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Abstract 

 

Longitudinal Analysis on AQI in 3 Main Economic Zones of China 

 

Kailin Wu, M.S. Stat 

The University of Texas at Austin,2014 

 

Supervisor:  Daniel A.Powers 

In modern China, air pollution has become an essential environmental problem. 

Over the last 2 years, the air pollution problem, as measured by PM 2.5(particulate 

matter) is getting worse. My report aims to carry out a longitudinal data analysis of the 

air quality index (AQI) in 3 main economic zones in China. Longitudinal data, or 

repeated measures data, can be viewed as multilevel data with repeated measurements 

nested within individuals. I arrive at some conclusions about why the 3 areas have 

different AQI, mainly attributed to factors like population, GDP, temperature, humidity, 

and other factors like whether the area is inland or by the sea. The residual variance is 

partitioned into a between-zone component (the variance of the zone-level residuals) and 

a within-zone component (the variance of the city-level residuals). The zone residuals 

represent unobserved zone characteristics that affect AQI. 

In this report, the model building is mainly according to the sequence described 

by West et al (2007) with respect to the bottom-up procedures and the reference by 

Singer, J. D., & Willett, J. B (2003) which includes the non-linear situations. This report 

also compares the quartic curve model with piecewise growth model with respect to this 
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data. The final model I reached is a piece wise model with time-level and zone-level 

predictors and also with temperature by time interactions. 
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INTRODUCTION 

China is a fast developing country and its GDP growth is impressive over these 

years. However, in modern times, the environmental pollution aggravated due to the 

development of industry. Environmental problems are among the most important social 

problems in transitional China. In particular, air pollution has become an essential 

environmental problem. Over the last 2 years, the air pollution problem, as measured by 

PM 2.5(particulate matter) is getting worse, which harms the economy, society and 

environment. This phenomenon motivates my research on the correlation between different 

indexes and air quality to learn what the main effects are and in hence how we may address 

the corresponding problems. 

China has a vast territory and because of the imbalanced economic development in 

the eastern, central and western areas and also the big difference in energy consumption, 

the impact of various factors on PM emissions will be different. There are 3 main economic 

zones in mainland China. From the AQI (air quality index) map below, we can see that PM 

2.5 seems clustered in areas. More red and purple dots appear clustered in BER, which 

means that air pollution is more severe. YRD and PRD have many yellow dots, which 

means the air pollution in these two zones is moderate. 

China's Ministry of Environmental Protection (MEP) is responsible for measuring 

the level of air pollution in China. As of 1 January 2013, MEP monitors the daily pollution 

level in 163 of its major cities. The API level is based on the level of six atmospheric 

pollutants, namely sulfur dioxide (SO2), nitrogen dioxide (NO2), suspended particulates 

smaller than 10μm in aerodynamic diameter (PM10), suspended particulates smaller than 

2.5 μm  in aerodynamic diameter (PM2.5), carbon monoxide (CO), and ozone (O3) 

measured at the monitoring stations throughout each city. In this report, I focus on the 
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analysis on PM 2.5 which is the most severe problem of air pollution in China today. The 

air quality index I use is based on the China’s air quality standards (GB3095-2012). 

 

 

Figure 1: AQI map of China on 15/07/2013 

The reason why I chose these three areas is because these economic zones are the 

country’s fastest-growing regions and demonstrate comparatively worse AQI. They share 

some similar characteristics, such as a developed economy and concentrated population, 

but also have different characteristics such as geographical location and different energy 

consumption types. The three economic zones are named BER, YRD and PRD 

respectively. BER is located in the north part of China. It is the economic hinterland 

surrounding Beijing and Tianjin. It also includes areas in Hebei, Liaoning and Shandong, 

which surrounds the Bohai Sea. This economic zone has an importance place because it 

includes China’s capital Beijing. YRD which refers to Yangtze River Delta or the Golden 

Triangle of the Yangtze generally comprises the triangle-shaped territory of Shanghai, 
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southern Jiangsu province and northern Zhejiang province of China. The Yangtze River 

drains into the East China Sea. The urban build-up in the area has given rise what may be 

the largest concentration of adjacent metropolitan areas in the world. The delta is one of the 

most densely populated regions on earth, and includes one of the world's largest cities on its 

banks — Shanghai. PRD (The Pearl River Delta) in Guangdong province, People's 

Republic of China is the low-lying area surrounding the Pearl River estuary where the Pearl 

