
!
!
!
!
!
!
!
!
!

Copyright!

by!

Wenjing Zhan!

2014!

!
! !

!

The Report Committee for Wenjing Zhan!
Certifies that this is the approved version of the following report:!

!
!

Clicks Prediction with L1 Regularized Logistic Regression and A Study
on Poisson Factorization Recommender Evaluation!

!
!
!
!
!
!
!
!

APPROVED BY!
SUPERVISING COMMITTEE:!

!
!
!

!

!

Mingyuan Zhou

Matthew Hersh

Supervisor:

!
Clicks Prediction with L1 Regularized Logistic Regression and A Study

on Poisson Factorization Recommender Evaluation!
!
!

by!

Wenjing Zhan, B.S.;M.A.;M.A.!

! !
!

Report!
Presented to the Faculty of the Graduate School of !

The University of Texas at Austin!

in Partial Fulfillment !

of the Requirements!

for the Degree of !

!
Master of Science in Statistics!

!
!

The University of Texas at Austin!
August 2014!

!

Abstract!

!
Clicks Prediction with L1 Regularized Logistic Regression and A Study

on Poisson Factorization Recommender Evaluation!
!

Wenjing Zhan, M.S. Stat!

The University of Texas at Austin, 2014!

!
Supervisor: Mingyuan Zhou!

!
!

The key task for a search engine advertising system is, for each query that the

search engine receives, to choose what advertisement should be displayed, and in what

order. This ranking order has a strong impact on the revenue the search engine receives

from the ads. Meanwhile, showing the user an advertisement that they prefer to click on

improves user satisfaction. Therefore, it is reasonable to set up click-through rate (CTR)

as a weighted ranking criteria. In this project, we aim to develop a model capable of

accurately predicting CTR of ads in the system. For ads that have been displayed

repeatedly, this is empirically measurable, but for new ads, other means must be used.

Combining logistic regression model with l1 regularization we are able to predict CTR

for new ads based on self-defined features. The ultimate goal is to improve the

convergence and performance of our advertising system, consequently increasing both

revenue and user satisfaction.!

!
iv

Second part of this report is about a study on poisson factorization recommender

evaluation. As recommender systems become more and more popular, many approaches

have been suggested to evaluate the performance of traditional recommenders based on

Gaussian distribution. However, few evaluating approaches were designed for poisson

factorization recommender. This study checked some most common evaluation methods

and discussed about their appropriateness in poisson factorization recommender

evaluation.!

!
!
!
!

!

v

Table of Contents!

!
Chapter 1 Clicks Prediction! 01 ..

1.1 Introduction! 01 ...

1.1.1 Logistic Regression! 03!...

1.1.2 L-BFGS! 05!...

1.1.3 L-1 Regularization! 08 ..

1.2 Data Collection! 10 ...

1.3 Feature Selection! 10 ...

1.3.1 Industry CTR! 11!...

1.3.2 Term Expectation! 11!..

1.3.3 Estimating AD Quality! 12!..

1.3.4 Language Model and Term Frequency! 13!.......................................

1.3.5 Post Processing! 13!...

1.4 Experiments! 13 ..

1.5 Discussion and Future Work! 14 ...

Chapter 2 Evaluation of Recommender Systems! 16 ..

2.1 Introduction! 16 ...

2.1.1 Root Mean Squared Error! 19!...

2.1.2 Precision and Recall! 20!..

2.1.3 NDCG! 21!...

2.2 Experiment! 22 ..

2.2.1 Precision and Recall! 22!..

2.2.2 NDCG! 23!...

2.3 Discussion and Future Work! 24 ...

vi

!
Bibliography! 26 ..

!

vii

Chapter 1

Clicks Prediction

1.1 Introduction

Search engine advertising has become a significant element of the Web

browsing experience. Choosing the right ads for the query and the order in

which they are displayed greatly a↵ects the probability that a user will see and

click on each ad. Since the probability that a user clicks on an advertisement

declines exponentially, it is most beneficial for the search engine to place best

performing ads first. Then the question is, how to predict the probability of

an ads being clicked?

Whenever an ad is displayed on the search results page, it has some

chance of being viewed by the user. The farther down the page an add is

displayed, the less likely it is to be viewed. As a simplification, we consider

the probability that an ad is clicked on to be dependent on two factors:

• the probability that an ad is viewed.

