
Graph Expansions and Applications

KWOK, Tsz Chiu

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
April 2015

Thesis Assessment Committee

Professor Shengyu ZHANG (Chair)

Professor Lap Chi LAU (Thesis Supervisor)

Professor Andrej BOGDANOV (Committee Member)

Professor Nisheeth K. VISHNOI (External Examiner)

Abstract

We study problems related to graph expansions, which measure how well a graph is

connected. Various practical problems can be modelled as finding a small non-expanding

subset of vertices, and this is also closely related to the unique games conjecture in

the theory of approximation algorithms. Hence our study of graph expansions is both

practically and theoretically motivated.

We present our new results about graph expansions. The results include the design

and analysis of algorithms for finding non-expanding subsets, hardness of approximation

results and algorithmic applications of expanders:

• We prove a generalization of Cheeger’s inequality using higher eigenvalues, pro-

viding a better analysis of the spectral graph partitioning algorithm.

• We design a local graph partitioning algorithm using random walks on graph,

matching the performance guaranteed by Cheeger’s inequality.

• We give a tight lower bound for the expansion of graph powers and use it to prove

hardness results for small set expansions.

• We use expanders to design fast and simple algorithms for computing matrix ranks,

significantly improving over previous works.

摘摘摘要要要

我們研究與圖的擴張值相關的問題。圖的擴張值反映了一個圖的連通程度。很多不

同的應用問題都可以轉換成在圖中找一個不擴張的點集，而這亦跟近似理論中的唯一遊

戲猜想 (unique games conjecture) 有密切的關係。故此，圖的擴張值在應用和理論上均

有研究動機。

我們介紹有關圖的擴張值的新發現。這些發現包括設計和分析找不擴張的子集的算

法、近似算法的困難結論，以及擴張圖的算法應用：

• 我們用更多的特徵值去證明一個 Cheeger 不等式的推廣，從而較好地分析譜分割

算法 (spectral graph partitioning algorithm)。

• 我們分析圖上的隨機漫走來設計一個局部的圖分割算法。此算法跟 Cheeger 不等

式的保證相合。

• 我們給出圖冪的擴張值的緊下界，並用以得到一個關於找小的不擴張子集的困難
結論 (hardness result)。

• 我們利用擴張圖來設計一個快而簡單的算法來計算矩陣的秩，新算法顯著地改進
了以往的算法。

Acknowledgements

Foremost, I would like to express my deepest gratitude to my advisor, Lap Chi Lau,

who has introduced me to researching in theoretical computer science. Lap Chi has been

supporting me throughout my PhD study, and from whom I learn the attitude of a good

researcher, teacher and advisor. I would also like to thank Andrej Bogdanov, Shengyu

Zhang and Nisheeth Vishnoi for forming my thesis committee.

I thank all my friends in the theory group and ACM programming team in the

Chinese University of Hong Kong, especially my 117-mates, for the enjoyable life in

these years. I also thank all my coauthours; I have learnt a lot from them.

I want to thank James Lee and the Simons Institute for the Theory of Computing

for giving me the opportunity to join the algorithmic spectral graph theory workshop

and meet top researchers in the area.

Finally, I thank my family for their unconditional support. A special thank goes to

my beloved Sin Man Choi, for her love and support.

Contents

Abstract .

Acknowledgements .

Table of Contents .

1 Introduction 1

1.1 Main results . 2

2 Background 6

2.1 Spectral graph theory . 6

2.1.1 Graphs . 6

2.1.2 Eigenvectors and eigenvalues . 9

2.1.3 Graph expansions and eigenvalues 12

2.1.4 Notation conventions . 19

2.2 Cheeger’s inequality . 19

2.2.1 Spectral partitioning algorithm 20

2.2.2 Proof of Cheeger’s inequality . 24

2.2.3 Examples . 28

2.3 Random walks . 33

2.3.1 Spectral approach . 34

2.3.2 Combinatorial approach . 36

2.4 Previous works . 40

2.4.1 Higher eigenvalues . 40

2.4.2 Sparsest cut . 41

2.4.3 Small sparse cuts . 43

2.4.4 Local graph partitioning . 43

3 Improved Cheeger’s inequality 45

3.1 Main result . 45

3.2 Proof overview . 46

3.3 Proof of improved Cheeger’s inequality 47

3.3.1 O(k)-valued approximation . 47

3.3.2 Upper bound φsweep with distance to approximation 50

3.3.3 Combining the lemmas . 53

3.3.4 Tight example . 54

3.4 Improving the constant . 54

3.5 Related problems and extensions . 60

3.5.1 Local improved Cheeger’s inequality 64

4 Random walks 66

4.1 Finding small sparse cuts . 66

4.1.1 Our results . 66

4.1.2 Finding small sparse cuts . 68

4.1.3 Local graph partitioning . 72

4.1.4 Concluding remarks . 75

4.2 Expansions of graph powers . 77

4.2.1 Introduction . 77

4.2.2 Expansion of graph power . 80

4.2.3 Applications . 88

5 Matrix rank 91

5.1 Introduction . 91

5.1.1 Previous works . 91

5.1.2 Our results . 92

5.2 Fast matrix rank algorithms . 93

5.2.1 Setting . 93

5.2.2 Outline . 94

5.2.3 Magical graphs . 95

5.2.4 Compression algorithm by magical graph 97

5.2.5 Computing matrix rank . 99

5.2.6 Finding independent set . 100

5.3 Applications . 102

Bibliography 104

Chapter 1

Introduction

The expansion of a graph is a robust measure on how well the graph is connected.

Roughly speaking, the expansion of a subset of vertices is the ratio between the size of

the boundary and the size of the subset, and the expansion of a graph is the minimum

expansion over all small subsets. Hence, if the expansion of the graph is large, then every

small subset of vertices expands well. Various definitions of graph expansions arise with

different measures on the sizes, and most of them are related to each other. In this

thesis, the notion of expansion we study is mainly the graph conductance. It is a well

studied notion. For simplicity, in this chapter, we consider only d-regular unweighted

simple graphs, of which the conductance is defined by

φ(G) = min
S⊆V, |S|≤|V |/2

|δ(S)|
d |S| ,

where δ(S) is the set of edges crossing S and V − S. The graph conductance is an

important measure on graphs in many aspects.

Clustering: If we define a graph by putting an edge between each pair of similar objects,

then the sets of small conductance are intuitively corresponding to clusters. Find-

ing clusters is a fundamental problem with applications in various areas, including

image segmentation [65, 71], data clustering [40, 54, 75], community detection [47]

and VLSI design [30].

Mixing time: The mixing time of a graph is the number of steps needed for a random

walk starting from an arbitrary vertex to generate a distribution close to the

uniform distribution. This is useful in analyzing random sampling algorithms for

combinatorial objects, like computing the permanent and the volume of a convex

1

object [66, 26]. It is proven that the mixing time is nearly inverse polynomial to

the conductance [38]. Therefore, one way to upper bound the mixing time is by

lower bounding the conductance.

Expanders: Expanders are graphs where every subset of vertices has large expansion.

They are useful objects with applications in derandomization, error correcting

codes, extractors and pseudorandom generators [34]. Sparse expanders with linear

number of edges can be efficiently constructed, and some of the fastest combinato-

rial algorithms use sparse expanders as gadgets. For example, those expanders can

be used to replace high degree vertices in a graph so as to reduce the maximum

degree while maintaining the graph connectivities [18].

Small set expansion: Raghavendra and Steurer [58] proposed the small set expansion

(SSE) conjecture, which roughly states that it is NP-hard to determine whether

all small subsets of a graph are expanding well or there is a small subset that is

barely connected to the rest of the graph. They showed that the SSE conjecture

implies the unique games conjecture (UGC) and is implied by the UGC with

mild assumptions. Since the UGC is an important conjecture in the theory of

approximation algorithms, this connection raises theoretical interest in studying

the complexity of approximating graph expansions.

1.1 Main results

In this thesis, we present our new results about graph expansions. We prove a general-

ization of Cheeger’s inequality using higher eigenvalues, providing a better analysis of

the spectral graph partitioning algorithm. We study random walks using the approach

by Lovász and Simonovits to design and analyze a local graph partitioning algorithm.

We also use their approach to answer a basic graph theoretical question, which can be

applied to obtain a hardness result for approximating graph expansions. As an appli-

cation, we use expanders to design fast and simple algorithms for computing matrix

ranks.

Chapter 3 [43]: Finding a subset of vertices attaining the conductance of the graph is

in general computationally intractable, so we aim at finding a good approximation

S such that |S| ≤ |V |/2 and φ(S) := |δ(S)|/(d |S|) ≈ φ(G) in polynomial time.

The spectral graph partitioning algorithm, Algorithm 1, is the first and most

commonly used heuristic in finding such a set. Its performance is guaranteed by

2

Cheeger’s inequality [14, 4] (see Section 2.2), which states that

λ2

2
≤ φ(G) ≤

√
2λ2,

where λ2 is the second smallest eigenvalue of the Laplacian matrix of G, and in the

proof it shows that the spectral partitioning algorithm output a set of conductance

at most
√

2λ2. This gives an O(1/
√
φ) approximation algorithm for finding the set

of smallest conductance. Since 1/λ2 and the mixing time of the graph only differ

by at most a multiplicative logarithmic factor, Cheeger’s inequality also relates

the conductance and the mixing time (see Subsection 2.3.1).

In this work, we prove that for any graph G and any k ≥ 2,

λ2

2
≤ φ(G) = O

(
kλ2√
λk

)
.

The original Cheeger’s inequality only guarantees constant approximation when

the conductance of the graph is constant, and is unable to explain the empirical

performance of the spectral partitioning algorithm. We show that the spectral

partitioning algorithm works well when λk is large for a small k. This gives a

theoretical justification for the good performance in practice. For example, in the

problem of image segmentation, if an image contains only k interesting objects,

then λk+1 would be large and our result proves that the spectral partitioning

algorithm performs well.

Chapter 4 [41, 42]: Lovász and Simonovits [51] introduced a combinatorial approach

to study the relation between the conductance and the mixing time. For a prob-

ability distribution p : V → R≥0 over the vertices, let C(p, x) be the cumulative

sum of decreasingly sorted probabilities. More precisely, suppose we label the

vertices such that p(u1) ≥ p(u2) ≥ · · · ≥ p(un). Then we define

C(p, x) =
x∑

i=1

p(ui),

for integral x. Note that when the distribution p is uniform, then the function

C(p, x) = x/n. Lovász and Simonovits give an upper bound on C after the t-

steps lazy random walks. They prove that for any initial disbution p, the function

satisfies
x

n
≤ C(pW t, x) ≤ x

n
+
√
x

(
1− φ(G)2

8

)t
,

3

where W is the lazy random walk matrix. This shows that the distribution con-

verges to uniform after lazy random walks, and the rate of convergence depends

on the conductance.

Local graph partitioning: We present a random walk based local graph parti-

tioning algorithm. Given a graph G and a parameter k, suppose there is a subset

S ⊆ V of size at most k with φ(S) ≤ φ, then we can find a set S′ with conductance

O(
√
φ/ε) and of size O(k1+ε). The algorithm can be implemented locally in the

sense that given a good starting point, we are able to find S′ in O(k1+ε/φ(G)2)

time. This runtime does not depend on the size of the original graph and this

property is desirable when the graph is massive. The performance guarantee of

our algorithm matches Cheeger’s inequality and we restrict the size of the output

set in addition. We note that if we can output a set of size O(k) with the same

guarantee, then we disprove the small set expansion conjecture.

We analyze the random walks using the function introduced by Lovász and Si-

monovits. Compared to the spectral algorithms, this combinatorial approach is

better suited here, since local information of the graph is enough for this approach

to give bounds.

Hardness amplification: Assume G is lazy and regular, and let Gt be the graph

represented by the transition matrix of the t-steps random walk on G. It is a

natural graph theoretical question to ask for the relation between the conductance

of Gt and that of G. By Cheeger’s inequality, it is easy to see that φ(Gt) =

Ω(tφ(G)2). We prove that φ(Gt) = Ω(
√
tφ(G)), and show that similar relation

holds for the small set expansions. This work is motivated by the gap amplification

result for small set expansion by Raghavendra and Schramm [57]. They show that

if it is hard to distinguish whether a graph has a small set of conductance ε or all

small sets are of conductance at least ω(
√
ε), then it is also hard to distinguish

whether a graph has a small set of conductance ε or all small sets are of conductance

1/2.

We use the combinatorial approach introduced by Lovász and Simonovits as our

main tool.

Chapter 5 [17] The rank of a matrix is the maximum number of independent columns

of the matrix and it is a basic measure of the complexity of a matrix. Finding the

rank is a fundamental problem in the field of computational linear algebra. It also

has applications in graph algorithms and combinatorial optimizations: some of the

4

fastest algorithms for graph matchings [53, 32], graph connectivities [16, 61, 18]

and matroid optimization problems [32, 19] are based on computing the matrix

rank and finding the corresponding linear independent columns.

For a matrix M ∈ Fn×n, we give a randomized algorithm to compute the rank r =

rank(M) of M as well as a set of r linear independent columns in Õ(nnz(M) + rω)

field operations, where nnz(M) is the number of non-zeros in M and ω < 2.373 is

the matrix multiplication exponent. This improves the previous best known bound

of O(n2rω−2) [70]. Surprisingly, our main tool for this linear algebraic result is a

sparse probabilistic vertex expander which can be constructed in linear time. We

use the expander to efficiently compress the n×n matrix into O(r)×O(r) matrix,

showing that the rank preserves with high probability because of the expanding

property.

5

Chapter 2

Background

In this chapter, we present background materials for the thesis. We first give notation

and definitions for graphs, review some basic linear algebra, and present basic spec-

tral graph theory which relates combinatorial graph properties to the eigenvalues, in

Section 2.1. Then we present Cheeger’s inequality, which provides a fundamental con-

nection between graph expansion and the eigenvalues, in Section 2.2. After that, we

analyze random walks on the graph, and bound the mixing time by the eigenvalues and

the conductance in Section 2.3. Finally, we talk about some previous works on spectral

graph theory with higher eigenvalues and algorithms for graph partitioning problems,

in Section 2.4.

2.1 Spectral graph theory

In this section, we first introduce notation and definitions for graphs in Subsection 2.1.1

and review some basic linear algebra in Subsection 2.1.2. Then we present basic spectral

graph theory in Subsection 2.1.3. Finally, we set up some notation conventions for the

whole thesis in Subsection 2.1.4.

2.1.1 Graphs

A weighted graph G = (V,w) consists of an n-element set of vertices V = V (G), and a

weight function w : V × V → R≥0, which assigns a non-negative real value to each pair

of vertices. If the weight function w satisfies w(u, v) = w(v, u) for any u ∈ V, v ∈ V ,

then we call this graph undirected. In this thesis, we only consider undirected graphs.

An edge e = {u, v} is an unordered pair of vertices such that w(u, v) > 0. We say

that e = {u, v} is incident to the vertices u and v, and call u and v the end-vertices of

6

e. We also say that e connects the vertices u and v, and that u is adjacent to v. We

use E = E(G) := {{u, v} | u ∈ V, v ∈ V,w(u, v) > 0} to denote the set of all edges

and m = |E| to denote the number of edges1. A path is a finite sequence of vertices

(u0, u1, . . . , uk) such that {ui−1, ui} is an edge for any i = 1, 2, . . . , k, and the length of

this path is k. We say that this path connects u0 and uk. A graph is called connected if

for any two vertices u and v, there exists a path connecting u and v. A graph is called

disconnected if the graph is not connected. A self loop is an edge that is incident to

only one vertex. If a graph does not contain any self loops and w(u, v) = 1 for all edges

e = {u, v}, then we call it a simple unweighted graph. The degree deg(u) of a vertex

u, defined as deg(u) :=
∑

v∈V w(u, v), is the sum of the weights of the edges incident

to u. A graph is called regular if the degrees of all the vertices are the same, and is

called d-regular if the degrees all equal to d. The volume vol(S) of a subset of vertices

S, defined as vol(S) :=
∑

u∈S deg(u), is the total degree of the vertices inside S.

The set of cut edges δ(S) of a subset S, defined as δ(S) := {{u, v} : u ∈ S, v 6∈ S},
is the set of edges crossing S and V − S. The cut value of a subset S is denoted as

w(δ(S)) :=
∑

e∈δ(S)w(e), which is the total weight of the cut edges. Note that a graph

is disconnected if and only if there exists a non-empty proper subset S ⊂ V such that

w(δ(S)) = 0. The neighbor set N(u) of a vertex u is the set of vertices adjacent to u,

and the neighbor set N(S) of a subset of vertices S ⊆ V is the set of vertices adjacent

to at least one vertex in S.

Graph expansions

Graph expansions are robust measures of how well a graph is connected. There are

different notions of graph expansions.

The edge expansion of a subset of vertices S ⊆ V , defined as hedge(S) := |δ(S)|/|S|,
is the ratio of number of cut edges to the size of the set. The edge expansion of the

graph is defined as

hedge(G) := min
S⊆V, 1≤|S|≤n/2

hedge(S).

The sparsity of a subset of vertices S ⊆ V , defined as sp(S) := |δ(S)|/(|S||V − S|),
is the ratio of the number of cut edges to the maximum number of possible cut edges of

1It is more common to define the edge set E first and assign weights only on the edge set. However,
in our study, we mostly only consider the weights and the edge set is less important, so we prefer to
define in this way.

7

S. The sparsity of the graph is defined as

sp(G) := min
S⊆V, 1≤|S|≤n−1

sp(S) = min
S⊆V, 1≤|S|≤n/2

sp(S),

where the last equality holds because if S attains the minimum with |S| > n/2, then

V − S also attains the minimum since δ(S) = δ(V − S). Note that n times the sparsity

of a graph and the edge expansion of the graph are within a multiplicative factor of 2.

This is due to any for |S| ≤ n/2,

|δ(S)|
|S| ≤ n

|δ(S)|
|S||V − S| ≤ 2

|δ(S)|
|S| .

For general weighted graphs, it is more natural to include the weights in the definition

of the expansion. The conductance of a subset of vertices S ⊆ V , defined as φ(S) :=

w(δ(S))/ vol(S), is the ratio of the total weight of cut edges to the volume of the set.

The conductance of the graph is defined as

φ(G) = min
S⊆V, 0<vol(S)≤vol(V)/2

φ(S).

Note that for unweighted d-regular graphs, the notions of the edge expansion and the

conductance are essentially the same, differing by exactly a factor of d.

In this thesis, we will mainly study the conductance and its generalizations. One

generalization is about the volume of the sets we consider. For δ ∈ (0, 1/2], the small

set conductance is defined as

φδ(G) = min
S⊆V, 0<vol(S)≤δ vol(V)

φ(S).

Note that φ(G) = φ1/2(G) by the definition.

Another generalization is about the number of parts we partition into. For 1 ≤ k ≤ n
and the k-way conductance is defined as

φk(G) = min
S1,S2,...,Sk

max
i
φ(Si),

where the minimum is over all non-empty disjoint subsets of vertices S1, S2, . . . , Sk. Note

that φ(G) = φ2(G) by the definition. We can also define the expansion by considering

only the partitions, which means that we also require ∪ki=1Si = V . The expansion under

this definition differs from the k-way conductance by at most a factor of k [45].

There are also definitions for the expansion based on vertices. The vertex expansion

8

of a subset of vertices S ⊆ V , defined as hvertex(S) := |N(S)−S|/|S|, is the ratio of new

adjacent vertices to the size of the set. The vertex expansion of the graph is defined as

hvertex(G) := min
S⊆V, 1≤|S|≤n/2

hvertex(S).

2.1.2 Eigenvectors and eigenvalues

In this subsection, we give definitions regarding spectrum of matrices and present some

of its basic properties. Unless otherwise specified, all vectors we consider are column

vectors.

For a real matrix M ∈ Rn×n, the eigenvalues and their corresponding eigenvectors

are the pairs λi ∈ C and vi ∈ Cn that satisfy vi 6= 0 and Mvi = λivi. In this thesis, we

will focus on real symmetric matrices. For those matrices, we can choose n eigenvectors

vi such that they are real, orthogonal to each other, and with unit norm [35]. Their

corresponding eigenvalues λi are also real. The multiset of these eigenvalues is called the

spectrum of M . Throughout this thesis, when we say that vi and λi are the eigenvectors

and eigenvalues of a real symmetric matrix, we are referring to a set of n unit real

orthogonal eigenvectors. We also call this set of eigenvectors the eigenbasis, and we can

write any vector x ∈ Rn into eigenbasis representation x =
∑n

i=1 civi. The matrix M

can be written as

M = V TΛV =
n∑

i=1

λiviv
T
i ,

where

V =

| | |
v1 v2 . . . vn

| | |

 , and Λ = diag(λ1, λ2, . . . , λn) =

λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . . 0

0 0 . . . λn

.

The decomposition M = V TΛV is called the eigendecomposition. Note that V is or-

thogonal, which means V V T = V TV = I, and thus Mk = V TΛkV for any positive

integer k. The equation Mk = V TΛkV is naturally generalized to any real k where Λk

is defined to be diag(λk1, λ
k
2, . . . , λ

k
n). This is well defined for any real k when λi > 0 for

all i.

The Rayleigh quotient of a non-zero vector x ∈ Rn is defined as

RM (x) =
xTMx

xTx
.

9

This concept is important in the study of the spectrum of the matrix. Suppose the

eigenvalues are sorted in ascending order: λ1 ≤ λ2 ≤ . . . λn. Then

λ1 = min
x∈Rn, x6=0

RM (x),

and

λn = max
x∈Rn, x6=0

RM (x).

The optimums are attained when x is the corresponding eigenvector. The reason is

simple. We write x =
∑n

i=1 civi into eigenbasis representation. Then xTMx =
∑n

i=1 c
2
iλi

and xTx =
∑n

i=1 c
2
i . Now

λ1 =

∑n
i=1 c

2
iλ1∑n

i=1 c
2
i

≤
∑n

i=1 c
2
iλi∑n

i=1 c
2
i

≤
∑n

i=1 c
2
iλn∑n

i=1 c
2
i

= λn.

Therefore λ1 ≤ minx∈Rn, x6=0RM (x) and λn ≥ maxx∈Rn, x6=0RM (x). Since optimums are

attainable by the corresponding eigenvectors, the equalities hold. The equalities can be

generalized to the k-th smallest or largest eigenvalues by Courant-Fischer formula:

λk = min
dim(W)=k

max
x∈W,x6=0

RM (x),

and

λn−k+1 = max
dim(W)=k

min
x∈W,x6=0

RM (x),

where the optimums are over all k dimensional subspaces of Rn. The optimums are

attained by W = span{v1, v2, . . . , vk} and W = span{vn, vn−1, . . . , vn−k+1} respectively.

Another commonly used generalization is the following:

λk = min
x∈span{v1,v2,...,vk−1}⊥, x6=0

RM (x), (2.1)

and

λn−k+1 = max
x∈span{vn,vn−1,...,vn−k+2}⊥, x6=0

RM (x). (2.2)

Here W⊥ denote the subspace {x | 〈x, v〉 = 0 for any v ∈ W}. These equalities can be

verified by considering the eigenbasis, using a similar approach as in the case k = 1.

The optimums are attained by the k-th smallest or largest eigenvectors.

A matrix M is called positive definite if λ1 > 0, or equivalently xTMx > 0 for all

x 6= 0. It is called positive semidefinite if λ1 ≥ 0, or equivalently xTMx ≥ 0 for all x.

10

Note that a positive definite matrix is invertible and its inverse is M−1 = V TΛ−1V =∑n
i=1(1/λi)viv

T
i . A positive definite matrix naturally induces a Hilbert space over Rn

with the inner product 〈x, y〉M = xTMy, and hence an induced norm ‖x‖M =
√
xTMx.

The generalized Rayleigh quotient RM,N (x) of a vector x with respect to a pair of

matrices M and N is defined to be xTMx/(xTNx). When N is positive definite, we can

get similar equalities for generalized Rayleigh quotient as those for Rayleigh quotient.

Let M = N−1/2MN−1/2, and let λi and ṽi be the eigenvalues and eigenvectors of M.

We have the Courant-Fischer formula for generalized Rayleigh quotient:

λk = min
dim(W̃)=k

max
x̃∈W̃ , x̃6=0

RM(x̃)

= min
dim(W̃)=k

max
x̃∈W̃ , x̃6=0

x̃TN−1/2MN−1/2x̃

x̃T x̃
.

By substituting x = N−1/2x̃ and W = N−1/2W̃ , we have

λk = min
dim(W)=k

max
x∈W,x6=0

xTMx

(N1/2x)TN1/2x

= min
dim(W)=k

max
x∈W,x6=0

xTMx

xTNx

= min
dim(W)=k

max
x∈W,x6=0

RM,N (x),

and similarly,

λn−k+1 = max
dim(W)=k

max
x∈W,x6=0

RM,N (x).

Let vi = N−1/2ṽi. We call these λi and vi the generalized eigenvalues and eigenvectors

of M with respect to N2. Note that vi are also the (right) eigenvectors of N−1M with

2Do not confuse with the usual definition of generalized eigenvalues and eigenvectors of a single
matrix M , which satisfy the equation (M − λi · In×n)kvi = 0 for some integer k > 0.

11

eigenvalue λi. Equation 2.1 and Equation 2.2 can also be generalized as follows:

λk = min
x̃∈span{ṽ1,ṽ2,...,ṽk−1}⊥, x̃6=0

RM(x̃)

= min
x̃∈Rn, 〈x̃,ṽ1〉=〈x̃,ṽ2〉=···=〈x̃,ṽk−1〉=0, x̃6=0

x̃TN−1/2MN−1/2x̃

x̃T x̃

= min
x=N−1/2x̃∈Rn, 〈x,v1〉N=〈x,v2〉N=···=〈x,vk−1〉N=0, x6=0

xTMx

xTNx

= min
x∈Rn, 〈x,v1〉N=〈x,v2〉N=···=〈x,vk−1〉N=0, x6=0

RM,N (x), (2.3)

and similarly,

λn−k+1 = max
x∈Rn, 〈x,vn〉N=〈x,vn−1〉N=···=〈x,vn−k+2〉N=0, x6=0

RM,N (x). (2.4)

The optimum can be attained by vk and vn−k+1 respectively.

2.1.3 Graph expansions and eigenvalues

Spectral graph theory connects combinatorial graph properties and the spectrum of

matrices naturally associated with the graph. In this subsection, we give definitions and

present basic spectral graph theory.

Definitions

Eigenvectors and eigenvalues of graphs: We label the vertices from 1 to n, or

V = [n]. The adjacency matrix A = A(G) ∈ Rn×n of a graph G is defined such that

A(i, j) = w(i, j) for all i ∈ V , j ∈ V . The degree matrix D = D(G) ∈ Rn×n of a graph

G is a diagonal matrix with A(i, i) = deg(i). The Laplacian matrix L = L(G) is defined

as L = D −A. The normalized adjacency matrix and normalized Laplacian matrix are

defined as A = D−1/2AD−1/2 and L = D−1/2LD−1/2 = In×n−A respectively. Note that

both A and L are real symmetric, and so they have real eigenvalues and eigenvectors.

Let αi and ṽi be the eigenvalues and eigenvectors of A. We assume αi are sorted in

decreasing order, or α1 ≥ α2 ≥ · · · ≥ αn. Note that ṽi are also eigenvectors of L with

corresponding eigenvalues 1−αi. We let λi = 1−αi be these corresponding eigenvalues

and hence they are sorted in increasing order. The spectrum of a graph is defined as the

multiset {λi}ni=1. We let vi = D−1/2ṽi be the generalized eigenvectors of L with respect

to D and call them the eigenvectors of the graph G. Note that 〈vi, vj〉D = 〈ṽi, ṽj〉 and

hence ‖vi‖D = 1. These eigenvectors of the graph will be used frequently throughout

12

the thesis. We remark that vi are (right) eigenvectors of D−1L, satisfying

D−1Lvi = D−1LD−1/2ṽi = D−1/2λiṽi = λivi.