River flows into the South China Sea. It is one of the most densely urbanized regions in the 

world and one of the main hubs of China's economic growth. It has been the most 

economically dynamic region of the Chinese Mainland since the launch of China's reform 

program in 1979. 
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DATA STRUCTURE 

Longitudinal data, or repeated measures data, can be viewed as multilevel data with 

repeated measurements nested within individuals. A dataset is longitudinal if it tracks the 

same type of information on the same subjects at multiple points in time or space. This data 

is a longitudinal data set from 16 cities chosen from 3 economic zones, 6 for each zone, 

respectively. The cities’ air quality index (AQI) has been recorded for 12 successive 

months from July, 2012 to July 2013. At the same time, it was recorded city’s GDP, 

population, humidity, and temperature over these 12 months and whether the city is near 

sea. The city-level variable SEA remains constant for each city across the 12 measurement 

months. 

The data structure for a multilevel analysis of these data is generally different, 

depending on the specific program that is used. In this report, I use R [CITE AND 

REFERNCE TO R HERE] to do the data analysis. The regular format in figure 2 is referred 

to as a ‘wide’ form data set. 

 

 

Figure 2: Wide format data set  

CityID Time AQI TEMP Humidity PopulationGDP SEA ZoneID Timecenter
1 0 3.7 31 179 21.15 3181.07 0 1 -5
1 1 3.58 30 177 21.15 3181.07 0 1 -4
1 2 4.1 26 53 21.15 3181.07 0 1 -3
1 3 4.06 19 23 21.15 3181.07 0 1 -2
1 4 3.76 10 8 21.15 3181.07 0 1 -1
1 5 4.12 3 2 21.15 3181.07 0 1 0
1 6 17 2 3 21.15 3181.07 0 1 1
1 7 4.72 5 6 21.15 3181.07 0 1 2
1 8 4.8 12 9 21.15 3181.07 0 1 3
1 9 3.54 20 22 21.15 3181.07 0 1 4
1 10 4.94 26 36 21.15 3181.07 0 1 5
1 11 4.83 30 74 21.15 3181.07 0 1 6
2 0 4.43 31 172 12.28 2376.65 0 1 -5
2 1 4.43 30 145 12.28 2376.65 0 1 -4
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Note that the measurement months are numbered 0,. . ., 11 instead of 1, . . . , 12. 

This ensures that the intercept represents the mean AQI at the starting point of data 

collection. 
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METHODOLOGY 

MULTILEVEL REGRESSION MODELING  

The multilevel regression model has become known in the research literature under 

a variety of names, such as ‘random coefficient model’ (de Leeuw & Kreft, 1986; 

Longford, 1993), ‘variance component model’ (Longford, 1987), and ‘hierarchical linear 

model’ (Raudenbush & Bryk, 1986, 1988). Statistically oriented publications tend to refer 

to the model as a mixed-effects or mixed model (Littell, Milliken, Stroup, & Wolfinger, 

1996). ’. They all assume that there is a hierarchical data set, with one single outcome or 

response variable that is measured at the lowest level, and explanatory variables at all 

existing levels. Conceptually, it is useful to view the multilevel regression model as a 

hierarchical system of regression equations. 

In multilevel research, the data structure in the population is hierarchical, and the 

sample data are a sample from this hierarchical population. The lowest level (level 1) is 

usually defined by the individuals. At each level in the hierarchy, we may have several 

types of variables.  

Multilevel Linear Regression Model 

Level-1 is the lowest level of the model which corresponds to a single row in a data 

set. Level-2 is the clustering level of a model and level-1 units are members of level-2 

clusters.  

      Here is the simplest example of a model in two levels which is known as the 

unconditional means model. It’s also called intercept-only model. This intercept-only 

model is useful as a null model that serves as a benchmark with which other models are 

compared.  

