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Abstract 

 

Eye Movements, Visual Search and Scene Memory in an Immersive 
Virtual Environment 

 

Katherine Lorraine Snyder, M.A. 

The University of Texas at Austin, 2014 

 

Supervisor:  Mary Hayhoe 

 
Visual memory has been demonstrated to play a role in both visual search and attentional 

prioritization in natural scenes. However, it has been studied predominantly in 

experimental paradigms using multiple two-dimensional images.  Natural experience, 

however, entails prolonged immersion in a limited number of three-dimensional 

environments. The goal of the present experiment was to recreate circumstances 

comparable to natural visual experience in order to evaluate the role of scene memory in 

guiding eye movements in a natural environment, subjects performed a continuous 

visual-search task within an immersive virtual-reality environment over three days. We 

found that, similar to two-dimensional contexts, viewers rapidly learn the location of 

objects in the environment over time, and use spatial memory to guide search. Incidental 

fixations do not provide obvious benefit to subsequent search, suggesting that semantic 

contextual cues may often be just as efficient, or that many incidentally fixated items are 

not held in memory in the absence of a specific task. On the third day of the experience in 
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the environment, previous search items changed in color. These items were fixated upon 

with increased probability relative to control objects, suggesting that memory-guided 

prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel 

features of natural environments, in addition to task factors and simple spatial saliency. 
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INTRODUCTION1 

How are visual scenes represented in memory? Evidence is accumulating that 

such representations are multi-faceted. There is consensus that the ‘gist’ of a scene is 

rapidly perceived and retained in memory, along with limited short term visual memory 

of a few items, and other high level semantic information (Hollingworth & Henderson, 

2002; Irwin & Andrews, 1996; Luck & Vogel, 1997). The change blindness phenomenon 

was initially interpreted to mean that little else was retained beyond this (see review in 

Simons, 2000). Some of the evidence was taken to indicate that coherent object 

representations decayed rapidly following withdrawal of attention from an object 

(Rensink, 2000; 2002). Wolfe also argued for the decay of object representations 

following withdrawal of attention (Wolfe, 1999). More recent work, however, has 

suggested that there is a much more extensive accumulation of information in memory 

even after relatively brief exposures (Hollingworth, 2006; Konkle et al, 2010; Melcher & 

Kowler, 2001; Melcher 2006; Brooks, Rasmussen, & Hollingworth, 2010). For example, 

scene context appears to facilitate subsequent visual search for targets even after a single 

prior exposure (Castelhano & Henderson, 2007; Summerfield et al, 2006; Becker & 

Rasmussen, 2008). Thus it appears that the change blindness phenomenon leads to an 

 

1. This manuscript, minus Appendices A and B was recently published (Kit et al, 2014). 
Author contributions as follows: Snyder – experimental design, data collection, data 
analysis, manuscript preparation; Kit – experimental design, data collection, data 
analysis, model development; Katz – data analysis, manuscript preparation; Hayhoe – 
theoretical development, manuscript preparation. 
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 underestimate of the extent of visual scene representations (Melcher & Kowler, 2001; 

Castelhano & Henderson, 2007; Hollingworth, 2006).  

The nature of visual scene representations will vary with the extent of prior visual 

experience. Many experiments in scene perception, including many change blindness 

experiments, entail a sequence of limited exposures to a relatively large number of 

images of natural scenes. Normal visual experience, however, is quite different, and 

typically involves long periods of immersion in a relatively small number of visual 

environments, such as one’s home, workplace, etc. Even though attention and working 

memory may limit the information acquired in any given fixation, after many thousands 

of fixations within the same scene (about 10,000 per hour), there is ample opportunity to 

accumulate highly detailed statistical representations. It is well established that the human 

perceptual system is highly sensitive to these statistics and that these learnt priors about 

scenes play an important role in perception (Geisler, 2008; Fiser et al, 2010). Thus 

memory for the scenes that constitute a large fraction of ordinary visual experience 

presumably functions in a somewhat different manner from memory for generic scenes 

typically used in laboratory experiments on scene memory.  

The goal of the present study was to understand the role that scene memory might 

play in the allocation of attention and eye movements in normal vision. The traditional 

solution to understanding the control of attention and gaze has been to assume that some 

ongoing “pre-attentive” analysis of the visual image takes place, and that the products of 

this analysis attract the observer’s attention to important or salient aspects of the image 

for further processing (Wolfe 1994, 1999; Treisman, 1993). There has been extensive 
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investigation of the role of stimulus salience in attracting attention (eg Itti & Koch, 2001; 

Torralba, 2003; Bruce & Tsotsos, 2009; Zhang et al, 2008). However, evidence for the 

role of salient stimuli in attracting attention is mixed (see reviews by Tatler et al, 2011 

and Schutz et al, 2011). Such mechanisms are inherently brittle as they rely on the 

properties of the stimulus with respect to the immediate context to attract attention. Even 

if stimulus salience, defined in this way, plays some role in attracting gaze in laboratory 

experiments, it is not known whether these mechanisms will be very effective in natural 

environments, since the experimental contexts examined may not reflect either the 

sensory milieu of the natural world or the requirements of visually guided behavior. In 

natural behavior, many kinds of information need to be attended, and important 

information may not be especially salient (for example, irregularities in the sidewalk). 

