
Copyright

by

Can Pehlivantürk

2014

The Thesis committee for Can Pehlivanturk
certifies that this is the approved version of the following thesis:

Lossless Convexification of Quadrotor Motion Planning

with Experiments

APPROVED BY

SUPERVISING COMMITTEE:

Raul Longoria, Supervisor

Behçet Açıkmeşe, Co-Supervisor

Lossless Convexification of Quadrotor Motion Planning

with Experiments

by

Can Pehlivantürk, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014

Dedicated to my family, friends, Pınar, and everybody who makes life

meaningful.

Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Behçet

Açıkmeşe for his guidance throughout the project and the development of this

thesis. I would also like to thank Dr. Raul Longoria for his very valuable

feedback, especially on my writing.

I would like to express my gratitude to my colleagues and friends. Nazlı

Demir with whom the foundation of the algorithm was developed; Tim Lowery

who devoted much of his time managing the lab and the experimental setup;

Utku Eren, whose countless visits downstairs helped refine many problems.

Stephanie Taylor, Natalie and Katie Hansen, Gurpreet Singh, and Engin Has-

samancı for their help in editing my thesis and their support that kept me

going through the home stretch.

A special thanks goes to my friends from METU and I would like to

thank Dr. Derek Baker for being a constant source of wisdom and counsel

throughout my undergraduate and graduate studies.

Last but not least, I would like to thank my parents, Berna and Necip,

my sister Melis, my girlfriend Sara Pinar, and the rest of my family members

for their huge support throughout my studies and being understanding of the

recent reduction in phone call frequency.

v

Lossless Convexification of Quadrotor Motion Planning

with Experiments

Can Pehlivantürk, M.S.E.

The University of Texas at Austin, 2014

Supervisors: Raul Longoria
Behçet Açıkmeşe

This thesis describes a motion planning method that is designed to

guide an autonomous quadrotor. The proposed method is based on a novel

lossless convexification, which was first introduced in [12], that allows convex

representations of many non-convex control constraints, such as that of the

quadrotors. The second contribution of this thesis is to include two separate

methods to generate path constraints that capture non-convex position con-

straints. Using the convexified optimal trajectory generation problem with

physical and path constraints, an algorithm is developed that generates fuel

optimal trajectories given the initial state and desired final state. As a proof

of concept, a quadrotor testbed is developed that utilize a state-of-the-art

motion tracking system. The quadrotor is commanded via a ground station

where the convexified optimal trajectory generation algorithm is successfully

implemented together with a trajectory tracking feedback controller.

vi

Table of Contents

Acknowledgments v

Abstract vi

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Objectives and Contributions 2

1.3 Literature Survey . 3

Chapter 2. Trajectory Generation Problem Definition 5

2.1 Formulation . 6

2.1.1 Physical Constraints . 7

2.1.2 Path Constraints . 8

2.1.3 Optimization Problem 10

2.2 Convexification . 11

Chapter 3. Implementation and Experimental Setup 14

3.1 Overview . 14

3.2 Implementation of the Guidance Algorithm 15

3.2.1 Discretization . 16

3.3 Motion Tracking and Velocity Estimation 17

3.4 Trajectory Tracking Controller 20

3.5 The Quadrotor . 22

3.5.1 Onboard controller . 24

3.5.2 Thruster Characterization 25

3.6 Desired Thrust Direction to Attitude Input Conversion 28

vii

Chapter 4. Results 34

4.1 Trajectory Generation . 34

4.2 Flight Tests . 36

4.2.1 Waypoint Strategy . 37

4.2.2 Corridor Strategy . 42

Chapter 5. Conclusion 48

5.1 Future Work . 48

Bibliography 50

viii

List of Tables

3.1 The results of the thruster characterization test 25

4.1 Flight parameters for the combined constraint case 34

4.2 Flight parameters for the waypoint constraint case 36

4.3 Flight parameters for the corridor constraint case 43

ix

List of Figures

2.1 Relaxation of the non-convex control set to a convex set [13] . 11

3.1 Block diagram of the guidance algorithm test bed 14

3.2 Vicon motion capture cameras 19

3.3 Individual step responses in 3 principal directions of the quadro-
tor translation . 21

3.4 The Bitcraze Crazyflie electronics overview [2] 23

3.5 The block diagram of the Bitcraze Crazyflie onboard attitude
controller [7] . 24

3.6 The thrust force vs. angular velocity squared 26

3.7 The thrust characterization test setup. (a) The quadrotor at-
tached to the setup (b) The load cell used for force and torque
measurements (c) The photo-diode (d) The laser pointer . . . 27

3.8 Curve fitted thrust input . 28

4.1 (a) The generated optimal trajectory with the initial and final
positions and the waypoint for path 1. (b) The projection of
the generated trajectory to the xy xz and yz planes 35

4.2 The generated optimal trajectory with the initial and final po-
sitions and the waypoint for path 1. The projections of the
generated trajectory to the xy xz and yz planes are also plotted 37

4.3 The actual trajectory and the generated trajectory of flight test
of path 1 . 38

4.4 The desired states and input vs. time for path 1 39

4.5 The actual positions from the flight test of path 1 with the
desired positions and the errors vs. time 40

4.6 The actual velocities from the flight test of path 1 with the
desired velocities and the errors vs. time 41

4.7 The generated optimal trajectory with the initial and final po-
sitions and the waypoint for path 2. The projection of the
generated trajectory to the xy plane 42

x

4.8 The actual trajectory and the generated trajectory of flight test
of path 2 . 44

4.9 The desired states and input vs. time for path 2 45

4.10 The actual positions from the flight test of path 2 with the
desired positions and the errors vs. time 46

4.11 The actual velocities from the flight test of path 2 with the
desired velocities and the errors vs. time 47

xi

Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles (UAV), first making an appearance in mil-

itary applications, have been aggressively expanding into the civilian arena.

Control engineers has successfully pioneered the automation of unmanned ve-

hicles and devices by replacing human operators with algorithms. UAVs, or

drones, have many valuable qualities. With no pilot to fatigue, they can carry

out long or tedious observation missions. With no pilot to support, they can

be smaller and lighter. Overall, with the removal of the pilot and the addition

of autonomy, UAVs can be more versatile than traditional aircraft.

Usage of drones for food delivery has been on the agenda of restaurant

chains [6].While people entertain the idea of flying pizzas, the world’s largest

online retailer, Amazon, has been working on a new delivery system called

Amazon Prime Air, which promises 30 minute deliveries using drones [1]. Al-

though it is viewed as a publicity stunt by some[5] [8], Amazon claims this

system will be ready as early as 2015 [1]. The proposed usage of drones for

shipping is a very exciting development for the field of autonomous vehicles.

UAVs are also becoming increasingly important in environmental con-

1

servation and field ecology. The low ecological footprint and increased safety

of UAVs are especially valuable for environmental missions [27] [38]. Projects

that utilize UAVs for aerial land and wildlife surveys are deemed efficient and

successful and are becoming common practice[43] [26]. Another environmen-

tal application is forest fire monitoring with infrared imaging [46]. Emerging

companies propose usage of drones for disaster relief and healthcare supply [9].

