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Abstract

Classification of high-frequency FX market data

David Lundberg

The goal of this master thesis was to develop a 
method for real-time classification of market trading 
data at the Foreign Exchange (FX) department at the 
Skandinaviska Enskilda Bank (SEB). The characteristics 
in the market data sets were analyzed using Principal 
Component Analysis (PCA). The analysis showed that 
the principal component subspaces for two different 
types of market data, normal and abnormal, for the 
EUR/USD instrument where significantly different. 

The result from the PCA naturally led into the 
construction of a Single-class detector, for detecting if 
quote updates were normal or abnormal based on 
training data. The market data sets were shown to 
possess multicollinear characteristics, resulting in low-
rank properties of the covariance matrices. To 
overcome this problem the solution was to transform 
the data using PCA, resulting in full-rank properties of 
the covariance matrices of the transformed data. This 
vital step made it possible to classify quote updates for 
the EUR/USD instrument. 

The project resulted in a classification algorithm which 
is able to successfully classify if a quote update is 
normal or abnormal with respect to training data in 
real-time. The algorithm is versatile in the sense that it 
can be implemented on any market for any currency 
pair, and can easily be extended to classify the relative 
behaviour between several currency pairs in real-time.

ISSN: 1401-5757, UPTEC F15 039
Examinator: Tomas Nyberg
Ämnesgranskare: Dave Zachariah
Handledare: Dr. Pär Hellström



Populärvetenskaplig sammanfattning

Målet med detta examensarbete var att utveckla en metod för att klassifi-
cera marknadsdata från Skandinaviska Enskilda Bankens (SEB:s) avdelning
för valutahandel. Syftet med projektet var att utveckla en klassificerings-
algoritm för att i realtid kunna klassificera marknadsdata. För att åstad-
komma detta krävdes analys av karaktäristiken hos olika typer av marknads-
data. Två olika typer av marknadsdata analyserades: data som ansågs vara
normal, och data som ansågs vara onormal. Analysen resulterade i att de
två olika typer av marknadsdata kunde särskiljas genom deras kovariansma-
triser.

För att klassificera marknadsdata som normal eller onormal konstruerades
en klassificerare baserat på marknadsdatans kovariansmatriser. Analys av
marknadsdata visade på att pris-variablerna besatt multikolinjära samband,
vilket i sin tur ledde till att kovariansmatriserna erhöll låg rang. Lösnin-
gen till detta problem bestod av att transformera marknadsdatan till ett
delrum definierat av de så kallade principal-komponenterna för marknads-
datan.

Projektet resulterade i en klassificerings-algoritm som i realtid kan klassificera
ifall en uppdatering av marknadsdata för EUR/USD är normal eller onormal
baserat på träningsdata. Algoritmen är mångsidig i den meningen att den
kan implementeras för alla typer av marknadsdata och valutapar.
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Notational Conventions

R the set of real numbers

(·)T transpose of a vector or matrix

E[x] the expected value of x

‖x‖ the Euclidean norm of a vector x

p number of variables

N number of observations

x p-dimensional random variable (column vector)

µ [p× 1] mean vector

Σ [p× p] covariance matrix

X [p×N ] data matrix

V [p× p] principal component loading matrix

V̂ [p× q] truncated principal component loading matrix

var(x) the variance of x

cov(x, y) the covariance between x and y

p(x) probability density function

Ĝ(x) classification rule

δk(x) discriminant function

arg max
x

f(x) the value of x that maximizes f(x)

I a specific financial instrument

M a specific market maker
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1 Introduction

Today at the Foreign Exchange (FX) department at the Skandinaviska En-
skilda Bank (SEB), exchange rate data are received in real-time from different
market makers at a high rate. The market data consists of buy and sell prices
for different volumes, all published by the market makers. Due to the big
competition in the business the margins are small and trades made in large
volumes are necessary to make sufficient profits. Since the risk of a trade is
proportional to the amount of the volume, the risk becomes an important
factor in high frequency trading. Public announcements such as government
statements and interest rates decisions from e.g. the European Central Bank
[1] tend to have large impact on the market, affecting the buy and sell prices
for specific exchange rates. Due to such events, along with the demand and
supply of different currencies, the market data tend to be highly dynamic
over time, and abnormal behaviours tend to escalate quickly ones started.
Therefore classification algorithms which detects abnormal behaviour of the
market data are desirable. The output of such a classification or detection al-
gorithm could serve as an input when determining, for example, positions in
a trade, or it could simply act as an alarm when the market starts behaving
unnatural or odd.

The goal of the thesis is to analyze how valuable information from the high
frequency exchange rate data can be extracted in order to classify the state of
an exchange rate. Based on the extracted information, we aim to construct
a suitable classification method for detecting normality and abnormality in
the market data.

Mathematical notation
The content of this scientific report has its main focus on methods derived
from the field of signal processing along with its application to relevant mar-
ket data. The reader is therefore assumed to have some basic understanding
in calculus, linear algebra and probability theory. The mathematical nota-
tions are consistent throughout the report, although at times departed from
some of the convention used in the corresponding research literature. All
vectors are denoted by bold letters and are assumed to be column vectors,
that is, a vector x consisting of p numbers is written as

x = [x1, x2, . . . , xp]
T

forming a vector in Rp×1, where xT indicates the transpose of x. If, for exam-
ple, N observations {x1, ...,xN} of the p-dimensional vector x are obtained,
these observations can form a data matrix X in which the ith column of X

1



corresponds to the column vector xi.
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2 High-frequency trading

The way trades are made have evolved drastically over the years. Many years
ago, securities markets were run in an entirely manual fashion. To request
a quote1, a client would contact his/her sales representative in person or via
telephone or messenger. The salesperson would then walk over or shout to
the trading representative a request for prices on the securities of interest to
the client. The trader would then report back the market prices obtained
from other brokers. The process was slow, prone to errors and expensive. A
big drawback was that the markets could move significantly between the time
the market price was set on an exchange and the time the client received the
quote [2]. The rapid development of computer technology, however, started
opening up to electronic dealing systems where market data across multiple
dealers and exchanges distributed information simultaneously to multiple
market participants. This allowed parties to trade with each other at the
best available prices displayed on the systems. In response to advances in
computer technology the so called algorithmic trading started to develop,
where algorithms makes transaction decisions based on mathematical models
of the market. This evolution has resulted in the so called high-frequency
trading, where a high number of trades (and lower average gain per trade)
are made continuously [2].

2.1 Market quote data

A market maker is a company or an individual that quotes both a buy and a
sell price in a financial instrument or commodity [3]. In the foreign exchange
market, a market maker quotes buy and sell prices for currencies relative to
each other, called currency pairs. One example is the EUR/USD instrument.
For this particular currency pair, the EUR is the base currency, which is the
currency a buyer intend to buy. The USD is called the quote currency, and
is the price of one unit of the base currency [4]. The quote data is irregularly
spaced in time, arriving randomly at very short time intervals. Each quote
includes especially

• a timestamp

• a bid price

• an offer price
1The most recent price on which a buyer and seller agreed and at which some amount

of the asset was transacted.
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• an available bid volume

• an available offer volume

• an indicator of the current currency pair

The timestamp records the date and time which the quote originated. The
bid price is the highest price available at the available bid volume for sale.
The offer price is the lowest price entered for buying the security at the
available offer volume. Figure 1 illustrates an example of how the market
quote data for EUR/USD instrument from a market maker M can behave
over time.

Figure 1: An example of a market quote data set for the EUR/USD instrument
published by a specific market maker M. For this particular market, each quote
consists of 10 offer (or sell) prices, marked with red, and 10 bid (or buy) prices,
marked with blue. Each price for a specific volume.

As can be seen in figure 1, the market maker quotes 10 bid prices (blue dots)
and 10 offer prices (red dots) in each quote update. Each offer price has
a corresponding bid price, forming so called bid-offer pairs. The graph is
plotted with dots to illustrate the irregularly spaced quotes from the market
maker. The whole sequence of quote updates will be referred to as a market
quote set, or market data set. In this report, market quote data and market
data will be used interchangeably.
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3 Principal Component Analysis (PCA)

The central idea of principal component analysis (PCA) is to reduce the
dimensionality of a multivariate data set consisting of a large number of
interrelated variables, while retaining as much as possible of the variation
present in the data. This is achieved by transforming the data set to a new
set of variables, known as the principal components, which are uncorrelated,
and which are ordered such that the first components retain most of the
variation in all of the original variables.

3.1 Definition of Principal Components

Consider a vector x, consisting of p random variables, and that the variances
and the characteristics of the covariances between the p variables are of in-
terest. The idea is to look for a few q � p variables that preserve most of
the information given by these covariances.

The first step in finding the principal components is to regard a linear func-
tion αT

1 x of the elements of x having maximum variance. The coefficient
vector α1 consists of p constants α11, α12, ..., α1p, so that

z1 := αT
1 x = α11x1 + α12x2 + . . .+ α1pxp,

which is a linear transformation of x on to the vector α1, known as a prin-
cipal component or score [5]. The next step is to consider a new linear
transformation αT

2 x, uncorrelated with αT
1 x, which also obtains maximum

variance. Proceeding in the same way, the pth step results in obtaining αT
p x,

that maximizes the variance subject to being uncorrelated with the previous
p− 1 linear transformations αT

1 x, αT
2 x, . . . , αT

p−1x. Up to p principal com-
ponents can be found, but it is hoped that most of the variation in x will
be accounted for by q � p principal components. The p coefficients vectors
spans a p-dimensional linear subspace defined by the transformation matrix

V =
[
α1, α2, . . . , αp

]
∈ Rp×p,

such that the kth column of V corresponds to the kth principal component
coefficient- or loading vector αk [5]. Furthermore, the p-dimensional principal
component vector, denoted by z, is defined as

z = VTx ∈ Rp×1, (1)

5



whose kth element consists of the kth principal component score, obtained by

zk = αT
k x, k = 1, . . . , p.

