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Abstract

A single objective agent based model of managerial factors affecting aircraft maintenance was

build based on a case study done regarding safety climate's effect on maintenance efficacy in the
Korean Air Force. In particular the model measures the effect of managerial context and
command on agents' motivation and efficacy. The model is then optimized using a simulated
annealing algorithm. Input parameters were varied to ensure reliability and repeatability of
results. The model's sensitivity, in terms of optimal input vector and results, were also tested

across a variety of input parameters. Results suggested that across all input parameters two
managerial contexts dominated: contingent reward systems and laissez-faire.
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CHAPTER 1: Introduction
In fiscal year 2009 commercial airlines reported that, depending on aircraft size, per-

flying-hour maintenance cost ran between $461 and $1430. In house labor and material costs

each accounted for 21% of the total, to comprise 42% of all maintenance spending across

commercial fleets. [1] From the period of 1974 to 2005 the cost of military aircraft has outpaced

inflation by at least 2.5%. For certain families of airframes and measures of inflation the offset

was as high as 8%. [2] The rising costs of replacing aircraft and high flying hour maintenance

cost make optimizing maintenance throughput in terms of both volume and efficiency critical to

a cost conscious airborne service. Improvements in maintenance outcomes can be gained by

improving supply chains, reducing fatigue and stress of maintainers, or improving individual

maintainer throughput. The latter two of these factors are closely related to maintence units'

safety climate. [3] Safety climate is itself a function of management's commitment to safety and

both the level of concern managers show for subordinate welfare and the methods by which they

voice that concern. In order to understand safety climate's impact on maintence outcomes this

paper will examine the relation between safety climate and outcomes, as well as the factors

which improve safety climate with the goal of optimizing managerial inputs to maximize

maintenance efficacy.

In order to optimize input, first a computational model of the scenario must be made.

Building on the work of Park, Kang and Son this paper will present a model mapping safety

climate to unit performance. It will also build a mapping from managerial context and degree of

centralization in organizational decision making to safety climate. This input will be tempered

by an agent based model emulating individual maintainers' responses to centralization and

managerial style. The model will also be tunable across a number of other parameters relevant to
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organizations, but which are not easily changed by management. Since the nature of the input

variables does not make the problem amenable to gradient based optimization methods a

different sort of algorithm will 'solve' the model. Numeric results will be derived by running the

computational model through a metaheuristic optimization algorithm, simulated annealing, and

recording the performance output and chosen design vector.

Various 'tuning parameters' for the simulated annealing algorithm and model, such as

cooling rate and number of agents, will be varied. The emergence of properties such as

repeatability, reliability, and optimality will be measured against real world values to validate the

model. Sensitivity to changes in these tuning parameters will test the model's robustness to

errors in its formulation. Moreover, qualitative dynamics of the model's response will be

cataloged and used to drive conclusions regarding the optimal use of centralization in managerial

command to drive performance. Results from will show that there is no single optimal approach

to overseeing day to day operations in an aircraft maintenance unit. It will also show that the

tuning parameters drive optimal design vector selection far more than they drive the optimal

performance level itself.
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CHAPTER 2: Literature Review
This chapter will review literature relevant to the optimizing managerial efforts to drive

maintence unit throughput. In regards to optimization it will examine classes of optimization

methods as well as the history, development, application, and advantages of simulated annealing.

It will examine practices in agent based modeling and the qualities of a model that define

agency. It will look into the definition, history, and benefits of decentralized organizational

decision making. Finally it will provide a brief overview of factors affecting aircraft

maintenance unit's performance both explicitly through case study and implicitly though

analysis of contributing factors.

2.1 Metaheuristic Optimization
The first metaheuristic algorithm was likely devised by Alan Turing as a method for

decrypting messages in World War II. The goal of these algorithms was to solve hard decryption

problems in tractable amounts of time. They were in no way guaranteed to provide either a valid

or completely correct decryption every time they were applied, but tended to provide 'quality'

solutions most of the time. [3] The field of metaheuristic optimization continued from there to

mature along those lines: develop methods which provide improved solutions most of the time to

complex problems of the form

minimize fi(x); (i = 1, 2, 3, 4 ... I)

Subject to h(x) = 0; (j = 1, 2, 3, 4 ... J)

and gk(x) ; 0; (k = 1, 2, 3, 4 ... K)

for fitness function f, and constrain functions h and g, and design vector x. While they have

diverged into different classes since the 1940s, metaheuristic methods have certain

commonalities that differentiate them from non-heuristic methods. [4]
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Optimization algorithms are most broadly divided into two categories: deterministic or

stochastic. Deterministic methods are characterized by having deterministic outcomes, that is for

any given fi(x) and some set of initial conditions for the design vector x the resulting optimal

conditions and value output will be the same across any number of trials. They use non-

probabilistic methods to step in the direction of local maxima or minima. Deterministic methods

are farther sub-categorized into gradient based methods (such as Newton-Raphson) or gradient

free methods (such as Simplex or Nelder-Mead) [4]

Metaheuristic optimization methods are more difficult to characterize. A review of some

pertinent literature yields guidelines to what constitutes a metaheuristic strategy:

" Metaheuristics are high-level strategies which guide design space searches [5]

" Metaheuristics are non-deterministic and involve at least one probabilistic

component, but are not purely random searches [5]

" Metaheuristics produce either locally optimal, globally optimal, or otherwise high

quality solutions that simple gradient searches would not offer given a set of

initial conditions [6]

" Metaheuristics are often nature inspired [4]

Their commonalities can be broken down into presenting qualities of diversification and

intensification, and balancing the tradeoffs between them. Intensification, in this sense, refers to

the algorithms ability to search an increasingly local area and improve upon the highest

quality/most fit solution from the previous iteration. Diversification is the process by which the

strategy spans the solution space to avoid being trapped in local optima. [7]
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Strategies of pursing and balancing diversification and intensification then further

subdivide metaheuristic methods into population-based and trajectory based method. Population

based methods instantiate an initial set of solutions across the solution space. Within each

iterations they produce a set of solutions each with a corresponding fitness. Methods for

diversifications and intensification still are dependent on the type of algorithm employed.

Genetic algorithms, for example, use a technique wherein the traits from the best solutions are

combined with those of less fit solutions. This effectively guides the population in the direction

of the most fit solutions. Diversification is achieved by applying random mutations-random

changes to parameters within an individual's specific solution space vector- to a subset of the

population. [7] Another flavor of population based algorithm is particle swarm (PSO).