There are a vast number of other fields that take advantage of the observation

and land survey capabilities such as, real estate photography, agriculture [23],

and traffic monitoring and management [28]. It is increasingly possible to find

UAVs on movie sets and in the entertainment industry. There are countless

functions UAVs currently serve right now, with the possibility of many more

on the horizon.

Tasks related to autonomous flight often involve traveling from the

initial position to the target while passing through or avoiding certain areas.

Constraints on the path might be necessary to avoid any hazards or navigate

through obstacles. It is crucial to have a fast, reliable, and robust guidance

algorithm that can meet these requirements. The aim is to develop a solution

to the trajectory generation problem and implement it on an autonomous

quadrotor.

1.2 Objectives and Contributions

The main objective of this work is to develop a fuel and time opti-

mal quadrotor guidance algorithm to autonomously generate optimal trajec-

2

tories given initial and final positions with multiple physical and geometric

constraints. The algorithm builds upon the previous work “Lossless Convex-

ification of a Class of Non-Convex Optimal Control Problems,” [12] which

enables the convexification of non-convex thrust constraints inherent to many

thrusters. A similar algorithm utilizing this method is previously suggested for

the planetary soft landing optimal control problem with the intent of reaching

inaccessible but scientifically valuable targets on Mars for sample return or hu-

man class planetary missions [13]. The main contribution is the development

and implementation of a convexified optimal trajectory generation problem

formulated for indoor quadrotor flight.

The secondary objective is to develop a testbed to demonstrate the

algorithm. The experimental setup is developed around a nano-quadrotor with

motion tracking and an external trajectory tracking controller. This system is

used together with the guidance algorithm and test flights are conducted.

1.3 Literature Survey

There are a considerable number of researchers from many institutions

and research groups working on UAVs, and more specifically quadrotors. Al-

most all of these groups have developed trajectory generation strategies. Iter-

ative methods that define trajectories as segments are developed and used for

aggressive maneuvers [35]. Although not guaranteed to be optimal, the closest

path can be found using RRT* algorithms [18]. Once the closest path is found,

the trajectory can be designed with polynomial segments [39]. The general

3

problem of finding the optimal trajectory with non-linear dynamics is solved

using genetic algorithms[31]. The simplified problem with non-convex accel-

eration constraints is also studied and solved using iterative methods without

a convex programming approach [25].

Guidance, trajectory generation, and task assignment for large robot

networks or swarm coordination are interesting and ongoing topics of research

[14] [40] [29]. Convex optimization is also applied in swarm guidance. [19] [20].

For convexifying the trajectory generation problem, the second-order cone

progamming approach is studied with approximated non-convex constraints

[32]. The geometric path constraints are transformed to convex representations

[42]. Convex transformation and second-order cone programming approach to

trajectory planning is not limited to UAVs but has been extended to robot

systems [44].

4

Chapter 2

Trajectory Generation Problem Definition

In this chapter, the trajectory generation problem is formulated and

convexified. This convexified optimal control problem is the foundation of

the guidance algorithm proposed in this thesis. This is the main path finding

strategy used by the quadrotors in the inventory of the Autonomous Guidance

Navigation and Control Group (AutoGNC). The optimal trajectory genera-

tion problem is defined with a convex minimum fuel cost and convex state

constraints. The non-convex input constraint, namely the control magnitude

constraint, is replaced by equivalent constraint with a convex cone. This re-

laxation is established by lossless convexification in which the optimal solution

of the relaxed problem is also an optimal solution for the original non-convex

problem. [11] [12]. The main advantage of convexifing the optimization prob-

lem and subsequently having a convex problem that represents the trajectory

generation is the ability to use interior point methods which are very well es-

tablished in convex programming [16] [36] [30]. Custom algorithms can find

the global minimum of similar size convex optimization problems in micro to

millisecond time scales [10] [34] [21].

5

2.1 Formulation

This section introduces the formulation of the optimal trajectory gen-

eration problem. The purpose of a quadrotor path plan can be thought of

as going from one translational state to another, or from point A to point B.

When there are no obstacles or path constraints and the initial and desired

final states are stationary the problem is quite simple. However, often times

this is not the case and the quadrotor has to follow a constrained path. Also,

the ability to change the trajectory in mid flight where the new initial condi-

tion has a velocity component can be very beneficial. When these are taken

into consideration, the problem becomes more interesting and complex.

When solved, the problem should provide a translational state trajec-

tory and a thrust or acceleration profile over this said trajectory. The trajec-

tory should comply with the desired state and input constraints and be fuel

optimal. Flight duration is determined by battery capacity, and due to low

payloads it is quite limited for quadrotors. The quadrotor is modeled as a

lumped mass with an acceleration vector for control, and has the following

dynamics:

ẋ(t) = Ax(t) +B(g + u(t)), (2.1)

where x is the state vector composed of the position and the velocity

x(t) = (r(t), ṙ(t)) : R+ → R6.

The input vector u is composed of the accelerations in x, y, and z direc-

6

tions which can be expressed as the thrust force in the respective directions,

over the mass of the quadrotor:

u(t) =
(Tx, Ty, Tz)

mquad

, (2.2)

and the corresponding state matrices are defined as the following:

A =

[
0 I
0 0

]
, B =

[
0
I

]
. (2.3)

For clarity, the state and input constraints are grouped into physical

and path constraints.

2.1.1 Physical Constraints

Physical constraints on the system are the constraints that are the

product of the environment and the dynamics of the vehicle. To accommodate

some of the critical limitations of the system the following constraints are

imposed:

• Thrust lower and upper bound: Due to the physical capacity of the mo-

tors and the propellers, a lower and upper bound constraint on the thrust

is needed. This can be represented as an constraint on the acceleration

input:

0 < ρ1 ≤ ‖u(t)‖ ≤ ρ2, (2.4)

where ρ1 and ρ2 are the lower and the upper bounds on the net acceler-

ation respectively.

7

• Thrust pointing constraint: It is desired to keep the thrust vector in

a prescribed cone around the inertial z − axis in order to always have

control over the altitude. This is done to prevent complications related

to sudden altitude loss such as falling through the wake which is a highly

turbulent disturbed flow. The pointing constraint can be represented as

follows:

u3(t) ≥ ‖u(t)‖ cos(θ). (2.5)

• Position constraints: For an indoor real time implementation, we need

to put bounds on the position vector in order to keep the trajectory in

the volume defined by the room dimensions. The position constraint can

be represented as the following:

φi ≤ xi(t) ≤ δi, i = 1, 2, 3 (2.6)

where φ and δ are 3 dimensional vectors defining the limits on X, Y, and

Z directions.

2.1.2 Path Constraints

To determine the trajectory the following path constraints are imposed:

• Prescribed initial and final positions and velocities: The guidance algo-

rithm will take the quadrotor from an initial state to a final state. The

first and last state of the trajectory should follow

x0 = ξ0, xf = ξf . (2.7)

8

Along the way, there might be obstacles or other situations that would

require the quadrotor to avoid an area or to stay in an area. With this

algorithm it is possible to constrain the position and the velocity states at

each time step, this capability transitioned into two path determination

strategies:

– Prescribed multiple waypoints along the trajectory where the quadro-

tor has to be at the prescribed states at the prescribed times.