Conversely, salience may not be especially important and may not attract attention 

(Rothkopf et al, 2007; Stirk & Underwood, 2007; Jovancevic et al, 2006). At the same 

time there is a clear need for observers to detect new or unexpected aspects of familiar 

scenes. There must be some mechanism for attracting attention to aspects of the scene 

that are not on the current task agenda and require a change of task priorities, such as 

avoiding an unexpected obstacle. It is in this context that scene memory may play an 

important role. The problem in natural vision is that a stimulus that is salient in one 

context (such as peripheral motion with a stationary observer) may not be salient in 

another context (such as when the observer is moving and generating complex motion 

patterns on the retina). However, if the scene is efficiently coded in long-term memory, 

different mechanisms might be available for coding new information. Subjects may 
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compare the current image with the stored representation, and a mis-match, or “residual” 

signal may serve as a basis for attracting attention to changed regions of scenes. This may 

allow subjects to be particularly sensitive when there are deviations from familiar scenes, 

and thus attention may be drawn to regions that do not match the stored representation.   

This idea is similar in conception to Itti & Baldi’s (2005, 2006) model of “Surprise”. 

Horstmann (2002, 2005) and Becker & Horstmann (2011) also showed that distractors 

that have not been previously presented (ie, are surprising) attract attention in a visual 

search task. Itti & Baldi conjecture that the visual system learns the statistics of images 

by estimating the distribution of parameters of probability distributions that can explain 

recent image feature data. Itti & Baldi’s model works on very short time scales (100’s of 

msec). Thus it is unlikely to reflect the long-term memory factors involved in natural 

behavior. An alternative mechanism may be one that relies on learnt statistics of scenes, 

and is sensitive to scene regions that differ significantly from these statistics. In standard 

saliency models, salient stimuli are statistical outliers in space. Surprising stimuli can be 

thought of as statistical outliers with respect to learnt, expected, distributions stored in 

memory (cf Rosenholtz, 1999; Rosenholtz & Jin, 2005). Such a mechanism might serve 

as a more robust mechanism of attentional capture than purely spatial saliency. 

Evidence that memory representations facilitate detection of novel objects in scenes was 

found by Brockmole & Henderson (2005a,b). When subjects were given 15 seconds pre-

exposures to images of natural scenes, new objects were able to attract gaze in a 

subsequent brief exposure, even when the object was presented during a saccade, and 

there was no retinal transient associated with its appearance. The authors suggest that the 
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pre-exposure allowed subjects to construct a long-term memory representation of the 

scene, as a basis for discriminating the new object. Subsequent experiments revealed that 

inconsistent objects had greater attentional prioritization than consistent object 

(Brockmole & Henderson, 2008) and that color changes were also prioritized following a 

preview (Matsukura et al, 2009). Thus when the scene is familiar, changes may be more 

readily detectable. Brockmole and colleagues refer to this as “memory-guided 

prioritization”. 

Although these experiments used images of natural scenes, the nature of the 

experience still differs from natural vision, as described above, with respect to the 

number of scenes, and the temporal sequence. Only a few studies have examined scene 

memory or gaze allocation in realistic, immersive and complex natural environments. 

Droll & Eckstein (2008) and Tatler & Tatler (2012) demonstrated the role of the task in 

gaze allocation and memory, although there is also evidence for memory that is not 

obviously related to the instructed task. Mack & Eckstein (2011) showed that previously 

acquired associative knowledge influences gaze allocation and facilitates search in real 

world scenes. In a previous study in an immersive virtual environment, Karacan & 

Hayhoe (2007) attempted to demonstrate the role of prior experience, where observers 

walked around a virtual environment for several minutes. Subjects with this experience in 

the environment looked more at changed objects than those without experience. All of 

these studies, however, used relatively short exposures.  

The current study was designed to examine the effect of more prolonged exposure to 

such an environment. Rather than a few minutes of experience we gave subjects 
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experience in the environment over three sessions on separate days, adding up to about 

one hour’s total experience. In addition to studying the role of memory in guiding eye 

movements, our goal was to test whether gaze was drawn to changes in objects, as a 

result of this prolonged experience. Although Karacan & Hayhoe’s experiment was 

consistent with such a finding, they were not able to demonstrate an increase in the 

probability of fixation on the changed objects, but only an increase in total fixation 

duration on the objects. It was not clear if the longer fixation duration was a result of 

attentional capture (or gaze prioritization in Brockmole & Henderson’s terminology) or 

simply a consequence of longer fixations once gaze was actually on the object. In the 

present experiment, therefore, we asked whether experience in a scene might form the 

basis of a mechanism that attracts gaze to regions that differ from the memory 

representation. Such a mechanism might be more robust in attracting gaze to regions that 

are not currently task relevant than stimulus saliency.  

In addition to the potential role of scene memory in detecting changes, another 

important function is visual search. Evidence is accumulating that pre-exposure to images 

of natural scenes facilitates subsequent search (Castelhano & Henderson, 2007; 

Hollingworth, 2003; Brooks et al, 2010; Summerfield et al, 2006; Hidalgo-Sotelo and 

Oliva 2010; Hollingworth, 2006). However, it is not known how much search benefits 

from extensive immersive experience in a naturalistic scene. In 2D natural images, search 

times for ordinary objects are typically 1-2 sec, and involved 3-5 fixations (Vo & Wolfe, 

2013; Hollingworth, 2012). There is a small advantage to repeated searches for different 

objects within the same scene, at least when the target is specified by a verbal label, and a 
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bigger advantage for repeated searches of the same object. In an immersive environment, 

the search item will typically be at a remote location in the space and not visible to the 

subject at the initiation of search, so subjects need to learn the location of the item in the 

larger space, and use memory for layout in order to bring the object within view. To look 

at both these functions of visual memory in immersive environments, namely search and 

change detection, we designed a three-room virtual apartment, and asked subjects to 

search for a sequence of targets over three sessions on subsequent days. A small number 

of these objects were specified as search targets on repeated occasions, and this allowed 

us to explore the effect of repeated searches, and the effect of scene memory on this 

search process. In the final session the color of some items was changed, and we asked 

whether the probability of fixation on these items increased following the change. 
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EXPERIMENTAL ENVIRONMENT  