Equation (1) is basically a linear transformation of the random vector x on
to the subspace spanned by the principal components loading vectors, or
column vectors, in V. This means that the principal component scores can
be seen as the resulting transformation of x on to a subspace, where the
variance of the variables in x are maximized. How to obtain the principal
components is described in the following section.

3.2 Obtaining the principal components

To obtain the principal components, the loading vectors αk need to be ob-
tained. Consider the case where the p-dimensional random vector x has a
known covariance matrix Σ. The condition of the loading vector αk is that
it should maximize the variance of zk = αT

k x, subject to being orthogonal to
αk−1. Thus,

αk = arg max
αk

{var(αT
k x)} = arg max

αk

{αT
kΣαk}, (2)

where the relationship var(αT
k x) = αT

kΣαk has been used. Without any
constraints, a trivial solution to (2) would be to choose αk to be very big.
Therefore, a normalization constraint of ‖αk‖2 = αTαk = 1 is introduced.
To maximize αT

kΣαk subjected to αTαk = 1, the standard approach is to
use the technique of Lagrange multipliers, and therefore maximizing

αT
kΣαk − λk(αTαk − 1), (3)

where λk is a Lagrange multiplier. Differentiation with respect toαk gives

(Σ− λkIp)αk = 0, (4)

where Ip is the [p×p] identity matrix and 0 is the zero matrix. Thus, λk is an
eigenvalue of Σ and αk is the corresponding eigenvector. From (4) it can be
seen that Σαk = λkαk, and therefore αk is the eigenvector corresponding to
the kth largest eigenvalue of Σ. Similarly, var(αT

k x) = αT
kΣαk = αT

k λkαk =
λk.

6



As seen, the principal component loading vector αk in V, corresponds to the
kth eigenvector of Σ. Thus, the principal components in z are defined by
an orthonormal linear transformation of x defined by (1) [5]. Furthermore,
because V is orthogonal, that is, VT = V−1, the covariance matrix can be
expressed as

Σ = VΛVT ∈ Rp×p, (5)

where Λ ∈ Rp×p is the diagonal matrix whose kth diagonal element is λk,
corresponding to the kth eigenvalue of Σ. The eigenvalues in Λ are ordered
in increasing order, such that,

λ1 > λ2 > . . . > λp.

This means the first eigenvector α1 retains the most of the variance in x
and the second eigenvector α2 second most and so on. The expression in (5)
is the eigenvalue decomposition of Σ. When Σ is positive semidefinite this
coincides with the singular value decomposition (SVD) [6]. There are many
methods for computing an SVD, however, this topic will not be treated in
this report.

3.2.1 Unknown covariance matrix

In the previous section, the covariance matrix for the random vector x where
assumed to be known. However, the more realistic case, where Σ is unknown,
follows by replacing the covariance matrix with the sample covariance ma-
trix.

Suppose there are i = 1, . . . , N independent observations of the p-dimensional
random vector x, forming a [p×N ] matrix X such that

X =

[
x1, x2, . . . ,xN

]
∈ Rp×N .

Then the sample covariance matrix will be given by

Σ̂ =


c(x1, x1) c(x1, x2) . . . c(x1, xp)
c(x2, x1) c(x2, x2) . . . c(x2, xp)

...
...

. . .
...

c(xp, x1) c(xp, x2) . . . c(xp, xp)

 ∈ Rp×p. (6)

7



where c(xj, xk) is the sample covariance between the jth and kth variables in
x obtained by

c(xj, xk) =
1

N − 1

N∑
i=1

(xji − x̄j)(xki − x̄k). (7)

Here, x̄k represents the sample mean for the kth variable, and is given by

x̄k =
1

N

N∑
i=1

xki. (8)

Note that for j = k, the covariance is the variance of the variable, that is,
cov(xj, x̃j) = σ2

j . Hence, the diagonal element (j, j) in the sample covariance
matrix corresponds to the variance of the jth variable. The normalization
factor (N − 1) in (9) makes the sample covariance matrix the best unbiased
estimate for the covariance matrix if the observations of x are from a Gaussian
distribution [8].

Another way of expressing the covariance matrix is to consider the [p × N ]

matrix X̃ with (j, k)th element (xjk − x̄j). That is, each row in X̃ has been
reduced by its corresponding sample mean x̄j. The sample covariance matrix
of x is then obtained by

Σ̂ =
1

N − 1
X̃X̃T ∈ Rp×p, (9)

and the principal component scores for the N observations for the mean-
centered data is finally defined as

Z̃ = VTX̃ ∈ Rp×N , (10)

where the columns of V now corresponds to the eigenvectors of Σ̂, calculated
in the same way as for the known covariance matrix Σ. It should be noted
that for all analysis in this report the covariance matrix will be unknown,
and hence the sample covariance matrix will be used. However, to facilitate
cross references to other literature, the covariance matrix will be denoted by
Σ, since it is the most common notation in literatures.
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3.3 Dimensionality reduction

As seen in the previous section, the transformation Z = VTX transforms
a data vector x from an original space of p variables to a new space of p
variables which are uncorrelated. However, it is hoped most of the variation
in x will be accounted for by q � p principal components. Keeping only
the first q principal components, produced by using only the first q loading
vectors, gives the truncated transformation

Ẑ = V̂TX ∈ Rq×N , (11)

where only the first q columns of V has been chosen, such that V̂ ∈ Rp×q.
Hence, the dimensionality of the data has been reduced from p to q by simply
selecting the first q columns of V. Of course, such dimensionality reduction
implies throwing away information in the original data. However, a sensi-
ble number of principal components to include should be the number such
that 70% to 90% of the variance in the original data is captured [5]. Since
the eigenvalues of the covariance matrix corresponds to the variance each
principal component explain, the proportion of variance the first q principal
components make up for is determined by the ratio

PCvariance =

q∑
k=1

λk

p∑
k=1

λk

. (12)

3.4 Correlation matrix

The derivation of the principal components considered in precious sections are
based on the eigenvectors and eigenvalues of the covariance matrix. However,
principal components can be obtained from the correlation matrix Rx aswell.
The correlation matrix is calculated in the similar way as the covariance
matrix, with the only difference being that each variable in the data set
matrix X is normalized by its standard deviation σj. The correlation matrix
is defined as followed.

9



Rx =


1 ρ12 . . . ρ1p

ρ21 1 . . . ρ2p

...
...

. . .
...

ρp1 ρp2 . . . 1

 ∈ Rp×p, (13)

where ρjk is the correlation coefficient obtained by normalizing the covariance
between the jth and kth variables with the product of their corresponding
standard deviations, that is,

ρjk =
cov(xj, xk)

σjσk
. (14)

The elements in the correlation matrix are standardized measures of the
interdependence between the p variables in x, and takes values between 1
and −1. The diagonal elements ρjj in Rx are equal to 1 since the each
variable in x has been normalized by its standard deviation. In general, a
correlation coefficient of ρjk = 1 means that the jth and kth variables have a
perfect positive correlation, whereas, if ρjk = −1, the variables are perfectly
negative correlated. If ρjk = 0, the two variables have no linear relationship,
and are therefore uncorrelated.

The sample correlation matrix can be obtained in a similar way as the co-
variance matrix, by

R̂x =
1

N − 1
X̃X̃T, (15)

where the jth row in X̃ now has been normalized by its corresponding sam-
ple standard deviation σj. A major drawback of PCA based on covariance
matrices Σ is the sensitivity to the units of measurement used for each ele-
ment of x. If large differences in variances xi and xj are simply due to unit
scaling, then those variables whose variance are largest will tend to dominate
the first principal components in a misleading manner. A major argument of
PCA based on correlation matrices Rx is, because each variable in the data
set matrix X is scaled by its corresponding sample standard deviation, the
resulting maximum deviation becomes 1 for each variable.

10



4 Pattern recognition

Pattern recognition is the process of classifying data into different classes
based on some key features of the data. Based on training data from different
object classes, the idea is to assign new input data into one of the appro-
priate classes [11]. The training data sets used in such pattern recognition
algorithms typically consists of a large set ofN samples {x1, ...,xN}. The cat-
egories of these samples in the training sets are known in advance, typically
by inspecting them individually and hand-labelling them. The parameters of
the pattern recognition model to be used is then constructed based on these
training data, which is referred to as the training phase. For most practical
applications, the original input data are typically pre-processed to transform
them into some new space of data set where, it is hoped, the pattern recog-
nition problem will be easier to solve. This pre-processing stage is called
the feature extraction and is performed on both the training data and the
new input data to be classified [8]. The most general case of classification
is to, given a new input vector x, assign it to one of K discrete classes Ck,
where k = 1, ...., K. In the most common scenario, the classes are taken to
be disjoint, so that each input is assigned to one and only one class. The
input space is thereby divided into so called decision boundaries.

In this section two suggested classification methods, called Quadratic Dis-
criminant Analysis (QDA) and Single-class detector, are presented along
with their respective properties.

4.1 Quadratic Discriminant Analysis (QDA)

Assume that x originates from class Ck and is described by a multivariate
Gaussian distribution with mean vector µk and covariance matrix Σk, that is,

x ∼ N (µk,Σk).