 



7 
 

Level 1:            ��� = ��� + ���                   (1) 

Level 2:                 ��� = ��� + ���                  (2) 

Combined model: ��� = ��� + ��� + ���  

By adding predictors to level 1 or level 2, we can get the linear growth model which is 

presented below: 

       Level-1:              ��� = ��� + ������+��� 

Level-2:                          ��� = ��� +   ����� + ���    

  ��� = ��� +   ��� + ��� 

The assumptions about the level-1 and level-2 residuals are showed below: 

���~�(0, ��
�) 

 

�
��

��
� ~��� ��

0
0

� , �
��

� ���
�

���
� ��

� �� 

 

Bottom-up Procedure 

Longitudinal data, or repeated measures data, can be viewed as multilevel data with 

repeated measurements nested within individuals. To do multilevel regression modeling, 

we can use an exploratory procedure to select a model. Model building strategies can be 

either top-down or bottom-up. The top-down approach starts with a model that includes the 

maximum number of fixed and random effects that are considered for the model. Typically, 

this is done in two steps. The first step starts with all the fixed effects and possible 

interactions in the model, followed by removing insignificant effects. The second step starts 

with a rich random structure, followed by removal of insignificant effects. This procedure is 

described by West et al (2007). In multilevel modeling, the top-down approach has the 
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disadvantage that it starts with a large and complicated model, which leads to longer 

computation time and sometimes to convergence problems. In this report, the opposite 

strategy is used, which is bottom-up: start with a simple model and proceed by adding 

parameters, which are tested for significance after they have been added. Typically, the 

procedure starts by building up the fixed part, and follows after with the random part. The 

advantage of the bottom-up procedure is that it tends to keep the models simple. 

First, we start with the simplest possible model, the intercept-only model, which is 

also called the unconditioned means model and to add the various types of parameters step 

by step. At each step, we inspect the estimates and standard errors to see which parameters 

are significant. We start with the fixed regression coefficients, and add variance 

components at a later stage. The different steps of such a selection procedure are given 

below: 

Step 1: Analyze a model with no explanatory variables. This model is also called 

intercept-only model. This model is given by the following equation: 

��� = ��� + ��� + ��� 

Where ���is the regression intercept, and ��� and ��� are the usual residuals at 

the group and the individual level. The intercept-only model is useful because it gives us an 

estimate of the intraclass correlation ρ: 

���
� ���

� + ��
��  

Step2: Analyze a model with all lower-level explanatory variables fixed. This 

means that the corresponding variance components of the slopes are fixed at zero. This 

model is written as: 

��� = ��� + �������+��� + ���  
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Where the ���� are the p explanatory variables at the individual level. In this step, 

we assess the contribution of each individual-level explanatory variable. The significance 

of each predictor can be tested, and we can assess what changes occur in the first-level and 

second-level variance terms. We can test the improvement of the final model chosen in this 

step by computing the difference of the deviance of this model and the previous model (the 

intercept-only model). This difference approximates a chi-square with degrees of freedom 

equal to the difference in the number of parameters of both models. If there are 3 levels, 

this step is repeated on a level-by-level basis. 

Step 3: add higher–level explanatory variables. The equation is written below: 

��� = ��� + �������+������ + ��� + ��� 

Where the ���  are the q explanatory variables at the group level. This model 

allows us to examine whether the group-level explanatory variables explain between-group 

variation in the dependent variable. Also, if there are 3 levels, this step is repeated on a 

level-by-level basis. 

 The models in steps 2 and 3 are often called variance component models, because 

they decompose the intercept variance into different variance components for each 

hierarchical level. In a variance component model, the regression intercept is assumed to 

vary across the groups, but the regression slopes are assumed fixed. 

Step 4: Access whether any of the slopes of any of the explanatory variables has a 

significant variance component between the groups. This is called random coefficient 
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model, testing for random slope variation is best done on a variable by variable basis. The 

equation is given by: 

��� = ��� + �������+������ + ������� + ��� + ���  

Where the ��� are the group-level residuals of the slopes of the individual-level 

explanatory variables ����. 

Testing for random slope variation is best done on a variable-by-variable basis. 

After deciding which of the slopes have a significant variance between groups by using the 

deviance difference test, we add all these variance components simultaneously in a final 

model and use chi square tests based on the deviance to test whether the model of Step 4 is 

fits better that the final model of Step 3. Also, if there are more than two levels, this step is 

repeated on a level-by-level basis. 

The last step is to decide whether to add cross-level interactions between 

explanatory group-level variables and those individual-level explanatory variables that had 

significant slope variation found in Step 4. Following the 5 steps explained above, leads to 

the full model. In this report, the method is mainly based on this bottom-up procedure.  

