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Steven L. Bryant



Pore Scale Modeling of Rock Transport Properties

by

Rodolfo Araujo Victor, B.S; M.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2014



Dedication

To my dear wife and children.



Acknowledgments

I would like to thank my advisers, Dr. Maša Prodanović and Dr. Steven L. Bryant,
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Abstract

Pore Scale Modeling of Rock Transport Properties

Rodolfo Araujo Victor, M.S.E.

The University of Texas at Austin, 2014

Supervisor: Maša Prodanović

The increasing complexity of oil and gas reservoirs has led to the need of a bet-

ter understanding of the processes governing the rock properties. Traditional theoretical

and empirical models often fail to predict the behavior of carbonates, tight gas sands and

shale gas, for example. An essential part of the necessary investigation is the study of the

phenomena occurring at the pore scale. In this direction, the so-called digital rock physics

is emerging as a research field that offers the possibility of imaging the rock pore space

and simulating the processes therein directly. This report describes our work on develop-

ing algorithms to simulate viscous and electric flow through a three dimensional Cartesian

representation of the porous space, such as those available through X-ray microtomogra-

phy. We use finite differences to discretize the governing equations and also propose a new

method to enforce the incompressible flow constraint under natural boundary conditions.

Parallel computational codes are written targeting performance and computer memory op-

timization, allowing the use of bigger and more representative samples. Results are re-

ported with an estimate of the error bars in order to help on the simulation appraisal. Tests

performed using benchmark samples show good agreement with experimental/theoretical
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values. Example of application on digital modeling of cement growth and on multiphase

fluid distribution are also provided. The final test is done on Bentheimer, Buff Berea and

Idaho Brown sandstone samples with available laboratory measurements. Some limitations

need to be investigated in future work. First, the computer potential fields show anomalous

border effects at the open boundaries. Second, a minor problem arises with the decreased

convergence rate for the velocity field due to the increased number of operations, leading

to the need of a more sophisticated preconditioner. We intend to expand the algorithms to

handle microporosity (e.g. carbonates) and multiphase fluid flow.

Keywords: Pore scale modeling, finite difference simulation
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Chapter 1: Introduction

1.1 Motivation and objectives

The determination and prediction of porous rocks’ macroscopic properties are an

essential part in the work flow of oil and gas industry, from exploration geophysics and

formation evaluation to reservoir and production engineering. Due to the lack of rigorous

relations between the rock pore space and the corresponding petrophysical behavior, meth-

ods for predicting rock’s responses to external stimulation have strongly relied on empirical

correlations, whose fitting parameters are adjusted for a particular rock type using labo-

ratory measurements. Two famous representatives of these correlations are the Archie’s

equation [1], relating rock electrical conductivity to water saturation, and the widely used

power laws relating porosity and permeability (see, for example, Peters [2], chapter 3).

The use of empirical methods, although somewhat successful when targeting the right set

of rocks, often does not provide any insight on the fundamental physical principles relating

the pore geometry and the macroscopic behavior of the rock.

Over the past decades, many approximate methods were proposed by representing

rocks using idealized models such as bundle of capillary tubes or disordered pack of spheres

[3–5]. Although these systems are much simpler than the actual porous media, the resulting

equations showed a good performance in predicting physical properties of simpler rocks

like clean sandstones [6]. However, general relations for complex rocks like carbonates

and unconventional hydrocarbon reservoirs are a formidable task still to be completed.

In this context, a new approach known as digital rock physics [7, 8] has rapidly

emerged as an outstanding technique to investigate processes at pore-level scale. Using

modern experimental methods to acquire high resolution 3D images of rock samples, a
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detailed model of the complex pore geometry is constructed and several physical processes

with different scenarios can then be simulated and studied. This approach not only allows to

estimate the bulk rock properties but also provides valuable insights towards a fundamental

understanding of the governing pore-scale processes.

The objective of the present project is to develop and test algorithms to calculate

electrical conductivity and absolute permeability in digital three dimensional rock im-

ages. We base the simulations on the fundamental physical principles governing each

phenomenon. The algorithms use the finite difference technique, a well established dis-

cretization method that has been used by other authors to investigate pore scale processes.

In addition, we propose a new method to enforce the pertinent physical constraints. Equally

important, our decision to build a new suite of routines allows us to target computational

and memory performance in the process, leading to the possibility of investigating larger

and more representative samples with the same computational resources. Also, we avoid

all the interpretation problems that usually arise when using “black box” software.

Validation of the results uses benchmark samples, whose properties are either the-

oretically known or measured in laboratory. We further exemplify the use of the methods

to investigate cementation, relative permeability and resistivity index, and to characterize a

set of sandstone samples from the original microtomographic images.

This chapter will continue with pertinent definitions and a literature review on the

subject. Chapter 2 exposes the methodology in building the computational codes and also

details the samples used to validate the method. Chapter 3 presents and discusses the

results. Finally, chapter 4 lists conclusions and plans for future work.
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1.2 Single-phase incompressible fluid flow through porous medium

1.2.1 Governing equations

The velocity field for a single-phase fluid is governed by two equations of change

[9]. First, mass conservation leads to the equation of continuity,

∂ρ

∂t
+ ~∇ · ρ~v = 0, (1.1)

where ρ(x, y, z, t) is the fluid density and ~v(x, y, z, t) is the fluid velocity. Our simulations

will consider incompressible flow (ρ constant), what reduces the equation of continuity to

~∇ · ~v = 0 . (1.2)

The equation of motion is constructed by writing the momentum balance over a

volume element in the fluid. For a Newtonian fluid with viscosity µ and constant density ρ,

this procedure leads to the Navier-Stokes equation

ρ
D

Dt
~v = −~∇p+ µ∇2~v + ρ~g, (1.3)

where D/Dt = ∂/∂t+~v · ~∇ is the material derivative, p(x, y, z, t) is the fluid pressure and

~g is the gravitational acceleration. Pressure and gravity terms in the above equation can be

conveniently lumped together as the so called modified pressure

P = p+ ρgh, (1.4)

where h is the distance measured in a direction opposite to gravity from some reference
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point. In this notation, Navier-Stokes equation is written as

ρ
D

Dt
~v = −~∇P + µ∇2~v. (1.5)

We will indistinctly refer to P as pressure.

Flow regimes obeying equations (1.2) and (1.5) are characterized by a dimension-

less group called Reynolds number

Re =
l0v0ρ

µ
, (1.6)

where l0 and v0 are respectively values of length and velocity characteristic of the flow

regime. Flow regimes change from laminar at low Reynolds numbers to highly turbulent

as this number increases.

Due to the small length scales involved in flow through a porous medium, incom-

pressible flow regimes are usually in the low velocity laminar steady state, which can be

accurately described by the Stokes equation

∇2~v =
1

µ
~∇P , (1.7)

obtained by neglecting the material derivative in equation (1.5). Equation (1.7) is also

called the creeping flow equation.

The pressure field can be decoupled from equation (1.7) by the following procedure.

First, take the divergence of that equation,

~∇ ·
(
µ∇2~v

)
= ∇2P, (1.8)
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and apply the vector identity

~∇× ~∇× ~v = ~∇(~∇ · ~v)−∇2~v (1.9)

to obtain

µ~∇ ·
(
~∇(~∇ · ~v)− ~∇× ~∇× ~v

)
= ∇2P. (1.10)

Since ~∇ · ~v = 0 from equation (1.2) and the divergence of a rotational is identically zero,

we get a Laplace equation for the pressure field in the laminar regime:

∇2P = 0 . (1.11)

1.2.2 Boundary conditions

The pressure and velocity fields for the flow inside the porous medium can be cal-

culated from equations (1.2), (1.7), and (1.11) by defining the corresponding boundary

conditions. Given an xyz coordinate system, we assume the flow can enter and exit the

porous medium only through the first and last xy planes, driving the macroscopic flow in

the z direction. No slip condition sets the tangent component of fluid velocity to zero at the

pore-grain interface. No flux though the grain phase sets the normal component of velocity

and the normal component of the pressure gradient also to zero at the pore-grain interface.

Those are the most common used boundary conditions at solid walls [10,11]. For the open

boundaries, pressure is set to a constant value at both ends. We also assume no shear stress

in the fluid outside the region defined by the porous medium, which results in zero normal

derivatives for all the velocity components.