• given it is viewed, the probability that the ad is clicked on.

Based on above assumption, given an ad being presented on the webpage and

its ranking position, the probability distribution of users clicking on this ad

1

can be described as below:

p(click|ad, pos) = p(click|ad, pos, seen) · p(seen|ad, pos)

Let us add two more assumptions. First, assume that given an ad

was viewed, the probability of it being clicked is independent of its position.

Second, given ranking position fixed, the probability an ad is viewed is in-

dependent of its quality, and independent of the other ads shown. Then the

above formula can be rewritten as:

p(click|ad, pos) = p(click|ad, seen) · p(seen|pos)

= CTR · p(seen|pos)

In this project we focus on predicting CTR but not p(seen|pos). One reason

is that estimating p(seen|pos) is experimentally expensive, another reason is

that intuitively CTR is much more essential in improving revenue and user

satisfaction.

Our main goal is to determine and quantify CTR-related ad features,

train the feature dataset for validated parameters that can be used for new

CTR prediction. Logistic regression model is used for CTR prediction [1].

The logistic regression was initially trained using the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) method [2]. A cross-entropy loss function

was used with Gaussian weight priors with zero-mean and a standard-deviation

of �. According to Matthew Richardson, through cross-validation test � = 0.1

was empirically best out of [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]. Here we simply

employ � = 0.1 yet a cross-validation test may worth being tested.

2

The self-defined feature set contains continuous and categorical fea-

tures. For each continuous feature fj, derivation log(fj + 1) and f 2
j were

added as well. To expedite optimization process and to simplify variable in-

terpretation, all continuous features are normalized. KL-divergence was used

as measure of performance.

A simulation test was originally conducted to check availability of this

dataset. After simulation test, data were collected. The original model yielded

error from 5000 to Infinity, mainly caused by noise in the dataset. Matthew

Richardson et al. split data on an advertiser-level to prevent train-test con-

tamination and filtered out any ads that had less than 100 views. After noise

filtration the error dropped dramatically. Considering the 10:1 sample to fea-

ture rule, our sample is undersized. Meanwhile, adding binary unigram term

features dramatically increase sparsity of the training data.

One possible explanation is that adding too many features without

su�cient sample collected caused overfitting. Therefore, l1 regularized cross-

entropy model was introduced for feature selection and optimization [3]. Even-

tually we implemented a more stable model and test error was reduced to fairly

small value.

1.1.1 Logistic Regression

Logistic regression is ideally suited for probabilities as it always predicts

a value between 0 and 1. Let fj(ad) represents the value of the jth feature for

the ad, let ✓i the learned weight for the jth feature, then predicted CTR for

3

this ad can be expressed as:

˜CTR =
1

1 + e�
P

✓jfj(ad)

For reading convenience we use y to represent collection of CTRs of n

job advertisements in the training dataset. y is a n⇥ 1 vector. Similarly, ỹ is

the collection of predicted CTR. ✓ is p⇥1 vector representing weights of the p

features. X is an n⇥ p data matrix, each row Xi represents features extracted

from the ith job advertisement, then rewrite above expression as:

ỹ =
1

1 + e�X·✓

Use cross-entropy as loss function. For any given job, only two states are

possible: {clicked, not � clicked}. yi represents the observed possibility of

being clicked, ỹi represents the estimated probability of being clicked, then

the loss function can be constructed as

L(✓) =
nX

i=1

yiln(ỹi) + (1� yi)ln(1� ỹi)

ỹi =
1

1 + e�Xi·✓

All we need is to find the very ✓ that minimize the loss function.

4

1.1.2 L-BFGS

Cross entropy loss function is a log linear model. It is convex and has

unique global minimum. Based on e�ciency performance we prefer Newton’s

method rather than gradient descent. The first (Gradient) and second (Hessian

Matrix) derivative of the loss function are presented as below:

@

@✓
L(✓) = XT · (ỹ � y)

@2

@✓2
L(✓) = XTSX

S = diag{ỹi(1� ỹi)}

Computing Gradient (usually notated as g) is easy but explicitly com-

puting Hessian matrix (usually notated as H) for large-scale dataset is very

expensive. Therefore, the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) method[2], a derivative of Newton’s algorithm, was applied. The

key idea is, during the optimization process, for the kth iteration, instead of

computing the corresponding Hessian matrix explicitly, an approximation is

computed based on the previous m iterations.

