
AUTONOMOUS ENVIRONMENT MANIPULATION
TO FACILITATE TASK COMPLETION

A Thesis
Presented to

The Academic Faculty

by

Martin Levihn

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Robotics

School of Interactive Computing
Georgia Institute of Technology

May 2015

Copyright c© 2015 by Martin Levihn

AUTONOMOUS ENVIRONMENT MANIPULATION
TO FACILITATE TASK COMPLETION

Approved by:

Professor Henrik Christensen, Advisor
School of Interactive Computing
Georgia Institute of Technology

Professor Magnus Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Frank Dellaert
School of Interactive Computing
Georgia Institute of Technology

Professor Tomás Lozano-Pérez
Department of Electrical Engineering
and Computer Science
Massachusetts Institute of Technology

Professor Charles Isbell
School of Interactive Computing
Georgia Institute of Technology

Professor Leslie Pack Kaelbling
Department of Electrical Engineering
and Computer Science
Massachusetts Institute of Technology

Date Approved: 19 March 2015

This thesis is dedicated to the memory of Mike Stilman, whose

encouragement, support and enthusiasm will never be forgotten.

iii

ACKNOWLEDGEMENTS

I am very grateful for having had the opportunity to be advised by Mike Stilman for almost

five years. His energy and enthusiasm for research made me stay at Georgia Tech and

pursue a PhD despite my original plans of returning to Germany after my masters. Thanks

to Mike’s easy-going personality, he always felt more like a friend than an advisor and,

from the very beginning, he put a lot of trust in me. During my first year as a PhD student,

he supported me in going to Japan for a couple months to experience a different culture and

research environment. In fact, he even came to Japan for a week while Tobias Kunz and

I were there and we all just traveled through Japan and gave talks at various labs. I have

learned a lot from him throughout the years and I will be forever grateful.

I would like to thank the College of Computing at Georgia Tech and specially Henrik

Christensen and Annie Anton for their unlimited support after the passing of Mike. Without

hesitation, Henrik offered to advise me throughout the rest of my PhD and has provided me

with invaluable insights both academically and in regards to career choices. Annie made

it to her priority to ensure that all of Mike’s students and colleagues had all the necessary

guidance. Both Henrik and Annie were always available for us and their support is the

reason I am writing this thesis. I would further like to thank all the faculty and staff at

Georgia Tech that worked hard in the background to ensure that all of Mike’s students were

taken care of.

I am extremely grateful to the members of my committee. Charles Isbell provided me

with very valuable feedback about publishing with the Machine Learning community and

graduate student life in general. Magnus Egerstedt helped me to see the bigger picture

of my research and clearly articulate the properties and limitations of the approaches pre-

sented in this thesis. Frank Dellaert was always available for discussions and represented

iv

an invaluable resource for both scientific and carrier insights. I also especially thank Tomás

Lozano-Pérez and Leslie Pack Kaelbling. They have accepted me into their lab at MIT as a

visiting graduate student and treated me like one of their regular students. I ended up stay-

ing for almost 8 months at their lab and learned a tremendous amount. I will never forget

the countless hours that Leslie and Tomas were actively hacking on the robot with me, even

on Sundays. Their enthusiasm about research and robotics is unparalleled. Chapter 4 is the

result of this collaboration.

In addition, I am very thankful to Koichi Nishiwaki, Satoshi Kagami and Takeo Igarashi

all of which hosted me at labs in Japan. Nishiwaki-san and Kagami-san hosted me during

my time at the Digital Human Research Center and were unbelievable patient with me

constantly breaking their robots. The collaboration resulted in the first real humanoid robot

deciding to build itself a bridge and is discussed in Chapter 5. Igarashi-sensei hosted me at

the Design Interface Project and provided me with great insights into multi-robot systems.

Our collaboration resulted in a multi-robot paper that we presented at IROS.

I am grateful for the friends I made both at Georgia Tech and MIT. Jonathan Scholz

was an invaluable source, academically and personally. We had many very insightful dis-

cussions and co-authored numerous papers throughout the years. We spend endless hours

at coffee shops in and around Atlanta debating approaches and solutions; not always to the

pleasure of the other guests in the coffee shops. We also had numerous BBQs and trips to

recharge the batteries and keep one sane throughout the years. Baris Akgun was always

available when needed, whether it was code debugging, a coffee break, or a road trip. His

advise giving for both professional and personal issues made him an invaluable resource.

Michael ”Misha” Novitzky brought personality to the group. Something that everyone that

we passed during our morning runs can attest to. No matter the distance we were running

and how exhausted we were, Misha would always greet every person we passed. Misha also

let me workout and practice martial arts at his Dojo, ensuring that I get regular concussions

to reset some wrong algorithm approaches. I would also like to thank Jonathan Gladin,

v

Jaswanth Sreeram, Sasha Lambert, Rowland O’Flaherty, Heni Ben Amor, Neil Dantam,

Kaushik Subramanian, Ashley Edwards, Himanshu Sahni, Pushkar Kolhe and Tushar Ku-

mar for their friendships throughout the years. At MIT, I would like to thank all of the

LIS group members and especially my officemates Jenny Berry, Alejandro Perez and Sam

Davies for their help and support during my stay.

I could not have accomplished this journey without constant and unlimited support from

my family. My parents backed me in every decision I made during my graduate studies.

Whether it was staying in the US for a PhD, buying an old Buick or going to Japan for a

couple months, they always provided both encouragement and a safety net. I would not

have been able to pull through without this support.

Finally, I cannot express in words the gratitude I have towards my girlfriend Katharina

Wunderlich. We dated throughout my entire time as a PhD student and despite large dis-

tances separating us, she was always there when needed. Her willingness to stay in the

relationship despite entire continents separating us for months at a time and her calming

manner whenever things got heated enabled me to work on this thesis throughout the years.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xv

I INTRODUCTION . 1

1.1 Motivation . 2

1.2 Challenges . 4

1.2.1 Dimensionality . 4

1.2.2 Uncertainty . 6

1.3 Approach . 7

1.4 Thesis Overview . 8

1.4.1 Thesis Statement . 8

1.4.2 Summary of Contributions . 8

1.4.3 Document Outline . 9

II RELATED WORK . 11

2.1 NAMO Planning . 11

2.2 Planning under Uncertainty . 12

2.2.1 Robotics and AI . 12

2.2.2 Decision Theory . 14

2.3 Tool Use . 16

2.4 Object Detection . 16

III NAMO WITH ACTION UNCERTAINTY 19

3.1 Overview . 20

3.1.1 Discretized Environments . 20

3.1.2 Continuous Environments . 21

vii

3.2 NAMO MDP . 22

3.2.1 Preliminaries . 22

3.2.2 NAMO MDP Definition . 23

3.3 Discrete Environments . 24

3.3.1 Preliminaries . 25

3.3.2 Discrete NAMO MDP Construction 28

3.3.3 Solving the NAMO MDP . 29

3.3.4 Evaluation . 30

3.4 Continuous Environments . 41

3.4.1 Preliminaries . 42

3.4.2 Continuous NAMO MDP Construction 42

3.4.3 Solving the NAMO MDP . 47

3.4.4 Example Implementation . 48

3.4.5 Evaluation . 51

3.5 Discussion . 56

3.5.1 State-Space Change . 56

3.5.2 Summary . 57

IV NAMO WITH STATE AND ACTION UNCERTAINTY 59

4.1 Detecting Partially Occluded Objects . 59

4.1.1 Existing Method for Unobstructed Objects 61

4.1.2 Algorithm . 62

4.1.3 Approach . 62

4.1.4 Experiments and Analysis . 66

4.1.5 Discussion . 72

4.2 State and Action Uncertainty in NAMO 72

4.2.1 Existing Planning Framework . 75

4.2.2 Enhancing Optimality . 81

4.2.3 Navigation Among Uncertain Movable Obstacles 86

4.2.4 Experiments . 92

viii

4.3 Discussion . 95

V NAVIGATION USING MANIPULABLE OBJECTS 96

5.1 Overcoming Geometric Constraints . 97

5.1.1 Algorithm . 98

5.1.2 Implementation . 99

5.1.3 Experiments . 103

5.1.4 Discussion . 107

5.2 Overcoming Force Constraints . 108

5.2.1 Problem Specification . 109

5.2.2 Approach . 110

5.2.3 Lever Like Structure . 111

5.2.4 Battering Ram Structure . 115

5.2.5 Evaluation . 118

5.2.6 Discussion . 123

VI NAVIGATION USING MANIPULABLE OBJECTS WITH ONLY ONBOARD
SENSING . 125

6.1 Overview . 127

6.1.1 Assumptions . 127

6.1.2 Framework . 127

6.2 Implementation . 129

6.2.1 Detecting Obstructions . 130

6.2.2 Planning . 130

6.2.3 Object Search . 131

6.2.4 Grasping and Dropping . 132

6.3 Evaluation . 133

6.3.1 Runtime . 133

6.3.2 Failure Cases . 134

6.4 Discussion . 135

ix

VII CONCLUSION . 136

7.1 Future Work . 137

7.2 Final Remarks . 139

APPENDIX A — PLANAR-GRAPH CONSTRAINT 140

REFERENCES . 141

x

LIST OF TABLES

1 Distribution parameters for each physical parameter type 47

2 Parameter distributions for the green couch. 54

3 Results based on 137 runs. Best results in bold. 93

xi

LIST OF FIGURES

1 Example setup. In both examples the robot is tasked with exiting the room. 3

2 The table wheels are likely to be locked, making it impossible for the
robot to move the table. In contrast to deterministic planners, our proposed
framework accounts for this probability. 4

3 Concept visualization. The presented framework defines an abstract MDP
operating with abstract states representing free spaces and abstract actions
reflecting the notion of “creating an opening” by manipulating a specific
obstacle. Consider the left most state of the MDP in (b). If the robot
is in this state, physically in free space 1, it has the possible actions of
manipulating the Love Seat or the Couch. This may grant the robot access
to free space 2 or 3, respectively, or fail, leaving the robot in free space 1. . 21

4 Example of a non-planar GA. 32

5 Obtained average computation times as a function of the number of obsta-
cles. The graph suggest linear complexity in the number of obstacles. . . . 37

6 Example environment. V is the states value and A denotes the action to
execute. E.g. the free-space containing the robot has a value of 17.03 and
the best action to execute is to manipulate obstacle O3 to gain access to
free-space F6. Low level policies are visualized as a vector field. Static
obstacles visualized in gray. 38

7 Average expected rewards for 300 runs. 39

8 Average runtimes for 70 trials. 52

9 Execution example of our dynamic simulation. The robot clears goal de-
spite the couch behaving unexpectedly. 53

10 Robot incorporates new information to enhance the plan. 55

11 Execution example of our dynamic simulation with more than 30 obstacles. 56

12 Example of correctly classified furniture. The chair is correctly detected
despite the fact that only the top part of the chair is actually visible in the
scan. Similarly, the table is detected despite the fact that it is partially
occluded. 60

13 Example VFHs for a partial model and its associated complete model. The
individual components of a VFH can be found in [82]. 62

14 Hierarchy of complete models and auto generated partial models. 63

15 Workflow. Steps independent of the actual world are colored in orange
while world dependent steps are colored in blue. 65

xii

16 Experimental setup. 67

17 Example of false positive and true positive detection. 68

18 Relative operating characteristic, showing improvement over VFH. Dashed
line marks the best possible rate, due to clustering errors. 69

19 Examples of where our algorithm fails. 71

20 Solving a NAMO problem with a PR2. The robot discovers two unknown
obstacles (chairs) and moves them out of the doorway in order to get through. 73

21 Illustration of BHPN approach . 79

22 Serendipity example (top row); Reconsideration example (bottom row) . . . 88

23 Behavior with and without considering future goals when selecting place-
ments of obstacles. 89

24 Maintaining connectivity of the free space during pick and place. 91

25 Using possible future observations to inform the choice of plans. 92

26 Domains: The first three are used in the experiments; the robot start and
goal are in orange and red, respectively. The fourth domain was used to
test scalability. In all cases the robot has no initial knowledge of the objects
in the environment; the gray areas in the last domain show areas that were
never explored. 93

27 Robot decides to place a box in front of the platform to be able to step up
the platform. 98

28 Proposed humanoid locomotion planning system: Stairs Example. 104

29 Proposed humanoid locomotion planning system: Bridge Example. 105

30 Simulation visualization. The robot is tasked with getting on top of the
platform. The platform is higher than the robot can step. Additionally it
cannot step over gap. The robot placed the board over the gap and used a
box to step up the platform. 107

31 Constraint space computation. The constraint space is visualized in red. . . 115

32 (a) Constraint propagation method with constraint space. (b) Solution for a
different run. (c) Rejected configuration based on force direction. 119

33 Battering ram example solutions. 120

34 Example configurations. 123

35 Example execution of the proposed framework. 126

36 Flowchart of the proposed framework. 128

xiii

37 Obstruction detection and constraint relaxed planning step examples. 129

38 Constraint resolution example. 132

xiv

SUMMARY

A robot should be able to autonomously modify and utilize its environment to assist its

task completion. While mobile manipulators and humanoid robots have both locomotion

and manipulation capabilities, planning systems typically just consider one or the other.

In traditional motion planning the planner attempts to find a collision free path from the

robot’s current configuration to some goal configuration. In general, this process entirely

ignores the fact that the robot has manipulation capabilities. This is in contrast to how

humans naturally act - utilizing their manipulation capabilities to modify the environment

to assist locomotion. If necessary, humans do not hesitate to move objects, such as chairs,

out of their way or even place an object, such as a board, on the ground to reach an otherwise

unreachable goal. We argue that robots should demonstrate similar behavior. Robots should

use their manipulation capabilities to move or even use environment objects. This thesis

aims at bringing robots closer to such capabilities.

There are two primary challenges in developing practical systems that allow a real

robotic system to tightly couple its manipulation and locomotion capabilities: the inevitable

inaccuracies in perception as well as actuation that occur on physical systems, and the ex-

ponential size of the search space. To address these challenges, this thesis first extends the

previously introduced domain of Navigation Among Movable Obstacles (NAMO), which

allows a robot to move obstacles out of its way. We extend the NAMO domain to handle

the underlying issue of uncertainty. In fact, this thesis introduces the first NAMO frame-

work that allows a real robotic systems to consider sensing and action uncertainties while

reasoning about moving objects out of the way. However, the NAMO domain itself has

the shortcoming that it only considers a robot’s manipulation capabilities in the context

xv

of clearing a path. This thesis therefore also generalizes the NAMO domain itself to the

Navigation Using Manipulable Obstacles (NUMO) domain.

The NUMO domain enables a robot to more generally consider the coupling between

manipulation and locomotion capabilities and supports reasoning about using objects in

the environment. This thesis shows the relationship between the NAMO and NUMO do-

main, both in terms of complexity as well as solution approaches, and presents multiple

realizations of the NUMO domain. The first NUMO realization enables a robot to use its

manipulation capabilities to assist its locomotion by changing the geometry of the environ-

ment for scenarios in which obstructions can be overcome through the usage of a single

object. The system led a real humanoid robot to autonomously build itself a bridge to cross

a gap and a stair step to get on a platform. A second NUMO realization then introduces

reasoning about force constraints using knowledge about the mechanical advantages of a

lever and battering ram. The discussed system allows a robot to consider increasing its ef-

fective force though the use of objects, such as utilizing a rod as a lever. Finally this thesis

extends the NUMO framework for geometric constraints to scenarios in which the robot

is faced with a substantial lack of initial state information and only has access to onboard

sensing.

In summary, this thesis enables robots to autonomously modify their environment to

achieve task completion in the presence of lack of support for mobility, the need to increase

force capabilities and partial knowledge.

xvi

CHAPTER I

INTRODUCTION

The goal of this thesis is to enable robots to autonomously modify their environment to

achieve a task. In traditional robot motion planning systems, the robot sees environment

objects as obstacles. We propose that the robot should also see them as opportunities.

Each manipulable object is an opportunity for the robot to change its environment to its

advantage, from moving them out of the way to even utilizing them as tools. For a robot,

not all environment objects have to be obstacles; they can also be a means to an end.

As a first step towards this goal, we extend the previously introduced domain of Navi-

gation Among Movable Obstacles (NAMO) which enables robots to reason about moving

objects out of the way. While previous work introduced important concepts to make the

NAMO domain tractable, the majority of existing methods assume full world knowledge

and perfect action execution by the robot. In contrast, real world systems can typically only

perceive the environment through limited sensory measurements, resulting in state and ac-

tion uncertainty. In order to move NAMO systems closer to real world applicability, we

extend the NAMO domain to handle state and action uncertainties and present a real robot

implementation operating amid these conditions.

While this extension is a crucial step towards real robotic systems that can make progress

towards a goal even if they are blocked in by obstacles, it does not allow robots to reach

a goal that is outside of their inherent physical limitations. For example, if a robot is dis-

connected from the goal by a large gap, any reasoning about moving objects out of the way

will not allow the robot to find a valid plan to the goal. Instead, the robot needs to find

ways of using environment objects to cross the gap, such as placing a board over the gap.

These kind of behavior patterns require the ability to reason about environment objects as

1

tools. In the second part of this thesis, we therefore generalize the concept of Navigation

Among Movable Obstacles to Navigation Using Manipulable Obstacles (NUMO). While

in the NAMO domain the robot only reasons about topological environment changes by

moving objects out of the way, the NUMO domain allows the robot to also reason about

using manipulable objects to modify the environment to its advantage. This generalization

allows robots to solve previously unsolvable problems and brings them closer to the tool

orientated behavior characteristic of humans.

The remainder of this chapter describes the motivation behind this thesis and the chal-

lenges that need to be overcome to develop practical systems. A brief overview of the

structure of this document is provided at the end of the chapter.

1.1 Motivation

Future rescue robots that save humans from disasters such as floods and earthquakes will

be required to reason about objects in their environment. Traditional motion planning al-

gorithms search for collision-free paths from the start to the goal [52]. This is not sufficient

when flood waters have caused furniture to float and collapse, leaving no open path to the

victims. Instead, the robot must quickly decide which obstacles must be moved or poten-

tially even stepped on to reach the goal. It must choose where to move objects, whether to

to create a traversable path or clear a path, and compute valid motion plans that integrate

navigation and manipulation.

The need for such capabilities became evident during the recent crisis at the Fukushima

Daiichi nuclear power plant where hydrogen-air chemical explosions critically damaged the

containment buildings [1]. To observe the damage and to reach crucial instruments, it was

critical to enter the damaged buildings. As the radiation levels were too high for workers

to enter, the nuclear power plant operators turned to robotics [85]. However, current robot

technology proved to be limited [85]. The robots required constant teleoperation, which

in turn required the operators to be within close proximity to the power plant at all times

2

(a) The door is jammed and cannot be moved by the
robot directly.

(b) The door is locked and opens outwards.

Figure 1: Example setup. In both examples the robot is tasked with exiting the room.

in full protection suits, increasing the difficulty of operating the robots teleoperation com-

mand terminal while exposing the workers to radiation [85]. In addition, if communication

between the operation terminal and the robot broke, the robot would be lost and the task

could not be completed. If the robots would have been able to operate more autonomously

and reach target areas without constant supervision and teleoperation, radiation exposure

of the workers could have been lowered and task completion rate increased. Being able

to autonomously decide to move or even use environment objects is a crucial step in this

direction.

To understand the implications of such capabilities, consider the scenario visualized in

Fig. 1(a) in which a robot is trapped in a room with a jammed door. If unjamming the door

requires more force than the robot can exert on its own, current systems would just directly

declare failure, entirely ignoring the scope of the robots manipulation capabilities and the

objects in the environment. This puts the task completion at risk, even if escaping the

room is vital and possible. In contrast, for humans, the natural approach is to reason about

different ways to increase their effective force. Utilizing knowledge about mechanical

advantage afforded by possible combinations of objects, humans find creative solutions

such as using a rod and an office cart to achieve leverage to pry open the door in Fig. 1(a), or

use an office cart as a battering ram to break the lock of the door for the example visualized

in Fig. 1(b). Robots should show similar behaviors and we argue that the capability to

3

F1
F2

Couch

Table

P(movable) = 0:95

P(movable) = 0:10

(a) Configuration

F1
F2

Couch

Table
1 ?

(b) Solution obtained through a deterministic
NAMO planner.

Figure 2: The table wheels are likely to be locked, making it impossible for the robot to
move the table. In contrast to deterministic planners, our proposed framework accounts for
this probability.

jointly reason about manipulation and locomotion abilities is on the critical path to truly

intelligent, multi-purpose robots. In fact, the ability to use objects in the environment to

achieve goals is considered one of the hallmarks of intelligence in humans, primates and

even some birds [44, 86, 105]. This thesis aims at brining robots closer to this hallmark.

1.2 Challenges

There are two primary challenges in developing practical systems that allow a real robotic

system to reason about environment objects: the dimensionality of the state space and the

inevitable uncertainty in state and action outcome on real systems.

1.2.1 Dimensionality

To understand the state space complexity, consider navigating in a room with manipulable

obstacles such as the ones depicted in Fig. 2. If Cr ∈ Rdr represents the configuration

of the robot, and Co ∈ Rdo represents the configuration of a single obstacle, then the full

state-space consisting of the robot and N obstacles is the product of these subspaces: Cr×

Co1 ×Co2 × ...×CoN ∈ Rdr+Ndo . For discretized environments with resolution r in each

dimension, the number of possible states is O(rdr+Ndo), in other words exponential in the

number of objects it contains. This complexity analysis holds for cases where the robot is

only reasoning about moving objects out of the way as well as for the more general case of

4

using environment objects. In both domains, objects need to be rearranged to change the

configuration space topology.

1.2.1.1 Problem Classifications

To simplify further analyses, we now introduce a problem classification based on solution

difficulty. In the following discussion we use the term free-space to indicate configuration

space regions that allow the robot to navigate collision free between any two points within

the region. Note that whether the robot is just reasoning about moving objects or also

considers using objects, the robot can complete its overall task if and only if it manages to

get access to the free-space region containing the goal. Our classification is a generalization

of the NAMO domain classification presented in [95] and defines the following problem

instances:

Ik Independent subproblem domains where free-space regions can be connected inde-

pendently by interacting with at most k objects per subproblem.