– Prescribed corridors or zones along the trajectory in which the

quadrotor has to stay in during prescribed time frames.

Depending on the strategy implemented, one of the following constraints

are imposed:

• Prescribed multiple waypoints along the trajectory:

x(t̂i) = ξi, 0 ≤ t̂i, . . . , t̂n ≤ tf , i = 1, . . . , n (2.8)

where t̂ is a prescribed time step at which the trajectory should pass

through the waypoint. Note that there must be adequate time steps

between each waypoint to have a feasible solution.

• Prescribed corridors or zones along the trajectory:

βi ≤ x(t) ≤ γi, t̂i ≤ t < t̂i+1, 0 = t̂i, . . . , t̂n+1 = tf , i = 1, . . . , n.

(2.9)

9

2.1.3 Optimization Problem

For this problem, we are looking for the minimum fuel solution for

which the cost function can be set as [16]:

min
x,u

∫ tf

0

‖u(t)‖ dt . (2.10)

With the given constraints and the cost function, the following opti-

mization problems can be solved to find the optimal trajectory:

Problem 1. Non-Convex Trajectory Generation Problem with Waypoints

min
x,u

∫ tf

0

‖u(t)‖ dt subject to: (2.10)

ẋ(t) = Ax(t) +B(g + u(t)) (2.1)

0 < ρ1 ≤ ‖u(t)‖ ≤ ρ2 (2.4)

u3(t) ≥ ‖u(t)‖ cos(θ) (2.5)

φi ≤ xi(t) ≤ δi i = 1, 2, 3 (2.6)

x0 = ξ0, xf = ξf (2.7)

x(t̂i) = ξi, 0 ≤ t̂i, . . . , t̂n ≤ tf , i = 1, . . . , n (2.8)

Problem 2. Non-Convex Trajectory Generation Problem with Corridors

min
x,u

∫ tf

0

‖u(t)‖ dt subject to: (2.10)

ẋ(t) = Ax(t) +B(g + u(t)) (2.1)

0 < ρ1 ≤ ‖u(t)‖ ≤ ρ2 (2.4)

u3(t) ≥ ‖u(t)‖ cos(θ) (2.5)

φi ≤ xi(t) ≤ δi i = 1, 2, 3 (2.6)

x0 = ξ0, xf = ξf (2.7)

βi ≤ x(t) ≤ γi, t̂i ≤ t < t̂i+1, 0 = t̂i, . . . , t̂n+1 = tf , i = 1, . . . , n (2.9)

10

2.2 Convexification

In this section the optimal control problem is converted into a convex

problem with second order cone constraints using the lossless convexification

method described in [12]. In order to convexify the control constraints, the

non-convex thrust constraint in Equation 2.4 is relaxed by replacing the non-

convex constraint with the following constraints. Defining a slack variable σ(t)

such that:

‖u(t)‖ ≤ σ(t), (2.11)

and

0 < ρ1 ≤ σ(t) ≤ ρ2. (2.12)

Convex
Intersection

Pointing
Half-Space

Pointing
Envelope

Intersection

Tc(t) : Control variable in R2
(Tc(t),�(t)) : Relaxed control variable in R3

Non-convex set of
feasible controls

Lossless Convexification
of Non-convex Control

Constraints

Relaxed convex set of
feasible controls

Sunday, May 12, 13

Convexification

Custom IPM

Autonomous
motion planning

Saturday, December 14, 13

Figure 2.1: Relaxation of the non-convex control set to a convex set [13]

To demonstrate this relaxation, the non-convex control constraint for

a 2D case and the geometric interpretation of the relaxation is illustrated in

Figure 2.1 [13]. With this relaxation, it is possible that a feasible solution to

11

the relaxed problem such as (‖u(t)‖, σ(t)) = (0, ρ1) has a solution for control,

‖u(t)‖ = 0, that violates the original control constraint and is not a feasible

solution to the original problem [24]. However, Theorem 2 of “Lossless Con-

vexification for a Class of Optimal Control Problems with Nonconvex Control

Constraints”, proves that the optimal solutions to the relaxed problem are also

optimal solutions to the original problem and the relaxation is lossless, hence

the name “Lossless Convexification” [12, Theorem 2]. The solutions are on

the boundary of the relaxed cone when ‖u(t)‖ = σ(t) which always holds true

for optimal solutions. The new cost can be set as:

min
x,u

∫ tf

0

σ(t)dt . (2.13)

After replacing the control constraints and the cost function, the convexified

problem reads:

Problem 3. Convexified Trajectory Generation Problem with Waypoints

min
x,u

∫ tf

0

σ(t)dt subject to: (2.13)

ẋ(t) = Ax(t) +B(g + u(t)) (2.1)

‖u(t)‖ ≤ σ(t) (2.11)

0 < ρ1 ≤ σ(t) ≤ ρ2 (2.12)

u3(t) ≥ ‖u(t)‖ cos(θ) (2.5)

φi ≤ xi(t) ≤ δi i = 1, 2, 3 (2.6)

x0 = ξ0, xf = ξf (2.7)

x(t̂i) = ξi, 0 ≤ t̂i, . . . , t̂n ≤ tf , i = 1, . . . , n (2.8)

12

Problem 4. Convexified Trajectory Generation Problem with Corridors

min
x,u

∫ tf

0

σ(t)dt subject to: (2.13)

ẋ(t) = Ax(t) +B(g + u(t)) (2.1)

‖u(t)‖ ≤ σ(t) (2.11)

0 < ρ1 ≤ σ(t) ≤ ρ2 (2.12)

u3(t) ≥ ‖u(t)‖ cos(θ) (2.5)

φi ≤ xi(t) ≤ δi i = 1, 2, 3 (2.6)

x0 = ξ0, xf = ξf (2.7)

βi ≤ x(t) ≤ γi, t̂i ≤ t < t̂i+1, 0 = t̂i, . . . , t̂n+1 = tf , i = 1, . . . , n (2.9)

13

Chapter 3

Implementation and Experimental Setup

3.1 Overview

Figure 3.1: Block diagram of the guidance algorithm test bed

In this chapter, the implementation of the guidance algorithm and the

experimental setup is explained. The convexified trajectory generation prob-

lem is discretized and the resultant guidance algorithm is scripted in MAT-

LAB. In order to fly the generated trajectories, a testbed is developed around

a nano-quadrotor Bitcraze Crazyflie. The block diagram of the guidance algo-

rithm experimental setup is presented in Figure 3.1. The guidance algorithm

produces desired position, velocity states, and desired acceleration input for

each timestep. After the trajectory is generated, the external and onboard

controllers keep the quadrotor on the desired trajectory. The translational

14

and attitude controllers are handled separately. The agility of the quadrotor

enables it to perform attitude maneuvers much quicker than the translational

motion, therefore the translational dynamics are decoupled from the attitude

dynamics. The ground station is responsible for the translational control. The

position of the quadrotor is determined by a Vicon motion tracking system

and the velocity is estimated. The trajectory tracking controller determines

the acceleration input and this input is converted to attitude and thrust com-

mands. These commands are sent to the quadrotor and the onboard controller

handles the attitude control and the determination of actuator inputs.