The class-conditional probability density function for x is then described
by

p(x|Ck) =
1

(2π)p/2
1

|Σk|1/2
exp

{
− 1

2
(x− µk)

TΣ−1
k (x− µk)

}
, (16)

where p is the dimension of the vector x and |Σk| is the determinant of Σk.
The probability that the vector x originates from class Ck can be described
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according to Bayes’ theorem [8], that is,

p(Ck|x) =
p(x|Ck)p(Ck)
K∑
j=1

p(x|Cj)p(Cj)
, (17)

where p(Cj) are the so called class prior probabilities. Since the goal is to
select which class the vector x originated from, it is quite intuitive that the
class Ck to be selected should be the one having the highest class posterior
probability p(Ck|x). Hence, the classification rule will be as followed:

G(x) = arg max
k
{p(Ck|x)}, (18)

which is known as the maximum a posteriori [12]. Noting that the denomi-
nator in (17) does not depend on k, (17) and (18) gives

G(x) = arg max
k
{p(x|Ck)p(Ck)}. (19)

Since the logarithm is a monotonically increasing function2, maximizing the
argument of (19) will yield the same maximum as obtained when maximizing
the logarithm of it. This will simplify the subsequent mathematical analysis.
Taking the logarithm of (19), the classification rule becomes

Ĝ(x) := ln[G(x)] = arg max
k

ln
[
p(x|Ck)p(Ck)

]
. (20)

Using (16) and (20) yields

Ĝ(x) = arg max
k
{δk(x)}, (21)

where δk(x) has been defined as:

δk(x) = ln

[
1

(2π)p/2
1

|Σk|1/2

]
+ ln

[
p(Ck)

]
− 1

2
(x− µk)

TΣ−1
k (x− µk) (22)

2A function f(x) is monotonically increasing if f(x) is increasing for increasing values
of x [13].

12



See appendix 10.2.1 for complete derivation. The classification method should
therefore choose the class Ck for which δk(x) is maximized. δk(x) is called a
quadratic discriminant function, since it is a quadratic function of the input
vector x and returns a scalar, i.e. δk(x) ∈ R. Hence, the method is called
Quadratic Discriminant Analysis (QDA), and the quadratic function is ap-
plicable for any distribution of x with a well-defined mean µ and covariance
Σ [8].

4.1.1 QDA – two classes

Consider only two possible classes C0 and C1 for x. The ratio between the a
posteriori probabilities of the two classes is then defined by

R =
p(C0|x)

p(C1|x)
. (23)

If R > 1, then p(C0|x) > p(C1|x), and the classification rule defined by (18)
should select C0. If R < 1, then p(C1|x) > p(C0|x), and the classification
rule should select C1 instead. Hence, the class Ck will be chosen depending
on the output of (23). Proceeding in the same way as for K classes, using
(16), (17) and (23) yields

R =
p(x|C0)p(C0)

p(x|C1)p(C1)
=

1
|Σ0|1/2

exp
{
− 1

2
(x− µ0)TΣ−1

0 (x− µ0)
}

1
|Σ1|1/2

exp
{
− 1

2
(x− µ1)TΣ−1

1 (x− µ1)
} · p(C0)

p(C1)
, (24)

where the ratios |Σ1|1/2
|Σ0|1/2

and p(C0)
p(C1)

are constants. By taking the natural loga-
rithm of (24), we obtain

T (x) = ln[R] = δ0(x)− δ1(x) =

=
1

2
(x− µ1)TΣ−1

1 (x− µ1)

− 1

2
(x− µ0)TΣ−1

0 (x− µ0)

+
1

2
ln

[
|Σ1|
|Σ0|

]
+ ln

[
p(C0)

p(C1)

]
,

(25)
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resulting in a quadratic discriminant function T (x) ∈ R (see appendix 10.2.2).
The classification method should therefore predict x as being from class C0

or C1 according to

x ∈

{
C0, if T (x) > 0

C1, if T (x) < 0

4.2 Single-class detector

In the case of only having one class C0, the main interest is to classify if the
vector x originates from class C0 or not. For C0 we have

δ0(x) = ln

[
1

(2π)p/2
1

|Σ0|1/2

]
+ ln

[
p(C0)

]
− 1

2
(x− µ0)TΣ−1

0 (x− µ0). (26)

The first and second terms are constants that are independent of x and can
therefore be ignored, while the third term (x−µ0)TΣ−1

0 (x−µ0) can be seen
as a measure of the distance between the vector x and µ0 weighted by Σ−1

0 .
In fact, it can be shown that, if

x ∈ Rp ∼ N (µ0,Σ0),

then

T (x) = (x− µ0)TΣ−1
0 (x− µ0) ∼ χ2

p(T ), (27)

where χ2
p is the chi-squared distribution with p degrees of freedom [15]. If the

reader is not familiarized with the chi-squared distribution, refer to Appendix
10.3.

Basically, the scalar T (x) describes how good the input vector x fits the
multivariate Gaussian distribution described by µ0 and Σ0. Since T (x) ∼ χ2

p,
the chi-square goodness-of-fit test can be applied to evaluate how likely it is
that x fits the Gaussian distribution [18]. The procedure of the test includes
the following steps for a new, p-dimensional, input vector x:

1. Calculate the chi-squared test statistic, T (x).

2. Determine the degrees of freedom, p, for the distribution.
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3. Select a desired significance level, α, for the test.

4. Compare T (x) to the critical value, Tcritical.

5. Accept or reject the null hypothesis that the observed distribution of x
is different from the distribution described by µ0 and Σ0. If the test
statistic T (x) > Tcritical, the null hypothesis can be rejected with the
confidence level 1−α. Thus, accepting the alternative hypothesis that
there is a difference between the distributions.

The number of degrees of freedom, p, in the test will be the number of vari-
ables in x, since it’s the number of parameters that can vary independently
of each other. The significance level, α, is the probability of rejecting the
null hypothesis given that it is true [19]. For example, a significance level of
5% means that the null hypothesis will be rejected if the probability of T (x)
is less then or equal to the confidence level 95%. Thus, the critical value of
the test statistic is determined by α , given by

Tcritical = Qp(1− α), (28)

where Qp(1− α) is the inverse of the cumulative distribution function (cdf)
of the chi-squared distribution for p degrees of freedom. See Appendix 10.3
for definition.

The combination of using the discriminant function T (x) described by (27)
together with the chi-squared goodness-of-fit test could therefore serve as
a classification method for determining how likely it is that the new input
vector x originates from the class C0. It could also be extended to the general
case ofK classes, by first obtaining the mean vector µk and covariance matrix
Σk for each class, then calculate Tk(x) followed by performing the goodness-
of-fit test for each class separately.

4.3 Conditions on the covariance matrix

The classification methods in section 4.1 are all derived from the assump-
tion that the random variable vector x for a given class Ck originates from
a multivariate Gaussian distribution with a probability density function de-
scribed by (16). However, the probability density function for a multivariate
Gaussian distribution does only exist under some conditions, especially re-
garding the rank and inverse of the covariance matrix Σ. For definitions see
Appendix 10.1.1 and 10.1.2.
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Assume that x ∼ N (µx,Σx), where µx is the [p × 1] mean vector and Σx

is the [p × p] covariance matrix for x. Let rank(Σx) denote the rank of Σx.
Then the following are true:

1. If rank(Σx) = p, then Σ−1
x exists and the density function of x is

described by (16).

2. If rank(Σx) = q < p, then Σ−1
x does not exist and therefore no explicit

determination of the density function of x is possible. However, the
density function exists on a linear subspace:

Let V be a [p× q] matrix of orthonormal column vectors belonging to
the linear space spanned by the columns of Σx. Consider the transfor-
mation x ∈ Rp×1 → y = VTx ∈ Rq×1. Then

µy = E[y] = VTµx ∈ Rq×1 (29)

and

Σy = VTΣxV ∈ Rq×q (30)

so that

y ∼ N (µy,Σy). (31)

So the probability density function for y will be

p(y|µy,Σy) =
1

(2π)q/2
1

|Σy|1/2
exp

{
− 1

2
(y−µy)

TΣ−1
y (y−µy)

}
. (32)

For proof, refer to [16].

When Σx has low rank, one or more eigenvalues of the matrix are zero. The
above result shows that if Σx does not have full rank, one can transform the
variables in x into another subspace of lower dimensionality q < p by the
transformation

y = VTx, (33)
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yielding a new, q-dimensional, random variable y ∼ N (µy,Σy) with a mean
vector, covariance matrix and probability density function described by (29),
30 and 32 respectively. Note that the columns of the orthonormal matrix
V belongs to the column space of Σx. This is also the case of the principal
components described in section 4.1. Thus, PCA can be used for discriminant
analysis of low-rank data.

4.3.1 Multicollinearity

If multiple variables are highly correlated they are said to be multicollinear,
meaning that there is a linear relationship among the them. Assume that
there existN samples of the p-dimensional random vector x, forming a [p×N ]
matrix X. If there is an exact linear relationship (i.e. perfect multicollinear-
ity) among the variables in X, the rank of Σx becomes less than p, and
hence not invertible [17]. Therefore, if x consists of multicollinear variables,
the variables may need to be transformed into a subspace in order to be able
to apply the classification method described in section 4.1.
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5 PCA on market data

As seen in section 2, market quote data consists of multiple quote updates,
which over time can obtain high dynamical characteristics. Working with
high-dimensional data sets is not always easy, since the number of parameters
that can explain the behaviour of the data are many. By applying PCA on
such multi-dimensional data set, one may be able to identify patterns in the
data, as well as analysing the covariance of the variables in it. Since the goal
with this project is to construct a robust classification method for classifying
if market data is normal or abnormal, some pre-analysis of the characteristics
in the market data is required.