NI Not-independent domains that cannot be subdivided into indepdent subproblems.

UL Usage-limited problems that require the robot to interact with any object at most

once.

UU Unlimited-usage problems in which the robot might have to interact with the same

objects multiple times.

A planner typically is designed for any combination of these subclasses, e.g. a planner

designed for I1UU problems reasons about solving each subproblem independently by us-

ing any of the objects in the environment, independent of the objects prior usages. Note

that the main difference between this problem classification and the one presented in [95]

is the focus on object usage.

5

1.2.2 Uncertainty

Prior work on autonomous configuration space topology changes, e.g. [92, 93, 104] for the

NAMO domain, has focused primarily on handling the problem of dimensionality, and has

not yet addressed the underlying issue of uncertainty. In reality, robots have incomplete

world model and can only perceive the environment through limited sensory input, resulting

in state and action uncertainty.

To better understand why this might be a problem, consider again the example in Fig. 2.

Perhaps the robot knows that the shortest path to the goal involves moving the table, but

it does not know whether all the table wheels are unlocked. How might it weigh the costs

of moving the table versus the couch? How would this answer be affected if it were given

only a crude action model for the dynamics of the couch? These sorts of reasoning patterns

are not expressible within the framework of deterministic search, without resorting to ad

hoc heuristics such as attempting to roll the action uncertainty into a single numerical value

in the cost function. However, for the robot to execute the lowest expected cost actions, it

has to explicitly reason about its degree of environment uncertainty [52].

In addition to action uncertainty, a real robot system needs to be able to handle state

uncertainty. While the example in Fig. 2 incorporates the wheel state uncertainty into the

action uncertainty, this is not a valuable approach for more substantial state uncertainty,

such as a lack of object position information. If the robot does not actively reason about

sensing actions, it is in danger of colliding with objects. In order to be deployable on

real robots, which in general only possess limited onboard sensing capabilities, systems

allowing the robot to move or even use environment objects need to be able to handle cases

with substantial lack of initial state information.

6

1.3 Approach

We address these challenges in this thesis by combining domain insights with hierarchical

task decomposition. First, we utilize the concept of free-space regions to construct a hier-

archical Markov Decision Process (MDP) that closely resembles the real problem, but can

be solved in real-time. For scenarios in which the robot needs to move single objects out of

the way to connect individual free-space regions, this abstract MDP allows the robot to bias

its decisions at plan time in order to compute policies that are likely to succeed. Building

on these results, we then extend the hierarchical task decomposition and present a system

that is applicable to environments with substantial state and action uncertainty. We achieve

this by incorporating the concepts of Reconsideration and Foresight, which are frequently

used by humans, into a hierarchal planning and execution architecture.

To enable the robot to also perceive environment objects as potential tools and not just

obstacles, we introduce the domain of Navigation Using Manipulable Obstacles (NUMO).

The NUMO domain allows the robot to use environment objects. To make the NUMO

domain tractable, we demonstrate how search space reduction concepts that have proven

viable in related domains can be transferred to the NUMO domain. First, we show how

constraint relaxed planning, which lets the planner hypothesize a successful scenario, can

be used to allow the system to focus on regions that are likely to contain a solution. This

contribution allows a real humanoid robot to determine complex, multi-step plans, such as

building a stair step or bridge before navigating to the goal, within seconds.

To allow the robot to also reason about increasing its effective force by using envi-

ronment objects, we use physcial constraint propagation to effectively reduce the research

space without eliminating any potential solutions. The resulting search space can efficiently

be sampled and enables the robot to reason about building itself a lever-like structure to pry

open a door or even using an office cart as a battering ram to break open a lock in real-time.

Finally, we combine constraint relaxed planning with execution monitoring to allow the

robot to online reason about using environment objects as tools.

7

1.4 Thesis Overview

We now provide the thesis statement as well as a concise overview of the contributions and

the remaining parts of this document.

1.4.1 Thesis Statement

Robots can autonomously modify their environment to achieve task completion in the pres-

ence of lack of support for mobility, the need to increase force capabilities and partial

knowledge.

1.4.2 Summary of Contributions

The contributions made by this thesis are as follows:

• NAMO-MDP — the first decision-theoretical planning system for the NAMO domain

focusing on action uncertainty. The system is applicable for scenarios in which a

single object can be used to create a path between two free-space regions and presents

a novel combination of hierarchical MDP decompositions and Monte Carlo Tree

search methods allowing for linear time complexity for typical environments.

• Foresight and Reconsideration in Hierarchical Planning and Execution — a hier-

archical planning and execution architecture that maintains the computational effi-

ciency of hierarchical decomposition while improving optimality, allowing a real

robot to solve NAMO domains with state and action uncertainty.

• NUMO — Navigation Using Manipulable Objects, a new planning domain gener-

alizing the NAMO domain to also allow a robot to reason about using environment

objects.

• NUMO for Geometry Constraints — a realization of the NUMO domain enabling a

real humanoid robot to use objects in the environment to overcome geometric ob-

structions. The system is applicable for scenarios in which a single object can be

8

used to overcome an obstruction.

• NUMO for Force Constraints — a realization of the NUMO domain that allows a

robot to reason about increasing its effective force through the use of environment

objects by utilizing knowledge about lever and battering ram structures.

• NUMO with Onboard Sensing — an extension of NUMO to cases where the robot

only has access to onboard sensing information.

1.4.3 Document Outline

The remainder of this document is structured as follows:

Chapter 2 - Related Work provides and overview of related work for the fields of

NAMO planning, robotic planning under uncertainty, robotic tool use and object detection.

Chapter 3 - NAMO with Action Uncertainty introduces the NAMO-MDP, a frame-

work to efficiently compute policies for NAMO domains where the robot has access to

object locations but has substantial uncertainties in the object dynamics.

Chapter 4 - NAMO with State and Action Uncertainty presents a novel method to

detect partially occluded objects in 3D point clouds and a complete system using Foresight

and Reconsideration in a hierarchical planning and execution framework that allows a real

robot to execute NAMO with state and action uncertainty.

Chapter 5 - Navigation Using Manipulable Objects introduces the NUMO domain

and presents two example systems for this new domain: A humanoid robot overcoming its

locomotion limitations and a humanoid robot increasing its effective force through objects

found in the environment.

Chapter 6 - Navigation Using Manipulable Objects with Only Onboard Sensing

extends the NUMO domain to cases where the robot only has onboard sensing. A frame-

work is presented that allows a robot to reach its goal by deciding online to use environment

objects as tools.

9

Chapter 7 - Conclusion provides concluding remarks and outlines future research di-

rections.

10

CHAPTER II

RELATED WORK

The research presented in this thesis is related to existing work in NAMO planning, plan-

ning under uncertainty, and robotic tool use. In addition, as the robot needs to perceive

environment objects through onboard sensing, we also discuss related work in object de-

tection. We now cover each topic in turn.

2.1 NAMO Planning

Navigation and manipulation planning poses a significant computational challenge even

with complete environment information. Wilfong [107] first proved that deterministic

NAMO with any number of obstacles is NP-hard. Demaine [19] further showed that even

the simplified version of this problem, in which only unit square obstacles are considered,

is also NP-hard.

In [92], Stilman presented a planner that solved a subclass of NAMO problems termed

LP1 where disconnected components of free-space could be connected independently by

moving a single obstacle. The planner was able to solve the hard problems presented

in [15] and was successfully implemented on the humanoid robot HRP-2 [93]. Subsequent

work presented a probabilistically complete algorithm for NAMO domains [104]. How-

ever, all these methods solved NAMO assuming perfect knowledge of the environment and

deterministic action outcomes.

Hauser presented the Minimum Constraint Removal problem (MCR) in [30] and showed

its relation to the NAMO problem. The MCR problem aims to find the fewest geometric

constraints that have to be removed in order to connect two configurations. NAMO can be

seen as an instance of the MCR problem. However, the MCR formalism does not reason

11

about how to remove constraints or about uncertainty in the process of removing con-

straints. In [56] we presented a planner that enables multiple robots to rearrange multiple

objects. The planner can be used to deploy a multi-robot NAMO system. However, the

planner again assumes perfect environment knowledge.

Wu [36] and Kakiuchi [41] introduced the first extensions to NAMO in Unknown En-

vironments. In [36] a planner was presented that could solve NAMO problems given with

substantial lack of initial state information. We extended this planner in [65] to return

locally optimal solutions. However, both [36] and [65] are not capable of handling un-

certainty, and instead assume that everything that comes within sensor range is given to

the robot as ground truth. Further, actions are assumed to be deterministic. [41] presented

a system that executes NAMO in unknown environments on the humanoid robot HRP-2

with only onboard sensing. However, the authors took a reactive behavior-based approach,

rather than attempting full decision theoretic planning and as such the system is not able to

bias its decision making towards plans that are likely to succeed.

2.2 Planning under Uncertainty

There are two major threads of work related to planning under uncertainty: research pre-

sented in the robotics or AI literature and in the general decision theoretical literature. We

cover each in turn.

2.2.1 Robotics and AI

One class of algorithms specifically addresses mobile robot navigation with perfect sens-

ing and actuation, but with fundamental initial uncertainty about the poses of obstacles

in its workspace. These algorithms operate in a discretized state and action space, and

employ methods based on A∗ search. They assume that space is free unless it is known

to be blocked, and replan when the current plan is made infeasible by newly discovered

obstacles. Early versions [111] used a relatively straightforward planning strategy; more

12

modern versions employ important algorithmic techniques to ensure computational effi-

ciency and limit the frequency and scope of replanning. [48, 49, 91]. Likhachev et al. [66]

integrate these methods with anytime algorithms, providing a replanning architecture that

can deliver a feasible but sub-optimal plan quickly, but that converges to the optimal solu-

tion given more running time. In all of these methods, replanning is either triggered when

the current plan is infeasible, or carried out as an ongoing computational process, at the

highest rate possible, in response to new information gathered in real time. A successful

urban autonomous vehicle [103] integrates dynamic replanning, which is triggered by plan

invalidation due to a variety of environmental conditions. The work mentioned so far has

concentrated on basic navigation, which is a relatively low-dimensional problem. For high-

dimensional problems such as grasping, uncertainty is actively reduced by Dogar [22] by

means of pre-grasp motions. The PPCP method [67], attempts to improve both efficiency

and optimality by taking uncertainty into account when making initial plans.

Early work in symbolic planning for robots addressed issues of execution monitor-

ing, replanning on failure, and exploiting serendipity on the Shakey [24] and Hilaire [88]

robots. Recent related work in general symbolic planning solves problems with deter-

ministic actions, but partial initial knowledge and partial sensing, by solving a sequence

of classical planning problems [9, 10], with replanning triggered when the current plan

becomes invalid. Similar methods can be applied in stochastic domains, through deter-

minization [110]. An alternative approach is to delay decision-making until information is

gathered, rather than attempting to create conditional or conformant plans in advance [23].

Fritz and McIlraith [26] consider symbolic planning in dynamic domains, including the

ability to respond to changes that happen during planning.

Bratman [11] formulated a theory of rational action, which emphasizes the role of com-

mitment to plans as a way of decreasing the burden of reasoning, and that addresses the

problem reconsideration and the trade-offs it presents between efficiency and optimality.

This theory was expanded into a computational architecture, IRMA [12, 33, 77].

13

2.2.2 Decision Theory

As discussed above, there are two basic forms of uncertainty that may affect a planner:

uncertainty in the action outcome, and uncertainty in the world state. In the decision theory

planning literature, these types of uncertainty are typically modelled in different ways. The

first is captured by a probabilistic action model, and is the basis for the Markov Decision

Process (MDP). The second requires augmenting the MDP with a probabilistic observation

model, into the so-called Partially Observable MDPs (POMDP).

POMDPs have been applied separately to navigation planning by Koenig and Pineau

[46] [75] and grasping manipulation by Hsiao [35]. While both domains are related to

problem statement in this thesis, they focus on the configuration space of a single robot

or a single object. In contrast, the domains discussed in this document require the robot

to reason about the full set of objects in its workspace. Existing robot planners that use

POMDPs are generally restricted to low-dimensional configuration spaces. This constraint

holds even when applying the most recent approximate POMDP solvers such as point-

based value iteration [75], belief compression [80] and Milestone Guided Sampling [51].

Several techniques have been developed for extending the MDP model to hierarchical

tasks. Among the most well known include the options framework [99], hierarchies of

abstract machines (HAM) [74], and the MAX-Q framework [20]. All three of these ap-

proaches rely on a generalization of the MDP to incorporate non-atomic, or semi-markov

actions. The resulting model is referred to as a semi-Markov decision process, or SMDP

[34].

The primary difference between these approaches is whether they involve simplifying

or augmenting the original MDP. The goal of the options framework is to introduce abstract

actions without compromising the finer-grained planning of the original MDP. Therefore

options-planning does not offer any representational abstraction: all planning is done in

the state space of the original MDP. In HAM, the system designer specifies a hierarchical

collection of state machines for solving sub-tasks. This state machine presents an abstract

14

interface for the high-level task, which can again be solved as an SMDP. The drawback

of these approaches is that the resulting SMDPs are either too low-level for tractable task

planning (options), or too high-level and modular for solving context-sensitive subtasks

(HAM).

The third approach, MAX-Q, strikes a balance between Options and HAM. It is well-

suited for the domains discussed in this thesis because it does not require predefined subtask

policies, but still utilizes an abstract planning representation. We utilize the MAX-Q for-

malism for discretized NAMO environments. However, MAX-Q still assumes that each

subtask is solvable using standard dynamic programming methods [20]. These algorithms

are based on the theoretical results for the SMDP, which scales at best linearly in the size

of the (non-abstract) state space [38]. This prohibits a direct application of the MAX-Q

framework to the domains discussed in this thesis.

An alternative to dynamic programming for solving MDP is referred to as Sparse Sam-

pling or Monte Carlo tree search (MCTS). The MCTS literature describes a family of al-

gorithms which were introduced to provide MDP solvers which scale independently of the

size of state space [43]. However, MCTS remains exponential in the depth of its search

tree, which for the domains discussed in this thesis can often require tens or hundreds of

primitive actions. Several heuristics have been developed for MCTS, including UCT [45]

and FSSS [106], which are significantly more sample efficient than vanilla MCTS. While

these algorithms are good candidates for a subtask planner, they cannot solve the overall

problem of autonomously changing the environment topology even for discretized cases

due to the large depth, branching factor, and sparsity of rewards in the domain.

For continuous environments, an alternative to MCTS is Monte Carlo simulation [54].

In the robotics literature Monte Carlo simulation techniques are widely used for localization

and mapping [101]. We utilize Monte Carlo simulation to reason about action uncertainty

within continuous NAMO domains.

15

2.3 Tool Use

Most existing forms of robotic tool use are focused on accurate positioning and control

of specific tools such as welding instruments [17], spray guns [14], drills [21] and surgi-

cal instruments [3, 18]. In all of these scenarios the robot performs a well defined task

with the tool. The autonomous discovery of functional properties of environment objects

has recently gained interest. Stoytchev [98] and subsequently Sinapov [87] suggested the

investigation of arbitrary objects through interaction and connecting their shape to a partic-

ular function. While the control methods developed for these scenarios are complementary

to the systems discussed in this thesis, we do not assume that the robot is given a specific

task to accomplish with a specific tool or is tasked with determining all possible affor-

dances [28] of an object. Instead, this document considers scenarios in which a robot has

to autonomously determine if and how it needs to use environment objects as tools.

An extensive survey on early AI research on tool use can be found in [7].

2.4 Object Detection

The detection of objects in 3D laser data has been studied intensively in various research

fields. As such, we are only addressing the work most relevant to partial object and furniture

detection in human environments.

In [83] Rusu et al. present a system for the acquisition of hybrid Semantic 3D Object

Maps for indoor household environments based on 3D point cloud data. The authors use a

two step approach for detecting kitchen furniture based on the detection of horizontal and

vertical planes as well as knobs.

Blodow et al. describe a mapping system acquiring 3D object models for indoor en-

vironments in [8]. The authors present a system for segmenting and geometrically recon-

structing cabinets, tables, drawers and shelves based on multiple scans of the objects. Ta-

bles, the most relevant part to our work, are detected by finding horizontal surfaces within

a given height range, which this does not allow to distinguish tables and shelves. Holz et al.

16

are using 3D Time-of-Flight cameras in [32] for semantic scene analysis. The authors are

using an MSAC-based approach and surface information in a point’s local neighborhood

to detect table tops. This is done by assuming that a table top point has a surface normal

nearly parallel to the z-axis and that the local surface is smooth. MSAC is used to fit planar

surface models into the table point set. This approach yields the same limitations as [8].

Johnson et al. presents in [37] a shape-based object recognition system based on match-

ing Spin Images. Spin Images however require a high resolution image, and as such are

difficult to use in 3D point clouds obtained by a laser.

Marton et al. incorporate in [71] 3D laser scans and 2D vision data for object classifi-

cation. They use the Radius-based Surface Descriptor (RSD) on 3D data, extract the region

of interest into a camera image, and compute a 2D SURF vector for each patch. The final

classification is performed through a support vector machine. However, it remains unclear

how this work could be extended to perform well with objects typically encountered in

NAMO or NUMO domains, such as furniture, as these objects typically lack texture. In

addition, partial occlusions would be difficult to handle by this approach.

Steder et al. [89] demonstrated the detection of chairs and other objects in 3D point

clouds using point features from range images. The authors use euclidean distance in a

vector space spanned by Harris feature vectors to find candidates. GOODSAC is used to

find a model transformation and false positives are rejected based on a scoring function

using scaled range images. Steder et al. also presented the normal aligned radial features

(NARF) in [90]. Interest points are detected on stable surface areas with significant local

changes. A descriptor is then computed by overlaying a star pattern on the range image

generated by looking at the interest point along the estimated normal for this point. The

authors also describe the potential of matching the feature descriptors as an object recogni-

tion approach. However, we experimented with NARF and found that the descriptor is only

of limited use in object recognition due to a lack of local texture in range images and the

loss of valuable orientation information during normal alignment, e.g. a horizontal surface

17

becomes indistinguishable from a vertical one.

Mozos et al. [72] demonstrate a method of categorizing partially occluded objects from

object parts learned from segmented 3D models, which are first segmented based on the

object’s structure. The database of segmented parts is used to suggest categorizations from

a scene. The candidates are combined through Hough voting and verified through model

fitting. As this approach segments based on the object’s structure, the segmented parts do

not correspond exactly with occlusions caused in real scenes, which is a property of the

occluding object and the scene, not the occluded object. It remains unclear whether [72] is

sensitive to partial occlusion of the segmented parts.

Viewpoint Feature Histograms as presented by Rusu et al. [82] are encoding geometry

as well as viewpoint information into a descriptor. The authors demonstrate the effective-

ness of the descriptor on a dataset consisting of more than 60 unoccluded kitchenware

objects. We utilize Viewpoint Feature Histograms in this thesis and summarize the core

idea in Chapter 4.1.1.

18

CHAPTER III

NAMO WITH ACTION UNCERTAINTY

In this chapter we present the first decision theoretic planning framework for the Navi-

gation Among Movable Obstacles (NAMO) domain [92, 93, 104]. Future rescue robots

tasked with saving humans from disasters such as floods and earthquakes will be presented

with challenging manipulation decisions. In the face of displaced furniture and rubble,

traditional motion planning algorithms searching for a collision-free path from start to the

goal are not sufficient if all paths to the goal are blocked by obstacles. However, even given

a map of the environment, how does the robot decide which path to take, or which objects

to move?

As discussed in Section 1.2, there are two primary challenges in developing a practical

algorithm for such situations: the dimensionality of the state space and the inevitable un-

certainty in action outcome when interacting with physical systems. Prior work on NAMO

focused largely on handling the problem of dimensionality, and has not yet addressed the

underlying issue of uncertainty. In reality, robots have noisy actuators and sensors as well

as incomplete world models.

Leveraging ideas from decision theory, we have achieved a novel representation that

formally addresses action uncertainty in NAMO for scenarios that require the robot to move

a single object out of the way to connect two free-space regions. By casting the NAMO

problem as an abstract Markov Decision Process (MDP), we define the NAMO MDP. In

this chapter we present different methods for computing and solving the NAMO MDP,

and as such demonstrate the first NAMO planners that bias their decisions at plan time in

order to compute policies that are likely to succeed1. The following system considers I1UL

1This work appears in [59, 60].

19

problems (see Section 1.2).

3.1 Overview

This chapter focuses on action uncertainty and assumes full knowledge of the position of

the objects. The exact object properties, however, are assumed to be uncertain.

Our general strategy to handling action uncertainty in NAMO is to construct an MDP

that closely resembles the real problem but can be solved in linear time for typical envi-

ronments. The construction of this MDP builds on two insights of the domain. First, there

is a natural abstraction from the low-level state space into a small set of abstract states,

which we call free-space regions to indicate that the robot can move collision-free between

any two configurations within the region. Second, there are a small number of implied

abstract actions for maneuvering in this abstract state space: since each free-space region is

circumscribed by obstacles, we can define the abstract action “create an opening to neigh-

boring free-space” for each obstacle. Together these two ideas permit the construction of

an abstract MDP. Fig. 3 visualizes an example.

The abstract MDP representation by itself, however, is insufficient for creating tractable

planners: to solve the MDP, the abstract actions have to be grounded and evaluated in the

underlying non-abstract state and action spaces. Even fully solving these manipulation

subtasks alone is intractable. Our general approach to overcome this challenge will be to

approximate the transitions and rewards in the abstract MDP using Monte Carlo methods.