3.2 Implementation of the Guidance Algorithm

In order to find the optimal solution to the formulated and convexi-

fied trajectory generation problem it should first be discretized. The problem

then can be solved using convex programming methods for second order cone

constraints. The problem is then modeled in MATLAB using the YALMIP

modeling language[33] and solved using SDPT3 [41]. A line search strategy is

used to find the minimum total time. The Autonomous Guidance Navigation

and Control Laboratory (AutoGNC Lab) has developed an automated custom

code generation algorithm for embedded real-time second order cone problems

[21]. However the customization and the in-house solver was not implemented

in this experimental setup. Upcoming quadrotors of AutoGNC lab will fly the

guidance algorithm defined in this thesis with the customization.

15

3.2.1 Discretization

As mentioned earlier, the quadrotor is modeled as a lumped mass with

a thrust vector for control, and has the following discrete time dynamics:

xk+1 = Axk +B(g + uk), k = 0, . . . , N (3.1)

where x is the 6× 1 state vector composed of the positions and the velocities

in x, y and z directions:

x = [x y z ẋ ẏ ż]′,

and the input vector u is composed of the accelerations along the x, y, and z

directions:

u(t) =
[Tx, Ty, Tz]

mquad

.

The corresponding state matrices are given as follows:

A =

[
I I ·∆t
0 I

]
, B =

[
I · ∆t2

2

I

]
, (3.2)

where ∆t is the timestep. The actual time in seconds corresponding to

each step can be determined by: tk = t0 + (k − 1)∆t where t0 is the initial

time.

The physical and path constraints with time dependencies are also

modified to represent discrete time and the final form of the convexified and

discretized optimal control problems for trajectory generation is given below.

16

Problem 5. Convexified and Discretized Trajectory Generation Problem
with Waypoints

min
x,u

∑
σk subject to: (3.3)

xk+1 = Axk +B(g + uk) k = 0, . . . , N − 1 (3.1)

‖uk‖ ≤ σk, (3.4)

0 < ρ1 ≤ σk ≤ ρ2 (3.5)

u3,k ≥ ‖uk‖ cos(θ) (3.6)

φi ≤ xi,k ≤ ψi, i = 1, 2, 3 (3.7)

x0 = ξ0, xN = ξN (3.8)

xk̂i = ξi, 0 ≤ k̂i, . . . , k̂n ≤ tf , i = 1, . . . , n (3.9)

Problem 6. Convexified and Discretized Trajectory Generation Problem
with Corridors

min
x,u

∑
σk subject to: (3.3)

xk+1 = Axk +B(g + uk), k = 0, . . . , N − 1 (3.1)

‖uk‖ ≤ σk, (3.4)

0 < ρ1 ≤ σk ≤ ρ2 (3.5)

u3,k ≥ ‖uk‖ cos(θ) (3.6)

φi ≤ xi,k ≤ ψi, i = 1, 2, 3 (3.7)

x0 = ξ0, xN = ξN (3.8)

βi ≤ xk ≤ γi, k̂i ≤ k < k̂i+1, 0 = k̂i, . . . , k̂n+1 = N − 1, i = 1, . . . , n
(3.10)

3.3 Motion Tracking and Velocity Estimation

The algorithm is tested in an indoor laboratory environment, there-

fore the Global Positioning System could not be utilized as it is difficult to

locate satellite signals indoors due to the lack of line of sight. Moreover, the

17

constrained nature of the flight area in the indoor laboratory space greatly in-

creases the positioning accuracy requirement and GPS simply can not provide

the necessary accuracy. The lack of an onboard solution to the positioning

problem made it necessary to seek a motion tracking system. For the experi-

ments, the position of the quadrotor is tracked using a Vicon motion capture

system. The motion capture cameras are shown in Figure 3.2. The Vicon

system provides millimeter level accuracy and can have a position capture fre-

quency of up to 500 Hz. Another big constraint for nano quadrotors is the

payload capacity. One of the advantages of the system used was the ability to

use passive markers with only reflective coating and no electronic parts which

weigh significantly less compared to active markers.

The motion tracking system provides excellent position of the mass

center data at a more than sufficient frequency. The velocity states are ob-

servable thus they can be estimated using a simple observer[17]. Consistent

with the previous lumped mass assumption, for the linear time invariant sys-

tem, a discrete time observer of the following form is designed to estimate the

velocity:

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k)),

ŷ(k) = Cx̂(k).

The Observer gain is chosen such that the observer is robust in a frequency

range of 100Hz to 500Hz. It should be noted that in order to get rid of the

small error is position data, a low-pass filter is used.

18

Figure 3.2: Vicon motion capture cameras

19

3.4 Trajectory Tracking Controller

The trajectory generation algorithm produces desired states and accel-

eration vs. time. Then, the feedforward force is generated using the lumped

mass approximation. A proportional-integral-derivative (PID) controller is

used as the feedback mechanism on top of the feedforward control input that

is generated by the trajectory algorithm. The error in the trajectory is defined

as the following:

• The position error is the difference of the first 3 states of the estimated

state vector and the desired state vector:

ep = x̂j − xdj , j = 1, 2, 3.

• The velocity error is the difference of the last 3 states of the estimated

state vector and the desired state vector:

ev = x̂j − xdj , j = 4, 5, 6.

• To get rid of the steady state error in the global Z direction, integral

term with accumulated error is also utilized and determined as follows:

ei(t) =

∫ t

0

ep(τ)dt.

Combining the feedback and feedforward thrust forces, the controller

produces the following desired acceleration input. Note that the integral term

only contributes in the Z direction:

Ud = Kpep +Kdev +Kiei + U ff .

20

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

Time [s]

P
os

it
io

n
[m

]

Step Response in Y direction

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

0

1

2

Time [s]

P
os

it
io

n
[m

]
Step Response in X direction

−4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

Time [s]

P
os

it
io

n
[m

]

Step Response in Z direction

Response
Reference

Figure 3.3: Individual step responses in 3 principal directions of the quadrotor
translation

21

The controller can be adjusted in-flight and fine tuning can be achieved. There

are many different types of tuning rules for the controller gains for a PID

controller [37]. These rules such as Ziegler-Nichols, provided good starting

points for the controller. However, the gains were adjusted manually to achieve

the desired response from the system. The step responses of the translation

controller in global X, Y ,and Z directions are presented in Figure 3.3. The

controller is both stiff and designed to minimize overshoot. However because

of the integral term the altitude step response has a longer settling time and

overshoots. This is due to high error accumulation during the response, and

should not occur during normal flight where the generated trajectories are

continuous and differentiable. The integral term would only get rid of the

steady state error which should stay the same throughout normal flight.