Let Ω be the region spanned by the pore space, ∂Ω be the pore-grain interface, Ωin

be the region composed by the open inlet pore voxels and Ωout be the region composed

by the open outlet pore voxels. Our fluid flow model is then described by the following
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equations: 
∇2P = 0

~∇ · ~v = 0

∇2~v =
1

µ
~∇P

in Ω, (1.12)

 P = Pin

∂vx
∂z

=
∂vy
∂z

=
∂vz
∂z

= 0
in Ωin, (1.13)

 P = Pout

∂vx
∂z

=
∂vy
∂z

=
∂vz
∂z

= 0
in Ωout, (1.14)

 ~∇P · n̂ = 0

vx = vy = vz = 0
at ∂Ω. (1.15)

1.2.3 Effective medium property: the absolute permeability

Solution of Navier-Stokes equation gives detailed information about the fluid ve-

locity at the pore scale. A more practical description for oil industry is the concept of

permeability introduced by Darcy1 in 1856, in an experimental work on water flow through

a sand pack. He observed that the volumetric flow rate q through a specific porous medium

is linearly proportional to the difference between the inlet and the outlet pressures. These

quantities are related by the Darcy’s law

q =
κA

µ

∆p

L
, (1.16)

where A is the area of a cross-section perpendicular to the flow direction, L is the length of

the sample and κ is the porous medium property called absolute permeability. For inclined

flow forming an angle α with the horizontal, gravity can be included in Darcy’s law using

1English translation of Darcy’s original work is available on
http://biosystems.okstate.edu/darcy/index.htm
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the modified pressure:

q =
κA

µL
(∆p+ ρgh sinα) =

κA

µL
(∆p+ ρg∆h),=

κA

µ

∆P

L
. (1.17)

Later, Whitaker [12] showed that volumetric averages on incompressible creeping

flow of single-phase fluid in a porous medium lead to Darcy’s law. Thus, velocity field

from Stokes equation and volumetric flow rate from Darcy’s law are linked by

q =

∮
~v · n̂dA, (1.18)

with the integral taken over a cross-section perpendicular to the flow direction.

Absolute permeability is a geometric property describing the ability of the pore

space to conduct the flow. Its common unit is the darcy (D), which is approximately equal

to 10−12 m2. For a 3D flow in an anisotropic medium, Darcy’s law is generalized to

~q = − 1

µ
¯̄κ : ~∇P, (1.19)

where ¯̄κ is a second order tensor called the permeability tensor. More details can be found

in Peters [2].

1.3 Multiphase fluid flow in porous medium

1.3.1 Interfacial tension and wettability

Two immiscible fluids in contact generate a curved interface due to the larger at-

tractive forces between molecules in the same phase than the ones between molecules in

distinct phases. The interfacial tension is a thermodynamic property of the interface, and is

defined as the energy required to increase the area of the interface by one unit [13]. Solid

surfaces in contact with two immiscible fluids will attract each fluid phase with different in-
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tensities. The phase more strongly attracted to the solid surface is called the wetting phase,

while the other is the non wetting phase.

Wettability depends on the properties of solid surface and fluid phases. Some quan-

titative analysis is given by examining the force balance at the contact line between the

two fluids and the solid surface. Figure 1.1 gives an example for a water wet surface in

presence or a mixture of water and oil. Forces at the contact line are the solid-oil interfacial

tension γso, the solid-water interfacial tension γsw and the oil-water interfacial tension γow.

At equilibrium, the sum of the three forces must be zero. The force balance in the direction

parallel to the solid surface defines the Young equation

γos − γws = γow cos θ. (1.20)

In general, γos and γws are not known, making the contact angle θ the principal experimen-

tal measurement of wettability.

Figure 1.1: Wettability for a mixture of oil and water. Modified from Willhite [13].
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1.3.2 Capillary pressure

In small regions such as in a rock porous space, wettability phenomenon causes a

measurable pressure difference between the two fluid phases across the curved interface.

This pressure difference is what is defined as the capillary pressure [2, 13],

pc = pnw − pw, (1.21)

where pnw and pw represent the pressure values for the non wetting and the wetting phases,

respectively.

The equation for pc in a capillary tube can be derived by balancing the four forces

acting on the fluid (see Figure 1.2)

pnwπr
2 − γnws2πr = pwπr

2 − γws2πr, (1.22)

pnw − pw =
2

r
(γws − γnws), (1.23)

and by equations (1.20) and (1.21),

pc =
2γnww cos θ

r
. (1.24)

The above equation is a particular case of the Young-Laplace equation

pc = 2Cγnww, (1.25)

where C is the local mean curvature of the interface. A thermodynamic based derivation

of the Young-Laplace equation is given by Morrow [14].

9



Figure 1.2: Two-phase fluid configuration in a capillary tube. Modified from Willhite [13].

1.3.3 Effective permeability in multiphase flow: the relative permeability

Effective permeabilities in a multiphase fluid flow through the porous medium are

calculated by applying Darcy’s law to each phase, as if the other phase did not exist. For a

two-phase flow regime, the equations become

qw =
κwA

µwL
∆Pw (wetting phase), (1.26)

qnw =
κnwA

µnwL
∆Pnw (non wetting phase). (1.27)

Capillary pressure is given by

pc = pnw − pw = Pnw −Pw. (1.28)

Effective permeability is generally presented as relative permeability, usually de-

fined as the ratio of the effective permeability to the absolute permeability κ of the medium:

κr,w =
κw
κ
, (1.29)

κr,nw =
κnw
κ
. (1.30)

The validity of the above equations assume the following conditions, based on ex-

perimental observations [13]:
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• low Reynolds number, as required by Darcy’s law;

• negligible viscous coupling between the two phases;

• both phases flow simultaneously at a constant overall rate;

• each phase flows under its own pressure gradient;

• each phase flows through its own network of interconnected, tortuous channels, in

laminar flow regime.

1.4 Flow of electric current through porous medium

1.4.1 Governing equations

Let ~E(x, y, z) be an applied external electrostatic field and σ(x, y, z) the electrical

conductivity of the porous medium, both varying with position. The resulting electric

current density ~J(x, y, z) is given by Ohm’s law

~J = σ ~E. (1.31)

From continuity equation for electric flow,

~∇ · ~J +
∂ζ

∂t
= 0, (1.32)

where ζ is the local charge density. Imposing charge conservation (no charge is created or

destroyed), we get incompressible vector field ~J ,

~∇ · ~J = ~∇ ·
(
σ ~E
)

= 0. (1.33)
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Since the electrostatic field must be irrotational (~∇ × ~E = ~0), we can describe it using a

scalar potential field ϕ,

~E = −~∇ϕ, (1.34)

resulting in the generalized Laplace equation for this potential field

~∇ · (σ~∇ϕ) = 0 . (1.35)

Detailed description of classical electrodynamics is provided by Jackson [15]. The above

equation reduces to an analogue of equation (1.11) if conductivity is constant through the

porous medium. The varying electric conductivity will allow us to account for microporous

voxels not resolved in µ-CT images in future work.

1.4.2 Boundary conditions

Similar to viscous fluid flow, the flow of electric current is directed to z direction

by allowing electric flow in and out only at the external xy planes. Potential is fixed at

the open flow boundaries and the normal component of the electric current density is set to

zero at conducting–non conducting interfaces:

~J · n̂ = (σ~∇ϕ) · n̂ = σ
∂ϕ

∂n
= 0 ⇒ ∂ϕ

∂n
= 0. (1.36)

The following equations summarize the electric flow model:

~∇ · (σ~∇ϕ) = 0 in Ω, (1.37)

ϕ = ϕin in Ωin, (1.38)

ϕ = ϕout in Ωout, (1.39)

~∇ϕ · n̂ = 0 at ∂Ω, (1.40)
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where Ω, Ωin, Ωout and ∂Ω are the analogues of the definitions in section 1.2.2, now for the

electrically conducting space.

1.4.3 Effective medium property: the formation factor

Once the electric potential ϕ(x, y, z) inside the porous medium is known, the total

electrical current I through the rock can be calculated as

I =

∮
~J · n̂dA, (1.41)

where

~J = σ~∇ϕ. (1.42)

The rock electrical conductivity is then given by

σrock =
LI

A∆V
, (1.43)

where L is the sample length in z direction, A is the area of an xy slice and ∆V is

the macroscopic electric potential difference applied in the rock extremes. For the 3D

anisotropic flow, electrical current density is not necessarily parallel to the electric poten-

tial gradient, and Ohm’s law in equation (1.42) generalizes to

~J = ¯̄σ : ~∇ϕ, (1.44)

where the conductivity tensor ¯̄σ is a second order tensor describing how the electric flow is

generated by the applied electric potential.

On investigating the correlation between the electrical resistivity of the formation

and its character and saturating fluid, Archie [1] introduced the formation resistivity factor,

or simply the formation factor F , as a measure of the enhancement of electrical resistivity
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due to the porous medium. It is defined as the ratio of the electrical resistivity of a rock

filled with water to the electrical resistivity of the water,

F =
Rrock

Rwater

. (1.45)

Since our simulations use the value of electrical current to measure the electrical conductiv-

ity, a more natural way to appraise the results is through the reciprocal of formation factor,

what we will call the normalized conductivity

σ̂ =
σwater

σrock
, (1.46)

where σwater and σrock are the electrical conductivities of the water and the rock filled with

the water, respectively.