Participants were asked to explore a virtual reality (VR) apartment, created with IMSI 

FloorPlan 3D V11, consisting of three rooms: bedroom, bathroom and kitchen. A top 

view of the environment is shown in Figure 1a. The subjects wore a Virtual Research V8 

head mounted display (HMD). This HMD has two 640x480 pixel resolution screens and 

a 48◦×36◦ field of view. Fixed to it were 6 LED markers, which were tracked by a 

PhaseSpace motion tracking system at 480 Hz and used to monitor head position in the 

environment and to update the view of the environment at the 60 Hz refresh rate of the 

HMD. The HMD display was updated based on the orientation and position of the rigid 

body defined by these markers in a 4.6 m by 5.5 m space. This information was recorded 

for later analysis. In addition, each subject wore a glove with an LED marker on the 

index finger, which was also tracked by the PhaseSpace System. A view of the subject 

walking in the virtual environment is shown in Figure 1b. An Applied Science 

Laboratory (ASL) eye tracker recorded the position of the left eye at a sampling rate of 

60 Hz and the accuracy of approximately one degree. Before the experiment the eye 

tracker was calibrated using a nine point (3x3) grid. This calibration was repeated in the 

middle and at the end of each session. Video records of the eye and scene camera were 

combined in a custom QuickTime digital format, which also allows the data from the 

head, eye-position, and finger position, and the simulation (e.g. position of objects in the 

world) to be saved as synchronized metadata on each video frame. These data were 

subsequently analyzed using an automated analysis system developed in-house to create a 
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complete reconstruction of the experimental environment and subject behavior at any 

given frame. 

 
Figure 1. Subjects performed a visual search task within a virtual-reality three-

room apartment. A. Subjects wore a V8 head mounted display equipped with an ASL 

eye tracker, while the head and hand were tracked using the PhaseSpace motion tracking 

system. The subject touched virtual objects in the apartment using the gloved hand when 

they were located. B. Overhead view of the virtual apartment showing the three rooms: 

bathroom, bedroom, and kitchen. The 3 objects specified for repeated search are 

indicated by red circles. C. Two example views, recorded while a human subject was 

exploring the apartment wearing the HMD. Targets were specified by words at the 

bottom of the screen (e.g. ”Coffee Maker”) and the subject had to locate and touch that 

object (e.g. the orange coffee maker). Gaze position, head orientation and location were 

recorded for later analysis.  

  

BedstandTea Kettle
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PROCEDURE  

Six subjects participated in the experiment. Subjects had no known visual deficits except 

for refractive errors corrected by contact lenses. All subjects signed IRB approved 

informed consent forms. The primary task was to search for objects in the apartment and 

to touch them when they had located them. Numerous objects were placed in this 

environment ranging from furniture (e.g. a desk and a bed) to appliances (e.g. blender and 

refrigerator). The search target was identified by words presented inside the helmet and 

subjects were required to locate and touch the object. After contact was recorded, a new 

target was displayed. Three sessions took place over three consecutive days. The duration 

of each of the first two sessions (excluding set-up and calibration) was approximately 20 

minutes. The third session was about 8 minutes long and was used to test subject’s ability 

to detect changes. The subjects were told that:  1. They would spend three sessions in the 

environment over three consecutive days. 2. The goal of the experiment was to test their 

ability to remember visual features of the environment. 3.There would be a test after the 

third session. The instructions purposefully neglected to specify what visual aspects of 

the environment the participants would be tested on.  

 The primary purpose of the search task was to give subjects experience that 

engaged them in exploration of the environment. During the first session the subject 

searched for 75 objects, 31 of which were used as targets on more than one occasion, and 

44 of which were targets only once. In order to investigate the effect of experience on 

search time, three objects were selected for repeated search episodes: coffee maker, bed 

stand, and tea-kettle. During the second session the participants searched for 100 objects, 
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with 55 used only once. The three objects used in session one were again used as 

repeated targets in session two. Despite the greater number of target objects, subjects 

were able to complete the session in about the same time period as on the first day. In the 

third session subjects continued searching for objects, including the three repeated 

objects. After the 25th trial the color of the tea kettle on the dining room table was 

changed. On the 27th trial the coffee maker changed in color and finally the bed stand 

changed on trial 34. These changes took place when the subject was in a different room 

and the object outside the field of view. The third session was terminated at trial 60, after 

which subjects were given a questionnaire.  They were asked to sketch the environment 

including as many objects as they could remember. They were also asked if they noticed 

any objects changing and if so, what those changes were. 
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DATA ANALYSIS 

During the experiment a data file was generated that contained positions of the 

subject’s head and eye as well as the positions of all of the objects in the environment. By 

using the head orientation and position of the subject along with the positions of all the 

objects in the environment, the analysis tool created a complete reconstruction of the 

experimental environment. Subjects’ eye position data were analyzed using an automated 

system developed in-house.  The eye signal was preprocessed using a median filter 

followed by a moving average over three frames to smooth the signal. Eye-movement 

data was then segmented into fixations and saccades. Fixations were defined by 

sequences of at least 150ms in length where the eye velocity was below 35deg/s. Low 

velocity movements that are a consequence of head motion and the vestibulo-ocular 

reflex were classified as fixations (Pelz and Rothkopf, 2004). After segmenting the 

fixations, the location of gaze was surrounded by a 60x60 pixel fixation window 

(approximately 2x2 degrees) so that for every frame, the location of gaze was projected 

on a 2D space. Using this method, we polled the virtual world and identified the objects 

that were fixated by the subject. Brief track losses during a fixation were ignored when 

the gaze location was on the same object before and after the track loss. 