5.1 Normal market data

In order to classify if a market data set is normal or abnormal one must
find specific parameters (or measures) in the market data that are in some
sense unique and which differs for the two different cases. Figure 2 shows an
example of a normal market data set. The recorded data is from a market,
M, for the EUR/USD instrument, captured between 13.00− 13.15.

Figure 2: A typically normal market data set for the EUR/USD instrument, from
marketM. The upper plot shows the bid and offer prices and the lower plot shows
the spread for each volume respectively. The x-axis shows the time in both plots.

Since the market data set is quite large (spanned over 15 minutes), only
a few conclusions can be made by just looking at the data. For example,
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over a larger data set (more 200 than samples), all bid-offer pairs are highly
correlated with each other. This can be seen since all bid-offer pairs are
following each other over the long run. When the offer price increases, so
does the bid price etc. The spread of a bid-offer pair, defined as the difference
(offer−bid), should therefore be quite constant over time for all pairs, which
is also seen in the lower plot of figure 2. However, looking at a short time
interval from the same market data set one can discover other characteristics
of the normal market data. This is illustrated in figure 3.

Figure 3: A 20 second snapshot from the normal market data set.

During this time interval, the corresponding bid and offer prices does not
appear to be correlated. A change in the offer price does not mean a change
in the corresponding bid price and vice versa. However, each offer price is
highly correlated with each other and each bid bid price is highly correlated
with each other. These properties of the normal market data set, as will be
seen later, will be important for understanding the results of the PCA. Now,
we perform PCA on this normal market data set. Consider the market data
matrix X, given by

X =
[
x1, x2, . . . , xN

]
,

where xi is the ith observation of the random vector x consisting of all bids
and offers, that is,
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xT
i =

[
bid1i , . . . , bid10i | offer1i , . . . , offer10i

]
.

Each bid and offer quote are here seen as a unique variable. For the EUR/USD
instrument from marketM, their are 10 bids and 10 offers per updated quote.
So the dimension of the random vector x will be [20 × 1]. Each bid has a
corresponding offer such that a bid-offer pair (bid, offer)j is quoted for a cor-
responding volume, and the elements in x are ordered such that for each
quote update

(offer1 − bid1) < (offer2 − bid2) < . . . < (offerp − bidp).

This definition of the random variable x will be used throughout the report
unless otherwise is stated. As described in section 3, the principal compo-
nent loading matrix V is obtained from the covariance or correlation matrix.
Since all variables in x are measured in the same unit (EUR/USD), the co-
variance matrix could be used here. However, for reasons explained later in
this report, the correlation matrix will be used to obtain V. The PCA of
the market data set is performed in MATLAB. For code, refer to Appendix
10.4.1.

For the market data set illustrated in figure 3, the sum of the proportion of
the first two eigenvalues of the correlation matrix is approximately 0.9. This
means that the first two principal component loadings, that is, the first two
columns in V, explains about 90% of the variation in X. Plotting the first two
loading vectors in V against each other results in a so called biplot. A biplot
shows the magnitude and sign of each variables contribution to the first two
principal component loadings. Such two-dimensional plots are particularly
useful for visually detecting patterns in the data. It can be shown that the
cosine of the angles between the variables contribution in the biplot indicates
the correlation between the variables. Highly correlated variables point in
the same direction and uncorrelated variables are at perpendicular to each
other [5]. A biplot of the first two loading vectors for the data set in this
example is illustrated in figure 4.
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Figure 4: The biplot of the 20 second normal market data set illustrated in figure
3. The x- and y-axis represents the first and second principal component loadings
respectively.

As can be seen in the biplot, the majority of the contribution of the bid vari-
ables are pointing in the same direction and the majority of the contribution
of the offer variables are pointing in the same direction. This means that the
bids and offers are highly correlated with each other respectively, which was
the first intuition when analysing the market data set. Since 90% of varia-
tion in the data is explained by the first two loading vectors, the biplot here
visualizes the the correlation (or covariance) characteristics of the original
20-dimensional market data in a 2-dimensional plot accurately.

It should be noted that the number of samples in a data set will affect the
result of PCA. For example, if one were to perform PCA on the 15 minute
market data set (corresponding to around 9000 samples) shown in figure 2,
all the contribution of the variables in the biplot (bids and offers) would
have appeared to be highly correlated. This is because the variation over
short time intervals would be removed due to averaging when obtaining the
variance of the variables for big data sets. For consistency, the number
of samples per data set analyzed in this report will be around N = 200,
corresponding to about 20 seconds of data, which can be regarded as a short
time interval.
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5.2 Abnormal market data

For comparison, lets look at a market data set which can be seen as abnormal.
The following data set is captured between 13.25− 13.40 for the EUR/USD
instrument from market M, and is illustrated in figure 5. At 13.30 the
United States Department of Labor releases the so called Nonfarm payroll
employment (or NFP) statistics. The financial assets most affected by the
NFP include US dollar, equities and gold [20]. This leads to the guess that
the volatility3 of the EUR/USD instrument should be affected around that
time.

Figure 5: Illustration of an abnormal market data set for the EUR/USD from
market maker M. The NFP statistics is released at 13.30 and the effects can be
seen in both the upper quote plot and in the lower spread plot.

Again, the large data set (spanned over 15 minutes) makes it more difficult
to characterize the data. However, one can clearly see the large deviations of
the bid and offer prices at 13.30, both in terms of absolute value and relative
behaviour compared to the normal case. Figure 6 shows a 20 second snapshot
of the abnormal market data, from 13:29:50 to 13:30:10, that is, 10 seconds
before and after the NFP statistics release respectively. For this market data

3Volatility refers to the amount of uncertainty or risk about the size of changes in a
security’s value. A higher volatility means that the value of a security can potentially have
a high variance [21].
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set the bid and offer prices do not appear to have any particular structure
over time. Each bid appears to be more uncorrelated with each other and
each offer appears to be more uncorrelated with each other compared to the
normal market data set in figure 3.

Figure 6: A 20 second snapshot from the abnormal market data set, 10 seconds
before and after the NFP statistics release respectively.

Performing PCA on this market data set, in the exact same way as for the
normal market data set, it turns out that three principal component loadings
is needed to explain 90% of the variance in the data. This can be compared
with the normal market data set which only needed two. This is because
the variance in the abnormal market data set is highly spread over more
variables in x for this particular data set, leading to a higher number of
variables needed to represent the majority of the information in the data.
The biplot in this case will not be as accurate as the one for the normal
data set. However, the first two loading vectors account for around 80% of
the data, so it will not give any misleading information. The biplot of the
abnormal market data set is illustrated in figure 7.
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Figure 7: The biplot of the 20 second normal market data set illustrated in figure
6. The x- and y-axis represents the first and second principal component loading
respectively.

By analysing the biplot in figure 7, one can see that the contribution of the
bid variables are pointing in different directions. The same holds for the
contribution of the offer variables. This means that the bid variables are less
correlated to each other and the offer variables are less correlated with each
other than compared to the normal market data set. Again, this is exactly
the first intuition obtained when analysing the time-series of the data.

When comparing the normal and abnormal market data sets provided in this
section, it becomes clear that the covariance characteristics between the bid
and offer variables should be a suitable measure for classifying if the market
data is normal or abnormal. This strengthens the idea of using the sug-
gested classification methods described in section 4.1. Another result which
strengthens this idea even more is shown in figure 8. The figure illustrates a
histogram of the first bid variable (bid1) in x for a randomly selected market
data set for the EUR/USD instrument from marketM.
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Figure 8: Illustration of the histogram for the bid1 variable in x for a random
market data set. The variable appears to be Gaussian distributed.

The graph illustrated in figure 8 shows that the variable appears to originate
from a Gaussian distribution. It turns out that performing similar analysis
on all variables in x yields similar results. This leads to the idea that the
suggested classification methods should be well-suited for these particular
data sets, since they are all derived from the assumption that x originates
from a multivariate Gaussian distribution.
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6 Comparing principal component spaces

As seen in section 3 and 4, both PCA and the suggested classification meth-
ods are all based on the uniqueness of the covariance matrix of the corre-
sponding data. Since PCA transforms the data on to a subspace spanned
by the principal component loadings, the subspaces can be used for com-
paring the covariance matrices for different data sets. Such a comparison
could therefore clarify the suitability of the suggested classification methods.
Since the goal with the project is to construct a classification method for
classifying if a market data set is normal or abnormal, comparisons between
the principal component spaces for normal and abnormal market data will
be performed.

6.1 Training data matrix

Consider a new matrix X0 consisting of M number of market data sets, each
of length N , such that

X0 =
[
X1, X2, . . . , XM

]
,

forming a [p × (N · M)] matrix, where Xm denotes the mth market data
set matrix. X0 will hereafter be referred to as the training data matrix,
where the M different market data sets will be taken from a normal market
data set.

6.2 Normal principal component space

Recall from section 3, that the covariance matrix for the training data matrix
X0 can be written as

Σ0 = V0Λ0VT
0 , (34)

where V0 is the [p× p] principal component loading matrix, where each col-
umn correspond to a principal component loading (or eigenvector) of Σ0. Λ0

is the diagonal matrix whose kth diagonal element λk represents the eigen-
value for the kth eigenvector of Σ0, that is, the kth column of V0. Since the p
principal components in V0 are calculated from the training data matrix X0,
it can be seen as a basis spanning a Rp×p normal principal component space.
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Note that here the covariance matrix will be used to obtain the principal
component loadings, since the goal is to compare the covariance matrices for
the different data sets. Since all variables in x are measured in the same
unit, this is permitted. And, since the covariance matrix is not known, the
sample covariance matrix is used to obtain an estimate of Σ0.