After collecting a number of results for consolidated and clean sandstone cores with

non-conducting matrices and 100% saturated with brine, Archie proposed the empirical

correlation

F = φ−m, (1.47)

where φ is the total porosity. The exponent m, now called the cementation exponent, was

found to be in the range between 1.8 and 2.0 for consolidated sandstones and about 1.3

for clean unconsolidated sands packed in the laboratory. Similar studies in the following

years (see Kennedy and Herrick [16] for a review) introduced another fitting parameter,

modifying equation (1.47) to

F = aφ−m. (1.48)

The constant a is known as the tortuosity factor.
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1.4.4 Electrical conductivity for multiphase fluid saturated rock: the resistivity in-

dex

The rock effective electrical conductivity will decrease if non conducting oil co-

exists with conducting brine in the pore space. In his seminal paper, Archie [1] also pro-

posed an empirical correlation for the rock electrical resistivity and the water saturation Sw

through the resistivity index

RI =
Rt

R0

= S−n
w , (1.49)

where Rt is the electrical resistivity of the rock partially saturated with non conducting

fluid,R0 is the resistivity of the rock fully saturated with brine. The exponent n is called the

saturation exponent. Archie’s work found n close to 2 for clean sands at water saturations

down to 0.15 or 0.20.

Considering these results, the formation water saturation, necessary for calculating

hydrocarbon reserves, can be estimated as

Sw =

[
a

φm

Rwater

Rt

] 1
n

. (1.50)

This equation remains as the industry standard porosity-resistivity model. Yet, it is impor-

tant to emphasize that it is an empirical correlation describing a trend for laboratory data

for clean sandstones, plotted on log scale graph paper, the technology available at the time.

Deviations from equation (1.49) have been observed even in clean siliciclastic rocks like

the Fontainebleau sandstone, since ionic conduction can still be carried through the thin

film of brine coating the water wet grains at low water saturations. Recent authors have

investigated the influence of surface conduction on the rock effective conductivity [17–19].

Carbonate rocks are also well known deviations from equation (1.50) [20–24].
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1.5 The state of art of digital petrophysics

The work flow in digital petrophysics is formed by three main steps. First, a 3D

pore-scale image of the rock sample is acquired. The most used imaging technique is the

X-ray computed micro-tomography (µ-CT), which measures the local X-ray absorption in

a sample whose dimensions span a few millimeters. Using 2D radiographs acquired at

different angles, a 3D gray scale image is reconstructed, with brightness proportional to the

X-ray attenuation coefficient (and thus also proportional to the density of the material) at

each spatial position in the sample. Flannery et al. [25] introduced the technique. Recent

reviews are provided by Wildenschild and Sheppard [8], and Cnudde and Boone [26].

The second and probably most critical step is to classify each voxel as a mineral

phase, a fluid phase or a combination of both if there is not enough resolution to make

the distinction. This step, called segmentation is usually preceded by some pre-processing,

with the objective to enhance the image quality before the segmentation algorithm takes

place. Pre-processing usually includes noise filtering and removing of image artifacts.

Image segmentation constitutes a non trivial research field and may require highly sophis-

ticated methods when working with complex rocks. It is often subject to parameters that

need to be decided manually for each sample, leading to non unique results and requiring

quality control as a final step. Comprehensive reviews on the available segmentation meth-

ods are provided by the works of Iassonov et al. [27] and Schlüter et al. [28]. Figure 1.3

shows a simple example.

The final step is the pore space characterization and simulation of the physical pro-

cesses within the segmented image. This step leads to an estimate of the rock’s bulk behav-

ior and its petrophysical properties, but also gives the opportunity to test different system

configurations and validate theoretical models through comparison between simulation re-

sults and laboratory measurements.

One approach uses networking modeling to represent the pore space as a network of
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Figure 1.3: Example of image segmentation from Iassonov et al. [27]. Left: original noisy gray scale
image. Center: binary version using manual thresholding. Right: binary version using indicator
kriging. See the reference for details.

sites corresponding to pore bodies, connected by bonds corresponding to pore throats. An

usual practice is to represent pore bodies by spheres and pore throats by cylinders. Macro-

scopic properties can then be simulated by applying the pertinent conservation equations

describing the phenomenon of interest. Finney [3] experimentally measured the spatial po-

sition of approximately 8000 precision ball bearings in a dense random pack. Pore networks

using Finney’s data showed good performance in predicting transport properties for simple

sandstones [6, 29, 30]. Modern modeling now starts from 3D images of rock samples. A

review on this method is provided by Blunt et al. [31,32]. Recent works have applied pore

network modeling to investigate unconventional resources like tight-gas sandstones [33]

and shale gas [34].

Network modeling, although computationally cheaper, simplifies the velocity field

within the pore space. An intermediate solution is given by Shabro et al. [11], where

the pore voxels are divided into interconnected cylindrical pores, each one with a flow

described by the Hagen-Poiseuille equation. The overall flow rate is then achieved by

weighting the mass flux in each cylinder using the distance from the cylinder to the nearest

grain voxel.

In the last decade, increasing computational resources have made possible the appli-

cation of direct simulation methods in 3D images. An established method to simulate sin-

gle and multiphase fluid flow at pore scale in complex geometries is the lattice-Boltzmann
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method [35, 36]. In this approach, the fluid is modeled by a collection of particles fol-

lowing simple rules for local interactions, recovering the Navier-Stokes equation for the

macroscopic fluid behavior. The absolute permeability is then estimated by using Darcy’s

law after calculating the inlet and the outlet pressures. This method can provide a rigorous

estimate of flow properties, since there is no additional simplification to the pore-space. Re-

sults for estimating absolute permeability using the lattice-Boltzmann method are widely

available in the literature [22,37–39]. Two phase relative permeability estimated by lattice-

Boltzmann has also been reported [40], but to date is still computationally expensive.

Another common method for permeability is to directly solve Stokes or Navier-

Stokes equation using the method of finite differences. Yet, incompressible flow boundary

conditions at open boundaries have been a point of discussion among different authors

[10, 41–43]. One common approach is to specify a velocity profile at either the inlet or

the outlet open boundary, but this can lead to artificial flow configurations at complex

pore spaces. The boundary conditions discussed in section 1.2.2 are the closest to the

real experiment set up, but also lead to non uniqueness and non zero divergence at the

solution. Silin and Patzek [44] use the method of artificial compressibility in a staggered

grid to achieve a zero divergence solution. We will present a different method in the next

chapter. Finite volume method is another used technique to solve Navier-Stokes in the pore

space [45].

The main methods to calculate formation factor are also finite differences [19] and

finite elements [22, 23, 39, 46]. Andra [38] compares solution from these two methods

with another called explicit jump averaging, whose details are found in [47]. Yue [48]

uses lattice-Boltzmann for electrical conductivity simulation. Similar procedures for elastic

moduli [38, 39, 49, 50] and nuclear magnetic resonance response [5, 51–54] have also been

developed.

Accurate multiphase fluid distribution on the pore space is an important step on the
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simulation of multiphase fluid properties. Three methods that handle fluid distribution on

pore space are available in the literature. First, the method of maximal inscribed spheres

[55] assigns to each voxel the radius of the maximal sphere included in the pore space and

covering that voxel. Invasion scenarios are then created by cluster search on these radii

map. This method is used by Silin and Patzek to calculate relative permeability [44].

Another similar method is called the capillary drainage transform [56]. This method

simulates drainage by letting a non wetting phase invade a pore region if a sphere with

radius given by equation (1.24) (page 9) can be moved from a non wetting saturated region

tho the target region. Capillary drainage transform is used to calculate resistivity index

in [23, 57, 58].

A more accurate method, called level set based progressive quasi-static algorithm

(LSMPQS) is described in [59]. Level sets formulation is used to move the fluid-fluid

interface through the porous medium, with Young-Laplace equation (1.25) enforced at each

equilibrium position. LSMPQS successfully matches experimentally observed trapped non

wetting phase [60–62].
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Chapter 2: Methods and Samples

2.1 Finite difference approximation of governing equations

We chose the finite difference method [63] to discretize the equations governing the

transport of fluid and electric charge. Finite differences has several advantages over other

methods. First, it uses the segmented image without any further processing, since it is a

3D Cartesian grid representation of the original porous medium. Detailed representation

for all quantities in the pore space is a natural consequence. In pore-network modeling,

for example, generating a network reflecting the specific properties of an arbitrary porous

medium is still a challenge.