Similarly, (Dvi)
T are left eigenvectors of D−1L, satisfying (Dvi)

TD−1L = λi(Dvi)
T .

Also since D−1LχV = 0, we can always assume v1 = χV /
√

vol(V).

Sweep: The support supp(x) of a vector x ∈ Rn, defined as supp(x) = {i | x(i) 6= 0}, is

the set of positions of non-zeros in x. The level sets of a vector x ∈ Rn are the subsets of

vertices in the form of S>t = {i | x(i) > t} or S<t = {i | x(i) < t} for some t ∈ R. Note

that for any vector x, there are at most 2n level sets. The sweep conductance φsweep(x)

of a vector x is define as

φsweep(x) = min

{
min

t∈R, vol(S>t)≤vol(V)/2
φ(S>t), min

t∈R,vol(S<t)≤vol(V)/2
φ(S<t)

}
.

It is the minimum conductance over all level sets with volume not more than half the

total volume. We use φsweep(G) = φsweep(v2(G)) to denote the minimum conductance

over all level sets of the second eigenvector of G.

Energy: The energy of a vector x ∈ Rn, defined as E(x) =
∑

i∈V, j∈V, i<j w(i, j)(x(i)−
x(j))2, is the weighted squared sum of the difference of their pointwise values. For

1 ≤ i < j ≤ n, let Li,j ∈ Rn×n be the Laplacian matrix of a single edge {i, j}, which

means that Li,j(i, i) = Li,j(j, j) = 1, Li,j(i, j) = Li,j(j, i) = −1, and all the other entries

are zeros. Note that L =
∑

i∈V, j∈V, i<j w(i, j)Li,j and xTLi,jx = (x(i) − x(j))2. Hence

the energy can be written as

E(x) =
∑

i∈V, j∈V, i<j
w(i, j)(x(i)− x(j))2 =

∑

i∈V, j∈V, i<j
w(i, j)xTLi,jx = xTLx. (2.5)

Also, this shows that L is positive semidefinite as w(i, j) ≥ 0.

Rayleigh quotient of graphs: For a weighted graph G = (V,w) with deg(i) > 0 for

all i ∈ V , the Rayleigh quotient RG(x) of a vector x ∈ RV with respect to the graph G

is defined as

RG(x) := RL,D(x) =
xTLx

xTDx
=
E(x)

‖x‖2D
.

The characteristic vector χS ∈ {0, 1}V of the subset S ⊆ V is defined by χS(i) = 1 if

and only if i ∈ S. The Rayleigh quotient of the characteristic vector is equal to the

13

conductance of S:

RG(χS) =
E(χS)

‖χS‖2D
=

w(δ(S))∑
i∈S deg(i)

=
w(δ(S))

vol(S)
= φ(S).

Here E(χS) = w(δ(S)) since the edges contributes to the energy are exactly those across

S and V − S.

Basic results

We end this subsection with several basic properties on the graph spectrum. We assume

the graphs have positive degrees so that the Rayleigh quotients are well defined. First

we bound the range of the spectrum.

Fact 2.1 ([22]). The spectrum of the graph satisfies 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

Proof. By Equation 2.3, we have

λ1 = min
x∈RV

RL,D(x) = min
x∈RV

E(x)

‖x‖2D
≥ 0,

since both E(x) and ‖x‖2D are non-negative. Moreover E(x) = 0 can be attained by

the non-zero constant vector χV . Therefore λ1 = 0. For the upperbound λn ≤ 2, we

consider the matrix N = In×n+A instead. Let β1 ≥ β2 ≥ · · · ≥ βn be the eigenvalues of

N . Note that βi = 2−λi for all i since N = 2In×n−L. Since N = D−1/2(D+A)D−1/2,

by Equation 2.4, we have

βn = min
x∈RV

RD+A,D(x)

= min
x∈RV

xT (D +A)x

xTDx

= min
x∈RV

∑
i∈V,j∈V,i<j w(i, j)(x(i) + x(j))2

xTDx

≥ 0,

where the last equality holds by similar argument as Equation 2.5. Hence we have

λn = 2− βn ≤ 2.

We can check the connectivity of a graph by examining its spectrum.

Fact 2.2 ([22]). A graph G is disconnected if and only if λ2 = 0.

14

Proof. We first show that G is disconnected implies λ2 = 0. If G is disconnected, then

there exists a non-empty proper subset S ⊂ V such that w(δ(S)) = 0. Consider the

vector space W ∗ = span{χS , χV−S}. Since S is a non-empty proper subset, dim(W) = 2.

For any vector x ∈W ∗,

E(x) =
∑

i∈V,j∈V,i<j
w(i, j)(x(i)− x(j))2

=
∑

i∈S,j∈S,i<j
w(i, j)(x(i)− x(j))2 +

∑

i∈V−S,j∈V−S,i<j
w(i, j)(x(i)− x(j))2

= 0,

where the second equality holds since w(i, j) = 0 if i and j are on different sides, and

the last equality holds since x(i) = x(j) if i and j are on the same side. By the Courant-

Fischer formula,

λ2 = min
dim(W)=2

max
x∈W,x6=0

RL,D(x) ≤ max
x∈W ∗,x6=0

E(x)

‖x‖2D
= 0.

Since λ2 ≥ λ1 = 0, we have λ2 = 0.

Next we show that λ2 = 0 implies G is disconnected. Suppose to the contrary that

G is connected. Then we will see that E(x) = 0 implies x(i) = x(j) for any i ∈ V , j ∈ V .

Otherwise, we consider any path (u0 = i, u1, . . . , uk = j) and find the first t such that

x(ut−1) 6= x(ut). The edge {ut−1, ut} contributes strictly positive energy to E(x) and

violates our assumption that E(x) = 0. Hence E(x) = 0 if and only if x = cχV for some

constant c. Let W ∗ be the subspace attaining the minimum in the Courant-Fischer

formula λ2 = mindim(W)=2 maxx∈W,x6=0RL,D(x). Since dim(W ∗) = 2 and hence W ∗

contains a vector x 6= cχV , we conclude that

λ2 = max
x∈W ∗, x6=0

E(x)

‖x‖2D
> 0.

We remark that the same argument can be extended to show that G has at least k

connected components if and only if λk = 0.

Next we present a lower bound on the conductance by the second smallest eigenvalue

of G. This is the easy side of Cheeger’s inequality.

Fact 2.3 ([4]). We have λ2/2 ≤ φ(G).

15

Proof. Let vi be the eigenvectors of G. Note that v1 can be chosen as χV /
√

vol(V) with

λ1 = 0, since E(χV) = 0. Here the
√

vol(V) is a normalizing term so that ‖v1‖D = 1.

By Equation 2.3, we have

λ2 = min
x∈Rn,〈x,v1〉D,x6=0

xTLx

xTDx
= min

x∈Rn,
∑
i∈V deg(i)x(i)=0,x6=0

xTLx

xTDx
.

Now let S be the set such that vol(S) ≤ vol(V)/2 and φ(S) = φ(G), and let

x = χS − 〈χS , v1〉Dv1 = χS −
〈χS , χV 〉D

vol(V)
χV = χS −

vol(S)

vol(V)
χV .

Then 〈x, v1〉D = 0 and hence

λ2 ≤
xTLx

xTDx
.

Note that x only has two values: x(i) = 1 − vol(S)/ vol(V) when i ∈ S and x(i) =

− vol(S)/ vol(V) otherwise. Since x(i)− x(j) = 0 if {i, j} 6∈ δ(S) and x(i)− x(j) = ±1

otherwise, we have

xTLx =
∑

i∈V,j∈V,i<j
w(i, j)(x(i)− x(j))2 =

∑

e∈δ(S)

w(e) = w(δ(S)),

On the other hand,

xTDx =
∑

i∈V
deg(i)x(i)2

=
∑

i∈S
deg(i)

(
1− vol(S)

vol(V)

)2

+
∑

i∈V−S
deg(i)

(
vol(S)

vol(V)

)2

=
vol(S)(vol(V)− vol(S))2 + vol(V − S) vol(S)2

vol(V)2

=
vol(S) vol(V − S)

vol(V)

≥ vol(S)

2
,

where the last inequality holds since vol(V − S) = vol(V) − vol(S) ≥ vol(V)/2. Com-

bining the inequalities, we have

λ2 ≤
xTLx

xTDx
≤ w(δ(S))

vol(S)/2
= 2φ(S).

16

This completes the proof.

Finally, we show that λk have to be small if we have k disjointly supported vectors,

each with small Rayleigh quotient.

Lemma 2.1 ([43]). Suppose x1, x2, . . . , xk are vectors in RV such that supp(xi) ∩
supp(xj) = ∅ for any i 6= j, then

λk ≤ 2 max
i∈[k]
RG(xi).

Proof. By the Courant-Fischer formula,

λk = min
dim(W)=k

max
x∈W,x6=0

RG(x) ≤ max
x∈span{x1,x2,...,xk},x6=0

RG(x).

We will show that for any x =
∑k

i=1 cixi ∈ span{x1, x2, . . . , xk},RG(x) ≤ 2 maxi∈[k]RG(xi).

This would complete the proof by the formula.

First we show that for any pair of vertices u and v,

(x(u)− x(v))2 ≤ 2

k∑

i=1

(ci(xi(u)− xi(v)))2

Note that xi(u) 6= 0 for at most one i since xi are disjointly supported. Suppose

u ∈ supp(xi) and v ∈ supp(xj) for some i 6= j, then

(x(u)− x(v))2 = (cixi(u)− cjxj(v))2

≤ 2(cixi(u))2 + 2(cjxj(v))2

= 2(ci(xi(u)− xi(v)))2 + 2(cj(xj(u)− xj(v)))2

= 2
k∑

i=1

(ci(xi(u)− xi(v)))2.

The remaining case is when there is an i such that xj(u) = xj(v) = 0 for any j 6= i.

Therefore,

(x(u)− x(v))2 = (ci(xi(u)− xi(v)))2 ≤ 2
k∑

i=1

(ci(xi(u)− xi(v)))2.

17

Now we have

E(x) =
∑

u∈V,v∈V,u<v
w(u, v)(x(u)− x(v))2

≤ 2
∑

u∈V,v∈V,u<v
w(u, v)

k∑

i=1

(ci(xi(u)− xi(v)))2

= 2

k∑

i=1

c2
i E(xi).

Also

‖x‖2D =
∑

u∈V
deg(u)x(u)2 =

k∑

i=1

c2
i

∑

u∈V
deg(u)xi(u)2 =

k∑

i=1

c2
i ‖xi‖2D,

where the second last equality holds since xi are disjointly supported. Therefore,

RG(x) =
E(x)

‖x‖2D
≤ 2

∑k
i=1 c

2
i E(xi)∑k

i=1 c
2
i ‖xi‖2D

≤ 2 max
i∈[k]

E(xi)

‖xi‖2D
= 2 max

i∈[k]
R(xi).

The last inequality holds by an averaging argument: for any ai ∈ R, bi ∈ R>0 and

pi ∈ R≥0, ∑
i piai∑
i pibi

≤ max
i

ai
bi
.

This is because

(
∑

i

pibi)

(
max
i

ai
bi

)
≥
∑

i

pibi
ai
bi

=
∑

i

piai.

We remark that Lemma 2.1 actually deduces Fact 2.3 easily. For any S with vol(S) ≤
vol(V)/2, since χS and χV−S are disjointly supported, we have

λ2 ≤ 2 max{R(χS),R(χV−S)} = 2 max{φ(S), φ(V − S)} = 2φ(S).

Fact 2.3 is then obtained by minimizing over all sets S with vol(S) ≤ vol(V)/2. By the

same argument we can prove the easy side of higher order Cheeger’s inequality, which

states that
λk
2
≤ φk(G).

Suppose φk is attained by the disjoint subsets S1, S2, . . . , Sk, since χSi are disjointly

18

supported, we have

λk ≤ 2
k

max
i=1
{R(χSi)} ≤ 2

k
max
i=1

φ(Si) = 2φk(G).

2.1.4 Notation conventions

In this subsection, we introduce our notation conventions in this thesis.

Graphs: The graphs we consider are weighted undirected graphs and the degree of

every vertex is strictly positive. Positive degrees are required so that the generalized

Rayleigh quotient is well defined. We use G to denote a graph, V and E to denote

a vertex set and an edge set respectively, and w to denote a weight function. We use

n = |V | and m = |E| to denote the numbers of vertices and edges respectively.

Matrices: We use D, A, L, A and L to denote a degree matrix, an adjacency matrix,

a Laplacian matrix, a normalized adjacency matrix and a normalized Laplacian matrix

respectively. When dealing with multiple graphs, we use AG or A(G) to specify which

graph we are referring to. The same convention apply to all notations that depends on

a graph. If the graph we are referring to is clear from context, we will omit the symbol

G.

Eigenvectors and eigenvalues: We use αi and λi to denote the eigenvalues of

A and L respectively. αi is always sorted in decreasing order and λi is always sorted

in increasing order. We use ṽi to denote the common eigenvectors of A and L, and

vi = D−1/2ṽi to denote the common eigenvectors of D−1A and D−1L.

Vectors: We use x, y, z to denote column vectors in RV , and f , g to denote functions

with continuous domain. We use x(i) to denote the i-th element in the vector x. Note

that xi would be the i-th vector in a collection of vectors instead.

Norms: When dealing with generalized Rayleigh quotient, it is common that the

vectors are naturally adapted with either the inner product 〈·, ·〉2 or the inner product

〈·, ·〉D. We use x̃ to denote a vector which is naturally adapted with 〈·, ·〉2 and x to

denote a vector which is adapted with 〈·, ·〉D.

2.2 Cheeger’s inequality

Fact 2.2 states that a graph is disconnected if and only if λ2 = 0. Cheeger’s inequality

gives a robust version of this statement, stating that the conductance of a graph is small

if and only if λ2 is small.

19

Theorem 2.1 ([4]). For any graphs G, we have

λ2

2
≤ φ(G) ≤

√
2λ2

The left inequality is usually called the easy direction of Cheeger’s inequality, and

we have already proven it in Fact 2.3. The right inequality is usually called the hard

direction. It can be proved by explicitly constructing a set S with vol(S) ≤ vol(V)/2

and φ(S) ≤
√

2λ2. One simple way to construct such a set is by the spectral partitioning

algorithm.

In this section, we first describe the spectral partitioning algorithm in Subsec-

tion 2.2.1. Then we prove Cheeger’s inequality in Subsection 2.2.2. Finally we show

some examples to demonstrate when Cheeger’s inequality gives a tight bound in Sub-

section 2.2.3.

2.2.1 Spectral partitioning algorithm

In this subsection, we discuss the spectral partitioning algorithm. The algorithm is

stated in Algorithm 1.

Algorithm 1: Spectral partitioning algorithm

Input: A graph G = (V,w) and the second eigenvector v2 of G
Output: A subset of vertices S ⊆ V with vol(S) ≤ vol(V)/2 and φ(S) ≤

√
2λ2.

1 Sort the vertices so that v2(u1) ≤ v2(u2) ≤ · · · ≤ v2(un);
2 For k = 1, 2, . . . , n, set Sk = {u1, u2, . . . uk} and Tk = {uk, uk+1, . . . , un};
3 Return argminS=Sk or S=Tk,vol(S)≤vol(V)/2 φ(S);

The algorithm clearly returns a set S with vol(S) ≤ vol(V)/2, and we shall prove

in Subsection 2.2.2 that φ(S) ≤
√

2λ2. Now we analyze the runtime of the algorithm.

Suppose we are given the second eigenvector v2. Sorting the vertices costs O(n log n)

operations. Note that w(δ(Si)) can be computed incrementally. Computing w(δ(Si))

from w(δ(Si−1)) only needs the information on the edges incident at ui, and thus costs

O(|{uj | w(ui, uj) > 0}|) if the graph is input by the adjacency list. So the total number

of operations to compute w(δ(Si)) for all i is O(m). Similar argument holds for com-

puting w(δ(Ti)), vol(Si) and vol(Ti). Therefore the total runtime after the computation

of the second eigenvector is O(m+ n log n) = Õ(m).

In general we are not able to compute the exact second eigenvector v2, as the entries

may contain irrational numbers. Instead we compute an approximation x in the sense

that 〈x, v1〉D = 0 and RG(x) ≈ λ2. The performance guarantee of the algorithm also

20

becomes φ(S) ≤
√

2RG(x) instead of φ(S) ≤
√

2λ2. Note that even if we cannot

compute the exact eigenvector v2, the inequality φ(G) ≤
√

2λ2 still holds, as we know

the existence of v2.

In the following, we demonstrate the power method which gives a 1−ε approximation

in finding the maximum eigenvalue of a positive semidefinite matrix. Then we will use

it to find an approximate second eigenvector of L.

Proposition 2.1. Let M ∈ Rn×n be a positive semidefinite matrix. Let nnz(M) be

the number of non-zeros in a matrix M and let α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 be the

eigenvalues of M . There exists an O(nnz(M) log n/ε) randomized algorithm that takes

M and an error parameter ε as input and with probability Ω(1) outputs a vector x such

that RM (x) ≥ (1− ε)α1.

Proof. The algorithm starts with a uniform random vector y ∈ Sn−1, which means that

y ∈ Rn and ‖y‖ = 1. This can be done by choosing each coordinate of y independently

with the Gaussian distribution and then rescaling y to unit length. Then we simply

output x = M ty, where t = dlog n/(2ε)e. Note that Mx can be computed in O(nnz(M))

operations, and hence the runtime of the above process is O(nnz(M) log n/ε).

Suppose y =
∑n

i=1 ciui where ui are the eigenvectors of M . It is known that with

probability at least Ω(1), we have c2
1 ≥ 1/n. We shall show that whenever this happens,

the output vector x satisfies RM (x) ≥ (1− ε)α1. Note that

RM (x) =
xTMx

xTx
=
yTM2t+1y

yTM2ty
=

∑n
i=1 c

2
iα

2t+1
i∑n

i=1 c
2
iα

2t
i

.

Since
∑n

i=1 c
2
i = ‖y‖2 = 1, by the power mean inequality3, we have

(
n∑

i=1

c2
iα

2t+1
i

) 1
2t+1

≥
(

n∑

i=1

c2
iα

2t
i

) 1
2t

.

Therefore ∑n
i=1 c

2
iα

2t+1
i∑n

i=1 c
2
iα

2t
i

≥
(

n∑

i=1

c2
iα

2t
i

) 1
2t

≥ |c1|1/tα1.

Since c2
1 ≥ 1/n and t ≥ log n/(2ε), we have

|c1|1/t ≥ n−1/(2t) ≥ exp(− log n
ε

log n
) = exp(−ε) ≥ 1− ε.

3The power mean inequality states that for any non-negative random variableX, E[Xp]1/p ≥ E[Xq]1/q

for any p ≥ q.

21

This completes the proof.

We remark that when the largest k eigenvectors are known, the power method can

be applied to find a vector x which is orthogonal to v1, · · · , vk and RM (x) ≥ (1− ε)αk+1

in O(kn + nnz(M) log n/ε) time. The proof is the same as Proposition 2.1 except that

we first remove the components of the first k largest eigenvectors in the starting vector

y in O(kn) time.

There is an easy way to use power method to additively approximate the second

eigenvector of a graph G. Since the smallest eigenvector of L(G) is known to be

ṽ1 = D1/2χV /
√

vol(V), we can apply Proposition 2.1 to compute the second largest

eigenvector of the matrix 2In×n − L(G) and get an approximate vector x̃ ⊥ ṽ1 with

R2In×n−L(G)(x̃) ≥ (1−ε)(2−λ2(G)) ≥ 2−λ2(G)−2ε. Therefore, RL(G)(x̃) ≤ λ2(G)+2ε.

Let x = D−1/2x̃, we have 〈x, v1〉D = 0 and RG(x) = RL(G)(x̃) ≤ λ2(G) + 2ε. The total

runtime of this process is O(m log n/ε). This approach gives an additive approximation

and is good when λ2 is large.

To get a multiplicative (1 + ε)-approximation, we need to set the additive error

to be ελ2. Hence the runtime would become O(m log n/(ελ2)), having an undesirable

dependence on λ2. It is possible to get rid of the dependence of λ2, and get a 1 +

ε approximation in nearly linear time, using the Laplacian solvers. We consider the

pseudo-inverse L+ :=
∑

i:λi 6=0(1/λi)ṽiṽ
T
i instead of 2In×n − L. The eigenbasis of L+ is

the same as that of L and the corresponding eigenvalue of v2 becomes 1/λ2, which is

the largest among the spectrum of L+. Now the power method requires us to compute

L+b̃, which is equivalent to solving the linear system Lx̃ = b̃. Spielman and Teng solved

this problem approximately in [68] and obtained the following result.

Theorem 2.2 ([68]). For any Laplacian matrix L ∈ Rn×n, there is a matrix Z ∈ Rn×n

such that

(1− ε)Z+ � L � (1 + ε)Z+.

Moreover for any vector b we can compute Zb in expected time O(m(log n)c log(1/ε)) for

some absolute constant c.

We should view the matrix Z as an approximation of the pseudo-inverse L+. Com-

bining this theorem and the power method, Spielman and Teng are able to find a good

approximation of the second eigenvector of G quickly. In the following, we give an

alternate simpler proof of the following theorem.

22

Theorem 2.3 ([68]). Given a graph G and an error parameter ε < 1/4, we can output

with probability Ω(1) an approximate second vector x such that 〈x, v1〉D = 0 and RG(x) ≤
(1 + 4ε)λ2 in time O(m(log n)c log(1/ε)/ε) for some absolute constant c.

Proof. The result is trivial when G is disconnected. So in the following we assume G is

connected and thus λ2 > 0.

Let Z be the matrix obtained in Theorem 2.2 and Z = D1/2ZD1/2. Since L =

D−1/2LD−1/2 and Z+ = D−1/2Z+D−1/2, we have

(1− ε)Z+ � L � (1 + ε)Z+.

Clearly Zb can also be computed in O(m(log n)c log(1/ε)) expected time for some abso-

lute constant c.

Let αi and ui be the eigenvalues and eigenvectors of Z with α1 ≥ α2 ≥ · · · ≥ αn = 0.

Note that we have (1− ε)α−1
1 ≤ λ2 since (1− ε)Z+ � L. Similar to the argument in the

proof of Proposition 2.1, we choose a uniformly random unit vector y with y ⊥ un =

y ⊥ ṽ1 = 0 and let x̃ = Zty, where t = dlog n/(2ε)e. Suppose y =
∑n−1

i=1 ciui. With

probability Ω(1) we have c2
1 ≥ 1/n and we assume this happens in the following analysis.

Note that

RZ+(x̃) =
x̃TZ+x̃

x̃T x̃
=
yTZtZ+Zty
yTZ2ty

=
yTZ2t−1y

yTZ2ty
=

∑n−1
i=1 c

2
iα

2t−1
i∑n−1

i=1 c
2
iα

2t
i

.

By the power mean inequality, we have

(
n−1∑

i=1

c2
iα

2t−1
i

) 1
2t−1

≤
(
n−1∑

i=1

c2
iα

2t
i

) 1
2t

.

Therefore
∑n−1

i=1 c
2
iα

2t−1
i∑n−1

i=1 c
2
iα

2t
i

≤
(
n−1∑

i=1

c2
iα

2t
i

)− 1
2t

≤ |c1|−
1
t α−1

1 .

Since c2
1 ≥ 1/n and t ≥ log n/(2ε), we have

|c1|−1/t ≤ n1/(2t) ≤ exp(log n
ε

log n
) =

1

exp(−ε) ≤
1

1− ε .

Also α−1
1 ≤ λ2/(1− ε). So we have RZ+(x̃) ≤ λ2/(1− ε)2. Finally, since L � (1 + ε)Z+,

we have

RL(x̃) ≤ (1 + ε)RZ+(x̃) ≤ (1 + ε)λ2/(1− ε)2 ≤ (1 + 4ε)λ2.

23

Let x = D−1/2x̃ and we have 〈x, v1〉D = 0 and RG(x) = RL(x̃) ≤ (1 + 4ε)λ2. This

completes the proof.

2.2.2 Proof of Cheeger’s inequality

In this subsection, we prove the performance of Algorithm 1. The proof consists of two

parts. We first show that given an approximation of the second eigenvector, we can

construct a vector x such that vol(supp(x)) ≤ vol(V)/2 without increasing the Rayleigh

quotient, and every level set of x is also a level set of the approximate second eigenvector.

Then we show that one of the level sets of x has small conductance.

Constructing vectors with small support size

We can construct a vector with small support by simply truncating the vector.

Lemma 2.2 ([34]). For a graph G and its second eigenvector v2, let v+
2 = max{v2, 0}

and v−2 = max{−v2, 0}. We have RG(v+
2) ≤ λ2 and RG(v−2) ≤ λ2. Therefore either

x = v+
2 or x = v−2 satisfies vol(supp(x)) ≤ vol(V)/2 and RG(x) ≤ λ2.

Proof. We would like to show that

xTLx

xTDx
≤ λ2.

Note that for any vertex i,

(Lv+
2)(i) =

∑

j∈V
w(i, j)(1− v+

2 (j)) ≤
∑

j∈V
w(i, j)(1− v2(j)) = (Lv2)(i).

Since v2 is a (right) eigenvector of D−1L with eigenvalue λ2, we have Lv2 = λ2Dv2, and

thus

(Lv2)(i) = deg(i)λ2v2(i).

24

Therefore

v+
2
T
Lv+

2 =
∑

i∈V
v+

2 (i)(Lv+
2)(i)

≤
∑

i∈V,v2(i)>0

v2(i)(Lv2)(i)

=
∑

i∈V,v2(i)>0

deg(i)λ2v2(i)2

= λ2v
+
2
T
Dv+

2 .

This shows that RG(v+
2) ≤ λ2. Applying the same argument to −v2, we have RG(v−2) ≤

λ2.

The above argument only works when we are considering the exact second eigenvec-

tor. In the following, we present a more general approach to truncate a vector to obtain

a vector with small Rayleigh quotient and small support.

Lemma 2.3. For a graph G and a non-zero vector x such that 〈x, v1〉D = 0, let

xt = x − tχV , x+
t = max(xt, 0) and x−t = max(−xt, 0) for any t ∈ R. Then we

have either RG(x+
t) ≤ RG(x) or RG(x−t) ≤ RG(x). Therefore, by choosing t such that

supp(x+
t) ≤ vol(V)/2 and supp(x−t) ≤ vol(V)/2, we have either y = x+

t or y = x−t
satisfying vol(supp(y)) ≤ vol(V)/2 and RG(y) ≤ RG(x).

Proof. First note that

xTt Lxt = (x− tχV)TL(x− tχV) = xTLx,

and

xTt Dxt = (x− tχV)TD(x− tχV)

= xTDx− 2t〈x, χV 〉D + t2‖χV ‖2D
= xTDx+ t2‖χV ‖2D
≥ xTDx,

where 〈x, χV 〉D = 0 since v1 = cχV for some non-zero constant c and we assume that

〈x, χV 〉D = 0. Hence we have RG(xt) ≤ RG(x).

For any edge {i, j}, if xt(i) and xt(j) are of the same sign, then

(xt(i)− xt(j))2 = (x+
t (i)− x+

t (j))2 + (x−t (i)− x−t (j))2.

25

Otherwise if xt(i) and xt(j) are of different sign, then

(xt(i)− xt(j))2 ≥ xt(i)2 + xt(j)
2 = (x+

t (i)− x+
t (j))2 + (x−t (i)− x−t (j))2.