Consider a new market data matrix X∗ consisting of I unclassified quote up-
dates (or observations), forming a [p×I] matrix. A single observation x∗ (i.e.
a single column) in the new market data matrix can be expressed as a linear
combination of the normal principal components V0 and a corresponding
coefficient vector λ∗ = VT

0 x∗. Extended to a series of I observations, this
can be expressed on matrix form as

X∗ = V0Λ∗, (35)

where Λ∗ is a [p × I] coefficient matrix. The ith column of Λ∗ corresponds
to the coefficient vector for the ith observation projected on to the normal
principal component space, that is,

Λ∗ =


λ∗11 λ∗12 . . . λ∗1I
λ∗21 λ∗22 . . . λ∗2I
...

...
...

...
λ∗p1 λ∗p2 . . . λ∗pI

 .

Using (35), the coefficient matrix is obtained by

Λ∗ = VT
0 X∗ ∈ Rp×I , (36)

which is a linear transformation of X∗ on to the normal principal component
space spanned by the columns in V0. In a similar way, the coefficient matrix
for the training data matrix X0 can be obtained by

Λ0 = VT
0 X0 ∈ Rp×(I·M). (37)

In this way, the coefficients for all i = 1, ..., I observations in the new market
data set X∗, represented in the base of a normal principal component space,
can be compared with the coefficients for a normal data set X0 in that same
space. In this way, one is able to analyze if a market data set shares the same
principal component space as the trained market data in X0.
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6.3 Choosing training data sets

The the training data matrix X0 should consist of M predefined normal
market data sets. The goal is to compare the coefficients of Λ∗ with that of
the ones calculated from the trained data set Λ0, and analyze the behaviour
of the coefficients for different types of market data. The training sets are
here chosen for the EUR/USD instrument from the same market M as in
section 5.1. A total of M = 25 market data sets has been chosen here, where
each one of the data sets captures different characteristics of the market data.
This is important in order to construct a robust classification method. The
selection of training data sets is based on analysing the characteristics of the
time-series as well as the resulting biplots for each data set. The PCA needed
to obtain the biplots are performed on a slightly different data matrix than
the standard market data matrix X described in 6.1. In this analysis the
time variable t has been included along with the bids and offers. This makes
it easier to identify trends in the data sets. The reason why the time variable
t has not been included in the standard market data matrix X is due to the
fact that the training data sets are selected from market data sets obtained at
different times. Including the time variable would therefore induce fictitious
characteristics of X0. In figure 9 and 10, two different training data sets used
in X0 are illustrated.
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Figure 9: Illustration of the first training set included in the training data matrix
X0. The upper plot shows the bids and offers over time and the lower plot shows
the biplot obtained from the data set. By choosing data sets with different char-
acteristics, the normal principal component space, spanned by V0, captures more
characteristics of the normal market data.

Figure 10: Illustration of the second training set included in the training data
matrix X0.

As can be seen in figure 9 and 10, each training sequence have different
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characteristics, especially in terms of their principal component loadings. A
common feature for both sequences is that the 10 bids and the 10 offers
are highly correlated with each other respectively. This can be seen in the
biplots, where all the bid contributions and all the offer contributions on the
loading vectors are close to each other respectively (which is how the biplots
should be interpreted). The contribution of the time variable t, however,
tend to be quite different in the biplot for the different data sets. In figure
9 the contribution of the time variable is antiparallel to the contributions of
the bids, indicating a decreasing trend whereas in figure 10 the time variable
appears to be quite uncorrelated (near orthogonal) to the contribution of
the bid variables. In figure 11, an additional training set used in X0 is
shown.

Figure 11: Illustration of the third training set included in the training data
matrix X0.

As can be seen in figure 11, the contribution of the time variable t is parallel
to the contribution of the bid variables, indicating an increasing trend in
the bid variables. Again, all the bids and all the offers are highly correlated
with each other respectively, which can be seen both plots. The fourth se-
quence, illustrated in figure 12, has been included in X0 since it captures a
sequence where all the bid and offer variables are highly correlated to each
other compared to the other sequences.

30



Figure 12: Illustration of the fourth training set included in the training data
matrix X0.

Analysing figure 9 to 12, it becomes clear that the selected market data
sets has quite similar characteristics in terms of the correlations between the
bids and offers. One should therefore expect that the coefficients matrix Λ0

will have different characteristics compared to Λ∗ obtained from abnormal
market data.

6.4 Comparing coefficients

In order to compare the coefficient matrices Λ∗ and Λ0, the sample mean of
the absolute values is calculated for each coefficient, that is, for each row in
both matrices respectively. For Λ∗, the sample mean of the absolute values
for the kth coefficient is calculated by

λ̄∗k =
1

I

I∑
i=1

|λ∗k,i|, (38)

where I is the number of samples in Λ∗. For Λ0, the sample mean of the
absolute value for the kth coefficient is calculated by
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λ̄0
k =

1

(N ·M)

(N ·M)∑
i=1

|λ0
k,i| (39)

where (N ·M) is the total number of samples in Λ0. Figure 13, 14 and 15
illustrates a comparison between the coefficients λ̄∗k and λ̄0

k for three different
market data sets X1

∗, X2
∗ and X3

∗. All three data sets are for the EUR/USD
instrument from marketM.

Figure 13: Comparison between λ̄∗k and λ̄
0
k for the first market data set X1

∗, shown
in the left-hand plot. The top-right plot shows the quote plot for the new market
data set and the bottom-right plot shows the corresponding spread plot.

In figure 13, the plots to the right shows the quote plot for the new market
data set X1

∗ (top) and a history of spread levels (bottom). The plot to the
left shows the values of λ̄∗k and λ̄0

k, for each coefficient k. As can be seen in
this figure, the market data appears to be quite normal with a quite constant
spread varying between 0 and 11·10−4. The coefficients shown in the left-hand
plot appears to have similar behaviour, that is, having the largest value for
the first component k = 1, which decreases in a somewhat exponential way
for increasing values of k. In figure 14, a new market data set X2

∗, captured
shortly after the market data set in figure 13, has been analyzed.
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Figure 14: Comparison between λ̄∗k and λ̄0
k for the second market data set X2

∗.

For the second market data set the bids and offers appears to be more and
more uncorrelated with each other respectively over time. This can be seen as
the spread starts increasing, varying around 0 and 17 · 10−4. The coefficients
λ̄∗k still has some of that exponentially decreasing characteristics, but the
levels of the components for k > 5 are higher compared to that of λ̄0

k.

Figure 15: Comparison between λ̄∗k and λ̄0
k for the third market data set X3

∗.

The third market data set, illustrated in figure 15, is captured shortly after
the market data set shown in figure 14. The market data is captured between
13:29:42 and 13:30:01, so the NFP statistics described in section 5.2 has been
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announced during this sequence. The bids and offers for this market data
set appears to be even less correlated with each other respectively than in
previous sets. Again, this can also be shown in the history of the spread
levels, where the levels have went from varying around 0 and 11 · 10−4 to
varying around 0 and 60 · 10−4. For this data set the coefficients λ̄∗k have lost
the decaying behaviour and now obtain large values for the majority of the
k coefficients.

6.5 Conclusion

The comparison of the coefficients of λ̄∗k and λ̄0
k in 6.4 shows that there exist

a quite unique behaviour for the coefficients for a normal market data set
compared to an abnormal market data set. Basically, what the comparison
says is how much of the energy in X0 and X∗ that are present in each principal
component loading obtained from X0. For λ̄0

k, the first three coefficients
(k = 1, 2, 3) are dominating, indicating that it should be sufficient to explain
the majority of the data in X0 using only three principal components. The
third comparison, illustrated in figure 15, shows that the energy of X3

∗ is
distributed over the majority of the principal component loadings obtained
from X0, indicating that the principal component space obtained from the
two different matrices are not equal. Since the principal component loadings
obtained from the normal and abnormal market data sets respectively are
not equal, this means that their covariance matrices, Σ0 and Σ∗, are not
equal. This strengthens the idea of using the classification methods derived
in section 4 for classifying if a market data set is normal or abnormal, since
they all assumes that a market data matrix X, originating from a class Ck,
can be described by a unique covariance matrix Σk.
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7 Classifying market data

In this section, our goal is to construct a classification method for detect-
ing when a specific market data set is normal or not. In section 6, the
principal component spaces for a normal and abnormal market data set for
the EUR/USD instrument from market M were shown to be significantly
different. Since the principal component space for a market data set is de-
termined by its covariance (or correlation) matrix Σk, this suggests that the
methods for classifying market data described in section 4.1 should be well
suited.

For this particular problem, there are only two classes considered, normal and
abnormal. The QDA for two classes would be a proper classification method
for this case, but so would the Single-class detector. Since the market data
is either regarded as being normal or abnormal, only one of these classes is
needed to be determined. If the market data set is not classified as normal,
it must imply that it is abnormal. The advantage of using the Single-class
detector is that it only requires to find the covariance matrix for one of the
classes, compared to QDA which requires the covariance matrix for both.
Therefore, the Single-class detector will be the preferred method in for this
problem. And, since it it easier to characterize data as being normal than
being abnormal, the Single-class detector will be used with respect to the
covariance matrix for normal market data sets.

7.1 Input vector

Consider a [p × 1]-dimensional random input vector, x, consisting of p bids
and offers for one published quote update for instrument I from marketM
(see section 5 for definition of x). The goal is to classify if x is normal or
abnormal for that particular market and instrument. Let class C0 represent
a normal state for (I,M). Hence, the main interest is to classify if the vector
x originates from class C0 or not.