Intensification in PSO is achieved as each individual moves towards their most fit nearest

neighbor, causing the population to cluster towards the most fit solution. Diversification is

achieved by adding a degree of randomness to the path each agent takes to arrive at the new

position. [8] In all cases solutions intensify around the most fit solution within the set in any

given iteration.

Trajectory based methods, such as simulated annealing, use a single actor to search the

solution space. New iterations may or may not deliver a solution in the neighborhood of the

prior solution. Initial conditions are seeded randomly, then a process of intensification and

diversification proceeds. Again, the precise method of intensification and diversification depend

on the algorithm chosen. [7] In the case of simulated annealing, which will be discussed in

further detail in the next section, diversification is achieved in two ways. Early in the search

process the trajectory is dominated by random walk, late in the process the random perturbation
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and probabilistic selection allow the trajectory to escape local optima. Intensification is achieved

by probabilistic rejection of worse solution and a cooling process inspired by metallurgy. [9]

Optimization Algorith ms

Meta-Heuristic

Population-Based

f Deterministic

Fig 2.1: Breakout of classes of computational optimization techniques discussed or described in this

section

2.2 Simulated Annealing
Simulated annealing is a class of metaheuristic optimization algorithms originally

developed by Kirkpatrick, Gelatt, and Vecci in 1983. Like genetic algorithms or particle swarm

optimization, simulated annealing belongs to the class of metaheuristic-sometimes called

evolutionary-optimization methods. As a class metaheuristic methods are probabilistic and do

not guarantee that global optimality is found, nor do they necessarily repeatedly find the same

local maxima from any given initial seeding. [4] Simulated annealing is itself derived from the

Metropolis algorithm for numeric simulation in many-body systems, and draws on deep

connections between statistical mechanics and combinatorial or multivariate optimization. [10]
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The method provides a specific set of advantages and disadvantages over other evolutionary

schemes. [11]

When simulated annealing was first developed as an optimization strategy there were two

dominate categories into which optimization algorithms were batched: divide and conquer or

iterate and improve. Divide and conquer methods, as one might expect, subdivides problems

into subproblems of manageable size, disconnects the subproblems, solves, then patches them

together. If the initial problem does not decompose into naturally disjoint subproblems than the

errors from patching can out weight the gains from optimization. Iterative improvement also

yielded problems in complex solution spaces. As a strategy it begins in some seeded location

then steps in a prearranged set of directions until an improved location is found. When no

direction produces improvement, or sufficiently large improvement, the search terminates. This

class of techniques typically resolves to local optima near the initially seeded 'known good

configuration.' Kirkpatrick et al noted that statistical mechanics can be applied to resolve the

problem of finding optimal or near optimal configurations in large, many bodied systems: ground

state configurations in large bodies are very rare, but dominate annealed materials. In the case of

simulated annealing, cooling processes are modeled by the Metropolis algorithm.

[10]

First published in 1953 as a method to resolve equations of state with computers using

Markov Chain Monte Carlo Simulation, the Metropolis method had clear analogies to iterative

improvement. The Metropolis algorithm subdivides macroscopic cooling bodies into aggregated

segments of average energy. The macroscopic systems energy at any step is calculated using
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N N

eqn 2.1: E = 2 V(dij)
i=1, j=1
i*j

For distance between aggregated particles dij, and potential difference between particles i and j

for N particles. A particle is then perturbed within the vector space by

eqn 2.2: Xn -> Xn + aen

Solution up-cc

Fig 2.2: Blum & Roli depiction of perturbation [8]

For some vector X in n-dimensional vector space with maximum displacement a and random

uniform continuous variable bounded by -1 and 1 c. System energy is then re-evaluated by eqn

2.1. If AE<O, that is the systems energy has approached the ground state, the new configuration

is kept and process repeated. If the perturbation yields AE>O then the new configuration is kept

if IcI<exp(AE/kT) for system temperature T and Boltzmann constant k. Otherwise the new

configuration is discarded, the prior configuration kept, and the process iterates again. [12]
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+h+

A

- Eh1)

Fig 2.3: Markov chain for the hth step of the Metropolis Algorithm

Kirkpatrick et al noted that processes of rapid cooling were analogous to iterative improvement.

They constantly move macroscopic bodies towards lower energy configurations but 'freeze' at

metastable local energy minima. [10] The stochastic nature of the Metropolis procedure does not

absolutely prevent the problem of metastable optima solutions [4], but it allows the configuration

an out so long as the system's absolute temperature is positive and non-zero. In this critical way,

simulated annealing as implemented through Metropolis differs from strict 'iterate and improve'

strategies. This implementation allows the algorithm to cut across the iterate/divide archetype

for optimization. Early on in the process the low resolutions of the features (maxima, minima,

discontinuities, etc) of the eventual fate of the system are determined, as many new

configurations reduce the initial aggregate energy of the system. As the system cools, a more

refined, more explicitly trajectory approach takes over revealing specific details about the

features. [10]

Mechanically, a simulated annealing is an adaptation of the Metropolis algorithm which

can be tuned to resolve a diverse set of problems. Instead of using an explicit energy function
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(eqn 2.1) a situation specific cost function may be applied. Likewise, sets of parameters {xn}

defining a decision vector replace the vector space X,, (eqn 2.2). Initial conditions are seeded

randomly. Conditions for the system 'freezing' in a local or global optimal solution are control

parameters within the algorithm's implementation. These control parameters can take forms

such as offset from a desired system temperature needed to achieve freezing, number of

reconfiguration attempts after freezing, total number of iterations, or cooling schedule. [10]

No definitive method exist to determine a priori what algorithm to select when exploring

a new solution space. Moreover, it is not clear that for non-linear, large, global optimization

problems an efficient search method exists. [13] The literature does reveal some guidelines that

might lead one to select simulated annealing as a method:

1. The system under observation has few distinct, non-interchangeable parts [10]

2. The system under observation is locally amenable to hill-climbing [4]

3. The system under observation can be understood with a single objective [11]

Using these guidelines, simulated annealing appears to be an appropriate choice for the proposed

research model.