Data were then segmented into trials. A trial began when the subject was 

instructed to touch a particular object indicated by the name at the bottom of the screen 

(for example, Figure 1c), and ended as soon as the subject had “touched” the target. Since 

a substantial portion of the trial was dedicated to moving the subject’s body from one 

room or location to another, each trial was subdivided into three segments: time from trial 
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start until the object appeared in the subject’s field of view, the subsequent period until 

the object was fixated, and the time between fixation and touching. We restricted our 

analyses (unless mentioned otherwise) to a particular epoch most relevant to the visual 

search itself: from the moment a target appeared within the FOV, to the moment the 

target was fixated upon, followed immediately by a gesture to touch it. Video records 

were examined frame by frame to determine the exact time of trial end, which was 

defined as the first frame where the subject’s hand began moving towards the object to 

“touch” it.   

Path Length.    One method to assess how well people learn spatial layout of the 

environment was by quantifying the path they took to reach a search target and 

comparing it to the shortest possible path they could have taken. For each trial, tr, the 

length of the path (P) taken by the subject is measurement is by using the following 

formula: 

 

 
(1) 

 

where N is the number of frames in that trial and pos(i) is the head position at frame i. 

This value can then be compared to the shortest path for that trial (S), 

 
 (2) 

 

where l is the location of the target object. Notice that this measure does not account for 
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walls and other obstacles but still provides a relative measure of performance on every 

trial. 

 

To test the effect of repeated search on number of fixations and path length we performed 

a bootstrap analysis in addition to standard repeated measures ANOVA. For the bootstrap 

analysis an F statistic was computed over repeated search. A null hypothesis distribution 

of F statistics is formed by sampling datasets that matched the real data in number of 

observations, but randomized over the dimension of interest, repeated search. We then 

compared our real F to the distribution of null-hypothesis F and compute the probability 

of obtaining such an F given the null distribution, which we consider a measure of 

significance. Throughout the text we report the results of traditional ANOVAs (corrected 

for sphericity using the Huynh-Feldt correction) to better match the literature, but 

emphasize here that all traditional analyses agreed with the more conservative and 

assumption-free bootstrap analysis. 
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RESULTS 

Distribution of fixations in the Environment  

Since little is known about the characteristics of gaze deployment in natural 

immersive environments we first present summary data showing the regions fixated 

during exploration of the environment. Approximately  2,000 fixations per subject were 

recorded on each of the first two days. Figure 2a shows a heat map of a representative 

subject’s gaze distribution on the first day. Gaze points were collapsed over height (Y), 

and each point within the area of the apartment (XZ) was replaced by a 2D Gaussian with 

a standard deviation of 5cm, scaled by fixation duration. The Gaussians were then 

summed at each XZ location and the resulting image normalized. The heat map reveals 

the structure of the room and the location of the counters, where many objects were 

located, and the edges of the doorways that are presumably fixated when moving between 

rooms. The wall structures that are picked out in the heat map may reflect gaze location 

“en passant” as the Subject moved around the room. Figure 2b shows an ordered 

histogram of fixation frequency in the XZ space. Figure 2c shows a histogram of the 

distribution of fixation heights (Y value) and shows that gaze is largely concentrated on 

mid-height regions of the rooms, especially the horizontal surfaces. Additionally, there is 

an increased density of fixations on the floor, and in general the distribution is biased 

towards the lower part of the room. Note that the bulk of the distribution in both XZ 

space and height is contained within a small region of the 3D space. That is many regions 

have either no fixations or very few fixations. Thus memory representations presumably 

will reflect this inhomogeneous 
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sampling of space. A substantial component of this distribution can be attributed to the 

location of the search targets in the scene, but it presumably also reflects the subjects’ 

priors about where everyday objects might be. Note that the distributions will reflect the 

general instruction to subjects to familiarize themselves with the environment in addition 

to the task of searching for specific objects. These distributions may not be entirely 

natural, of course, since the HMD restricted the vertical field of view, and Subjects may 

limit their vertical head movements because of the weight of the helmet. The data are, 

however, consistent with the kinds of priors observed in inspection of 2D images of 

scenes (Torralba et al, 2006). Similar distributions were observed across all subjects. We 

Figure 2. Distribution of gaze locations in the apartment reflect an inhomogeneous 

sampling of space.  A. Heat map of gaze locations in the XZ plane, collapsed over vertical 

height, Y, within the apartment. B. Distribution of fixations in the XZ plane, ordered by 

frequency. C. Histogram of gaze locations on the Y axis, vertical height.. Presented data are 

for a representative subject on Day 1. 
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examined the histograms for changes across days, but could not detect any obvious 

changes in the distributions.  

Visual Search 
The main task in the experiment was for the subject to find objects in the 

environment. The search process first involves getting the body to the correct room, close 

to the object, and then locating it visually when it appears on screen. Rather than having a 

single measure of search, we broke it down into two components. The first was the 

number of fixations to locate the target once it came on within the field of view of the 

subject, and the second was a measure of how efficiently the subject moves the body into 

the correct location. Measuring the total number of fixations from trial start  to trial end 

would be dominated by the relatively long time it takes to transport the body from one 

room to the next, and not address visual search per se. We therefore measured two 

aspects of search separately. 
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To quantify visual search performance over time we measured the number of 

fixations allocated by the subject to locate the object, once the image of the object was in 

the subject’s field of view and visible.  The number of fixations was counted between the 

time the target object came on screen and the time fixation landed on that object. Figure 3 

shows the average number of fixations as a function of search episode (first, second, third 

etc.), averaged first over objects and then over subjects. The three objects that were used 
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Figure 3. The number of fixations required to locate a search target decreases 

over repeated search episodes. Visual search performance is quantified as the 

number of fixations allocated in space between when the search target appeared in 

subject’s field of view to the time the target was fixated upon. Data are for the three 

objects that were repeatedly search searched for, averaged first over objects and 

subjects, for day 1 and day 2. Error bars represent 95% confidence intervals, 

bootstrapped, between subjects. The curves show an exponential fit over the two days. 
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as a target repeatedly were selected for this analysis. The figure shows that by search 

episode 3 the number of fixations has dramatically decreased from approximately 12 

fixations to 5-6. The plot for the second day shows little improvement over the first day. 