Second, boundary conditions such as no-slip at pore-grain contact and fixed pres-

sure at the open boundaries are straightforward to implement. A rigorous implementation

of these conditions may not be as simple in lattice-Boltzmann simulation. Finally, a careful

implementation of finite differences can lead to fast and relatively cheap algorithms. It can

be a promising alternative, for example, for lattice-Boltzman simulations of two-phase flow

with the interfacial phenomena, which so far still require massive computations.

The main disadvantage of finite differences with open flow boundary conditions is

the residual divergence at the velocity field. We propose a new way to solve this problem

as will be explained in the following sections.

2.1.1 Discretization of pressure field equation

Let nx, ny, and nz be the number of voxels in x, y, and z directions, respectively,

hx, hy, and hz be the voxel size in each direction and i, j, and k be the corresponding voxel

coordinates, such that 1 ≤ x ≤ nx, 1 ≤ y ≤ ny and 1 ≤ z ≤ nz. For the sake of simplicity
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in the notation, let us also introduce nxy = nxny and nxyz = nxnynz.

The second order central finite difference for the Laplace equation for pressure

(equation (1.11)) for the voxel at position (i, j, k) is given by

Pi+1,j,k − 2Pi,j,k + Pi−1,j,k

h2x
+

Pi,j+1,k − 2Pi,j,k + Pi,j−1,k

h2y

+
Pi,j,k+1 − 2Pi,j,k + Pi,j,k−1

h2z
= 0. (2.1)

The set of the above equations for each voxel in the 3D grid forms a system of nxyz equa-

tions and nxyz variables. In order to use the formalism of matrix algebra, we introduce the

index

K = (k − 1)nxy + (j − 1)nx + i , (2.2)

to put the nxyz equations in the form

1

h2z
PK+nxy +

1

h2y
PK+nx +

1

h2x
PK+1 −

(
2

h2x
+

2

h2y
+

2

h2z

)
PK

+
1

h2x
PK−1 +

1

h2y
PK−nx +

1

h2z
PK−nxy = 0. (2.3)

To handle the Dirichlet boundary conditions, equation (2.3) has to be modified at

k = 1 and k = nz. If we define Pin and Pout to be the pressure values at the inlet and

outlet open boundaries, respectively, the corresponding equations for voxels at k = 1 will

be modified to

1

h2z
PK+nxy +

1

h2y
PK+nx +

1

h2x
PK+1 −

(
2

h2x
+

2

h2y
+

2

h2z

)
PK

+
1

h2x
PK−1 +

1

h2y
PK−nx = −Pin

h2z
, (2.4)
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while equations for voxels at k = nz will become

1

h2y
PK+nx +

1

h2x
PK+1 −

(
2

h2x
+

2

h2y
+

2

h2z

)
PK

+
1

h2x
PK−1 +

1

h2y
PK−nx +

1

h2z
PK−nxy = −Pout

h2z
. (2.5)

Voxels with i = 1, j = 1, i = nx, j = ny are set to grain phase to enforce closed

boundaries. Implementation of zero normal derivative for pressure at grain-pore interface

is also is also straightforward using central difference. For example, if the normal direction

at pore-grain interface is parallel to x̂+ ŷ, we have

∂P

∂n
= ~∇P · n̂ = ~∇P ·

(
x̂+ ŷ√

2

)
= 0 (2.6)

and, by finite differences
∂P

∂x
+
∂P

∂y
= 0, (2.7)

PK+1 −PK−1

2hx
+

PK+nx −PK−nx

2hy
= 0, (2.8)

which is enforced by setting PK+1 = PK−1 and PK+nx = PK−nx . Since positions

K − 1 and K − nx correspond to grain voxels in this case, equation (2.3) is rewritten as

1

h2z
PK+nxny +

2

h2y
PK+nx +

2

h2x
PK+1−

(
2

h2x
+

2

h2y
+

2

h2z

)
PK +

1

h2z
PK−nxny = 0. (2.9)

At grain voxels the pressure is set to zero as a dummy value, which will not influence the

velocity calculation on the next step.
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The nxyz equations can now be described by the matrix equation



α 2
h2
x

0...0 2
h2
y

0...0 2
h2
z

0...

1
h2
x

α 1
h2
x

0...0 2
h2
y

0...0 2
h2
z

0...

. . .

... 1
h2
y
0...0 1

h2
x

α 1
h2
x

0...0 1
h2
y

0...0 1
h2
z

0...

...0 1
h2
y

0...0 1
h2
x

α 1
h2
x

0...0 1
h2
y

0...0 1
h2
z

0...

... 1
h2
z
0...0 1

h2
y

0...0 1
h2
x

α 1
h2
x

0...0 1
h2
y

0...0 1
h2
z

0...

...0 1
h2
z

0...0 1
h2
y

0...0 1
h2
x

α 1
h2
x

0...0 1
h2
y

0...0 1
h2
z

0...

...0 1
h2
z

0...0 1
h2
y

0...0 1
h2
x

α 1
h2
x

0...0 1
h2
y

0...0 1
h2
z
...

...0 1
h2
z

0...0 1
h2
y

0...0 1
h2
x

α 1
h2
x

0...0 1
h2
y

0...

...0 1
h2
z

0...0 1
h2
y

0...0 1
h2
x

α 1
h2
x

0...0 1
h2
y
...

. . .

...0 2
h2
z

0...0 2
h2
y

0...0 1
h2
x

α 1
h2
x

...0 2
h2
z

0...0 2
h2
y

0...0 2
h2
x

α





P1

P2

...

PK+nxy

PK+nx

PK+1

PK

PK−1

PK−nx

PK−nxy

...

PN−1

PN



=



−Pin
h2
z

−Pin
h2
z

...

0

0

0

0

0

0

0

...

−Pout
h2
z

−Pout
h2
z


(2.10)

where α = −
(

2
h2
x

+ 2
h2
y

+ 2
h2
z

)
. This system is in the traditional form

Ax = b , (2.11)

where A is finite difference Laplacian operator, x is the vector of unknowns and b is the

vector of results at the righthand side of equation (2.10). We will use bold letters for finite

differences solution vectors.

2.1.2 Discretization of velocity field equation

Once the pressure field is calculated, it is used as a forcing function to solve Pois-

son’s equation for velocity (equation (1.7)). In principle, equation (1.7) can be solved

separately in each direction, leading to a set of Poisson equations for the scalar velocity
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components vx, vy and vz,

∇2vx =
1

µ

∂P

∂x
, (2.12)

∇2vy =
1

µ

∂P

∂y
, (2.13)

∇2vz =
1

µ

∂P

∂z
, (2.14)

whose discretization would be analogous to the pressure case. Pressure gradients are cal-

culated by central first finite difference,

∂P

∂x
≈ Pi+1,j,k −Pi−1,j,k

2hx
, (2.15)

∂P

∂y
≈ Pi,j+1,k −Pi,j−1,k

2hy
, (2.16)

∂P

∂z
≈ Pi,j,k+1 −Pi,j,k−1

2hz
. (2.17)

No slip and no penetration boundary conditions are imposed by setting zero velocity at the

grain voxels, and the directional derivatives for velocity are set to zero at the open bound-

aries. However, even if the pressure field is estimated using the zero divergence condition

for velocity, its use as a forcing function does not guarantee a zero divergence velocity

field, as also pointed by Nördstrom et al. [42]. Moreover, although the fully developed

flow profile can be achieved by this set of boundary conditions, they also lead to a system

with non unique solution.

This project uses a different approach to couple Stokes equation and the zero diver-

gence constraint. Let A be the Laplacian operator matrix as was done for the pressure field,

bx, by, and bz be the respectively the pressure gradient in x, y, and z directions, divided by

viscosity and indexed as in equation (2.2), and D be the divergence operator matrix formed
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from the set of equations

~∇ · ~v(x, y, z) ≈ vi+1,j,k
x − vi−1,j,k

x

2hx
+
vi,j+1,k
y − vi,j−1,k

y

2hy
+
vi,j,k+1
z − vi,j,k−1

z

2hy

=
vK+1
x − vK−1

x

2hx
+
vK+nx
y − vK−nx

y

2hy
+
v
K+nxny
z − vK−nxny

z

2hy
. (2.18)

The problem can now be reformulated as to solve the 3nxyz × 3nxyz system formed by the

block matrices 
Ax 0 0

0 Ay 0

0 0 Az




vx

vy

vz

 =


bx

by

bz

 (2.19)

subject to

D


vx

vy

vz

 = 0. (2.20)

For simplicity, let

L ≡


Ax 0 0

0 Ay 0

0 0 Az

 , v ≡


vx

vy

vz

 , b ≡


bx

by

bz

 . (2.21)

We use an approach analogous to the Tikhonov regularization [64] to change the problem

to finding

min
{
‖Lv − b‖22 + λ2 ‖Dv‖22

}
(2.22)

for some positive parameter λ. A little bit of matrix algebra allows to transform the above
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expression:

‖Lv − b‖22 + λ2‖Dv‖22 = (Lv − b)T (Lv − b) + λ2(Dv)TDv

= (vTLT − bT )(Lv − b) + λ2vTDTDv

= vTLTLv − vTLTb− bTLv + bTb + λ2vTDTDv

= vT (LTL + λ2DTD)v − vTLTb− bTLv + bTb

= vT
[
LT λD

]  L

λD

v − vT
[
LT λD

]  b

0


−
[
bT 0

]  L

λD

v +
[
bT 0

] b

0


=
(
vT
[
LT λD

]
−
[
bT 0

] ) L

λD

v −

 b

0


=

 L

λD

v −

 b

0

T  L

λD

v −

 b

0


=

∥∥∥∥∥∥
 L

λD

v −

 b

0

∥∥∥∥∥∥
2

2

. (2.23)

Thus, the constrained problem is equivalent to a least squares problem,

min
{
‖Lv − b‖22 + λ2‖Dv‖22

}
⇐⇒ min


∥∥∥∥∥∥
 L

λD

v −

 b

0

∥∥∥∥∥∥
2

2

 , (2.24)

whose solution immediately follows from the normal equations:

[LT λD]

 L

λD

v = [LT λD]

 b

0

 , (2.25)
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(LTL + λ2DTD)v = LTb . (2.26)

2.1.3 Discretization of electric potential field equation

For the electric potential estimation, a normalized value of conductivity is assigned

to each voxel, according to the segmentation process. If the segmentation objective is to

divide the sample in only two phases (pore/grain) with electrical insulating grains, then

pore phase conductivity is set to 1 and grain phase conductivity is set to zero1. Equation

(1.35) simplifies to a Laplace equation, and the solution for pressure field and electric po-

tential field will be numerically identical, since the two problems share the same boundary

conditions. However, conducting grain phases like clay or metallic minerals or voxels con-

taining a mixture of grain and pore may require different values of electrical conductivity,

requiring the solution of equation (1.35) in its original form.

A stable system of linear equations is achieved with the following procedure: first,

we rewrite this equation as

∂

∂x

[
σ

(
∂ϕ

∂x

)]
+

∂

∂y

[
σ

(
∂ϕ

∂y

)]
+

∂

∂z

[
σ

(
∂ϕ

∂z

)]
= 0 (2.27)

and then use central finite differences with half of each voxel length,

∂

∂x

(
σi,j,k

ϕi+ 1
2
,j,k − ϕi− 1

2
,j,k

hx

)
+

∂

∂y

(
σi,j,k

ϕi,j+ 1
2
,k − ϕi,j− 1

2
,k

hy

)
+

∂

∂z

(
σi,j,k

ϕi,j,k+ 1
2
− ϕi,j,k− 1

2

hz

)
= 0, (2.28)

1Values greater than 1 for pore voxel conductivity would scale the effective conductivity, whose final
value would need to be normalized.
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1

hx

[(
σi+ 1

2
,j,k

ϕi+1,j,k − ϕi,j,k

hx

)
−
(
σi− 1

2
,j,k

ϕi,j,k − ϕi−1,j,k

hx

)]
+

1

hy

[(
σi,j+ 1

2
,k

ϕi,j+1,k − ϕi,j,k

hy

)
−
(
σi,j− 1

2
,k

ϕi,j,k − ϕi,j−1,k

hy

)]
+

1

hz

[(
σi,j,k+ 1

2

ϕi,j,k+1 − ϕi,j,k

hz

)
−
(
σi,j,k− 1

2

ϕi,j,k − ϕi,j,k−1

hz

)]
= 0. (2.29)

Now we use the upwind interpolation, where the conductivity at half step in the discrete

network of electrical conductors is assumed do be equal to the one we get rounding down

the indices. This assumption results in the equation

1

hx

[(
σi,j,k

ϕi+1,j,k − ϕi,j,k

hx

)
−
(
σi−1,j,k

ϕi,j,k − ϕi−1,j,k

hx

)]
+

1

hy

[(
σi,j,k

ϕi,j+1,k − ϕi,j,k

hy

)
−
(
σi,j−1,k

ϕi,j,k − ϕi,j−1,k

hy

)]
+

1

hz

[(
σi,j,k

ϕi,j,k+1 − ϕi,j,k

hz

)
−
(
σi,j,k−1

ϕi,j,k − ϕi,j,k−1

hz

)]
= 0. (2.30)

Using the linear indexing provided in equation (2.2), we get the system of equations

(
σK
h2z

)
ϕK+nxny +

(
σK
h2y

)
ϕK+nx +

(
σK
h2x

)
ϕK+1

−
(
σK + σK−1

h2x
+
σK + σK−nx

h2y
+
σK + σK−nxny

h2z

)
ϕK

+

(
σK−1

h2x

)
ϕK−1 +

(
σK−nx

h2y

)
ϕK−nx +

(
σK−nxny

h2z

)
ϕK−nxny = 0. (2.31)

Boundary conditions and computational implementation are similar to the calculation of

the pressure field.
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Table 2.1: Approximate file sizes for the implemented data formats. Total size consider two seg-
mented files (segmentation and connectivity) and five scalar fields (pressure, velocity components
and electric potential).

Sample size Number Segmentation Scalar field Total
(nx × ny × nz) of voxels data file size data file size size

250×250×250 15,625,000 15 MB 60 MB 330 MB
500×500×500 125,000,000 120 MB 477 MB 2.56 GB

1000×1000×1000 1,000,000,000 950 MB 3.7 GB 20.3 GB

2.2 Implementation details and workflow outline

All the routines were implemented using C programming language with shared-

memory parallel computing OpenMP API2. Calculations were performed using Lonestar

Linux high performance computer at Texas Advanced Computer Center3. Each simulation

used one computer node with two Xeon 5680 series 3.33GHz hex-core processors (12 cores

total) sharing 24GB of memory4.

2.2.1 Data format

Data files are stored in raw data format, each file containing an array of values for

each voxel following the indexation in equation (2.2). Segmented data are stored in 8 bit

integer format, allowing up to 28 = 256 phases. Due to the potentially large amount of

memory for big samples, scalar fields (pressure, electric potential and each component of

the velocity field) are stored as single precision (4 bytes) floating point format. Sample size

and phase properties are provided as separate files in ASCII format, to facilitate testing

different scenarios for the same sample. Table 2.1 exemplifies file sizes for the chosen

formats.
2http://openmp.org
3https://www.tacc.utexas.edu
4https://www.tacc.utexas.edu/resources/hpc/lonestar

29



2.2.2 Porosity calculation

The porosity calculation simply average the porosity value for each voxel through-

out the sample. However, on big samples, the increment on the cumulative number of pore

voxels can rapidly fall below the machine precision, due to the large number of voxels to

be counted (see Table 2.1). To get accurate values on big samples, a simple solution is

applied: first, the porosity is averaged along one line of voxels and the value is stored in a

auxiliary variable. Then, the same calculation is repeated to all the lines in the same slice,

accumulating each result on the auxiliary variable. The slice porosity is then obtained by

dividing the cumulative value by the number of lines in the slice. The process is repeated

to all the slices, accumulating the value in a second auxiliary variable. The final value of

porosity will then be accurately described by the average of the slices’ porosities.

2.2.3 Connectivity of the conducting phase

To prevent a result of non zero flow in a disconnected space, the connectivity of

fluid/electrical conducting phase is evaluated before the routines to calculate the scalar

fields are used. In this project, two voxels are considered connected if they have a face in

common, what is also known as 6-connectivity. The routine is a grass fire-like algorithm.

It starts assigning a label equal to 1 for each pore/conducting voxel at the inlet xy slice

and zero elsewhere in the domain. An iterative process reassigns the voxel label to 1 if any

of its neighbors is also labeled 1 and repeats until there is no change in the labels. The

voxels labeled as 1 will have a connected path to the inlet face. Within these voxels, similar

calculation is performed to find the ones with a connected path to the outlet face. At the

end, only voxels with a percolating path though the sample will remain labeled as 1. The

result is stored as a segmentation type file. Only voxels connected to both ends are used to

calculate the scalar fields.
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2.2.4 Pressure/electric potential

The described discretizations led to a set of linear equations Ax = b for each

studied phenomenon. For pressure and electrical potential fields, the coefficient matrix A

is heptadiagonal, although non symmetrical due to the chosen boundary conditions and the

irregularity of the porous media. The size of the full matrix is equal to the number of voxels

squared, which is impossible to store in a computer memory for reasonable sample sizes.

One alternative could be the band storage (storage of the diagonals in the band) but direct

solution methods such as LU decomposition create non-zero values inside the matrix band,

wasting the available computer memory and limiting the applicability to small samples.