3.1.1 Discretized Environments

For discretized environments we embed the NAMO MDP in the MAX-Q formalism (Sec-

tion 3.3.1.1) and incorporate a complementary approach called Monte Carlo Tree Search

(MCTS, Section 3.3.1.3). The MAX-Q formalism enables us to construct the abstract

NAMO MDP in a theoretically well defined way, while MCTS allows us to obtain esti-

mates for the relevant parts of the subtask policies. MCTS is a technique for generating a

policy for one state at a time, with runtime that depends on the length of the plan rather

20

F1

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

F2

Couch

Love Seat

Table 2

F3
F4

Table 1

(a) free-space components

F1

F2

F4 GCouch

Love Seat

F3

Couch

Table 1

Love Seat Table 2

Table 1

(b) Resulting high-level MDP

Figure 3: Concept visualization. The presented framework defines an abstract MDP oper-
ating with abstract states representing free spaces and abstract actions reflecting the notion
of “creating an opening” by manipulating a specific obstacle. Consider the left most state
of the MDP in (b). If the robot is in this state, physically in free space 1, it has the possible
actions of manipulating the Love Seat or the Couch. This may grant the robot access to
free space 2 or 3, respectively, or fail, leaving the robot in free space 1.

than the number of states. MCTS is well-suited for the individual manipulation tasks for

two reasons. First of all, the NAMO MDP only requires a manipulation policy from a few

starting locations of the obstacle, which are known at plan-time. Second, since the ab-

straction divides the problem into smaller manipulation tasks, the overall policy length for

any subtask is quite small. These two properties allow us to substitute MCTS in place of

value-iteration in the MAX-Q formalism of the NAMO MDP, without compromising the

hierarchical optimality for the overall algorithm.

3.1.2 Continuous Environments

While the solution approach for discretized environments yields insight into the domain, it

is not always possible to discretize the continuous configuration and action spaces of a re-

alistic robotic system without sacrificing either runtime or resolution. We therefore present

a second method for obtaining and solving the NAMO MDP in Section 3.4 applicable to

continuous environments. The approach builds on a combination of modern sample-based

21

planners and Monte Carlo simulation to obtain estimates of the transition and reward func-

tion for the NAMO MDP. These estimates enable us to use standard dynamic programming

techniques to solve the NAMO MDP directly.

3.2 NAMO MDP

In this section we formally introduce MDP and define the NAMO MDP, which closely

resembles the real problem, but can be solved in realtime. Section 3.3 and Section 3.4

outline how to construct and solve it for the discretized and continuous environment case,

respectively.

3.2.1 Preliminaries

3.2.1.1 Markov Decision Processes

The Markov Decision Process (MDP) is a model for stochastic planning, and the foun-

dation of the presented framework. We define an MDP M = (S,A,T a
ss′,R

a
s ,γ) for a finite

set of states S, a finite set of actions A, a transition model T a
ss′ = P(s′|s,a) specifying the

probability of reaching state s′ by taking action a in state s, a reward model Ra
s = r(s,a)

specifying the immediate reward received when taking action a in state s, and the discount

factor 0≤ γ < 1.

The standard technique for solving MDPs is Value Iteration (VI) [81], which is used to

find the optimal policy π∗ : f (s)→ a which maps states to actions in order to maximize the

expected long-term reward, or value V (s) for all states s ∈ S. This value function is defined

according to the Bellman recursion:

V (s) = max
a

[Q(s,a)] =

max
a

[
R(s,a)+ γ ∑

s′∈S
P(s′|s,a)V (s′)

] (1)

VI is a dynamic programming solution to solving Eq. 1 which is polynomial in the number

of states (with fixed error ε).

22

3.2.2 NAMO MDP Definition

The proposed NAMO MDP is an abstraction of the NAMO domain, with navigation be-

tween free-space regions as the abstract task. Recall that an MDP is defined as M =

(S,A,T a
ss′,R

a
s ,γ), which leaves four properties to define (γ is a parameter of the problem

specification).

States and Actions: The fundamental state space in the NAMO problem is the set of

possible configurations CW of the robot and environment. We define the high level NAMO

MDP Mh as an abstraction of this low-level state space. The state space Sh is defined to

be the set of free-space regions implied by the starting obstacle configuration. The action

space Ah is the union of all possible manipulation sub-tasks for each region, where sub-task

ai jk
h = π

i jk
l means “open a path from state i to state j by manipulating obstacle k”. The set

of possible obstacles k for each starting state i are defined to be the bounding obstacles for

the corresponding free-space region.

Transitions and Rewards: Rh is defined according to the expected cost for creating a

specific opening in the underlying non-abstract state space. For example, in Fig. 2(a) the

policy π
i jk
l might be to move from sh = F1 to F2 by moving the table. The reward associated

with this policy then comes from the sum of discounted rewards obtained in the low-level

state-space while executing π
i jk
l . Section 3.4.3 considers various ways to define low-level

costs to obtain favorable behavior in natural domains.

The transition probabilities in Mh directly represent the expected outcome of executing

a subtask π
i jk
l in some state sh. The manipulation sub-task π

i jk
l terminates in state j if it

successfully opens a path from i to j, and terminates in state i otherwise2. Therefore, the

transition probability P(s′ = j|s = i,π i jk
l) is positive if and only if the free-spaces repre-

sented by si and s j are separated by the obstacle k. This suggests that transition model Th is

sparse: the probabilities are automatically zero for all states that do not share an obstacle.

2We do not consider unintended secondary openings.

23

For example, in Fig. 6(a), the transition probability for P(s′ = F6|s = F1,πF1F6O3) depends

on whether the robot can move O3, a green couch, out of the way. Section 3.4.3 discusses

how to parameterize obstacles in a way that reflects their true manipulation dynamics.

Note that this construction is an instance of what Dietterich refers to as a funnel ab-

straction [20]: the value of all possible robot configurations (positions) within the target

free-space get mapped to a single value: the value of that region. This is the basic abstrac-

tion from which the NAMO MDP obtains its savings. However, to solve the NAMO MDP,

the sub-task policies π
i jk
l have to be solved. Given the exponential size of the low-level

state space, this is prohibitively expensive to do exactly. The formalism is therefore, by

itself, not sufficient.

In the following section we outline the use of a complementary method for the discrete

case, provide a concrete implementation, and argue its usefulness. In Section 3.4 we ana-

lyze the continuous case, and provide an analogous solution. The following sections will

assume a 2D projection of the environment, however this is not an intrinsic restriction of

the NAMO MDP.

3.3 Discrete Environments

For a discretized environment, we embed the NAMO MDP in the MAX-Q framework and

make use of MCTS to obtain estimates of the subtask values. While substantially different,

MAX-Q and MCTS are both techniques developed for handling large state spaces in an

MDP. To our knowledge, these techniques have never been combined. Consequently they

will first be introduced independently, with the remainder of the section demonstrating how

they can be efficiently combined to solve the NAMO MDP.

24

3.3.1 Preliminaries

3.3.1.1 MAX-Q Value Function Decomposition

The MAX-Q framework is a technique within the reinforcement learning literature which

describes how a value function for an MDP may be decomposed according to a task hier-

archy. To understand this idea, consider a two-level hierarchy composed of a high-level

policy π0, defined over a set of subtask policies πi, i∈ {1,n}, which are in turn defined over

primitive actions. That is, π0 : f (s)→ πi, and πi : f (s)→ a.

The key insight behind MAX-Q is that the value functions for the subtask policies

Vπi(s) contain all the information needed to represent the value function of the parent policy

Vπ0(s). This is true because, according to the Bellman equation for SMDPs, the value of

executing subtask πi in state s is simply the sum of the (discounted) reward accumulated

by πi itself, and the future expected reward of whichever state πi terminates in:

Q(s,πi) = R(s,πi)+∑
s′,τ

P(s′,τ|s,πi)γ
τV (s′) (2)

where γτ ensures that the value of s′ is appropriately discounted according to the time

τ that πi took to terminate [5].

The first term in this expression, R(s,πi), is precisely the information encoded by Vπi(s):

R(s,πi) =Vπi(s) = Eπi

[
τ

∑
t=1

γ
tR(s,a)

]
(3)

Therefore, planning in the high-level task simply involves using the values of the subtasks

as immediate rewards for their execution in the high-level policy.

In addition to an analysis of compositional value functions, the full MAX-Q framework

also describes several model-free learning algorithms. However, we are instead interested

in model-based planning, in order to take advantage of the robot’s knowledge of the effects

of its actions. Our formalism therefore differs in some important details, but shares the

primary data structure (a hierarchical Q-function) and general format of “MAX-QQ” [20].

25

3.3.1.2 Types of optimality

So far, we have described a bottom-up representation of value functions, in which values

of subtasks are projected up to parent tasks. This approach provides space efficiency, as

well as the opportunity to divide and conquer: each subtask can be learned separately and

combined to learn the parent task. Dietterich [20] refers to the class of policies which can

be represented by such a model as recursively optimal, meaning all policies are optimal

given optimal solutions to their subtasks.

The drawback to this approach, which makes it inappropriate for the NAMO domain,

is that subtasks are learned without knowing their context in the overall plan. This is a

problem, for example, if moving two obstacles provides the same reward, but only one of

them opens a path to the goal. In general, tasks with sparse rewards tend to require either

additional shaping rewards for the subtasks, or a solution strategy that includes top-down

information [5].

We take the top-down approach by using the value of the target free-space region as a

reward for the manipulation policy that clears the appropriate obstacle. This is equivalent

to Dietterich’s solution for the model-free case, in which the completion functions (the

right-most term of Eq. 2) are treated as subtask terminal state rewards [20]. Policies that

are learned in this fashion are referred to as hierarchically optimal, meaning that the overall

policy is optimal given the constraints of the imposed hierarchy [20].

3.3.1.3 Monte Carlo Tree Search

MCTS was developed as a way of allowing near-optimal planning for MDPs with large

or infinite state spaces. The main idea is to relax the goal of computing a full policy, and

instead focus on computing the optimal policy for a single state – the state the agent is

in. In their original work on sparse sampling, Kearns et al. showed that it was possible to

obtain ε-optimal Q-value estimates for the current state from a set of sampled transitions,

and that the number of samples C per state was independent of |S| [43].

26

MCTS works by building a search tree from the current state, selecting actions accord-

ing to some search policy πs, and sampling transitions from the transition model T a
ss′ for

each action. This tree generates a set of sampled rewards, which can be backed up to the

root node to obtain a Q estimate according to:

Qd
SS′(s,a) = R(s,a)+ γ ∑

s′
P(s′|s,a)max

a′
Qd−1

SS′ (s
′,a′) (4)

Qd
SS′(s,a) refers to the expected value of taking action a in state s, and following the optimal

policy for d− 1 subsequent steps (so Q1
SS′(s,a) = R(s,a)). Equation 4 defines a simple

recursion for using forward simulation to select actions, despite uncertainty in the action

model.

3.3.1.4 The effective horizon

There is one additional result from the MCTS literature, regarding search depth, which we

exploit in our hierarchical NAMO framework. Kearns et al. proved in [43] that MCTS

could achieve ε-optimality with an O((|A|C)H) running time, where H is the effective hori-

zon of the problem. Based on the fact that rewards in the distant future have little effect

on the Q-values of the current state, this proof bounds H according to ε and Rmax (the

maximum possible reward):

H =

⌈
logγ

(
ε(1− γ)2

4Vmax

)⌉
,Vmax = Rmax/(1− γ) (5)

Equation 5 states that the effective horizon increases with the value of the maximum

possible reward that can be achieved. As shown below, this relation can be exploited in a

hierarchical setting to have the MCTS manipulation planners spend time in proportion to

the value of their target free-space region.

Note that MCTS alone, however, is inappropriate for the NAMO domain. Its applicabil-

ity is limited by the branching factor, task horizon, and sparsity of rewards in the domain.

We now embed the NAMO MDP in the MAX-Q framework, demonstrate how the NAMO

27

MDP can be constructed for discretized environments and show how it can be solved using

MCTS.

3.3.2 Discrete NAMO MDP Construction

The MAX-Q formalism provides a theoretically well defined technique to ground the ab-

stract NAMO MDP in the underlying non-abstract state space for discretized environments.

To achieve this, we introduce an additional lower-level MDP Ml .

Ml operates on the raw configuration space, and is used to model the manipulation

actions of Mh. The state space Sl is the set of possible configurations of the robot and

environment and the action set Al is the set of primitive action for manipulating obstacles

on the map. Similarly, the transition model Tl encodes the domain uncertainty in terms of

action primitive execution uncertainty. The reward function of the NAMO MDP and of

Ml are now defined in accordance to their hierarchical relationship. Recall that the reward

function Rh reflects the reward of executing an action ai jk
h = π

i jk
l in the abstract NAMO

MDP. The MAX-Q formalism enables us to now ground Rh by setting it to the expected

reward for executing subtask π
i jk
l in Ml . The reward function for Ml in turn sets the terminal

reward for executing π
i jk
l as the value of its final state in Mh. Note that this is the context-

sensitivity requirement described in Section 3.3.1.2. This should be intuitive, because the

high-level policy needs to see the actual outcome of executing each possible subtask, and

each subtask needs to see its context in the high-level policy in order to know how important

different obstacles are. We now provide details for obtaining the NAMO MDP before we

show how it can be solved by using MCTS to obtain estimates for the subtasks.

3.3.2.1 State and Action Space

In order to construct the NAMO MDP, the system needs only to determine the high level

state space Sh and action space Ah, as the low level state space Sl and action space Al are

28

given by the domain specification3. To compute Sh and Ah we need to find the free-space

regions and disconnecting obstacles. In our implementation we identify the free-space

regions by performing seeded wavefront expansions on CW to determine disjoint regions.

These disjoint regions yield Sh. During this operation we also save the list of obstacles

bounding each free-space region into an adjacency list Lr. These represent the possible

manipulation targets for that state, the union of which yields Ah.

We now detail on how we encode the domain uncertainty in our implementation.

3.3.2.2 Model Representation

The low level transition model Tl encodes the uncertainty in the NAMO domain that arises

from manipulation actions. This implies a displacement model for each object, which de-

pends on the action a being executed, and the target obstacle o:

δx,δy∼ P(δx,δy|a,o) (6)

3.3.3 Solving the NAMO MDP

Section 3.3.2 showed how to use MAX-Q to ground the NAMO MDP as a two-level hier-

archy with components defined in terms of each other: the rewards for Ml were obtained

from the values of states in Mh, and the values of states in Mh were defined based on out-

comes of subtasks in Ml . With this formulation, values in both Ml and Mh reflect the true

transition probabilities and rewards for manipulation actions.

This suggests an iterative scheme in which we alternate between updates to the high-

level policy π0 given the current values for subtasks V
π

i jk
l

, and updates to the individual

subtasks π
i jk
l given the values in Vπ0 . However, computing these values requires actually

solving the associated MDPs, which was shown to be intractable for Ml in Section 1.2,

since Sl = CW , the set of possible configurations of the robot and environment.

3For simplicity, we used axis-aligned manipulations as action primitives in our system, but in practice
these would typically be replaced with a more appropriate choice for physical systems, such as those intro-
duced in [92].

29

Fortunately, sparse-sampling planners provide a way of obtaining approximate solu-

tions to Ml , and make assumptions which are compatible with our hierarchical approach for

discretized environments (Section 3.3.1.3). Therefore, our actual algorithm performs the

same alternating policy-iteration scheme described above, but with the substitution of an

MCTS planner in place of value-iteration for the manipulation MDPs. These MCTS plan-

ners compute Q-values in CW ×Al , and sample transitions from the displacement model

defined in Eq. 6. Sampling terminates when an opening is achieved or the maximum search

depth, defined by the horizon H (Eq. 5), is reached. For a general MCTS planner, H is de-

fined as a function of Rmax. In combination with a hierarchical policy iteration, however,

it can be used to explicitly force the computation effort for each subtask planner to scale

in proportion to its estimated utility. This is achieved using a dynamic horizon. Dynamic

horizon recomputes the H-value, Eq. 5, of each MCTS planner separately based on the

value of the target state in Sh. The overall effect of this operation is that πi does not waste

time sampling actions past the point where rewards can significantly affect the Q-value of

the subtask. Algorithm 1 provides pseudocode for constructing and solving the NAMO

MDP in discretized environments.

The following section will argue the usefulness of this complete framework.

3.3.4 Evaluation

This section provides a theoretical proof and empirical data that our algorithm for solving

the NAMO MDP in discretized environments has a run-time which is linear in the number

of obstacles, for non-degenerate environments.

3.3.4.1 Theoretical Analysis

The following analysis is based on relating the sparsity of the free-space transition matrix

Th to the adjacency graph GA over free-space regions. The sparsity of Th directly controls

the complexity of value iteration.

30

Algorithm 1: Proposed framework for discretized environments.
Input: O: obstacles, P(δx,δy|a1

l ,o1) . . .P(δx,δy|ap
l ,om): displacement models,

Cgoal: goal configuration
Output: πh: high level policy, Πl: dictionary of low level policies

1 F ← GET FREESPACES(O);// wavefront
2 Mh(Sh,Ah,Th,Rh)← (F,{}, [0], [0]);
3 V ← /0; πh← /0; Πl ← /0;
// determine high level MDP definition:

4 foreach si ∈ Sh do
5 if si contains Cgoal then
6 ∀a R[(si,a)]← utility of reaching the goal;

7 foreach ok adjacent to si do
8 foreach s j ∈ Sh do
9 if ok adjacent to s j then

10 Ah← Ah∪{ai jk
h } ;

11 Th[si
h,a

i jk
h ,s j

h]← 0.5;

// run value iteration:
12 while error not within ε do
13 foreach si ∈ Sh do
14 v← 0;
15 foreach ai jk

h ∈ Ah do
16 h← dlogγ(

(ε(1−γ)2)/4
s j

h.v
e);

17 (qk,π
i jk
l)←MCTS(ai jk

h ,h, P(δx,δy|a1
l ,ok), . . . ,P(δx,δy|ap

l ,ok));
18 if qk > v then
19 v← qk;
20 πh(si

h)← ai jk
h ; Πl(ok)← π

i jk
l ;

21 V (si
h)← v;

22 return πh,Πl;

31

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AA

F1 F2

F3

F4
F5

F5

(a) Environment

F1

F3

F2

F4
F5

(b) Resulting adjacency graph GA.

Figure 4: Example of a non-planar GA.

Definition 1. The adjacency graph GA = (V,E) is defined to have vertices vi ∈ V which

uniquely represent free-space regions Fi, and edges e(i, j) ∈ E connecting adjacent free-

space regions. That is, e(i, j) ∈ E ⇔ ad jacent(Fi,Fj), with ad jacent(Fi,Fj) = true iff Fi

and Fj are disconnected through a single obstacle.

Figures 4 and 6 show examples of workspaces and their associated adjacency graphs. A

graph G is planar if it can be drawn on the plane with no edges crossing except at common

vertices. Kurarowski’s theorem states that a graph is planar if and only if it does not contain

a subgraph that is a subdivision of K5 or K3,3, where K5 denotes a complete graph with five

vertices, and K3,3 denotes a complete bipartite graph on six vertices [100]. Note that GA in

typical environments will fulfill this definition. Contrary examples include:

(a) A set of five free-spaces that are all adjacent to each other, separated by only a single

obstacle.

(b) A set of three free-spaces that are all adjacent to a disjoint set of three free-spaces, but

not adjacent to each other.

Fig. 4 shows one of these degenerate cases.

Further, recall that by definition of Th, the only next-states with non-zero transition

probability from state sh are states representing free-spaces adjacent to sh or sh itself (failure

32

case). This gives rise to the following lemma:

Lemma 1. Th(s, ·, ·) has on average a constant number of next-states s′ with non-zero

probability if GA is simple planar.

Proof. First, it is trivially true that on average, Th(s, ·, ·) contains a constant number of

self-transitions: |Sh|
|Sh| = 1. The remaining non-zero entries in Th are a direct mapping of

GA =(V,E). This suggests that the average number of next-states with non-zero probability

in Th is equal to the average degree of GA. Recall that in a planar-graph there exists a

constraint relating the number of edges e to the number of vertices v (see Appendix A):

e≤ 3v−6 (7)

Eq. 7 directly implies a bound on the average degree davg of GA. Let di denote the

degree of vertex vi, then:

davg =
∑

v
i=1 di

v
=

2e
v
≤ 2(3v−6)

v
= 6− 12

v
< 6 (8)

Consequently, Th(s, ·, ·) has on average at most 6 next-states with non-zero probability.

Importantly this bound is over all possible actions for a given state (recall that there are

only two possible outcomes for single action). If m is the number of actions available in

sh and l is the number of possible outcomes per action, then we have ml ≤ 6. Finally, the

expected total number of non-zero entries kT+
h

is:

kT+
h

= E

[
n

∑
i=1

m

∑
j=1

n

∑
k=1

P
(
Th(si,a j,sk)> 0

)]

=
n

∑
i=1

davg

≤ 6n

2

Lemma 2. The run-time of the proposed framework for discretized environments is linear

in the number of obstacles |O| if the adjacency graph GA is simple planar.

33

Proof. First, consider Mh. The number of states n = |Sh| is linear in |O|. Value itera-

tion is performed over Mh. Since the value-error ε is a free parameter, the complexity of

value iteration is typically separated into the cost-per-iteration and the expected number of

iterations.

I. The number of iterations required by VI to achieve an ε-error bound is

m =

⌈
log
(

2Rmax

ε(1− γ)

)
/log(1− γ)

⌉
(9)

which is independent of n [81].

II. In the worst case, the inner loop of value iteration is quadratic in n, due to the need

to sum over full rows of Th while computing the expectation over next-states in each

Bellman update [38].

To see II, consider the inner loop update of the standard VI implementation:

∀s : V (s)←max
a

R(s,a)+ γ ∑
s′∈S

Th(s,a,s′)V (s′) (10)

However, since Th is sparse for simple planar GA (Lemma 1), VI can ignore all but the

positive entries:

∀s : V (s)← max
a∈A+

R(s,a)+ γ ∑
s′∈S+

Th(s,a,s′)V (s′) (11)

where A+ denotes the available actions for state s and S+ denotes the states with positive

transition probability S+ : Th(s,a, ·)> 0. Following Lemma 1 for simple planar GA, we have

that |A+||S+| is on average constant. Thus the expected per-iteration cost of value iteration

thus reduces to 6nca, where ca represents the expected cost due to action evaluations in the

base MDP, considered next.

Recall that in Mh, the actions ah actually represent manipulation policies πl in a lower-

level MDP defined over the raw configuration space of the environment. According to the

MAX-Q hierarchical value decomposition described in Section 3.3.1.1, the Bellman update

34

Eq. 10 expands to:

V (sh) = max
πl

R(sh,πl)+ γ ∑
s′h

Th(sh,πl,s′h)V (s′h)

= max
πl

Vπl(sh)+ ∑
s′h,τ

γ
τP(s′h,τ|sh,πl)V (s′h)

where subscripts h and l are included to make explicit the level in the hierarchy at which

each quantity is defined, and πl ∈ A(sh) denotes the set of manipulation actions available

in high-level state sh.