2.3 Agent Based Modeling
In traditional organizational modeling, an organization is represented as an entity with a

unary objective which maximizes some form of profit. However, single agent modeling with a

single goal makes for an uninteresting model of an organization and betrays underlying

complexity. Implementing organizational models using multiple agents provides insights that

traditional systems level modeling does not. Specifically, agent based methods provide

numerically driven results rather than proven results, can build complex and realistic
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environments that cannot be easily solved mentally, and can they can describe medium or short

run dynamics rather than focus on long run equilibria. [14]

In order to implement an agent based model, the multiple agents must meet certain

criteria. The model must have agents, groups, and roles. Agents are active communicating

entities and belong to at least one group. A group is a set of agents sharing some common

characteristic. While agents may or may not communicate, they may only communicate with

agents who share a group. Agents also play roles, abstract functional positions. [15] Agents are

endowed with objective functions which may or may not align with organizational goals and take

actions with some degree of autonomy. Agents are also 'smaller' than organizations. More

formally

T[ S 11
] 

T2 H 
j S 2

J~z) = Hx =,/o

Hi Z J and J Z H

Eqns 2.3: Conditions of agency

For organizational objective vector J with n objective functions T., agent objective vector for the

i-th agent Hi with k objective functions Si,k, and resource vectors x and '. Organizations can

also adapt to agents through the use of super-agent processes. [14] In particular, adaptive

organizations can be modeled well with simulated annealing. [16]
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2.4 Centralization & Decentralization in Decision Making
Within organizations decision making exists on a spectrum from completely centralized

to completely decentralized. Internal decision making culture of firms typically lies somewhere

between these two extremes, but the extremes provide specific advantages to organizations.

Tuning between centralization and decentralization is dependent on a number of factors from

realms of culture, capability, and cost. Tuning can also affect motivation, creativity, [17]

productivity and job satisfaction [18].

The field of study regarding centralized and decentralized decision making likely began,

or at least was made mainstream, with McGregor's The Human Side ofEnterprise. In it

McGregor outlines a role for management that is intrinsically different than traditional command

and control. Where command and control focuses on management dictating requirements to

subordinates, McGregor's new model focuses on unleashing subordinate potential. [19] He

coined the two competing focuses as Theory X and Theory Y respectively. Managers who prefer

one approach over the other also have strong models about their subordinates. Theory X

practitioners believe that their subordinates are inherently lazy, lack self-motivation, and cannot

facilitates organizational problem solving. Mangers are needed to prevent shirking and give

direction to employees. Theory Y practitioners believe quite the opposite, that subordinates are

self-motivated, capable, and organizationally minded. Managers, then, exist to provide the tools

and contexts needed for subordinates to make decisions and solve problems. Management

practices which exist in Theory Y environment like delegation, participative leadership, etc [20]

are hallmarks of decentralized management.

The conditions under which an organization will prefer centralized or decentralized

decisions and control are varied: personal motivation, government regulations, national cultures,
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individual personalities, etc. Conditions for centralization/decentralization which are internal to

the organization are cost, trust, and motivation. [21] Trust and motivation play the simplest role

in the dynamic. If managers do not trust subordinates then the organization will be highly

centralized, while if the opposite is true decentralized networks will dominate decisions.

Similarly when local decisions makers, like operators, are either unmotivated or work better

when told what to do the organization will prefer to centralize. [17] More complex is the effect

of communication costs on centralization. When costs of communication are exceedingly high,

to the point where the cost of communicating outweighs the expected benefit of communicating,

decision making is decentralized. As the cost of communication falls to the point that

establishing a few lines of communication have expected net benefits organizations begin to

centralize decision making. With sufficiently low costs of communication, organizations can

begin to decentralize again, building a complete network map without leaning wholly on one

node. [22] [17]

0

0 0~

00

High Cost of Lower Cost of Even Lower Cost of

Communication Communication I Communication

Fig 2.4: Depiction of networks based on communication cost

Centralized decision making models have merit. Centralized decision makers tend to

have at least as much if not more information than decentralized counterparts and more

information can lead to better decisions. Decentralization, however, still holds a number of
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advantages over centralized models. Participatory decision making correlates positively with

both productivity and satisfaction. [18] Autonomy in general makes work more enjoyable. The

ability to make decisions locally leads to improved creativity. Finally increased autonomy also

improves employee motivation and in turn higher quality output. [17]

2.5 Factors Affecting Aircraft Maintenance
In the period from Jan 2000 to Dec 2011 the Korea Air Force lost 10 F-5s to crashes.

This in spite of the Korean aviation system receiving the highest score in the Universal Safety

Oversight Audit Program conducted by the International Civil Aviation Organization (ICAO) in

2008. Dissatisfaction with maintenance activities which led to the incidents can be viewed as a

problem regarding the quality of maintenance service. While individual errors and scarcity of

parts contribute to aggregate maintenance non-conformities, the largest contributors to unit

quality performance are safety climate, individual health, and individual attitudes. [23] Safety

climate is dictated largely by management through both degree of concern and management

style. [24]

There are many physical factors that can affect operators', in this case aircraft

maintainers, efficacy. Temperature, illumination, noise level, type of noise, scarcity of parts, and

documentation all represent physical factors that impact efficacy. [23] However, total quality

management (TQM) techniques focusing on hardware which improves physical factors is

secondary and requires buy in throughout the organization. As a result processes seeking to

improve efficacy have increasingly focused on social aspects. For a TQM implantation to be

successful employees' attitudes towards quality must also improve. [25]
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To improve quality in aircraft maintenance, first sources of errors and areas for

improvement must be identified and a method of calculating effectiveness must be developed.

Unit performance can be measured as an average of 4 ratios: the ratio of mission capable rate to

man-hour per flying-hour rate, the rate at which aircraft are fixed against the total number of

repairs to be accomplished by the next flight (sometimes called the fix rate), the rate at which

repairs need to be repeated on the next flight (repeat rate), the rate at which maintenance needs to

be repeated after 2 or 3 flights (recur rate), and the percent of scheduled flights carried out in a

given time period.' Keeping a perspective of examining social factors rather than physical

factors external to maintainers the factors impeding unit performance can be divided into three

areas. Degradation to individual error rates, individual health, or individual attitudes towards

their position/the organization all have adverse effects on unit performance. Individual errors,

attitude and health are all functions of safety climate. [23]

I --- W" --I

Fig 2.5: Research Model Proposed by Park et al (note, ns is not significant)

1 These factors were cataloged by Stetz & Commenator as measures for efficiency and efficacy in an aircraft
maintenance unit [39] [40]
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Influencing safety climate within a maintenance community is not as simple as increasing

supervisory commitment to safety though. Macroscopic safety climate is dependent upon the

leadership model employed by supervisors and managers. [24] Bass has categorized and

characterized leadership environments thusly:

" Constructive Leadership: a hierarchical (having reward for effort exchanges)

style with an intermediate level of concern for employees welfare, also referred to

as contingent reward (CR)

* Corrective Leadership: an error detection model which involves monitoring

subordinates' outputs in relation to assigned standards, also referred to as

management by exception (MEA)

" Laissez-faire: the lowest level of concern for employee welfare which disowns

supervisory responsibility (LF)

* Transformational: a model built on value based individual interactions (TL) [26]

Zohar notes that managerial commitment to safety under each leadership model contributes

differently to the prioritization of safety by subordinates as a whole. Moreover, the polarity of

the change in prioritization is not necessarily the same as the polarity of the change in

commitment from management. [24]

Douglas Hamilton 22
MIT SDM Thesis



CHAPTER 3: METHODS
This chapter will present the methods used in generating and analyzing data. It will

provide an exploration of the proposed multi-agent research model based on the model proposed

by Park et al. It will examine the modules, calculations, and constraints of the computational

model proposed. It will give a general overview of the implementation of simulated annealing

used focusing on the elements that are unique to the algorithm rather than generic to all single

objective simulated annealing processes: the specific perturbation algorithm, fitness function,

and control parameters. It will also give an introduction to the methods of analysis to be

undertaken in the following chapter.

3.1 Proposed Research Model

SimulatedAnnealing

Fig 3.1 Computational model with modules

The purpose of the above model is to capture the critical effects of safety climate,

individual health, individual attitudes and individual errors on unit performance as described by

Park, Kang & Son. However, increasingly imposing safety climate requirements on operators
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can carry deleterious effects as well. The model seeks to capture the way individuals react to

centralization of safety climate policy, how such activity affects their individual attitudes, and

how changing group attitudes further influence individual attitudes. The following segments will

discuss each modules' foundation in literature, inputs, outputs, constraints, and internal

functions.

Scenarios, design inputs, and agent instantiation

The model built tests two different "scenarios" of agent compositions: a constant

tolerance across all agents, and a Gaussian distribution bounded by 0 and 1. The case chosen is

defined by a scenario vector that also defines the mean value of the distribution and some

measure of spread. In the case of the constant tolerance the spread value is null, in the case of

the Gaussian distribution the spread value is a standard deviation. Agents are then individually

assign a tolerance level for centralized decision making indexed from 0 to 1.

The design values for the model are centralization and leadership model. Assigned safety

priority serves as a proxy for leaderships' commitment to commanding or centralizing safety

climate decisions. This is based off Zohar's measurement of assigned safety priority which asks

the following questions of subordinates about their direct supervisors:

1. Do direct supervisors expect employees to 'cut corners' and work faster when

behind schedule

2. Do direct supervisors ignore safety infractions if there is high schedule

pressure

3. Do direct supervisors ignore safety infractions if there is no resulting injury

4. Do direct supervisors only reward production

Douglas Hamilton 24
MIT SDM Thesis



5. Do direct supervisors get angry when they see operators performing unsafe

acts [24]

Responses in agreement with question 5 and disagreement with questions 1-4 increase leadership

commitment to safety and move safety trade-off decisions away from operators. Centralization is

a continuous variable taking values from 0 to 1. Leadership model is a leveled variable which

takes on one of Bass's four leadership modes: transformational, constructive, corrective, or

laissez-faire. [26]

Safety Climate Calculation

Park et al's model defines safety climate as a high order construct which decomposed

into a number of factors: safety focus, supervision, training, communication, and co-worker

support. However, the model yields no method for calculating safety climate for some quantified

set of these inputs. [23] Zohar proposes a method for calculating safety climate from

centralization and

Leadership context and centralization are passed to the safety climate calculator which

calculates safety climate as follows:

Eqn 3.1: Safety Climate = Compression * (fl(Leadership Context)* Centralization + Intercept (Leadership Context))

Mappings of beta and intercept to leadership style can be found in figure 3.2. Safety climate

here is measured as preventative action climate. Preventative action climate is characterized by

worker responses to a 10 question survey. A subsection of these questions pertain to how

supervisors interact proactively with subordinates to improve or maintain safety: do supervisors

approach workers during working hours to discuss safety concerns, do supervisors take any

suggestion which might improve safety seriously. [27] Compression factor here is 0.2 to correct
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Zohar's 0 to 5 safety climate scale to the model's 0 to 1 scale. An intercept factor is also added

to translate Zohar's 'leadership commitment' factor from 1 to 2 to our indexed 0 to 1. [24]

Leadership Style Beta Intercept
Transformational 0.77 2.5
Contingent Reward 0.66 3
Management by -0.23 3
Exception
(corrective)
Laissez-faire -0.34 3.5

Figure 3.2: Mapping of Leadership context to Beta and Intercept for eqn 3.1

Agent Effort Calculation and Aggregation

One of the advantages of agent based modeling over non-agent modeling is agent based

models allow exploration of assumptions and integration of disparate sources. [14] There has

been very little work done in the realm of quantifying how employees react to centralization of

decision making. However, in so far as autonomy makes work enjoyable [17], centralization of

decision making is generally characterized in economic terms as a 'bad' rather than a good for

workers. [28] Workers across employment and skill spectrum require a reservation wage to

begin working at all, as labor in absences of wages is also a bad. [29] Utility theory suggests that

workers at the reservation wage balance the aggregate bad of the labor with the utility of wages

at least to the point where they are in equilibrium. [28] We can use the notion of reservation

wage and utility to model each individual agents' tradeoff between centralization and effort.

The primary tradeoffs discussed in regard to centralization are motivation and creativity.