7.2 Training phase

The classification methods derived in section 4.1 assumes that for each class
Ck, a unique mean vector µk and covariance matrix Σk can be obtained
from the training data matrix Xk. In this example, the classification method
will be trained on normal market data sets for the EUR/USD instrument

35



from marketM. The training data matrix X0 will consist of M hand picked
market data sets which has been categorized as normal for the EUR/USD
instrument from marketM, just as described in section 6.3. Thus, the mean
vector and covariance matrix for the trained data can be obtained by

µ0 = E
[
X0

]
∈ Rp×1 (40)

and

Σ0 =
1

N − 1
X0XT

0 ∈ Rp×p (41)

respectively. It is important to note that p depends on the number of quoted
bids and offers. In this example, marketM quotes 10 bids and 10 offers for
the EUR/USD instrument. Hence, p = 20.

7.3 Feature extraction

7.3.1 Step 1

The analysis of the market data in the previous sections have only been
with respect to the correlations and the behaviour of the bid and offer prices
relative to each other, and not with respect to their absolute rates. This
means that in order for the classification algorithm to be robust, the absolute
levels of the trained data matrix X0 is needed to be removed. Consider the
linear transformation

Y0 = LX0 ∈ Rp−1×N , (42)

where L is a [p− 1× p] anti-diagonal transformation matrix such that

L =


0 0 . . . 0 −1
0 0 . . . −1 0
...

... . .
. ...

...
0 −1 . . . 0 0
−1 0 . . . 0 0

 ∈ R(p−1)×p. (43)

In this way, Y0 obtains the difference between each variable in X0. That is,
the ith column (or observation) of Y0 is
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yi =



offer10 − offer9

offer9 − offer8

...
offer2 − offer1

offer1 − bid1

bid1 − bid2

...
bid8 − bid9

bid9 − bid10


∈ R(p−1)×1, (44)

where the dimension of the new training data matrix has been reduced by 1.
In this way, the absolute rates of the bids and offers are removed, and the
classification method can be applied with respect to the new random vector
y defined as

y = Lx ∼ N (µy0,Σ
y
0),

where µy0 and Σy
0 are the new mean vector and covariance matrix respectively

obtained from Y0. Note that since y is a linear transformation of x, it will be
Gaussian distributed with a new mean vector and covariance matrix.

7.3.2 Step 2

As discussed in section 4.3, the QDA methods can only be regarded if Σy
0

has full rank, that is, if rank(Σy
0) = p− 1. In the above numerical example,

it turns out that

• rank
(
Σy

0

)
= 16 < p− 1

The covariance matrix Σy
0 has not full rank since p−1 = 20−1 = 19. This is

probably due to the fact that the variables in Y0 (bids and offers) are highly
correlated for the normal market data sets, resulting in a low rank covariance
matrix. However, as shown in section 4.3, the covariance matrix of Y0 will
have full rank on a subspace. By performing the linear transformation

Z0 = VTY0, (45)

and choosing an appropriate transformation matrix V ∈ Rp−1×q, the covari-
ance matrix of Z0 will obtain full rank. As described in section 4.3, the
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column vectors of V must be orthonormal and must belong to the linear
space spanned by the columns of Σy

0. The principal component loadings
obtained from Y0 fulfills these conditions of V, and will therefore be the
selected transformation matrix. Thus,

Ẑ0 = V̂T
0 Y0 ∈ Rq×N , (46)

where V̂0 consists of the first q principal component loadings obtained from
Y0. This transformation can be seen as transforming the data in Y0 to its
corresponding principal component space spanned by the q most significant
principal component loadings. In this way, by choosing a proper value of
q < p − 1, the covariance matrix of Ẑ0 will obtain full rank, and the clas-
sification methods can be applied with respect to the new random vector
defined by

ẑ = V̂T
0 y ∼ N (µẑ

0,Σ
ẑ
0),

where µẑ
0 and Σẑ

0 are the new mean vector and covariance matrix respec-
tively obtained from Ẑ0. The question now is whether the principal compo-
nent loadings should be determined from the covariance or correlation matrix
of Y0. As discussed in 3.4, the covariance matrix should be suitable in this
particular example, since all the market data are obtained for the same in-
strument I from market M. Hence, the units of all the p variables in the
original vector x are the same. However, since the goal is to derive a ro-
bust classification algorithm, it should be possible to train the classification
method on market data where x may consist of market data not only for in-
strument I, but, for example, for both instrument I and J simultaneously.
In such case, the units of the different variables in x will not be the same,
and the obtained principal components will then dominate for the variables
whose variances are largest. Therefore, the correlation matrix R0 will be
used to obtain the principal component loading matrix V0.

Table 1 illustrates a summary of the rank, the determinant and the condition
numbers of Σẑ

0 for different number of principal components q, along with
the amount of variance in the data explained.
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Table 1: Figures of merit for Σẑ
0.

q PC variance rank
(
Σẑ

0

)
det
(
Σẑ

0

)
cond

(
Σẑ

0

)
13 95% 13 4.28 · 10−147 1.17 · 107

10 85% 10 1.22 · 10−111 1.39 · 106

8 75% 8 7.84 · 10−88 3.29 · 103

6 65% 6 2.10 · 10−65 2.73 · 103

4 50% 4 2.50 · 10−44 98.30

As can be seen in table 1, the higher the number of principal component
loadings included (q), the higher the amount of variance in the original data
captured in the transformation. For q = 13, as much as 95% of the variance
in the data is captured. The condition number has decreased by a factor of
1016 compared to that of Σy

0. The fewer the number of principal component
loadings selected, the smaller the condition number tends to get. For q = 8, as
much as 75% of the variance in the data is captured. The condition number,
3.29 · 103, can be regarded as quite large compared to the condition number
obtained for q = 4. However, when performing PCA, a sensible number
of principal components to include is the number such that 70% to 90% of
the variance is captured [5]. In this case, choosing q = 4 implies throwing
away 50% of the information in the original data. Therefore, even though it
would be preferable to choose q = 4 due to the small condition number, the
number of principal component loadings will here be chosen to be q = 8. As
a rule-of-thumb, the covariance matrix will be regarded as ill conditioned if
log
[
cond

(
Σẑ

0

)]
is larger than the precision of the bid and offer values [22].

For the EUR/USD instrument, the precision of the data is 6 digits for market
M, yielding a maximum condition number of approximately 1 · 106. Hence,
the covariance matrix for q = 8 will be regarded as being well conditioned,
and therefore, the covariance matrix for ẑ will be numerically stable.

When analysing the resulting determinant for the different values of q, it
becomes clear that the determinant becomes extremely small for all value
of q. Although the determinant is close to zero, the covariance matrices
for q 6 8 are not treated as being ill conditioned. Therefore, the matrix is
not close to being singular, and the classification methods will therefore be
applicable on the transformed data. In fact, the determinant of a matrix can
be arbitrarily close to zero without conveying information about singularity
[10].
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As seen in this section, two necessary steps in the feature extraction stage
are necessary in order to make the Single-class detector method robust for
the market data sets. The first step involves removing the dependence of the
absolute rates of the bids and offers, yielding y ∈ Rp−1×1. The second step
involves performing PCA on the training data matrix Y0 in order to handle
the multicollinearity problem, yielding ẑ ∈ Rq×1.

7.4 Classification

The goal of the feature extraction step is to remove the effect of the absolute
rates of the bids and offers, and to remove the effects from the multicollinear
characteristics of the data. Once this step has been performed, the clas-
sification step of the classification method described in section 4.1 can be
applied. Here, the Single-class detector will be used for classification, and
the discriminant function will be

T (ẑ) = (ẑ− µẑ
0)T(Σẑ

0)−1(ẑ− µẑ
0) ≶ Tcritical. (47)

The threshold, Tcritical, is determined by the inverse cdf for the chi-squared
distribution for a significance level α = 0.05 and q = 8, since it is the result-
ing dimension of y, yielding

Tcritical = Q8(1− 0.05) = 15.91.

The decision rule for the algorithm will then be as described in algorithm
1.

Algorithm 1 Decision rule

1: procedure DecisionRule

2: if T (ẑ) 6 Tcritical then
3: return 0
4: else

5: return 1
6: end if

7: end procedure

The decision part of the algorithm thereby returns 0 if the input vector x is
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normal and 1 if it is abnormal. For a pseudocode of the complete general
classification algorithm, refer to section 8.2.

7.5 Test run

To ensure that the classification method provided in this section works, it
needs to be tested on new market data. To ensure robustness, the new
test market data must not have been included in the training data matrix
X0. The classification method will here be simulated in MATLAB on new
input data for the EUR/USD instrument from market M. The MATLAB
script is constructed such that it performs all the pre-processing of the data
as described in the previous section. For this particular test, the following
user-defined parameters has been set:

• PCvariance = 0.75

• α = 0.05

Figure 16 shows the output of the decision rule of the classification method
for a new market data set X∗. The market data set consists of 25 quote
updates (or samples) of x, corresponding to around 2.5 seconds, where each
individual quote has been classified.

Figure 16: Classification of 25 quote updates for a new market data set X∗. The
top-right plot shows the quote plot and the bottom-right plot shows the corre-
sponding spread plot. The left plot shows the output of the decision rule for each
individual quote update xi. For this market data set all updates are classified as
normal.
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Analysing the quote data in figure 16, one can see that all bids and all offers
are highly correlated with each other respectively. And, a change in an offer
quote is followed by a change in the corresponding bid quote, with a slight
delay. These characteristics of the data can also be seen in the spread plot,
where the distance between all spread levels are equal for all bid-offer pairs.
The classification method classifies all quotes as being normal, or, in other
words, sharing the same distribution with that of X0. This is seen in the
left-hand plot. The result should not be surprising, since the training data
sets selected in section 6.3 were chosen due to obtaining the above explained
characteristics.