Thus, this measure of search shows very rapid learning of the object’s location in the 

environment. A repeated-measures ANOVA showed a significant effect of search 

episode on Day 1 F(3.29,16.46) = 8.34, p = 0.002. There was no significant effect of 

search episode on Day 2. In addition to search episode, a significant effect was alos found 

for the search-object (F(2,10) = 7.101, p=0.01). Thus, some objects required more 

fixations to locate them than others. This may be a consequence both of visual factors and 

also the fact that there was an unequal amount of experience in the environment for 

different objects. There was also a small search episode and search-object interaction 

effect that was marginally significant (F = 2.297, p = 0.0535).  Since the trials for 

repeated objects were interspersed with searches for other objects, subjects had the 

opportunity to become familiar with the context, so contextual learning may contribute to 

the facilitation of search over the 5 episodes, in addition to learning the location of the 

object within the scene.  

To evaluate the more global aspects of search performance we developed a metric 

for path planning efficiency by calculating the ratio between the shortest path between 

subject and object at the beginning of a trial, and the path the subject actually traveled 

(detailed in the Methods). A value of 1 is the shortest possible path, and small values 

indicate a circuitous route. (By definition, an efficiency of 1 is never possible as it 

ignores walls.) Path efficiency is plotted in Figure 4 as a function of search episode. 
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Similarly to Figure 3, path efficiency was first averaged over the three objects that were 

repeatedly searched for, followed by averaging over the subjects.. Figure 4 demonstrates 

a fairly gradual increase in path planning efficiency over search episodes. By the end of 

the second day the mean path planning efficiency increased to about 0.75, equivalent to a 

35% decrease in path length to the search target. However, the apparent increase was not 

statistically significant in a repeated-measures ANOVA (p > 0.05, on both days). Note 

that even for the first search episode, the subject had been in the environment for several 

minutes searching for other targets, and so had multiple opportunities to learn the general 

arrangement of the apartment within that period and presumably could select the correct 

room on the basis of semantic information.  
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Figure 4.  The efficiency with which subjects plan their path to search targets modestly 

increases over repeated search episodes. Path efficiency (the shortest possible path between 

subject and search target divided by the actual path taken by the subject to search target, see 

methods) is plotted as a function of search episode. The path is calculated between trial start to 

the time the target was fixated upon. Data are for the three objects that were repeatedly searched 

for, averaged over objects and subjects, for day 1 and day 2. Error bars represent 95% confidence 

intervals, bootstrapped, between subjects. The curves show an exponential fit over the two days. 
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Effect of task irrelevant fixations on subsequent search 

Subjects clearly learn the location of objects in the environment very rapidly. 

However, is this a consequence of the fact that they have been explicitly attended, or 

incidentally attended to? In the course of a session, subjects make thousands of fixations. 

Do incidental fixations also lead to an accumulation of memory representation? To 

examine this question we measured the number of incidental fixations on objects that had 

not yet been explicitly searched for. We then measured the number of fixations allocated 

by subjects to locate the object on the first occasion that it became a search target (i.e. 

search episode 1). If subjects accumulate memory from the incidental fixations we would 

expect to see more rapid or facilitated search as a consequence. Figure 5 presents the 

relationship between incidental fixations to objects before they have ever been considered 

search items and the number of fixations required to locate the same object on the 1st 

search episode. For this analysis the entire dataset was used for all objects. There does 

not appear to be any trend in the data for increased numbers of incidental fixations to lead 

to more rapid search. A regression line fitted to the data (not shown) has a slope close to 

zero, and the correlation coefficient of r= 0.09 was not significant (p = 0.175). Although 

there was no trend in the regression, it is hard to make the case that search does not 

benefit either from incidental fixations or from experience in the environment. On the 

whole, performance is very variable. Thus many objects were found rapidly, with 5 or 

fewer fixations, even if they had not fixated the object previously, whereas others 

required 20 or more fixations to be located, despite having ten or more previous 

incidental fixations. It appears that some targets may be remembered from prior fixations 
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whereas others do not reveal a search benefit. Thus the number of incidental fixations 

alone does not seem to be a primary causal factor in memory in this task. 

 
Figure 5. The number of incidental fixations to objects that have yet to be searched 

for does not correlate with number of fixations required to locate the object on 1st 

search episode. Incidental fixations (x-axis) are considered incidental if the fixation was 

made to a non-target object before that object has ever been identified as a search target. 

The number of fixations required to locate the object once it has become a search target 

for the first time (1st search episode) are presented on the y-axis. Each object contributes 

1 data point, and identical points are not obvious on the scatterplot. Marginal histograms 

are therefore presented to the right and above the scatterplot, and distribution means are 

indicated by the thin lines. SE = Search Episode 
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Change Detection 

One of the main goals of the experiment was to test whether experience in the apartment 

increased the probability that subjects would fixate the changed region. On the third day 

of the experiment, subjects continued to search for objects, but a change was introduced. 