Next we require solutions for the quantities depending simultaneously on both sl and sh,

namely Vπl(sh) and P(s′h,τ|sh,πl), that are independent of n. As shown in Section 3.3.1.3,

we can approximate the value of a specific low-level state sl using MCTS, yielding a value

Vπl(sl). Given an initiation set Iπl ⊆ Sl for each subtask policy, we can obtain values for

executing subtask policy πl in the abstract state sh by averaging:

Vπl(sh)≈
1
k

k

∑
i=1

Vπl(sl ∼ Iπl) (12)

We now make use of the NAMO funnel abstraction (Section 3.2.2) to obtain the high-

level transition probabilities P(s′h,τ|sh,πl) for a low-level policy πl . Recall that for a partic-

ular subtask policy πl the only two outcome possibilities in Sh are that the robot reaches the

target state st
h or remains in the current state sc

h. That is, P(s′h,τ|sh,πl) = 0 ∀s′h 6∈ {st
h,s

c
h}.

Next recall from Section 3.3.3 that the horizon Hl for each subtask policy can be bounded

according to the current value of the target free-space region V (st
h), which guarantees that

MCTS terminates. Let s∗l be a terminal state for policy πl obtained from the terminal nodes

of an MCTS search tree evaluated to a depth Hl . Using the mapping φ(sl)→ sh defined

by the funnel-abstraction, transition probabilities in Sh can be approximated by averaging

over the terminal states in the MCTS tree:

P(s′h,τ|sh,πl)≈
1
|S∗l |

∑
s∗l ∈S∗l

I(φ(s∗l) = st
h) (13)

35

Together Eq. 12 and Eq. 13 provide approximate solutions to the quantities required for

performing value iteration in the high-level MDP (Eq. 12). Furthermore, both are obtained

from an MCTS tree evaluated at a finite set of initial configurations, which are independent

of the total number of obstacles. Thus ca is a constant, depending on Rmax, γ , and the

number of roll-outs k, but not the number of obstacles n. This yields an overall complexity

of O(n) = O(|O|) 2

Convergence The standard convergence proof for VI assumes that the reward and transi-

tion distributions for the target MDP are stationary [81]. However, the complexity result in

Lemma 2 required an approximation of the reward and transition probabilities for the high-

level state space based on estimated outcomes in the low-level state-space. Thus we must

also show that Eq. 12 and Eq. 13 are consistent estimators for their respective distributions

Rh and Th. Both estimators are ordinary Monte Carlo methods and are consistent by the

law of large numbers. First consider the estimator for Rh:

R̂h =Vπl(sh) =
1
k

k

∑
i=1

Vπl(sl ∼ Iπl)→ N(Rh,
1
k

Var[Rh]) (14)

As long as Vπl(sl) provides i.i.d. samples of the true reward function Rh, then R̂h→ Rh as

k→ ∞. By construction, Rh is defined simply as the reward accumulated during a subtask

execution, which implies that Vπl(sl)
iid∼ Rh. A similar argument applies to T̂h, which is also

grounded in Sl and fully defines the transition dynamics of the abstract MDP, and therefore

also provides i.i.d samples of Th. Consequently both provide consistent estimators and VI

converges.

3.3.4.2 Empirical Analysis

To evaluate the proposed framework for discretized environments, we have implemented it

in simulation.

36

0

5

10

15

20

25

30

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s)

Number Obstacles

Pre-Computations Policy Computation

Figure 5: Obtained average computation times as a function of the number of obstacles.
The graph suggest linear complexity in the number of obstacles.

Runtime We ran the framework on 1000 randomly generated NAMO environments. The

size of the map was sampled uniformly to be between 250x250 and 400x400 grid cells.

The number of obstacles for each map was uniformly sampled to be between 7 and 24,

each obstacle in turn having random position, shape (rectangular or ellipsoid) and size

(minimum 15x15 cells, maximum 65x65 cells occupation). Motion models P(δx,δy|al,c)

were represented using histogram discretized Gaussians with their mean and standard de-

viation randomly varying for different objects. The generated maps had an average of more

than 70% cells occupied.

Fig. 5 summarizes the computation time as a function of the number of obstacles. Pre-

computations include the generation of the configuration space representation and determi-

nation of free-space regions. While we show computation time as a function of number of

obstacles, note that there are many other contributing factors, such as the particular con-

figuration and number of free-spaces, the complexity of planning to create openings etc.

Fig. 5 averages over these factors, and consequently resulted in a high standard deviation

37

(a) Obtained solution. The low level policies are visual-
ized as a sparse vector field indicating the locally domi-
nant directions.

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

F1

F2

F10

F11

F8

F6 F9

F4

F3

F5

F7

(b) Adjacency graph.

Figure 6: Example environment. V is the states value and A denotes the action to execute.
E.g. the free-space containing the robot has a value of 17.03 and the best action to execute is
to manipulate obstacle O3 to gain access to free-space F6. Low level policies are visualized
as a vector field. Static obstacles visualized in gray.

of up to 11.1s.

Example Fig. 6 shows an example environment and the solution obtained by our pro-

posed framework. The high level policy is indicated in text, and the low level policy is

visualized as a vector field for each obstacle. Only low level policies corresponding to

obstacles that are chosen by the high level policy are visualized to preserve a clear view.

Comparison 4 We now weigh the benefits of our method to common heuristic approaches

for object selection. Similar to [92, 93, 95] we implemented a constraint relaxed planner

operating on Cr. The planner performs an A* search over the discretized representation

of Cr but considers collisions with movable obstacles as soft constraints rather than hard

constraints. A heuristic cost penalty is applied for each initial intersection with a movable

4This set of experiments were performed on a different machine.

38

0

20

40

60

80

100

120

140

160

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ex
p

e
ct

e
d

 R
e

w
ar

d

Number of Obstacles

NAMO MDP Constrained Relaxed Planner

Figure 7: Average expected rewards for 300 runs.

obstacle. The A* search returns a motion path for the robot as well as a list of obstacles that

have to be manipulated to clear the path. Assuming a deterministic displacement model for

each action and object (we used the mode of Eq. 6), the planner then iterates through this

list of obstacles and verifies that they can be manipulated to clear the path. If this fails for

a specific obstacle, the planner marks the obstacle as a hard constraint and re-computes.

Analogous to previous NAMO planners, e.g. [92, 93, 95], this constraint relaxed plan-

ner does not consider the uncertainty the robot may have about the displacement model of

a specific obstacle. The plans obtained by the constraint relaxed planner may consequently

differ to the one obtained by our method. To evaluate this difference, we compared the

expected rewards for the different plans. The expected reward for our method is given by

the value of the NAMO-MDP state containing the initial robot configuration after conver-

gence of value iteration. We computed the expected reward for the plan obtained by the

constraint relaxed planner by iterating through the list of obstacles to manipulate in reverse

order, determining the free-spaces the manipulation is effectively connecting and evaluat-

ing this action using a call to the MCTS planner. This equates to an interpretation of the

solution obtained by the constraint relaxed planner as a partial policy in the NAMO MDP.

39

Consequently, the expected reward is again given by the value of the NAMO-MDP state

containing the initial robot configuration. Fig. 7 summarizes the results obtained for 300

randomly generated environments (same generation method as described above). While

in principle it is possible that the constraint relaxed planner chooses the same obstacles to

manipulate as the proposed method, we see that on average our method substantially out-

performs the constraint relaxed planner for all number of obstacles. The average expected

reward over all 300 runs was 112.70 for the proposed method and 62.61 for the constraint

relaxed planner. The average runtime was 43.41s for the proposed method and 10.62s for

the constraint relaxed planner.

We observe that while the runtime of our method is higher, the expected reward is also

substantially higher. This indicates that our method leads the robot to choose obstacles to

manipulate that are more likely to create the desired free-space connectivity. The expected

execution time, which typically dominates the computation times for both methods, as

well as effort by the robot is consequently lower for the proposed method. In addition the

constraint relaxed planning system cannot incorporate more information if they become

available. The planner is deterministic in the objects it chooses for a given start and goal

configuration, independent of the level of uncertainty the planner has about the objects.

Giving the constraint relaxed planner more time or information will not change the selected

objects.

The empirical results are consistent with the theoretical analysis of our algorithm, and

support applicability of the approach to discretized environments. However, it may not

always be possible to discretize a realistic robotic system without sacrificing resolution

or runtime outside a reasonable scale. The following section will therefore present an

alternative method for constructing and solving the NAMO MDP applicable to continuous

environments.

40

3.4 Continuous Environments

Although the hierarchical MDP formulation in Section 3.3 is well-matched to the NAMO

task, several of the techniques presented in Section 3.3.3 are not applicable for continuous

state and action (control) spaces.

Most significantly, the subtasks can no longer be modeled as a MDP because their

state and action spaces are no longer finite: on a constraint rigid body, every grasp point

and force vector constitutes a unique action, and produces a real-valued displacement to

arbitrary precision. As a consequence, a Q-function is no longer an appropriate policy

representation, and seeded-wavefront can no longer be used to identify free-space regions.

While discretization is possible in principle, our focus will be on methods that are com-

patible with the feedback control stacks and sampling-based planners used in practice on

state-of-the-art robots.

The central challenge is to model uncertainty in object manipulation in a way that re-

flects the underlying dynamics of the robot-obstacle system. To do this we introduce object

physical properties, such as mass and friction, to parameterize their rigid-body dynamics.

These properties are not observable to the robot, but can be inferred from interactions in

the environment. Inference of unobservable dynamic parameters is an important topic in

its own right, but is beyond the scope of this work and we refer the interested reader to [84]

for a detailed discussion about inference of dynamic parameters. However, the core obser-

vation is that from the robot’s standpoint, these dynamics remain stochastic, arising from

the interaction between a given controller and robot’s beliefs about the physical properties

of the target object.

In this section we therefore present a second method for constructing and solving the

NAMO MDP building on a realistic manipulation stack. The goal is to achieve decision-

theoretic planning in the NAMO task for dynamically situated robots. Here the term “dy-

namically situated” refers to both the existence of continuous state and control spaces,

as well as the customary stack of closed-loop controllers and planners which have been

41

developed to accommodate these situations. To accomplish this we represent transition

uncertainty close to its source as object property uncertainty and perform Monte Carlo

Simulation over the resulting object property distributions to obtain estimates for Rh and

Th.

After formally defining Monte Carlo simulation, we first describe how we can obtain

the NAMO MDP abstraction in continuous environments before introducing the domain

uncertainty representation in detail. Thereafter, we demonstrate and evaluate a concrete

implementation.

3.4.1 Preliminaries

3.4.1.1 Monte Carlo Simulation

Monte Carlo simulation is a statistical tool relying on the law of large numbers to nu-

merically solve problems that are difficult or impossible to solve analytically. To obtain

an output measure for a function f = H(X) with dependent parameters X governed by a

probability distribution P(X), Monte Carlo simulation procedes by repeatedly sampling a

specific vector X ∼ P(X) and obtaining the output value f = H(X). Statistical inference is

then performed on the obtained output values [54]. This is similar to, though more general

than Monte Carlo Tree Search, and can be used to approximate object manipulation models

with arbitrary dynamics H and properties x.

3.4.2 Continuous NAMO MDP Construction

3.4.2.1 State and Action Space

The NAMO MDP relies on representing the continuous configuration space as an abstract

MDP. Consequently, it is necessary to identify the independent free-space regions and their

associated actions in the continuous robot configuration space. For specific environments

specialized methods can be utilized to accomplish this. For example, in a 2D or 3D config-

uration space with polygonal objects a visibility graph planner [13, 70] could be utilized to

deterministically determine the disconnected regions. Alternatively, for low dimensional

42

spaces it may be possible to discretize the space and re-use the wavefront approach de-

scribed in Section 3.3.2.1. However, as shown in [52], producing reasonable behavior on

real robots would require far too many states. We therefore adopt a sampling approach

that has been proven in the planning literature which involves building a roadmap over the

state space. A roadmap is a graph representing the collision-free connectivity of the state

space [52]. The main insight behind this approach is that the resulting roadmap will con-

tain disconnected sub-graphs for precisely the free-space regions that we are attempting to

identify.

3.4.2.2 PRM State Clustering

The probabilistic roadmap (PRM) [42] algorithm samples random configurations within the

configuration space and connects nearby collision-free samples if there is a collision-free

path between them. This algorithm can be viewed as an approximation of the wavefront

method by considering only a set of randomly sampled states. Constructing a PRM in

a disconnected configuration space will consequently return multiple disconnected sub-

graphs. Each of these sub-graphs now encodes a separate free space region and together

they yield the high level state set Sh.

Having determined Sh, the action set Ah needs to be determined. This is done by finding

the obstacles that disconnect free-space regions. We accomplish this with a slight extension

to the PRM construction phase: Instead of only considering random state-space samples

during the construction of the PRM, we also use samples of valid grasping poses for objects.

If, upon termination of the PRM construction phase, sampled grasping poses of the same

obstacle belong to different sub-graphs, the obstacle is considered disconnecting the free-

spaces and an according action is added to Ah.

43

3.4.2.3 Model Representation

To generalize NAMO to continuous domains we require a dynamics model that is both

general-purpose, and scalable to the configuration spaces typically found in natural envi-

ronments. The encoding of domain uncertainty using a displacement model for objects as

in Section 3.3.2.2 is indeed general-purpose, but only applies to open-loop action primi-

tives. To support closed-loop controllers and state-space planners as are typically used in

robotics, we require a model of the form f (X ,U)→ Y , where X and Y represent the pose

and velocity of the target obstacle, and U the instantaneous manipulation control vector.

Importantly, f must be compact, such that it can model the dynamics of an entire NAMO

task with a number of parameters that can still reasonably be specified by a designer or

learned from data.

3.4.2.4 Compact Stochastic Dynamics

Our approach is to represent manipulation uncertainty “close to its source” as uncertainty

over the parameters of the underlying physical model of the robot-object system. We cap-

ture this uncertainty using distributions over the relevant physical quantities, such as masses

and friction coefficients, and obtain transitions by sampling outcomes of a physical simu-

lation defined over those random variables.

To motivate this approach, as opposed to classical regression-based alternatives, con-

sider the problem of modeling a single table of unknown mass which may or may not

have wheels. Assume the robot can apply controlled forces and torques through an effector

equipped with a 3-axis force-torque sensor. We wish to model this table’s 2D dynamics as

a function of the applied forces:

f (x,y,θ , ẋ, ẏ, θ̇ , fx, fy,τ)→ (x,y,θ , ẋ, ẏ, θ̇) (15)

If the table is assumed to be a simple rigid-body, then Y is linear in X and U , and f can

be compactly estimated by linear-regression over |X |+ |U |+1 = 11 parameters. However,

44

due to the possibility of wheels, the table is potentially non-holonomic, implying that f is

potentially non-linear. The two popular regression models which are capable of handling

arbitrary non-linear f are Locally-Weighted Regression [4] and Gaussian Processes [79].

However, both of these methods are non-parametric, meaning that the number of required

parameters (data points) grows with the complexity of f . Fully modeling a wheeled-table,

for example, would require storing a set of {X ,U,Y} for all possible control vectors relative

to the table’s state – a potentially vast number of data points. Furthermore, these points

must be obtained empirically or defined by considering the raw outcome space, which

is significantly more cumbersome than specifying a small number of intrinsic physical

quantities such as table mass and wheel orientation.

As a result, these non-parametric methods are widely applied to apprenticeship set-

tings where sufficient data is available. However, they are not appropriate choices for

NAMO tasks containing a large number of possible objects. This is particularly true be-

cause NAMO planning typically involves interacting with only a subset of the possible

objects, using a subset of the possible behaviors, neither of which are known a priori.

3.4.2.5 Parameterizing NAMO Physical Dynamics

For the NAMO task we require a physics model which can capture the space of behaviors

for large home and office objects, such as tables and chairs. We start by defining Ω as

the minimal set of quantities governing object dynamics on a plane, and include mass and

one or more anisotropic (wheel) constraints. Importantly, Ω should be viewed as a set of

auxiliary variables for predicting transition dynamics, and not a state parameter itself.

To understand this as a stochastic transition model, consider the special case of zero-

uncertainty where P(Ω) = δΩ, with δΩ denoting the dirac delta function on a particular

assignment to Ω. Here the model reduces to a deterministic environment governed by

rigid body physics and the chosen controllers. Consequently, the transition model reduces

to 0 or 1 and the reward function becomes a deterministic function of the physical work

45

required by the robot to manipulate an object to create an opening. For the general case

given an arbitrary distribution over Ω (e.g. multivariate-normal), we may generate samples

of the transition dynamics in the NAMO MDP by sampling object parameters from P(Ω).

Repeating this process and performing statistical inference over the obtained transition and

reward models represents a stochastic simulation with outputs that reflect the expected

interaction between the possible physical properties and the robot.

Our particular choice of parameters aims to satisfy the LP1 class of NAMO prob-

lems [92], where regions are separated by individual, disconnected obstacles. We therefore

require parameters to describe rigid-body dynamics for non-coupled objects, such as carts,

chairs, tables with lockable wheels and casters. The central aspect governing the dynamics

of this class of objects is contact with the ground. This includes isotropic friction forces,

such as table feet, and more generally anisotropic friction forces to accommodate wheels.

Other types of constraints, such as prismatic and revolute joints, serve to couple multiple

bodies, and remain a challenge for future work.

In 2D, an anisotropic friction joint between the ground and a point on the target object

can be represented five new parameters per joint: {x,y,θ ,µx,µy}, corresponding to 2D pose

and orthogonal friction coefficients. For typical wheels, one of these friction coefficients is

close to zero, and the other close to one. Furthermore, two joints are sufficient to describe

any wheeled body in 2D, because any two joints at a given orientation can be expressed

as a single joint along their common axis, and more than two joints at unique orientations

serve to fully constrain the system (we do not consider what happens when constraints are

violated). This means that the transition dynamics of arbitrary disconnected obstacles in

2D, including shopping carts, wheelchairs, and tables with lockable wheels, can be fully

specified with 1+ 5× 2 = 11 parameters. The first parameter is reserved for mass, which

affects friction forces as well as the overall effort of manipulation.

46

Table 1: Distribution parameters for each physical parameter type

Distribution

m log Normal(µ,σ2)

µx,µy truncated Normal(µ,σ2,a,b)

x,y truncated Normal(µ,σ2,a,b)

θ von Mises(µ,κ)

Of these, mass m can take values in R+, friction coefficients µx,µy can take values in

[0,1], position parameters x,y can take values within the bounds of the object [a,b], and ori-

entation can take values in [−π,π]. To represent the robot’s beliefs over these parameters,

we assign the distributions summarized in Table 1.

All of the distributions we used for object properties were in the Normal family. Our

specific choice for the position, friction, and orientation parameters was necessary to con-

strain their support to legal values. For mass we required a distribution over R+, and chose

a log Normal rather than a truncated Normal to reduce the number of parameters.

The full object property model is an assignment to these 2+2×(4+4+2) = 22 param-

eters for each object. Note that the solution approach merely requires a generative model

for the relevant physical quantities. The distributions and or parametrizations are likely

to be adapted for the system at hand. Object categories can be exploited to reduce redun-

dancy and speed the of parameter inference. While we have not yet taken advantage of this

property, it is an exciting topic for future work.

3.4.3 Solving the NAMO MDP

Using the object property model, it is possible to solve the NAMO MDP for dynamically

situated robots. While the solution method for discretized environments in Section 3.3

obtained estimates for these quantities by introducing and sampling a low-level MDP, our

solution method for continuous environments builds on Monte Carlo simulation to obtain

47

estimates of Th and Rh directly. The trade-off is that direct simulation discards all interme-

diate results, and maintains no policy information for visited states.

To see how estimates of Th and Rh can be obtained from Monte Carlo simulation, let T a
ss′

and Ra
s represent the specific instance of the transition and reward function for action a and

states s and s′. To obtain value estimates, we perform the following evaluation k times5:

1. Sample world w with object parameters ωi ∼ P(Ωi) for all objects.

2. Call a manipulation planner on w trying to create an opening between the free-spaces

represented by s and s′ using the object represented by a and save the result.

T a
ss′ is now set to be the ratio of manipulation plans that succeeded in creating an open-

ing.

T a
ss′ = P(s′ = target|s,a) = |succ|

k
(16)

Ra
s is set to:

Ra
s =

1
|succ| ∑

s∈succ
αF(s)+βτ(s)+ γT (s) (17)

where succ denotes the set of successful manipulation plans, F(·),τ(·),T (·) functions

returning the force, torque and time required by a specific plan respectably. The constants

α,β ,γ represent weights. Given these estimates, Mh can be solved using standard value

iteration. Algorithm 2 summaries the solution approach and the following section demon-

strates a concrete example implementation.

3.4.4 Example Implementation

While the discussion so far has presented the general approach, we now present a specific

example implementation. The main implementation challenge lies with the Monte Carlo

simulation.

5k may be a fixed value or a function of the degree of uncertainty

48

Algorithm 2: Proposed framework for dynamically situated robots.
Input: W : world, k: number samples for Monte Carlo simulation, cg: goal

1 while robot not at cg do
// determine MDP:

2 MDP← GET STATES AND ACTIONS(W); // perform value
iteration:

3 while something changes do
4 for s ∈ S do
5 if s contains goal then
6 V (s)←goal reward;
7 continue;

8 V (s)← 0;
9 for a ∈ getActions(s) do

10 s′← getTargetState(a);
11 trials← [];
12 for i← 0 to k do
13 w∼ P(Ω); trials[i]←CONNECT FS(s,s′,a);

14 succ←{succesfull plans ∈ trials};
15 T (s,a,s′)← |succ|

k ;
16 R(s,a)← 1

|succ|∑s∈succ αF(s)+βτ(s)+ γT (s);
17 qa← R(s,a)+ γ ∑s′∈ST (s,a,s′)V (s′);
18 if qa >V (s) then
19 V (s)← qa;
20 π(s)← a;

// perform actions:
21 sr← getState(robot.con f ig);
22 robot.navigateTo(π(sr).graspPos);
23 robot.executeManip(π(sr));
24 updateBelie f (); // see [84] for details

49

To obtain estimates of T a
ss′ and Ra

s , it has to be determined if, and at what cost, an open-

ing can be created given a sample of P(Ω). To allow planning with arbitrary constraints

on the obstacles and robot, we implemented a kinodynamic-RRT (RRTKD) planner [53].