Individual agents are instantiated with a tolerance for some degree of centralization. Once that

threshold has been breached they respond by reducing their output such that

eqn 3.2: 1 - Max[0, y * (Centralization - Threshold)] = Individual Ef fort Facor (IEE)
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For some tolerance to centralization y. A y value less than 1 represents a less dramatic response

to centralization (with a value of 0 representing no response), and a y value greater than 1

represents a more dramatic response. Total Effort Factor is then averaged from Individual Effort

Factor.

neqn 3.3: Total Effort Factor (TEF) n
i=1

Individual Health, Attitude & Error Calculation

Individual health & attitude are both calculated from safety climate. Park et al define

individual health as the negative mental health of an individual unit. It therefore correlates

negatively with unit performance and individual attitude. The individual health score is

calculated by

eqn 3.4: Individual Health = Safety Climate * 0.82

Individual health score is passed to the individual error calculator. [23]

Individual attitude is defined as the attitude an operator holds about aspects of their work

environment, specifically job satisfaction and organizational commitment. It correlates

positively with unit performance. Individual attitude score is calculated by

eqn 3.5: Individual Attitude = Safety Climate * 0.61

Individual attitude score is then passed to Unit Performance. [23]
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Individual errors are defined as unintentional deviation from operating procedures,

recommended best practices, institutional rules, and standards related to maintenance. It

correlates negatively with unit performance and is calculated by

eqn 3.6: Individual Error = Individual Health * 0.59

Individual error score is then passed to the unit performance calculator. [23]

Unit Performance Calculation

The 'unit performance' module calculates the unit's performance based on the calculation

proposed by Park et al and modified by Total Effort Factor:

eqn 3.7 Unit Perf = TEF * [a * individual attitude + fl * individual health + y * individual error

Their study found a to be 0.85, P to be not significant, and y to be -0.33. [23] The individual

attitude portion of the calculation is accomplished in the 'attitude to unit performance' module

and passed to the 'unit performance' module while individual errors are passed directly to the

module from the 'safety climate to individual error' module. The unit performance calculation is

then passed into the simulated annealing function to assess fitness.

3.2 Simulated Annealing Overview
Fitness & Perturbation Function

After the unit performance is calculated for a given set of inputs (in this case

centralization and leadership context) it is passed to the simulated annealing function to assess its

fitness and the design variable is perturbed. Since simulated annealing functions are minimum

seeking, [10] unit effectiveness score is multiplied by -1 before assessment. After the fitness is

assessed and cataloged, the algorithm selects one of the two design variables at random and then
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perturbs it using equation 2.2.2. The process of perturbation and fitness assessment is repeated

until optimality is found.

Parameters

The particular implementation of simulated annealing that the model uses has a number

of control parameters: cooling schedule, cooling rate, and freeze iterations. Cooling schedule

chooses between either an exponential or linear cooling schedule. Cooling rate (dT) changes the

speed at which the system cools according to

eqn 3.8: Exponential Schedule: T = dT*To eqn 3.9: Linear Schedule: Tj+ 1 = T - dT

Finally, the freeze iteration control parameter defines the number of iterations the algorithm will

run at a given temperature without finding a better solution. If no improved solution is

discovered within the prescribed number of iterations, the algorithm will stop and declare

optimality found.

3.3 Methods of Analysis
To determine the model's merit in the pre-validation phase, post-optimality analysis will

be accomplished. The principal response mechanism which will be used to conduct the analysis

will be optimality results. Different instances/tunings of the model will be compared across

optimal unit performance, and the design inputs. To test reliability of the simulated annealing

algorithm as a method for finding optimality in this model, optimality results across independent

runs of agents with constant tolerance will be compared for consistency. A similar test can be

conducted for a seeded normal distribution. To overcome the stochastic nature of instantiating

agents from probability distributions repeatability will also be subjected to some scrutiny. The

number of agents needed to produce a reliable distribution that provides repeatable results in
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independent runs with constant seeding parameters (i.e. distribution type, number of agents,

standard deviation) will be tested.

To compensate for the uncertainty present in any model prior to validation, the sensitivity

of optimality to input parameters and model constants will be tested. In testing sensitivity,

change in unit performance (optimal results) as well as change in centralization and leadership

context (optimal inputs) will be measured. The model's robustness to change in these factors

will be assessed. [30] A table containing all sensitive variables can be found at the end of this

chapter.

Since models exist to help inform decision makers [30], and due to exigent factors those

decision makers may have their hands tied into a specific leadership context, optimal results will

be specifically assessed across the four leadership contexts. When conducting sensitivity

analysis of any particular variable global optimal sensitivity will be assessed. Additionally

optimal results constrained to only one leadership context will be subjected to sensitivity

analysis. Sensitivity within each leadership context will provide insight to their robustness.

Variable Variable Possible Values Description Symbol
Type
Design Leadership [TL, CR, MEA, LF] Leadership context as xO

Context described by Bass
Input Agent Integers, [1, inf) Number of agents in n
Parameter Population the model
Input Mean Continuous, [0, 1] Average tolerance for P
Parameter Tolerance centralization
Input Distribution [Constant Tolerance, Distribution of P
Parameter Bounded Normal] tolerance to

centralization
Input Spread [Constant Tolerance, Density of tolerance
Parameter Bounded Normal low std generating PDF

dev to high std dev]
SA Control Cooling [Linear, Exponential] Method of cooling B

Schedule used in SA
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SA Control Cooling rate Continuous, (0, 1) Rate at which SA dT
cools under each
schedule

SA Control Freeze Integer[ 1,inf) Number of iterations N
Iteration without improvement

required to stop at a
given temperature

Model Gamma [O,inf) Response of y
Parameter individual employees

to centralization
Fig 3.3 Summary of sensitive variables
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CHAPTER 4: DATA ANALYSIS
The model under investigation has a number of stochastic elements. The optimization

algorithm has a probabilistic rejection component, random initial seeding, and random

perturbation. The model is itself instantiated with a random distribution of agent tolerances,

guaranteeing that each individual run, even if all input parameters are the same, shows only a

subset of all possible responses. The goal of this section will be to determine the model's

reliability, repeatability, and robustness to various tuning parameters across both optimal result

and design vector space. It will also conduct a qualitative validation against the literature.

4.1 Reliability & Repeatability Results
Reliability data were generated by running a set of input parameters through the model

and cataloging the best configuration of design variables found as well as the resulting

performance metric. The process was repeated 100 times for each set of tested input parameters.

In these test simulated annealing control parameters where held constant at dT=0.9, N=5, with an

exponential cooling schedule. Similarly, model parameters where held constant with y=1.

The constant agent tolerances produced a mean performance of 0.485 across all runs with

a standard deviation of 0.003. Minimum performance was 0.474 with design vector [.004, LF]

and maximum performance was 0.487 with design vector [0.900, CR]. The model returned a

contingent reward (CR) optimal leadership context in 98% of instances and a laissez-faire (LF)

context in 2%. There were no instances of either transformational (TL) or management by

exception (MEA) returned. Since the model returned two possible optimal leadership contexts

and centralization contributes differently to safety climate, and therefore performance, measures

of mean centralization across all runs have little meaning. Across runs which returned a CR
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context, centralization averaged 0.880 with a standard deviation of 0.03. Across runs which

returned an LF context centralization average 0.005 with a standard deviation of 0.003.