The three objects that were chosen for repeated searches (coffee maker, kettle, bed stand) 

were each searched for once, and then changed color (at different times, see Methods for 

details). The changes are shown in Figure 6. Day 3 was then terminated on the 60th trial, 

and subjects then filled out the questionnaire (for a summary, see Appendix A). To 

quantify whether the change drew attention we calculated the probability of fixating each 

of the three objects during the periods when that object was in the subject’s field of view, 

but was not the target of a search. This probability was calculated both before and after 

the change. A value of 0 means that even though the object was on screen it was never 

fixated, while a value of 1 implies that it was fixated at least once during each episode 

when the object was on screen. Figure 7A summarizes these fixation probabilities, 

together with the fixation probability for the first two sessions (day 1 & 2). (For hand-

coded fixation statistics, see Appendix B.) Over the first three sessions, a steady (but non-

significant) decrease in fixation probability is observed. Once the change was introduced, 

there was an increase in the probability of fixating the changed object, from 0.31 to 0.49. 

A one-way repeated-measures ANOVA showed there to be a significant effect of search 

epoch (day 1, day 2, day 3 before and day 3 after change) on the probability of fixating 

on an object given that the object has entered the field of view, F(2.68, 45.64) = 9.29, 

p<0.001, corrected. A posthoc repeated-measures ANOVA revealed significant 
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differences between the  probability of fixation on day 2 compared to day 3 after (p<0.05) 

and between day 3 before and day 3 after (p<0.001), corrected for multiple comparisons. 

Figure 7B shows the same computation for 17 control objects that were not changed, and 

were comparable to the three repeated objects in size, location, and in probability of 

entering the field of view. A similar modest decrease in of fixation probability is 

observed between day 1 and day 3, but in contrast to the objects that changed color, there 

is no substantial increase in probability after the change. A one-way repeated ANOVA 

found no significant effect of time on the probability of fixating an object given that the 

Figure 6. The three objects that were searched for repeatedly and their color change day 

3 of the experiment. From left to right: the coffeemaker, bedstand, and kettle. Top row 

presents the object as it was on day 1, day 2 and day 3 before change, bottom row presents the 

objects after the day 3 change. 
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objects has entered the field of view, F(2.48, 250) = 1.43, p > 0.05. (A similar non-

significant result was found regardless to whether this analysis included the 17 

“comparable” objects or the full array of objects).  

 
Figure 7.  The probability of fixating an object increases for objects that have 

changed color, but not for those that have remained unchanged. Both panels present 

p(fixation|inFOV), the probability of fixating an object given that it is in the field of view 

and not a current target of a search, for Day 1, Day 2, Day 3 before the color change and 

Day 3 after the color change, averaged over objects and subjects. A. Mean 

p(fixation|inFOV) for the three objects that changed color. B. Mean p(fixation|inFOV) 

for the remaining unchanged objects. Error bars are standard error between subjects. 

FOV = field of view. 
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initially developed by Itti & Koch (2001) was used to produce saliency maps for the same 

visual scene where the only difference was the change in color used in the experiment. 

The scene and the corresponding saliency maps for an example object, the coffee maker, 

are shown in Figure 8. A rectangle was drawn around the object (red rectangle in the 

Figure) and the corresponding pixels values (ranging from 0-255) in the saliency map 

were summed. The saliency value for the kettle and the bed stand decreased after the 

color change, and saliency for the coffee maker increased by only 3%. Thus the increase 

in fixation probabilities are unlikely to be the result of an increase in bottom up salience.  

 
Figure 8. Bottom up saliency does not change as a result of object color change. Left: 

Image of the coffee maker and corresponding saliency map per code by Itti & Koch 

(2001). Right: Image of the coffee maker after the color change, and the corresponding 

saliency map. Saliency values were computed within the red rectangle. 
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DISCUSSION 

 The goal of this experiment was to study the role of scene memory in visual 

search and change detection in an immersive environment. The experiment required 

subjects spend a prolonged period of time in the environment in order to provide an 

exposure more comparable to natural experience than standard experimental paradigms. 

Time in the environment was necessarily limited, and amounted to a little more than an 

hour over three days. However, within that period subjects each made over 10,000 

fixations within the virtual apartment. Consequently the visual experience parallels at 

least a subset of ordinary experience.  We found that subjects in such environments 

confine their gaze almost exclusively to mid-heights, with almost no fixations on high 

regions in the environment. Part of the predominance of mid-height fixations is explained 

by the location of the search targets, but the absence of high or low fixations (except for 

the floor) indicates that subjects typically do not explore such regions, and suggests the 

existence of strong priors for where the search targets are likely to be located. This is 

consistent with the finding of such priors in 2D natural scene images by Torralba et al 

(2006). We were not able to discern any obvious changes in the spread of fixations within 

the environment with experience.   

 In an attempt to separate the global and local aspects of search we looked at two 

components of the search epoch separately. The global component was assessed by 

measuring the efficiently by which subjects approached the search target over the course 

of a trial. We found that path efficiency had gradually improved only a modest amount 

over repeated searches. Thus, finding the approximate global location did not change 
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very much over repeated searches. However, the subject had been in the environment for 

several minutes searching for other targets, and so had multiple opportunities to learn the 

general arrangement of the apartment (kitchen and dining area, bedroom, bathroom), and 

may have moved to the approximate location on the basis of semantic cues, such as 

moving to the kitchen for the coffee maker. Once in the correct room the subject need 

only orient the head in the correct direction in order to bring the target on screen.  