RRTKD operates in the phase space of the robot – configuration and velocity components

for each degree of freedom – and searches by sampling its control space. The RRTKD search

terminates if either a number of maximum nodes m have been reached or an opening has

been created. Typically m should be small because the creation of an opening is usually a

very local manipulation. Also, note that m reflects the computational resources spend on

trying to determine the specific opening between the free-spaces represented by s and s′ us-

ing the object associated with a. Similar to the dynamic horizon introduced for the discrete

environment case in Section 3.3.3 it can be set dynamically to reflect the value of the target

free-space. This allows us to take the value of creating such an opening into account and

help to focus the computation resources to specific, important openings.

Recall that the NAMO task does not specify specific target locations for obstacles, but

simply the creation of a free path. Consequently, the goal test function of the RRTKD has

to verify the existence of such an opening. Unfortunately, the verification of an opening

is a non-trivial task in itself, and is therefore only performed every t node expansions in

our implementation. We perform opening verification by checking the existence of a path

between the free-spaces using a low-dimensional RRT (RRTFP) [50] with a low maximum

nodes threshold that only considers the robot’s footprint. The start configuration for RRTFP

is given by the robot’s configuration in the node in RRTKD that triggered the opening ver-

ification while the goal configuration is set to be a random configuration within the goal

free-space. If a path is found, an opening is reported. The astute reader will observe that

openings might also be gleaned from the roadmap graphs used to determine the free-space

regions. However, this is only possible if the graphs are maintained in synchrony with the

manipulation planner, which we determined to be too expensive to use in practice.

Setting T a
ss′ and Ra

s according to Eq. 16 and 17, the NAMO MDP can now be solved

50

using value iteration. The following section presents an evaluation of this approach and

example executions.

3.4.5 Evaluation

We provide a general complexity analysis of the proposed framework, show obtained run-

times, and present example executions of our dynamic simulation. Recall that the difficulty

of the NAMO domain is high-dimensionality caused by including obstacles in the state

representation. We show that for the same conditions as in Section 3.3.4.1 (non-degenerate

environments), we retain the linear dependence on the objects from the discrete case.

3.4.5.1 Theoretical Analysis

The proposed framework for continuous environments executes value iteration on the free-

space MDP. Within each loop of value iteration we perform Monte Carlo simulation to

evaluate reward and transition probabilities. The run-time of the Monte Carlo simulation

depends on the number of iterations k and the chosen manipulation planner. In the proposed

method, k is a constant independent of the sample space or distributions. While this does

not suffice to provide general solution quality guarantees, it does decouple the complexity

of the Monte Carlo simulation from the size of the state space. Therefore, as with MCTS,

the manipulation planner provides constant-time solutions for the quantities required for

value iteration in Mh.

As shown in Section 3.3.4.1, the complexity of value iteration is linear in the number of

obstacles if the adjacency graph of the workspace is planar. The approach for the continu-

ous environment therefore retains the same theoretical guarantees, including convergence,

as the approach for discrete environments.

51

0

10

20

30

40

0 5 10 15 20

R
u

n
ti

m
e

 (
m

in
)

Obstacles

Figure 8: Average runtimes for 70 trials.

3.4.5.2 Empirical Analysis

We have implemented a prototype of the proposed framework in a simulation using Python

and the open source 2D physics engine pyBox2D [2]. The robot is modeled as a nonholo-

nomic 5 Degree of freedom (DOF) mobile manipulator with a 3 DOF base and a 2 DOF

arm.

Runtime We performed 70 trials with varying environment sizes, objects, object place-

ments, and object parameter distributions. For each trial, the distribution parameters of

each object parameter were resampled from uniform hyper-priors. This was done to pro-

vide a method for automatically generating test cases across a range of valid belief states.

Numerical examples for a specific case can be seen below.

The goal configuration was always in a different free-space region than the initial robot

configuration. Fig. 8 summarizes the runtime as a function of the number of obstacles,

again showing linear dependence. While the runtimes are in the range of minutes, orders of

magnitudes of speedup could be achieved with more efficient programming languages and

collision detection algorithms. Given the linear relationship, such constant factors present

the bottleneck rather than the algorithm itself and are the subject of our future work. We

now show some execution examples.

52

(a) Initial configuration (b) Expected outcome: robot could drive below the
couch.

(c) Actual behavior: robot recomputes based on
new configuration.

(d) Moves couch further down and circumvents
above.

Figure 9: Execution example of our dynamic simulation. The robot clears goal despite
the couch behaving unexpectedly.

Example Executions Fig. 9(a) shows the initial configuration of a simple environment.

The goal is defined with positive reward for reaching the free-space region on the right

side of the map, but the couch blocks its path. In addition, there is uncertainty associated

with the parameters of the couch. These parameters were defined in Table 2, and chosen to

reflect uncertainty in the mass of the couch.

53

Table 2: Parameter distributions for the green couch.

Parameter Distribution

m (kg) log Normal(65,15)

µx truncated Normal(0.05,0.1,0,1)

µy truncated Normal(0.05,0.1,0,1)

x (m) truncated Normal(0,0.01,−5,5)

y (m) truncated Normal(0,0.01,−5,5)

θ (deg) von Mises(0,0.01)

The robot executes our proposed framework, beginning by constructing a PRM over

the space, shown in black. After determining the couch to be the only obstacle whose suc-

cessful manipulation would clear the goal, the robot performs Monte Carlo simulation over

manipulation plans for the couch. It then chooses a specific manipulation plan according

to the likelihood of the object property sample that was used to construct the plan. The

expected final couch configuration of the chosen manipulation plan is shown in Fig. 9(b).

If the couch would indeed result in the expected configuration after the manipulation, the

robot could circumvent the couch on the bottom and reach the goal.

However, because the exact object parameters are unknown to the robot, the execution

of the plan instead results in the configuration shown in Fig. 9(c). Realizing that the re-

quired connectivity of the free-spaces has not been reached, the robot re-computes based

on the new configuration. The robot decides instead to push the couch down a bit and move

past it above. Fig. 9(d) shows that the robot now successfully clears the goal.

Fig. 10(a) demonstrates a similar setup but with multiple disconnecting obstacles. The

robot again has uncertainty about the objects, but this time also begins with low probability

that any of the objects are constrained. It decides to move the lighter table. The expected

outcome of the chosen manipulation plan is shown in Fig. 10(b). However, as the table is in

fact constrained to only rotate, the robot instead finds itself in the configuration visualized

54

(a) Initial configuration (b) Expected outcome: table has low probability of
being constrained.

(c) Actual behavior: table is constrained. Robot in-
creases probability of table being rotationally con-
strained.

(d) Based on the new information the robot decides
to move the couch.

Figure 10: Robot incorporates new information to enhance the plan.

in Fig. 10(c). The robot detects that, despite the applied force, the object has only rotated,

not moved and updates its belief about the table being rotationally constrained. Given

this new information, the subsequent plan involves moving the couch instead. This finally

allows it to successfully clear the goal as visualized in Fig. 10(d).

While general inference techniques for updating the distributions given observed object

behaviors is outside the scope of this work (see [84] for a suitable inference method), these

examples show that our framework allows the robot to use updated belief distributions.

Fig. 11 shows an additional execution example with more than 30 obstacles.

These results demonstrate the usefulness of the proposed framework. The following

55

(a) Initial configuration. (b) Execution path of the robot.

Figure 11: Execution example of our dynamic simulation with more than 30 obstacles.

section provides online execution considerations for the NAMO MDP abstraction as well

as general remarks about the framework.

3.5 Discussion
3.5.1 State-Space Change

If the robot successfully executes a low-level policy in its workspace, it, in general, has

merged two free-spaces rather than transitioned between them. Further, the physical ma-

nipulation of environment objects with unknown dynamics could create new free-space

regions by fragmenting the space. Consequently, a object manipulation could alter the

state-space of Mh. A provably optimal planner should acknowledge this fact and directly

reason about the resulting MDP changes. In other words, the planner should determine a

56

“path of NAMO MDPs” that the robot transitions through on its way to the goal. While fu-

ture work will investigate this concept as well as the applicability of policy iteration [81] to

take advantage of the locality of the change, we address this challenge here by re-executing

the proposed algorithm after each object manipulation. Given the linear runtime of the al-

gorithm, this has not presented a significant disadvantage. However, as the algorithm does

not consider all possible future free space configurations, the Q-values for a specific Mh do

not represent the true long term expected reward of those regions, but rather an approxima-

tion based on the current world configuration. In general, this approximation is sound as

long as actions are reversible. Future work will examine the expected loss and convergence

properties under this assumption.

3.5.2 Summary

In this chapter, we have described the first decision theoretic formulation for the problem

of Navigation Among Movable Obstacles. We introduced the NAMO MDP and provided

techniques for constructing and solving the NAMO MDP in discrete and continuous envi-

ronments. The NAMO MDP as presented here is applicable to domains where the robot

needs to move a single object to connect two adjacent free-space regions.

Our abstraction and solution methods can be viewed from the top-down as a value-

iteration scheme in the free-space representation of the NAMO problem. From this per-

spective, the primary difference with classical value iteration is that the Bellman updates

issue calls to either a low-level MCTS planner for discretized environments or a Monte

Carlo simulation for continuous environments in order to evaluate the action rewards, rather

than querying an atomic reward function. We provided concrete example implementations

for both cases. The general NAMO MDP framework, however, allows for other options

than our specific choices. For example, the method presented in [55] could be used to eval-

uate the result of a manipulation action and potential existence of openings more efficiently.

Exploration of alternative methods to the presented choices is of interest to us and will be

57

a focus in future work.

In addition, while our framework handles multi-object interactions to some degree due

to the online implementation of our algorithm, future work should investigate techniques

to support more complex cases that require explicit multi-object coordination. We expect

techniques similar to the regression planning presented in [95] to yield efficient methods

for handling multiple bodies.

58

CHAPTER IV

NAMO WITH STATE AND ACTION UNCERTAINTY

The previous chapter introduced the NAMO-MDP as a method for incorporating action

uncertainty into the NAMO framework for scenarios in which the robot has access to posi-

tional information for all objects. However, in disaster areas or if the workspace is shared

with other robots or humans, the robot might not have a-priori access to the location or

even existence of movable objects within its path. Instead, the robot should autonomously

detect environment objects such as furniture and reason online about which objects to move

and where to. To bering robots closer to such capabilities, this chapter first introduces a

vision algorithm for detecting the position of objects, even if they are partially occluded.

We then use this capability and present a NAMO framework that can handle situations with

substantial lack of initial state information as well as sensing and action uncertainty.

4.1 Detecting Partially Occluded Objects

To allow the robot to reason online about moving objects out of the way, it needs to be able

to detect environment objects from limited sensory input, which is especially difficult if the

objects are partially occluded. This section therefore presents a novel perception algorithm

to obtain the position of objects even in the presence of occlusions1.

In general, the ability to reliably detect and classify objects is crucial to the success

of robots in realistic, human environments. Knowledge about the existence and position

of objects within the robot’s vicinity has many practical applications in robotics. For in-

stance, semantic mapping, the creation of maps that include meaning, could be enhanced

by detecting meaningful objects, such as furniture. A room with a table and many chairs is

1This work appears in [63].

59

(a) Example of a detected chair model,
which is colored in green.

(b) Example of a detected table model,
which is colored in blue.

Figure 12: Example of correctly classified furniture. The chair is correctly detected de-
spite the fact that only the top part of the chair is actually visible in the scan. Similarly, the
table is detected despite the fact that it is partially occluded.

likely to be the dinning room. In addition, knowledge about objects is crucial for robots to

understand natural language commands such as ”put the mug on the table”.

Typical NAMO environments, as well as all of these examples, require the robot to

perceive and reason about a human environment. Conditions in such environments are

not ideal for a robot: objects are in different configurations at different times and are of-

ten partially occluded by other objects, walls or people. Any algorithm trying to reliably

detect objects in human environments must therefore not just be able to handle arbitrary

orientations of the objects but also occlusions.

Previous work has shown success in classifying mostly unoccluded objects in different

orientations but does not perform well with the large occlusions typical for human environ-

ments. This section presents the Verfied Partial Object Detector (VPOD), an algorithm that

is capable of detecting objects despite more than 50% occlusion. VPOD segments a point

cloud of a scene into clusters by point distances and classifies each resulting cluster. This

classification is based on a two step approach. The first step builds upon Viewpoint Feature

Histograms (VFH) [82], a descriptor for 3D point cloud data that encodes geometry and

viewpoint. The VFH of the query object is computed and compared to VFHs in a database

60

composed of both complete object models and auto-generated partial object models. The

auto-generated partial models allow for a classification of parts of an object, whose detec-

tion in turn yield a hypothesis of the existence of the complete objects in the point could.

For example, detecting the back of a chair in the point cloud could indicate the existence

of a chair with the sitting surface occluded by other objects.

However, the existence of partial objects in the database also increases the risk of false

positives. For example, a simple piece of board could be matched to the back of a chair,

leading to a hypothesis of a chair. Our algorithm therefore introduces a second step to verify

each hypothesis. The verification step maps a complete model of the object associated with

the candidate match into the point cloud of the scene. Points of the complete model that

would be occluded by objects in the point cloud are then detected and eliminated from

the model. The remaining points are checked for matching points in the point cloud. The

proportion of matching, unoccluded points yields the final classification score. This steps

ensures that matches are consistent with our expectation given the context of the world and

the current viewpoint.

We now briefly summaries the core insights of VFHs and then discuss each of the

algorithm steps in more detail.

4.1.1 Existing Method for Unobstructed Objects

Viewpoint Feature Histrogram are histograms describing the geometrical relationship be-

tween all points in the scan of an object. Rusu et al. [82] show that VFHs can discriminate

according to the structure of the entire object, if the entire object is visible.

However the VFH is sensitive to partial occlusions. Consider the scan visualized in

Fig. 12(a) in which only the top part of the chair is visible. As the top part of the chair is

roughly just a flat surface, the points have an entirely different geometrical relationship to

each other than all the points for an unoccluded chair. This results in different VFHs for

the complete and partial chair, as shown in Fig. 13.

61

0
2
4
6
8

10
12
14
16
18

0 50 100 150 200 250 300 350
A

ng
le

C
ou

nt
Bucket Index

Full
Partial

Figure 13: Example VFHs for a partial model and its associated complete model. The
individual components of a VFH can be found in [82].

The consequence is that partially occluded objects are not reliably detectable with VFH

or any other method that works with the properties of the complete object model alone.

4.1.2 Algorithm

We now outline our approach extending on the use of VFH.

4.1.3 Approach

The key insight is that fragments of a partially occluded object can be treated and classified

as objects themselves. VPOD extends the VFH database to include partial models auto-

generated by occluding portions of complete models. The partial model generation process

is designed to generate typical occlusions occurring in the world. For human environments,

we assume that the objects are usually occluded from one side (e.g partially behind a wall)

or the bottom (e.g. a chair underneath a table). Our algorithm therefore generates partial

models out of every complete model by successively removing points from each side of the

object and from the bottom independently. This is done for a step size s and continued until

a threshold t is reached for the remaining object size on the side currently affected by the

removal. Fig. 14 visualizes an example of this process. Other types of common occlusions

can easily be added by generating additional partial models. The resulting partial models

are included in the VFH database with the complete models.

62

Figure 14: Hierarchy of complete models and auto generated partial models.

Including partial models in the VFH database increases the likelihood that a partially

occluded object will be matched. For example, it is now possible to match the back of a

chair against models in the database that represent just the back of a chair. But this also

increases the likelihood of false positives, as the partial models are less distinctive (e.g.

the back of a chair is mostly flat). Extending the database to artificially created objects,

especially pieces of objects, allows for matches of arbitrary objects. To compensate for

this, the algorithm includes a verification step that verifies the candidate classifications

against the actual scene in which the point cloud was captured (called the “world” from

here on).

The intuition behind this verification step is that if the detected part is indeed a proxy for

the actual object in the scene, we can compute our expected observation for the complete

object. This can be done by projecting the complete object model on the detected part and

reasoning about expected occlusions, which can be determined by a simple line-of-sight

test against the scan of the world. The obtained expected observation can then be matched

with the actual observation. For example, if we matched the back of a chair against an

63

object in the world, then the expected observation of the complete chair model projected

into the scan has to be consistent with the world.

We have implemented this intuition through the following steps:

1. The complete model associated with the detected part is mapped into the world.

2. The portions of the complete model expected to be occluded based on information

provided by the world are removed from the model.

3. The remaining model points are checked for matches in the world.

4. Based on this score, the classification is rejected or verified.

Fig. 15 summaries the workflow as discussed in detail in the following.

Clustering First, the point clouds collected by the robot are segmented into query clus-

ters. We filter the point cloud to remove outlying points that are not near any surface or

object. This type of noise is especially common on occlusion boundaries with laser range

finders. The remaining points are then downsampled to reduce computation time. A grid

size of 1cm was used for the downsampling in this work. Because the sensor’s height rel-

ative to the ground is known, we can easily remove the ground plane by discarding any

points below a given z-coordinate. With the ground plane removed, we can then cluster the

remaining points. In our implementation, we require a minimum of 100 points per cluster,

and allow 10cm distance between points within a cluster. Objects such as chairs, tables,

desks, walls of the room and others are returned as clusters. As we focus on furniture as a

use case, we filtered clusters out that cannot represent furniture or parts of furniture. Filter-

ing was done based on bounding box size and position to discard objects that are much too

large, much too small, or not near the ground.

Alignment Next, VPOD computes the transformation matrix Tcenter that transforms the

centroid of each candidate partial model Mp to the centroid of the cluster C it was matched

64

�� �� � ����� 	

� ���� �� �� 	
� ���

 �� ��� ��

�� 	
 �
 ����

� ����� �� ��
� �����

�� 	
 �
 ����

����	�	� �	�

���� ���

 �� ��� ��

�
� 	�� ��
����	� � � �����

�� 	
 �
 ����

� ���� ����
��
 �

� ���� 	
����
��
 �
 �� ��� �	
�

�
����	��� �	
�

� �� �����	� �
� ������

 �� ��� ��� ����
� �	�
� �
 �

� ���� � �� �	�

�� �	
�

Figure 15: Workflow. Steps independent of the actual world are colored in orange while
world dependent steps are colored in blue.

against. Tcenter is then apply to Mp. This yields the transformed partial model M′p =

TcenterMp. However, models in a database usually have limited angular resolution, e.g. we

might have a model of a chair rotated at 10◦ and at 20◦ in the database and the transfor-

mation might consequently not align Mp and C optimally. In order to compensate for this,

as well as centroid computation errors, Iterative Closet Point (ICP) [6] is performed on M′p

and C. The algorithm assumes that the objects are mostly upright and disqualifies candi-

date models if the rotation around the ground plane is exciting a threshold. The resulting

transformation matrix TICP is saved. Tcenter and TICP are now both applied to the complete

model Mc out of which Mp was generated yielding M′c = TICPTcenterMc. Consequently, M′c

represents the complete model Mc mapped into world coordinates at the candidate location.

65

Occlusion Each point in the mapped complete model M′c is now checked for occlusion.

This is done through a technique based on ray casting. We adapted traditional ray casting

to the property of a laser for which the lateral error typically increases with radial distance.

As such, for each point p in M′c, we check if any point in the full world scan W lies within a

cone originating at the viewpoint origin and facing p. To check this easily, all the points in

M′c and the world W are transformed to radial coordinates around the viewpoint. The slope

of the cone is tuned to match the known angular error of the laser. In order to compensate

for noise in the radial distance, we require the occluding point to be a minimum distance

in front of the occluded point. In addition, because a model should not occlude itself, we

remove the currently considered cluster C from W prior to the occlusion test. Points that

have been determined to be occluded in this way are omitted from M′c. The resulting model

M∗c = occlude(M′c,W) is then scored.

Scoring The scoring of M∗c is done by checking if each point p in M∗c can be matched

against a point in W . A point p in M∗c is declared to have a match if W has a point within

a small sphere around p. The final score is set to bo the ratio of matched points to total

points in M∗c . However, different scoring techniques are possible here. For example, an

additional weighting factor determined by the number of points in M∗c could be added to

capture the lack of evidence that only a small number of points provides. Additionally the

scoring could be done two-ways. This is, ensure that not just M∗c coincides with W and

C but that C also coincides with M∗c . This would guarantee that most points in C have to

actually be accounted for. Details are discussed below.

4.1.4 Experiments and Analysis

To verify our approach, we tested it on real scans obtained through a Hokuyo laser range

finder on a Pan Tilt Unit.

We first created models of a chair and table for 7 distances and 16 rotations from scans

with the laser range finder. The distances were chosen to yield a constant vertical viewpoint

66

Figure 16: Experimental setup.

change of 9◦ on the obstacle. For our sensor height of approximately 1.5m, this resulted

in distances of 0.86m, 1.09m, 1.35m, 1.66m, 2.06m, 2.59m and 3.37m. For each of the

distances, scans of the object with a 22.5◦ rotational step size were obtained. This resulted

in a total of 224 complete model scans. Out of those models, an additional 1068 partial

models were auto-generated by consecutively removing points from bottom to top, left to

right, and right to left from the model. We used a 10cm step size and proceeded until the

remaining model had a size between 20-30cm on the axis currently affected by the point

removal. Fig. 14 shows an example.

We took 30 test scans of scenes in an office environment with random configurations of

up to four chairs of different types and two tables per scan. These scenes had non-furniture

items, walls, unoccluded furniture, and partially occluded furniture. For example, some

scenes had chairs behind and or pushed under a table. An example setup can be seen in

Fig. 16 and the according point cloud is visualized in Fig. 17(a). As shown below, these

are difficult cases for vanilla VFH which uses only complete models.