Multilevel Linear Regression Model 

Besides the linear regression model, sometimes, we may come across non-linear 

regression models. The variable procedure is similar s above, but also cooperated with the 

model building sequence based on the reference from Singer, J. D., & Willett, J. B (2003). 
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It also includes the non-linear situation, which is more comprehensive. The sequences are 

given as:  

(a) Examine empirical growth plots 

(b) Fit an unconditional means model 

(c) Fit an unconditional linear growth model 

(d) Fit unconditional non-linear model (e.g., quadratic) 

(e) Compare unconditional linear and non-linear models 

(f) Add level-1 and level-2 predictors 

When it comes to the non-linear regression, we often use polynomial curves to 

model the pattern of change over time. Polynomial curves are often used for estimating 

development curves. They are convenient because they can be estimated using standard 

linear modeling procedures and they are very flexible. However, a general problem with 

polynomial function is that they often have very high correlations. So sometimes, 

polynomial functions may cause numerical problems in the estimation.  

Another solution to the estimation of non-linear model that often discussed is the 

use of piecewise linear functions and spline functions (Snijder and Bosker 1999), which are 

the functions that break up the development curve into different adjacent pieces. 

We can use a global chi square test to decide which kind of function to use, 

polynomial or the piecewise linear function.  
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DATA ANALYSIS AND RESULTS 

DATA SOURCE AND VARIABLE IDENTIFICATION  

This data is a longitudinal data set from 18 cities chosen from 3 economic zones, 6 

for each zone, respectively. The data set contains 3 levels (or hierarchies) which are time, 

city and zone levels. It has 206 observations with 18 cities. The dependent variable here is 

the AQI The 6 cities in BER are: Beijing, Tianjin, Qinghuangdao, Shijiazhuang, Tangshan, 

Langfang; 6 cities in YRD are Shanghai, Hangzhou, Wuxi, Suzhou, Wenzhou, Ningbo and 

the remaining left cities in PRD are: Guangzhou, Shenzhen, Zhuhai, Dongguan, Xiamen, 

and Fuzhou. The cities’ air quality index (AQI) has been recorded for 12 successive months 

from July, 2012 to July 2013. At the same time, it was recorded city’s GDP, population, 

humidity, and temperature over these 12 months and whether the city is near sea. The city-

level variable SEA remains constant for each city across the 12 measurement months. 

 
The independent variables are given below: 

Time: T (t=1,…,12). There are12 waves, the distance between 2 waves represents 1 month and the history 

data is from July, 2012 to June, 2013. 

Cities: CityID (j=1,…, 8)    

Zone: ZoneID (i=1, 2, 3) And also some potential independent variables: 

Temperature: TEMP (in degrees C) 

Humidity: HUM (in mm per month) 

Population: POP (in million) 

GDP: GDP (in US dollars) 

Inland or by Sea: SEA (1- near the sea; 0- inland) 
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I collected these data mainly online. About AQI, I used data collected by PM 2.5 

Monitoring System at www.cnpm25.com. Population and GDP of these 18 cities are 

collected from Wikipedia. Temperature and humidity of these 18 cities during 12months 

are collected from www.weather.com.cn.  

MODEL BUILDING AND COMPARISONS 

Empirical Growth plots 

Most of the following is the result of model building according to the sequence 

talked in previous part of the report by cooperating the sequence described by Singer, J. D., 

& Willett, J. B (2003) and by West et al (2007). 

First, Examine empirical growth plots. I produced a raw data using the R plotting 

function plot(x-time,y-AQI) and overlay loess model fit by gg plots. 

 

 

Figure 3: Raw data plot and overlaid a loess-smoothed line 

http://www.weather.com.cn/
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From the plots above, we can see that there exists a peak at time 6 (January, 2013). 

Also, there seems to be a symmetrical pattern centered on January. Apparently, it may not 

be appropriate to apply a linear growth model to these empirical patterns. Based on the 

shape of the plots, 2 possible models may be fit to this data set. One is a quadratic mixed 

model and the other one is a piecewise linear mixed model. Although the linear model 

seems inappropriate, I still include linear model in the sequence in order to compare the 

models numerically to attain a complete modeling sequence.  

Unconditional Means Model 

Following the sequence, I fit an unconditional means model according to the 

specification below.   

  Level 1: ���� = ���� + ���� time level 

     Level 2: ���� = ���� + ���� city level 

     Level 3: ���� = ���� + ���� zone level 

Here, (t=1,…, 12), (j=1,…, 8)and (i=1, 2, 3).The result of R is presented in the panel 

below:  
> summary(model.non) 

Linear mixed model fit by maximum likelihood  ['merModLmerTest'] 

Formula: AQI ~ 1 + (1 | CityID) + (1 | ZoneID) 

   Data: report 

     AIC      BIC   logLik  deviance   df.resid  

  1045.1   1058.6   -518.5   1037.1      212  

Random effects: 

Groups   Name        Variance  Std.Dev. 