The local component of search was assessed by measuring the number of fixations made 

by the subject from the moment the search target had entered subject’s field of view and 

until successful location of the target. This local aspect of search improved rapidly with 

repeated search, falling from about 12 to 5 fixations and stabilizing after 3-5 episodes, 

with most of the improvement occurring between the first and third search episodes. This 

suggests that memory for the exact spatial location of an object is an important factor in 

locating targets in natural circumstances, as opposed to search based on visual features, 

even when subjects have had very little experience. This memory persisted when subjects 

repeated search on the next day, with little if any detectable memory loss.  It is hard to 

make precise comparisons with other work in the literature, given the very different 

experimental context. However, the finding of rapid improvement in performance with 

repeated search is consistent with the findings of Ṽo and Wolfe (2012), Hollingworth 

(2012) and others, although the number of fixations to locate the object once on-screen is 

somewhat greater in our task (five fixations versus 1 or 2). Once the target is on screen, 

the primary difference in the conditions is that in the immersive case the scene varies 

with head and body movements, whereas there is a single fixed image in the standard 2D 
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case.  Additionally, the subject may need to devote some attentional resources to 

locomoting in the environment (Thompson & Sieffert, 2010). 

 In the context of the repeated searches, we assessed memory for items that had 

been explicitly attended. However, to understand the development of scene memory we 

need, in addition, to know whether subjects encode the locations that they fixate in the 

context of other searches too, when they are not explicitly relevant. Do incidental 

fixations contribute to future searches for other objects? To investigate this we looked at 

the number of fixations required to locate an object when it first became a search target, 

as a function of the number of prior incidental fixations on the object during the 

preceding period. We found no relation between first search time and number of 

incidental fixations. Thus incidental fixations are neither necessary nor sufficient. This 

result is similar to that observed by Ṽo and Wolfe (2012) and may reflect a variety of 

factors. First, the presentation of search target in verbal form doubtless works against an 

effect of prior fixations, as subjects may not connect the visual and verbal representations 

(Ṽo & Wolfe, 2013). Second, there is a lot of intrinsic variability. Some targets are found 

easily with few or no prior fixations, and others are difficult to locate even with 10-20 

prior fixations. It seems clear that number of prior fixations is not the most important 

variable. It may be the case that some items are fixated and remembered, and others 

forgotten. Whether an item is remembered or not may depend on the subjects’ knowledge 

of whether the item needs to be remembered or is task relevant. This possibility is 

supported by observations made by Tatler & Tatler (2012) in a real world setting: 

subjects instructed to look for items related to tea making remembered those items, but 
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with only a general instruction to remember the objects, subjects remembered those items 

less well, even when they had fixated them an equal number of times. Thus a critical 

factor might be some knowledge of the probability that the information will be needed in 

the future, rather than the fixation event itself. Another important factor is the existence 

of strong semantic guidance which may make the search easy for some objects (Ṽo & 

Wolfe, 2013), such that memory-based search is not the limiting factor. Thus although 

scene previews undoubtedly lead to the development of memory representations (e.g. 

Hollingworth 2003, Zelinsky et al., 1997; Hollingworth, 2012), semantic context effects 

may be of greater benefit in many circumstances, as are explicit task relevant fixations.  

A final goal of this investigation was to study whether the development of 

memory representations might form the basis of an exogenous attention mechanism. 

While endogenous mechanisms can account for much gaze behavior, any account of gaze 

control will be incomplete without some mechanism to attract gaze to unexpected stimuli. 

We therefore made color changes in a small number of objects after extensive experience 

in the environment, and measured whether the unexpected change had increased the 

probability of attracting gaze. We found a significant increase in fixation probability that 

was not observed in control objects. Given the kinds of prominent changes in scenes that 

frequently go undetected (e.g. Simons, 2000), we might expect that changing the color of 

a single object in a complex immersive scene would be a very weak stimulus for 

attracting gaze, so this result provides some evidence for the hypothesis that more 

extensive memory representations enhance the detectability of changes. As discussed in 

the introduction, other lines of evidence also indicates that more elaborate memory 
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representations increase the probability that subjects will fixate changed regions 

(Brockmole & Henderson, 2005a,b; 2008; Matsukura et al, 2009). The present results 

extend those findings to the kinds of situation that the visual system typically needs to 

cope with, where experience is built up over extended periods in the same environment. 

They also extend the results of Hacer Karacan & Hayhoe (2007) by showing an influence 

on fixation probability, not just fixation duration. The data provided in this experiment 

are necessarily sparse, since we are looking for a single event:  does a change in the 

environment evoke a fixation in an uncontrolled situation where many factors might be 

controlling the subjects’ attention. This is the kind of situation the visual system must 

deal with. There is typically only a limited time window when gaze needs to be attracted 

to some event of importance such as an unexpected step or a crack in the pavement, so 

the question is intrinsically difficult to resolve. In addition, only three objects were 

changed, there were only six subjects, and the increment in fixation probability was only 

about 0.2.  Therefore the result is not a very strong one, but on the whole supports the 

suggestion that memory-based expectations may be a factor in detecting environmental 

irregularities. This extends Itti & Baldi’s idea of Surprise to contexts where the 

comparison base is a long-term memory representation. 
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MODELS OF CHANGE DETECTION  

One of the motivations for investigating changes in immersive environments is 

the possibility that it might allow investigation of the kinds of memory representations 

that are developed during experience in an environment. Detecting changes in video 

streams has been an active area of study in computer vision in the context of surveillance 

(Black et al, 2003; Adam et al, 2008; Ante & Ommer, 2011) but most of these efforts 

have been on stationary cameras, where the solutions are relatively straightforward. For 

mobile cameras that have no constraints in the way they move through the environment, 

these techniques do not work. This is more like the situation humans face when moving 

through an environment. Without a more complex memory model, changes that happen 

between visits cannot be detected by these models. The Itti and Baldi (2006) model 

discussed in the introduction is one such attempt. Another attempt makes use of the color 

signature of the scene, which is tolerant to moderate viewpoint changes (Kit, Sullivan & 

Ballard 2011). In this model RGB color histograms provide scene specific signatures that 

are largely view and resolution independent (Swain & Ballard, 1991) at least in indoor 

environments that are potentially suitable for change detection in natural vision. The Kit 

et al model is trained on histograms of image sequences generated by subjects as they 

explore environments. This data is then mapped onto a much smaller number of memory 

units using an unsupervised clustering algorithm. This model was able to detect the 

changes in colors of the objects in the scenes used in the current experiment (Kit, 2011). 