Denote Hk as the Hessian matrix approximation at the kth iteration.

5

Given:

sk = ✓k+1 � ✓k

zk = gk+1 � gk

⇢k =
1

zTk sk

Vk = I � ⇢kzks
T
k

We can compute Hk recursively as

Hk = V T
k�1Hk�1Vk�1 + ⇢k�1sk�1s

T
k�1

Repeat this computation recursively to the previous m iterations

Hk = (V T
k�1 · · ·V T

k�m)H
0
k(Vk�m · · ·Vk�1)

+ ⇢k�m(V
T
k�1 · · ·V T

k�m+1)sk�ms
T
k�m(Vk�m+1 · · ·Vk�1)

+ ⇢k�m+1(V
T
k�1 · · ·V T

k�m+2)sk�m+1s
T
k�m+1(Vk�m+2 · · ·Vk�1)

· · ·

+ ⇢k�1sk�1s
T
k�1

We choose H0
k = �kI. Heuristically this choice helps to ensure that the search

direction pk is well scaled and as a result the step length ↵k = 1 is accepted

in most iterations.

�k =
sTk�1zk�1

zTk�1zk�1

6

Algorithm 1 L-BFGS two-loop recursive formular to compute Hkgk[4]pp178
q = gk
for i = k � 1, k � 2, ..., k �m do

↵i = ⇢is
T
i q

q = q � ↵izi

H0
k =

sTk�1zk�1

zTk�1zk�1
I

r = H0
kq

for i = k �m, k �m+ 1, ..., k � 1 do

� = ⇢iz
T
i r

r = r + si(↵i � �)
STOP with r = Hkgk

Algorithm 2 L-BFGS [4]pp179

Choose starting point ✓0, integer m ¿ 0
k = 0
while true do

Compute pk = �Hkgk from Algorithm 1
Compute ✓k+1 = ✓k+↵kpk where ↵k is chosen to satisfy Wolfe conditions;
if k greater than m then

Discard the vector pair sk�m, zk�m from storage;
Compute and save sk = ✓k+1 � ✓k, zk = gk+1 � gk;
k = k + 1

untile converge

According to the reference [4], termination criterion ||gk||  10�5 is

used. In the real implementation of Wolfe conditions, to improve e�ciency

this routine checks only one of the Wolfe conditions. Since our loss function

is convex, this method appropriate. If the objective is not convex it may

lead to non-positive-definite Hessian approximations and non-descent search

directions.

7

1.1.3 L-1 Regularization

One disadvantage of L-BFGS is, even though the loss function is convex

and global minimum is guaranteed, because of line search and approximation,

this method is strongly dependent on the initial guess. Another limitation of

this method is, like many other algorithms, cannot handle overfitting problem

with oversized feature set.

Therefore we modify the loss function with l1 regularization.

f(✓) = L(✓) + C
X

|✓j|

with C ¿ 0

This regularization is validate based on following observation: when restricted

to any given orthant, the loss function is still di↵erentiable and convex. Fur-

ther, the second-order behavior of the regularized objective is not a↵ected by

the l-1 regularization part. This consideration suggests the following strategy:

construct a quadratic approximation that is valid for some orthant containing

the current point using the inverse Hessian estimated from the loss component

alone, then search in the direction of the minimum of the quadratic, restricting

the search to the orthant on which the approximation is valid.

The key change is to replace first-order gradient of L(✓) with pseudo-gradient

of f(✓).

8

g⇤j (✓) =

8
<

:

@�
j f(✓) if @�

j f(✓) > 0
@+
j f(✓) if @+

j f(✓) < 0
0 otherwise

where the left and right partial derivatives of f are given by

@±
j f(✓) =

@

@✓j
L(✓) +

(
C ⇤ sgn(✓j) if ✓j 6= 0

±C if ✓j = 0.

If f(✓) is convex, it can be prove that @�
i f(✓)  @+

i f(✓). The pseudo-

gradient generlizes the gradient in that the directional derivative at ✓ is mn-

imized in the direction of �g(✓), and ✓ is a local minimum if and only if

g(✓) = 0.

The l1 regularized log-linear model is called Orthant-Wise Limited-

memory Quasi-Newton (OWL-QN) method. Compared to a normal L-BFGS,

the only di↵erences have been marked in the figure:

1. The pseudo-gradient g⇤(✓) of the regularized objective is used in place

of a pure corss-entropy gradient.