67

(a) Sample point cloud. Red: cluster classified by VFH as the top of a chair.

(b) False positive detection. (c) True positive detection.

Figure 17: Example of false positive and true positive detection.

Results To obtain the following results we used the chi-squared distance metric for all

comparisons between VFHs.

Fig. 18(a), Fig. 18(b), and Fig. 18(c) visualize the behavior of the classification error

rates of different algorithms as the VFH threshold is relaxed. The True Positive Rate (TPR)

denotes the ratio of actual furniture correctly identified; the False Positive Rate (FPR) the

ratio of non-furniture incorrectly identified. Due to clustering errors explained below, not

all objects in all test scenes could be classified by VFH or VPOD (or could be by any other

algorithm that classifies based on clusters).

Fig. 18(a) shows the behavior of vanilla VFH using only complete models on the dataset

68

(a) Filtering improvement (b) Partial models improvement (c) VPOD improvement

Figure 18: Relative operating characteristic, showing improvement over VFH. Dashed
line marks the best possible rate, due to clustering errors.

and the same algorithm with pre-filtering of clusters, as described in Section 4.1.4. Even if

the VFH threshold is relaxed greatly, allowing many false positives, VFH is unable to cor-

rectly classify many clusters due to partial occlusions. Despite having more than 40% false

positive rate, vanilla VFH was not able to achieve the maximal possible classification rate

on our dataset. Even at a low threshold, vanilla VFH still produced a 5% false positive rate

while only classifying 70% of the objects. Prefiltering provides only a modest reduction in

the false positives produced by VFH. This sows that pre-filtering alone does not account

for all of the benefits of VPOD.

Fig. 18(b) shows the behavior of VFH with and without partial models. At very low

VFH thresholds, the partial models have no effect. As the threshold increases, the partial

models are allowed to incorrectly match clusters, causing an increase in the false positive

rate relative to complete models alone. But vanilla VFH using only complete models can

only match the unoccluded clusters well and must allow many false positives in order to

match the partially occluded clusters. However, VFH with partial models is able to classify

all test clusters with a 23 point reduction in the FPR. This is because VFH with partial

models can match partially occluded clusters using a tighter VFH threshold.

69

Fig. 18(c) shows the behavior of VPOD compared to VFH using complete models. Fig.

18(c) shows that VPOD, through the use of partial models, similar to Fig. 18(b), properly

classified all test cases. Unlike VFH with partial models, VPOD classified all test cases

with only a 1.3% false positive rate, due to the VPOD verification step. This allows VPOD

to classify the partially occluded objects without introducing many false positives.

These results demonstrate the usefulness of VPOD.

Examples We disabled the pre-filtering and ICP restriction on y-axis rotation to obtain

the following examples.

Fig. 17(b) demonstrates an example of the false positive detection. VFH classification

with partial models classified the cluster marked red in Fig. 17(a) as being the top part of

a chair. The algorithm then mapped the complete chair into world and scored it. Since

the sitting surface is not occluded but also not visible in the scan this classification was

rejected. In contrast, the table behind the chairs in Fig. 17(a) was matched by VFH with

partial models and verified by the algorithm. Note that due to the occlusion, vanilla VFH

using just complete models would not be able to classify the table.

Fig. 19(b) demonstrates a typical example where our algorithm fails if no pre-filtering

or two-way matching is performed. If the cluster is unreasonably large, almost any furniture

piece can be fitted in and have its points being accounted for. In Fig. 19(b) a chair (green)

is being fitted into a big wall (fitted chair shown in blue). The algorithm is effectively

saying that the chair is lodged in the wall. This demonstrates the necessity of pre-filtering

or two-way matching in combination with our algorithm.

Clustering In our implementation, the clustering distance is set to a fixed value. This

can yield results similar to Fig. 19(a) where multiple furniture pieces have been clustered

together, which hinders classification. In future work we plan to have the clustering dis-

tance be data driven. The basic assumption is that points on the same object have a smaller

relative distance to each other than points between objects. We therefore plan to evaluate

70

(a) Example of a chair and table being clustered to-
gether.

(b) Example of a small model fitted into a big clus-
ter.

Figure 19: Examples of where our algorithm fails.

the distances of points within a cluster and re-cluster a cluster based on a new, smaller dis-

tance. Clusters that are not classified can be progressively partitioned and reclassified until

either a match is found or the cluster size is unreasonably small.

Further, many objects such as chairs and tables can appear as multiple distinct parts due

to self-occlusions. For example, when observing most standard office chairs, we typically

observe the chair’s seat, back, and wheeled base, but not the central supporting column

due to the downward viewing angle. Similar results can also occur with other types of

furniture. To address this problem, we anticipate that future iterations on our algorithm

will project the clusters down to the ground plane, find the convex hull for each, and merge

clusters that have overlap. This allows to consider such objects as one unit, despite being

separated by a significant vertical distance. Again, this step can be verified by checking if

the classification results have improved in comparison to the single clusters.

Runtime We are performing the occlusion and matching simultaneously in VPOD, which

takes an average of 3.3 seconds for a world scan with about 32,000 points and an average

cluster size of 19,000 points. If runtime is a concern the occlusion detection and matching

function do not need to be done against the full point cloud. Rather, one should determine

the relevant parts of the full point cloud affecting the current cluster and limit occlusion

71

detection and matching to this subset.

4.1.5 Discussion

In this section we presented the VPOD algorithm for detecting partially occluded objects

by matching clusters against segments of models and verifying our expectations against the

world. VPOD extends the scope of vanilla VFH classification by using partial models. To

reject false positives, VPOD verifies expectations about the predicted classification with the

world. We verified the effectiveness of our approach on real data, showing improvement

on cases not handled by VFH with complete models alone.

Given VPOD or similar algorithms, the robot can detect objects in its environment, even

if they are partially occluded. The following section presents an algorithm that utilizes this

capability to perform NAMO even without any initial knowledge of object locations.

4.2 State and Action Uncertainty in NAMO

We now build upon insights obtained by Chapter 3 and Section 4.1 and present a complete

framework that allows a real robot to execute NAMO despite substantial lack of information

about the initial state as well as action and sensing uncertainty2.

A theoretically optimal strategy for such problems is to compute, offline, a policy that

maps histories of observations into actions. This is computationally entirely intractable in

large domains. A more computationally feasible strategy is interleaved online planning

and execution, in which a partial plan is constructed online, using an approximate model

for efficiency, the first action is executed, the belief state is updated, and a new plan is con-

structed. This has been demonstrated to be an effective approach in medium-sized discrete

and continuous domains [76]. However, in very long-horizon problems, even finding an

approximate plan in terms of primitive actions becomes computationally intractable.

2This work appears in [57].

72

Figure 20: Solving a NAMO problem with a PR2. The robot discovers two unknown
obstacles (chairs) and moves them out of the doorway in order to get through.

Previous work [39, 40] introduced a hierarchical strategy for interleaved online plan-

ning and execution, called HPN (Hierarchical Planning in the Now), that improved compu-

tational efficiency by using a temporal hierarchical decomposition of the planning problem

into many small planning problems. In this section we demonstrate how HPN can be

extended to yield a framework for NAMO domains with substantial lack of initial state

information as well as sensing and action uncertainty.

In order to make HPN applicable to the NAMO domain, we introduce two general

concepts and mechanisms that can be used to improve both efficiency and optimality for

integrated task and motion planning and execution in large domains: Reconsideration and

Foresight. We show that the hierarchical decomposition introduced in HPN to improve

efficiency provides an opportunity to apply these broader concepts to improve optimality as

well, measured in the cost of actions taken by the robot. Furthermore, our new techniques

allow us to demonstrate and empirically evaluate the trade-offs between efficiency and

optimality in simulation and on a real robot system.

73

Consider the following two concepts in the context of both efficiency (total computa-

tional time for all planning subproblems) and optimality (total execution cost of actions on

the robot):

• Reconsideration: Deciding when to replan based on opportunity for plan improve-

ment and computational cost of replanning.

• Foresight: Leveraging knowledge of future subgoals and beliefs about future obser-

vations to maintain correctness and improve optimality.

These concepts provide a general framework for understanding a wide variety of algorith-

mic strategies for improving efficiency, including the methods from the original HPN as

well as a set of new methods for improving optimality that are introduced in this chapter.

Reconsideration in the original HPN was used to trigger re-planning and restrict it to a

subtree of the hierarchical plan; it only triggered when the execution system was not able

to achieve the preconditions of an action. This strategy led to computational efficiency

but also to considerably suboptimality due to extraneous actions. We now observe that

reconsideration can also be triggered to re-plan when new opportunities present themselves

that are likely to improve the efficiency of the overall system.

Foresight in the original HPN applied only locally: within the planning process for

a particular subgoal at a particular level of abstraction, the backward chaining algorithm

computed conditions characterizing correctness requirements for the later part of the plan,

which were used to constrain choices made during earlier parts of a plan. This degree of

foresight was critical to guarantee plan correctness and improved computational efficiency

by considerably decreasing backtracking.

In this work, we show that foresight can also be applied more globally, by taking into

account the robot’s intentions for future action, which are encoded in the hierarchical struc-

ture of subgoals created by the HPN process. Our new system not only ensures that early

action choices do not prevent future success, but also tries to minimize the interference

74

between separate subtasks of a plan.

This section describes our new techniques based on the concepts of reconsideration and

foresight and identifies tradeoffs between efficiency and optimality in the context of these

categories of reasoning. We first discuss these concepts generally before demonstrating

how these contributions allow a real to robotic system to execute NAMO despite substantial

lack of initial state information as well sensing and action uncertainty.

4.2.1 Existing Planning Framework

We now summarize an existing hierarchical planning and execution architecture, which

will provide the basis for new foresight and reconsideration methods discussed below.

4.2.1.1 Hierarchical planning and execution architecture

The BHPN (Belief HPN) architecture [40] is a hierarchical planning and execution archi-

tecture designed to work in uncertain domains. It assumes the existence of:

• A state-estimation module which maintains a belief state—a probability distribution

over the states of the world—reflecting the history of observations and actions made

by the robot.

• A set of operator descriptions characterizing the operations that the robot can do in

the world; each operator description has a set of preconditions and a set of effects,

described in terms of logical predicates that characterize some aspect of the robot’s

belief about the state of the world. Abstracted versions of the operators, obtained by

postponing consideration of some of the preconditions, are used to construct hierar-

chical plans.

• A planner that uses the process of pre-image backchaining. It starts from the goal,

which is a description of a set of desirable states of the world, and works backward.

On each step, it computes the pre-image of the goal under the selected action; the

pre-image is the set of states such that, were the action to be taken, then the resulting

75

state would be in the goal set. The pre-image is represented compactly as a logical

formula. A call to the planner, starting in belief state b with goal set γ results in a

list ((−,g0),(ω1,g1), ...,(ωn,gn)) where the ωi are (possibly abstract) operator in-

stances, gn = γ , gi is the pre-image of gi+1 under ωi, and b ∈ g0. The conditions gi

play a critical role in the execution architecture: gi is the set of states in which the

plan ωi+1, . . . ,ωn can be expected to achieve the goal.

Algorithm 3: Pseudo-code for the BHPN algorithm with reconsideration. In the
default applicable and nextStep methods in Procedure 4 and Procedure 5 we assume
that the plan p has an instance variable i that is initialized to 0 and used to keep track
of the current step for execution of the plan.

Input: b,γ,world
1 ps = STACK()
2 ps.push(PLANPLAN([(None,True),(None,γ)]))
3 while not ps.empty() do
4 p = ps.top()
5 if not applicable(p,b) then
6 ps.pop()
7 else
8 (ω,γ ′) = p.nextStep(b)
9 if ω.abstract() then

10 ps.push(PLAN(γ ′,b, p,α.incr(ω)))
11 else
12 obs = world.execute(ω)
13 b.update(ω,obs)
14 RECONSIDER(ps,b)

Procedure 4: applicable
Input: p,b

1 return p.gp.i = γ or (p.i < p.n and b ∈ p.gp.i)

Algorithm 3 shows the BHPN algorithm. It takes as inputs a current belief state b,

logical goal description γ , and a world (real robot or simulation) in which actions can be

executed. It manages a stack of plans, which are stored in variable ps; it is initialized to

have a dummy plan, consisting of g0 = True and g1 = γ , indicating that it can always be

76

Procedure 5: nextStep
Input: p,b

1 if not p.gp.i = γ then
2 p.i += 1
3 end
4 return (p.ωp.i, p.gp.i)

applied and that its overall goal is γ . The procedure loops until the plan stack is empty,

which can happen only when γ has been achieved.

On each iteration of the algorithm, we examine the plan p that is on top of the plan stack

to see if it is applicable. In the following sections we will consider a different definition

of the applicable method, but we will begin with a very simple definition of it and the

related method nextStep, defined in Procedure 4 and Procedure 5 respectively. In this case,

p is applicable in belief state b if the plan has not reached the end (p.i < p.n) and b is

in the preimage gp.i of the next step that will be executed, which is step i+ 1. If p is not

applicable, then it is popped off the stack. Note that the initial plan is always applicable.

If p is applicable, then we determine the next operator ω and subgoal γ ′ by calling the

nextStep method of p. The simplest version of nextStep ignores the current belief state b

and simply returns the sequentially next step in the plan. If the next operator is abstract

(None is always abstract), it means that its preconditions may not yet have been met in

full detail, and so we construct a plan to achieve the subgoal γ ′ at a more detailed level

of abstraction (p.α.incr(ω)) and push it on the plan stack. Otherwise, ω is a primitive,

which is executed in the world, yielding an observation obs, and the belief state is updated

based on that observation. After every action, we can (in principle) reconsider the plan; we

discuss this in the next section.

It is important to see that a plan p may be popped off the stack for two very different

reasons: (1) All plan steps have been executed with their intended results; or (2) Some

plan step, when executed, did not have its intended result. In either case, it is appropriate

to return control to the higher level (the plan deeper in the stack). If the plan executed

77

successfully, then control will resume at the next step of the plan at the higher level of

abstraction; if it failed to have the desired effect, then the parent operation will also fail, and

so on all the way to the bottom of the stack, where the initial plan is expanded again. Later,

we consider several extensions to make this control structure more robust and flexible.

Fig. 21 illustrates the nominal behavior of the BHPN algorithm, as a planning and ex-

ecution tree. The blue nodes represent goals or subgoals; in this case, the overall goal, at

the root node, is to have two objects in the cupboard. Goals and subgoals are characterized

by conditions on belief states. The actual planning and execution tree is considerably more

complicated: this example is abstracted to make it easier to explain its important aspects.

Each outlined box contains a plan. Within a single box, there are blue and pink nodes.

Pink nodes represent operators and blue nodes subgoals. So, in Plan 1, using an abstract

version of the Place operation, it is determined that, as long as both objects A and B are

movable, a plan consisting of placing A, followed by placing B will achieve the goal. Note

the intermediate subgoal: ∃x.BIn(x,Cupboard)∧BMovable(B). That is the pre-image of

the goal under the operation of placing B in the cupboard: as long as some other object is

in there, and we additionally place B, then the goal will be achieved.

Plan 2 is a plan for achieving the first subgoal in Plan 1, which consists of picking up

object A with grasp G and placing it in the cupboard. Plan 3 is a plan for coming to hold

A in grasp G: it consists of a primitive Look action (shown in green), which is intended to

achieve the condition BVRelPose(A,Eps1), which says that we know the relative pose of

the robot and object A to within some tolerance Eps1. This step ensures that the robot has a

moderately good estimate of the pose of object A before trying to plan in detail how to pick

it up. Plan 4 provides yet more detail, ensuring that the volumes of space (called “swept

volumes”) that the robot has to move through are clear, and that, before actually picking up

the object, its pose id known to a tighter tolerance, Eps2.

The tree, as shown, is a snapshot of the BHPN process. Using the simplest nextStep

definition, each plan would be executed left to right, completely planning for and executing

78

∃ x, y. BIn(x, Cupboard),
BIn(y, Cupboard)

Look(A)

BMovable(A)
BMovable(B)

∃x. BIn(x, Cupboard),
BMovable(B)

∃x, y. BIn(x, Cupboard),
BIn(y, Cupboard)

Place(A, Cupboard) Place(B, Cupboard)

BMovable(A)
BMovable(B)

BHolding(A, G)
BMovable(B)

∃x. BIn(x, Cupboard),
BMovable(B)

Pick(A, G) Place(A, Cupboard)

BMovable(A)
BMovable(B)

BVRelPose(A, Eps1)
BMovable(A)
BMovable(B)

BHolding(A, G)
BMovable(B)

Look(A) Pick(A, G)

BMovable(A)
BMovable(B)

BMovable(A)
BMovable(B)

BClr(MoveSwept)

BMovable(A)
BMovable(B)

RobotNr(PickConf)
BClr(PickSwept)

Clear(MoveSwept) Clear(PickSwept)

BMovable(A)
BMovable(B)

BClr(MoveSwept)
BClr(PickSwept)

BHolding(A, G)
BMovable(B)

Move(PickConf) Pick(A, G)Look(A)

BMovable(A)
BMovable(B)

RobotNr(PickConf)
BClr(PickSwept)

BVRelPose(A, Eps2)

Plan 1

Plan 4

Plan 3

Plan 2

Figure 21: Illustration of BHPN approach

79

actions to achieve one subgoal before going on to the next. This results in a left-to-right

depth-first traversal of the tree. If any operation, primitive or abstract, has a result that is

not the expected one, then it will fail and control will return to the plan above it.

4.2.1.2 Flexible execution of existing plans

Procedure 6: applicable
Input: p,b

1 return b ∈
⋃n−1

i=0 p.gi and b 6∈ p.gn

Procedure 7: nextStep
Input: p,b

1 i∗ = 1+ argmaxn−1
i=0 b ∈ p.gi

2 return (p.ωi∗ , p.gi∗)

The execution architecture described so far is very rigid: if a plan cannot be executed

from left to right, then it is considered to be a failure. But, in many cases, the plan can be

salvaged, and replanning limited.

Consider Plan 4. If the move action doesn’t have the expected result because the robot

undershoots its target, for example, then a reasonable course of action would be to re-

execute the move operation. The same would be true if, upon executing the look action, it

found that the variance on its pose estimate for A was not sufficiently reduced to satisfy the

preconditions for the pick action.

We can generalize this idea further, to handle both disappointments, when an action

does not have its desired effect and surprises, when an action actually results in more useful

results than expected. Procedure 6 and Procedure 7 shows revised versions of applicable

and nextStep that re-use a plan as much as possible. We say that a plan is applicable if any

step of the plan is applicable. In other words, the current belief state b is in the pre-image

of one of the operations, and the final goal has not yet been achieved. Thus, if an action

results in a belief for which there is some action in the plan that is an appropriate next

80

step, then the plan remains applicable and is not popped off the plan stack. In the nextStep

method, we select the operation ωi for execution where gi−1 is the “rightmost” pre-image

that contains the current belief state.

In Plan 4, if the robot looks at A and finds that there is actually a previously unknown

object intruding into the swept volume for the arm to pick the object, it could go back to

the plan step that achieves Clear(PickSwept) and continue execution from there. If it were

to find, though, upon attempting to pick up A that it was, in fact, bolted to the table, the

BMovable(A) condition would become false. At that point, Plan 4 would be popped off the

plan stack because none of the pre-images contain the current belief state. The same would

be true for plans 3, 2, and 1 in succession. Replanning would be initiated for the top-level

goal, hopefully finding a different object to place into the cupboard instead of A.

Another way to be flexible about the use of an existing plan is to re-order some of the

steps, based on information available in the current belief state. We adopt the peephole

optimization method of [29], which considers all of the plan steps with preconditions that

are currently satisfied and uses a heuristic to decide which order to execute them in, or

whether they are likely to interact very closely, in which case it will consider them jointly.

In Plan 1, the peephole optimization may decide that it is preferable to put the larger object

into the cupboard first, because both abstract actions are enabled in the initial belief state.

4.2.2 Enhancing Optimality

The focus of the existing BHPN has been on correctness and computational efficiency

often at the expense of optimality. In this section we introduce new mechanisms aimed at

enhancing optimality with limited impact on efficiency, making the system applicable to the

NAMO domain where optimized behavior is crucial to minimize unnecessary environment

modifications.

81

4.2.2.1 Reconsideration

As we have seen, after an action is executed and the belief state is updated, it may be that

the next step in an existing plan is not a good choice: it might be impossible to execute,

or there might be better alternative courses of action. Replanning from scratch after every

primitive operation and belief update will ensure that action choices are as up-to-date as

possible. Yet, this would also be very expensive. In this section, we consider a series of

approaches that are intermediate between attempting to execute an existing plan as much

as possible and replanning at every opportunity. These methods fall into two categories:

flexible execution of plans that we have already made, and selective replanning. We have

already seen one form of flexible plan execution implemented in the current BHPN; we

now present some novel extensions.

Satisfaction of existing goals We can also take advantage of serendipity: even though

the particular subgoal, γ , that we are trying to achieve is not yet true, it might be that some

subgoal in a more abstract plan (deeper in the stack) has been satisfied as a result of an

unexpected action outcome or by nature. We can extend the idea of executing the rightmost

executable operation in the plan at the top of the stack, and instead find the deepest (most

abstract) plan in the stack that has a goal currently being expanded that is different from

the rightmost goal (the final goal of the plan) at the next (more concrete) level of the stack.

If there is such a plan, then we should begin execution from the next applicable step in that

plan, instead. Lines 1 through 4 in Procedure 8 provide pseudocode for doing this, under

the assumption that we are using the definitions in Procedure 6 and Procedure 7 as well.

Suppose that after carefully examining object A in the last part of Plan 4 in our example,

the robot was to find that there are already two objects in the cupboard, then it would notice

that the overall goal has already been achieved and return directly, rather than continuing to

put A and then B in the cupboard. This is computationally inexpensive, with running time

on the order of the total number of steps in all the plans on the plan stack, assuming that

82

Procedure 8: Reconsider
Input: ps,b

1 for i in 0..len(ps) do
2 (ω ′,γ ′) = psi.nextStep(b)
3 if γ ′ 6= psi+1.gpsi+1.n then
4 ps.pop(i..len(ps))

5 if p.triggerReconsideration(b) then
6 p′ =Plan(p.gp.n,b, p.α)
7 if p′ 6⊆ p then
8 ps.pop(i..len(ps))
9 ps.push(p′)

computing nextStep for a given plan requires examining each of its pre-images.