In any case we have xTt Lxt ≥ x+
t
T
Lx+

t + x−t
T
Lx−t . On the other hand xTt Dxt =∑

i∈V deg(i)xt(i)
2 = x+

t
T
Dx+

t + x−t
T
Dx−t . Hence we have

RG(x) ≥ RG(xt) =
xTt Lxt

xTt Dxt
≥ x+

t
T
Lx+

t + x−t
T
Lx−t

x+
t
T
Dx+

t + x−t
T
Dx−t

≥ min{RG(x+
t),RG(x−t)}.

We almost complete the proof, except for a subtle issue. One of the x+
t or x−t may be

a zero vector, where the Rayleigh quotient is not defined. If x−t = 0, then x+
t = xt and

thus RG(x) ≥ RG(x+
t). Similarly if x+

t = 0, then RG(x) ≥ RG(x−t). This completes the

proof.

We remark that every level set of x+
t or x−t is also a level set of x. Therefore in order

to show that Algorithm 1 outputs a set of small conductance, it suffices to show that

one of the level sets of x+
t or x−t has small conductance.

Random thresholding argument

There are multiple ways to prove Cheeger’s inequality. Here we present a proof based

on a random thresholding argument by Trevisan.

Theorem 2.4 ([74]). Suppose x is a non-negative non-zero vector, then for some positive

t ∈ R>0, the level set St = {i | x(i) ≥ t} of x satisfies φ(St) ≤
√

2RG(x). Since t > 0,

we also have St ⊆ supp(x).

Proof. We choose the level set St by randomly choosing a value t with probability

proportional to its distance to 0. Let M = maxi∈V x(i) and C =
∫M

0 tdt = M2/2.

Let µ : [0,M] → R satisfying µ(t) = t/C be a probability distribution over [0,M].

We analyze the conductance of the set St when t is randomly chosen following this

distribution.

26

The expected cut value of St is

Et∼µ[w(δ(St))] =
∑

i∈V,j∈V
w(i, j)Pt∼µ[i ∈ St, j 6∈ St]

=
∑

i∈V,j∈V,x(i)>x(j)

w(i, j)

∫ x(i)

x(j)
µ(t)dt

=
1

2C

∑

i∈V,j∈V,x(i)<x(j)

w(i, j)(x(i)2 − x(j)2)

=
1

2C

∑

i∈V,j∈V,i<j
w(i, j)|x(i)2 − x(j)2|

≤ 1

2C

√ ∑

i∈V,j∈V,i<j
w(i, j)(x(i)− x(j))2

∑

i∈V,j∈V,i<j
w(i, j)(x(i) + x(j))2

≤ 1

2C

√
E(x)

∑

i∈V,j∈V,i<j
w(i, j)2(x(i)2 + x(j)2)

=

√
2

2C

√
E(x)

∑

i∈V
deg(i)x(i)2

=

√
2‖x‖D
2C

√
E(x),

where the first inequality is due to Cauchy-Schwarz inequality.

On the other hand, the expected volume of St is

Et∼µ[vol(St)] =
∑

i∈V
deg(i)Pt∼µ[i ∈ St]

=
∑

i∈V
deg(i)

∫ x(i)

0
µ(t)dt

=
1

2C

∑

i∈V
deg(i)x(i)2

=
‖x‖2D
2C

.

Now suppose to the contrary that every level set St satisfies φ(S) = δ(S)/ vol(S) >√
2RG(x). Then Et∼µ[w(δ(S))−

√
2RG(x) vol(S)] > 0. However we have shown that

Et∼µ[w(δ(S))−
√

2RG(x) vol(S)] ≤
√

2‖x‖D
2C

√
E(x)−

√
2RG(x)

‖x‖2D
2C

= 0.

27

This concludes that there exists a level set St satisfying φ(S) ≤
√

2RG(x).

Finally we are ready to prove Cheeger’s inequality.

Proof of Theorem 2.1. The easy direction is proven in Fact 2.3. By Lemma 2.3 and

Theorem 2.4, when given the second eigenvector, Algorithm 1 outputs a set S such that

φ(S) ≤
√

2λ2. Therefore φ(G) ≤ φ(S) ≤
√

2λ2. This completes the proof.

2.2.3 Examples

In this subsection, we give several types of graphs which demonstrate when the spectral

partitioning algorithm performs well or badly.

Cycles

We use the cycles to demonstrate that the hard side of Cheeger’s inequality is tight.

An n-cycle Cn = (V,E) is an unweighted graph with n vertices such that V = [n] and

{i, j} ∈ E if and only if i− j ≡ ±1 (mod n). For any non-empty proper subset S ⊂ V ,

w(δ(S)) ≥ 2. Therefore

φ(G) = min
S⊆V,vol(S)≤vol(V)/2

w(δ(S))

vol(S)
≥ 4

vol(V)
=

2

n
.

On the other hand, the eigenvalues of L(G) are 1 − cos(2kπ/n) with corresponding

(non-unit) eigenvectors (1, cos(2kπ/n), cos(4kπ/n), . . . , cos(2(n − 1)kπ/n)). Note that

1− cos(2kπ/n) = Θ(k2/n2) as n→∞ and thus λ2 = Θ(1/n2). So we have

φ(G) ≥ 2

n
= Θ(

√
λ2)

This shows that the hard side of Cheeger’s inequality is tight up to a constant factor.

Note that although this analysis shows that λ2 is a bad approximation of φ, the

spectral partitioning algorithm actually works well in this example. The cut given by

the algorithm has conductance O(1/n), which matches the conductance of the graph.

Hypercubes

We use the hypercubes to demonstrate that the easy side of Cheeger’s inequality is

tight. For k ∈ N, the k-dimensional hypercube Hk = (V,E) is an unweighted graph

with n = 2k vertices such that V = {0, 1}k and {u, v} ∈ E if and only if u and v

differ in exactly one coordinate. The dimension cuts Si = {u ∈ V | u(i) = 0} satisfies

28

w(δ(Si)) = 2k−1 and vol(Si) = k2k−1, and hence φ(Si) = 1/k. We will see later that

φ(Hk) = φ(Si). Now we construct an eigenbasis of Hk. For any k-bit string a ∈ {0, 1}k,
the (non-unit) vector va ∈ RV is defined by va(u) = (−1)

∑k
i=1 a(i)u(i). These vectors

are orthogonal to each other and satisfies Lva = λava where λa = (2/k)
∑k

i=1 a(i).

Therefore λ2 = 2/k with corresponding (non-unit) eigenvectors va where a(i) = 1 for

exactly one index i. By the easy side of Cheeger’s inequality we have λ2/2 ≤ φ(Hk).

Therefore φ(Hk) ≥ 1/k = φ(Si) ≥ φ(Hk) and all the inequalities must be equalities. So

φ(Hk) = φ(Si) and the easy side of Cheeger’s inequality is tight.

Note that in this example while λ2 gives a good approximation of φ, the spec-

tral partitioning algorithm can give a bad cut. The vector v =
∑k

i=1 vei is an sec-

ond eigenvector satisfying Lv =
∑k

i=1 Lvei = (2/k)
∑k

i=1 vei = (2/k)v. Suppose in

the spectral partitioning algorithm we are given v and we consider the level sets of

v. Since v(u) =
∑k

i=1 vei(u) =
∑k

i=1(−1)u(i), the level sets are of the form {u ∈
V | ∑k

i=1 u(i) ≤ t}. Among these sets, the set S of smallest conductance is when

t = bk/2c, with w(δ(S)) =
(
k
t

)
(k − t) = Θ(

√
k2k) and vol(S) = k

∑t
i=1

(
k
t

)
= Θ(k2k).

Hence φ(S) = Θ(1/
√
k) = Θ(

√
λ2).

Ladder graphs

We use the ladder graphs to demonstrate that the spectral partitioning algorithm can

give a set of conductance Ω(n) larger than the optimal set. For k ∈ N and ε ∈ (0, 1),

the (k, ε) ladder graph G = (V,w) is an weighted graph with n = 2k vertices. First we

construct two unweighted k-cycles Ck and C ′k with vertex sets V (Ck) = {1, 2, . . . , k} and

V (C ′k) = {1′, 2′, . . . , k′} respectively. Then we connect the two sets of vertices with a

matching of weight ε, by letting w(i, i′) = ε for all i = 1, 2, . . . , k. This is the construction

of the (k, ε) ladder graph. In the following, we set ε = 100/k2 and k to be sufficiently

large.

For any non-empty proper subset S ⊂ V , δ(S) ≥ min(1, εk) = 100/k. This is because

if we do not cut through any edges in the cycle, which have unit weight, then we have

to cut through all the k edges in the ε matching. Therefore

φ(G) ≥ 100/k

vol(V)/2
= Θ(1/k2),

and this can be attained by S = V (Ck).

On the other hand, we want to show that φsweep = Ω(1/k) and conclude that the

spectral partitioning algorithm can give a set of conductance Ω(n) larger. We will see

29

that there is a second eigenvector such that v2(i) = v2(i′) for any i = 1, . . . , k, and

hence the spectral partitioning algorithm does not separate i and i′. Suppose x is an

eigenvector of L(Ck) with eigenvalue λ, then we can use it to construct two eigenvectors

of G. The vector y ∈ RV defined by y(i) = y(i′) = x(i) satisfies

(L(G)y)(i) =
1

2 + ε
(L(G)y)(i)

=
1

2 + ε
(deg(i)y(i)− y(i− 1)− y(i+ 1)− εy(i′))

=
1

2 + ε
((2 + ε)x(i)− x(i− 1)− x(i+ 1)− εx(i))

=
1

2 + ε
(L(Ck)x)(i)

=
2

2 + ε
(L(Ck)x)(i)

=
2

2 + ε
λx(i)

=
2

2 + ε
λy(i),

where we denote x(0) = x(n) and y(0) = y(n). By the same argument the equation also

holds for i′. Therefore y is an eigenvector of L(G) with eigenvalue 2λ/(2 + ε). Similarly

the vector z ∈ RV defined by z(i) = −z(i′) = x(i) satisfies

(L(G)z)(i) =
1

2 + ε
((2 + ε)x(i)− x(i− 1)− x(i+ 1) + εx(i)) = (

2

2 + ε
λ+

2ε

2 + ε
)z(i),

and z is an eigenvector of L(G) with eigenvalue 2(λ+ε)/(2+ε). Each vi in the eigenbasis

of L(Ck) produces two eigenvectors yi and zi of L(G) and they are all orthogonal to each

other. These vectors yi and zi form an eigenbasis of L(G). Now the second eigenvector of

G is produced by either v1(Ck) or v2(Ck). Therefore λ2(G) = 2λ2(Ck)/(2+ε) or 2ε/(2+

ε), whichever is smaller. Since λ2(Ck) = 1 − cos(2π/k) ≤ 2π2/k2 and ε = 100/k2, we

conclude that λ2(G) = 2λ2(Ck)/(2+ε) with corresponding eigenvector y ∈ RV satisfying

y(i) = y(i′) = v2(Ck)(i). This shows that in the spectral partitioning algorithm, i and

i′ cannot be separated. Thus none of the ε edges are cut and the set S output satisfies

w(δ(S)) ≥ 1. So we conclude φsweep = Ω(1/k).

30

Geometric weighted paths4

We use the geometric weighted paths to demonstrate that the constant in the hard side

of Cheeger’s inequality is tight. For k ∈ N and r ∈ (0, 1), the (k, r) weighted path is a

weighted graph with n = 2k + 1 vertices. We label the vertices by −k,−k + 1, . . . , k.

For i = 0, 1, . . . , k− 1, we add edges with weight ri to the pairs of vertices {i, i+ 1} and

{−i,−(i+ 1)}. We also add self loops with weight 2rk/(1− r) = 2(rk + rk+1 + . . .) to

the vertices k and −k. For i ≥ 0, let Si = {i+ 1, . . . , k}. The self loops are added such

that whenever we cut an edge, the conductance is always the same:

φ(Si) =
ri

ri + 2ri+1 + · · ·+ 2rk−1 + 2rk/(1− r) =
1

1 + 2r/(1− r) =
1− r
1 + r

.

These cuts are the ones attaining minimum conductance. First we note that an optimal

cut S of the graph can be assumed to be connected, since otherwise the best connected

component has conductance not larger than S. Therefore by considering V − S if

necessary, we conclude that the optimal conductance is attained by Si.

Now we shall upper bound λ2 in order to show that the hard side of Cheeger’s

inequality is tight. To do so we only need to construct a vector x ∈ RV such that

〈x, v1〉D = 0 and RG(x) is small. Let x be defined by

x(i) =

0 if i = 0,

r(k−i)/2 if i > 0,

−r(k+i)/2 if i < 0.

By symmetry we have 〈x, v1〉D = 0. The energy is

E(x) = 2

k−1∑

i=0

w(i, i+ 1)(x(i)− x(i+ 1))2

= 2

(
rk−1 +

k−1∑

i=1

ri(r(k−i)/2 − r(k−i−1)/2)2

)

= 2

(
rk−1 +

k−1∑

i=1

rirk−i(1− r−1/2)2

)

= 2
(
rk−1 + (k − 1)rk(1− r−1/2)2

)
,

4These graphs are provided by Yin Tat Lee, who views them as the discrete versions of the tight
examples in the manifold settings.

31

and the squared D-norm is

‖x‖2D =

k∑

i=−k
deg(i)x(i)2

= 2

(
k−1∑

i=1

(ri−1 + ri)rk−i +

(
rk−1 +

2rk

1− r

))

= 2

(
(k − 1)rk(r−1 + 1) + rk−1 +

2rk

1− r

)
.

Hence the Rayleigh quotient is

RG(x) =
E(x)

‖x‖2D

=
2(rk−1 + (k − 1)rk(1− r−1/2)2)

2((k − 1)rk(r−1 + 1) + rk−1 + 2rk/(1− r))

=
rk−1/(k − 1) + rk(1− r−1/2)2

rk(r−1 + 1) + (rk−1 + 2rk/(1− r))/(k − 1)

→ (1− r−1/2)2

r−1 + 1
as k →∞

=
(1− r1/2)2

1 + r

Therefore for any fixed r ∈ (0, 1) and ε > 0, we can find large enough k such that

when G is the (k, r) geometric weighted path,

φ(G)√
λ2
≥ φ(G)√

R(x)

≥ 1− r
1 + r

√
1 + r

(1− r1/2)2
(1− ε)

=
1 + r1/2

√
1 + r

(1− ε)

→
√

2(1− ε) as r → 1−.

Since ε is arbitrary and r can be arbitrarily close to 1, we conclude that for any C <
√

2,

we can construct a graph G such that φ(G) > C
√
λ2(G).

32

2.3 Random walks

A random walk on a graph G starting with an initial probability distribution p is a

sequence of random vertices u0 = u, u1, u2, . . . , such that P[u0 = u] = p(u) and P[ut+1 =

v|ut = u] = w(u, v)/ deg(u). This means that the next vertex would be a neighbor of the

current vertex with probability proportional to the edge weights. Instead of a particular

instance of the random walks, we often study the probability distributions pt ∈ Rn,

where pt(v) = P[ut = v]. We view the probability distributions as row vectors. By the

definition, it is easy to see that p0 = p and pt+1 = ptD
−1A. We define the random walk

matrix to be W = D−1A, and hence pt+1 = ptW . If the initial distribution p = χTu only

has probability on a single vertex u, we also call pt as the probability distribution after

t steps of random walks starting at the vertex u.

A distribution π is called stationary if the distribution does not change after one step

of the random walk, that means π = πW . The random walk process is a Markov chain

as the next vertex only depends on the current vertex but not the past. A Markov chain

has a unique stationary distribution π if and only if it is irreducible and aperiodic [31],

which, in this case, is equivalent to G being connected and non-bipartite. Also, when

the Markov chain has a unique stationary distribution π, we have pt → π no matter

what the initial distribution is. It is possible to remove the non-bipartite requirement

by considering the lazy random walk instead. In this setting, we have probability 1/2

staying at the current vertex and probability 1/2 moving to a neighbor with probability

proportional to the edge weights. Since the lazy random walk is equivalent to the random

walk on the graph G with an additional self loop of weight deg(u) on each vertex u,

and the new graph is non-bipartite by construction, the lazy random walk has a unique

stationary distribution if and only if G is connected. The probability distribution after

t steps lazy random walk starting from the initial distribution p is then pW ′t, where

W ′ = (In×n + W)/2 is the lazy random walk matrix. In the remainder of this thesis,

we use W to denote the lazy random walk matrix (In×n +D−1A)/2. We can check that

the stationary distribution is π = (DχV)T / vol(V).

The mixing time of a graph G measures how fast the random walks starting from an

arbitrary vertex converges to the stationery distribution π where π(u) = deg(u)/ vol(V).

The most common definition for the mixing time is

τ(ε) = min{t | max
u∈V
‖χTuW t − π‖1 ≤ ε},

and τ = τ(1/4). The parameter τ is useful in analyzing random sampling algorithms

33

for combinatorial objects, like computing the permanent and the volume of a convex

object [66, 26]. In this section we discuss two ways to analyze the mixing time of a

graph, one through spectral arguments and the other through combinatorial arguments

by Lovász and Simonovits. From the spectral approach, we get an upper bound on the

mixing time by the second eigenvalue λ2. From the combinatorial approach, we get an

upper bound on the mixing time by the conductance φ(G) of the graph. We remark that

by comparing the two bounds, we can obtain Cheeger’s inequality with slightly worse

constant.

2.3.1 Spectral approach

We first construct the left eigenvectors of the lazy random walk matrix W so that we

have a good eigenbasis to work with. Suppose v1, . . . , vn are the eigenvectors of G, which

means that Lvi = λiDvi. Then we have v′i = (Dvi)
T are the left eigenvectors of W ,

since

v′iW =
1

2

(
v′i + v′iD

−1A
)

=
1

2

(
2v′i − v′iD−1L

)

=
1

2

(
2v′i − vTi L

)

=
1

2

(
2v′i − λivTi D

)

=

(
1− λi

2

)
v′i.

This set of eigenvectors also satisfies 〈v′i, v′j〉D−1 = vTi DD
−1Dvj = 〈vi, vj〉D. Hence

‖v′i‖D−1 = 1 and 〈v′i, v′j〉D−1 = 0 for i 6= j.

In the following, we present a theorem that upper bounds the mixing time by the

second eigenvalue of the graph G.

Theorem 2.5 ([48]). Let u∗ be a vertex with minimum degree. Then the mixing time

satisfies

τ = O(
log(π(u∗)−1)

λ2
).

Proof. To bound the mixing time by t, we only need to argue that for any starting point

u, ‖χTuW t − π‖1 ≤ 1/4. We write χTu =
∑n

i=1 civ
′
i into the left eigenbasis of W , where

ci = 〈χTu , v′i〉D−1 =
v′i(u)

deg(u)
= vi(u).

34

Then c1 = v1(u) = 1/
√

vol(V), and hence for any vertex v,

c1v
′
1(v) =

1√
vol(V)

deg(v)√
vol(V)

=
deg(v)

vol(V)
= π(v).

This concludes c1v
′
1 = π. Note that λ1 = 0. So we have

‖χTuW t − π‖1 = ‖
n∑

i=1

civ
′
iW

t − π‖1

= ‖
n∑

i=1

ci

(
1− λi

2

)t
v′i − π‖1

= ‖
n∑

i=2

ci

(
1− λi

2

)t
v′i‖1

≤
n∑

i=2

(
1− λi

2

)t
‖civ′i‖1.

Here we used the fact that λ1 = 0 and c1v
′
1 = π, and the last inequality holds by the

triangle inequality. Now we need to upper bound ‖civ′i‖1. Since

|ci| = |vi(u)| ≤
√∑

v∈V vi(v)2 deg(v)

deg(u)
=

√
1

deg(u)
,

we have

‖civ′i‖1 ≤
√

1

deg(u)
|
∑

v∈V
vi(v) deg(v)|

≤
√

1

deg(u)

√√√√
(∑

v∈V
vi(u)2 deg(v)

)(∑

v∈V
deg(v)

)

=

√
1

deg(u)

√
vol(V)

=

√
1

π(u)
,

where the second inequality follows from Cauchy-Schwartz inequality. Therefore when

35

t > 2 log(4n/
√
π(u))/λ2, we have

‖χTuW t − π‖1 ≤
n∑

i=2

(
1− λi

2

)t
‖civ′i‖1

≤
n∑

i=2

exp(−λ2

2
t)‖civ′i‖1

=

n∑

i=2

√
π(u)

4n
‖civ′i‖1

≤
n∑

i=2

1

4n

≤ 1

4
.

Let u∗ be the vertex that have minimum degree, that means π(u∗) ≤ π(u) for any vertex

u. Then π(u∗) ≤ 1/n and for t ≥ 2 log(4π(u∗)−3/2)/λ2, we have ‖χTuW t− π‖1 ≤ 1/4 for

any u. This concludes τ = O(log(π(u∗)−1)/λ2).

2.3.2 Combinatorial approach

Given an undirected weighted graph G = (V,w), for each probability distribution p :

V → R≥0 over the vertices, we define the following function for x ∈ [0, vol(V)]:

C(p, x) = max∑n
i=1 δi deg(ui)=x,0≤δi≤1

n∑

i=1

δip(i).

The function can be interpreted as the total probability mass by picking the largest x

fractional vertices. Suppose p(u1)/deg(u1) ≥ p(u2)/deg(u2) ≥ · · · ≥ p(un)/deg(un),

then we can simply write

C

(
p,

k∑

i=1

deg(ui)

)
=

k∑

i=1

p(ui).

We call
∑k

i=1 deg(ui) the extreme points. Note that C is piecewise linear between

the extreme points. When p = π is the stationary distribution, then p(ui)/deg(ui) is

constant, and the function C satisfies C(p, x) = x/ vol(V) and becomes linear.

Another interpretation is viewing the graph as directed by replacing each undi-

rected edge by two directed edges, and the function as the total probability mass by

picking the largest x fractional directed edges (instead of vertices). It turns out that

36

this interpretation is more useful in our later analysis. We assign the probability mass

p(i, j) = p(i)w(i, j)/deg(i) to each of i’s outgoing directed edges (i, j). Then we have

C(p, x) = max∑
i∈V

∑
j∈V δi,jw(i,j)=x,0≤δi,j≤1

∑

i∈V

∑

j∈V
δi,jp(i, j),

and suppose p(e1)/w(e1) ≥ p(e2)/w(e2) ≥ · · · ≥ p(em)/w(em), we have

C

(
p,

k∑

i=1

w(ei)

)
=

k∑

i=1

p(ei).

Clearly for any probabilistic distribution p, the function is concave and thus C(p, x) ≥
x/ vol(V). Hence the function is always larger than the one corresponding to the sta-

tionary distribution. The following lemma shows that the function drops after one step

of the lazy random walk, and the speed depends on the conductance of the graph.

Lemma 2.4 ([51]). For a graph G = (V,w) and a probability distribution p : V → R,

let p′ = pW be the probability distribution after one step of the lazy random walk in G.

Then for any extreme point x of p′, we have

C(p′, x) ≤ 1

2
(C(p, x+ φx) + C(p, x− φx)),

where

x = min(x, vol(V)− x)

is the distance of x to the boundaries.

Proof. Let x be an extreme point of p′. Suppose C(p′, x) is attained by picking the

subset of vertices S ⊆ V , which means that x = vol(S) and C(p′, x) =
∑

i∈S p
′(i). For

each vertex i ∈ V , we have

p′(i) =
1

2

∑

j∈V

w(j, i)

deg(j)
p(j) +

1

2
p(i)

=
1

2

∑

j∈V

w(j, i)

deg(j)
p(j) +

1

2

∑

j∈V

w(i, j)

deg(i)
p(i)

=
1

2

∑

j∈V
p(j, i) +

1

2

∑

j∈V
p(i, j).

37

Therefore

C(p′, x) =
∑

i∈S
p′(i)

=
1

2

∑

i∈S

∑

j∈V
p(j, i) +

1

2

∑

i∈S

∑

j∈V
p(i, j)

=
1

2

∑

i∈S

∑

j∈S
p(i, j) +

1

2

 ∑

i∈V−S

∑

j∈S
p(i, j) +

∑

i∈S

∑

j∈V
p(i, j)

≤ 1

2
C(p, vol(S)− w(δ(S))) +

1

2
C(p, vol(S) + w(δ(S))),

where the last inequality is due to

∑

i∈S

∑

j∈S
w(i, j) =

∑

i∈S

∑

j∈V
w(i, j)−

∑

i∈S

∑

j∈V−S
w(i, j) = vol(S)− w(δ(S)),

∑

i∈V−S

∑

j∈S
w(i, j) +

∑

i∈S

∑

j∈V
w(i, j) = w(δ(S)) + vol(S),

and the directed edges from V − S to S and those from S to V are disjoint. Finally,

since w(δ(S)) ≤ φmin(vol(S), vol(V)− vol(S)) = φx, by concavity of C we have

C(p′, x) ≤ 1

2
C(p, vol(S)− w(δ(S))) +

1

2
C(p, vol(S) + w(δ(S)))

≤ 1

2
C(p, x− φx) +

1

2
C(p, x+ φx).

We view the probability distribution p over the vertices V as a row vector indexed by

the vertices. We use C(t)(x) to denote C(pW t, x) when p is clear from the context. The

following theorem provides an upper bound on C(t)(x) and shows that for any starting

distribution p, the function approaches to the linear function after a number of steps of

the lazy random walk and the convergence rate depends of φ(G).

Theorem 2.6 ([51]). For any graph G, any probability distribution p ∈ RV≥0 over the

vertices, any t ≥ 0 and any x ∈ [0, vol(V)], we have

C(t)(x) ≤ x

vol(V)
+

√
x

mini∈V deg(i)

(
1− φ2

8

)t
.

Proof. We shall only prove the statement for x ≤ vol(V)/2 where x = x, and the rest

38

follows by symmetry. Note that the function on the right hand side is concave and

C(t) is linear between the extreme points, it remains to show that the inequality holds

for the extreme points. We shall prove the statement by induction. When t = 0,

C(t)(x) = C(p, x). Since the first non-zero extreme point is at least mini∈V deg(i), the

inequality holds when t = 0. When t > 0 and x is an extreme point, by Lemma 2.4 and

the induction hypothesis, we have

C(t)(x) ≤ 1

2
(C(t−1)(x− φx) + C(t−1)(x+ φx))

≤ x

vol(V)
+

√
x

mini∈V deg(i)

(
1− φ2

8

)t−1

1

2
(

√
x− φx
x

+

√
x+ φx

x
)

Since x− φx = x(1− φ) and x+ φx ≤ x(1 + φ), we have

C(t)(x) ≤ x

vol(V)
+

√
x

mini∈V deg(i)

(
1− φ2

8

)t−1(
1

2
(
√

1− φ+
√

1 + φ)

)

≤ x

vol(V)
+

√
x

mini∈V deg(i)

(
1− φ2

8

)t
,

where the last inequality follows from the Taylor expansion of
√

1± φ at φ = 0.

Note that for any probability vector p, ‖pW t − π‖1 = 2 maxx(C(t)(x) − x/ vol(V)).

Hence suppose u∗ is the vertex with minimum degree and t ≥ 8 log(8π(u∗)−1/2)/φ2), we

have ‖pW t − π‖1 ≤ 1/4 for any p. This concludes τ = O(log(π(u∗)−1)/φ2).

Finally, we remark that Theorem 2.6 can give another proof of Cheeger’s inequality

with worse constant. Let v′i be the left eigenbasis of W , as defined in Subsection 2.3.1.

Let u ∈ V be any vertex such that v′2(u) 6= 0, and let p = χTu =
∑

i∈V civ
′
i, where

ci = 〈χu, v′i〉D−1 = v′i(u)/deg(u) = vi(u). Then c1 = 1/
√

vol(V) and by our assumption

c2 6= 0. Also

pW t =
∑

i∈V
ci(1−

λi
2

)tv′i.

Thus we have

pW tD−1pT = 〈pW t, p〉D−1 =
∑

i∈V
c2
i (1−

λi
2

)t ≥ 1

vol(V)
+ c2

2(1− λ2

2
)t.