The sparsity of the coefficient matrix makes the system suitable for iterative meth-

ods [65]. A fast and memory efficient linear solver capable of handling huge matrices can

be built by using the biconjugate gradient stabilized method, whose details can be found in

the work of Van der Vorst [66].

System preconditioning is used to make convergence faster. A preconditioner K of

a matrix A is a matrix built such that the operation K−1A has a better condition number.

Thus, the solution of the system of equations given by K−1Ax = K−1b will converge

faster and will have the same solution as the original system Ax = b (see [65] for precon-

ditioning techniques). Since A is diagonal dominant, the Jacobi preconditioner, defined as

a diagonal matrix with the main diagonal of A, gives a good compromise between simplic-

ity and convergence speed.

The preconditioned biconjugate gradient stabilized method, is stated below:

1. From an initial guess x0, let r0 = b−Ax0;

2. Choose r̂0 as an arbitrary vector, such that (r̂0, r0) 6= 0, for example r̂0 = r0;

3. ρ0 = α = ω0 = 1;

4. v0 = p0 = 0;

5. for i = 1, 2, 3 . . .
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(a) ρi = (r̂0, ri−1)

(b) β = (ρi/ρi−1)(α/ωi−1)

(c) pi = ri−1 + β(pi−1 − ωi−1vi−1);

(d) y = K−1pi;

(e) vi = Ay;

(f) α = ρi/(r̂0,vi);

(g) s = ri−1 − αvi;

(h) z = K−1s;

(i) t = Az;

(j) ωi = (K−1t,K−1s)/(K−1t,K−1t);

(k) xi = xi−1 + αy + ωiz;

(l) ri = s− ωit;

(m) if ‖ri‖ is less than a predefined tolerance, then quit;

end

The initial guess is taken as a constant gradient in z direction, and the operation

(·, ·) denotes scalar product between two vectors. Note that this method does not require

the matrix A, but its multiplication by a vector. Since the matrix A is defined by equations

(2.3), (2.31) and their analogues at domain boundaries, effective Ax calculations can be

done by explicitly using those equations, allowing to solve the problem without actually

storing any part of the matrix. The major part of the required memory is used to allocate

the nine auxiliary vectors. Table 2.2 compares the approximate memory required by this

method and the traditional ones.

2.2.5 Velocity field

The velocity field is calculated in two steps. First, from zero velocity as initial

guess, the three components are independently estimated from Stokes equation. The same

Poisson solver used to calculate pressure and electric potential is also used in this stage,

with the respective components of pressure gradients as the forcing function.
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Table 2.2: Approximate computer memory required to solve for a scalar field, considering single
precision floating point data type (4 bytes per number). Matrix size equals the number of voxels
squared.

Sample size Number Matrix inv. LU dec. with Biconj. grad.
(nx × ny × nz) of voxels (full size) banded storage stabilized

250×250×250 15,625,000 888 TB 14 TB 536 MB
500×500×500 125,000,000 55 PB 454 TB 4.2 GB

1000×1000×1000 1,000,000,000 3550 PB 14 PB 33 GB

Next, this intermediate solution for velocity is used as an initial guess for equation

(2.26) in order to calculate the incompressible velocity field. The coefficient matrix LTL+

λ2DTD is now symmetric, allowing to use the conjugate gradient method [65] as the linear

solver, which requires less amount of computational memory compared to the biconjugate

gradient stabilized method. Preconditioned conjugate gradient method is listed below.

1. From an initial guess x0, let r0 = b−Ax0;

2. z0 = K−1x0

3. p0 = z0;

4. for i = 0, 1, 2 . . .

(a) αi = (ri, zi)/(pi,Api)

(b) xi+1 = xi + αipi

(c) ri+1 = ri − αiApi

(d) if ri+1 is small enough then quit;

(e) zi+1 = K−1ri+1;

(f) βi = (zi+1, ri+1)/(zi, ri);

(g) pi+1 = zi+1 + βipi;

end

Although this method only requires four auxiliary vectors, the vector sizes are three

times bigger than the ones for scalar fields. Approximate memory requirements are listed

in Table 2.3. Some numerical problems also arise. First, the coefficient matrix A = LTL+
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Table 2.3: Approximate computer memory required to solve for a vector field, considering single
precision floating point data type (4 bytes per number). Matrix size equals the number of voxels
squared.

Sample size Number Conjugate
(nx × ny × nz) of voxels graditent

250×250×250 15,625,000 1.04 GB
500×500×500 125,000,000 8.38 GB

1000×1000×1000 1,000,000,000 67 GB

λ2DTD is now a full matrix, but sparsity of L and D can still be used to compute the

product Ax in a few steps. Besides the increased number of operations, the high condition

number resulting from the product by the transpose matrix lowers the rate of convergence

considerably and raises the sensitivity to roundoff errors. The Jacobi preconditioner and

parallel computing still are used to speed-up the convergence, but a better preconditioner

needs to be implemented in future improvements of the computational code.

2.2.6 Permeability estimation

In order to estimate bulk hydraulic permeability, the volumetric flux in z direction

is calculated for each xy slice as

Φz(z) =

∮
vzdA, (2.32)

where A is the area of the kth xy slice. The flow rate Q through the porous medium is

then assumed to be the average value of Φz across the whole sample. Then, from Darcy’s

equation, final value for permeability is

k =
QµL

A(pin − pout)
, (2.33)
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where L is the sample length in z direction and A is the area of one xy slice. The ratio of

the standard deviation to the mean value of Φz(z) defines the relative error for the estimated

permeability.

2.2.7 Bulk electrical conductivity

From electric potential, the electric current density is obtained by numerically eval-

uating

~J = σ~∇ϕ. (2.34)

Then, the electric current I through each xy slice is calculated using the definition

I(z) =

∮
~J · n̂dA, (2.35)

over each xy slice with n̂ pointing to positive z direction. Finally, Ohm’s law gives the

normalized electrical conductivity,

σ̂ =
LĪ

A∆V
, (2.36)

where Ī is the average value of the electric current, L is the sample length in z direction, A

is the area of an xy slice and ∆V is the potential difference between the first and the last

xy slice. The ratio of the standard deviation to the mean value of I(z) defines the relative

error in σ̂. Formation factor is the reciprocal of the normalized conductivity.

2.3 Testing samples

2.3.1 Benchmarks

The first group of datasets used to validate the algorithms consists of three estab-

lished benchmarks:
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• a 5003 disordered close pack of non overlapping equally-sized spheres, digitally gen-

erated from Finney’s experimental data [3]. The voxel size was chosen to be 3 µm,

in order to match the two other datasets. Sphere diameter is equal to 50 voxels.

• a 5003 Fontainebleau sandstone with voxel size equal to 3 µm;

• a 5003 sucrosic dolomite also with voxel size equal to 3 µm.

Details about the image segmentation for the sandstone and the dolomite samples can be

found in [67]. Figure 2.1 shows these three data sets.

2.3.2 Numerical cementation and dissolution of digitized rock samples

Numerical procedures to simulate cementation have been used to study the mech-

anisms of porosity reduction in sandstone [6]. Mousavi and Bryant [68] model tight gas

sands by using uniform cement overgrowth on a spherical packing, simulating plastic defor-

mation by allowing superposition of part of the grains. In a more recent work, Prodanović

et al. [69] use a level set based method to simulate cement overgrowth on a segmented

X-ray microtomography image.

We simulate cementation on the Finney pack sample by operation of dilation on

the segmented image. In a dilation process, each voxel value is replaced by the maximum

value in a 3 × 3 × 3 neighborhood centered on that voxel. The inverse operation, called

erosion, can simulate grain dissolution and generate fluid supported material. An erosion

procedure replaces the voxel value with the minimum in the same neighborhood.

A total of 20 samples were generated by repeatedly applying these processes on the

original pack using the open source image processing package Fiji5.

5http://fiji.sc/Fiji
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(a) Finney pack

(b) Fontainebleau sandstone

(c) Dolomite

Figure 2.1: Benchmark samples used to test the algorithms. All the samples have dimensions equal
to 500× 500× 500 voxels and voxel size equal to 3 µm. Left: segmented images with black pores
and gray grains; right: 3D rendering of pore-grain phase. The images were generated with the open
source visualization application Paraview (http://www.paraview.org).
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2.3.3 Multiphase fluid distribution for Fontainebleau sandstone

We obtained a two-phase fluid distribution in a 2503 subset of the Fontainebleau

sandstone, from a drainage simulation as described in [61], using the level set based pro-

gressive quasi-static algorithm (LSMPQS) [59]. The simulation consists of a capillary

dominated two-phase fluid flow, with an initial planar non wetting phase front trying to

invade the pore space 100% saturated with the wetting phase. The rock is considered to be

perfectly wet by the wetting fluid (zero contact angle).