Selective replanning We might also wish to increase the robot’s degree of responsive-

ness to change in its beliefs, while still trying to avoid unnecessary re-computation. In

Procedure 8, lines 5 through 9, we potentially reconsider each plan in the stack.

We therefore allow plan instances to have an optional trigger method:

triggerReconsideration(p,b). This domain-dependent function decides whether it might

be advantageous to re-generate a plan for the goal that p was intended to achieve. Such

triggers will be executed at every level after every action, and so care must be taken to

make them computationally light-weight. They are intended to return true in belief states

for which it is likely to be worthwhile to change plans.

If replanning is triggered, then a new plan p′ is created, with the same goal and abstrac-

tion levels as for plan p, but starting from belief state b. If p′ is the same as p, or a substring

of p (which is a natural occurrence, since some operations from p will, in general, have al-

ready been executed), then we go on to consider the next level of the plan stack. However,

if p′ is different from p, then the rest of the plan stack is popped off, p′ is pushed onto it,

and the planning and execution process resumes.

We have experimented with two types of triggers. The first is detection of major percep-

tual events, such as newly detected objects, that overlap with parts of the environment that

83

are relevant to p. The second is re-evaluation of existing plans in the new belief state, and

detection of a substantial increase in cost. Although it takes time exponential in the plan

length, in general, to find a plan, it is only linear time to recompute its cost starting in a new

state. If we cache the cost of the plan in the belief state for which it was constructed, and

find that it has become more expensive due to unexpected changes in the belief, it might

warrant replanning to see if there is a better alternative.

To avoid extraneous computation, we might create a cascade, in which primitive per-

ceptual events may trigger re-evaluation, which may trigger replanning, which may trigger

the abandonment of the remaining planning hierarchy and adoption of a new plan. In our

example, in plan 4, the robot might find that in order to clear the swept volume for picking

object A, it would have to move several additional (previously unseen) objects out of the

way. That information could cause the cost estimate for action of picking A in plan 2 and

even for placing A in plan 1 to be higher than they were initially, and trigger replanning

that might result in the use of a different grasp for A. In fact it could cause the planner to

choose an entirely different object to put into the cupboard instead of A.

If we trigger replanning only when the cost of an existing plan increases, the robot

will not be able to be opportunistic, in the sense of taking advantage of new opportunities

that present themselves. For instance, it may be that the use of an object, C, was initially

discounted because it was believed to be very difficult to pick and place, because it was in

a different part of the room, or highly occluded by other objects. If, during the course of

looking for object A, the robot were to notice that C was actually easily reachable, it might

be desirable to use C instead of A in the plan. In general, detecting that a plan involving

C might be better requires as much time as replanning so one can, instead, always replan

after every action.

84

4.2.2.2 Foresight

We can both reduce the replanning cost and the operational cost of taking extra actions by

allowing our future intentions, as encoded in the plan stack, and our future observations, as

encoded in the belief state, to inform choices we make in the present. We now discuss two

new strategies that we have incorporated into BHPN.

Constraints from Intentions The planning problems solved by Plan occur in the space

of probability distributions over states of the robot’s world. In general, the world-state

space is itself effectively infinite (or, at least, unbounded finite) dimensionality, with mixed

continuous and discrete dimensions. There are many ways of grasping an object or pick-

ing a specific geometric goal configuration within a target region. The planner therefore

requires methods of selecting concrete variable bindings. The use of generators in BHPN

is described in detail in [40]. The generators use information in the current belief state and

goal to select one or more reasonable values for variables. However, this process can be

myopic, potentially making choices that make it more difficult to carry out future parts of

the plan. To make better choices, the planner should be aware of constraints imposed by

the future parts of the plans at every level of abstraction.

This is straightforward to accomplish, structurally. We can simply pass the entire plan

stack into the call to Plan, replacing line 10 in Algorithm 3 with

ps.push(Plan(γ ′,b, p.α.incr(ω),ps)) .

For example, when clearing out the swept volume for picking up A, it might be necessary

to place some objects out of the way. The intention to place A and then B into the cupboard

could be taken into account when deciding where to put these other objects, so that they

won’t interfere with the operations of the rest of the plan3.

3It is important to note that while this reasoning improves plan optimality, it is not required for correctness.
During the time BHPN is performing the operation of placing A in the cupboard, it will, if necessary, move
out any objects that are in the way, whether or not they were placed in the earlier part of the execution.

85

Predicted Observations Another form of foresight is to avoid reconsideration or replan-

ning in the future by taking the robot’s uncertainty into account when performing geometric

planning. For example, knowing that when the robot gets close to an object and looks at

it, the resulting pose estimate will be drawn from the current uncertainty distribution, the

planner should select paths that are less likely to be obstructed when further information

is gathered4. This strategy can improve both efficiency and optimality: efficiency because

replanning is reduced and optimality because the actions are more likely, in expectation, to

be appropriate for the situation.

The mechanisms of reconsideration and foresight described in this section are applica-

ble to most robot domains, but their particular instantiation will depend on each domain.

Similarly, their effectiveness will vary among domains. In the following section, we ex-

plore the instantion and effectiveness of our mechanisms for the NAMO domain.

4.2.3 Navigation Among Uncertain Movable Obstacles

The basic BHPN mechanisms that had previously been used in a pick-and-place domain

were relatively straightforward to apply in the NAMO domain. We only had to make minor

changes in the context of moving very large objects such as adjusting the path planning

and object placement procedures to better model the arm and the object being held. In

this section, we describe the particular methods that were used to implement foresight and

reconsideration in NAMO.

4.2.3.1 Implementation on PR2

We address NAMO as a mobile-manipulation domain in which a real PR2 robot must

manipulate chairs in order to clear its path to reach a goal, as shown in Fig. 20. The robot

is given a basic map of the walls and permanent physical features of the domain, including

4This can be achieved by utilizing the previously introduced ε-shadows [40]. The ε-shadow of an object
is defined to be the volume of space that with probability greater than 1− ε contains all parts of the object.
These ε-shadows can now be treated as soft constraints for a geometric path planner. A heuristic cost penalty
as a function of ε can be applied for each initial intersection with a shadow, biasing the planner to generate
plans more likely to not intersect objects.

86

some objects that it can use as landmarks for localization, but there are obstructing chairs

that it is unaware of when it begins acting. It uses a object-recognition system similar to

the one discussed in Section 4.1 operating on RGBD data from a Kinect sensor to detect

tables and chairs in the environment.

Because the robot is real, we must take uncertainty in actions and observations seri-

ously. We use an unscented Kalman filter to estimate relative poses among the robot and

other objects in the world as well as a volumetric representation of the space that has not

yet been observed [40]. The planning system will ensure that any region of space has been

observed before the robot moves into it, that an object is well localized with respect to the

robot before it attempts to pick it up, and that the robot is reasonably well localized with

respect to the map coordinate frame before it moves the base.

The simulation results included in this chapter are for a realistic simulation of the PR2,

including simulated point-cloud perception and control of all degrees of freedom of the

robot. It includes grasp planning, motion planning with an RRT, and view planning: the

same code controls both the robot and the simulator.

4.2.3.2 The value of reconsideration

Exploiting serendipity is the conceptually simplest optimization mechanism, and does not

require any domain-dependent specification. It occurs most frequently in the NAMO do-

main when the robot performs a look action to determine whether some region of space is

clear. In so doing, it may discover that other regions it has planned to observe in the future

have already been observed in the process.

The selective replanning mechanism requires domain dependent procedures. In the

NAMO domain, we constructed the basic reconsideration trigger as follows:

1. Trigger the first stage of reconsideration if any new objects were detected that overlap

any paths or placements currently being considered.

2. For any path that is under reconsideration, plan a path from the start to the goal,

87

Figure 22: Serendipity example (top row); Reconsideration example (bottom row)

using new information about the domain (including known obstacles and known free

space); if the new path costs less than the original path (by some fixed amount to

avoid needless switching) then trigger symbolic replanning. Also, for any object

placement that overlaps a new object, trigger symbolic replanning.

We also experimented with conditions in which each of the stages of reconsideration were

triggered after every action: this is more computationally costly, but offers the ability to

detect new opportunities that may have arisen to increase optimality.

Fig. 22 shows a very simple example of reconsideration. The robot’s goal is to move to

the right end of the volume. As shown in the first frame, it has not yet observed most of the

environment, so it is shrouded in fog. It makes a plan to move straight through to the end

of the room. Then, as it looks to clear the fog, it finds an obstacle in its path. The original

path and obstacle are shown in gray and magenta in the second frame. The appearance of a

new object triggers reconsideration of the plan. Re-evaluation of moving along the original

path reveals a much higher cost since the obstacle must be moved out of the way. Hence,

replanning is triggered, resulting in a new path, shown in cyan, that avoids having to move

the obstacle. In contrast, the original BHPN algorithm would have proceeded by having

the robot move the obstacle out of the initially computed swept volume.

88

Figure 23: Behavior with and without considering future goals when selecting placements
of obstacles.

4.2.3.3 The value of foresight

We implemented two foresight mechanisms. The first is motivated by the insight that,

in the NAMO domain, the only decisions that can make future action significantly more

costly are decisions about where to place objects. Those should be made with as much

information about future intentions as possible. So, the generator procedures that make

geometric choices about where to place objects when moving them out of the way examine

the entire plan stack, and extract all instances of predicates that constrain some region of

space to be clear. The generator tries, if possible, to find placements of objects that do not

intersect any of these taboo placement regions.

Figure 23 illustrates a domain in which there are two obstacles, and the robot must reach

the end of the hallway. It decomposes the problem into two parts: clearing the left side of

the path to the goal, and clearing the right side of the path to the goal. In the first row,

we see the behavior without foresight: the orange shapes are approximate robot volumes

indicating the swept region to be cleared. It is determined that the green box must be moved

out of that volume, and so a pose just past that region is selected for the box, as shown in

the second image of the first row, and the robot places the box there. While satisfying

the current problem of clearing the left side of the path, this placement is little helpful in

achieving the robots overall goal of reaching the end of the hallway. BHPN does recover:

89

when it is time to clear the right part of the swept volume, both objects are successfully

moved out and the goal is achieved. However, such a recovery carries the cost of moving

the green box twice. In the second row, we see the same choice being made with foresight:

the entire swept volume of the robot is treated as a taboo and, hence, the planner selects

the closet at the bottom as a place for the obstacle, thus avoiding any unnecessary object

motions.

BHPN has an existing mechanism for maintaining free-space connectivity that can also

be seen as an example of this more general form of foresight. It operates under the as-

sumption that the robot will always be required to move again, after the current sub-plan

is finished, and so attempts to keep it as free as possible to continue. When selecting the

placement of an object, the generator ensures that the following paths exist: from the robot’s

current configuration to the configuration for picking the object, with the hand empty; from

the pick configuration to the place configuration, while carrying the object; and from the

place configuration back to the initial configuration, with the hand empty, and with the

object placed in the target location. These three conditions ensure that the pick and place

operations can be planned in detail and that, after placing the object, the robot will be in

the same connected component of free space as it was when it started. In the current im-

plementation, this constraint is always applied; however, there are situations in which it is

important to be able to violate it (e.g., when closing a door behind you) and it will be a

matter for future work to use foresight mechanisms to determine whether or not to enforce

connectivity.

Figure 24 demonstrates this reasoning: there is a relatively small swept volume from

the robot to its goal (shown in the second frame of the top row), but there is an obstacle in

the way. It is a simple matter to move the object out of the swept volume by dragging to

the left, into the hallway. However, at that point, the robot would still not be able to reach

the goal. Thus, a placement for the object is generated in the bottom left of the domain,

ensuring that the robot stays connected to its original pose, and is then easily able to reach

90

Figure 24: Maintaining connectivity of the free space during pick and place.

the goal. In the second row, the blue swept volume is from the robot’s configuration to

the pick configuration; the red volume is from the place configuration back to the original

configuration.

Fig. 25 shows the robot using foresight to take potential future observations into ac-

count. It does so by using the current belief-state distribution on the poses of obstacles to

construct “probability contours,” which represent locations that might possibly be obsta-

cles, depending on which observations are perceived. The robot needs to reach the right

side of the domain, and can choose one of two hallways. Each contains an obstacle, but

the pose uncertainty (shown as a lighter-colored “shadow” around the object) with respect

to the obstacle in the top hallway is larger. The robot determines that it has a better chance

of getting through without having to move an obstacle if it goes through the lower hallway,

even though the geometric distance is longer, and plans the path shown in the image on the

right. Once it approaches and achieves a better estimate of the object location, the robot

finds that it can actually take a shorter path; the bottom frame shows the original path in

gray and the new one in green. In order to do this last optimization, the robot must be

triggering full reconsideration after a new estimate of object location, and not relying on

an increase in the estimated cost of the existing plan to trigger replanning. This type of

optimization has been used in previous work; we mention it here to illustrate the ease of

91

Figure 25: Using possible future observations to inform the choice of plans.

integrating such improvements in our framework.

4.2.4 Experiments

We compared three different versions of BHPN on different simulated domains, illustrated

in Fig. 26. The domains have varying number of objects, object locations as well as start

and goal configurations. All the algorithms include the foresight mechanisms described

earlier; they differ in their approach to reconsideration.

• Original BHPN: does not do any reconsideration, only replanning on failure.

• Aggressive replanning: replans after every action.

• Selective replanning: triggers replanning when new objects are discovered and

when a new path to the goal is shorter than the existing plan by one meter.

For each algorithm in each domain, we measured the total simulated execution time (in-

cluding all planning, simulated perception, etc.). The time column is the ratio relative to

the baseline (original BHPN) times: domain 1 = 1265s, domain 2 = 1020s, domain 3 =

92

Figure 26: Domains: The first three are used in the experiments; the robot start and goal
are in orange and red, respectively. The fourth domain was used to test scalability. In all
cases the robot has no initial knowledge of the objects in the environment; the gray areas
in the last domain show areas that were never explored.

Table 3: Results based on 137 runs. Best results in bold.

Original BHPN Aggressive Replanning
Domain picks/places looks moves time picks/places looks moves time

1 4.75 4.25 12 1 2.1 3.2 7.8 1.01
2 3 5 11.8 1 2 6.3 11.1 1.66
3 3 6 10.3 1 1 5.8 8 1.40

Avg 3.6 5.0 11.4 1 1.7 5.1 9 1.33

Selective Replanning
Domain picks/places looks moves time

1 2 3 6.8 0.57
2 2 6.3 10.7 1.06
3 1 5 7 0.89

Avg 1.7 4.8 8.1 0.81

93

850s, average = 1045s. While these times also capture computations necessary for primi-

tive action executions such as RRT calls for move actions, they do not include the time it

takes to physically execute these actions by the robot. Given that the physcial execution

time is typically highly system and parameter depended we instead report the number of

primitive action executions. For the NAMO domain these actions are pick, place, move,

and look. The results are summarized in Table 3.

The results show that aggressive replanning substantially increases the runtime of our

simulations compared to the original BHPN. This is due to the fact that the current plan

is discarded after every action execution, independed of the outcome or obtained observa-

tions. However, as aggressive replanning always generates plans in the current belief state,

it drastically reduces the number of actions that have to be executed by the robot.

The selective replanning approach attempts to merge the benefits of the original BHPN

and aggressive replanning by avoiding intensive replannings as well as action executions.

And indeed we observe that selective replanning improves execution optimality over the

original BHPN and efficiency over aggressive replanning. The computational efficiency

of selective replanning is also improved over the original BHPN as less computation for

primitive actions is necessary. These results support the concepts introduced in this chapter.

To verify the applicability to very large domains we modeled our office space in sim-

ulation (Fig. 26). The domain covers 100m2 and contains 50 objects. The robot had to

navigate from the top left cubicle to the bottom right cubicle with prior knowledge of only

the permanent obstacles. The robot was successfully able to reach its goal configuration

while only requiring two object displacements. The right most visualization in Fig. 26

shows the robots final belief state.

We also ran experiments on a real PR2, shown in Fig. 20, to demonstrate the feasibility

of this approach on a real robot. Again, the robot had no prior knowledge of the movable

obstacles. Additionally it had substantial motion and perception uncertainty. The under-

lying BHPN mechanisms for robust planning and execution under uncertainty integrate

94

effectively with reconsideration. Frequently using look actions at known landmarks to re-

duce positional uncertainty, the robot was successfully able to reach a goal configuration

outside its current free-space region by manipulating two objects.

4.3 Discussion

In this chapter we presented a vision system allowing a robot to detect even partially oc-

cluded objects in the environment, and building upon these findings, described a hierar-

chical planning and execution architecture that incorporates concepts frequently used by

humans: Reconsideration and Foresight. We showed that these concepts can be used to

improve both efficiency and optimality for integrated task and motion planning and execu-

tion in large and challenging domains. The architecture enabled a real PR2 robot to solve

NAMO domains with state, action and sensing uncertainty.

These results present a major step towards reliable, real-world robotic systems that are

capable of autonomously moving objects out of the way. However, as discussed in Chap-

ter 1, it is not always sufficient to just reason about moving objects out of the way. Instead,

robots should also be able to reason about using environment objects. The next chapter

therefore introduces the Navigation Using Manipulable Objects (NUMO) domain as a gen-

eralization of the NAMO domain that allows the robot to also consider using environment

objects as tools.

95

CHAPTER V

NAVIGATION USING MANIPULABLE OBJECTS

In the previous chapters, we discussed methods that allow robots to autonomously move

objects out of the way. While such capabilities are crucial for autonomous robotic systems

deployed in a wide range of environments, ranging from typical households to disaster

areas, it may not always be sufficient to just reason about moving objects out of the way.

Consider grabbing a box and using it to get up on a higher platform or placing a board

over a gap in order to step over it. While such reasoning patterns can make the difference

between task completion and task failure, they are outside the scope of the NAMO domain.

We therefore now generalize the Navigation Among Movable Obstacles (NAMO) do-

main to the Navigation Using Manipulable Objects (NUMO) domain. In the NUMO do-

main, the robot is not restricted to just the moving of environment objects to clear a path,

but it can also use them as tools to create a path in the first place. While this conceptually

increases the solution space for the robot, the general complexity results obtained in Sec-

tion 1.2 hold for the NUMO domain just as well as for the basic NAMO domain. In the

NUMO domain the robot could use any manipulable environment object and reposition it

to any configuration, again yielding exponential search space complexity. In fact, as dis-

cussed below, many of the methods developed for making the NAMO domain tractable,

such as constraint relaxation [92, 93] and constraint back-propagation [95], can be adopted

to the NUMO domain.

We now present two realizations of the NUMO domain. First, we present a system that

allows a humanoid robot to overcome its inherit shortcomings of limited step width and

height by using environment objects to change the environment geometry to its advantage.

The system is applicable to scenarios in which a single object is sufficient to overcome an

96

obstruction. We then present a second NUMO system that allows a robot to use existing

knowledge about simple structures to also reason about ways of increasing the force it can

assert onto the environment by gaining a mechanical advantage using environment objects.

This chapter assumes full world knowledge, including the position of the robot and all

objects as well as task-related object attributes such as weight, support weight and grasp

and drop primitives. This assumption is loosened in the next chapter.

5.1 Overcoming Geometric Constraints

This section presents a system that allows a humanoid robot to reason about changing

the geometry of its environment to its advantage1. The following systems solves I1UU

problems (see Section 1.2).

Legged robots have unique capabilities to traverse complex environments by stepping

over and onto objects. Many footstep planners have been developed to take advantage of

these capabilities. However, legged robots also have inherent constraints such as a max-

imum step height and distance. These constraints typically limit their reachable space,

independent of footstep planning. In this section we present a system that enabled a real

robot to use a box to create itself a stair step or place a board on the ground to cross a gap,

allowing it to reach its otherwise unreachable goal configuration. Fig. 27 shows an example

execution of a HRP-2 robot using the proposed system.

In order to handle the exponential search space complexity resulting from considering

environment modifications (Section 1.2), our proposed system combines existing work in

footstep planning with the concept of constraint relaxation. The footstep planner is allowed

to violate robot constraints such as maximum step width or height if necessary. While, the

resulting path might not be directly executable by a locomotion controller, similar to usages

within the NAMO domain, it provides a heuristic for determining how the robot should

modify its environment to accomplish the task. For example, in Fig. 27 the initial footstep

1This work appears in [58].

97

Figure 27: Robot decides to place a box in front of the platform to be able to step up the
platform.

plan contains a constraint violation at the edge of the platform. The plan requires the robot

to step higher than it physically can. The proposed system uses this information to guide

the robot to grab the box and place it in front of the platform.

We now describe our method in more detail.

5.1.1 Algorithm

The algorithm takes advantage of existing research in humanoid locomotion planning and

adopts the common approach of separating footstep planning from the locomotion con-

troller [16]. However, to allow the robot to use environment objects as tools these methods

have to be extended.

Considering all possible environment configurations is exponentially complex in the

number of objects (Section 1.2). In order to resolve this complexity we apply the concept

of constraint relaxed planning, which has previously been used to make the NAMO do-

main tractable [94, 95, 97]. For the NUMO domain, we allow the planner to violate the

constraints of the robot in order to guide the decision making towards useful environment

configurations. By creating a plan that violates the constraints, the planner can hypothesize

a scenario where the robot would be able to follow a footstep plan to the goal, if only the

98

environment was locally modified. This allows the planner to focus on these local modifica-

tions. To prevent the planner from unnecessarily violating robot constraints, a heuristic cost

penalty is applied for each constraint violation. The magnitude of this penalty determines

the planner’s willingness to explore detours before considering environment modifications.

Inevitable inaccuracies in actuation that occur on a real robot system make it difficult to

exactly execute a detailed long horizon plan [52]. If the robot is planning detailed motions

based on future environment configurations, the robot risks executing actions not supported

by the environment. We therefore interleave planning and execution in our system (Chap-

ter 4). Later modifications are not planned for until after the robot completed its current

modification and the actual resulting environment configuration is determined2.