Testing reliability for a normal distribution of agent tolerances yielded a mean

performance across all runs of 0.474 with a standard deviation of 0.003. Difference between the

maximum and minimum performance was not significant. In all runs the optimal leadership

context returned was LF, issuing a recommended centralization of 0.006 with a standard

deviation of 0.005.

Input Context Context Mean Standard Mean Standard

Parameter Returned Rate Performance Deviation Centralization Deviation

Values Performance Centralization

P=Constant - - 0.485 0.003 - -

Tolerance, a=O,

n=10, p=.90

CR 98% 0.485 0.003 0.880 0.03

LF 2% 0.474 0.0001 0.004 0.003

P=Nonnal - - - - - -

Bounded*, Y=0.2,

n=30, p=0.40

LF 100% 0.474 .003 .006 .005

Fig 4.1: Summary of reliability results

Repeatability data was generated by instantiating agents with a standard set of input

parameters (P=Normal Bounded, T=.2, p=.5) and some number of agents. The model then runs,

is optimized, the results cataloged, then a new set of agents is instantiated with the same set of

input parameters. The process is repeated 100 times. Repeatability in context emerges within a
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2 agent model for the given inputs, recommending an LF context in all instances. Performance

repeatability, as measured by the signal to noise ratio, emerged at 3 agents yielding a ratio of

.0025. Due to the low centralization values presented in optimal LF context repeatability in

centralization never emerges to the same degree as other parameters, but standard deviation does

fall reliably below the mean centralization value by 30 agents.

In each instance the simulated annealing algorithm was able to reliably find an optimal

performance. Moreover, analysis of run history data reveals that the search portion of the

heuristic algorithm is spanning all hyper-planes. As an example a randomly selected history of 1

run conducting 125 searches searched the TL hyperplane 11 times, the LF (optimal in this case)

hyperplane 67 times, CR 23 times and MEA hyperplane 24 times. For the constant tolerance and

Normal distribution 95% of results were equal to the mean +1.5%. The model produces

repeatable results with 30 agents, a number less than the minimum size of an aircraft

maintenance unit in the US Air Force. For computational ease n will be set to 35 (a squadron's

minimum size) unless otherwise noted from here on out. [31]

4.2 SA Parameter Sensitivity Analysis
The simulated annealing algorithm has three controllable parameters: cooling schedule, cooling

rate, and freeze iterations. Simulations were performed using 35 agents instantiated with P=Normal

Bounded, 7=.2, pt=.8, and y=l. Simulated annealing control parameters were varied across dT

space from .1 to 1 for linear cooling and .1 to .9 for exponential cooling (a dT value of 1 for

exponential cooling does not cool the system). Signal to noise in average performance was 1100

and 785 for linear and exponential cooling respectively. The highest ratio of signal to noise ratio

was found with B=Linear and dT=0.3. Freeze iterations were then tested across a range of 1 to
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10 using the control parameters found to maximize signal to noise ratio above. Signal to noise

was maximized with N=6.
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Fig 4.2: Comparison of linear and exponential cooling response across different cooling rates; leadership context

mapping: l=TL, 2=CR, 3=MEA, 4=LF

4.3 Sensitivity, Thresholds, and Emerging Effects
Having calibrated the tools for analysis, the model can now be subjected to more rigorous

response analysis. As seen in the reliability & repeatability testing, each set of inputs instantiates

a new sub-model with a different set of optimal decision variables. Response is not measured

particularly well in terms of performance; performance is not sensitive to either changes in pt and

y. The model was run using a constant tolerance with g and y values varied. When average

performance was plotted against y values, changes in optimal performance were minimal with a

_____ SPerf&Perf of -0.0038. Similarly, average performance was plotted against p yielded of 0.0026.
6y 611

Across the full data set standard deviation from the mean (regardless of p and y inputs) was

0.0078.

Performance V Gamma Performance v Mean Tolerance
0.6 0.6

, 0.55 y -0.0038x + 0.474 0.55 y =.0026x + 0.4726
C R2 =0.1869
E 0.5 R2 =0.6816 0.5

0.45 0.45

0.4 0.4
0 0.5 1 0 0.5 1

Gamma Mean Tolerance
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Fig 4.3: Performance against y and pt

A more interesting view of the model's response to variation in pi and y is to look at

changes in design vectors at optimality. When gamma is equal to 0 maximum performance is

simply a function of maximizing safety climate. This is achieved analytically, and verified in

simulation, by choosing CR and maximizing centralization. Mean tolerance can be disregarded

as the negative effects of breaching that tolerance are negated by the 0 y value. Values of y

above zero cause leadership context chosen to be dependent on mean tolerance.

p=.05

6

X 4 * * * * 9 * * * 9 9
4)

2 i

0
0 0.5 1

Fig 4.4

At a value of t=0.05 the threshold for switching from CR to LF is somewhere between y=O and

0.1. As y values increase, It thresholds to switch form CR to LF increase as well. For p values
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from .05 to .9 response in Context cross y space for tested values mirrors Fig 4.4. Above that,

response looks like Fig 4.5.

6

4-

0
0 0.5 1

Fig 4.5

In terms of centralization submodels with lower t value respond the similarly, they have

two distinct phases. They seek to maximize centralization while CR contexts are selected (when

y values are also low), and minimize it under LF(when y values are higher). Higher levels of pt

have four phases. Under LF context, which occur at high y values, optimality is achieved by

minimizing centralization. At very near 0 values of y and under CR context centralization is

maximized. There is also a region where centralization values take on the p. value. There is an

in between area, though, where employee aversion to centralization is not so large that no gains

can be made from it. At the same time employee aversion to command does not permit

unlimited centralization. Fig 4.6 depicts this area in black for a mean tolerance of .95 and

constant tolerance. The area to the left is the region of centralization maximization, and right

where centralization is set to equal the tolerance.
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Fig 4.6

Engaging the model through agency also impacts response. Using a y value of 0.3 and [t

of .9 the model was run across a variety of standard deviation values. Agents were instantiated

with a bounded normal distribution. Normally distributed agents cause the centralization and

context response to shift from CR to LF event at high lt values. To ensure this effect was an not

an artifact of bounding the normal distribution and thereby shifting its mean value downwards

from it, a set of constant tolerance models with [t values equal to those of each normal seeded

run's resulting mean value of agent tolerance rather than the input p value (see A-3) was run and

plotted against them.
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Normal v Constant Tolerance

1

0.8

0

1-- 0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Standard Deviation

-4-Constant Tolerance -- Normal

Fix 4.7: Note, constant tolerance series standard deviation values are mapped to the mean of each bounded normal

distribution at that deviation, mapping can be found in A-3

Not only did agency shift to an LF recommendation earlier in terms of parameter inputs, it also

shifted earlier in terms of population mean tolerance. Moreover the shift occurred in spite of

median tolerance values across the population remaining reasonably flat.