In figure 17, the classification of the quote updates for a new market data
set with different characteristics is considered. Again, the data set consists
of 25 quotes, but for this data set the bids and offers are not as correlated as
for the previous market data set.

Figure 17: Classification of 25 quote updates for a new market data set X∗.
Quote update 2 − 5 are the only ones being classified as normal, since the spread
levels are equidistant for these particular samples.

As seen in figure 17, all but the 2nd to 5th quote updates are being classified
as abnormal with respect to X0. For all of these abnormal samples, the
spread levels are not equidistant, which again is abnormal compared to the
trained data sets. A sample quote where the spread levels are not equidistant
simply means, for this particular training data matrix, that not all of the
bids and offers are highly correlated with each other respectively, or, that
the spread between any of the bid-offer pairs are different from that of X0.
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These relationships can easily be seen in the top-right quote plot and the
bottom-right spread plot for the particular samples.

The classification of an additional market data set is illustrated in figure 18.
For this particular data set, all quote updates are regarded as abnormal with
respect to X0.

Figure 18: Classification of 25 quote updates for a new market data set X∗. For
this data set, all quote updates are classified as being abnormal. All the bids and
offers are either not highly correlated, or the spread levels for the bid-offer pairs
are not equidistant.

When analysing the offers for the quote data in figure 18, it becomes clear
that for the majority of the quote updates, the offers are not highly correlated
with each other, and the bids are not highly correlated with each other. And
when they are correlated, the spread of the bid-offer pairs are not equidistant.
This applies for all samples, leading to the decision rule output being 1 for
all of them.

7.6 Conclusion

As seen in figure 16 to 18, the classification method works as desired. That is,
the classification method successfully discriminates if a new quote update x
is sharing the distribution of X0 or not. Therefore, it should be stressed out
that depending on what market data sets are included in the training data
matrix, the decision rule outputs 0 or 1 depending on the characteristics
of those particular data sets. In this report, the training data matrix has
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been constructed by hand-picking market data sets which appeared to be
normal compared to abnormal ones. These normal data sets were shown to
have highly correlated characteristics between the bids and offers respectively.
Furthermore, the spread levels for the bid-offer pairs were equidistant for
those particular data sets. Therefore, the classification method provided
here will detect whenever a quote update does not fulfill these properties.
In general, however, a training data matrix can be constructed using any
particular set of market data, depending on what is to be classified. An
attractive feature is that the classification steps of the classification method
will be the same – making the method very versatile. Therefore, a suggestion
of a general classification algorithm, where the user can set how and when
training data is to be collected, is provided in the next section.
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8 The classification algorithm

As seen in chapter 7, the training phase, feature extraction step and the clas-
sification step are all vital in order to be able to implement the Single-class
detector method described in 4.2. The classification algorithm will there-
fore be constructed such that it subsequently performs the above explained
steps.

8.1 Block diagram

The algorithm is divided into two main sequences; a training phase, and
a real-time classification phase. A block diagram of the main steps in the
algorithm is shown in figure 19. In the training phase, market training data
sets are first obtained, forming the training data matrix X0. How and when
training data sets should be collected can be configured by a predefined
training scheme parameter. The absolute rate dependencies of the data is
then removed, followed by obtaining the principal component loading matrix
V0 for the transformed training data Y0. In the PCA stage, the input
parameter PCtolerance must be set by the user and must be chosen such that
the conditions of the covariance matrix Σẑ

0 are met (see section 7.3.2). The
final step in the training phase is then to calculate the sample mean vector
and sample covariance matrix for the transformed data Ẑ0.
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T (ẑ) ≷ Tcritical

α

Feature
extraction(

V̂T
0 L
)
x

New quote
update

X0 Y0 Ẑ0
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Figure 19: A block diagram of the main steps in the classification algorithm. The
system is divided into a training phase (grey blocks) and a real-time classification
stage (green blocks). The training phase trains the classification method based on
selected market data sets and is performed offline. The real-time classification step
classifies a new quote update x online and returns 0 if the the quote is regarded
as normal and 1 if it is regarded as abnormal with respect to the training data.
Training scheme, PCvariance and α are input parameters set by the user.

The real-time classification phase can be seen as an infinite loop, which, for a
new quote update x classifies if it is normal or abnormal with respect to the
training data matrix, that is, if it shares the distribution with that of X0 or
not. The classification phase consists of first performing feature extraction
of x by using the offline calculated combined transformation matrix V̂T

0 L.
The second, and final step, of the classification phase is to classify the new
data matrix ẑ using the Single-class detector for a given significance level α.
The system then outputs 0, if x is regarded as normal, and 1 if it is regarded
as abnormal.
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8.2 Pseudo code

The block diagram illustrated in figure 19 shows an overview of the main steps
in the classification algorithm. In this section pseudo code for the training
phase and the real-time classification phase are provided. The algorithm has
been designed such that it is independent of how the training data sets are
obtained, and can therefore be obtained in any desired way. Therefore, one
can easily construct separate algorithms for controlling the collection of the
training data sets automatically. The idea is that the user selects a training
scheme which is linked to a unique timer, for triggering the training phase,
and a unique way of constructing the training data matrix X0. How the
training data matrix should be constructed for a particular training scheme
is then predefined in the training phase. In section 8.3, examples of suitable
training schemes are discussed. The triggering of the timer is controlled by
an external process running in the background and its corresponding pseudo
code is illustrated in algorithm 2.

Algorithm 2 Training trigger algorithm

1: procedure TrainingTrigger(training scheme)
2: Set training flag = 0
3: Start training timer
4: Set expiration of timer for training scheme
5:

6: %Wait for timer to expire:

7: while training timer expired = false do
8: nothing
9: end while

10:

11: Set training flag = 1
12: return training flag
13: end procedure

The pseudo code for the training phase is illustrated in algorithm 3.
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Algorithm 3 Training phase algorithm

1: procedure TrainingPhase(training scheme, PCvariance)
2:

3: procedure Initialization

4: %Construct L:

5: p = number bids and offers
6: Ip = [p− 1× p] anti-diagonal identity matrix
7: L = (−1) · Ip

8: return L

9: end procedure

10:

11: procedure ObtainTrainingData(training scheme)
12: Collect training data
13: Construct X0

14: return X0

15: end procedure

16:

17: procedure RemoveRateRependencies(L,X0)
18: Y0 = LX0

19: return Y0

20: end procedure

21:

22: procedure PCA(Y0,PCvariance)
23: Obtain sample correlation matrix of Y0 → Ry

0

24: Compute SVD of Ry
0 → (V0, λ0)

25: Obtain diagonal elements of λ0 → λdiag

26:

27: %Total variance of all PCs:

28: λtot = 0

29: for i = 1 to size of λdiag, do
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30: λtot = λtot + λdiag(i)

31: end for

32:

33: %Proportion of variance for each eigenvalue:

34: prop = [p− 1× 1] zero vector
35: for j = 1 to size of λdiag, do

36: prop(i) = λdiag(i)/λtot

37: end for

38:

39: %Choose q such that PCvariance is captured:

40: cumsum = 0

41: for k = 1 to size of prop, do

42: cumsum = cumsum + prop(k)

43: if cumsum > PCvariance then

44: q = k

45: return

46: end if

47: end for

48:

49: %Project Y0 on the q first PC loadings:

50: Select first q columns of V0 → V̂0

51: Ẑ0 = V̂T
0 Y0

52:

53: return V̂0 and Ẑ0

54:

55: end procedure

56:

57: procedure MeanAndCovariance(Z0)
58: µẑ

0 = mean(Ẑ0)

59: Σẑ
0 = cov(Ẑ0)

60: return µẑ
0 and Σẑ

0
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61: end procedure

62:

63: %Execute real-time classification phase:

64: Execute RealTimeClassification(V̂0, µẑ
0, Σẑ

0, α)
65:

66: end procedure
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Algorithm 4 Real-time classification algorithm

1: procedure RealTimeClassification(V̂0, µẑ
0, Σẑ

0, α)
2:

3: procedure Initialization

4: Calculate V̂T
0 L

5: Obtain Tcritical(1− α)

6: return V̂T
0 L, Tcritical

7: end procedure

8:

9: %Infinite while loop:

10: procedure InfiniteLoop

11: while true do
12:

13: %Check training flag:

14: if training flag = 1 then
15: Execute TrainingPhase(training scheme,PCvariance)
16: end if

17:

18: %Wait for new quote data x to arrive:

19: procedure NewQuoteUpdate

20: while New quote is false do
21: nothing
22: end while

23: return x

24: end procedure

25:

26: procedure FeatureExtraction(V̂T
0 L, x)

27: ẑ = (V̂T
0 L)x

28: return ẑ

29: end procedure
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30:

31: procedure Classification(Tcritical, ẑ)
32: Calculate T (ẑ)

33:

34: procedure DecisionRule(T (ẑ), Tcritical)
35: if T (ẑ) 6 Tcritical then
36: return 0
37: else

38: return 1
39: end if

40: end procedure

41:

42: return output from DecisionRule

43:

44: end procedure

45: end while

46: end procedure

47: end procedure

8.3 Training schemes

As described in the previous section, the idea with the training scheme is to
control whenever training data is to be collected. The training data matrix
X0 used in the previous sections where obtained by hand-picking market
data sets which where regarded as being normal for the EUR/USD instru-
ment from market M. However, consider the case where the definition of
normal market data changes with time. For example, it may be the case
that the definition of normal market data is different from one week to an-
other depending on the economy in the world. In such case, the classification
method must be trained every week, in order for it to be robust. As an ex-
ample, if market data where assumed to be normal during 10:00:00 - 10:15:00
every Monday, the procedure of obtaining training data defined in algorithm
2 would then be as shown in algorithm 5.
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Algorithm 5 Training scheme - weekly

1: procedure ObtainTrainingData(weekly)
2: if day = Monday then

3: for time = 10:00:00 - 10:15:00, do
4: Collect quote data xi → X0

5: end for

6: end if

7: return X0

8: end procedure

In this way the training data matrix X0 would been updated every Monday
at 10:15:00, and the classification algorithm would then execute the real-
time classification phase, classifying new quote updates, until 10:00:00 next
Monday. The process would then be repeated.

