.omni.sens dB sm = smoothn(20*log10(abs(DUT.omni.sens)),5);
DUT.dir.sens dB sm = smoothn(20*log10(abs(DUT.dir.sens)),5);
DUT.dir.sens phase = smoothn(180/pi*angle(DUT.dir.sens),5);

DUT.dir.sens(SNRidx) = NaN;
DUT.dir.sens dB sm(SNRidx) = NaN;
DUT.dir.sens phase(SNRidx) = NaN;
DUT.omni.sens(SNRidx) = NaN;
DUT.omni.sens dB sm(SNRidx) = NaN;

%%
figure(),clf
subplot 211
semilogx(f,DUT.dir.sens dB sm,'LineWidth',2)
ylabel('RVS (dB re 1V/\muPa)','FontSize',12,'FontWeight','bold')
set(gca,'FontSize',12,'FontWeight','bold')
title({'Directional Channel Receive Sensitivity','Test Date' ...

A(1,end).Props.date of test})

grid on
xlim([10 2000])

subplot 212
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semilogx(f,DUT.dir.sens phase,'LineWidth',2)
ylabel('Phase (degrees)','FontSize',12,'FontWeight','bold')
xlabel('Frequency (Hz)','FontSize',12,'FontWeight','bold')
ylim([-200 200])
set(gca,'FontSize',12,'FontWeight','bold')
grid on
xlim([10 2000])

figure(),clf
semilogx(f,DUT.omni.sens dB sm,'LineWidth',2)
ylabel('RVS (dB re 1V/\muPa)','FontSize',12,'FontWeight','bold')
set(gca,'FontSize',12,'FontWeight','bold')
title({'Omni Channel Receive Sensitivity','Test Date' ...

A(1,end).Props.date of test})
grid on
xlim([10 2000])
ylim([min(DUT.omni.sens dB sm)-10 max(DUT.omni.sens dB sm+10)])

function [z,s,exitflag] = smoothn(varargin)

% Smoothn is a robust, automatic smoothing routing written by ...
Anil Gannepalli.

% http://www.mathworks.com/matlabcentral/fileexchange/725-smoothn

function Y = smoothn(X,sz,filt,std)

%SMOOTHN Smooth N-D data
% Y = SMOOTHN(X, SIZE) smooths input data X. The smoothed data is
% retuirned in Y. SIZE sets the size of the convolution kernel
% such that LENGTH(SIZE) = NDIMS(X)
%
% Y = SMOOTHN(X, SIZE, FILTER) Filter can be 'gaussian' or ...

'box' (default)
% and determines the convolution kernel.
%
% Y = SMOOTHN(X, SIZE, FILTER, STD) STD is a vector of standard ...

deviations
% one for each dimension, when filter is 'gaussian' ...

(default is 0.65)

% $Author: ganil $
% $Date: 2001/09/17 18:54:39 $
% $Revision: 1.1 $
% $State: Exp $

if nargin == 2,
filt = 'b';

elseif nargin == 3,
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std = 0.65;
elseif nargin>4 | nargin<2

error('Wrong number of input arguments.');
end

% check the correctness of sz
if ndims(sz) > 2 | min(size(sz)) 6= 1

error('SIZE must be a vector');
elseif length(sz) == 1

sz = repmat(sz,ndims(X));
elseif ndims(X) 6= length(sz)
error('SIZE must be a vector of length equal to the ...

dimensionality of X');
end

% check the correctness of std
if filt(1) == 'g'

if length(std) == 1
std = std*ones(ndims(X),1);

elseif ndims(X) 6= length(std)
error('STD must be a vector of length equal to the ...

dimensionality of X');
end
std = std(:)';

end

sz = sz(:)';

% check for appropriate size
padSize = (sz-1)/2;
if ¬isequal(padSize, floor(padSize)) | any(padSize<0)

error('All elements of SIZE must be odd integers ≥ 1.');
end

% generate the convolution kernel based on the choice of the filter
filt = lower(filt);
if (filt(1) == 'b')

smooth = ones(sz)/prod(sz); % box filter in N-D
elseif (filt(1) == 'g')

smooth = ndgaussian(padSize,std); % a gaussian filter in N-D
else

error('Unknown filter');
end

% pad the data
X = padreplicate(X,padSize);
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% perform the convolution
Y = convn(X,smooth,'valid');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function h = ndgaussian(siz,std)

% Calculate a non-symmetric ND gaussian. Note that STD is scaled ...
to the

% sizes in SIZ as STD = STD.*SIZ

ndim = length(siz);
sizd = cell(ndim,1);

for i = 1:ndim
sizd{i} = -siz(i):siz(i);

end

grid = gridnd(sizd);
std = reshape(std.*siz,[ones(1,ndim) ndim]);
std(find(siz==0)) = 1; % no smoothing along these dimensions as ...

siz = 0
std = repmat(std,2*siz+1);

h = exp(-sum((grid.*grid)./(2*std.*std),ndim+1));
h = h/sum(h(:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function argout = gridnd(argin)

% exactly the same as ndgrid but it accepts only one input ...
argument of

% type cell and a single output array

nin = length(argin);
nout = nin;

for i=nin:-1:1,
argin{i} = full(argin{i}); % Make sure everything is full
siz(i) = prod(size(argin{i}));

end
if length(siz)<nout, siz = [siz ones(1,nout-length(siz))]; end

argout = [];
for i=1:nout,
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x = argin{i}(:); % Extract and reshape as a vector.
s = siz; s(i) = []; % Remove i-th dimension
x = reshape(x(:,ones(1,prod(s))),[length(x) s]); % Expand x
x = permute(x,[2:i 1 i+1:nout]);% Permute to i'th dimension
argout = cat(nin+1,argout,x);% Concatenate to the output

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function b=padreplicate(a, padSize)
%Pad an array by replicating values.
numDims = length(padSize);
idx = cell(numDims,1);
for k = 1:numDims

M = size(a,k);
onesVector = ones(1,padSize(k));
idx{k} = [onesVector 1:M M*onesVector];

end

b = a(idx{:});
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Appendix D

Engineering Drawings

D.1 Standing-Wave Apparatus Assembly
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