The simulation goal is to find, for each increasing value of the capillary pressure

pc, the equilibrium curved interface between the wetting and the non wetting phases that

obeys Young-Laplace equation

pc = γC. (2.37)

Here, γ is the interfacial tension and C is the curvature of the interface. On the method

formulation, a level set function φ(x, y, z, τ), initially at φ(x, y, z, 0), evolves in time τ

following the partial differential equation

∂φ

∂τ
+ F |~∇φ| = 0, (2.38)

where F (x, y, z, τ) is the normal component of the interface velocity. To apply this tech-

nique to the drainage simulation, the quasi-static movement is governed by

F (x, y, z, τ) = pc − γC(x, y, z, τ), (2.39)

and the equilibrium interface is taken as the zero level set of the solution of equation (2.38),

the set of points such that φ(x, y, z, τ) = 0.

The simulation generated a set of 10 fluid configurations, some of them illustrated

in Figure 2.2, that will be used to investigate relative permeability and resistivity index for
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the Fontainebleau sandstone. The corresponding drainage curve is shown in Figure 2.3.

LSMPQS is implemented using C/FORTRAN computer languages and can be downloaded

at the author’s web page6.

2.3.4 Outcrop samples with lab data

The last group of samples consists of original µ-CT images for plugs from outcrops

of a Bentheimer sandstone a Buff Berea sandstone and an Idaho Brown sandstone. The

three data sets consist of 1000 × 1000 × 1500 voxel images. Voxel size for Bentheimer

and Idaho sandstones is equal to 5 µm, while voxel size for Buff Berea sandstone is 2 µm.

Datasets and respective routine core analysis results are courtesy of Petrobras Research

Center, Brazil.

Figure 2.4 shows laboratory data for porosity and permeability measured in sister

samples from the same outcrops. Figures 2.5, 2.6, and 2.7 show slices of the original 3D

µ-CT images. In order to fit the 24 GB of shared memory available on the computer nodes

used (see again Table 2.2 on page 33), each of these three samples were divided in twelve

5003 subsamples and the corresponding electric and velocity fields where calculated. These

properties were also calculated in copies of the full samples upscaled to twice the voxel size

(500× 500× 750 voxels) to investigate variation with resolution.

2.3.5 Segmentation of imaged samples

We used the image processing package Fiji to perform the image segmentation in

three steps. First, a 2 × 2 × 2 median filter was applied to slightly reduce the noise level,

while trying to preserve pore-grain edges. For more information on image filtering and

noise reduction see [28].

Second, a procedure called statistical region merging [70] was applied. This pro-

cedure starts defining each voxel as an independent region, and successively performs sta-
6http://users.ices.utexas.edu/ masha/lsmpqs/index.html.
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(a) Sw = 85% (b) Sw = 79%

(c) Sw = 24% (d) Sw = 11%

Figure 2.2: Simulated drainage stages in a 2503 subset of the Fontainebleau sandstone. Grain phase
is represented by the semi-transparent gray surface. Non-wetting phase (red surface in the figure) is
entering the porous medium through the yz slice at x = 0.
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Figure 2.3: Curvature-saturation curve for the drainage simulation on Fontainebleau sandstone [61].
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Figure 2.4: Routine core analysis for sister samples of Bentheimer, Buff Berea and Idaho Brown
sandstones.
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(a) xy slice at z = 750 (b) yz slice at x = 500

(c) xz slice at y = 500
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(d) Gray scale histogram

Figure 2.5: Cross-sections of the Bentheimer sandstone µ-CT image. Voxel size is equal to 5 µm
and sample dimensions are 1000 × 1000 × 1500 voxels. Coordinates x, y and z are counted in
voxels in this figure.
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(a) xy slice at z = 500 (b) yz slice at x = 500

(c) xz slice at y = 750
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Figure 2.7: Cross-sections of the Idaho Brown sandstone µ-CT image. Voxel size is equal to 5 µm
and sample dimensions are 1000 × 1500 × 1000 voxels. Coordinates x, y and z are counted in
voxels in this figure.
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tistical tests on neighboring regions, merging them if the average intensities are considered

similar enough. The algorithm is guided by an user input for the final number of regions.

Finally, a hard threshold on the merged image was applied to classify each voxel as

a pore or a solid phase. Results will be shown in the next chapter.
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Chapter 3: Results

3.1 Transport properties for Finney pack, Fontainebleau and dolomite

We first show results for pressure field and electric potential simulated. The left

part of Figure 3.1 shows contour levels for the simulated pressure fields within each sam-

ple. These simulations were stopped when the relative error got 10−5 in order of magnitude.

Qualitatively, the contour lines terminate at pore-grain interface in a perpendicular direc-

tion, indicating zero pressure variation normal to the interfaces, as required by the boundary

conditions.

Computed pressure fields also represent the respective electric potentials for these

samples. Recall that the model of electrically insulating grains and electrically conducting

pores, as explained in section 2.1.3, reduces the equation and boundary conditions govern-

ing electric potential to the ones governing pressure. The right part of Figure 3.1 shows the

electric flux across the sample in the z direction, calculated by the definition in equation

(2.35). Effective conductivities with numerical uncertainties result from the mean value

and the standard deviation on these curves.

The electric flux is fairly constant throughout the samples, except for the anoma-

lous high values observed at the borders of the 3D domains, even negative within the first

few slices. This boundary effect will enhance the uncertainty in the estimation of the vol-

umetric properties and, for the velocity field calculation, the high pressure gradients at the

borders will increase the volumetric flux in opposite directions, preventing the algorithm

from finding a solution with small divergence.

Detailed investigation on the source of these inconsistent gradients is left for a fu-

ture work. Presently we simply remove questionable boundary slices from consideration.
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Figure 3.1: Pressure/electric potential contour levels (left) and electric flux (right) resulting from
the simulations. Numbers are presented in arbitrary units. Any consistent system of units can be
used to scale the results, provided that distance is measured in micrometers.
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Table 3.1: Results for simulation on the first group of samples. Permeability values are in darcy.

Sample Porosity σ̂ simulated σ̂ literature κ simulated κ literature

Finney 0.3629 0.2208(30) 0.2186 22.92(90) 20
Fontainebleau 0.1947 0.0594(11) 0.0446 3.19(14) 3

Dolomite 0.2150 0.0454(31) – 1.40(11) 0.9

Figure 3.2 shows the streamlines for the velocity fields and the respective volumetric flux

distributions for each case.

Effective conductivity and absolute permeability are then calculated by equations

(2.33) and (2.36), considering only this inner domain. The results can be compared with

data in the literature. Effective conductivity for random sphere pack has been shown [71,

72] to be a function of sample porosity described by σ̂ = φ1.5. Permeability for this kind

of porous medium has been accurately described by the Kozeny-Carman equation

κ =
D2

gφ
3

72τ(1− φ)2
, (3.1)

where Dg is the grain diameter and τ = 5 is the Kozeny constant for the sphere pack [2].

Doyen [73] reports the empirical correlation σ̂ = φ1.9 for a set of Fontainebleau sandstone

cores in the same range of porosity as our sample. Permeability for sister samples of the

Fontainebleau sandstone and the dolomite used in this project is reported by Shabro et

al. [61]. Table 3.1 details the results, showing a very good agreement between simulations

and literature values. It is also interesting to observe the higher values of permeability as a

consequence of the higher interstitial velocity on Figure 3.2.

3.2 The effect of numerical diagenetic processes on electrical properties

A selection of samples after the dilation or erosion procedures described in section

2.3.2 are illustrated in Figure 3.3. Figure 3.4 shows the results for the electrical conductiv-

ity of the whole set. The eroded samples (higher porosity in the figure) behave as the power
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Figure 3.2: Velocity streamlines (left) and volumetric flux (right) from the simulated velocity fields.
Streamlines are colored by local velocity magnitude, whose units are consistent with the ones in
Figure 3.1. Unit value is assigned to viscosity.
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law expected for spherical inclusions in a conductive medium [71, 72]. Cemented samples

(lower porosity), however, show gradual deviations from this behavior, and less conduc-

tive rocks result as a consequence of pore throats being blocked by the uniformly growing

cement. The simulations agree closely with the work of Bryant and Pallatt [6], who cal-

culated sphere pack conductivity by modeling a network of electrical resistors from the

sample geometry.

3.3 Two-phase fluid displacement in the Fontainebleau sandstone

In the two-phase flow simulations we considered water as the wetting phase and oil

as the non wetting phase. Electrical conductivity is calculated for each drainage step by

setting the conductivity of the oil phase equal to zero.

With the assumption of capillary dominated fluid flow, each phase flows through

a separate network of channels determined by the initial fluid distribution. We estimate

effective permeability by assigning the voxels corresponding to one fluid phase to grain

voxels and letting the other fluid phase flow in the remaining space. This approach has the

advantage of using the same code designed to calculate absolute permeability, but also has

the limitation of imposing zero velocity at the fluid-fluid interfaces. A more reasonable

boundary condition would be the zero shear stress at fluid-fluid interfaces, since no viscous

coupling between oil and water is usually assumed for flow at reservoir conditions [74].