On the other hand, note that pW tD−1pT can be viewed as starting from the distribution

p = χu, after t steps of the random walk, we pick 1/ deg(u) fraction of the probability

39

mass remaining in the vertex u. Hence, by Theorem 2.6, we have

pW tD−1pT ≤ C(t)(1) ≤ 1

vol(V)
+

√
1

mini∈V deg(i)

(
1− φ2

8

)t
.

This shows that √
1

mini∈V deg(i)

(
1− φ2

8

)t
≥ c2

2(1− λ2

2
)t.

Since t is arbitrary and c2 6= 0, we must have 1−φ2/8 ≥ 1−λ2/2, and this implies that

φ ≤ 2
√
λ2.

In this argument, we only use the information of the conductances of the level sets

of pt. Hence by examining all the level sets of all the random walk vectors pt, one of

them would have conductance not greater than 2
√
λ2.

2.4 Previous works

In this section, we will discuss some previous results about generalizations of Cheeger’s

inequality using higher eigenvalues, and about approximating the conductance and the

small set expansion.

2.4.1 Higher eigenvalues

We will discuss several recent results showing connections between the conductance

profile of a graph and the higher eigenvalues of its normalized Laplacian matrix. The

first result in this direction is about the small set expansion problem. Arora, Barak and

Steurer show that we can obtain small sparse cuts efficiently if there are many small

eigenvalues.

Theorem 2.7 ([7]). Let G be a regular graph on n vertices such that λk ≤ η, where

k = n100η/γ. Then there is an efficient algorithm to find a vertex set S of size at most

n1−η/γ that satisfies φ(S) ≤ √γ.

In particular, if k = nε, by setting η = λk and γ = 100λk/ε, the graph has a sparse

cut S with φ(S) ≤ O(
√
λk/ε) and |S| = O(n/k1/100). This concludes that

φO(k−1/100) = O(
√
λk logk n).

This can be seen as a generalization of Cheeger’s inequality to the small set expansion

problem. This result is then improved in several papers with various approaches [69, 55,

40

56]. All of them are able to improve the size approximate from 1/100 to 1 − ε. They

prove that

φO(k−1+ε) = O(

√
λk logk n

ε
),

and there is also an efficient algorithm computing a small set S achieving |S| = O(n/k1−ε)

and φ(S) = O(
√
λk logk n/ε).

Cheeger’s inequality for graph partitioning can also be extended to higher-order

Cheeger’s inequality for k-way graph partitioning [49, 45]: If there are k small eigenval-

ues, then there are k disjoint sparse cuts. This is a robust generalization of the fact that

λk = 0 if and only if G has at least k connected components.

Theorem 2.8 ([45]). There is an efficient algorithm to find k non-empty disjoint subsets

S1, . . . , Sk, Si ⊆ V , such that φ(Si) ≤ O(k2)
√
λk. Hence

1

2
λk ≤ φk(G) ≤ O(k2)

√
λk.

If only ck sets are needed for some constant c, the inequality can be further improved.

Theorem 2.9 ([49, 45]). There exists a constant c > 0 such that we can efficiently

find ck non-empty disjoint subsets S1, . . . , Sck, Si ⊆ V , such that φ(Si) = O(
√
λk log k).

This also implies that

φO(k−1)(G) = O(
√
λk log k).

Lee et.al. [45] show that c can be chosen to be 1 − ε for any ε > 0, while Louis

et.al [49] can only show that the statement is true for some c > 0.

2.4.2 Sparsest cut

We will discuss about algorithms for the sparsest cut problem in this subsection. Given

a graph G, the sparsest cut problem is to determine the conductance

φ(G) = min
S⊆V, vol(S)≤vol(V)/2

φ(S),

and find a subset of vertices S ⊆ V with vol(S) ≤ vol(V)/2 that minimizes the conduc-

tance5. It is known that the sparsest cut problem is NP-hard [10], and approximating

5The more common definition of the sparsest cut problem is to find a subset of vertices S ⊆ V that
minimizes the sparsity sp(S) instead. Since the sparsity sp(S) and the conductance φ(S) are equivalent
up to a constant factor (see Subsection 2.1.1), which we do not care about in this subsection, we will
study the conductance instead here.

41

the conductance within constant factor is NP-hard assuming the unique games conjec-

ture [13].

The spectral partitioning algorithm is the most commonly used heuristic for finding

sparse cuts in practice because of its ease of implementation and efficiency (see Subsec-

tion 2.2.1). Its performance is guaranteed by Cheeger’s inequality, which states that the

output set S satisfies

Ω(λ2) ≤ φ(S) ≤ O(
√
λ2).

This inequality is tight up to constant. In the worst case, the spectral relaxation λ2

only gives an O(1/
√
λ2) approximation for the conductance, and this can be as bad

as Θ(n) in a cycle graph (see Subsection 2.2.3). On the other hand, λ2 is a constant

factor approximation when G is an expander. Although this spectral relaxation only

guarantees good approximation when the graph has large conductance, the spectral

partitioning algorithm often performs well in practice, and this cannot be explained by

merely Cheeger’s inequality. We will have more discussion about this in Section 2.2.

While Cheeger’s inequality gives an approximation with performance depending on

the optimal value, there are other approaches that guarantees approximation ratio only

depend on n, the size of the graph. The linear programming rounding algorithm by

Leighton and Rao [46] finds a set of conductance O(φ(G) log n). The authors uses the all

pairs multicommodity flow to give a lower bound on the conductance, and this method

is now commonly used to certify lower bounds of expansion and hence proves upper

bounds on mixing time. The linear programming relaxation gives a good approximate

when the graph can be well embedded into L1 metric, for example, when the graph is a

path or a cycle. On the other hand, there are examples where the relaxation only gives

an Ω(log n) approximation when the graph is a sparse expander. It is interesting to

note that the bad examples for the spectral relaxation is good for linear programming

relaxation and vice versa.

Arora, Rao and Vazirani [8] uses a semidefinite programming relaxation as a com-

monly generalization of the spectral approach and the linear programming approach,

and finds a set of conductance O(φ(G)
√

log n).

Guruswami and Sinop [29] shows that we have better approximation using semidef-

inite programming if λr is large. They present an O(2r/(εδ)) poly(n) algorithm to find a

cut with conductance at most (1 + ε)φ(G)/δ when λr > φ(G)/(1− δ).

42

2.4.3 Small sparse cuts

We will discuss about the small sparse cuts problem in this subsection. Given a graph

G and a size parameter δ ∈ (0, 1/2], the small sparsest cut problem is to determine the

small set conductance

φδ(G) = min
vol(S)≤δ vol(V)

φ(S),

and find a subset of vertices S ⊆ V with vol(S) ≤ δ vol(V) that minimizes the conduc-

tance. This is also known as the expansion profile of the graph [50, 59]. Raghavendra

and Steurer [58] propose the following small set expansion conjecture about the hardness

of approximating small sparsest cuts.

Conjecture 2.1 ([58]). For every constant ε > 0, there exists a constant δ > 0, such

that it is NP-hard to distinguish the two cases: (1) φδ(G) ≤ ε; (2) φδ(G) ≥ 1− ε.

They show that the small set expansion conjecture implies the unique games conjec-

ture and is implied by the unique games conjecture with some mild assumptions, and

so it is of interest to understand what algorithmic techniques can be used to estimate

φδ(G). Raghavendra and Schramm [57] prove the following gap amplification result

about the hardness of approximating small sparsest cuts.

Theorem 2.10 ([57]). Let f be a function such that f(x) = ω(
√
x) as x → 0+. If

for all ε > 0, there exists δ > 0 such that it is NP-hard to distinguish φδ(G) ≤ ε or

φδ(G) ≥ f(ε), then for all ε > 0, there exists δ > 0 such that it is NP-hard to distinguish

φδ ≤ ε or φδ/8 ≥ 1/2.

A bicriteria approximation algorithm for the small sparsest cut problem is to find

a subset of vertices S with volume vol(S) . δ vol(V) and conductance φ(S) . φδ(G).

There are bicriteria approximation algorithms for this problem using semidefinite pro-

gramming relaxations: Raghavendra, Steurer and Tetali [59] obtain an algorithm that

finds a set S with vol(S) ≤ O(δ vol(V)) and φ(S) ≤ O(
√
φδ(G) log(δ−1)), and Bansal

et.al. [9] obtain an algorithm that finds a set S with vol(S) ≤ (1 + ε)δ vol(V) and

φ(S) ≤ O(f(ε)φδ(G)
√

log n log(δ−1)) for any ε > 0 where f(ε) is a function depends

only on ε.

2.4.4 Local graph partitioning

We will discuss about local graph partitioning algorithms in this subsection. In some

situations, we have a massive graph G = (V,E) and a vertex v ∈ V , and we would like

43

to identify a small set S with small conductance that contains v. The graph may be too

big that it is not feasible to read the whole graph and run some nontrivial approximation

algorithms. So it would be desirable to have a local algorithm that only explores a small

part of the graph, and outputs a set S with small conductance that contains v, and the

running time of the algorithm depends only on vol(S) and polylog(n).

All existing local graph partitioning algorithms are based on some random walk type

processes. The efficiency of the algorithm is measured by the work/volume ratio, which

is defined as the ratio of the running time and the volume of the output set. Suppose

S∗ is our target sparse cut. Spielman and Teng [67] proposed the first local graph

partitioning algorithm using truncated random walk, that returns a set S with φ(S) =

O(φ(S∗)1/2(log n)3/2) if the initial vertex is a random vertex in S∗, and the work/volume

ratio of the algorithm is O(φ(S∗)−2 polylog(n)). Andersen, Chung, Lang [5] used local

pagerank vectors to find a set S with φ(S) = O(
√
φ(S∗) log k) and work/volume ratio

O(φ(S∗)−1 polylog(n)), if the initial vertex is a random vertex in a set S∗ with vol(S∗) =

k. Andersen and Peres [6] used the volume-biased evolving set process to obtain a local

graph partitioning algorithm with work/volume ratio O(φ(S∗)−1/2 polylog(n)) and a

similar conductance guarantee as in [5]. Note that the running time of these algorithms

would be sublinear if the volume of the output set is small, which is the case of interest

in massive graphs.

44

Chapter 3

Improved Cheeger’s inequality

In this chapter, we present a generalization of Cheeger’s inequality using higher eigen-

values. The results presented in this chapter are mainly based on joint work with Yin

Tat Lee, Lap Chi Lau, Shayan Oveis Gharan and Luca Trevisan [43].

Finding a set of small conductance is a fundamental problem which comes up in

different areas of computer science. The spectral graph partitioning algorithm is a

common heuristic to this problem used in practice because of its ease of implementation

and efficiency. The classical Cheeger’s inequality provides a performance guarantee for

this algorithm:
1

2
λ2 ≤ φ(G) ≤ φsweep ≤

√
2λ2,

where φsweep is the conductance of the set returned by the spectral graph partitioning

algorithm. However, the inequality can be as bad as a Θ(n) approximation in the worst

case (see Subsection 2.4.2), and gives a constant approximation only when the graph is

an expander. On the contrary, the spectral graph partitioning algorithm often performs

well in practice. Therefore Cheeger’s inequality cannot give a satisfactory explanation.

3.1 Main result

Our main result is a generalization of Cheeger’s inequality using higher eigenvalues.

Theorem 3.1. For any undirected graph G and integer k ≥ 2, we have

φ(G) ≤ φsweep ≤ O(k)
λ2√
λk
,

where φsweep is the conductance of the set returned by the spectral partitioning algorithm.

45

This shows that the spectral partitioning algorithm is an O(k/
√
λk)-approximation

algorithm for the sparsest cut problem. In particular, the spectral partitioning algorithm

performs well when λk is large for a small k, which happens when the graph has a clear

k-partition.

The rest of this chapter is organized as follows. We first give a proof overview in

Section 3.2, and prove our main result in Section 3.3. Then we improve the hidden

constant in the big-Oh notation in Section 3.4, and show that φ(G) ≤ 2
√

2kλ2/
√
λk+1.

Finally we see some related problems where our techniques can be used to get better

bounds in Section 3.5. For the maximum cut problem, suppose the optimal cut fraction

is 1− ε, our techniques gives a cut with fraction 1− Õ(kε/(2− λn−k)).

3.2 Proof overview

We first describe an informal intuition to the inequality when k = 3 and see how it can

be generalized afterwards. Recall that the Rayleigh quotient of a vector x ∈ RV is

RG(x) =

∑
uv∈E w(u, v)(x(u)− x(v))2

∑
u∈V deg(u)x(u)2

. (3.1)

Let us assume that λ2 is small and λ3 is large for a graph G. Since λ2 is small, G

contains a set of small conductance. On the other hand, when λ3 is large, by the

higher order Cheeger’s inequality (Theorem 2.8), φ3(G) is large, and hence G cannot be

partitioned into 3 sparse cuts. Intuitively, these together mean that the vertices of G

can be partitioned into 2 sets, each with large internal conductance. Now the Rayleigh

quotient of the second eigenvector v2 is small implies the values v2(u) inside each subset

have to be similar, otherwise the numerator in Equation 3.1 would be large. Hence

v2 is close to a 2-valued vector. However, if v2 is 2-valued, then it is a normalized

characteristic vector and therefore is at most factor 2 away from the conductance of a

set. Therefore φ(G) = O(λ2).

For general k, our proof consists of two main steps. First, we show that when λk is

large, v2 is close to a O(k)-valued vector in the sense that ‖v2 − y‖D is small for some

O(k)-valued vector y. In general cases it is not easy to argue that G can be partitioned

into O(k) expanders, and conclude that v2 is close to k-valued. Instead, we will show

the contrapositive. We will prove that if v2 is not close to any O(k)-valued vectors,

then we can construct k disjointly supported vectors xi with small Rayleigh quotients,

and this contradicts to λk is large by Lemma 2.1. The remaining step is to show that

when v2 is close to a O(k)-valued vector, then φsweep is small. More precisely, we prove

46

that φsweep = O(kλ2 + k‖v2 − y‖D
√
λ2). This can be done by a random thresholding

argument similar to Theorem 2.4, by defining a probability distribution such that we

are more likely to choose thresholds far away from the O(k) values of y.

We have a second proof of the improved Cheeger’s inequality [43], which uses the

technique of smoothing the functions with well sperated disjoint support. This method

comes from [45] for proving the higher order Cheeger’s inequality. We will not discuss

this second proof in this thesis.

3.3 Proof of improved Cheeger’s inequality

We first state a slightly stronger statement that we shall prove later. This statement

shows that we can find a good cut whenever we have a vector x perpendicular to v1 with

small Rayleigh quotient, instead of having to consider the second eigenvector v2.

Theorem 3.2. For any undirected graph G, integer k ≥ 2 and non-zero vector x ∈ RV

with 〈x, v1〉D = 0, we have

φsweep(x) = O(k)
R(x)√
λk

.

Recall that φsweep(x) is the minimum conductance over the level sets of x with volume

not greater than half of the total volume.

From Theorem 3.2 it is easy to deduce Theorem 3.1.

Proof of Theorem 3.1. Let x = v2, the second eigenvector ofG. Then we have φsweep(x) =

φsweep and R(x) = λ2. Therefore we get

φsweep = O(k)
λ2√
λk
.

The proof consists of two steps. Before proving the theorem, let us first state and

prove the two main lemmas first.

3.3.1 O(k)-valued approximation

Given a vector x ∈ RV , we say that y ∈ RV is a k-valued approximation of x if y only

contains k distinct elements, and ‖x − y‖D is small. The following lemma argues that

when λk is large, there exists a O(k)-valued approximation.

47

Lemma 3.1. For any undirected graph G, integer k ≥ 2 and non-constant vector x ∈ RV

with ‖x‖D = 1, when λk > 0, there exists a (2k − 1)-valued approximation y such that

‖x− y‖2D ≤
4R(x)

λk

Proof of Lemma 3.1. We first show how we determine an approximate vector y by its

values, and then choose the right values to achieve the bound. Given 2k − 1 values

t1 ≤ t2 ≤ · · · ≤ t2k−1, for any vertex u ∈ V , let y(u) = tk be such that |x(u) − tk| =

mini |x(u)−ti|. In other words, y(u) is the closest value of x(u) in the set {t1, . . . , t2k−1}.
If there are multiple values satisfying the equality, then we can just choose an arbitrary

value. Note that this assignment minimizes ‖x − y‖D subject to the values of y are in

the set {t1, . . . , t2k−1}.

Now we use the values ti to define disjointly supported vectors. Let t0 = −∞ and

t2k = ∞. Then these values divide the vertex set into 2k parts Vi = {u ∈ V | ti−1 ≤
x(u) < ti}. We shall define 2k vectors, one for each of these 2k parts, and then apply

Lemma 2.1 to relate their norms to λk. Given two values a ≤ b, define the vector

xa,b ∈ RV by

xa,b(u) =

{
min(x(u)− a, b− x(u)) if x(u) ∈ [a, b],

0 otherwise.

Let xi = xti−1,ti for 1 ≤ i ≤ 2k be the 2k disjointly supported vectors. Note that

‖x − y‖2D =
∑ ‖xi‖2D by our definition, since both |x(u) − y(u)| and |xi(u)| are the

distance of x(u) to the closest value in the set {t1, . . . , t2k−1}, when u ∈ [ti−1, ti]. Also

by our definition all the 2k vectors are 1-Lipschitz with respect to x, which means that

|xi(u)− xi(v)| ≤ |x(u)− x(v)| for any pairs of vertices u, v.

Finally we choose the values ti such that ‖xi‖2D are all the same, and equal to

C = 2R(x)/(kλk). This value C is chosen such that it leads to a contradiction when

we can successfully define the 2k disjointly supported vectors. We start with t0 = −∞.

After t0, t1, . . . , ti−1 are determined, we choose ti such that ‖xi‖2D = C. Note that

‖xi‖2D = ‖xti−1,ti‖2D is continuous and increases with ti, therefore we can find such a ti

whenever ‖xti−1,∞‖2D ≥ C. Now we have two cases. Either there exists an i < 2k such

that ‖xti−1,∞‖2D < C, or all ti are determined successfully for all i = 0, 1, . . . , 2k. In the

second case, we shall redefine t2k =∞, and still have ‖x2k‖2D = ‖xt2k−1,∞‖2D ≥ C.

48

In the first case, we set ti = ti+1 = · · · = t2k =∞. Then

‖x− y‖2D =
2k∑

i=1

‖xi‖2D ≤ 2kC =
4R(x)

λk
,

and we are done.

In the second case, we obtain 2k disjointly supported vectors, each with the squared

D-norm at least C. We would like to prove by contradiction using Lemma 2.1, which

gives an upper bound of λk by the Rayleigh quotients of disjointly supported vectors.

Hence we need to upper bound the Rayleigh quotients of the vectors. Since the norm

known to be at least C, it remains to bound the energies of the vectors. For any pairs

of vertices u, v, we will show that

2k∑

i=1

(xi(u)− xi(v))2 ≤ (x(u)− x(v))2. (3.2)

Suppose u ∈ Vp and v ∈ Vq and assume without loss that 1 ≤ p ≤ q ≤ 2k. If p = q, then

2k∑

i=1

(xi(u)− xi(v))2 = (xp(u)− xp(v))2 ≤ (x(u)− x(v))2,

where the inequality holds since xp is 1-Lipschitz with respect to x. Otherwise p < q,

and

2k∑

i=1

(xi(u)− xi(v))2 = (xp(u)− xp(v))2 + (xq(u)− xq(v))2

= xp(u)2 + xq(v)2

≤ (x(u)− tp)2 + (tq−1 − x(v))2

≤ (x(u)− x(v))2,

where the last inequality holds since x(u) ≤ tp ≤ tq−1 ≤ x(v). Therefore Equation 3.2

49

holds in any case. Summing up these equations for all edges {u, v}, we have

2k∑

i=1

R(xi) =
1

C

2k∑

i=1

∑

uv∈E
w(u, v)(xi(u)− xi(v))2

=
1

C

∑

uv∈E
w(u, v)

2k∑

i=1

(xi(u)− xi(v))2

≤ 1

C

∑

uv∈E
w(u, v)(x(u)− x(v))2

=
kλk

2R(x)
R(x)

=
kλk
2
.

On the other hand, let x′i be a permutation of xi such that R(x′1) ≤ R(x′2) ≤ · · · ≤
R(x′2k). Then Lemma 2.1 states that R(x′k) ≥ λk/2. Therefore

2k∑

i=1

R(xi) =

2k∑

i=1

R(x′i) ≥
2k∑

i=k

R(x′i) ≥
(k + 1)λk

2
.

Since λk > 0, this leads to a contradiction. Thus the second case cannot happen and

we are done.

3.3.2 Upper bound φsweep with distance to approximation

The next lemma states that when a non-negative vector x is close to having only a few

values, then the spectral partitioning algorithm actually works better.

Lemma 3.2. For any non-negative vector x ∈ RV with ‖x‖D = 1 and any (2k−1)-valued

vector y, we have

φsweep(x) ≤ 2kR(x) + 4
√

2k‖x− y‖D
√
R(x).

Proof. We use the randomized thresholding argument to analyze the performance of the

sweeping algorithm. The proof is a generalization of the original randomized threshold-

ing proof for Cheeger’s inequality. Let M = maxu∈V x(u) and 0 ≤ t1 ≤ t2 ≤ · · · ≤ t2k−1

be the values of the vector y. Without loss we assume the vector y satisfies

|x(u)− y(u)| = min
1≤i≤2k−1

|x(u)− ti|.

50

Otherwise we can redefine y such that the above equality holds. Then the new y still

has the same values while ‖x − y‖D does not increase. Let d : [0,M] → R≥0 be the

distance function to the closest value, defined as

d(t) = min
1≤i≤2k−1

|t− ti|.

We abuse the notation and also use d(u) to denote d(x(u)). Let C =
∫M

0 d(t)dt. We use

µ = d/C as the probability density function to choose our random threshold. We choose

a value t ∈ [0,M] following the distribution µ and analyze the level set St = {u | x(u) ≥
t}. The expected volume of the set is

Et∼µ[St] =
∑

u∈V
deg(u)Pt∼µ[u ∈ St]

=
∑

u∈V
deg(u)

∫ x(u)

0
µ(t)dt

=
1

C

∑

u∈V
deg(u)

∫ x(u)

0
d(t)dt.

Let t0 = −∞ and t2k =∞. Note that if x(u) ∈ [ti−1, ti) for some 1 ≤ i ≤ 2k, then

∫ x(u)

0
d(t)dt =

∫ t1

0
d(t)dt+

i−1∑

j=2

∫ tj

tj−1

d(t)dt

+

∫ x(u)

ti−1

d(t)dt

≥ t21
4

+

i−1∑

j=2

(tj − tj−1)2

4

+

(x(u)− ti−1)2

4

≥ 1

4

(
t1 +

(∑i−1
j=2(tj − tj−1)

)
+ (x(u)− ti−1)

)2

i

≥ x(u)2

8k
,

where the second last inequality follows from Cauchy-Schwarz inequality. Therefore the

expected volume of the set is

Et∼µ[vol(St)] ≥
1

8kC

∑

u∈V
deg(u)x(u)2 =

‖x‖2D
8kC

.

51

On the other hand, the expected total weight of edges cut by the set is

Et∼µ[w(δ(St))] =
∑

uv∈E
w(u, v)Pt∼µ[uv ∈ δ(St)].

For any edge uv with x(u) ≤ x(v), we have

Pt∼µ[uv ∈ δ(St)] = Pt∼µ[x(u) ≤ t ≤ x(v)] =

∫ x(v)

x(u)
µ(t)dt =

1

C

∫ x(v)

x(u)
d(t)dt.

Note that for any t ∈ [x(u), x(v)], d(t) ≤ d(u) + (t− x(u)) and d(t) ≤ d(v) + (x(v)− t).
So for any c ∈ [x(u), x(v)], we have

∫ c

x(u)
d(t)dt ≤

∫ c

x(u)
d(u) + (t− x(u))dt = (c− x(u))d(u) +

(c− x(u))2

2
,

and

∫ x(v)

c
d(t)dt ≤

∫ x(v)

c
d(v) + (x(v)− t)dt = (x(v)− c)d(v) +

(x(v)− c)2

2
.

We choose c = (x(u) + x(v)− d(u) + d(v))/2 to optimize the bound and get

∫ x(v)

x(u)
d(t)dt =

∫ c

x(u)
d(t)dt+

∫ x(v)

c
d(t)dt

≤ (c− x(u))d(u) +
(c− x(u))2

2
+ (x(v)− c)d(v) +

(x(v)− c)2

2

=
(x(v)− x(u))2

4
+

(x(v)− x(u))(d(u) + d(v))

2
− (d(u)− d(v))2

4

≤ (x(v)− x(u))2

4
+

(x(v)− x(u))(d(u) + d(v))

2
,

where the last equality is obtained by expanding and simplifying the terms. Combining

52

the inequalities, we have

Et∼µ[w(δ(St))] =
∑

uv∈E
w(u, v)Pt∼µ[uv ∈ δ(St)]

=
∑

uv∈E
w(u, v)

1

C

∫ x(v)

x(u)
d(t)dt

≤ 1

C

∑

uv∈E
w(u, v)

(
(x(v)− x(u))2

4
+

(x(v)− x(u))(d(u) + d(v))

2

)

=
1

4C

(
E(x) + 2

∑

uv∈E
w(u, v)(x(v)− x(u))(d(u) + d(v))

)

≤ 1

4C

E(x) + 2

√√√√E(x)

(∑

uv∈E
w(u, v)(d(u) + d(v))2

)

≤ 1

4C

E(x) + 2

√√√√E(x)

(∑

uv∈E
w(u, v)2(d(u)2 + d(v)2)

)

=
1

4C

E(x) + 2

√√√√2E(x)

(∑

u∈V
deg(u)d(u)2

)

=
1

4C

(
E(x) + 2

√
2
√
E(x)‖x− y‖D

)
,

where the second inequality is due to Cauchy-Schwarz inequality and the third inequality

is due to the fact that (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R.

Finally, there exists t such that

φ(St) =
w(δ(St))

vol(St)
≤ Et∼µ[w(δ(St))]

Et∼µ[vol(St)]
= 2E(x) + 4

√
2
√
E(x)‖x− y‖D.

This completes the proof.

3.3.3 Combining the lemmas

Now we are ready to prove the main theorem in this chapter.

Proof of Theorem 3.2. First we can assume x is non-negative with support size no more

than half of the total volume. By Lemma 2.3, we can get x′ ≥ 0 with supp(x′) ≤
vol(V)/2, R(x′) ≤ R(x), and the level sets of x′ is a subset of level sets of x.

Consider the level sets St = {u ∈ V | x′(u) ≥ t}. By combining Lemma 3.1 and

53

Lemma 3.2, we can find a probability density function µ such that

Et∼µ[w(δ(St))]

Et∼µ[vol(St)]
≤ 2k

(
R(x′) + 2

√
2

4R(x′)√
λk

)

≤ 2kR(x′) + 8
√

2k
R(x′)√
λk

.

Therefore there exists a t such that

φ(St) = min
t

w(δ(St))

vol(St)

≤ Et∼µ[w(δ(St))]

Et∼µ[vol(St)]

≤ 2kR(x′) + 8
√

2k
R(x′)√
λk

,

where the first inequality follows from an averaging argument similar to the argument

in the proof of Theorem 2.4. This completes the proof.

3.3.4 Tight example

We show that for any k we can find a graph G such that φ(G) = Θ(kλ2/
√
λk). Our

tight example is simply an n-cycle. Note that the eigenvalues of the Laplacian of an

n-cycle is 1− cos(2πj/n) where j = 0, 1, . . . , n− 1 (see Subsection 2.2.3). Therefore the

k-th eigenvalue of the Laplacian of an n-cycle is Θ(k2/n2) as n→∞. The upper bound

of the conductance given by our result is O(kλ2/
√
λk) = O(1/n), which matches the

conductance of an n-cycle.