CityID   (Intercept)    0.2695    0.5192   

ZoneID   (Intercept)   1.6817    1.2968   

Residual             6.6488    2.5785   

Number of obs: 216, groups: CityID, 18; ZoneID, 3 

Fixed effects: 

            Estimate   Std. Error      df t value  Pr(>|t|)   

(Intercept)   4.4506     0.7787 2.9994   5.716   0.0106 * 
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Table 1: R output of the unconditional means model fit for the report data  

From the output above, we get the AIC value of 1045.1. In this report, I use AIC as 

the index to select the models using the rationale outlined earlier. 

From the random effects part, we can see that the variance in random intercepts 

between the zones is much larger than the variance between cities which means that the 

difference between the cities within one cluster is much smaller compared to the difference 

between the 3 zones. And we can calculate the proportion of variance explained at level 3 

(zone level), also called the ICC = 1.68/ (0.27+1.68+6.65) × 100%=19.53%. This means 

that the zone residuals explain about 20% of the unconditional variation in residuals. This 

makes sense when looking at the map above Three economic zones share some similar 

characteristics however, the PM 2.5 indexes are very different from each other. We can see 

that PM 2.5 is clustered in zones. The characteristics which cause the big difference 

between these 3 economic zones could be explored by adding predictors to the appropriate 

levels or hierarchies in our multilevel model.  

Unconditional Growth Piecewise Model 

Next, I analyze an unconditional growth piecewise model with the breakpoint at 

time6.  

Level 1                              ������   = ���� + �������� + �������� + ���� 

Level 2:                                    ���� = ���� + ���� 

���� = ���� 

Level 3                 ���� = ���� + ���� 

���� = ���� 

 

The result of R is presented in the panel below: 



16 
 

 

 

 

 
Formula: AQI ~ 1 + Time.rate1 + Time.rate2 + (1 | CityID) + (1 | ZoneID) 

   Data: report 

AIC      BIC   logLik deviance df.resid  

975.9    996.1   -481.9    963.9      210  

Random effects: 

Groups   Name        Variance Std.Dev. 

CityID   (Intercept)    0.4408   0.6639   

ZoneID   (Intercept)   1.6817   1.2968   

Residual             4.5938   2.1433   

Number of obs: 216, groups: CityID, 18; ZoneID, 3 

Fixed effects: 

    Estimate   Std. Error  df        t value   Pr(>|t|)     

(Intercept)   6.7920      0.8175   3.6400   8.308   0.0017 **  

Time.rate1    0.7425    0.0851 197.9900   8.725 1.11e-15 *** 

Time.rate2   -0.8337    0.1041 197.9900  -8.008 9.77e-14 *** 

Table 2: R output of the unconditional growth piecewise model  

From the output above, we can see that the intercept, Time.rate1 and 

Time.rate2 are all significant. The intercept means that the population average AQI in 

the first month (July, 2012) is 6.79. The slope of time.rate1 is positive and slope of 

time.rate2 is negative which means that the air quality became worse from July, 2012 

to January 2013 and then AQI became better from January to June. In the first rate, with 

one month increases, AQI gets higher by 0.7425 and for the second rate AQI gets lower by 

-0.8337 by each month. Importantly, AIC decreases a lot compared to the first 

unconditional means model. 
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Unconditional Quadratic Growth Curve Model 

According to the shape of the plot, a quadratic function is also reasonable so I fit a 

unconditional quadratic growth curve model below and then compare it to the piecewise 

above to get a relatively better function.  

                              ������   = ���� + �������� + ������
��� + ���� 

The R output is shown below: 

 
Formula: AQI ~ 1 + Time + Time.2 + (1 | CityID) + (1 | ZoneID) 

   Data: report 

     AIC      BIC   logLik deviance df.resid  

  1009.7   1030.0   -498.9    997.7      210  

Random effects: 

 Groups   Name        Variance Std.Dev. 