It is clear that human scene representations are much more complex than color 

histograms, so this is not necessarily an indication of the representations humans use.  
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However, the success of this simple model in detecting changes in dynamically varying 

views demonstrates that humans may be able to develop robust change detection 

mechanisms from quite simple memory representations. 
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CONCLUSION 

In summary, we found that in a naturalistic immersive environment, scene 

memory plays an important role in visual search and may serve to facilitate change 

detection. Subjects distributed gaze over a restricted portion of the 3D space, perhaps 

reflecting priors from previous experience. In agreement with previous evidence form 

standard 2D paradigms, subjects quickly learn the location of objects in space. Both 

global and local measures of search suggest that experience in the environment better 

guides search, and improvements are observed already after one or two search episodes. 

When search targets are specified by verbal labels, incidental fixations do not appear to 

be a primary determinant in facilitating subsequent search. Other factors such as semantic 

information about the environment may guide search more efficiently as suggested by Ṽo 

o & Wolfe (2013) or memory may decay rapidly when the need for the information is not 

clearly specified.  We also found reliable evidence that after 3 days of experience, modest 

changes in the scene such as changing the color of an object was able to attract gaze, 

supporting previous evidence for memory-guided prioritization.  Thus an important 

function for visual memory is to serve as a basis for a robust Surprise mechanism, and to 

increase the probability that novel or unusual features of a scene will attract gaze. Such a 

mechanism is a necessary adjunct to both task-guided gaze allocation and simple feature-

based saliency. 
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Appendix A 
 
At the end of the experiment on the third day, subjects drew a map of the spatial layout of 

the apartment, including the semantic identities of the objects they encountered. The 

number of objects recalled ranged from 31-60 (mean 48.7), and included objects that 

were not part of the search task (e.g. the desk in the bedroom that some of the objects 

rested upon). The configuration of the objects was quite accurate (all objects were on the 

correct surfaces in the correct rooms). In conclusion, subjects encoded the spatial layout 

of a good number of the objects they encountered in the virtual apartment. 

 

We also asked subjects to report whether they noticed any changes in the apartment. Very 

few noticed the color changes, and in fact the false alarm rate was higher than the hit rate. 

Interestingly, however, when we asked for subjects to recall the color of the four objects 

that changed color, some recalled the pre-change object colors while others recalled the 

post-change object colors, and so even though the changes were not usually consciously 

noticed, the object color was recorded at some point during the experiment. (subject 

details below) 
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 Noticed Changes Correct Color Incorrect Color 

Subject 1 Yes 4 0 

Subject 2 Yes 3 1 

Subject 3 Yes 4 0 

Subject 4 No 2 2 

Subject 5 No 4 0 

Subject 6 No 2 2 
 
 
Table 1. Correct recollection of colors. We recorded whether subjects reported noticing 

a change to one of the four changed objects (‘Noticed Changes’), how many of the colors 

of the changed objects they correctly identified (‘Correct Color’) and how many of their 

guesses were incorrect (‘Incorrect Color’). 
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Appendix B 
 
We examined fixation duration, latency, and probability for four objects that changed 

(wall planter, coffeemaker, kettle, bed stand) and, in further analyses, four control objects 

(oval mirror, vase on dresser, toaster, frying pan) that were approximately the same size 

and in similar positions to the changed objects. [Note: we ultimately discarded data from 

the 'wall planter' because it was not on screen within subjects’ field of view often enough 

to provide useful data.] 

 

We originally examined only off-task fixations to objects of interest (the four changed 

objects) during trials in which an object of interest were close neighbors to the current 

target object. This included one trial on day 2 before the color changes and 3 trials on day 

3 after the color changes for the four changed objects. We measured the probability 

(Figure 9) of fixating on the object of interest if it was on screen, as well as the duration 

(Figure 10) and latency (Figure 11) of that fixation. 

 

A chi squared test of independence showed the probability of fixation increases from day 

2 to day 3 for the changed objects (p = 0.0004). The latency and duration measures 

depended on subjects actually looking at objects, an event that did not always take place. 

For this reason, running inferential statistics on these particular measures was not 

possible. However, the descriptive means for each object by each day are below (Figures 

10,11). 

 



 39 

 

 

 

 

Figure 9. Probability of fixating an object that neighbors one of three current search 

targets. Error bars represent 95% confidence intervals. 
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Figure 10. Mean fixation duration on objects of interest across subjects 

 

 
Figure 11. Mean fixation latency to objects of interest across subjects. 
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We also checked, across all instances of the objects being on screen while not current 

search targets, whether the trend for larger fixation durations and latencies to look at 

changed objects after the change could be explained by general attentional strategy 

effects due to time elapsed in the virtual environment or proximity to the memory test at 

the end of the third day. We measured the fixation duration, and latency to fixate on all 4 

changed objects and all 4 control objects on all 3 days, dividing each day into the first 

and second half of that day's run. We found that fixation durations and latencies increased 

across days in the second half, although the first half remained constant. The graphs 

below show the data across all objects, but data for the control objects alone shows the 

same general trend. Therefore, it is likely proximity of the memory task does in fact 

affect subjects’ overall attentional allocation, which may interfere with any interpretation 

of attention allocation to objects before and after the color change. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Mean fixation duration for 8 objects of interest, divided into the first and 

second half of the run on each day. 
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Figure 13. Mean latency for 8 objects of interest, divided into the first and second 

half of the run on each day. 
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