2. The resulting search direction is constrained to match the sign pattern

of �g⇤(✓). This is to make sure that orthant chosen to explore is the one

containing ✓ and into which �g⇤(✓) leads.

3. During line search, each search point is projected onto the orthant of the

previous point.

4. The gradient of the un-regularized loss alone is used to construct the

vector zk used to approximate the Hessian matrix.

9

1.2 Data Collection

Data collected for this experiments are listed as below:

• jobs clicked

• jobs viewed

• job text descriptions

To reduce multicollinearity, features that are explicitly linearly corre-

lated to each others are removed. Potential multicollinearity will be reduced

by l1 regularization. Both raw features and processed features are listed in

APPENDIX.

Raw data files were collected during one day. Only jobs with at least

one click will be considered. This dramatically decrease sample size from

1,000,000 to around 10,000 jobs. How these jobs were viewed follows poisson

distribution. Only 8,000 instances were selected after noise reduction. Cross

validation was set as 80% training, 10% validation and 10% testing.

1.3 Feature Selection

Some features selected for this project worth being discussed. So we

presented the reason of including such features below

10

1.3.1 Industry CTR

In Matthew Richardson paper they assume that CTR for di↵erent bid

terms are di↵erent. It is hard for us to track the bid term for each job advertise-

ment. So we use industry CTR as a predicting factor. We assume that all CTR

for di↵erent industries follows a basic prior distribution as p(yind) ⇠ N(y, �2)

where y is the mean CTR for all ads.

Given a specific job i from industry ind, we assume yi,ind ⇠ N(yind, ⌧ 2). If

let nind represents the number of ads for industry ind, it can be proved that

the posterior distribution of industrial level CTR, yind, is

yind ⇠ N(mind, Vind)

mind = (
1

�2
+

nind

⌧ 2
)�1(

1

�2
y +

1

⌧ 2

nindX

i=1

yi,ind)

Vind = (
1

�2
+

nind

⌧ 2
)�1

If set ⌧ 2 = 1, 1
�2 = ↵, we can rewrite mi in the same format as:

mind =
↵y +

Pnind
i=1 yi,ind

↵ + nind

1.3.2 Term Expectation

As mentioned above, unlike a general advertisement, it is hard for us

to track bid term associated with each job advertisement. Consequently we

were not able to compute term CTR accurately. Instead, we computed a term

expectation to reflect the user’s expectation associated with a specific query.

11

Then by adding up each term’s expectation, we can roughly derive a predicted

expectation of the job.

1.3.3 Estimating AD Quality

The contents of the ads itself should be considered as important fea-

tures since Web searchers consider the summary, the title, and the URL of an

advertisement in deciding whether to click it. Therefore, we derived a number

of features that we hoped would be indicative of the quality of the ad for that

category.

• Appearance: How many words are in the title? In the body? Does it

contain too many exclamation points, or other punctuation? Does it use

short words or long words?

• Attention Capture: We can combine this feature with the unigram

features. By asking, if this ads contain some most common and useful

words? These features are intended as an automatic way to capture some

of the same influences that our manual features do. For each of the most

common 100 words in the ad title and 1,000 in ad body of the training

set, we add a feature which takes the value 1 if the word exists in the ad

and 0 otherwise.

landing page quality and relevance may be too expensive for us to collect so

we neglect them at this moment.

12

1.3.4 Language Model and Term Frequency

Language model and tf-idf are also included in the feature set. Term fre-

quencies of user’s input query were counted from title and description. Based

on a global term tf-idf library, we would be able to compute tf-idf and various

language model probabilities as features as well.

1.3.5 Post Processing

Finally, the predicted ad CTR ỹij for ad i be used as prior mean and

constantly being adjusted by real data observations. Assume the real CTR for

ad i yi ⇠ N(ỹi, �2), then given number of clicks and views of this ad, based on

the same Bayesian Theorem, the real CTR can be adjusted by

yi =
↵ỹi + clicks

↵ + views

↵ set the strength of the prior and is adjustable.