3.4 Improving the constant

In this section, we aim at improving the constant in the improved Cheeger’s inequality.

We shall prove that

φsweep ≤ 2
√

2
kλ2√
λk+1

.

This bound has tightened the previous bound in two ways. We improve the constant

from 10
√

2 to 2
√

2 and also change λk to λk+1. The improvement is mainly based on

two observations. First, we find a way to construct k-valued (instead of (2k−1)-valued)

function which is close to the second eigenvector. Second, originally we only consider

the distances from the values, and now we also use the signs to get a tighter bound.

54

We call a function p : R→ R k-flipping if p is continuous with k − 1 turning points,

and between the turning points, p is linear with slope ±1, which means p(t) is in the

form of t+ c or −t+ c for some c. For example, p(t) = |t| is 2-flipping. Given a vector

x ∈ RV , we will denote by p◦x the vector that satisfies (p◦x)(u) = p(x(u)) for all u ∈ V .

Note that p ◦ x is 1-Lipschitz with respect to x. The following is our main lemma.

Lemma 3.3. Given a connected graph G and any vector x ∈ RV , there exists a k-flipping

function p such that 〈p ◦ x, vi〉D = 0 for i = 1, 2, . . . , k.

The intuition is that we have k degrees of freedom in choosing the k-flipping function.

They include the positions of the k − 1 turning points and one constant shift. So the

freedom should allow us to satisfy k linear equations.

This intuition can be easily verified when k = 2. When k = 2, consider moving the

turning point from negative infinity to positive infinity and set the constant shift so that

〈p ◦ x, v1〉 = 0. Then a = p ◦ x changes from x to −x and thus 〈a, v2〉D changes sign. So

at some point the inner product is zero.

We will assume the lemma for now and prove it at the end of this subsection.

Theorem 3.3. For any graph G, we have

φsweep ≤ 2
√

2
kλ2√
λk+1

.

Proof. Let x be a non-negative vector with R(x) ≤ λ2, supp(x) ≤ vol(V)/2 and

‖x‖D = 1. Let p be the k-flipping function obtained from Lemma 3.3, and a = p ◦ x.

So we have R(a) ≥ λk+1 since 〈a, vi〉D = 0 for i = 1, . . . , k. We will use |p| as the

probability distribution for the random threshold and show that one of the level sets

has small conductance. Let h(i) =
∫ x(i)

0 |p(t)|dt and C =
∫ maxu x(u)

0 |p(t)|dt. Consider

the randomized cut St = {u | x(u) > t} where t ∈ [0,maxu x(u)] is chosen following the

distribution µ = |p|/C. Then

Et∼µ[|St|] =
∑

u∈V
deg(u)Pt∼µ[u ∈ St]

=
∑

u∈V
deg(u)

∫ x(u)

0

|p(t)|
C

dt

=
1

C

∑

u∈V
deg(u)h(u),

55

and similarly,

Et∼µ[w(δ(St))] =
∑

uv∈E
w(u, v)Pt∼µ[uv ∈ δ(St)]

=
∑

uv∈E
w(u, v)

∣∣∣∣∣

∫ x(v)

x(u)

|p(t)|
C

∣∣∣∣∣

=
1

C

∑

uv∈E
w(u, v)|h(u)− h(v)|.

Therefore

φsweep ≤
E[w(δ(St))]

E[|St|]
=

∑
uv∈E w(u, v)|h(u)− h(v)|∑

u∈V deg(u)h(u)
.

Now we will give an upper bound to |h(u)− h(v)|. You may refer to Figure 3.1.

If a(u) and a(v) are of the same sign, then

∣∣∣∣∣

∫ x(v)

x(u)
|p(t)|dt

∣∣∣∣∣ ≤
1

4
(x(u)− x(v))2 +

1

2
|x(u)− x(v)||a(u) + a(v)| − 1

4
(a(u)− a(v))2.

Otherwise a(u) and a(v) are of different sign. Suppose |a(u)| > |a(v)|, then |x(u) −
x(v)| ≥ |a(u)− a(v)| ≥ |a(v)|, and

∫ x(v)

x(u)
|p(t)|dt ≤ 1

4
(x(u)− x(v))2 +

1

2
|x(u)− x(v)||a(u)− a(v)| − 1

4
(a(u)− a(v))2

+ a(v)2 − |a(v)||x(u)− x(v)|

≤ 1

4
(x(u)− x(v))2 +

1

2
|x(u)− x(v)||a(u)− a(v)| − 1

4
(a(u)− a(v))2.

So in either case we have

|h(u)− h(v)| ≤ 1

4
(x(u)− x(v))2 +

1

2
|x(u)− x(v)|(|a(u)|+ |a(v)|)− 1

4
(a(u)− a(v))2.

Now

∑

uv∈E
w(u, v)|h(u)− h(v)| ≤ 1

4
R(x) +

1

2

√
R(x)

√
2
∑

u∈V
deg(u)a(u)2 − 1

4
R(a)‖a‖2D

≤ 1

4
λ2 +

√
2

2

√
λ2‖a‖D −

1

4
λk+1‖a‖2D,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is

by R(x) ≤ λ2 and R(a) ≥ λk+1. Note that ‖a‖2D = E(a)/R(a) ≤ E(x)/R(a) ≤ λ2/λk+1.

56

p(t)

t

b = a(u)

x(u) d = x(v)− x(u) x(v)

c = a(v)

(a) When a(u) and a(v) are of the same sign, the maximum attainable area is the area of the
large triangle minus the areas of the smaller triangles:

(b+ d+ c)2

4
− b2

2
− c2

2
=

1

4
d2 +

1

2
d(b+ c)− 1

4
(b− c)2.

t

b = a(u)

x(u) d = x(v)− x(u)

x(v)

c = −a(v)

p(t)

(b) When a(u) and a(u) are of the different signs, the maximum attainable area when |a(u)| >
|a(v)| is the area of the large triangle minus the area of the left triangle plus the area of the right
triangle:

(b+ d− c)2
4

− b2

2
+
c2

2
=

1

4
d2 +

1

2
d(b+ c)− 1

4
(b+ c)2 + c2 − cd.

Figure 3.1: Maximum attainable areas

57

The quadratic equation
1

4
λ2 +

√
2

2

√
λ2t−

1

4
λk+1t

2

is increasing when t ≤
√

2λ2/λk+1. Hence in the range t ∈ [0,
√
λ2/λk+1], the quadratic

equation attains its maximum (
√

2/2)λ2/
√
λk+1 at t =

√
λ2/λk+1. This concludes that

∑

uv∈E
w(u, v)|h(u)− h(v)| ≤

√
2

2

λ2√
λk+1

.

On the other hand, suppose the k − 1 turning points are 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk−1

and ti ≤ x(u) < ti+1, then

h(u) =

∫ x(u)

0
|p(t)|dt

=

∫ t1

0
|p(t)|dt+

∫ t2

t1

|p(t)|dt+ · · ·+
∫ x(u)

ti

|p(t)|dt

≥ t21
4

+
(t2 − t1)2

4
+ · · ·+ (x(u)− ti)2

4

≥ x(u)2

4(i+ 1)

≥ x(u)2

4k
,

where the first inequality is due to p(t) is linear with slope ±1 in each of the integrals,

and the second inequality is by Cauchy-Schwarz inequality and the fact that there are

i+ 1 terms. Therefore we have

∑

u∈V
deg(u)h(u) ≥ 1

4k
.

Combining the bounds, we conclude

φsweep ≤
∑

uv∈E w(u, v)|h(u)− h(v)|∑
u∈V deg(u)h(u)

≤ 2
√

2

kλ2

√
λk+1.

This completes the proof.

Finally we will prove Lemma 3.3.

Proof of Lemma 3.3. First recall that v1 is parallel to χV and 〈v1, vj〉D = 0 for 2 ≤ j ≤

58

k. So for any function p that satisfies 〈p ◦ x, vj〉D = 0 for 2 ≤ j ≤ k, we can choose

p′ = p− 〈p ◦ x, v1〉D
〈χV , v1〉D

,

so that

p′ ◦ x = p ◦ x− 〈p ◦ x, v1〉D
〈χV , v1〉D

χV ,

and hence 〈p′ ◦ x, vj〉D = 0 for all j. Hence without loss we only need to satisfy to the

later k − 1 equations.

For any c ∈ R, we define the function pc(t) = max(t − c, 0). Then any k-flipping

function p can be written as p(t) = t−2pc1(t)+2pc2(t)−· · ·+(−1)k−12pck−1
(t) for some

real numbers c1 ≤ · · · ≤ ck−1, where ci are the turning points.

We define a function g : R → R{2,...,k} such that g(c)j = 〈pc ◦ x, vj〉D for 2 ≤ j ≤ k.

This function is continuous. For any c ≤ cmin = mini∈V x(i), g(c) = g(cmin) since

〈χV , vj〉D = 0 for any j ≥ 2. For any c ≥ cmax = maxi∈V x(i), g(c) = 0. Therefore

〈p ◦ x, vj〉D = 〈x, vj〉D − 2〈pc1 , vj〉D + 2〈pc2 , vj〉D − · · · + (−1)k−12〈pck−1
, vj〉D = 0 for

2 ≤ j ≤ k if and only if

g(cmin)− 2g(c1) + 2g(c2)− · · ·+ (−1)k−12g(ck−1) = 0.

This can be rewritten as

∑

i

(g(ti)− g(si)) =
1

2
(0− g(cmin)),

where (si, ti) are disjoint intervals, and g(t1) = 0 if k is even.

Now we make use of the following lemma1.

Lemma 3.4 ([12]). Let r : [a, b]→ Rn be a continuous curve. Then there exists a family

of no more than b(n+ 1)/2c disjoint intervals [si, ti] such that

∑

i

(r(ti)− r(si)) =
1

2
(r(b)− r(a)).

Moreover when n is odd, we can choose t1 = b.

Applying this lemma to g with n = k − 1 and interval [cmin, cmax], we get no more

1We thank Sergei Ivanov for pointing us to this reference at mathoverflow.

59

than bk/2c disjoint intervals [si, ti] such that

∑

i

(g(ti)− g(si)) =
1

2
(0− g(cmin)).

We set ci such that [c2i−1, c2i] are the intervals [si, ti]. When k is odd, we are done.

Otherwise ck = cmax and g(ck) = 0. So we can omit that term. This completes the

proof.

For the sake of completeness, we include the proof of Lemma 3.4 in the following.

Proof of Lemma 3.4. Let (x1, x2, . . . , xn+1) be a point on the n-sphere. For 0 ≤ i ≤ n+1,

let

yi = (
i∑

j=1

x2
j)(b− a) + a.

Now define f : Sn → Rn by

f(x1, x2, . . . , xn+1) =
n+1∑

i=1

sgn(xi)(r(yi)− r(yi−1)).

Note that f is continuous and f(−x) = −f(x). By the Borsuk-Ulam theorem2, there

exists a point x ∈ Sn such that f(x) = 0. Suppose S1 = {i | xi > 0} and S2 = {i | xi <
0}. Let

A =
∑

i∈S1

(r(yi)− r(yi−1)) and B =
∑

i∈S2

(r(yi)− r(yi−1)).

Then A = B. Since A + B = r(b) − r(a), we have A = B = 1
2(r(b) − r(a)). Now we

take the smaller index set S1 or S2, and when tie, take the one including n + 1. After

combining the adjacent intervals if necessary, we obtain the result.

3.5 Related problems and extensions

Our techniques can be extended to prove some results in related problems including

k-way partitioning, balanced separator and maximum cut. In this section we will state

some of these results [43] without proofs.

2The Borsuk-Ulam Theorem states that if f : Sn → Rn satisfies f(−x) = −f(x), then there exists
x ∈ Sn such that f(x) = 0.

60

Our results can be combined with several results in [45] to obtain the following

multiway graph partitioning results. The proof idea is to apply the improved Cheeger’s

inequality on the disjointly supported function obtained by [45].

Corollary 3.1. For any undirected graph G and integers l > k ≥ 2, we have

1.

φk(G) ≤ O(lk6)
λk√
λl
.

2. For any δ ∈ (0, 1),

φ(1−δ)k(G) ≤ O
(
l(log k)2

δ8k

)
λk√
λl
.

3. If G excludes Kh as a minor, then for any δ ∈ (0, 1),

φ(1−δ)k(G) ≤ O
(
h4l

δ5k

)
λk√
λl
.

We can use Theorem 3.1 repeatedly to prove a better bound for the balanced sepa-

rator problem.

Theorem 3.4. Let ε = min|S|=|V |/2 φ(S). There exists a polynomial time algorithm that

finds a set S such that |V |/5 ≤ |S| ≤ 4|V |/5 and φ(S) ≤ O(k/λk)ε.

Similar techniques can be applied to improve the results in [73] for the maximum

cut problem. The idea is to repeatedly find a near bipartite subgraph.

Theorem 3.5. There exists a polynomial time algorithm that finds a cut (S, S) such

that if the optimal solution cuts 1− ε fraction of edges, then (S, S) cuts

1−O(k) log

(
2− λn−k

kε

)
ε

2− λn−k

fraction of edges.

It shows that we can obtain a better approximation for the maximum cut problem

when there is a gap in the higher end of the spectrum, that is when 2− λn−k is large.

In the following we would like to remark that there is a relation between the spectral

gap in the lower end and that in the higher end. We show that expander graphs implies

such a gap in the higher end. This shows that if we can prove some properties of a graph

assuming the spectral gap in the higher end, those properties also holds for expander

graphs. Fact 3.1 and Theorem 3.5 implies the max cut problem is easy in expanders.

61

Fact 3.1. For any graph G, we have

λ2 = O(2− λn−1).

Proof. Let vi be the eigenbasis of G. For each θ ∈ [0, 2π], let vθ = (cos θ)vn−1 +(sin θ)vn

be a vector in the space spanned by vn−1 and vn. Note that ‖vθ‖2D = cos2 θ‖vn−1‖2D +

sin2 θ‖vn‖2D = 1. After that we define vectors zθ such that

zθ(u) = |vθ(u)| − 〈|vθ|, v1〉Dv1(u).

We use the absolute value in the first term to guarantee the energy of zθ is small, and

we use the second term to normalize the vector so that 〈zθ, v1〉D = 0.

We will show that there exists θ such that the following two properties holds:

1. zTθ Lzθ ≤ 2− λn−1.

2. zTθ Dzθ = Ω(1).

These properties together with 〈zθ, v1〉D = 0 by construction, we have

λ2 ≤ R(zθ) =
zTθ Lzθ
zTθ Dzθ

= O(2− λn−1).

The first property holds for all θ. Note that the Rayleigh quotient of vθ satisfies

R(vθ) = (cos2 θ)λn−1 + (sin2 θ)λn ≥ λn−1.

Therefore

zTθ Lzθ =
∑

uv∈E
w(u, v)(zθ(u)− zθ(v))2

=
∑

uv∈E
w(u, v)(|vθ(u)| − |vθ(v)|)2

≤
∑

uv∈E
w(u, v)(vθ(u) + vθ(v))2

= 2
∑

u∈V
deg(u)vθ(u)2 −

∑

uv∈E
w(u, v)(vθ(u)− vθ(v))2

≤ 2− λn−1

Next we will show the second property holds for some θ. We will show that for a

uniform random θ ∈ [0, 2π], in expectation Eθ
[√

1− ‖zθ‖2D
]
≤
√

8/π < 1, and therefore

62

there exists θ such that ‖zθ‖2D ≥ 1 − 8/π2. Since zθ = |vθ| − 〈|vθ|, v1〉D · v1, and

〈zθ, v1〉D = 0, we have

‖zθ‖2D + 〈|vθ|, v1〉2D = ‖|vθ|‖2D = 1.

So we have √
1− ‖zθ‖2D = |〈|vθ|, v2〉D| =

∣∣∣∣∣
∑

u∈V
deg(u)v1(u)|vθ(u)|

∣∣∣∣∣ .

Without loss we assume v1 is non-negative. Then we have

Eθ
[√

1− ‖zθ‖2D
]

= Eθ

[∑

u∈V
deg(u)v1(u)|vθ(u)|

]

=
∑

u∈V
deg(u)v1(u)Eθ[|vθ(u)|]

=
∑

u∈V
deg(u)v1(u)

1

2π

∫ 2π

0
|(cos θ)vn−1(u) + (sin θ)vn(u)|dθ

=
∑

u∈V
deg(u)v1(u)

1

2π

∫ 2π

0

√
vn−1(u)2 + vn(u)2 · | cos(θ − αn(u))|dθ,

where αn(u) is a number in [0, 2π) such that cosαn(u) = vn−1(u)/
√
vn−1(u)2 + vn(u)2

and sinαn(u) = vn(u)/
√
vn−1(u)2 + vn(u)2. By the fact that

∫ 2π
0 | cos θ|dθ = 4

∫ π/2
0 cos θdθ =

4, we have

Eθ
[√

1− ‖zθ‖2D
]

=
∑

u∈V
deg(u)v1(u)

4

2π

√
vn−1(u)2 + vn(u)2

≤ 2

π

√∑

u∈V
deg(u)v1(u)2 ·

∑

u∈V
deg(u) (vn−1(u)2 + vn(u)2)

=
2

π

√
‖v1‖2D(‖vn−1‖2D + ‖vn‖2D)

=

√
8

π
.

This completes the proof.

Remark 3.1. The hidden constant in the big-Oh notation is 1/(1−8/π2) < 5.279. This

is the best we can do by this method (looking at the top 2-dimensional eigenspace and

consider the absolute values). In the case of large odd cycles, λ2/(2−λn−1) = 4+O(1/n)

and for any θ, R(zθ)/(2 − λn−1) = 1/(1 − 8/π2) + O(1/n). We believe 4 is the tight

constant for this bound, however we do not have enough techniques to prove this now.

63

3.5.1 Local improved Cheeger’s inequality

In this subsection, we give an extension of the improved Cheeger’s inequality in the

setting that we only have local information of the graph. Suppose there is a massive

underlying graph G, and we only know the information over a small subset of vertices S.

Then we can still try to relate the best conductance over this subset and the spectrum of

some local matrix associated with S. More precisely, let AS , DS and LS be the restric-

tions of A(G), D(G) and L(G) over the subset S respectively, and let φS = minT⊆S φ(T).

Let LS = D
−1/2
S LSD

−1/2
S = I|S|×|S| − D−1/2

S ASD
−1/2
S . Suppose ṽS,1, ṽS,2, . . . , ṽS,|S| are

the eigenvectors of LS with corresponding eigenvalues 0 ≤ λS,1 ≤ λS,2 ≤ . . . λS,|S|, and

as usual, vS,i = D
−1/2
S ṽS,i are the (right) eigenvectors of D−1

S LS . Then Chung [20]

proved the following theorem.

Theorem 3.6 ([20]). For any graph G and any subset of vertices S ⊆ V , we have

λS,1 ≤ φS ≤
√

2λS,1.

Proof. We denote

RS(x) = RLS ,DS (x) =
xTLSx

xTDSx
.

Suppose the minimum conductance φS is attained by T ⊆ S, then

RS(χT) =
χTTLSχT

χTTDSχT
=
w(δ(T))

vol(T)
= φ(T).

Therefore by the Courant-Fischer formula, φ(T) ≥ λS,1.

For the other side, we note that by applying Theorem 2.4 on the first local eigenvector

vS,1, we can get a subset T ⊆ S such that φ(T) ≤
√

2λS,1. Therefore φS ≤ φ(T) ≤√
2λS,1. This completes the proof.

We extend our main result in this setting that shows better bounds when the local

higher eigenvalues are large.

Theorem 3.7. For any graph G, any subset of vertices S ⊆ V and any k ≥ 1, we have

φS ≤ O(k)
λS,1√
λS,k

.

Proof. We first construct an auxiliary graphGM = (V ′, wM) by collapsing all the vertices

64

other than those in S. More precisely, we let V ′ = S ∪ {u∗} and wM satisfies

wM (u, v) =

w(u, v) if u ∈ S, v ∈ S.∑
v 6∈S w(u, v) = deg(u)−∑v∈S w(u, v) if u ∈ S, v = u∗.∑
u6∈S w(u, v) = deg(v)−∑v∈S w(u, v) if u = u∗, v ∈ S.

M if u = v = u∗.

We analyze the spectrum of GM as M →∞. Note that

L(GM) =

(
LS b

bT c

)
,

where b → 0 and c → 0 as M → ∞, since b(u) = w(u, u∗)/
√
M and c = w(δ(S))/M .

Since eigenvalues are continuous to the matrix, we have λ1(GM) = 0 with the corre-

sponding eigenvector (0, . . . , 0, 1) and λk+1(GM)→ λk(LS) = λS,k with the correspond-

ing eigenvectors (ṽS,k, 0).

Now by applying Theorem 3.2 on the first local eigenvector vS,1, we have for any

k ≥ 1,

φsweep(vS,1) ≤ O(k)
RGM (vS,1)√
λk+1(GM)

.

Note that RGM (vS,1) = λS,1 regardless of M , and λk+1(GM) → λS,k. Hence by letting

M →∞, we have for any k ≥ 2,

φsweep(vS,1) ≤ O(k)
λS,1√
λS,k

.

As supp(vS,1) ⊆ S, φS ≤ φsweep(vS,1). This completes the proof.

65

Chapter 4

Random walks

In this chapter we obtain two results using random walks. In Section 4.1, we show that

by computing an approximate random walk vector, we can find a small sparse cut locally.

This algorithm has almost the same performance guarantee as the spectral partitioning

algorithm, while giving a non-trivial bound on the size of the output set.

In Section 4.2, we prove a tight lower bound on the expansions of graph powers.

This result can be used to amplify the hardness result for small set expansion problems,

and shows that some Cheeger-type inequalities can be reduced to the case where the

parameters are constant. The results presented in this chapter are mainly based on joint

work with Lap Chi Lau [41, 42].

4.1 Finding small sparse cuts

Throughout this section, we consider unweighted simple graphs, and hence vol(V) =

2m. Recall that the small sparsest cut problem with size parameter δ is to determine

φδ(G) = minvol(S)≤δ vol(V) φ(S) and find a subset S with vol(S) ≤ δ vol(V) achieving the

minimum; see Subsection 2.4.3.

4.1.1 Our results

We show that the techniques developed in local graph partitioning algorithms [67, 21]

can be used to obtain bicriteria approximation algorithms for the small sparsest cut

problem. We note that the algorithm in Theorem 4.1 is the same as the algorithm

of Arora, Barak and Steurer [7], but we adapt the analysis in local graph partitioning

algorithms to prove a tradeoff between the conductance guarantee and the volume of

the output set.

66

Theorem 4.1. Given an undirected graph G = (V,w) and a volume parameter k, let

ϕ = φk/vol(V) be the minimum conductance over sets with volume not larger than k.

There is a polynomial time algorithm with the following guarantees:

1. Find a set S with φ(S) = O(
√
ϕ/ε) and vol(S) ≤ k1+ε for any ε > 1/k.

2. Find a set S with φ(S) = O(
√
ϕ log k/ε) and vol(S) ≤ (1 + ε)k for any ε >

2 log k/k.

For the small sparsest cut problem, when k is sublinear (k = O(mc) for some c < 1),

the performance guarantee of the bicriteria approximation algorithm in Theorem 4.1(2)

is similar to that of Raghavendra, Steurer and Tetali [59]. Also, when k is sublinear,

the conductance guarantee of Theorem 4.1(1) is independent of n, which matches the

performance of spectral partitioning while having a bound on the volume of the output

set. These show that random walk algorithms can also be used to give nontrivial bi-

criteria approximations for the small sparsest cut problem. We note that the result of

Andersen and Peres [6] implies a similar statement to Theorem 4.1(2), with the same

conductance guarantee and vol(S) = O(k). The algorithms in Theorem 4.1 can also be

implemented locally by using the truncated random walk algorithm.

Theorem 4.2. For an undirected graph G = (V,w) and a set S∗ ⊆ V , given ϕ ≥ φ(S∗)

and k ≥ vol(S∗), there exists an initial vertex v ∈ S∗ such that the truncated random

walk algorithm can find a set S with φ(S) ≤ O(
√
ϕ/ε) and vol(S) ≤ O(k1+ε) for any

ε > 2/k. The runtime of the algorithm is Õ(k1+2εϕ−2).

When k is sublinear, the conductance guarantee of Theorem 4.2 matches that of

spectral partitioning, improving on the conductance guarantees in previous local graph

partitioning algorithms. However, we note that our notion of a local graph partitioning

algorithm is weaker than previous work [67, 5, 6], as they proved that a random initial

vertex v will work with a constant probability, while we could only prove that there exists

an initial vertex that will work and unable to prove the high probability statement.

In Subsection 4.1.4, we discuss a connection to the small set expansion conjecture.

Independent work

Oveis Gharan and Trevisan [55] prove Theorem 4.1 independently. They also prove a

stronger version of Theorem 4.2, with a faster running time (Õ(k1+2εφ−1/2)) and also

the algorithm works for a random initial vertex in S with constant probability. They

use the evolving set process instead of the random walk process we considered here.

67

We note that their result implies that our truncated random walk algorithm will also

succeed with constant probability if we start from a random initial vertex in S.

4.1.2 Finding small sparse cuts

The organization of this subsection is as follows. First we present our algorithm in

Theorem 4.1 and the proof outline. Then we present the analysis and complete the

proof of Theorem 4.1.

Algorithm

Our algorithm is simple and is the same as in Arora, Barak and Steurer [7]. For each

vertex v, we use it as the initial vertex of the random walk, and compute the probability

(row) vectors pt := χTvW
t = χTv (In×n + D−1A)/2 for 1 ≤ t ≤ O(n2 log n). Then we

output the set of smallest conductance among all level sets St,i := {u | pt(u) ≥ pt(i)}
(of all initial vertices) of volume at most ck, where in Theorem 4.1(1) we set c = kε and

in Theorem 4.1(2) we set c = 1 + ε. Clearly this is a polynomial time algorithm.

Analysis

The techniques are from the work of Spielman and Teng [67] and Chung [21]. Our goal

in Theorem 4.1(1) is equivalent to distinguishing the following two cases: (a) there is a

set S∗ with vol(S∗) ≤ k and φ(S∗) ≤ ϕ, or (b) the conductance of every set of volume

at most ck is at least Ω(
√
ϕ) for some small c > 1 which may depend on k. As in [67],

we use the method of Lovász and Simonovits [51] that considers the total probability of

the k edges with largest probability after t steps of random walks, denoted by C(t)(k);

see Subsection 2.3.2 for the definition. In case (a), we use the idea of Chung [21] that

uses the local eigenvector of S∗ of the Laplacian matrix to show that there exists an

initial vertex such that C(t)(k) ≥ (1 − ϕ/2)t. In case (b), we use Lemma 2.4 to prove

that C(t)(k) ≤ 1/c +
√
k(1 −Mϕ)t for a small enough positive constant M , no matter

what is the initial vertex of the random walk. Hence, say when c ≥ k0.01, by setting

t = Θ(log k/ϕ), we expect that C(t)(k) is significantly greater than 1/c in case (a) but

at most 1/c plus a negligible term in case (b), and so we can distinguish the two cases.

Theorem 4.1(2) is a corollary of Theorem 4.1(1). To prove Theorem 4.2, we use the

truncated random walk algorithm as in [67] to give a bound on the runtime.

68

Upper bound

We prove the upper bound using Lemma 2.4. We note that the following statement is

true for any initial probability distribution, in particular when p = χv for any v. The

proof is very similar to that of Theorem 2.6. The difference is that we only consider the

conductances of small sets here.

Theorem 4.3. Suppose for all t′ ≤ t and i ∈ [n], we have φ(St′,i) ≥ φ1 whenever

vol(St′,i) ≤ l ≤ m. Then the curve satisfies for all x ≤ vol(V),

C(t)(x) ≤ x

l
+
√
x(1− φ2

1

8
)t.