 CityID   (Intercept) 0.3694   0.6078   

 ZoneID   (Intercept) 1.6817   1.2968   

 Residual             5.4507   2.3347   

Number of obs: 216, groups: CityID, 18; ZoneID, 3 

 

Fixed effects: 

             Estimate Std. Error        df t value Pr(>|t|)     

(Intercept)   2.36246    0.86408   4.54000   2.734   0.0455 *   

Time          1.12953    0.17196 197.99000   6.569 4.38e-10 *** 

Time.2       -0.09781    0.01506 197.99000  -6.494 6.61e-10 *** 

Table 3: R output of the unconditional growth quadratic model  

Deviance Test between Quadratic and Piecewise Model 

We can see that AIC increases and in order to make sure if it’s significantly 

different from the piecewise model, I do the chi square test on the deviance to choose a 

better one. The chi square test is presented below: 

 
> anova(model.qua,model.pwlow) 

Data: report 

Models: 

object: AQI ~ 1 + Time + Time.2 + (1 | CityID) + (1 | ZoneID) 
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..1: AQI ~ 1 + Time.rate1 + Time.rate2 + (1 | CityID) + (1 | ZoneID) 

       Df     AIC     BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

object  6 1009.72 1029.98 -498.86   997.72                              

..1     6  975.86  996.11 -481.93   963.86 33.862      0  < 2.2e-16 *** 

Table 4 : R output of the deviance test between unconditional growth quadratic model and 
unconditional piecewise growth model 

The p-value is almost 0, which means that the piecewise model is much better than 

the quadratic model. So I decide to use the piecewise model as the baseline model for the 

further analysis. 

 

Piecewise Growth Model Adding Level-1 Predictors 

Next, according to the modeling sequence discussed previously, I fit the piecewise 

model by adding the time-varying covariate temperature and humidity to the model.  Plus, 

this model also adds the time invariant (subject level) predictors SEA and Population, 

GDP1. 

Level1:     ������   = ���� + �������� + �������� + ��������� + ����������� +

��������������� + ��������� + ���������������� + ���� 

Level 2:                                    ���� = ���� + ���� 

���� = ���� 

���� = ���� 

. 

. 

. 

���� = ���� 

 

                                                 
1AS the time period is not too long, here I assume GDP and Population is time-invariant during this period  
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Level 3                 ���� = ���� + ���� 

���� = ���� 

. 

. 

. 

���� = ���� 

The R output is shown below: 

 
Formula: AQI ~ 1 + Time.rate1 + Time.rate2 + TEMP + SEA + Population +      

GDP + Humidity + +(1 | CityID) + (1 | ZoneID) 

   Data: report 

     AIC      BIC   logLik deviance df.resid  

   962.2    999.3   -470.1    940.2      205  

Random effects: 

 Groups   Name        Variance Std.Dev. 

 CityID   (Intercept)    0.05483  0.2342   

 ZoneID   (Intercept)   0.05443  0.2333   

 Residual             4.46201  2.1123   

Number of obs: 216, groups: CityID, 18; ZoneID, 3 

Fixed effects: 

              Estimate Std. Error         df t value Pr(>|t|)     

(Intercept)   7.882442    0.479188  23.820000  16.450 1.67e-14 

***Time.rate1   0.364262   0.164552  23.110000   2.214 0.036997 *   

Time.rate2   -0.515516   0.172910  32.230000  -2.981 0.005426 **  

TEMP      -0.121972   0.027984  21.850000  -4.359 0.000255 *** 

SEA        -1.538409   0.398585  20.730000  -3.860 0.000925 *** 

Population   0.132198   0.069830  16.450000   1.893 0.076066 .   

GDP       -0.056779   0.038534  16.400000  -1.473 0.159565     

Humidity      0.005458   0.002761 174.560000   1.977 0.049591 *   

Table 5: R output of the piecewise model with level-1 predictors 

From the output above, we can see that the coefficients of time.tate1, 

time.rate2, TEMP, SEA and Humidity are all significant. The p-value of Population 

is less than 0.1. The coefficient by sea is negative and the p-value is very small. It means 

that the cities near the sea have lower AQI (better air) than the inland cities. Similarly, 
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when the weather is hotter, the AQI tends to be lower. The coefficient of Humidity here is 

almost 0 and it means that raining doesn’t effect AQI too much. Plus, the coefficient of 

population here is not statistically significant which means that population has no big effect 

on AQI.  

Growth Piecewise Model Adding Higher-level Predictors 

    The following step is to access whether any of the slopes of any of the explanatory 

variables has a significant variance component between the groups. This is called random 

coefficient model, testing for random slope variation is best done on a variable by variable 

basis. Here, I found that temperature can be added as random coefficient to the zone level 

(third-level). 