3.5 The Quadrotor

The Quadrotor used for the experiments is the BitCraze Crazyflie. The

Crazyflie Quadcopter is a nano quadcopter which weighs about 19 grams and

measures about 90 mm from motor to motor. The 170 mAh Li-Po battery

powers the Crazyflie for a flight time of up to 7 minutes [3]. The Crazyflie

has a 32 bit 72 MHz micro-controller onboard which runs the stabilization

system and the attitude controller [7]. Both the hardware and software are

open source, giving us crucial flexibility in implementing our own guidance

software which makes it possible to combine all of the pieces together. All

in all, the Crazyflie proved instrumental in both single quadrotor and swarm

22

Figure 3.4: The Bitcraze Crazyflie electronics overview [2]

23

applications. An overview of the electronic setup of the Crazyflie taken from

the Bitcraze website is presented in Figure 3.4 [2].

The Crazyflie is commanded from the purpose-built Crazyradio which

is a 2.4 GHz radio USB dongle [4]. Depending on the environment, the radio

connection has a range up to 80 m. The dongle enables the connection with

the PC that runs the trajectory algorithms.

3.5.1 Onboard controller

Figure 3.5: The block diagram of the Bitcraze Crazyflie onboard attitude
controller [7]

The onboard controller brings the orientation of the quadrotor to the

given desired orientation. The four actuators on the quadrotor are commanded

by the onboard micro-controller to produce the necessary torques for attitude

control and commanded net force. The Crazyflie client is written in Python

and the same functions are used in the control algorithm to connect to and

command the Crazyflie. The main command function of the Crazyflie looks

like the following:

24

commander . s e n d s e t p o i n t (r o l l , p itch , yawrate , th rus t)

Here the desired roll, pitch, yawrate and net thrust is sent to the

quadrotor using the usb radio dongle. The onboard controller then commands

the motors to track these desired values. A block diagram taken from the

Bitcraze website of the Crazyflie onboard controller is presented in Figure 3.5

[7].

3.5.2 Thruster Characterization

Table 3.1: The results of the thruster characterization test

Test # Thrust Input rpm Mean Thrust Force [N]
1 10001 6270 0.028
2 15000 8025 0.048
3 20000 9600 0.069
4 25000 10900 0.091
5 30000 12100 0.113
6 35000 13250 0.137
7 40000 14250 0.162
8 45000 15200 0.187
9 50000 16400 0.218
10 55000 17450 0.247
11 60000 18450 0.279

The quadrotor handles the attitude control internally. It is only nec-

essary to map the net desired force the quadrotor should apply to the actual

control input to the motors. The Crazyflie has a thrust PWM input range

from 10000 to 60000. Here 10000 is the lowest input, and anything lower

halts the motors and 60000 is the continuous input for maximum thrust. The

thrust inputs change in small increments. The thrusters are assumed to reach

25

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

0.1

0.2

0.3

Ω2 [rad2/s2]

T
h
ru

st
F

or
ce

[N
]

Thrust vs Ω2

Figure 3.6: The thrust force vs. angular velocity squared

steady state before the control input is updated considering similar motors

have settling times less than 100ms under step input [45].

In order for the desired acceleration to be mapped to the thrust input,

an experimental thrust test is conducted. The thrust characterization test

setup with force and rpm sensors is presented in Figure 3.7. The forces and

torques are measured using a load cell and rpm of one of the propellers is

measured using a laser photo-diode setup.

The result of the test is presented in Table 3.1. The thrust input is

applied for 5 seconds and the resultant force and rpm data is averaged to

determine the mean thrust force and rpm corresponding to each input. The

thrust force vs. angular velocity squared data from the test is presented in

Figure 3.6. The relationship between the two is linear, as expected, and this

supports the validity of the test.

26

(a)

(b) (c) (d)

Figure 3.7: The thrust characterization test setup. (a) The quadrotor attached
to the setup (b) The load cell used for force and torque measurements (c) The
photo-diode (d) The laser pointer

The mean thrust force vs thrust input is curve fitted using least squares,

and this is presented in Figure 3.8. Although the goodness of linear fit is

sufficient with a coefficient of determination of R2 = 0.9944, the second degree

27

0 0.1 0.2 0.3 0.4
0

2

4

6

·104

Thrust Force [N]

T
h
ru

st
In

p
u
t

V
al

u
e

Linear Fit

0 0.1 0.2 0.3 0.4
0

2

4

6

·104

Thrust Force [N]
T

h
ru

st
In

p
u
t

V
al

u
e

2nd Order Poly Fit

Figure 3.8: Curve fitted thrust input

polynomial fit is preferred as it provides an almost perfect fit. The thrust

input is determined using the following equation of the fitted curve:

Thrust = −209780(mquad‖Ud‖)2 + 263090(mquad‖Ud‖) + 2870. (3.11)

3.6 Desired Thrust Direction to Attitude Input Con-
version

Up until this point, the optimal trajectory generation algorithm, the

motion tracking and velocity estimation and the trajectory tracking controller

were all based on a lumped mass assumption. The validity of this assump-

tion lies in the agility of a quadrotor. A quadrotor can perform the attitude

maneuvers very quickly with minimal impact to the translational dynamics.

Another important assumption is the thrust force the quadrotor produces is

28

always in the body-z direction. In reality there are many aerodynamic forces

acting on the propellers such as hub force and rolling moment [15]. Moreover

the propeller blades are not rigid and depending on the angular momentum

of the entire body, they can produce thrust forces in a direction slightly off-

centered from the body-z direction. These forces and moments have little

effect on translational dynamics and can be regarded as small disturbances in

attitude. The quadrotor has a lot of attitude control authority and any small

disturbance can be negated.

In order to produce the desired thrust, the orientation of the quadrotor

should be adjusted such that the body-z axis is aligned with the desired ac-

celeration vector. Using the rotation matrices for yaw, pitch and roll a single

rotation matrix is formed consistent with most aeronautical applications [22].

R =

cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ

 ,
where α is yaw, β is pitch and γ is roll. The order of operations is roll,

pitch and yaw.

In order to determine the necessary orientation the following equation

should be solved for given desired acceleration direction Ûd, where the body-z

axis of the quadrotor is aligned with the desired force vector:

Ûd =
1

‖Ud‖

Ud
x

Ud
y

Ud
z

 = R(α, β, γ)

0
0
1

 .
29

The subsequent equations are:

Ud
x

‖Ud‖ = ûdx = cosα sin β cos γ + sinα sin γ, (3.12)

Ud
y

‖Ud‖ = ûdy = sinα sin β cos γ − cosα sin γ, (3.13)

Ud
z

‖Ud‖ = ûdz = cos β cos γ. (3.14)

This is an undetermined system and there are infinitely many solutions.

For an aircraft with a fixed thrust direction relative to the body frame, the

rotations around the axis of thrust have no effect on the representation of

the thrust vector in the inertial frame. This can be seen physically when the

quadrotor body-z axis is pointing towards a direction, it is free to rotate around

its body-z axis thus changing its orientation without effecting the direction of

the net thrust force vector. When switching between two orientations an

axis of rotation and a rotation angle can always be found, also known as the

quaternion. However rotating around this axis to change the orientation is not

necessarily the optimal solution in terms of time. For example a quadrotor

can generate more torque in X-mode compared to the plus mode and the

moment of inertia around these two axes are relatively close. This combined

with gyroscopic effects the choice of the rotation configuration is not trivial.