Proof. Let the extreme points xi satisfy 0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xi ≤ l < xi+1. Note

that the function on the right hand side is concave and C(t) is linear between extreme

points and between xi and l. So we only need to show the inequality for extreme points

and for x ≥ l. When x ≥ l, the inequality always hold as for any t,

x

l
+
√
x(1− φ2

1

8
)t ≥ 1 ≥ C(t)(x)

Now we would prove by induction. When t = 0 the inequality is trivial for any x ≥ 1,

x

l
+
√
x(1− φ2

1

8
)0 ≥ 1 ≥ C(0)(x).

When t > 0 and x is an extreme point, by Lemma 2.4 and the induction hypothesis we

have

C(t)(x) ≤ 1

2
(Ct−1(x− φ1x) + Ct−1(x+ φ1x))

=
x

l
+

1

2

√
x(1− φ2

1

8
)t−1(

√
1− φ1 +

√
1 + φ1)

≤ x

l
+
√
x(1− φ2

1

8
)t,

where the last inequality follows from Taylor expansions of
√

1± φ1.

Lower bound

For a probability vector p over V and any subset S ⊆ V , we denote p(S) :=
∑

u∈S p(u)

as the probability mass in S. Our idea is to use the local eigenvector of S of the

normalized Laplacian matrix to show that there is an initial distribution such that

69

pt(S) ≥ (1− φ(S)/2)t.

Theorem 4.4. Assume S ⊆ V where vol(S) ≤ m and φ(S) ≤ φ2. Then there exists a

vertex v such that if p = χTv , then

pt(S) ≥ (1− φ2

2
)t.

Proof. We will show that if the probability distribution p0 is proportional to the smallest

local eigenvector, then pt(S) = p0W
tχS ≥ (1−φ2/2)t. The existence of the good starting

vertex follows from the linearity of the operator W tχS and the fact that p is a convex

combination of χv where v ∈ S.

Let λS ans ṽS be the smallest eigenvector and the corresponding eigenvector of

LS , which is the restriction of L over the vertex set S. By Theorem 3.6, we have

λS ≤ φ(S) ≤ φ2. Also, by the Perron-Frobenius theorem on AT for every connected

component T in S, the eigenvector ṽS can be assumed to be non-negative. Let pS denote

the restriction of p on S, and pt,S denote the restriction of pt on S. We set the initial

distribution p such that pS = (D
−1/2
S ṽS)T and pV−S = 0, and we can rescale ṽS such

that pS is a probability distribution. Note that pS is a left eigenvector of D−1
S AS with

eigenvalue 1− λS . We would show that pt,S ≥ (1− λS/2)tpS by induction. Clearly, the

statement is true when t = 0. For t > 0, we have pt,S = (pt−1W)S ≥ pt−1,SWS since p

and W are non-negative. Therefore

pt,S ≥ pt−1,SWS

= pt−1,S ·
1

2
(IS +D−1

S AS)

≥ (1− λS
2

)t−1pS ·
1

2
(IS +D−1

S AS)

= (1− λS
2

)tpS ,

where the second inequality follows from the induction hypothesis and the last equality

holds since pS is a left eigenvector of WS . Finally,

pt(S) = pt,S(S) ≥ (1− λS
2

)tpS(S) ≥ (1− φ2

2
)t.

This completes the proof.

Remark 4.1. In the independent work [55], Oveis Gharan and Trevisan proves a

stronger statement of Theorem 4.4. They show that there exists a subset S′ ⊆ S with

70

vol(S′) ≥ vol(S)/2, such that if the starting vertex is from S′, then

pt(S) = Ω

((
1− 3φ2

2

)t)
.

Combining the bounds

We combine the upper bound and the lower bound to prove Theorem 4.1.

Proof of Theorem 4.1. Note that Theorem 4.1(1) is trivial if ϕ = φk/ vol(V) ≥ ε, and so

we assume ϕ < ε. We also assume ε ≤ 0.01, as otherwise we reset ε = 0.01 and lose only

a constant factor.

The algorithm is simple. Set T = εk2 log k/4. For each vertex v, set p = χv and

compute St,i for all t ≤ T and i ∈ [n]. Denote these sets by St,i,v to specify the starting

vertex u. Output a set S = St,i,v that achieves the minimum in minvol(St,i,v)≤k1+ε φ(St,i,v).

Clearly, the algorithm runs in polynomial time.

We claim that φ(S) ≤ 4
√
ϕ/ε. Suppose to the contrary that the algorithm does not

return such a set. Consider t = ε log k/(2ϕ). Note that t ≤ T as ϕ ≥ 1/k2 for a simple

unweighted graph. Applying Theorem 4.3 with l = k1+ε, for any starting vertex v, we

have

C(t)(k) ≤ k

k1+ε
+
√
k(1− 2ϕ

ε
)t

≤ k−ε +
√
k exp(−2ϕ

ε

ε log k

2ϕ
)

= k−ε +
√
k exp(− log k)

= k−ε + k−1/2.

On the other hand, suppose S∗ is a set with vol(S∗) ≤ k and φ(S∗) = ϕ. Then

Theorem 4.4 says that there exists a starting vertex v∗ ∈ S∗ such that

pt(S
∗) ≥ (1− ϕ

2
)t

≥ exp(−ϕt)

= exp(−1

2
ε log k)

= k−ε/2

> k−ε + k−1/2,

71

where the second inequality holds when ϕ < 0.01 and the last inequality holds for

k ≥ 1/ε and ε < 0.01. This is contradicting since C(t)(k) ≥ pt(S
∗) for that starting

vertex, completing the proof of Theorem 4.1(1).

Now we obtain Theorem 4.1(2) as a corollary of Theorem 4.1(1). Set ε′ = ε
2 log k .

Then k1+ε′ ≤ (1 + ε)k. By using Theorem 4.1(1) with ε′, we have Theorem 4.1(2).

4.1.3 Local graph partitioning

To implement the algorithm locally, we use truncated random walk as in [67]. Let

q0 = p = χv. For each t ≥ 0, we define p′t by setting p′t(u) = 0 if qt(u) < ε deg(u) and

setting p′t(u) = qt(u) if qt(u) ≥ εdeg(v), and we define qt+1 = p′tW . Then, we just use p′t

to replace pt in the algorithm in Subsection 4.1.2. To prove that the truncated random

walk algorithm works, we first show that p′t is a good approximation of pt and can be

computed locally. Then we show that the curve defined by p′t satisfies the upper bound

in Theorem 4.3, and it almost satisfies the lower bound in Theorem 4.4. Finally we

combine the upper bound and the lower bound to prove Theorem 4.2.

Computing truncated distributions

Lemma 4.1. There is an algorithm that computes p′t such that p′t ≤ pt ≤ p′t + εtd for

every 0 ≤ t ≤ T , with time complexity O(T/ε), where d is the degree (row) vector.

Proof. First we prove the approximation guarantee. By induction, we have the upper

bound

p′t ≤ qt = p′t−1W ≤ pt−1W = pt.

Also, by induction, we have the lower bound

pt = pt−1W ≤ (p′t−1 + ε(t− 1)d)W = qt + ε(t− 1)d ≤ p′t + εtd.

Next we bound the computation time. Let St be the support of p′t. In order to compute

qt+1 from p′t, we need to update each vertex u ∈ St and its neighbors. Using a perfect

hash function, the neighbors of a vertex u can be updated in O(deg(u)) steps, and thus

qt+1 and p′t+1 can be computed in O(vol(St)) steps. Since each vertex u ∈ St satisfies

p′t ≥ εdeg(u), we have vol(St) =
∑

u∈St d(u) ≤ pt(St)/ε ≤ 1/ε, and this completes the

proof.

72

Approximate upper bound

We use the truncated probability distributions to define the curve C ′(t), and will prove

an upper bound for C ′(t). Since truncation only decreases the probabilities, intuitively

the same upper bound applying to C(t) also applies to C ′(t). Note that p′t may not be a

probability distribution and C ′(t)(vol(V)) may be less than one. And we define the level

sets S′t,i = {u1, u2, . . . , ui} when we order the vertices such that

p′t(u1)

deg(u1)
≥ p′t(u2)

deg(u2)
≥ · · · ≥ p′t(un)

deg(un)
.

We show that C ′t would satisfy the same upper bound as in Theorem 4.3.

Lemma 4.2. Suppose for all t ≤ T and i ∈ [n], we have φ(S′t,i) ≥ φ1 whenever

vol(S′t,i) ≤ l ≤ m. Then for all x ≤ vol(V), we have

C ′(t)(x) ≤ ft(x) :=
x

l
+
√
x(1− φ2

1

8
)t.

Proof. Let x′i =
∑

u∈S′t,i
deg(u) be the extreme points defined by p′t. By the same proof

as in Theorem 4.3. It suffices to prove that Lemma 2.4 still holds after replacing pt by

p′t. It means that we need to show if x = x′i ≤ l is an extreme point (at time t), S = S′t,j
is the corresponding set of vertices and vol(S) ≥ φ, then

C ′(t)(x) ≤ 1

2
(C ′(t−1)(x− φx) + C ′(t−1)(x+ φx)).

Since p′t ≤ qt, we have

C ′(t)(x) = C(p′t, x) ≤ C(qt, x).

By Lemma 2.4,

C(qt, x) = C(p′t−1W,x) ≤ 1

2
(C ′(t−1)(x− φx) + C ′(t−1)(x+ φx)).

This completes the proof by Theorem 4.3.

Approximate lower bound

By Lemma 4.1 we can easily get a lower bound on p′(S) with a good initial vertex.

Lemma 4.3. Assume S ⊆ V where vol(S) ≤ m and φ(S) ≤ φ2. Then there exists a

73

vertex v such that if p = χv, then

p′t(S) ≥ (1− φ2

2
)t − εt vol(S).

Proof. By Theorem 4.4, we can get a vertex v such that if p = χv, then pt(S) ≥
(1−φ2/2)t. By Lemma 4.1, for any vertex u we have p′t(u) ≥ pt(u)−εt deg(u). Therefore

we have

p′t(S) ≥
∑

u∈S
pt(u)− εt

∑

u∈S
deg(u) = pt(S)− εt vol(S) ≥ (1− φ2

2
)t − εt vol(S).

Combining the bounds

We combine the approximate bounds to prove Theorem 4.2.

Proof of Theorem 4.2. We would prove a slighter stronger statement. We show that

whenever v ∈ S∗ satisfies pt(S
∗) ≥ (1 − ϕ/2)t/4 when p = χv, then the truncated

random walk algorithm will output a set S with vol(S) ≤ O(k1+ε) and φ(S) ≤ 4
√
ϕ/ε.

The running time of the algorithm is O(ε2k1+2ε(log k)3/ϕ2). Note that Theorem 4.4

states the existence of such vertex. We relax the requirement pt(S
∗) ≥ (1− ϕ/2)t a bit

so as to allow for more good initial vertices. The constant 4 in pt(S
∗) ≥ (1− ϕ/2)t/4 is

not important and can be replaced by any constant c ≥ 1.

Set T = ε log k/(2ϕ) and ε′ = k−1−ε/(20T). Applying Lemma 4.1 with T and ε′,

we can compute all p′t and thus S′t,i for all t ≤ T and i ∈ [5k1+ε] in O(T log k/ε′) =

O(ε2k1+ε(log k)3/ϕ2) steps (with an additional log k factor for sorting). By Lemma 4.3,

a good starting vertex v will give

p′T (S∗) ≥ pT (S∗)− ε′T vol(S∗) ≥ 1

4
(1− ϕ/2)T − ε′T vol(S∗).

We claim that one of the set S = S′t,i must satisfy vol(S) ≤ 5k1+ε and φ(S) ≤ 4
√
ϕ/ε.

74

Otherwise, setting φ1 ≥ 4
√
ϕ/ε, we have

p′T (S∗) ≥ 1

4
(1− ϕ

2
)T − ε′T vol(S∗)

≥ 1

4
exp(−ϕT)− k−ε

20

=
k−ε/2

4
− k−ε

20

>
k−ε

5
+ k−1/2

≥ k

5k1+ε
+
√
k(1− φ2

1

8
)T

≥ C ′(T)(k).

Here the second inequality holds since ϕ < 0.01, and the third inequality holds using

the fact that for k ≥ 1/ε and ε ≤ 0.01,

k−ε/2 > k−ε + 4k−
1
2 .

This contradicts to C ′(T)(k) ≥ p′T (S∗), completing the proof of Theorem 4.2.

4.1.4 Concluding remarks

Small set expansion conjecture

We presented a bicriteria approximation algorithm for the small sparsest cut problem

with conductance guarantee independent of n, but the volume of the output set is k1+ε.

We note that if one can also guarantee that the volume of the output set is at most Mk

for an absolute constant M , then one can disprove the small set expansion conjecture,

which states that for any constant ε there exists a constant δ such that distinguishing

φδ(G) < ε and φδ(G) > 1 − ε is NP-hard. This can be viewed as an evidence that

our analysis is almost tight, or an evidence that the small set expansion problem is not

NP-hard. We note that this is also observed by Raghavendra, Steurer and Tulsiani [60].

More formally, suppose there is a polynomial time algorithm with the following

guarantee: given a graphG, always output a set S with φ(S) = f(φk/ vol(V)) and vol(S) =

Mk where f(x) is a function that tends to zero when x tends to zero (e.g. f(x) = x1/100)

and M is an absolute constant. Then we claim that there is a (small) constant ε such

that whenever φk/ vol(V) < ε there is a polynomial time algorithm to return a set S with

φ(S) < 1− ε and vol(S) ≤ k.

75

We assume that G is a d-regular graph, as in [58] where the small set expansion

conjecture was formulated. Suppose there is a subset S∗ with |S∗| = k and φ(S∗) < ε.

First we use the algorithm to obtain a set S with φ(S) ≤ f(ε) and assume |S| = Mk

(instead of |S| ≤Mk). Next we show that a random subset S′ ⊆ S of size exactly k will

have φ(S′) < 1− ε with a constant probability for a small enough ε. Let E(S) be the set

of edges with both endpoints in S. Each edge in E(S) has probability 2(1/M)(1−1/M)

to be in δ(S′). So, the expected value of

w(δ(S′)) ≤ w(δ(S)) + 2(
1

M
)(1− 1

M
)|E(S)|.

By construction vol(S′) = kd, and so the expected value of

φ(S′) ≤ w(δ(S))

kd
+

2

kd
(

1

M
)(1− 1

M
)|E(S)|.

Note that |E(S)| ≤Mkd/2 and w(δ(S))/(kd) = Mφ(S) ≤Mf(ε), so the expected value

of

φ(S′) ≤Mf(ε) + 1− 1

M
.

For a small enough ε depending only on M , the expected value of φ(S′) ≤ 1 − 10ε.

Therefore, with a constant probability, we have φ(S′) < 1− ε.
We show that random walks can be used to obtain nontrivial bicriteria approxima-

tion algorithms for the small sparsest cut problem. We do not know of an example

showing that our analysis is tight. It would be interesting to find examples showing the

limitations of random walk algorithms (e.g. showing that they fail to disprove the small

set expansion conjecture).

Simpler proof of a result by Arora, Barak and Steurer

Arora et al. [7] proves a structural showing that we can obtain small sparse cuts efficiently

if there are many small eigenvalues (Theorem 2.7). The result is equivalent as the

statement

φO(k−1/100) = O(
√
λk logk n).

As observed by Oveis Gharan and Trevisan, our results can actually give a simpler yet

stronger proof of Theorem 2.7.

Theorem 4.5 ([55]). For any undirected graph G and ε > 0, we can efficiently find a

set S with size O(n/k1−ε) and φ(S) = O(
√
λk logk n/ε).

76

Proof. We will use Theorem 4.3 to upper bound χTuW
tχu and use the eigenvalues to

lower bound the trace of W t, which is equal to
∑

u χ
T
uW

tχu. Hence we obtain the bound

relating the small set conductance and the eigenvalues.

Applying Theorem 4.3 with l = 2 vol(V)/k1−ε and t = 16 log n/φ2
1, we have

χTuW
tχu ≤ C(W tχu, deg(u)) ≤ deg(u)

l
+
√

deg(u)(1− φ2
1

8
)t ≤ deg(u)

l
+ n−1.5.

Hence tr(W t) =
∑

u χ
T
uW

tχu ≤ vol(V)/l + 1/
√
n ≤ k1−ε.

On the other hand, tr(W t) =
∑

i(1− λi/2)t ≥ k(1− λk/2)t. Therefore

k1−ε ≥ k(1− λk
2

)t ≥ k exp(−16 log nλk
φ2

1

).

Hence −ε log k ≥ −16 log nλk/φ
2
1, and hence φ1 = O(

√
λk logk n/ε). This completes the

proof.

4.2 Expansions of graph powers

4.2.1 Introduction

A well-known operation to improve the graph expansion for regular graphs is by taking

the t-th power of G, which has a natural correspondence to simulating the random walk

on G for t steps. In this section, we assume that G is 1-regular, that is, deg(u) =∑
v∈V w(u, v) = 1 for every u ∈ V . We also assume that G is lazy, that is, w(u, u) ≥ 1/2

for every u ∈ V . Since G is 1-regular and lazy, we use column vectors for probability

distributions in this section and hence Atp (instead of pW t) denotes the probability

distribution after t steps of lazy random walks. The t-th power of G, denoted by Gt, is

defined as the undirected graph with adjacency matrix A(G)t, which corresponds to the

transition matrix of the t-step random walk of G. Note that Gt is also 1-regular if G is.

The question we study is to prove lower bounds on φ(Gt) in terms of φ(G). Besides

being a basic graph theoretical question, proving lower bounds on φ(Gt) has applications

in hardness of approximation [25, 57]. Our main result is a tight lower bound on the

expansion of the graph powers of a lazy 1-regular graph.

Previous work

There is a spectral argument to show that φ(Gt) is larger than φ(G) for large enough

t. Let 1 = α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 be the eigenvalues of the adjacency matrix AG of

77

G, where α1 = 1 because G is 1-regular and αn ≥ 0 because G is lazy. Note that the

eigenvalues of At is 1 = αt1 ≥ αt2 ≥ . . . ≥ αtn ≥ 0, and thus the i-th eigenvalue of the

Laplacian matrix of Gt is 1−αti = 1− (1− λi)t. Therefore, by the Cheeger’s inequality,

we have

φ(Gt) ≥ 1

2
(1− (1− λ2)t) ≥ 1

2
(1− (1− 1

2
tλ2)) =

1

4
tλ2 ≥

1

8
t · φ(G)2 = Ω(t · φ(G)2),

where the second inequality follows from Fact 4.1 when tλ2 < 1/2.

Recently, the spectral method was extended to prove lower bounds on the small set

expansion of a graph. Raghavendra and Schramm [57] proved an analog of the above

bound for small set expansion:

φΩ(δ)(G
t) = Ω(t · φδ(G)2),

when G is a lazy 1-regular graph and t = O(1/φδ(G)2). The proof is based on the

techniques developed in [7] relating higher eigenvalues to small set expansion. They

used this lower bound to amplify the hardness of the small set expansion problem; see

Section 4.2.3 for more discussions.

Our results

Our main result is a tight lower bound on the expansion of the graph powers of a lazy

1-regular graphs.

Theorem 4.6. Let G be an undirected 1-regular lazy graph. For any non-negative

integer t, we have

φ(Gt) ≥ 1

20
(1− (1− φ(G))

√
t) = Ω(min(

√
t · φ(G), 1)).

This is a quadratic improvement of the previous bound. This bound is tight up to a

constant factor for all t as we will show examples (e.g. cycles) in Section 4.2.2.

Observe that the spectral argument only shows that φ(Gt) > φ(G) when t =

Ω(1/φ(G)) but does not show that φ(Gt) > φ(G) for small t. Theorem 4.6 implies

that φ(Gt) > φ(G) for some small constant t. Actually, we can show that φ(G3) > φ(G)

when φ(G) < 1/2 by a more explicit calculation.

Theorem 4.7. Let G be an undirected 1-regular lazy graph with even n. We have

φ(G3) ≥ 3

2
φ(G)− 2φ(G)3.

78

One advantage of our approach is that Theorem 4.6 can be extended easily to small

set expansion.

Theorem 4.8. Let G be an undirected 1-regular lazy graph. For any non-negative

integer t, we have

φδ/2(Gt) ≥ 1

20
(1− (1− 2φδ(G))

√
t) = Ω(min(

√
t · φδ(G), 1)).

We show some applications of our results in Subsection 4.2.3, including the gap

amplification result in [57] for small set expansion and some reductions for proving

Cheeger-type inequalities [4, 43].

Techniques

We use the Lovász-Simonovits curve (see Subsection 2.3.2) for analyzing random walks.

As it turns out, this more combinatorial approach has the advantage of directly reason

about graph expansions without having the quadratic loss in the spectral method.

For an initial probability distribution p on the vertex set, C(t)(x) is the sum of the

probability of the x largest vertices after t steps of random walk on G. First, we observe

in Lemma 4.6 that when the initial distribution is χS/|S|,

φGt(S) ≥ 1− C(t)(|S|).

Hence, to lower bound φGt(S), we can instead upper bound C(t)(|S|). Imprecisely, by

Lemma 2.4, we can essentially argue that for all S with |S| ≤ n/2,

C(t)(|S|) . 1

2t

t∑

i=0

(
t

i

)
C(0)

(
(1− φ(G))i(1 + φ(G))t−i|S|

)

=
1

2t

t∑

i=0

(
t

i

)
min{(1− φ(G))i(1 + φ(G))t−i, 1},

where the equality holds because C(0)(x) = min{x/|S|, 1} as the initial distribution is

χS/|S|. Since there is at least a 1/10 fraction of terms in the summation with i ≥
t/2 +

√
t, we have

C(t)(|S|) . 1

10
(1− φ(G))

√
t +

9

10
≤ 1

10
(1− 1

2

√
t · φ(G)) +

9

10
,

where the last inequality is by Fact 4.1 when
√
t · φ(G) ≤ 1/2. Therefore, for all S with

79

|S| ≤ n/2, we have

φGt(S) ≥ 1

20

√
t · φ(G), and therefore φ(Gt) = Ω(

√
t · φ(G)).

We need to be careful to make the arguments in . precise and this is some technicality

of the proof, but the main ideas are pretty accurately summarized in this section.

4.2.2 Expansion of graph power

The following fact is used frequently in the proof.

Fact 4.1. For any z ∈ [0, 1], we have

(1− z)t ≥ 1− zt, or 1− (1− z)t ≤ zt.

For any zt ∈ [0, 1/2], we have

(1− z)t ≤ exp(−zt) ≤ 1− 1

2
zt, or 1− (1− z)t ≥ 1

2
zt.

Lovász-Simonovits curve

We do our analysis with the function introduced by Lovász and Simonovits as presented

in Subsection 2.3.2, except for a subtle difference. In this result, we assume the graph to

be lazy and 1-regular. Hence it is more natural to define C(t)(x) to be C(Atp, x) instead

of C(pW t, x), since the graph is already lazy.

We use x to denote min(x, n − x) for x ∈ [0, n]. This notation is frequently used

and should be interpreted as the distance to the boundary. With the new definition of

C(t)(x), we change Lemma 2.4 accordingly and obtain the following:

Lemma 4.4. If G is a lazy 1-regular graph, then for any integer t ≥ 0 and any integer

x ∈ [0, n], we have

C(t+1)(x) ≤ 1

2

(
C(t)(x− 2φx) + C(t)(x+ 2φx)

)
.

Comparing to the original lemma Lemma 2.4, the difference is here we have 2φ in-

stead of φ. This is due to the conductance of a lazy graph is exactly half the conductance

of the original graph. We remark that both lemmas only give bounds on integral val-

ues1. In our proof, however, we require bounds for all x ∈ [0, n]. The following lemma

1It was claimed in [51] that the lemma holds for any x ∈ [0, n], but later it was pointed out in [67]
that the lemma only holds for extreme points x, which is integral when the graph is lazy 1-regular.

80

provides a slightly weaker bound that also holds for fractional x when the graph is lazy

1-regular.

Lemma 4.5. If G is a lazy 1-regular graph, then for any integer t ≥ 0 and x ∈ [0, n],

we have

C(t+1)(x) ≤ 1

2

(
C(t)(x− φx) + C(t)(x+ φx)

)
.

Proof. Since C(t) is concave, for β > γ we have

C(t)(x− βx) + C(t)(x+ βx) ≤ C(t)(x− γx) + C(t)(x+ γx), (4.1)

We will prove that

C(t+1)(x) ≤ 1

2

(
C(t)(x− 2φ′x) + C(t)(x+ 2φ′x)

)
(4.2)

where

φ′ =
n− 1

n
φ,

and this would imply the lemma by Equation 4.1 since φ′ ≥ φ/2.

Note that for any integral x ∈ [0, n− 1] and any α ∈ [0, 1],

C(t+1)(x+ α) = (1− α)C(t+1)(x) + αC(t+1)(x+ 1)

≤ (1− α)
(
C(t)(x− 2φx) + C(t)(x+ 2φx)

)

+ α
(
C(t)(x+ 1− 2φ(x+ 1)) + C(t)(x+ 1 + 2φ(x+ 1))

)

=
(

(1− α)C(t)(x− 2φx) + αC(t)(x+ 1− 2φ(x+ 1))
)

+
(

(1− α)C(t)(x+ 2φx) + αC(t)(x+ 1 + 2φ(x+ 1))
)

≤ C(t)(x+ α− 2φ((1− α)x+ α(x+ 1)))

+ C(t)(x+ α+ 2φ((1− α)x+ α(x+ 1))),

where the first inequality follows from Lemma 4.4, and last inequality holds because

C(t) is concave. If (1−α)x+α(x+ 1) = (x+ α), then Lemma 4.4 holds and the lemma

follows by Equation 4.1.

Note that the only case where (1 − α)x + α(x+ 1) 6= (x+ α) is when n is odd and

x = (n − 1)/2. At that time, x = (x+ 1) = x and thus (1 − α)x + α(x+ 1) = x.

81

Therefore, when n is odd and x = (n− 1)/2, we have

C(t+1)(x+ α)

≤ 1

2

(
C(t)(x+ α− 2φx) + C(t)(x+ α+ 2φx)

)

≤ 1

2

(
C(t)

(
x+ α− 2(

n− 1

n
) · φ · (x+ α)

)
+ C(t)

(
x+ α+ 2(

n− 1

n
) · φ · (x+ α)

))

=
1

2

(
C(t)

(
x+ α− 2φ′ · (x+ α)

)
+ C(t)

(
x+ α+ 2φ′ · (x+ α)

))
,

where the later inequality holds because C(t) is concave and x+ α ≤ x+ 1/2 = n/2.

Proof of the main theorem

As mentioned in the proof outline in Section 4.2.1, we first show that we can prove a

lower bound on φ(Gt) by proving an upper bound on C(t)(|S|) for the initial distribution

χS/|S|.

Lemma 4.6. Suppose that for any set S ⊆ V with |S| ≤ n/2, we have C(t)(|S|) ≤ 1−α
for the initial distribution p = χS/|S|, then we can conclude that φ(Gt) ≥ α.

Proof. Let S be the set attaining minimum expansion in Gt, that is, |S| ≤ n/2 and

φGt(S) = φ(Gt). For the initial distribution p = χS/|S|,

C(t)(|S|) = C(Atp, |S|) ≥ χTSAtp =
χTSA

tχS
|S| = 1− χTS (In×n −At)χS

|S| = 1− φGt(S).

Therefore, we have φ(Gt) = φGt(S) ≥ 1− C(t)(|S|) ≥ α.

With Lemma 4.6, it remains to upper bound C(t)(|S|) for the initial distribution

χS/|S| for any S with |S| ≤ n/2. It turns out that there is a good upper bound

independent of |S|.

Lemma 4.7. For any S with |S| ≤ n/2, for the initial distribution p = χS/|S|, for any

non-negative integer t, we have

C(t)(|S|) ≤ 1− 1

20
(1− (1− φ)

√
t).