4.4 Constrained Global Optimality
Natural results of the model pertaining to global optimality have explored response in

swaths of the LF and CR hyperplanes. Thus far optimality conditions for the MEA and TL

hyperplanes has been unexplored, as well as portions of LF and CR where they provide sub

optimal responses. In tests about 87% of optimal responses returned LF and 13% returned CR as

optimal. Here the other context domains will be examined for optimality, using centralization as

the sole decision variable.
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Centralization Comparison
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Fix 4.8: Constant tolerance varying pi with y=O.3

Model runs whose leadership context is constrained show several interesting features.

First they show the reason for LF and CR context's prevalence across optimal solutions in the

unconstrained model. Across the whole spectrum of centralization any MBA or TL solution is

dominated by a CR or LF one at an equal level of centralization. MBA strategies, in fact, were

everywhere dominated by any LF or CR strategy regardless of underlying pt value.

Repercussions of data is made more salient when considering the degree of overlap in optimal

centralization between TL and CR or MBA and LF respectively. Choosing a similar value of p

and changing context from TL to CR or MBA to LF always benefits the organization in the

model.
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CHAPTER 5: CONCLUSIONS
"You get the steal sign, and you think, "OK, this is probably my only chance to steal in the whole game. I'm going no matter what.

I'm just going to go. "And then it's a slide step, you're going, and you're supposed to hold up, but you know you might not get
another chance, so you keep going. It's a lot easier when you have the freedom to go on any pitch." [32]

-Coco Crisp on base stealing

5.1 Summary of Results
Literature on metaheuristic optimization and organizational modeling suggest that this

form of problem is well suited to be solved by simulated annealing. The problem spans a small

search area in each hyperplane, the problem has multiple hyperplanes adding an element of

combinatorial difficulty, within each hyper plane and across hyperplanes the problem is

'climbable', and attempts to model an adaptive organization. [4] [10] [11] [16] Assertions from

the literature are confirmed by the reliability and repeatability results. Runs seeded with the

same values and deterministic agent instantiation enjoyed a high degree of convergence in

performance output and design vector selection. Those runs where agents were seeded randomly

(Normal) saw similar degrees of convergence across those performance and design vector

selection. Randomly seeded runs also proved repeatable at realistic populations for a

maintenance unit. Maintenance squadron populations have a lower bound of 35 [31] while

repeatability emerged at an agent population of 30 as measured by signal to noise within

performance results. Variation in the simulated annealing's tuning parameters had little effect on

performance or design vector selection as well. While a specific set of parameters were chosen

to minimize signal to noise ratio, the difference in that ratio between high and low values was not

choosing between a noisy response and a quieter response but rather between a very quiet

response (S:N of 765) and an extremely quiet response (S:N of 1100).

The model proved to be robust, in terms of optimal performance, across t and y values.

Optimal performance at a given p changed little as y was varied. More interestingly, the model
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returned remarkably constant results in performance across varied It. This is likely an artifact of

the relative weightings for improvement in safety climate across leadership contexts with respect

to centralization. Runs always attempt to maximize safety climate while not going (too far) over

the boundary of tolerance for centralization. Relative weighting of gains from centralization and

costs of mismanaging subordinates defines this tradeoff.

Agent based modeling, in this implementation of an operational organization, did not

provide many insights. Agent instantiated runs, those that engendered each agent with a

randomized objective function, were able to optimize to the same level of performance as non-

agent/constant tolerance counter parts. While searching for optimality, and returning either CR

or LF conditions both randomly instantiated and deterministically instantiated agents returned

equal optimal centralization parameters. They differed in the p value at which they changed

context selection from one to the other. The difference between the p at which they switch is

proportional to the a of the instantiating distribution.

Context conditional optimality did vary across p values, with LF and CR proving to be

dominant. In terms of selecting centralization factors at any give p. value, LF and MEA

mimicked each other, while CR and TL were similar. This model seems to suggest that to

maximize performance MEA and TL methods should be avoided out right.

5.2 Qualitative Verification
It is tempting to become bogged down in the numeric results of the simulation. The

physics driving the dynamics are well documented and published, as are the weightings of

dependent paths. However a number of risks, further documented in the next section, that the
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weightings and specific numeric response may be in doubt. The critical results for managers

trying to learn from the model is the presence of dynamics and the validity of the model.

Again, the numeric results may be dubious and weightings may need to be fine-tuned.

With that said, the model does conform to a qualitative validation of how aircraft maintenance

responds to managerial context and command. Park, Kang & Son's model suggest that the most

critical managerial (as opposed to logistic or operational) component in maximizing performance

is safety climate and notes that supervision and communication play important roles in doing

that. [23] The model concurs. All runs sought high levels of safety climate. In ascents of the

total effort factor (y) the model sought the maximum safety. At the opposite end of the spectrum

(y=1) safety climate was strictly limited by the maximum centralization tolerated by employees.

Late p intersection of performance curves generated by LF and CR runs in terms of safety still

allowed for high safety levels to be achieved when producing optimal results. The model also

concurs with notions about centralization, that independence and autonomy benefit

organizations. [17] Most runs recommend a minimal (numerically 0) level of centralization and

an LF context.

Dynamics, in this case meaning the various thresholds resulting in different design vector

choice, reveal 4 distinct zones or recommendations for leaders and managers. If your employees

have a high tolerance for centralized decision making and offer no push back, either because they

do not want to or cannot, then a contingent reward strategy with maximal centralization is best

suited. If the employees have other than high tolerance and offer some pushback a laissez-faire

strategy with minimal managerial involvement in day to day decision making is advised. If they

have a high tolerance and offer some degree of pushback adopting a CR strategy and limiting
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centralization to the mean level desired by all employees (barring a large spread of tolerances) is

recommended. Finally, for the right balance of high tolerance and slight push back some, but not

much, breaching of that tolerance threshold under a contingent reward strategy maximizes return.