A number of strategies exist to find a solution and are readily imple-

mentable. One of them is to fix the heading of the quadrotor such that a

constant yaw, α = 0 is always maintained. With zero yaw, pitch and roll can

30

be determined. From equation 3.13 for α = 0:

γ = arcsin(−ûdy), (3.15)

and from equations 3.12 and 3.14

ûdx = sin β cos γ, ûdz = cos β cos γ,

so the pitch can be determined as

β = arctan 2(ûdx, û
d
z). (3.16)

Using equations 3.15, 3.16 and controlling the yaw to be 0, the desired pitch

and roll values for the desired orientation can be determined. Unlike for roll

and pitch, the gyros and accelerometers are not able to determine the yaw

reliably and the integrated yaw measurement will drift. Therefore another

onboard sensor like a magnetometer or an external attitude determination is

necessary.

Another way of determining the orientation is finding the appropriate

pitch and roll values for the current yaw and letting the onboard controller sta-

bilize the yawrate. The yaw measurement drifts slowly but the motion tracking

system is able to determine the current yaw reliably when the control input is

updated. Now for variable α, the equations 3.12 and 3.13 is manipulated by

multiplying with sinα and cosα respectively.

ûdx sinα = sinα cosα sin β cos γ + sin2 α sin γ,

ûdy cosα = sinα cosα sin β cos γ − cos2α sin γ.

31

Now we can take the difference of the two and cancel the first terms on

the right sides as well as the square terms and determine the roll value.

γ = arcsin(ûdx sinα− ûdy cosα). (3.17)

For the pitch we can manipulate equations 3.12 and 3.13 by multiplying

with cosα
cos γ

and sinα
cos γ

respectively.

ûdx
cosα

cos γ
= cos2 α sin β + sinα cosα,

ûdy
sinα

cos γ
= sin2 α sin β − sinα cosα.

Adding the two together and canceling the square terms we can determine

sin β as:

sin β = ûdx
cosα

cos γ
+ ûdy

sinα

cos γ
. (3.18)

To avoid singularity we can get the cos β term from equation 3.14,

cos β =
ûdz

cos γ
, (3.19)

and use equations 3.18 and 3.19 together to determine the pitch value,

β = arctan 2(ûdxcosα + ûdysinα, û
d
z). (3.20)

It is possible to use the second method in multiple scenarios where the

yaw value is prescribed and the respective pitch and roll values are determined.

First the yaw can be set to be a constant value and controlled it to be so.

Secondly, the yaw can be set such that the heading is in the same direction

32

as the translational motion. This is beneficial especially if the body of the

vehicle is streamlined in a way to reduce aerodynamic drag in one direction.

Finally like previously mentioned, the yaw control can be left to the on board

controller and the drift can be handled by updating the current yaw at the

same time as the translational control input.

33

Chapter 4

Results

In this chapter, the generated optimal trajectories and the results of the

flight tests are presented. As mentioned earlier there are two path constrain-

ing strategies developed from the waypoint and the corridor path constraints.

With the guidance algorithm, it is possible to create as many waypoints and

corridors along the trajectory as desired. The combination of these strate-

gies produce interesting applications and results which are elaborated in the

following sections.

4.1 Trajectory Generation

Table 4.1: Flight parameters for the combined constraint case

State[m,m/s] x(t̂) = ξi
Initial ξ0 = [0, 0, 0, 0, 0, 0]
Final ξf = [0, 0, 50, 0, 0, 0]
Corridor[m] β ≤ x ≤ γ
Take Off β = [−2,−2,∼] γ = [2, 2, 40]
Altitude β = [∼,∼, 20] γ = [∼,∼, 40]
Landing β = [48,−2,∼] γ = [52, 2, 40]

Waypoint[m] x(t̂) = ξi
First ξm1 = [20, 10,∼]
Second ξm2 = [40,−10,∼]

34

0
10

20
30

40
50

−20
−10

0
10

20

0

10

20

30

40

X [m]Y [m]

Z
[m

]

Generated Trajectory Take Off Corridor Altitude Corridor
Landing Corridor 1st Waypoint 2nd Waypoint

(a)

0 20 40

−20

0

20

X [m]

Y
[m

]

0 20 40
0

20

40

X [m]

Z
[m

]

−20 0 20
0

20

40

Y [m]

Z
[m

]

(b)

Figure 4.1: (a) The generated optimal trajectory with the initial and final
positions and the waypoint for path 1. (b) The projection of the generated
trajectory to the xy xz and yz planes

35

Table 4.2: Flight parameters for the waypoint constraint case

State[m,m/s] x(t̂) = ξi
Initial ξ0 = [−1,−1, 1, 0, 0, 0]
Final ξf = [1, 1, 2, 0, 0, 0]

Waypoint[m] x(t̂) = ξi
First ξm1 = [0,−1, , 1.5]

The guidance algorithm can be used to create many different trajec-

tories for different purposes. For example for an outdoor implementation, it

is possible to define take off, altitude and landing corridors as well as many

waypoints or other corridor constraints to avoid any obstacles. Such a flight

scenario is simulated and the flight parameters are presented in Table 4.1. In

this case, the initial and final states are stationary. The corridor constraints

are applied in succession. The take off and landing corridors are the only areas

where the quadrotor can touch the ground and any other time it has to stay

inside an altitude range. The waypoints have no constraint on altitude.

The trajectory generated for the take-off and landing flight scenario in

Table 4.1 is presented in Figure 4.1. Note that as this is an optimal trajectory

it pushes the limits of the constraints. This is especially noticeable in the take

off and landing corridors.

4.2 Flight Tests

The flight tests are conducted indoors with limited space and the tra-

jectories are simpler than the previous scenario. The simulated situation is

having an obstacle in the line of sight from the initial state to the desired

36

position. Both waypoint and corridor strategies are used to handle similar

situations.

4.2.1 Waypoint Strategy

−2
−1

0
1

2

−2−1.5−1−0.500.511.52
0

0.5

1

1.5

2

X [m]
Y [m]

Z
[m

]

Generated Trj Projected Trj Initial Pos
Waypoint Final Pos

Figure 4.2: The generated optimal trajectory with the initial and final posi-
tions and the waypoint for path 1. The projections of the generated trajectory
to the xy xz and yz planes are also plotted

The flight case considered for the waypoint demonstration is a forward

altitude gain maneuver with an obstacle in the middle. The waypoint is chosen

such that the obstacle will be avoided. The flight parameters are presented

in Table 4.2 and the generated trajectory is presented in Figure 4.2. A more

37

−2
−1

0
1

2

−2−1.5−1−0.500.511.52
0

0.5

1

1.5

2

X [m]
Y [m]

Z
[m

]

Generated Trajectory Flight Trajectory
Initial Position Final Position

Figure 4.3: The actual trajectory and the generated trajectory of flight test of
path 1

detailed break down of the desired states and input is presented in Figure 4.4.

After the trajectory is created the flight tests are conducted.

The actual trajectory of the flight test is presented in Figure 4.3. The

actual positions the desired positions, and the errors vs. time are presented

in Figure 4.5. The actual velocities, the desired velocities, and the errors vs.

time are presented in Figure 4.6. The errors are quite small and the maneuver

was successful.