Proof. For technical reasons, we consider D(t)(x) = C(t)(x) − x/n instead to make

the argument more symmetric. See Figure 4.1 for the definition of D(0). Note that

82

Lemma 4.5 still holds for D(t) since x/n is linear. So, we have

D(t+1)(x) ≤ 1

2

(
D(t)(x− φx) +D(t)(x+ φx)

)
.

By applying this equation repeatedly, we have

D(t)(x) ≤ 1

2t

∑

T∈{−1,1}t
D(0)(fT (x)), (4.3)

where T is a sequence of t ±1-bits and fT is defined recursively as follows. In the base

case, when the sequence is empty, we define f()(x) = x for any x ∈ [0, n]. For any partial

sequence T ′, we define

f(T ′,+1)(x) =

{
fT ′(x)− φ · fT ′(x) if fT ′(x) ≤ n/2
fT ′(x) + φ · fT ′(x) if fT ′(x) > n/2,

and

f(T ′,−1)(x) =

{
fT ′(x) + φ · fT ′(x) if fT ′(x) ≤ n/2
fT ′(x)− φ · fT ′(x) if fT ′(x) > n/2,

We can view +1 as moving in the direction towards boundary and −1 as moving in the

direction towards center. Recall that x = min{x, n − x} can be viewed as the distance

to the boundary. In the following, we focus on the distance to the boundary of a point

rather than its actual location. It follows from the definition that for any x ∈ [0, n], we

have

f+1(x) = x− φx = (1− φ) · x,

and

f−1(x) ≤ x+ φx = (1 + φ)x ≤ (1− φ)−1 · x.

Therefore, fTi(x) ≤ (1− φ)Ti · x where Ti is the i-th bit in the sequence T , and hence

fT (x) = fTt ◦ fTt−1 ◦ · · · ◦ fT1(x) ≤ (1−φ)Tt ·fTt−1 ◦ · · · ◦ fT1(x) ≤ · · · ≤ (1−φ)
∑t
i=1 Ti ·x.

We call a sequence T good if
∑t

i=1 Ti ≥
√
t, otherwise we call it bad. For a good T , we

have fT (x) ≤ (1− φ)
√
t · x, and thus

fT (|S|) ≤ (1− φ)
√
t · |S| for |S| ≤ n/2 and T good. (4.4)

83

|S| n

1− |S|
n

D(0)(x)

n− |S|

min
{(

1
|S| − 1

n

)

x, 1− |S|
n

}

Figure 4.1: The solid line is the curve D0(x) and the dotted line is the upper bound on D(0)(x)

that is stated in Equation 4.5.

As the initial distribution is χS/|S|, for t = 0, we have

D(0)(x) ≤ min

{(
1

|S| −
1

n

)
x, 1− |S|

n

}
. (4.5)

See Figure 4.1 for an illustration of the inequality. The advantage of using D(t) instead

of C(t) is that we could bound D(0)(x) using x as shown in the above inequality.

Finally, we know that at least a 1/10 fraction of T are good. So, for S with |S| ≤ n/2,

D(t)(|S|) ≤ 1

2t

∑

T∈{−1,1}t
D(0)(fT (|S|)) (by Equation 4.3)

=
1

2t

∑

T :good

D(0)(fT (|S|)) +
1

2t

∑

T :bad

D(0)(fT (|S|))

≤ 1

2t

∑

T :good

(
1

|S| −
1

n

)
fT (|S|) +

1

2t

∑

T :bad

(
1− |S|

n

)
(by Equation 4.5)

≤ 1

2t

∑

T :good

(
1

|S| −
1

n

)
(1− φ)

√
t|S|+ 1

2t

∑

T :bad

(
1− |S|

n

)
(by Equation 4.4)

≤ 1

10

((
1

|S| −
1

n

)
(1− φ)

√
t|S|
)

+
9

10

(
1− |S|

n

)

=

(
1− |S|

n

)
− 1

10

(
1− |S|

n
−
(

1

|S| −
1

n

)
(1− φ)

√
t|S|
)

=

(
1− |S|

n

)
− 1

10

(
1− |S|

n

)(
1− (1− φ)

√
t
)

≤
(

1− |S|
n

)
− 1

20
(1− (1− φ)

√
t).

84

Therefore,

C(t)(|S|) = D(t)(|S|) + |S|/n ≤ 1− 1

20
(1− (1− φ)

√
t).

Combining Lemma 4.6 and Lemma 4.7, we have

φ(Gt) ≥ 1

20
(1− (1− φ)

√
t) ≥ 1

40

√
t · φ,

where the last inequality is by Fact 4.1 for
√
t · φ ≤ 1/2. This completes the proof of

Theorem 4.6.

Proof of graph cube

Theorem 4.6 showed that φ(Gt) > φ(G) for a small constant t. To prove that this is

true even for t = 3, we need to do a more explicit calculation. We use the bound

C(t+1)(x) ≤ 1

2

(
C(t)(x− 2φ′x) + C(t)(x+ 2φ′x)

)

for φ′ = n−1
n φ as was shown in Equation 4.2 in the proof of Lemma 4.5. When t = 3,

we have

C(3)(|S|) ≤ 1

8
C(0)((1− 2φ′)3|S|) +

3

8
C(0)((1− 2φ′)2(1 + 2φ′)|S|) +

4

8

=
1

8
(1− 2φ′)3 +

3

8
(1− 2φ′)2(1 + 2φ′) +

4

8

= 1− 3

2
φ′ + 2φ′3.

Thus we conclude φ(G3) ≥ 3
2φ
′ − 2φ′3. Therefore, for a large graph with small con-

ductance, taking cube increases the conductance by a factor of almost 3
2 . When n is

even, we can replace φ′ by φ as was shown in the proof of Lemma 4.5, and this proves

Theorem 4.7.

Proof of small set conductance

Our result can be easily extended to the case of small set expansion with a little loss in

size. More precisely, suppose G is an undirected 1-regular lazy graph such that all sets

of size at most δn have conductance φδ, where δ ≤ 1/2. In this setting, the following

lemma holds in place of Lemma 4.4.

85

Lemma 4.8. If G is a lazy 1-regular graph, then for any integer t ≥ 0 and any x ∈
[0, δn],

C(t+1)(x) ≤ 1

2

(
C(t)(x− 2φδ · x) + C(t)(x+ 2φδ · x)

)
,

where x = min(x, δn− x) here.

We remark that we do not need to fix the non-integral problem as in Lemma 4.5

because we only consider x ≤ δn ≤ n/2 (see the proof of Lemma 4.5).

Lemma 4.6 can be restated as follows with the same proof.

Lemma 4.9. Suppose that for any set S ⊆ V with |S| ≤ δn/2 with the initial distribution

p = χS/|S|, we have C(t)(|S|) ≤ 1− α, then we can conclude that φδ/2(Gt) ≥ α.

Finally, in Lemma 4.7, we consider D(t)(x) = C(t)(x) − x
δn instead, and we use the

new x in the analysis. Observe that fT (x) can never leave the range [0, δn] when x starts

in the range. Therefore the same analysis applies and we have the following lemma.

Lemma 4.10. For any S with |S| ≤ δn/2, for the initial distribution p = χS/|S|, for

any non-negative integer t, we have

C(t)(|S|) ≤ 1− 1

20
(1− (1− 2φδ)

√
t).

Theorem 4.8 follows by combining Lemma 4.9 and Lemma 4.10.

Tight examples

We show that the dependence on t in Theorem 4.6 is tight up to a constant factor.

The tight example we use is a lazy cycle. Intuitively, after t steps of random walk on a

lazy cycle, the final position with high probability only differs from the initial position

by O(
√
t), and therefore the expansion should be bounded by O(

√
t) times the original

expansion. It turns out that we can easily justify this intuition through Cheeger’s

inequality.

Proposition 4.1. Let Cn be the lazy cycle. Then we have φ(Ctn) = O(
√
t · φ(Cn)).

Proof. As in Section 4.2.1, we have

λ2(Ctn) = 1− (1− λ2(Cn))t ≤ tλ2(Cn) = O(t · φ(Cn)2),

where the inequality is by Fact 4.1 and the last equality is by the spectrum of the

cycle. By Cheeger’s inequality (Theorem 2.1), φ(Ctn) = O(
√
λ2(Ctn)), and thus φ(Ctn) =

O(
√
t · φ(Cn)).

86

We remark that tight examples of Theorem 4.6 must have many small eigenvalues.

By the improved Cheeger’s inequality (Theorem 3.1), we have φ(G) = O(kλ2/
√
λk) for

any k. Therefore, by the same calculation as in Section 4.2.1, we have that for any k,

φ(Gt) ≥ 1

4
tλ2 = Ω(

t · φ(G) · √λk
k

),

and therefore a graph G with λk(G) large for a small k could not be a tight example for

Theorem 4.6.

Irregular graphs

Theorem 4.6 showed that φ(Gt) = Ω(
√
t · φ(G)) for a regular graph. There are different

ways to generalize the statement to irregular graphs. In the following, we show that

the generalization is not true if we replace expansion by conductance, and we show that

the generalization is true if we replace expansion by the escape probability of a t-step

random walk.

Consider the graph G consisting of a regular complete graph with self loops (2In×n+
1
nKn) and an extra vertex u. The extra vertex only connects to a single vertex v

in the complete graph with edge weight 1 and it has a self loop of weight m. We

assume the complete graph is so large that n > 2m4. Then φ(G) = φ({u}) = 1/m +

o(1/m). Consider G3. Since degG3(u) = m3 + o(m3) < n/2, the set achieving minimum

conductance is still {u}. In G3, the total weight of edges between u and the complete

graph is m2 + o(m2). Therefore φ(G3) = 1/m+ o(1/m). Note that the same argument

applies for any Gt if we set n to be large enough. Therefore, no matter how small φ(G)

is or how large t is, we cannot argue that φ(Gt) > (1 + ε)φ(G) for a positive constant ε

when we replace expansion by conductance in irregular graphs.

On the other hand, our results can be extend to another natural generalization of

expansion. Consider the definition

ϕ(Gt) = min
S⊆V,|S|≤n/2

ϕGt(S) = min
S⊆V,|S|≤n/2

(1− χTS (D−1AG)tχS
|S|),

where ϕGt(S) is the probability that a t-step random walk starting from a random vertex

in S escapes S. With this definition and assuming that the graph does not contain a

vertex of degree more than half of the total degrees, we can show that Lemma 4.5 still

holds, with a extended definition for C(t). Therefore, ϕ(Gt) = Ω(min{
√
t · ϕ(G), 1})

follows.

87

4.2.3 Applications

In this section, we discuss some consequences of our main theorem. We show that

proving the general cases of Cheeger’s inequalities can be reduced to proving the special

cases where the eigenvalues are constants. Similar arguments can be used to deduce the

recent result on gap amplification for small set expansion in [57].

Cheeger’s inequalities

Let G be an undirected 1-regular lazy graph. The following result shows that if one

could prove Cheeger’s inequality when λ2 is a constant, then one could prove Cheeger’s

inequality for all λ2. One consequence is that if one could prove that say φ(G) =

O((λ2)1/100) (so that Cheeger’s inequality is true when λ2 is a constant), then it actually

implies that φ(G) = O(
√
λ2).

Corollary 4.1. Suppose one could prove that λ2(H) ≥ C for some constant C ≤ 1/2

whenever φ(H) ≥ 1/40, then it implies that φ(G) ≤
√
λ2(G)/C for any G and any

λ2(G).

Proof. Given G, we assume that λ2(G) ≤ φ(G)2/2, as otherwise the statement is trivial.

Consider H = G1/φ(G)2 . By Theorem 4.6, we have

φ(H) ≥ 1

20
(1− (1− φ(G))

√
1/φ(G)2) ≥ 1

40
.

Therefore, if we could prove that λ2(H) ≥ C, then we could conclude that

C ≤ λ2(H) = 1− (1− λ2(G))1/φ(G)2 ≤ λ2(G)

φ(G)2
,

where the last inequality is by Fact 4.1. Hence the corollary follows.

Improved Cheeger’s inequality

The improved Cheeger’s inequality (Theorem 3.1) states that φ(G) = O(kλ2/
√
λk) for

any k. Using similar arguments as above, the following result shows that if one could

prove this improved Cheeger’s inequality when λ3 is a constant, then one could prove it

for all λ3. For instance, if one could prove that say φ(G) = O(λ2/λ
100
3), then it actually

implies that φ(G) = O(λ2/
√
λ3).

Corollary 4.2. Suppose one could prove that φ(H) ≤ Cλ2(H) for some C ≥ 1/10

whenever λ3(H) ≥ 1/2, then it implies that φ(G) ≤ 40Cλ2(G)/
√
λ3(G) for any G and

88

any λ3(G).

Proof. We assume that φ ≤
√
λ3/2, as otherwise, by Cheeger’s inequality, 2λ2(G) ≥

φ(G)2 ≥ 1
2φ(G)

√
λ3 and the statement is true. Consider H = G1/λ3(G). Then

λ3(H) = 1− (1− λ3(G))1/λ3 ≥ 1− e−1 ≥ 1/2.

Therefore, if one could prove that φ(H) ≤ Cλ2(H), then

Cλ2(H) ≥ φ(H) ≥ 1

20
(1− (1− φ(G))

√
1/λ3(G)) ≥ φ(G)

40
√
λ3(G)

,

where the second inequality is by Theorem 4.6 and the last inequality is by Fact 4.1.

On the other hand,

λ2(H) = 1− (1− λ2(G))1/λ3(G) ≤ λ2(G)

λ3(G)
,

and the corollary follows by combining the two inequalities.

Gap amplification for small set expansion

Consider the small set expansion problem SSEδ,δ′(c, s): Given a graph G, distinguish

whether φδ(G) ≤ c or φδ′(G) ≥ s. The small set expansion conjecture [58] states that

for any ε > 0, there exists δ > 0 such that SSEδ,δ(ε, 1− ε) is NP-hard.

Let f be a function such that f(x) = ω(
√
x). Raghavendra and Schramm [57] showed

that if for all ε > 0 there exists δ > 0 such that SSEδ,δ(ε, f(ε)) is NP-hard, then for all

ε > 0 there exists δ > 0 such that SSEδ,δ/8(ε, 1/2) is NP-hard.

We would show that our techniques can be easily applied to get a similar result.

Theorem 4.9. If for all ε > 0 there exists δ > 0 such that SSEδ,δ(ε, f(ε)) is NP-hard,

then for all ε > 0 there exists δ > 0 such that SSEδ,δ/2(ε,Ω(1)) is NP-hard.

Proof. Given an instance G that we would like to distinguish whether φδ(G) ≤ ε or

φδ(G) ≥ f(ε), we consider the graph H = GO(1/f(ε)2). In the case when φδ(G) ≥ f(ε),

by Theorem 4.8, we have

φδ/2(H) = Ω(
√

1/f(ε)2 · f(ε)) = Ω(1).

In the case when φδ(G) ≤ ε, we have

φδ(H) ≤ (1/f(ε)2) · ε = oε(1) ≤ ε′,

89

where the equality holds because f(ε) = ω(
√
ε) and the first inequality holds because

φGt(S) = 1− χTSA
tχS
|S| ≤ t · φG(S),

where the inequality is proven (see Proposition 2.5 in [67]) by a simple induction. There-

fore, if SSEδ,δ(ε, f(ε)) is NP-hard, then SSEδ,δ/2(ε′,Ω(1)) is NP-hard.

Finally, we remark that it is easier to bound φδ(G
t) for large t using Lovász-

Simonovits curve. Using the techniques in Section 4.1, we have the following bound

for C(t) when the initial probability vector is χS/|S|:

C(t)(x) ≤ x

δn
+

√
x

|S|(1−
φ2

2
)t.

Therefore,

φGt(S) ≥ 1− C(t)(|S|) ≥ 1− |S|
δn
− (1− φ2

2
)t,

where the first inequality follows from Lemma 4.6. Set t = 100/φ2, then for |S| ≤
δn/4, we have φGt(S) ≥ 3

4 − exp(−50). Therefore, if SSEδ,δ(ε, f(ε)) is NP-hard, then

SSEδ,δ/4(ε′, 1/2) is NP-hard. This recovers the result of Raghavendra and Schramm with

better constant.

90

Chapter 5

Matrix rank

In the chapter, we present a fast algorithm to compute the matrix rank using probabilis-

tic vertex expanders. The results presented in this chapter are mainly based on joint

work with Ho Yee Cheung and Lap Chi Lau [17].

5.1 Introduction

Given an m×n matrix A over a field F , the rank of A, denoted by rank(A), is the max-

imum number of linearly independent columns of A. We consider the problem of com-

puting rank(A) and finding a set of rank(A) linearly independent columns efficiently. It

is a basic computational problem in numerical linear algebra that is used as a subroutine

for other problems [72, 76]. It also has a number of applications in graph algorithms and

combinatorial optimization: Some of the fastest algorithms for graph matching [53, 32],

graph connectivity [16, 61, 18], matroid optimization problems [32, 19] are based on fast

algorithms for computing matrix rank and finding linearly independent columns.

5.1.1 Previous works

The traditional approach to compute rank(A) is by Gaussian elimination. For an m×n
matrix with m ≤ n, it is known that this approach can be implemented in O(nmω−1)

field operations [11, 37], where ω < 2.373 is the matrix multiplication exponent [23,

78, 44]. More generally, given an m × n matrix and a parameter k ≤ m ≤ n, one can

compute min(rank(A), k) in O(nmkω−2) field operations [70]. The time complexity can

be improved somewhat for sparse matrices [79]. The Gaussian elimination approach has

the advantage that it can also find a set of min(rank(A), k) linearly independent columns

in the same time. These algorithms are deterministic.

91

There are also randomized algorithms to compute the value of rank(A) more effi-

ciently. There are at least three approaches.

1. The first approach is to do an efficient preconditioning [39, 15]. Let B = T1AT2

where T1 and T2 are Toeplitz matrices with entries chosen uniformly and randomly

from a large enough subset of the field. Then B can be computed in Õ(mn) time

because of the structure of T1 and T2. Let r = rank(A). It is proven that [39] the

leading r×r minor of B is of full rank with high probability. Thus rank(A) can be

computed in Õ(mn+rω) field operations. There is another efficient preconditioner

based on butterfly network [15] with similar property and running time. This

approach works for any field.

2. There is a black-box approach that computes rank(A) in O(m · nnz(A)) field op-

erations [77, 76, 63] where nnz(A) is the number of non-zero entries of A. The

method is based on computing the minimal polynomial of A for Krylov subspaces.

It does not require to store A explicitly, as long as there is an oracle to compute

Ab for any vector b. This approach is fast when the matrix is sparse, and it works

for any field.

3. Another approach is based on random projection for matrices over real numbers.

Given an m × n matrix A over R, one can reduce A into an m × (m logm) ma-

trix A′ so that rank(A) = rank(A′) with high probability [62] by the Johnson-

Lindenstrauss lemma. The matrix A′ can be computed efficiently using fast

Johnson-Lindenstrauss transform [2, 3], and this implies an Õ(nm + mω) ran-

domized algorithm to compute rank(A). This approach is only known to work for

matrices over real numbers.

We note that only the Gaussian elimination approach can also find a set of rank(A)

linearly independent columns, while other approaches can only compute the value of

rank(A).

5.1.2 Our results

Our main result is a faster randomized algorithm to compute matrix rank. We assume

that there is at least one non-zero entry in each row and each column, and thus nnz(A) ≥
max{m,n}.

Theorem 5.1. Given an m× n matrix A over a field F and a parameter k where k ≤
min(m,n), there is a randomized algorithm to compute min(rank(A), k) in O(nnz(A) +

92

min(kω, k nnz(A))) field operations where nnz(A) denotes the number of non-zeros in A.

Furthermore, there is a randomized algorithm to find a set of min(rank(A), k) linearly

independent columns in Õ(nnz(A) + kω) field operations.

For computing min(rank(A), k), previous algorithms require Õ(mn+ kω) field oper-

ations, while we replace the mn term by nnz(A) and remove the (small) polylog factor.

Moreover, we can also find a set of min(rank(A), k) linearly independent columns in

about the same time, which is considerably faster than the O(mnkω−2) algorithm by

Gaussian elimination when k is small. For instances, we can find a set of k = n1/ω ≈ n0.42

linearly independent columns in Õ(nnz(A)) field operations, and a set of k = n1/(ω−1) ≈
n0.72 linearly independent columns in Õ(mn) field operations, while previously it was

possible only for k = O(polylog(n)). The algorithm for finding linearly independent

columns is needed in applications on various problems in exact linear algebra and com-

binatorial optimization [17].

5.2 Fast matrix rank algorithms

In this section, we will prove Theorem 5.1. First, we state the setting in Subsection 5.2.1

and present an outline of our approach in Subsection 5.2.2. Then, we define magical

graphs in Subsection 5.2.3, and use them to obtain the compression algorithm in Sub-

section 5.2.4. Finally, we present the algorithms to computing the matrix rank and

finding a maximum set of independent columns in Subsection 5.2.5 and Subsection 5.2.6

respectively.

5.2.1 Setting

Let A be an m×n matrix over a field F . We will assume that A is given by a list of the

value and the position of its non-zero entries, and each row and column of A contains

at least one non-zero entry, so nnz(A) ≥ max(n,m).

When F is a finite field, we will assume that |F | = Ω(n4) by the following lemma

using an extension field.

Lemma 5.1. Let A be an m×n matrix over a field F with pc elements. We can construct

a finite field F ′ with pck = Ω(n4) elements and an injective mapping f : F → F ′ so that

the image of F is a subfield of F ′. Then the m×n matrix A′ where A′(i, j) = f(A(i, j))

satisfies the property that rank(A′) = rank(A). This preprocessing step can be done in

O(nnz(A)) field operations. Each field operation in F ′ can be done in Õ(log |F |+ log n)

steps.

93

The proof is omitted here since it is not exacted related to this thesis. When F is

an infinite field, we will assume the exact arithmetic model where each field operation

can be done at unit cost. In the algorithms, we will need to choose a random element

from F . When F is an infinite field, we just choose an arbitrary subset S ⊂ F with

|S| = Ω(n4), and pick a uniformly random element from S. This will be enough for our

applications of the Schwartz-Zippel lemma.

Lemma 5.2 (Schwartz-Zippel lemma [64]). Let P ∈ F [x1, . . . , xn] be a non-zero poly-

nomial of total degree d over a field F . Let S be a finite subset of F and let r1, . . . , rn be

selected randomly from S. Then the probability that P (r1, . . . , rn) = 0 is at most d/|S|.

5.2.2 Outline

Suppose a parameter k is given and the task is to compute min(rank(A), k). Our ap-

proach is to compress the matrix into a O(k) × O(k) matrix whose rank is at least

min(rank(A), k) with high probability. Our method is inspired by the random linear

coding algorithm [33, 18] in network coding [1]. We can construct an m × k matrix

B where each column of B is a random linear combination of the columns of A, i.e.

Bi =
∑n

j=1 rj,iAj where Aj and Bi denote the j-th column of A and the i-th column of

B respectively, and rj,i is a random element in F . In other words, B = AR where R is an

n×k matrix where each entry is an independent random element in F . It can be shown

that rank(B) = min(rank(A), k) with high probability using the Schwartz-Zippel lemma

(see Lemma 5.4), but the problem is that it requires a rectangular matrix multiplication

algorithm [36] to compute B and it is not efficient enough.

We observe that this way of constructing B is the same as doing the random linear

coding algorithm in a single vertex with n incoming edges and k outgoing edges. And so

the idea of using a superconcentrator to do the random linear coding efficiently [18] can

be applied to construct an m× k matrix B in O(mn) field operations, while rank(B) =

min(rank(A), k) with high probability. We can apply the same procedure to reduce the

matrix B into a k×k matrix C in O(mk) field operations while rank(C) = rank(B) with

high probability, and then rank(C) can be computed directly. The technical point here

is that a superconcentrator is a sparse graph that has a strong connectivity property.

The sparsity allows for fast computation. And the strong connectivity property ensures

that any set of k linearly independent columns in A can be mapped to the k columns

in B bijectively by some linear combinations, and random linear combinations ensure

that rank(B) = min(rank(A), k) with high probability by the Schwartz-Zippel lemma.

This implies that min(rank(A), k) can be computed in O(mn + kω) field operations

94

with high probability, improving the existing algorithms by removing the polylog factor.

There are, however, two disadvantages of this method. One is that the compression

algorithm requires Θ(mn) field operations even when A is a sparse matrix. Another is

that we do not know how to find a set of min(rank(A), k) linearly independent columns

of A using this method. See appendix of [17] for the full proof of computing rank by

superconcentrators.

To improve the compression algorithm, we choose R to be a sparse n × l matrix

(indeed l = O(k) would be enough), with at most two non-zeros per row and about 2n/l

non-zeros per column. Their locations are chosen at random, so that with high probabil-

ity they form a “magical graph” (a sparse vertex expander used in the construction of a

superconcentrator) when the matrix R is viewed as a bipartite graph with n vertices on

one side and l vertices on the other side. The property of the magical graph ensures that

with high probability any set of k linearly independent columns in A can be mapped to

some set of k columns in B bijectively by some linear combinations. Again, the non-zero

values are chosen randomly from the field, so that min(rank(B), k) = min(rank(A), k)

with high probability by the Schwartz-Zippel lemma. Since there are only two non-zeros

per row of R, we can compute B = AR easily in O(nnz(A)) time.

Furthermore, since there are about 2n/l non-zeros per column of R, from any set of

at most k linearly independent columns in B, we can identify a subset of at most 2nk/l

columns in A with the same number of linearly independent columns. By choosing l ≈
11k, we can (1) guarantee with high probability that R is a magical graph, (2) compute

the rank of the compressed matrix in O(kω) field operations, and (3) remove a constant

fraction of the columns of A while keeping min(rank(A), k) unchanged. Therefore, we

can repeat this procedure for O(log n) times to reduce the number of columns in A to

be O(k), and the total running time is O((nnz(A) + kω) log n) field operations.

5.2.3 Magical graphs

Our construction requires a probability distribution of bipartite graphs with the follow-

ing properties.

Definition 5.1 (Magical Graphs). A probability distribution of bipartite graphs with

vertex set X ∪ Y is (k, ε)-magical if for any given subset S ⊆ X with |S| = k, the

probability that there is a matching in which every vertex in S is matched is at least

1− ε.

We note that this definition only requires any particular subset S of size k can be

matched to the other side with high probability, while the definition in [34] requires that

95

all subsets up to certain size can be matched to the other side. This is enough for us

to show that for any particular set of k linearly independently columns in the original

matrix, with high probability there exist some linear combinations that will map it to

some set of k columns bijectively in the compressed matrix.

We show that a graph from a magical distribution with good parameters can be

generated efficiently.

Lemma 5.3. For any values of |X| ≥ |Y | ≥ ck where c ≥ 11, there is a (k,O(1/k))-

magical distribution with the additional properties that each vertex of X is of degree 2

and each vertex of Y is of degree at most 2d|X|/|Y |e. Moreover, there is a randomized

O(|X|) time algorithm to generate a graph from this distribution.

We note that the magical graphs in [34] cannot be used directly because of the

following reasons: (1) the failure probability in [34] is a constant while we need a much

smaller failure probability in order to find a set of linearly independent columns, (2) we

need the additional property that the graph is almost regular to find a set of linearly

independent columns. The proof is by a standard probabilistic argument, which can be

skipped in the first reading.