Where an aircraft maintenance organization, even a military one as described in the case study,

fits in this landscape is dubious.

The model's ultimate conclusion echoes Coco Crisp's remarks at the beginning of the

chapter. Largely employees don't want to be maimed or do harm, but sending too many signals

under the wrong context can cause operators to make suboptimal decisions. Barring other

exigent, operational, or logistic limitations improved performance can be eked out through better

aligning managerial context and centralization with the desires of subordinates.
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CHAPTER 6: RISKS & WORK TO BE DONE
6.1 Quantitative Verification and Validation

As mentioned above the model presents a view of aircraft maintenance and operations in

general that are qualitatively in line with what literature has espoused on centralization versus

decentralization and safety climate to performance mapping. The next step is to compare the

results to recorded real word data if it exists, or to collect that data. [30] In particular,

assumptions made regarding how total effort factor works should be investigated. The

assumption here is that after some threshold employees respond in a linear, detracting fashion.

There is also no strict empirical basis for this particular assumption, aside from the notion that

when subjected to an economic 'bad,' rational people respond.

6.2 Multiobjective Organization
The model presented focuses on a short run concerned, unary organization. One that is

only concerned with optimizing unit performance today. In truth aircraft maintenance units,

particularly the kind described by Park, have other goals as well. They need to train new

personnel, adapt to changing work, replace personnel who quit or are fired, and generally learn

as organizations. While the model can provide insight into day to day operations of an aircraft

maintenance unit, it does not capture a unit's need to engage in a long run maintenance strategy.

Adding a second objective which captures the degree to which the organization learns, and the

tradeoffs between learning and operating. [33]

Multiobjective modeling can also elucidate tradeoffs hidden within the efficacy metric.

Park, So, and Kang define efficacy as the average of four metrics: the ratio of mission capable

rate to man-hour per flying-hour rate, the fix rate, the repeat rate, and the recur rate. The metric

obfuscates how maintenance is performed, that is whether maintenance activity is driven by
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operations tempo and maintenance errors. To build modules that compute each individual metric

first work must be done to map safety climate as well as other exigent factors, like operational

tempo or complexity, to each component of the efficacy metric.

6.3 Risks
The safety climate index is a crucial element of the model presented. Safety climate joins

Park et als' efficacy calculation to Zohar's leadership criteria. Since the index is defined by two

different researchers it is not clear how they map to one another: while may be safe to say that

the indices 0 and 1 values are either equal or close enough for our purposes the intermediate

values though may not. There is no guarantee that the mapping between the two measures is

linear, nor is it necessarily the case that the mapping have constant monotonicity. A possible fix

for this, in terms of sensitivity analysis, would be to add a shape factor to the safety climate

calculation, allowing it to vary either systematically or randomly in simulation. Alternatively,

during a quantitative V&V the effect of mis-mapping can be investigated as a possible cause of

discrepancies between the model and reality.

(0

E

O Possible Mappings

N

Park's Safety Climate

Fig 6.1: Possible mappings of safety climate index
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The weightings given in the case study are based on surveys of the Korean Air Force. It

is doubtful that the weightings hold much relevance outside of that organization. Cross price

elasticity for similar goods can vary widely across borders. [34] [35] [36] To the extent that

causal paths in Park et al model are a function of managements demand for safety, subordinates

demand for lower stress, the publics' and other overseers' demand for flying hours, etc there is

no reason to expect similar weighting in other military aircraft maintenance units let alone in the

civilian space.

Organizations certainly use leadership styles which are neither laissez-faire nor based on

contingent reward. [37] Management by exception and transformational leadership have not

succumb to market arbitrage but do not present in the optimized results. Why? A multiobjective

approach may sort out this apparent contradiction. Transformational leadership has long been

associated with learning organizations [38]. There may be subtleties in the ways that employees

react to under management, for example some kind of confusion factor, that lead managers to

use forms of management that do not seem optimal here.
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Appendix
A-1: Zohar, 2000 Questionnaire

Table I
Rotaed Prinnpal-Components Anatsu Factor Snacturt of the Group Safety Clonate Sale With
itens Rearranged by Factor (N = 534)

Factor): Factor 2
Ien action expectatica

i supervisr says a good word wbenever he sees a
job dan accordng to i sdety rules 0.739 0.095

2. My supervaur seriously consides my worker's
sggeuiofts for improviag safey. 0776 0.125

3. My supervs appracbu workers dariag work to
asdiq safety Issues. 0.736 0.166

4 My mUpervMsr ge% uaoyed with any wrke, agWArfg
safely rules, eves Muor rIles. 0605 0.180

S. My mupervisor watches more often when a worker has
violawl - me safety rule. 0620 0.255

6 As long " Seie is a a Keo t, my supervisor does'tm
caf hotw dh work is dow (R 0077 0,676

7. Wbemever pressuae budds up. my superwssor wants us
t1 work fase. rather dhm by the rules Rl. 0.256 0.673

8. My supervisow pays less auntion to unfety problems
slim' mns oiher supervisors in dws copysy Ri 0.043 0411

9 My "servoiar omly ka"pi trsk of aer sWaey
problems and overlooks routine paible ms R). 0.271 0642

10. As long as work remu m schedude. my
supervow dormat care laer dis haa been acleved 4R) 0.099 0.493

Eievalue 2.623 2.091

Noe Ieas mae nrnslatsd frma Hebrw. (RI - reversal of item eres.

J. of Applied Psychology Vol 85, No.4 pg 591

A-2: Model Objectives and Constraints

Unit Performance Objective:

Maxim ize[TEF*(0. 85 *IndivAttitude - 0.33*IndivError)]

Unit Level Constraints:

Centralization>0

]-Centrailzation>0

Context=[LF, MEA, CR, TL]
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Agent Response Function:

IEF = J-Max[O, y * (Centralization - Thresholdi)]

TEF= IEF

Agent Constraints:

IEF1 >0

I- IEFi > 0

Thresholdi > 0

1-Thresholdi > 0

A-3: Mapping for Fig 4.7
Resulting

Std Dev

Corresponding to
Each Value

0.01

0.1

0.15
0.4

0.6

Mean Value of
Normally
Distributed
Agent
Tolerance

0.901
0.8857
0.8595
0.7766
0.7087

Resulting Median
Value of Normally

Distributed Agent

Tolerance

0.902

0.8958

0.9039
0.9347

0.8524

Agent Tolerance
of Constant

Tolerance Runs

0.901

0.8857

0.8595

0.7766
0.7087
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