1.4 Experiments

Raw data files were pre-processed through C++ projects to collect all

related features mentioned above. Then a python project was implemented

for OWL-QN optimization. Cross validation was conducted based on 8:1:1

(training:validation:testing) ratio. The cross validation process was conducted

multiple times and each iteration dataset was randomly reshu✏ed. Results of

cross validation on KL Divergence can be found in Table 1.1. Once validation

error became smaller than pre-decided threshold, corresponding ✓ was consid-

13

Table 1.1 : KL Divergence Cross Validation

iteration id valid error test error

1 14.88 15.79
2 16.14 16.14
3 15.96 14.91
4 16.53 17.20
5 15.75 17.64
6 16.42 15.58
7 15.51 16.27
8 16.63 14.88
9 14.78 16.80
10 15.05 18.13

ered to be valid and a test error will be computed. With L1 regularization

and stringent penalty regulator, most parameters were filtered out to 0. Non

zero features are considered to be important.

1.5 Discussion and Future Work

Based on above result we can see that this logistic regression model

is indeed feasible in predicting click through rate and is yielding meaningful

result. Except for industrial subgroup and state id, almost all other features

were demonstrated, more or less, as important. The next step we hope to

check the performance of this model and implement it into the search engine.

The currently dataset is collected only for one day. After filtrations the

over-one-million sample set was reduced to 8,000 jobs, which has more than

5 views and have been clicked at least one time. This indicates a roughly

14

0.8% collection rate from raw data with 5 views. If we want to increase the

threshold of job views to higher value and collect a fairly decent dataset, we

need to collect data from multiple days instead of one day. To generate more

valid samples, we need to extend the time of data collection. The unigram

library and the user query expectation library will be re-generated as well. L-1

regularization was introduced because of the small sample size. With su�cient

training data, we can lower the penalty regulator and more important features

can be discovered.

Lastly, how much this model can be improved by the new dataset is, in

fact, not clear. After all, based on cross validation of current test, the model

has already became fairly stable with small errors. If collecting large data files

is expensive, we should at least start prediction on new jobs and do a dynamic

monitoring to check the realistic prediction accuracy of this model.

15

Chapter 2

Evaluation of Recommender Systems

2.1 Introduction

The goal of a recommender system, is to predict ratings or preferences of

items for a given user. Recommender systems have become extremely common

in recent years, and are applied in a variety of applications. The most popular

ones are probably movies, music, news, books, research articles, and products

in general. However, there are also recommender systems for experts, jokes,

restaurants, online dating, and twitter followers.

Three methods were most often used for recommenders: collaborative

filtering, content-based filtering and hybrid recommender systems. Collab-

orative filtering is based on the ratings that the user gives to some items.

Content-based filtering is based on the profile of users or the description of the

items. Collaborative filtering can make good predictions for the rating that

hasn?t been rated but its corresponding user has rated other items and its

corresponding item has been rated by other users. It can not predict anything

for new users or new items. Content-based filtering, instead, can do such a

prediction. But sometimes the description of the items or the profile of users

is not reachable. And the accuracy of this approach is sometimes not so good

16

as collaborative filtering, because the information is not highly rating-related.

Hybrid recommender is a mixture of these two. In this study we focus on

collaborative filtering method.

The most successful collaborative filtering method is a latent factor

model called matrix factorization, where users and items are in a shared low-

dimension(K) feature space—user i is represented by ui and item j by vj. And

the existing ratings, Rij, that user i gives to item j should be as close to the

prediction given by the model, Rij = uT
i vj as possible. So the matrix fac-

torization problem can be written as the minimization problem of regularized

squared error function,

min
U,V

X

i,j

(Rij � uT
i vj)

2 + �ukuik2 + �vkvjk2 (2.1)

The matrix factorization can also be interpreted as a probabilistic model. In

probabilistic matrix factorization, usually we assume

user’s latent feature vector is drawn from ✓u ⇠ N(0, �2
✓uIK)

article’s latent feature vector is drawn from �i ⇠ N(0, �2
�i
IK)

the rating is drawn from Rij ⇠ N(✓Tu �i, �
2
ui)

If we set �2
✓u = ��1

u , �2
�i

= ��1
v and �2

ij = 1, solving the maximum a pos-

teriori(MAP) estimation of this probabilistic model will be exactly the opti-

mization problem. Meanwhile, it is equivalent to minimize squared-loss. Such

optimization approach treats zeros as evidence of user disliking items.