9 Discussion

The goal of the project was to investigate how valuable information from the
market data could be extracted in order to construct a classification method
and algorithm for detecting deviations in the market data. The project
resulted in a successful construction of a classification method, which is able
to classify if a new quote update x, for the EUR/USD instrument and market
M, is normal or abnormal with respect to the training data in X0. The
project also resulted in the development of a classification algorithm, which
enables the classification method to be implemented on a system for real-
time classification of quote data along with automated collection of training
data.

To make the project plausible, the work has been focused on the EUR/USD
instrument for a unique market M. By using PCA, the market data has
been shown to obtain unique characteristics for two particular states of the
market data, normal and abnormal. The bid and offer prices (or variables)
in the market data regarded as being normal has been shown to possess high
correlation characteristics, whereas the opposite has been shown to be true
for the market data regarded as abnormal. The comparison of the principal
component subspaces for normal and abnormal market sets shows that the
two different states originate from different covariance structures. This leads
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to the assumption that data originating from the two different classes should
be able to be discriminated using QDA. In this project, the Single-class
detector has been used rather than QDA. Classifying if a quote update x is
normal or abnormal can be performed using QDA with two classes, C0 and
C1. However, this would not only require to collect normal training data, but
also to collect abnormal training data, forming an additional training data
matrix X1. Since there are only two classes regarded, normal and abnormal,
the Single-class detector will be more robust. Why? Since the market data is
either normal or abnormal, classifying only one of them is needed. And, since
the characteristics of the normal market data is more well-defined than the
characteristics of the abnormal market data, the classification method will
be more robust if it is trained on the normal case. Therefore, the Single-class
detector trained on normal market data has been considered in this report.
However, if market data is to be categorized into more than two classes, QDA
would be the suggested method.

To be able to implement any of the suggested classification methods in this
report, a vital pre-processing step of the data must is required. Due to
the multicollinear characteristics in the market data, the covariance matrices
for the market data will always obtain low-rank properties. It has been
shown that by transforming the data on to its principal component space,
spanned by the dominating loading vectors, the covariance matrices for the
new transformed data will obtain full rank. This is an important result and is
a vital step in order for the QDA and Single-class detector to work properly.
Since the classification method is trained on the principal components of the
trained market data X0, it can be seen as classifying the principal components
of the data. The suggested classification algorithm can therefore be seen as
storing the fundamental principal components of the normal market data,
and for a new quote update x, compares how much energy of x that is in
the trained principal component space. If it is not enough, then it is not
regarded as normal.

9.1 Future developments

The classification method developed in this project has only been with respect
to the EUR/USD instrument, from market M. The classification method
is therefore only able to indicate when that particular instrument, for that
particular market, is behaving unnatural compared to the trained data. Now,
there is a good reason for believing that there is a strong connection between
the following currency pairs from a marketM:
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• EUR/USD

• EUR/SEK

• USD/SEK

A change in the data for any of the above mentioned currency pairs should af-
fect the others ones and vice versa. Therefore, a suggestion of a future project
is to investigate how these currency pairs are correlated to each other and
if there exist any normal behaviour in the joined data sets. If this would
be the case, then the classification method derived in this report could be
implemented with respect to the joint random vector xjoint defined by

xT
joint =

[
xT

EUR/USD xT
EUR/SEK xT

USD/SEK

]
,

such that

xT
EUR/USD =

[
bid1, . . . , bid10 | offer1, . . . , offer10

]
.

is the quote update for the EUR/USD instrument. In this way, the clas-
sification method can be used for detecting if a joint quote update is nor-
mal or abnormal, that is, if the market data for the EUR/USD, EUR/SEK
and USD/SEK is behaving normal or not. Such a pattern recognition algo-
rithm could be used as an input parameter in deciding positions in a specific
trade.

Another suggestion for further development of the classification algorithm
is to extend it to K classes. It may be the case that the market data can
be categorized into more than two classes. For example, one could consider
forming three classes, C1, C2 and C3, where the first class indicates increasing
trends in the market data, the second indicates decreasing trends and the
third one indicates random dispersion of the data. A suitable classification
method would then be the QDA for three classes, where the training phase
then would require to form three training data matrices X1, X2 and X3 for
each class, yielding three covariance matrices Σ1, Σ2 and Σ3. Again, since
the characteristics of the market data does have multicollinear characteristics,
transforming the trained data sets into their principal component spaces
respectively is required. Hence, the extended classification method can be
seen as storing the principal component loadings for C1, C2 and C3 in a
filter bank, where new quote updates x can be classified as either having an
increasing trend, a random trend, or simply having no structure at all.
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10 Appendix

10.1 Theory of Matrices

10.1.1 Rank of a Matrix

A matrix may be considered as a set of column vectors written in a particular
order. The rank of a matrix is defined as the number of independent columns
it contains. A [p × p] matrix Σ is said to have full rank if the number of
independent columns in Σ is p, that is, rank(Σ) = p [6].

10.1.2 Inverse of a Matrix

A square matrix Σ of order [p × p] is said to be non-singular if its rank is
p. In such case there exists a unique matrix Σ−1, known as the inverse of Σ
such that

ΣΣ−1 = Σ−1Σ = I ,

where I is a [p× p] identity matrix [6].

10.2 Derivations

10.2.1 Derivation of optimal classifier for QDA

δk(x) = ln

[
1

(2π)p/2
1

|Σk|1/2
exp

{
− 1

2
(x− µk)

TΣ−1
k (x− µk)

}
p(Ck)

]

= ln

[
1

(2π)p/2
1

|Σk|1/2

]
+ ln

[
p(Ck)

]
− 1

2
(x− µk)

TΣ−1
k (x− µk)

10.2.2 Derivation of QDA for two classes

ln(R) = ln

[
1

|Σ0|1/2
exp
{
− 1

2
(x−µ0)TΣ−1

0 (x−µ0)
}

1

|Σ1|1/2
exp
{
− 1

2
(x−µ1)TΣ−1

1 (x−µ1)
} · p(C0)

p(C1)

]
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= ln
[

1
|Σ0|1/2

]
− 1

2
(x− µ0)TΣ−1

0 (x− µ0)

− ln
[

1
|Σ1|1/2

]
+ 1

2
(x− µ1)TΣ−1

1 (x− µ1) + ln
[
p(C0)
p(C1)

]

= 1
2

ln
[
|Σ1|
|Σ0|

]
+ ln

[
p(C0)
p(C1)

]
− 1

2
(x− µ0)TΣ−1

0 (x− µ0)

+ 1
2
(x− µ1)TΣ−1

1 (x− µ1)

10.3 The Chi-squared distribution

A random variable formed as

T (x) =

p∑
i=1

x2
i , (48)

where xi, for i = 1, ..., p, are independent Gaussian distributed random vari-
ables with zero mean and unit variance, is chi-squared distributed with p
degrees of freedom, with probability density function (pdf)

fT (t) = Pr(T = t) =
1

2p/2Γ(p/2)
tp/2−1e−t/2, (49)

where Γ denotes the Gamma function [15]. Its cumulative distribution func-
tion (cdf) for p degrees of freedom is

FT (t) = Pr(T ≤ t) =
1

Γ(p/2)
γ

(
p

2
,
t

2

)
, (50)

where γ denotes the incomplete Gamma function. The inverse of the chi-
squared cdf for p degrees of freedom given a probability y is then

QT (y) = Γ

(
p

2
,

1

2y

)/
Γ

(
p

2

)
, (51)

yielding the maximum value of T for which Pr(T ≤ Tmax) ≤ y. Figure 20
and 21 shows the pdf and the cdf for the chi-squared distribution for 8 degrees
of freedom respectively. The inverse function Qp(1−α) for a significance level
of α = 0.05 (5%) is indicated in both plots.
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Figure 20: PDF of the χ2
p-distribution for p = 8 degrees of freedom. The red area

under the curve is the rejection region, which, for a significance level of α = 0.05,
corresponds to 5% of the total area.

Figure 21: The CDF of the χ2
p-distribution for p = 8 degrees of freedom.

10.4 MATLAB code

10.4.1 PCA in MATLAB

The sample correlation matrix is obtained in MATLAB using the cov and
zscore functions, which is equivalent to using (13). Next step is to compute
the SVD on the sample correlation matrix to obtain V and Λ. Ones the SVD
has been computed, the amount of variance that each eigenvalue in Λ make
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up for can be computed. Finally the principal components can be obtained
by projecting X on to V. How to perform all these steps in MATLAB are
shown in algorithm 6.

Algorithm 6 PCA in MATLAB

1: procedure PCA

2: %Sample correlation matrix:

3: R = cov(zscore(X’));

4:

5: %SVD on R:

6: [V, Lambda, V_T] = svd(R);

7:

8: %Variance proportion:

9: eigvalues = diag(Lambda);

10: prop_var = eigvalues./sum(eigvalues);

11:

12: %Principal components:

13: Z = (V’)∗X;
14: end procedure
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