Proof. The generation algorithm is simple. We assume that |X| is a multiple of |Y |;
otherwise we construct a slightly larger graph and delete the extra vertices. We first

construct a 2-regular graph G′ with |X| vertices on both sides, by taking the union of

two random perfect matchings independently from |X| vertices to |X| vertices. Then

we divide the |X| vertices on one side into |Y | groups where each group has |X|/|Y |
vertices. We obtain G by merging each group into a single vertex, and so each vertex in

Y is of degree 2|X|/|Y |.
For any S ⊆ X with |S| = k, we analyze the probability that there is a matching in

G in which every vertex in S is matched. By Hall’s theorem, we need to show that for

any S′ ⊆ S, the neighbor set of S′ in G is of size at least |S′|. To analyze the probability

that the neighbor set of S′ is at least |S′| for a fixed S′ ⊆ S, we consider the equivalent

random process where the 2|S′| edges incident on S′ are added one by one. Consider

the i-th edge added. We say that it is a bad edge if the other endpoint falls in the same

group with some previously added edges. If the neighbor set size of S′ is less than |S′|,
then there must be at least |S′|+ 1 bad edges out of the 2|S′| edges, and the probability

that an edge is bad is less than |S′|/|Y |. So the probability that the neighbor set size of

96

S′ is less than |S′| is less than

(
2|S′|
|S′|+ 1

)
×
(|S′|
|Y |

)|S′|+1

by a union bound on the possible |S′| + 1 bad edges. Summing over the choices of the

size of S′ and the choices of S′ with that size, we have that the probability that there is

a subset S′ ⊆ S with less than |S′| neighbors is at most

k∑

z=0

(
2z

z + 1

)(
z

|Y |

)z+1(k
z

)
≤

k∑

z=0

22z

(
z

|Y |

)z+1(ke
z

)z

≤
k∑

z=0

(
4e

c

)z z

ck

= O(1/k),

using |Y | ≥ ck and the identity
∑∞

z=0 r
z · z = r/(1− r)2 for r < 1, and setting r = 4e/c

as c ≥ 11 > 4e by our assumption. Therefore, by Hall’s theorem, the probability that

there is a matching in which every vertex in S is matched is at least 1−O(1/k).

5.2.4 Compression algorithm by magical graph

In the following we use a graph from a magical distribution to do an efficient rank-

preserving compression. The algorithm is shown in Algorithm 2 and illustrated in Fig-

ure 5.1.

Algorithm 2: Compression algorithm by magical graphs

Input: An m× n matrix A over a field F , and a bipartite graph G = (X ∪ Y,E)
with |X| = n and |Y | = l sampled from a (k, ε)-magical distribution.

Output: An m× l matrix B over the field F with
min(rank(B), k) = min(rank(A), k).

1 Let X = {x1, . . . , xn} and Y = {y1, . . . , yl};
2 Each column of A corresponds to a vertex in X and each column of B

corresponds to a vertex in Y . Let Aj be the j-th column of A for 1 ≤ j ≤ n and
Bi be the i-th column of B for 1 ≤ i ≤ l;

3 Construct B by writing Bi as a random linear combination of those columns of A
whose corresponding vertices have an edge to yi. More precisely, we write
Bi =

∑
e=xjyi∈E ceAj for 1 ≤ i ≤ l where ce is an independent random element in

F for each edge e ∈ G;

97

x2

A2

x1 x3 x4 x5 x6 x7 x9x8

y1 y3 y4 y5 y6y2

A1 A3 A4 A5 A6 A7 A9A8

B1 B2 B3 B4 B5 B6

X

A

Y

B

Figure 5.1: The notations used are the same as in Algorithm 2. The bipartite graph
G = (X ∪Y,E) is used to compress the matrix A into matrix B. Each column of B is a
random linear combination of the columns of its neighbors, e.g. B3 is a random linear
combination of A2, A3 and A8.

The following lemma uses the Schwartz-Zippel lemma to prove that the compression

algorithm is rank-preserving with high probability.

Lemma 5.4. The probability that the algorithm in Algorithm 2 returns a matrix B such

that min(rank(B), k) = min(rank(A), k) is at least 1− ε− k/|F |.

Proof. Clearly rank(B) ≤ rank(A) since the column space of B is a subspace of the

column space of A. So min(rank(B), k) ≤ min(rank(A), k), and it remains to show that

rank(B) ≥ min(rank(A), k) with high probability.

Let k′ = min(rank(A), k). Let S be a set of linearly independent columns of A with

|S| = k′, and let AU,S be a k′ × k′ submatrix of A with rank(AU,S) = k′. We overload

notation to also use S to denote the subset of vertices in G corresponding to those

columns. Since G is sampled from a (k, ε)-magical distribution, the probability that

there is a matching M in which every vertex in S is matched is at least 1− ε. Suppose

such a matching M exists and let T be the neighbors of S in M with |T | = |S| = k′. (In

the example in Figure 5.1, suppose S = {A1, A2, A3}, then M could be {x1y2, x2y3, x3y1}
and T = {B1, B2, B3}.) If we view each ce as a variable, then det(BU,T) is a multivariate

polynomial with total degree k′. By setting ce = 1 for each e ∈ M and ce = 0 for each

e ∈ E −M , we get that BU,T = AU,S and thus det(BU,T) is a non-zero multivariate

polynomial as AU,S is of full rank. By the Schwartz-Zippel lemma, if we substitute each

variable ce by a random element in a field F , then the probability that det(BU,T) = 0 is

at most k′/|F | ≤ k/|F |. So, if G has a matching that matches every vertex in S, then

rank(B) ≥ rank(BU,T) = k′ with probability at least 1−k/|F |. Therefore the algorithm

98

succeeds with probability at least 1− ε− k/|F |.

We can combine Lemma 5.3 and Lemma 5.4 to obtain an efficient compression algo-

rithm.

Theorem 5.2. Suppose an m×n matrix A over a field F is given. Given k, there is an

algorithm that constructs an m×O(k) matrix B over F with the following properties.

1. min(rank(A), k) = min(rank(B), k) with probability at least 1−O(1/k)−O(k/|F |).

2. nnz(B) = O(nnz(A)) and B can be constructed in O(nnz(A)) field operations.

Proof. We can assume n ≥ 11k; otherwise we can just let B = A. We sample a

bipartite graph G = (X ∪ Y,E) with |X| = n and |Y | = 11k from a (k,O(1/k))-magical

distribution in O(n) time by Lemma 5.3, with the additional property that each vertex

in X is of degree two. We use G in the algorithm in Algorithm 2 to obtain an m× 11k

matrix B over F . Since each vertex of X is of degree two, each entry of A is related to

two entries in B. We can represent B by listing the value and position of its non-zero

entries without handling duplicate positions, i.e. each non-zero entry in A introduces

exactly two entries in B. Therefore, nnz(B) = 2 nnz(A) and B can be constructed in

O(nnz(A)) field operations. The probability that min(rank(A), k) = min(rank(B), k) is

at least 1−O(1/k)−O(k/|F |) by Lemma 5.4.

5.2.5 Computing matrix rank

With the compression algorithm, the first part of Theorem 5.1 follows easily.

Theorem 5.3. Suppose an m × n matrix A over a field F is given with m ≤ n.

There is an algorithm to compute min(rank(A), k) for a given k ≤ m in O(nnz(A) +

min(kω, k nnz(A))) field operations with success probability at least 1−O(1/n1/3).

Proof. We can assume that |F | = Ω(n4) by Lemma 5.1. We also assume that k ≥ n1/3;

otherwise if k < n1/3 we just reset k to be n1/3. We apply Theorem 5.2 to compress the

m× n matrix A into an m×O(k) matrix B. Then min(rank(B), k) = min(rank(A), k)

with probability at least 1 − O(1/k) − O(k/|F |) = 1 − O(1/n1/3) since n1/3 ≤ k ≤
n and |F | = Ω(n4). And B can be constructed in O(nnz(A)) field operations with

nnz(B) = O(nnz(A)). We then apply Theorem 5.2 again onBT to compress them×O(k)

matrix B into an O(k)×O(k) matrix C. Then min(rank(C), k) = min(rank(B), k) with

probability at least 1−O(1/n1/3) and C can be constructed in O(nnz(A)) field operations

with nnz(C) = O(nnz(A)). Now we can compute rank(C) in O(kω) field operations

99

by using fast matrix multiplication [11]. Alternatively, we can compute rank(C) in

O(k nnz(C)) = O(k nnz(A)) field operations using the black box approach [63, 76]. Thus

min(rank(A), k) can be computed in O(nnz(A)+min(kω, k nnz(A))) field operations with

success probability 1−O(1/n1/3).

We do not know the rank of the matrix A directly from Theorem 5.3. However we

can do so efficiently by searching for a good value of k.

Corollary 5.1. Given the same setting as in Theorem 5.3, there is an algorithm to

compute r = rank(A) in O(nnz(A) log r+min(rω, r nnz(A))) field operations with success

probability 1−O(1/n1/3).

Proof. To compute rank(A), we can simply apply Theorem 5.3 with k = n1/3, 2n1/3,

4n1/3, . . . , 2logn2/3
n1/3 until the algorithm returns an answer smaller than k or A is of

full rank. Let r = rank(A). The failure probability is bounded by O(1/n1/3) since sum

of 1/k is less than 2/n1/3. The number of field operations needed is O(nnz(A) log r +

min(rω, r nnz(A))), since the sum of kω is O(rω) and the sum of k nnz(A) is O(r nnz(A)).

We can improve Corollary 5.1 slightly and reduce the field operations needed to

be O(min(nnz(A) log r, nm) + min(rω, r nnz(A))). This is done by computing the com-

pressed matrices aggregately and we omit the details here.

5.2.6 Finding independent set

In this subsection, we will find a set of min(rank(A), k) linearly independent columns of

A, by applying the compression algorithm iteratively to reduce the number of columns

of A progressively. In the following, we let c = 11, and assume without loss of generality

that k ≥ n1/3 (as in Theorem 5.3). First, we compress the rows while preserving the

position of a set of at most k independent columns.

Lemma 5.5. Suppose an m×n matrix A over a field F is given. There is an algorithm

to return a ck × n matrix A′ in O(nnz(A)) field operations with nnz(A′) = O(nnz(A)),

such that if S is a set of at most k linearly independent columns in A, then S is also a

set of linearly independent columns in A′ with probability at least 1−O(1/n1/3).

Proof. If m > ck, we apply the algorithm in Theorem 5.2 to AT to compress A into a

ck × n matrix A′ in O(nnz(A)) field operations, such that nnz(A′) = O(nnz(A)). Let S

be a set of at most k linearly independent columns in A, i.e. |S| ≤ k. By Theorem 5.2,

100

we have rank(A′[ck],S) = rank(A[m],S) = |S| with probability at least 1−O(1/n1/3), and

thus S is a set of linearly independent columns in A′.

Next, given a ck × n matrix A, we show how to find a submatrix A′ of A with

at most n/5 columns in O(nnz(A) + kω) field operations, such that min(rank(A), k) =

min(rank(A′), k) with high probability. The bounded degree condition of magical graphs

is important in the following lemma.

Lemma 5.6. Given a ck×n matrix A over a field F where ck ≤ n, there is an algorithm

to find a (ck) × (n/5) submatrix A′ of A in O(nnz(A) + kω) field operations, such that

min(rank(A), k) = min(rank(A′), k) with probability at least 1−O(1/n1/3).

Proof. We use the algorithm in Theorem 5.2 to compress A into a ck × ck matrix B in

O(nnz(A)) field operations, while min(rank(A), k) = min(rank(B), k) with probability

at least 1 − O(1/n1/3). Since B is a ck × ck matrix, we can directly find a set S of

min(rank(B), k) linearly independent columns in B in O(kω) field operations using fast

matrix multiplication [11]. Let G = (X ∪ Y,E) be the bipartite graph used in the

compression algorithm with |X| = n and |Y | = ck. Let T be the set of columns in

A that correspond to the neighbors of the vertices corresponding to S in G. By the

bounded degree condition of G, each vertex corresponding to a column in S is of degree

at most 2|X|/|Y | = 2n/(ck) and hence |T | ≤ 2n|S|/(ck) ≤ 2n/c < n/5. We have that

the ck×|T | submatrix A′ := A[ck],T is of rank at least min(rank(A), k), since the column

space of S in B is spanned by the column space of A[ck],T .

Applying Lemma 5.6 repeatedly gives us the second part of Theorem 5.1.

Theorem 5.4. Suppose an m×n matrix A over a field F is given. There is an algorithm

to find a set of min(rank(A), k) linearly independent columns of A for a given k in

O((nnz(A)+kω) log n) field operations with success probability at least 1−O(log n/n1/3).

When F is a finite field, each field operation can be done in Õ(log n+ log |F |) steps.

Proof. First, we apply Lemma 5.5 to reduce the number of rows to ck. Then, we apply

Lemma 5.6 repeatedly until the number of columns is reduced to O(k). Since each

time we can reduce the number of columns by a constant factor, we need to repeat the

algorithm in Lemma 5.6 at most O(log n) times. Finally, we find a set of min(rank(A), k)

linearly independent columns by Gaussian elimination in the ck × O(k) submatrix in

O(kω) time. So, the whole algorithm can be done in at most O((nnz(A) + kω) log n)

field operations, and the failure probability is at most O(log n/n1/3).

101

We remark that c can be arbitrarily chosen as long as c ≥ 11 > 4e. Hence when

nnz(A) � k, we can choose c to be larger so that the number of columns reduces to

O(k) faster. For example, if we choose c = 2nε, then Lemma 5.6 find a (ck) × (n/nε)

submatrix in O(nnz(A)+(ck)ω) field operations, and so we only need to apply Lemma 5.6

1/ε times. Therefore if k = O(nnz(A)1/ω−ε), then we can find a set of min(rank(A), k)

linearly independent columns in O(nnz(A)/ε) field operations, saving the additional log

factor.

5.3 Applications

The matrix rank algorithms can be readily applied to various problems in numerical

linear algebra, combinatorial optimization, and dynamic data structure. In this subsec-

tion, we will state some applications of our results without proofs. Interested readers

may find more details in our paper [17].

First we show that the algorithms can be applied to computing a rank-one decom-

position, finding a basis of the null space, and performing matrix multiplication for a

low rank matrix.

Theorem 5.5. Let A be an m × n matrix over a field F . Let r = rank(A). Let

m′ = min{m,n}. Let ω(a, b, c) be the exponent for multiplying an na × nb matrix with

an nb × nc matrix.

1. There is a randomized algorithm to compute an m × r matrix X and an r × n
matrix Y such that A = XY in Õ(nnz(A) + rω(1,1,logrm

′)) = Õ(nnz(A) +m′rω−1)

steps.

2. There is a randomized algorithm to find a basis of the null space of A in Õ(nnz(A)+

rω(1,1,logr n)) = Õ(nnz(A) + nrω−1) steps.

3. Let A and B be n× n matrices. There is a randomized algorithm to compute AB

in Õ(nω(logn r,1,1)) = Õ(n2rω−2) steps.

The success probability for all three tasks is at least 1−O(log(nm)/nnz(A)1/3).

Previously the best known algorithms require Θ̃(mnrω−2) for the first two tasks, and

Θ̃(n2rω−2) for the third task. Our algorithms are faster than the existing algorithms,

especially when r is small. The statement about matrix multiplication essentially says

that the problem of multiplying two n×n matrices while one matrix is of rank r can be

reduced to the problem of multiplying an r × n matrix and an n× n matrix.

102

graph matching linear matroid intersection linear matroid union

combinatorial O(
√
opt|E|) [52, 28] Õ(nropt1/(4−ω)) [27] Õ(nrbopt + nb2opt2) [24]

algebraic O(|V |ω) [53] O(nrω−1) [32] –

this paper Õ(|E|+ optω) Õ(nr + noptω−1) Õ(nropt + b3opt3)

Table 5.1: Time complexity of algorithms for some problems in combinatorial optimiza-
tion

In combinatorial optimization, there are algebraic formulations of the problems that

relate the optimal value to the rank of an associated matrix. Using this connection, we

can apply the algorithm in Theorem 5.1 to obtain fast algorithms for graph matching

and matroid optimization problems.

Theorem 5.6. Let opt be the optimal value of an optimization problem.

1. Given an undirected graph G = (V,E), there is a randomized algorithm to find a

matching of size min{opt, k} in Õ(|E|+ kω) time.

2. Given a linear matroid intersection problem or a linear matroid parity problem

with an r× 2n matrix A, there is a randomized algorithm to find a solution of size

min{opt, k} in Õ(nnz(A) + nkω−1) time.

3. Given a linear matroid union problem with an r×n matrix |A|, there is a random-

ized algorithm to find min{opt, k} disjoint bases in Õ(k nnz(A)+min{kω+1bω, k3b3})
time, where b denotes the size of a basis.

Table 5.1 lists the time complexity of the best known combinatorial algorithms and

algebraic algorithms for these problems. Notice that previous algebraic algorithms have

the same time complexity even when the optimal value is small. On the other hand,

combinatorial algorithms for these problems are based on finding augmenting structures

iteratively, and thus the number of iterations and the overall complexity depend on the

optimal value. While the previous algebraic algorithms are faster than combinatorial

algorithms only when the optimal value is large, the results in Theorem 5.6 show that the

algebraic approach can be faster for any optimal value. For the matroid optimization

problems, the algorithms in Theorem 5.6 are faster than previous algorithms in any

setting.

103

Bibliography

[1] Rudolf Ahlswede, Ning Cai, S-YR Li, and Raymond W Yeung. Network information
flow. Information Theory, IEEE Transactions on, 46(4):1204–1216, 2000.

[2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
johnson-lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pages 557–563. ACM, 2006.

[3] Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-
lindenstrauss transform. ACM Transactions on Algorithms (TALG), 9(3):21, 2013.

[4] Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and
superconcentrators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.

[5] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pager-
ank vectors. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 475–486. IEEE, 2006.

[6] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets.
In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 235–244. ACM, 2009.

[7] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for
unique games and related problems. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 563–572. IEEE, 2010.

[8] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric em-
beddings and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

[9] Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev,
Viswanath Nagarajan, Joseph Seffi, and Roy Schwartz. Min-max graph partitioning
and small set expansion. SIAM Journal on Computing, 43(2):872–904, 2014.

[10] Paul Bonsma, Hajo Broersma, Viresh Patel, and Artem Pyatkin. The complexity
status of problems related to sparsest cuts. In Combinatorial Algorithms, pages
125–135. Springer, 2011.

[11] James R Bunch and John E Hopcroft. Triangular factorization and inversion by
fast matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974.

104

[12] D Burago. Periodic metrics. In Seminar on Dynamical Systems, pages 90–95.
Springer, 1994.

[13] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D Sivaku-
mar. On the hardness of approximating multicut and sparsest-cut. computational
complexity, 15(2):94–114, 2006.

[14] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems
in analysis, 625:195–199, 1970.

[15] Li Chen, Wayne Eberly, Erich Kaltofen, B David Saunders, William J Turner, and
Gilles Villard. Efficient matrix preconditioners for black box linear algebra. Linear
Algebra and its Applications, 343:119–146, 2002.

[16] Joseph Cheriyan. Randomized Õ(M(|V |)) algorithms for problems in matching
theory. SIAM Journal on Computing, 26(6):1635–1655, 1997.

[17] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms
and applications. Journal of the ACM (JACM), 60(5):31, 2013.

[18] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network
coding, and expander graphs. SIAM Journal on Computing, 42(3):733–751, 2013.

[19] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Algebraic algorithms for linear
matroid parity problems. ACM Transactions on Algorithms (TALG), 10(3):10,
2014.

[20] Fan Chung. Random walks and local cuts in graphs. Linear Algebra and its appli-
cations, 423(1):22–32, 2007.

[21] Fan Chung. A local graph partitioning algorithm using heat kernel pagerank. In-
ternet Mathematics, 6(3):315–330, 2009.

[22] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc.,
1997.

[23] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of symbolic computation, 9(3):251–280, 1990.

[24] William H Cunningham. Improved bounds for matroid partition and intersection
algorithms. SIAM Journal on Computing, 15(4):948–957, 1986.

[25] Irit Dinur. The pcp theorem by gap amplification. Journal of the ACM (JACM),
54(3):12, 2007.

[26] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm
for approximating the volume of convex bodies. Journal of the ACM (JACM),
38(1):1–17, 1991.

105

[27] Harold N Gabow and Ying Xu. Efficient theoretic and practical algorithms for
linear matroid intersection problems. Journal of Computer and System Sciences,
53(1):129–147, 1996.

[28] Andrew V Goldberg and Alexander V Karzanov. Maximum skew-symmetric flows
and matchings. Mathematical Programming, 100(3):537–568, 2004.

[29] Venkatesan Guruswami and Ali Kemal Sinop. Approximating non-uniform sparsest
cut via generalized spectra. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 295–305. SIAM, 2013.

[30] Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partition-
ing and clustering. Computer-aided design of integrated circuits and systems, ieee
transactions on, 11(9):1074–1085, 1992.

[31] Olle Häggström. Finite Markov chains and algorithmic applications, volume 52.
Cambridge University Press, 2002.

[32] Nicholas JA Harvey. Algebraic algorithms for matching and matroid problems.
SIAM Journal on Computing, 39(2):679–702, 2009.

[33] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi,
and Ben Leong. A random linear network coding approach to multicast. Information
Theory, IEEE Transactions on, 52(10):4413–4430, 2006.

[34] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[35] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university
press, 2012.

[36] Xiaohan Huang and Victor Y Pan. Fast rectangular matrix multiplication and
applications. Journal of complexity, 14(2):257–299, 1998.

[37] Oscar H Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast lup
matrix decomposition algorithm and applications. Journal of Algorithms, 3(1):45–
56, 1982.

[38] Mark Jerrum and Alistair Sinclair. The markov chain monte carlo method: an
approach to approximate counting and integration. Approximation algorithms for
NP-hard problems, pages 482–520, 1996.

[39] Erich Kaltofen and B David Saunders. On wiedemann’s method of solving sparse
linear systems. In Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, pages 29–38. Springer, 1991.

[40] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. Journal of the ACM (JACM), 51(3):497–515, 2004.

106

[41] Tsz Chiu Kwok and Lap Chi Lau. Finding small sparse cuts by random walk. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 615–626. Springer, 2012.

[42] Tsz Chiu Kwok and Lap Chi Lau. Lower bounds on expansions of graph powers. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 395–410. Springer, 2014.

[43] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Tre-
visan. Improved cheeger’s inequality: analysis of spectral partitioning algorithms
through higher order spectral gap. In Proceedings of the 45th annual ACM sympo-
sium on Symposium on theory of computing, pages 11–20. ACM, 2013.

[44] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pages
296–303. ACM, 2014.

[45] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-way spectral par-
titioning and higher-order cheeger inequalities. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, pages 1117–1130. ACM, 2012.

[46] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of the ACM (JACM),
46(6):787–832, 1999.

[47] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison of algo-
rithms for network community detection. In Proceedings of the 19th international
conference on World wide web, pages 631–640. ACM, 2010.

[48] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and
mixing times. American Mathematical Soc., 2009.

[49] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many
sparse cuts via higher eigenvalues. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 1131–1140. ACM, 2012.

[50] László Lovász and Ravi Kannan. Faster mixing via average conductance. In Pro-
ceedings of the thirty-first annual ACM symposium on Theory of computing, pages
282–287. ACM, 1999.

[51] László Lovász and Miklós Simonovits. The mixing rate of markov chains, an isoperi-
metric inequality, and computing the volume. In Foundations of Computer Science,
1990. Proceedings., 31st Annual Symposium on, pages 346–354. IEEE, 1990.

[52] Silvio Micali and Vijay V Vazirani. An O(
√
V E) algorithm for finding maximum

matching in general graphs. In Foundations of Computer Science, 1980., 21st
Annual Symposium on, pages 17–27. IEEE, 1980.

107

[53] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimina-
tion. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 248–255. IEEE, 2004.

[54] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems, 2:849–856,
2002.

[55] Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile
and almost optimal local graph clustering. In Foundations of Computer Science
(FOCS), 2012 IEEE 53rd Annual Symposium on, pages 187–196. IEEE, 2012.

[56] Ryan O’Donnell and David Witmer. Improved small-set expansion from higher
eigenvalues. CoRR, abs/1204.4688, 152, 2012.

[57] Prasad Raghavendra and Tselil Schramm. Gap amplification for small-set expan-
sion via random walks. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 381–391. Springer, 2014.

[58] Prasad Raghavendra and David Steurer. Graph expansion and the unique games
conjecture. In Proceedings of the 42nd ACM symposium on Theory of computing,
pages 755–764. ACM, 2010.

[59] Prasad Raghavendra, David Steurer, and Prasad Tetali. Approximations for the
isoperimetric and spectral profile of graphs and related parameters. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 631–640. ACM,
2010.

[60] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between
expansion problems. In Computational Complexity (CCC), 2012 IEEE 27th Annual
Conference on, pages 64–73. IEEE, 2012.

[61] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 118–
126. Society for Industrial and Applied Mathematics, 2007.

[62] Tamas Sarlos. Improved approximation algorithms for large matrices via random
projections. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 143–152. IEEE, 2006.

[63] B David Saunders, Arne Storjohann, and Gilles Villard. Matrix rank certification.
Electronic Journal of Linear Algebra, 11:16–23, 2004.

[64] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM (JACM), 27(4):701–717, 1980.

[65] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

108

[66] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Information and Computation, 82(1):93–133, 1989.

[67] Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM Journal
on Computing, 42(1):1–26, 2013.

[68] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. SIAM
Journal on Matrix Analysis and Applications, 35(3):835–885, 2014.

[69] David Steurer. On the complexity of unique games and graph expansion. PhD
thesis, Citeseer, 2010.

[70] Arne Storjohann. Integer matrix rank certification. In Proceedings of the 2009
international symposium on Symbolic and algebraic computation, pages 333–340.
ACM, 2009.

[71] David A Tolliver and Gary L Miller. Graph partitioning by spectral rounding:
Applications in image segmentation and clustering. In Computer Vision and Pat-
tern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages
1053–1060. IEEE, 2006.

[72] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam,
1997.

[73] Luca Trevisan. Max cut and the smallest eigenvalue. SIAM Journal on Computing,
41(6):1769–1786, 2012.

[74] Luva Trevisan. The spectral partitioning algorithm. http://lucatrevisan.

wordpress.com/2008/05/11/the-spectral-partitioning-algorithm/, 2008.

[75] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[76] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cam-
bridge university press, 2013.

[77] Douglas Wiedemann. Solving sparse linear equations over finite fields. Information
Theory, IEEE Transactions on, 32(1):54–62, 1986.

[78] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 887–898. ACM, 2012.

[79] Raphael Yuster. Generating a d-dimensional linear subspace efficiently. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 467–470. Society for Industrial and Applied Mathematics, 2010.

109

http://lucatrevisan.wordpress.com/2008/05/11/the-spectral-partitioning-algorithm/
http://lucatrevisan.wordpress.com/2008/05/11/the-spectral-partitioning-algorithm/

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Main results

	Background
	Spectral graph theory
	Graphs
	Eigenvectors and eigenvalues
	Graph expansions and eigenvalues
	Notation conventions

	Cheeger's inequality
	Spectral partitioning algorithm
	Proof of Cheeger's inequality
	Examples

	Random walks
	Spectral approach
	Combinatorial approach

	Previous works
	Higher eigenvalues
	Sparsest cut
	Small sparse cuts
	Local graph partitioning

	Improved Cheeger's inequality
	Main result
	Proof overview
	Proof of improved Cheeger's inequality
	O(k)-valued approximation
	Upper bound sweep with distance to approximation
	Combining the lemmas
	Tight example

	Improving the constant
	Related problems and extensions
	Local improved Cheeger's inequality

	Random walks
	Finding small sparse cuts
	Our results
	Finding small sparse cuts
	Local graph partitioning
	Concluding remarks

	Expansions of graph powers
	Introduction
	Expansion of graph power
	Applications

	Matrix rank
	Introduction
	Previous works
	Our results

	Fast matrix rank algorithms
	Setting
	Outline
	Magical graphs
	Compression algorithm by magical graph
	Computing matrix rank
	Finding independent set

	Applications

	Bibliography