17

Recent years a new factorization method based on Poisson distribu-

tion was proposed by some researchers [6, 7]. When applying such poisson

factorization method to recommender system, we assume that

user’s latent feature vector is drawn from ✓u ⇠ Gamma(a, b)

article’s latent feature vector is drawn from �i ⇠ Gamma(c, d)

the rating is drawn from Rui ⇠ Poisson(✓Tu �i)

Compared to Gaussian factorization method, advantages of such hier-

archical poisson factorization models are [8]:

1. HPF captures sparse factors.

2. HPF models the long-tail of users and items.

3. HPF down-weights the e↵ect of zeros.

In Gopalan’s paper [7,8] they declared that the hierarchical Poisson fac-

torization model out-performs Gaussian model in mean precision and recall.

In this study we validate their evaluation method by comparing their Bayesian

nonparametric poisson factorization recommender with a well-developed Gaus-

sian factorization recommender [9] and discuss how to compare recommenders

based on their own properties. Zhou’s Beta-Negative Binomial Process [6],

which also provides a hierarchal Poisson factorization recommender, was in-

cluded as another comparison reference.

18

2.1.1 Root Mean Squared Error

Root Mean Squared Error (RMSE) is one of the most popular metric

used in evaluating accuracy of predicted ratings. For any given user i, let

ei be the deviance between real rating and predicted rating, then the RMSE

between the predicted and actual ratings is given by:

RMSE =

vuut 1

n

nX

t=1

e2i

According to the computation formula, we see that RMSE penalizes

large deviances in prediction values. Assume some given test data with rating

as [3,4,3,5,4] (range 0-5), the corresponding prediction by Poisson Factoriza-

tion is usually [0.5, 0.6, 0.2, 2, 0.5] with most predicted ratings smaller than 1.

In comparison, Gaussian factorization method did much better by giving pre-

diction values as [4, 2.4, 2.9, 3, 3]. We see the nature of RMSE favors Gaussian

factorization recommender since it provided closer predictive values, no matter

such prediction is accurate or not. This is the reason why Poisson factoriza-

tion recommenders performed badly with RMSE. Another reason that RMSE

naturally fits Gaussian factorization recommender is that, the optimization

loss function of Gaussian Process is, in fact, sum of error squares.

However, closer prediction values does not guarantee accurate predic-

tion. In fact, based on above example, the Poisson factorization recommender

has predicted more accurate ranking orders than Gaussian recommender, even

though the later’s RMSE evaluation score will be much better.

19

2.1.2 Precision and Recall

Precision and recall were the evaluation methods Gopalan et al used to

compare Gaussian and Poisson recommender performances [7, 8].

recall =
|{relevant documents}| \ |{retrieved documents}|

|{relevant documents}|

precision =
|{relevant documents}| \ |{retrieved documents}|

|{retrieved documents}|

In most cases, researchers assume that unrated items would have not

be used even if they had they been recommended. They are not interesting

to the user. However, this assumption is highly possible to be false since for a

large collection of items, it is impossible for many users to rate all items and

the set of unrated items may contains some interesting items that the user did

not saw or selected before. A user may not have rate or use an item because

of his/her unawareness of its existance, but after the recommendation exposed

that item the user can decide to select it. In this case the number of retrieved

is over estimated.

To compute recall and precision, select relevant documents from ob-

served ratings and retrieved documents from prediction ratings. Usually ,

relevant documents were picked with rating scores equal to a certain score.

Retrieved documents were picked with top N rated films from all items.

According to the computation formula, we see that precision and re-

call use ranking order of predicted recommendations instead of the predicted

values. With proper settings, Poisson factorization recommenders can indeed

yield better precision and recall.

20

2.1.3 NDCG

Normalized Cumulative Discounted Gain (NDCG) is a measure often

used in information retrieval to compare the rankings of website urls. The

ranking position for each url was discounted logarithmically. NDCG is defined

as follows [10]. The DCG (Discounted Cumulative Gain) for a given set of

search results (for a given query) is

DCG(Q, k) =
TX

i=1

2li � 1

log(1 + i)

where T is the truncation level (for example, if we only care about the first

page of returned results), and li is the label of the ith listed URL. We typically

use five levels of relevance: li 2 {0, 1, 2, 3, 4}. The NDCG is the normalized

version of this:

NDCG(Q, k) =
DCG

maxDCG

If assume T the truncation level be number of all rated films for each

user, li equal to the observed rating value and ranking position i be decided

by predicted ratings, above formula can be used to evaluate recommender per-

formance. Unlike RMSE which evaluates performance from numerical values

of predicted items, or prediction and recalls which only use ranking order of

predicted items, we see the NDCG computation include both numerical values

and the ranking order of predicted items.