Level1:     ������   = ���� + �������� + �������� + ��������� + ����������� +

��������������� + ��������� + ���������������� + ���� 

Level 2:                                    ���� = ���� + ���� 

���� = ���� 

���� = ���� 

. 

. 

. 

���� = ���� 

 

Level 3                 ���� = ���� + ���� 

���� = ���� 

. 

���� = ����+���� 

. 

. 
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���� = ���� 

 

 

 

 

  
Formula: AQI ~ 1 + Time.rate1 + Time.rate2 + TEMP + SEA + Population +      

(1 | CityID) + (1 + TEMP | ZoneID) 

   Data: report 

     AIC      BIC   logLik deviance df.resid  

   959.8    996.9   -468.9    937.8      205  

 

Random effects: 

Groups   Name        Variance Std.Dev. Corr  

CityID   (Intercept) 0.064506 0.25398        

ZoneID   (Intercept) 4.458576 2.11153        

          TEMP        0.005485 0.07406  -1.00 

Residual             4.284603 2.06993        

Number of obs: 216, groups: CityID, 18; ZoneID, 3 

Fixed effects:   

             Estimate    Std. Error        df t value Pr(>|t|)    

(Intercept)      6.531843   1.358571  1.935000   4.808  0.04334 *  

Time.rate1      0.638392   0.186102 12.182000   3.430  0.00488 ** 

Time.rate2     -0.717268   0.180847 16.508000  -3.966  0.00105 ** 

TEMP        -0.003071   0.060306  3.816000  -0.051  0.96194    

SEA         -1.316430   0.363380 19.374000  -3.623  0.00177 ** 

Population   0.030536   0.028753 15.297000   1.062  0.30470    

Table 6: R output of the piecewise model with level-1 predictors 

Adding Cross-level Interactions  

The last step is to decide whether to add cross-level interactions between 

explanatory group-level variables and those individual-level explanatory variables that had 

significant slope variation found in the previous step which is temperature. In this step, by 
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exploring possible cross-level interactions, I decided to add the interaction between the 

time slopes and temperature.  

 

 

 

 

 

 
Formula: AQI ~ 1 + Time.rate1 + Time.rate2 + TEMP + SEA + Population +   

    TEMP * Time.rate1 + TEMP * Time.rate2 + (1 | CityID) + (1 +      TEMP | 

ZoneID) 

   Data: report 

  AIC      BIC   logLik deviance df.resid  

  878.3    922.2   -426.2    852.3      203  

Random effects: 

 Groups   Name        Variance  Std.Dev. Corr  

 CityID   (Intercept) 1.6113812 1.26940        

 ZoneID   (Intercept) 8.3089212 2.88252        

          TEMP        0.0003924 0.01981  -1.00 

 Residual             2.4146661 1.55392        

Number of obs: 216, groups: CityID, 18; ZoneID, 3 

 

Fixed effects: 

                  Estimate Std. Error         df t value Pr(>|t|)     

(Intercept)      10.117800   1.873216   3.130000   5.401   0.0111 *   

Time.rate1        3.795110   0.347539 201.720000  10.920   <2e-16 *** 

Time.rate2       -3.889148   0.327572 206.540000 -11.873   <2e-16 *** 

TEMP           0.001909   0.040907  12.520000   0.047   0.9635     

SEA            -0.899374   0.771952  21.070000  -1.165   0.2570     

Population       -0.084765   0.061303  13.250000  -1.383   0.1896     

Time.rate1:TEMP -0.093161   0.008515 186.980000 -10.940   <2e-16 *** 

Time.rate2:TEMP 0.106005   0.009648 195.460000  10.987   <2e-16 *** 

Table 7: R output of the final piecewise model with interactions 
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Similarly, by doing the global chi -square test, I reached the conclusion that the 

model in the last step with interactions improves the model compare to the previous 

models. From the output, we found that both the interactions are significant. The interaction 

between temperature and the first slope of time is negative which means that during the 

first period, when the temperature gets higher, the AQI tends to get lower. However, when 

it comes to the second period (January-June), the temperature and time has positive 

correlation.  