38

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

0

2

4

Time [s]

V
el

o
ci

ty
[m

/s
]

Velocity in X Velocity in Y Velocity in Z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

0

2

4

Time [s]

P
os

it
io

n
[m

]

Position in X Position in Y Position in Z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−5

0

5

10

15

Time [s]

In
p
u
t

[m
/s

2
]

Input in X Input in Y Input in Z

Figure 4.4: The desired states and input vs. time for path 1

39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

−1

0

1

2

Time [s]

P
os

it
io

n
in

Y
[m

] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

−1

0

1

2

Time [s]

P
os

it
io

n
in

X
[m

] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

P
os

it
io

n
in

Z
[m

] Flight Data Generated Trajectory Error

Figure 4.5: The actual positions from the flight test of path 1 with the desired
positions and the errors vs. time

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

V
el

o
ci

ty
in

Y
[m

/s
] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

V
el

o
ci

ty
in

X
[m

/s
] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

V
el

o
ci

ty
in

Z
[m

/s
] Flight Data Generated Trajectory Error

Figure 4.6: The actual velocities from the flight test of path 1 with the desired
velocities and the errors vs. time

41

4.2.2 Corridor Strategy

−2
−1

0
1

2

−2−1.5−1−0.500.511.52
0

0.5

1

1.5

2

X [m]
Y [m]

Z
[m

]

Generated Trajectory Projected Trajectory Initial Position
Final Position 1st Corridor 2nd Corridor

Figure 4.7: The generated optimal trajectory with the initial and final posi-
tions and the waypoint for path 2. The projection of the generated trajectory
to the xy plane

The flight case considered for the corridor demonstration is a forward

constant altitude maneuver with an obstacle in the middle. The corridors

are chosen such that the obstacle will be avoided. The flight parameters are

presented in Table 4.3 and the generated trajectory is presented in Figure 4.7.

A more detailed break down of the desired states and input is presented in

Figure 4.9. After the trajectory is created the flight tests are conducted.

42

Table 4.3: Flight parameters for the corridor constraint case

State[m,m/s] x(t̂) = ξi
Initial ξ0 = [−1,−1, 1, 0, 0, 0]
Final ξf = [1, 1, 2, 0, 0, 0]

Waypoint[m] x(t̂) = ξi
First ξm1 = [0,−1, , 1.5]

The actual trajectory of the flight test is presented in Figure 4.8. The

actual positions the desired positions, and the errors vs. time are presented

in Figure 4.10. The actual velocities, the desired velocities, and the errors vs.

time are presented in Figure 4.11. Similar to the waypoint case the errors are

quite small and the maneuver was successful.

43

−2
−1

0
1

2

−2−1.5−1−0.500.511.52
0

0.5

1

1.5

2

X [m]
Y [m]

Z
[m

]

Generated Trajectory Flight Trajectory
Initial Pos Final Pos

Figure 4.8: The actual trajectory and the generated trajectory of flight test of
path 2

44

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2

0

2

4

Time [s]

V
el

o
ci

ty
[m

/s
]

Velocity in X Velocity in Y Velocity in Z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2

0

2

4

Time [s]

P
os

it
io

n
[m

]

Position in X Position in Y Position in Z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−5

0

5

10

15

Time [s]

In
p
u
t

[m
/s

2
]

Input in X Input in Y Input in Z

Figure 4.9: The desired states and input vs. time for path 2

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

−1

0

1

2

Time [s]

P
os

it
io

n
in

Y
[m

] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

−1

0

1

2

Time [s]

P
os

it
io

n
in

X
[m

] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

P
os

it
io

n
in

Z
[m

] Flight Data Generated Trajectory Error

Figure 4.10: The actual positions from the flight test of path 2 with the desired
positions and the errors vs. time

46

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−2

−1

0

1

2

Time [s]

V
el

o
ci

ty
in

Y
[m

/s
] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

V
el

o
ci

ty
in

X
[m

/s
] Flight Data Generated Trajectory Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

Time [s]

V
el

o
ci

ty
in

Z
[m

/s
] Flight Data Generated Trajectory Error

Figure 4.11: The actual velocities from the flight test of path 2 with the desired
velocities and the errors vs. time

47

Chapter 5

Conclusion

A fuel and time optimal quadrotor guidance algorithm to autonomously

generate optimal trajectories given initial and final positions and multiple

physical and geometric constraints was successfully developed through this

work. The algorithm is successfully used to generate optimal trajectories. An

experimental setup is created around a nano quadrotor with motion tracking,

velocity estimation and an external trajectory controller. Flight tests for in-

door obstacle avoidance scenarios are conducted. The trajectories are tracked

successfully and with high accuracy and precision.

5.1 Future Work

There are two major improvements underway. First the algorithm will

be customized and an in-house developed solver will be implemented[21]. The

customization of the algorithm will enable very fast solutions. With a fast al-

gorithm, initial states with velocity components will become viable. The speed

of calculations of trajectories will enable the quadrotor to update or change

trajectories in mid flight. Updating trajectories will increase the overall per-

formance. There are interesting applications that requires frequent trajectory

48

changes, such as following a target. Additionally, if there are dynamic path

constraints present, such as other moving vehicles, very fast trajectory gener-

ation is a major benefit.

The second improvement will be putting the algorithm onboard a more

capable quadrotor. This will liberate the quadrotor from the ground station for

guidance purposes. Combined with GPS, it will enable long distance outdoor

flights. Long range and autonomy in guidance is crucial in many applications.

Currently an inhouse quadrotor with high computation capabilities is being

developed. A fast, reliable, robust, and onboard guidance algorithm will be an

important advantage the inhouse quadrotor will have over its counterparts.

The quadrotors will be used in many projects both in single-quad and

swarm formations. The swarm applications require trajectory generation for

individual units. Once the general distribution of the tasks are accomplished,

the members of the swarm will decide their paths individually. All in all, the

guidance algorithm will become a fundamental part of future projects.

49

Bibliography

[1] Amazon prime air. http://www.amazon.com/b?node=8037720011. Ac-

cessed: 2014-07-22.

[2] Crazyflie kit electronics explained. http://wiki.bitcraze.se/projects:

crazyflie:hardware:explained. Accessed: 2014-07-24.

[3] The crazyflie nano quadcopter. http://www.bitcraze.se/crazyflie/.

Accessed: 2014-07-24.

[4] Crazyradio. http://wiki.bitcraze.se/projects:crazyradio:index.

Accessed: 2014-07-24.

[5] Did amazon just pull off the best pr stunt ever? http://www.cnbc.com/

id/101239524#. Accessed: 2014-07-22.

[6] Nbc news: Domino’s ’domicopter’ drone can deliver two large pepperonis.

http://www.nbcnews.com/tech/innovation/dominos-domicopter-. -

drone-can-deliver-two-large-pepperonis-f6C10182466 , Accessed:

2014-07-22.

[7] Overall firmware architecture. http://wiki.bitcraze.se/projects:

crazyflie:firmware:arch. Accessed: 2014-07-24.

50

[8] The real reason amazon announced delivery drones last night: $3 million

in free advertising on cyber monday. http://www.businessinsider.

com/why-amazon-announced-delivery-drones-2013-12. , Accessed:

2014-07-22.