21

2.2 Experiment

2.2.1 Precision and Recall

Dataset used here is MovieLens 1M data set contains 1 million ratings

collected from 6040 users and 3952 movies. If picked relevant documents with

rating scores equal to 5 (highest score) and picked Retrieved documents with

top 100 rated films out of all 3952 items. HPF is the hierarchical poisson

factorization proposed by Gopalan, Beta-NBP is the model proposed by Zhou

and LIBPMF is a well-developed Gaussian factorization recommender. Pre-

cision and recall of each user were computed and mean precision and mean

recall over all users are presented as below:

Figure 2.1: Mean Precision and Mean Recall with Top-100 Over All Items

Based on above graph we see that indeed both Poisson factorization

22

recommended performed better than Gaussian factorization method. However,

if instead of picking retrieved documents from all 3952 items, but picking top-

100 retrieved documents from only test data, the performance of Gaussian

factorization recommender slightly out-perform Poisson methods, as shown

below:

Figure 2.2: Mean Precision and Mean Recall with Top-100 Over Tested Items

2.2.2 NDCG

Compute NDCG of each user and compare the mean NDCG for all

three recommenders. The result is shown as below:

23

Figure 2.3: Mean NDCG Over Tested Items

Again we see that Gaussian factorization method outperformed the

Poisson factorization method.

2.3 Discussion and Future Work

Based on above result we can see that, neither Poisson factorization

recommender nor Gaussian factorization recommender can completely out-

perform the other. Gaussian factorization recommender is optimized to min-

imize mean square error, consequently it will give predicted ratings closer to

the real values. Therefore, Gaussian recommender performed better if nu-

merical values of predicted ratings are included in the evaluating formula.

Poisson factorization recommenders applied in this study were both optimized

24

through sampling approaches like variational inference and MCMC. Poisson

factorization recommenders performed better on evaluating large-scale recom-

mendation order. Heuristically speaking, accuracy of prediction over all items

may be more of our interests, therefore, Poisson factorization method may be

a better choice.

25

Bibliography

[1] Matthew Richardson, Ewa Dominowska, Robert Ragno (2007), ”Predict-

ing Clicks: Estimating the Click-Through Rate for New Ads”, 16th inter-

national conference on World Wide Web pp.521-530

[2] D. C. Liu and J. Nocedal (1989), On the limited memory BFGS method

for large scale optimization, Mathematical Programming, vol. 45, no. 3,

pp. 503528

[3] Galen Andrew, Jianfeng Gao (2007), ”Scalable training of L1-regularized

log-linear models”, ICML ’07 Proceedings of the 24th international con-

ference on Machine learning, pp. 33-40

[4] Jorge Nocedal, Stephen Wright, ”Numerical Optimization”, 2nd Edition

[5] C Zhai, J La↵erty (2004), ”A study of smoothing methods for language

models applied to information retrieval”, ACM Transactions on Informa-

tion Systems (TOIS), Volume 22 Issue 2, pp. 179-214

[6] M. Zhou, L. Hannah, D. Dunson and L. Carin (2012), ”Beta-Negative

Binomial Process and Poisson Factor Analysis,” International Conference

on Artificial Intelligence and Statistics, JMLR W&CP, 22:1462-1471, La

Palma, Canary Islands, Spain

26

[7] Prem Gopalan, Francisco J. R. Ruiz, Rajesh Ranganath, David M. Blei

(2014) ”Bayesian Nonparametric Poisson Factorization for Recommenda-

tion Systems”, AISTATS

[8] Prem Gopalan, Jake M. Hofman, David M. Blei (2013) ”Scalable Recom-

mendation with Poisson Factorization”, CoRR

[9] H. Yu, C. Hsieh, S. Si, I. Dhillon. (2013), ”Parallel Matrix Factorization

for Recommender Systems”, Knowledge and Information Systems (KAIS)

[10] Christopher J.C. Burges (2010) ”From RankNet to LambdaRank to Lamb-

daMART: An Overview”, Microsoft Research Technical Report MSR-TR-

2010-82

27