Improvements for this specific limitation are left for future work.

Figure 3.5 shows the results. It is possible to see that, for this particular subsample,

the invading oil phase quickly occupies the pore space. The percolation path for the water

phase is disconnected after the third drainage step, when the water saturation suddenly

drops from 0.79 to 0.23. Due to the size of the sample used, oil and water phases do not

percolate simultaneously, as reflected in the relative permeability curves. Nevertheless, the

results for the resistivity index seem to be at the trend defined by the experimental data
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(a) Example of dilated samples

(b) Original pack

(c) Example of eroded samples

Figure 3.3: Dilation (numerical cementation) and erosion (numerical dissolution) operations on
Finney pack.
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Figure 3.4: Effective conductivity for Finney dilated/eroded samples. Original Finney pack sample
is marked by a circle. Cemented samples show agreement with trend from network model simula-
tion from Bryant and Pallatt [6].
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reported by Han et al. [18].

Figure 3.6 shows streamlines for representative water and oil velocity fields. Rela-

tive permeability for the oil phase shows a very good agreement with the lattice-Boltzman

simulations on the same images by Shabro et al. [61]. The same is not true for the water

relative permeability. The observed difference could be effect of trapped oil on the data

used by that simulation. Discontinuous oil blobs in the middle of pore bodies significantly

reduce the effective permeability of the water, but have no influence on the oil relative per-

meability, since those blobs do not contribute to the oil percolation path. It is possible to

see the residual oil saturation on the reported drainage curve, reproduced again in Figure

3.7. Our data represents the beginning of the first drainage-imbibition cycle, where the oil

is invading a porous medium 100% saturated with water.

3.4 Characterization of Bentheimer, Buff Berea and Idaho Brown sandstones

3.4.1 Segmentation

Representative slices for each step in the segmentation procedure are shown in fig-

ures 3.8, 3.9, and 3.10. The gray scale histograms show that the strategy of a median filter

followed by the statistical region merging filter was sufficient as a preparation for thresh-

olding in these good quality images.

Figure 3.11 shows the porosity values for each segmented subsample. Most of

the data for Berea and Idaho Brown falls within three or four porosity units from the lab

measured values. In contrast, porosity values for the segmented Buff Berea show a bigger

discrepancy from the lab data. The choice of two-phase segmentation lumped together

rock matrix and the intergrain clay minerals (see Figure 3.9(a)) as simply “grain phase”,

lowering the value of porosity for the segmented image. Two-phase segmentation seems

appropriate for the Bentheimer and Idaho Brown samples.
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Figure 3.5: Simulation results for the set of drainage samples. Experimetal data for resistivity index
is reported in [18]. Numerical error for the simulation on electrical conductivity is between five and
ten percent. Data for relative permeability was published in [61].
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(a) Sw = 79% (b) Sw = 11%

Figure 3.6: Velocity streamlines for two representative drainage states in the simulation for
Fontainebleau sandstone. At early stages (a), oil phase is disconnected and at rest. At later stages
(b), water phase is at rest due to the lack of a connected path. Oil is invading the pore space from
the bottom in these figures (x direction) and the pressure gradient is applied parallel to z direction.
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Figure 3.7: Curvature-saturation curve for the drainage simulation on the Fontainebleau sandstone
[61].
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(a) Original slice (b) After median filter

(c) After region merging (d) After thresholding

(e) Comparison original–thresholded

0.5 1 1.5

x 10
4

0

2

4

6

8

10
x 10

6

Gray scale value

C
ou

nt

 

 
Original
Pore
Grain

(f) Gray scale histogram

Figure 3.8: Example of segmentation result for one of the Bentheimer sandstone subsamples. Blue
represents pore space and red represents solid space. Slices have 500 × 500 voxels and voxel size
is equal to 5 µm.
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(a) Original slice (b) After median filter

(c) After region merging (d) After thresholding

(e) Comparison original–thresholded
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Figure 3.9: Example of segmentation result for one of the Buff Berea sandstone subsamples. Blue
represents pore space and red represents solid space. Slices have 500 × 500 voxels and voxel size
is equal to 2 µm.
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(a) Original slice (b) After median filter

(c) After region merging (d) After thresholding

(e) Comparison original–thresholded
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Figure 3.10: Example of segmentation result for one of the Idaho Brown sandstone subsamples.
Blue represents pore space and red represents solid space. Slices have 500× 500 voxels and voxel
size is equal to 5 µm.
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(c) Idaho Brown

Figure 3.11: Porosity results for the twelve 5003 subsamples (dots) and the upscaled full image
(circle) of Bentheimer, Buff Berea and Idaho Brown data sets. Dashed line represents laboratory
measurement on the full plug.
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3.4.2 Transport properties

Figure 3.12 shows the results for the electrical conductivity simulation. The three

sets of data show a trend that could be reasonably described by Archie’s model with appro-

priate fitting parameters, and also captures the experimental value measured on the original

plug. This trend is well defined for the Bentheimer subsamples, the group with more scat-

tered values for porosity. Buff Berea simulations also show good agreement with lab data,

suggesting that the clay minerals play a minor role in electrical conductivity for this sam-

ple. A quantitative investigation by segmenting the clay minerals as a separate phase is

needed to confirm this hypothesis. The Idaho Brown results show the best agreement with

laboratory data (note the different scales for each plot), probably due to the closer values

of porosity. Finally, we did not observe any influence of sample size or resolution for the

group of studied samples, since the values for electrical conductivity for the low resolution

versions fall on the same trend.

Figure 3.13 shows the corresponding results for absolute permeability. These re-

sults vary within one order of magnitude, and are systematically higher than the experi-

mentally measured absolute permeability on the full plug. Again, it is possible to notice

a weak trend relating porosity and permeability from the simulations. The trend is better

defined for the Bentheimer sandstone, while it is very weak on the Idaho results. These be-

havior can be explained by grain size distribution. Each small subsample probes a slightly

different pore geometry on the Bentheimer sandstone, but the poor grain sorting for the

Idaho Brow causes the corresponding subsamples to probe very different pore geometries.

Also, no matter the voxel length, there are likely pore throats that are poorly re-

solved (i.e., less than five voxels in cross-section). Those affect convergence for velocity

field, but would have minor effect on the electric field. Due to the no-slip boundary condi-

tion for the viscous flow, small throats will effectively block the flow if there are not enough

voxels to describe the velocity field within those throats. Lack of numerical convergence
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Figure 3.12: Results from electrical conductivity simulations.
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could explain why most of the permeability simulations are higher than the experimental

value while the simulations for electrical conductivity succeed in getting the correct trend.

Finally, the presence of small throats will enhance the abnormal border effects for

the pressure gradient. A stronger flux will result if the gradient at the open boundaries

is not treated properly, resulting in these high values for permeability. Confirmation of

this hypothesis requires a detailed investigation on each one of the pressure and velocity

fields, since the strategy of removing boundary slices was automated due to the number of

simulations.
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Figure 3.13: Results from absolute permeability simulations.
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Chapter 4: Conclusion

We assessed the quality of the results based on over 70 simulations shown in the

last chapter. Comparison using benchmark samples revealed excellent agreement between

the transport properties from our simulations and from the literature. However, tests on

outcrop sandstone samples resulted in systematically larger values for permeability, which

needs to be further investigated.

Besides having a good estimate of the porous medium effective properties, the finite

differences method also generates a detailed description of pressure, electric, and velocity

fields. This information can be used in the future to investigate the relation between the

pore space and the macroscopic property in complex rocks, where simplified models are

not available. The possibility of handling spatially varying electrical conductivity will be

valuable for predicting electrical properties of rocks with multiscale pore systems, e.g.

certain carbonates and tight gas sandstones.

Tikhonov regularization showed to be a reliable tool for maintaining low diver-

gence in the solution of Stokes equation with zero Neumann boundary conditions. This

constitutes an alternative and effective way to use finite differences to calculate the ve-

locity field and estimate the hydraulic permeability, without any additional simplification

or forced boundary condition. Nevertheless, we need to find an automatic way to set the

regularization parameter for our specific formulation.

The main limitation observed so far is the anomalous values for gradient fields at

the open boundaries, whose source is still unknown, and may be the cause for the high

permeability values on Bentheimer, Buff Berea and Idaho Brown sandstones. In addition,

the speed of convergence for the velocity field can always be improved.

Besides investigating all the aforementioned technical limitations, our future phys-
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ical extensions include the investigation of complex samples as carbonate rocks with mul-

tiscale porosity and implementation of multiphase fluid flow.
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