[9] Vayu, aerial solutions serving humanity. https://angel.co/vayu. Ac-

cessed: 2014-08-1.

[10] B. Acikmese, M. Aung, J. Casoliva, S. Mohan, A. Johnson, D. Scharf,

D. Masten, J. Scotkin, A. Wolf, and M. Regehr. Flight testing of trajec-

tories computed by g-fold: Fuel optimal large divert guidance algorithm

for planetary landing. In 23rd AAS/AIAA Spaceflight Mechanics Meet-

ing, Kauai, USA, To appear 2013.

[11] B. Acikmese and L. Blackmore. Lossless convexication of a class of non-

convex optimal control problems for linear systems. In American Control

Conference, Baltimore, USA, 06/2010 2010.

[12] B. Acikmese and L. Blackmore. Lossless convexification for a class of op-

timal control problems with nonconvex control constraints. Automatica,

47, 2011.

[13] B. Acikmese, J. M. Carson, and L. Blackmore. Lossless convexification

of non-convex control bound and pointing constraints of the soft land-

ing optimal control problem. IEEE Transactions on Control Systems

Technology, 21:2104–2113, 2013 2013.

51

[14] Behcet Acikmese and David S. Bayard. Markov chain approach to prob-

abilistic guidance for swarms of autonomous agents. Invited paper, In

Press, Asian Journal of Control, 2014.

[15] S. Bouabdallah and R. Siegwart. Full control of a quadrotor. In Intel-

ligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International

Conference on, pages 153–158, Oct 2007.

[16] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge University Press, New York, NY, USA, 2004.

[17] Chi-Tsong Chen. Linear System Theory and Design. Oxford University

Press, Inc., New York, NY, USA, 3rd edition, 1998.

[18] P. Cheng, Z. Shen, and S. M. Lavalle. RRT-Based Trajectory Design for

Autonomous Automobiles and Spacecraft. Archives of Control Sciences,

11(3-4):167–194, 2001.

[19] N. Demir and B. Açıkmeşe. Density control for decentralized autonomous

agents with conflict avoidance. In IFAC World Congress, August 2014

2014.

[20] N. Demir, B. Açıkmeşe, and M. Harris. Convex optimization formula-

tion of density upper bound constraints in markov chain synthesis. In

American Control Conference, June, 2014 2014.

52

[21] D. Dueri, J. Zhang, and B. Açıkmeşe. Automated custom code generation

for embedded real-time second order cone programming. In IFAC World

Congress, August 2014 2014.

[22] Dzul Lpez A.E. Lozano R. Pgard C. Garca Carrillo, L.R. Quad Rotorcraft

Control. Advances in Industrial Control. Springer London, 2013.

[23] GJ Grenzdrffer, A. Engel, and B. Teichert. The photogrammetric po-

tential of low-cost UAVs in forestry and agriculture. The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, 31(B3):1207–1214, 2008.

[24] Matthew W. Harris and Behcet Acikmese. Maximum divert for planetary

landing using convex optimization. Journal of Optimization Theory and

Applications, Published online, 2014.

[25] M. Hehn and R. DAndrea. Quadrocopter trajectory generation and

control. In Proceedings of the IFAC world congress, pages 1485–1491,

2011.

[26] Amanda Hodgson, Natalie Kelly, and David Peel. Unmanned aerial

vehicles (uavs) for surveying marine fauna: A dugong case study. PLoS

One, 8(11):e79556, 2013.

[27] Matthew A. Burgess H. Franklin Percival Daniel E. Fagan Beth E. Gard-

ner Joel G. Ortega-Ortiz Peter G. Ifju Brandon S. Evers Thomas J. Rambo

53

Julien Martin, Holly H. Edwards. Estimating distribution of hidden ob-

jects with drones: From tennis balls to manatees. PLoS ONE, (6), 2012.

[28] K. Kanistras, G. Martins, M.J. Rutherford, and K.P. Valavanis. A survey

of unmanned aerial vehicles (uavs) for traffic monitoring. In Unmanned

Aircraft Systems (ICUAS), 2013 International Conference on, pages 221–

234, May 2013.

[29] James Keller, Dinesh Thakur, Vladimir Dobrokhodov, Kevin Jones, Mi-

hail Pivtoraiko, Jean Gallier, Isaac Kaminer, and Vijay Kumar. Un-

manned Systems.

[30] Yu-Ju Kuo and Hans D. Mittelmann. Interior point methods for second-

order cone programming and or applications. Comput. Optim. Appl.,

28(3):255–285, September 2004.

[31] Li-Chun Lai, Chi-Ching Yang, and Chia-Ju Wu. Time-optimal control of

a hovering quad-rotor helicopter. J. Intell. Robotics Syst., 45(2):115–135,

February 2006.

[32] Xinfu Liu. Autonomous Trajectory Planning by Convex Optimization.

PhD thesis, Iowa State University, 2013.

[33] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MAT-

LAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[34] J. Mattingley and S. Boyd. Real-time convex optimization in signal

processing. Signal Processing Magazine, IEEE, 27(3):50–61, May 2010.

54

[35] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory gener-

ation and control for precise aggressive maneuvers with quadrotors. The

International Journal of Robotics Research, 31(5):664–674, 2012.

[36] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms

in Convex Programming. Studies in Applied Mathematics. Society for

Industrial and Applied Mathematics, 1994.

[37] Katsuhiko Ogata. System Dynamics. Prentice Hall, 1998.

[38] Lesley Evans Ogden. Drone ecology. BioScience, 63(9):776, 2013.

[39] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory

planning for quadrotor flight. In IEEE International Conference on

Robotics and Automation, 2013.

[40] M Turpin, N Michael, and V Kumar. Computationally efficient trajectory

planning and task assignment for large teams of unlabeled robots. In

ICRA, May 2013.

[41] R. H. Tutuncu, K. C. Toh, and M. J. Todd. Solving semidefinite-

quadratic-linear programs using sdpt3. Mathematical Programming, 95(2):189–

217, 2003.

[42] W. Van Loock, G. Pipeleers, and J. Swevers. Time-optimal quadrotor

flight. In Control Conference (ECC), 2013 European, pages 1788–1792,

July 2013.

55

[43] Cé dric Vermeulen, Philippe Lejeune, Jonathan Lisein, Prosper Sawadogo,

and Philippe Bouché ;. Unmanned aerial survey of elephants. PLoS One,

8(2):e54700, 2013.

[44] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl.

Time-optimal path tracking for robots: A convex optimization approach.

Automatic Control, IEEE Transactions on, 54(10):2318–2327, Oct 2009.

[45] Wei Wu. Dc motor parameter identification using speed step responses.

Model. Simul. Eng., 2012:30:30–30:30, January 2012.

[46] Gouqing Zhou, Chaokui Li, and Penggen Cheng. Unmanned aerial vehi-

cle (uav) real-time video registration for forest fire monitoring. In Geo-

science and Remote Sensing Symposium, 2005. IGARSS ’05. Proceed-

ings. 2005 IEEE International, volume 3, pages 1803–1806, July 2005.

56