By all the steps explained above, it leads to the full model. The full model is a 

piecewise model with time-level and zone-level predictors and also with temperature by 

time interactions. The multi-level equations of the final model are presented as below: 

Level1:     ������   = ���� + �������� + �������� + ��������� + ����������� +

��������������� + ��������� + ���������������� + ���� 

Level 2:                                    ���� = ���� + ���� 

���� = ���� 

���� = ���� 

. 

. 

. 

���� = ���� 

 

Level 3                 ���� = ���� + ���� 

���� = ���� 

. 

���� = ����+������� + ������� + ���� 

. 

. 
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���� = ���� 

  



25 
 

CONCLUSION  

In this report, the model building is mainly according to the sequence described by 

West et al. (2007) with respect to the bottom-up procedures and the reference by Singer, J. 

D., & Willett, J. B (2003), which includes the non-linear situations. This report also 

compares the quartic curve model with piecewise growth model with respect to this data. 

The final model I reached is a piecewise model with time-level and zone-level predictors 

and also with temperature by time interactions. 

From the result, I found that the zone-level explains much more variance than the 

city-level which explains the clustering pattern of AQI. The differences on AQI in these 3 

zones are mainly attributed to the factors like temperature, geographical location and 

population. Especially, I found that GDP does not significantly affect city’s AQI. This 

conclusion could explain why Shenzhen in PRD and shanghai in YRD, who with their 

higher GDPs, have much lower AQI than Shijiazhuang in BER. 
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DISCUSSION 

There are some limitations of this report. The first one is the sample size of my 

study is not big enough. The data-collection of longitudinal study is time-consuming so my 

study is lack of observations. With larger sample size at all levels, the estimates and their 

standard errors would be more accurate. Also, because of the insufficient data, in this report 

I treat the variable population and GPA during July, 2012 to June, 2013 as time-invariant 

variables. However, this is not the case. Plus, I could also consider other predictors such as 

industry emissions and numbers of vehicles in those cities to better predict AQI.  
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Appendix 

R code 
install.packages('lme4') 
install.packages('ggplot2') 
install.packages('lmerTest') 
library(lme4) 
library(ggplot2)  
library(lmerTest) 
report <- read.csv("C:/Users/Think/Desktop/reportt.csv") 
#change the order form July 2012-2013 June## 
p.1 <-ggplot(report, aes(Time, AQI, group = CityID)) + geom_line ()  
p.1 + geom_smooth(aes(group = 1), method = 'lm', size = 2, se = F)  
p.1+ geom_smooth(aes(group = 1), method = 'loess', size = 2, se = F) 
model.non <- lmer(AQI ~ 1 +(1| CityID)+(1| ZoneID), data = report, REML = 
F) 
model.pwinter<-lmer(AQI~1+Time.rate1+ 
Time.rate2+TEMP+SEA+Population+TEMP*Time.rate1+TEMP*Time.rate2+(1| 
CityID)+(1 +TEMP|ZoneID), data = report, REML = F)  
summary(model.pwinter) 
summary(model.pwall) 
summary(model.pwran2) 
summary(model.non) 
anova(model.pwall,model.pwran) 
report$Time.2 <- report$Time^2 
model.pwlow<- lmer(AQI ~ 1 +Time.rate1 + Time.rate2+(1  | CityID)+(1 
|ZoneID), data = report, REML = F) 
b <-6                                      # break point 
prior <- 11 - b                    # time after break 
report$Time.rate1 <- ifelse(report$Time <= b, (report$Time - 6), 0) 
# period 1 growth rate 
report$Time.rate2 <- ifelse(report$Time > b,  (report$Time - 6),0) 
# period 2 growth rate 
Time<--5:6                                         # full range of time values  
Time.rate1<-c(-5:0, rep(0, 6))                 # make time values 
Time.rate2 <- c(rep(0, 6), 1:6)                # make time values 
model.pwall<-lmer(AQI~1+Time.rate1+ 
Time.rate2+TEMP+SEA+Population+GDP+Humidity++(1  | CityID)+(1 |ZoneID), 
data = report, REML = F) 
model.pwstep4<- lmer(AQI ~ 1 +Time.rate1 + Time.rate2+TEMP+SEA+(1 | 
CityID)+(1 +TEMP+SEA|ZoneID), data = report, REML = F)  
model.pwran2<- lmer(AQI ~ 1 +Time.rate1 + 
Time.rate2+TEMP+SEA+Population+GDP+(1  | CityID)+(1 +TEMP+SEA|ZoneID), 
data = report, REML = F) 
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