Algorithm 9 summarizes the proposed ETAP framework. The algorithm begins with

calling a constraint relaxed humanoid locomotion planner (line 3). In case the resulting

plan violates constraints, an object and a target location to resolve the first violation are

determined (line 4 - 6). The robot then moves to a grasp position, updates its configuration

and grasps the object (line 9 - 14). Again updating the configurations the robot moves to the

object target location and places the object (line 15 - 20). The robot repeats this procedure

until it is at the goal.

5.1.2 Implementation

While the previous section provided a general overview of the proposed system, this section

provides details of our implementation.

5.1.2.1 Constraint Relaxed Planner

The algorithm presented above requires a humanoid locomotion planner extended with the

concept of constraint relaxation. We build on the planner presented in [16]. The planner

performs an A* search through the space of possible footstep actions and locally adapts

2An alternative method is to trigger re-planning if too much divergence from the plan occurs. However
we empirically found that this is too expensive in practice for the long horizon tasks considered in this work
and requires substantial tuning of the re-planning thresholds.

99

Algorithm 9: NUMO for Geometry Constraints
Input: R: robot, S : static objs, O: manipl. objs, g: goal

1 while R not at goal do
2 UPDATE(); // update robot and obj loc
3 moPl← CONSTR RELAXED PLANNER(R,g);
4 if moPl contains constraint violations then
5 v← GET FIRST VIOLATION(moPl);

// get obj and obj target:
6 (o,o t)← RESOLVE VIOLATION(v, R, O);
7 if o is NULL then
8 return; // goal not reachable

9 o g← GET GRASP POS(R,o);
10 pickPl← LOCOMOTION PLANNER(R,o g);
11 R.execute(pickPl);
12 UPDATE();
13 grasp← GET GRASP MOTION(R,o);
14 R.execute(grasp);
15 UPDATE();
16 dropPl← LOCOMOTION PLANNER(R,o t);
17 R.execute(dropPl);
18 UPDATE();
19 drop← GET DROP MOTION(R,o,o t);
20 R.execute(drop);

21 else
22 R.execute(moPl);

the action set if some actions are not possible due to environment properties. To allow

the planner to violate robot constraints if necessary, we extend the action set the planner

uses. We add actions for stepping substantially higher and further than the actual robot

can do. To avoid unnecessary environment modifications, these actions are assigned a high

cost. The increased cost of these actions leads the footstep planner to first explore longer

environment paths before considering paths that include constraint violating actions.

100

5.1.2.2 Constraint Resolution

To resolve a constraint violation, an appropriate environment object and target location

need to be chosen. In analogy to affordance [28], and similar to [27], we include a task-

related object attribute representation. In our implementation, each object contains the

following attributes:

• (x,y,z,θ): position and orientation,

• weight: the object’s weight,

• maxW : the max weight the object can support,

• FS : a set of flat surfaces the robot could potentially step on defined relative to the

object center,

• S : a set of surfaces defined relative to the object center that have to be supported by

flat ground,

• maxD: the max height difference that is allowed between the surfaces in S ,

• G C : a set of possible grasp configurations for the object defined relative to the object

center,

• G : a set of grasp primitives for the object

• D : a set of drop primitives for the object

For a given constraint violation, the algorithm first selects all manipulable objects that

could potentially be used to modify the environment such that the robot could traverse the

according location. In a pre-processing step the algorithm rejects all objects that do not

fulfill the minimum requirements to support the robot. This includes support weight and

the size of the biggest surfaces in FS as well as all objects that are too heavy for the robot

to manipulate. The remaining objects are then further filtered according to the specific

101

violation at hand. For example, if the robot is required to step higher than it can, only

objects whose height is such that the robot can step on it and can step the remaining height

are preserved. Similarly, if the violation required the robot to step further than supported,

the algorithm only keeps objects whose largest side of any surface in FS is at least as

large as the required step width. All remaining candidate objects are then sorted based on

distance to the current robot configuration.

The sorted list is then iterated through and the first object that can successfully be

reached by the robot and placed at the constraint violation location is returned. To verify

reachability of an object the algorithm iterates through G and calls a non-modified version

of the footstep planner presented in [16]3. In order to find a target location for the object,

the planner utilized the 2.5D grid map used by the footstep planner. The planner performs

a local search around the coordinates of the violation and the last valid action within the

actual plan and attempts to place the object. A successful object placement is achieved

if all surfaces defined in S are supported by flat ground with a height difference of less

then maxD. The local search perimeter is set such that a placement at any location within

the perimeter would still resolve the constraint violation. We typically set the perimeter

size equal to a robot step distance. For example, this would allow the planner to place

the object at most step distance from the platform in Fig. 27, still allowing the robot to

step on the platform if on top of the box. If the object is either not reachable or no target

location can be found, the next object in the list is checked4. This procedure is summarized

in Algorithm 10.

3As we are only interested in verifying reachability at this point, we use a relatively large goal threshold
here to reduce planning time.

4Our implementation does not verify reachability between the object grasp configuration and the drop
location. We assume that the robot can at least return to its current location with the object and then move
to the drop location. However, it is straight forward to extend the algorithm to also verify drop location
reachability directly.

102

Algorithm 10: RESOLVE VIOLATION
Input: v: violation, R: robot, O: manipl. objs
Output: o: suggested obj, o t: suggested target loc

1 candidates←{o ∈ O|o can be used to resolve constraint};
2 SORT BY DIST(candidates, R);
3 for o ∈ candidates do
4 if R cannot reach o then
5 continue;// skip o

6 o t← FIND TARGET LOCATION(o, v);
7 if o t is NULL then
8 continue; // skip o

9 return (o, o t);

10 return (NULL, NULL); // Failure

5.1.2.3 Object Grasping and Dropping

If the robot has reached the grasp configuration for an object it needs to grasp the object.

Similarly if it has reached the drop location for an object it needs to drop the object. To

achieve this the planner simply selects a motion primitive according to its configuration

relative to the object or target location.

In our implementation the motion primitives are sets of precomputed motions defined as

empirically sampled joint-space configurations. The joint angles are determined for differ-

ent objects and grasp configurations. To execute a specific primitive, a spline-interpolated

trajectory of the according joint angles is computed. The trajectories are tracked by PID

control. The weight of the object is then incorporated or removed from the robot model

respectively.

5.1.3 Experiments

To verify the proposed algorithm, we implemented it on an actual robot system and in

simulation.

103

(a) Start configuration (b) Constraint relaxed planning
output

(c) Constraint resolution output

(d) Configuration after object
pickup

(e) Drop planning output (f) Drop motion execution

(g) Constraint relaxed planning
output

(h) Locomotion to goal configura-
tion

(i) Final configuration

Figure 28: Proposed humanoid locomotion planning system: Stairs Example.

5.1.3.1 Real Robot

We implemented our algorithm on the HRP-2 robot platform and utilized existing locomo-

tion and balance controllers for the robot [73] in our experiments. We also used a real-time

motion capture system [96] to localize the robot and all objects within the 25m2 workspace.

We tested our system in different scenarios.

Stairs The first scenario can be seen in Fig. 28. In this setup the robot was commanded to

take on a configuration at the end of the platform in front of it, as visualized in Fig. 28(a).

The platform was higher than the robot can step.

Fig. 28(b) visualizes the output from the constraint relaxed planning step (Algorithm 9,

104

(a) Starting configuration (b) Constraint relaxed planning
output

(c) Constraint resolution output

(d) Configuration after pickup (e) Drop planning output (f) Drop motion execution

(g) Constraint relaxed planning
output

(h) Locomotion to goal configura-
tion

(i) Final configuration

Figure 29: Proposed humanoid locomotion planning system: Bridge Example.

line 3). The constraint relaxed planning step found a path to the goal, however it required

the robot to step up higher than it physically can. The constraint resolution step (Algo-

rithm 9, line 6) then determined an object to resolve the constrained violation at hand as

well as a suitable target location, visualized in Fig. 28(c). The planner picked the box as

it could support the robot and had the correct height to allow the robot to step on the box

itself and consecutively on the platform. The entire bottom surface of the box was required

to be placed on flat ground. The robot was then guided to pickup the selected object (Algo-

rithm 9, line 9 - 14). Once the robot picked up the object (Fig. 28(d)) and updated its and

the object’s configurations, the robot was guided to the target location for the object and

executed the appropriate drop motion primitive (Algorithm 9, line 15 - 20), visualized in

Fig. 28(e) - 28(f). The algorithm then looped and tried again to find a path to the goal given

105

the new environment configuration. Fig. 28(g) shows the output of the constraint relaxed

planning step. This time a path to the goal was found without any constraint violations

and the system guided the robot to the goal configuration without any further environment

modifications (Fig. 28(h) - 28(i)).

Bridge Fig. 29 shows a second execution example. In this setup the robot was tasked

with reaching the other platform. The gap between the platforms was too wide for the

robot to step over. The constraint relaxed planning steps determined that the robot needs

to cross the gap in order to reach the goal. The planning system then guided the robot to

pick up the board and drop it across both platforms. The planner picked the board as it was

longer than the gap. Additionally, the board only required 8cm on each side to be placed

on flat ground if dropped. This allowed the robot to drop it across both platforms. After

the robot verified that it could reach the goal given the new environment configuration, the

robot stepped over the board and reached its goal configuration.

5.1.3.2 Simulation

We additionally performed simulated experiments over 10 different domains with varying

sizes and difficulties. The domains contained between 3 and 18 objects and the robot

typically needed to perform between 1 and 3 environment modifications to reach its goal

configuration. Fig. 30 shows an example domain that required the robot to perform 2

environment modifications to reach its goal.

The average computation time for the constraint relaxed planning step was 30.36s when

no path without constraint violations existed and 3.06s otherwise (typically after the robot

modified the environment). We can see that if no direct path to the goal existed this step

took roughly 10x as long as if a direct path existed. This is because we used a very high cost

for actions that violate robot constraints to avoid unnecessary environment modifications.

Consequently the planner explored a larger space before using the constraint violating ac-

tions. If no constraint violations were necessary, the planner could explore the space more

106

(a) Starting configuration (b) Final configuration

Figure 30: Simulation visualization. The robot is tasked with getting on top of the plat-
form. The platform is higher than the robot can step. Additionally it cannot step over gap.
The robot placed the board over the gap and used a box to step up the platform.

efficiently.

The average time for determining an object to resolve a constraint violation was 2.82s.

The planning times to the grasp or drop location was 8.69s. Interestingly, the average

planning times for a path to a pickup or drop location were almost 3x higher than for

the constraint relaxed planning case if no constraint violations were necessary despite the

planner behaving similar in these cases. This was caused by the fact that our implementa-

tion required a substantially higher goal configuration accuracy for pickup or drop location

planning than for the final goal configuration.

The average execution time for the robot including pickup and drop motions was 84.52s,

dominating the planning time.

5.1.4 Discussion

In this section we presented a planning system for the NUMO domain that is applicable to

domains where a single object can be used to overcome an obstruction. The system was

successfully executed on a real robot and enabled the robot to reach a goal configuration

outside of its reachable space by building itself a stair step and a bridge. To the best

of our knowledge this is the first time a humanoid robot showed such a behavior fully

autonomously.

107

5.2 Overcoming Force Constraints

The previous section introduced a realization of NUMO for geometry constraints. We

now present a NUMO realization for force constraints5. The following framework requires

access to all relevant attributes of applicable physical structures and operates on IkUU

problems (see Section 1.2).

Just like humans, robots have a maximal force they can apply to the environment. Hu-

mans overcome their force limitations by utilizing knowledge about mechanical advantage

afforded by possible combinations of objects and find creative solutions such as using a

rod and an office cart to achieve leverage, or weighing down a cart with books to create

a battering ram of sufficient mass and momentum. Robots should be able to show similar

behavior. While a general and complete solution to automating these kind of reasoning

patterns is beyond the state of the art, we argue that aiming for such abilities is a crucial

research direction and present a first step into this direction as a realization of the NUMO

domain.

Our approach is based on two significant properties. First, our system reasons back-

wards from the desired outcome to the force required to achieve it. This builds on seman-

tic [31] and geometric [95] backward chaining, by adding dynamic goals and constraints.

We achieve this by exploiting Newtonian mechanics, which relate force to object motion,

to solve for required forces. This is an analytical solution which is more efficient than

sampling forces and computing outcomes over a broad set of simulated trials. Second, we

leverage prior knowledge about how objects might be combined to achieve useful effects.

We formalize object combinations in terms of constraints on their relative configuration.

This representation defines a mapping between a sub-space of possible object configura-

tions and the outcomes which these configurations can be used to produce. Together, these

define the necessary components for a regression-based planner in object-configuration

5This work appears in [61].

108

space. The first gives a precondition for reasoning from motion to force requirements, and

the second provides a way of back-chaining from force requirements through a compact

space of object configurations.

A baseline approach for regression planning in object-configuration space uses simple

back-chaining. This means making sequential decisions without altering previous decisions

except when no solution can be found. We argue that, although well-defined, this baseline

approach is not sufficient because the choices at different levels of the plan fundamentally

depend on each other.

To address this challenge, we present a method that reduces the search space by per-

forming constraint propagation using relative configuration constraints across multiple lev-

els of the plan. Our approach allows the planner to jointly consider multiple objects, and

efficiently prune away incoherent configurations.

We demonstrate constraint propagation and baseline regression planning applied to

the challenging problem of opening a jammed door. Our results show that simple back-

chaining is too aggressive for multi-object placement problems, and cannot discover so-

lutions which require decisions in different orders, such as moving a fulcrum into place

before searching for lever configurations. In contrast, constraint propagation is capable of

finding solutions even in cases where objects must be placed out of the order defined by the

constraints, such as stacking books on a cart before ramming it into a door.

5.2.1 Problem Specification

We specify the environment as the following set of entities:

• R - a robot,

• S - a set of static objects,

• O - a set of movable objects,

• G - a goal object which must be moved.

109

The task is to determine a plan that allows the robot R to move the goal object G in some

direction, even if this requires more force than the robot can exert on its own. We focus on

two possible motions of a door, depending on its swing direction and state:

1. Jammed, partially opened doors that open inwards, as in Fig. 1(a) and

2. Locked, closed doors that open outwards, as in Fig. 1(b).

The planner is allowed to utilize any objects of the set O as well as S. As the previous

section, this work assumes full world knowledge such as object locations and properties.

Object properties are defined as physical attributes including weight, shape and affordances

[28] such as rollable, graspable and stackable. We also assume that an estimate of the

required force or impact momentum to open the door is available.

5.2.2 Approach

There are two critical components for a regression-planner to be capable of using objects

in the environment to achieve goals. The first is a physics model which encodes rigid-body

dynamics, and can be used to solve for the forces required to achieve desired motions. This

requirement can be satisfied by an off-the-shelf rigid body physics engine. The second

requirement is a compact representation which maps object configurations to the forces

they can achieve. This issue is more challenging, and is the focus of the current work.

In this section we present a constraint propagation approach which allows the planner

to restrict its attention to coherent configurations of objects. The core insight is that before

searching over object configurations, constraints such as necessary mechanical advantage,

required force transmission angle and fulcrum point height can be used to reduce the search

space without eliminating potential solutions. The reduced search space can then efficiently

be sampled.

To implement this idea for the jammed-door problem our algorithm utilizes two sub-

routines to, depending on the state of the door, determine either a lever or a battering ram

110

mechanism. We develop a constraint representation for each mechanism and describe how

they can be instantiated using arbitrary objects available in a scene.

5.2.3 Lever Like Structure

We first develop a constraint representation for lever-like structures, a common force-

amplifying mechanism. We denote the maximal force the robot effector can apply as Fr

and the minimal force needed to move the target object as Ft . The robot should consider

the lever system for cases in which Fr < Ft . In this case the planner needs to determine a

lever configuration that allows for a mechanical advantage such that the effective force on

the target (e.g. door) is at least Ft .

A lever system defines a relation between four objects: the lever itself ol , a fulcrum

o f , the payload op (i.e. the door), and the effort oe (i.e. the robot effector). We then define

the contact points for each pair of objects i, j of the lever system as cpi j, which specifies

a contact between object oi and object o j, in the coordinate-frame of object oi (e.g. cpdl

denotes the point on the door at which the lever applies force). Where necessary we use a

superscript w to denote the corresponding world-frame point.

Leverage constraints must define the space of legal poses for the fulcrum and lever

which satisfy the following properties:

1. The lever end is in contact with the target payload (i.e. cpld and cpdl exist and corre-

spond to the same world point).

2. The effort point cple on the lever ol is reachable by the robot effector oe.

3. The fulcrum o f is placed such that the attainable mechanical advantage given the

robot’s maximal force output Fr is sufficient for the required payload force Ft .

In addition, neither the robot nor the lever object should be in collision with the envi-

ronment other than at the intended contact points.

111

Leverage constraints are then formalized by the following necessary system of equa-

tions:6

||cpld− cpl f ||+ ||cpl f − cple|| ≤ length(ol) (18)

Ft ≤
Fr||cpl f − cple||
||cpld− cpl f ||

(19)

|~FD · ~[cpw
ld− cpw

l f]| ≤ ε (20)

cpw
el ∈ C reach

R (21)

Where length(ol) denotes the length of the major axis of object ol , ~FD the force direc-

tion necessary to open the door and C f ree
R the configuration space region that the robot can

reach. Eq. 18 states that the sum of the distances between the fulcrum point and contact

points cannot exceed the length of the object. Eq. 19 adds an additional constraint on these

distances ensuring that the minimum mechanical advantage needed to resolve the constraint

is achieved. Eq. 20 requires that the angle between the desired force transmission direction

and lever has to be close to 90◦, and Eq. 21 ensures that the robot grasp point of the lever

has to be within the same free space region as the robot.

Assuming one was given an assignment of objects, these equations can be used to con-

struct the space of valid lever configurations in the world frame. We denote this space as

the leverage constraint space. We can further subdivide this space into two sub-spaces:

1. The fulcrum constraint-space: a 3D volume in which the fulcrum point must lie such

that all four conditions are satisfied for a given lever.

2. The lever constraint-space: a 2D plane defined by the fulcrum, the payload, and their

respective normals (must be anti-parallel).

Note that these sub-spaces are interdependent: the set of valid fulcrum points depend on

6The lever object also has to be able to withstand the forces without breaking. While this can be computed
using Euler-Bernoulli theory, we assume that objects do not break in this work.

112

the orientation of the lever which will be placed against it. This implies that, in principle,

we must re-compute the fulcrum constraint space for every candidate assignment of the

lever, and vice-versa.

We resolve this by placing additional constraints on the lever which permit us to solve

for its orientation uniquely. These additional constraints are (a) that the lever must be

horizontal, and (b) that the payload and action are at opposite extrema of the object. The

first of these is chosen because it maximizes the applied force in the horizontal direction as

required for opening the door7, and the second is chosen because it maximizes the leverage

effect for the given object. This allows us to focus on the fulcrum constraint sub-space.

The fulcrum constraint space is only well defined for a given assignment to the lever

and fulcrum object. In order to be able to use the constraint space as a sampling space

for determining objects and configurations simultaneously, we construct an upper bound

constraint space that is guaranteed to contain the fulcrum. This is done by instantiating the

constraint space construction with the least limiting objects.

Procedure 11 summarizes the proposed subroutine. To be able to enforce Eq. 21 the

procedure begins by computing the reachable space of the robot, line 2. Further, to obtain

an upper bound on the distance the fulcrum point has to have to the door, the procedure

determines the length of the longest object in the environment that could be used as a lever.

Given this length, Eq. 18 and Eq. 19 can be used to solve for the distance ||cpdl − cp f l||,

yielding the desired upper bound (line 3-4). To build up the fulcrum constraint space, the

procedure now does a 360◦ sweep with the computed distance from the edge of the door

and checks for valid configurations. This is done by verifying that the robot could reach

the potential endpoint for a lever placed at that configuration (Eq. 21), there is no collision

with the door itself and the force transmission angle is within ε (Eq. 20). The resulting

constraint space is guaranteed to contain the fulcrum point if a solution exists. Fig. 31(a)

7The alternative involves placing the lever at an angle to the horizontal and either continuing to apply
forces in the horizontal plane (sacrifices leverage), or applying forces along the new lever plane. This results
in force components along the contact surfaces that may result in slippage.

113

Procedure 11: 1: Lever Structure
1 cs← /0;
2 Creach

R ← getReachableSpace(R);
3 ln← getMaxOb jLength();
4 maxF pDist← Frln

Ft+Fr
;

5 l← bar(maxF pDist);
6 while rotate l at door edge do
7 if cpw

el would not be in C reach
R or

8 l in collision with door or
9 force transmission angle difference within ε of 90◦ then

10 continue;

11 cs← cs∪{space covered by l with door height};
12 cs← cs \{space not coverable by edges};
13 while not at threshold do
14 o f ← getRandomFulcrumOb j();
15 edge← get random edge on o f ;
16 place(o f ,cs,edge);
17 ol ← getOb jMinLen(edge,door);
18 place(ol,edge,door);
19 if place succ and force direction correct then
20 return placements;

21 return ()

visualizes an example output of this step.

Further, as the fulcrum point has to lie on an edge of an environment object, we can

limit the height of the computed constraint space to the largest height of any potential

environment object, reducing the constraint space even further. Fig. 31(b) shows the final

constraint space for this example.

Given the constraint space, the procedure then proceeds by sampling valid parameter

assignments. This is done by randomly selecting an edge of an environment object that

could be used to create a fulcrum point8 and placing it at a sampled configuration within

the constraint space. Given this configuration, the procedure computes the minimal length

an environment object needs to have for this particular configuration, randomly selects

8In our implementation these objects were determined based on their height relative to the robot
workspace and the estimated slippage.

114

(a) Contraint space after 360◦ swipe. (b) Contraint space after potential fulcrum objects
are considered.

Figure 31: Constraint space computation. The constraint space is visualized in red.

one of the possible objects and attempts to place it. This is repeated until either a valid

configuration is determined or the user defined number of attempts is exceeded, line 13-20.

5.2.4 Battering Ram Structure

Next we consider the subroutine for determining a battering ram for cases in which the

door is locked and opens outwards. The planner needs to determine which object to use as

a ram, and where to place it such that it has a clear path to accelerate into the target object.

In this section we develop a constraint representation for a battering-ram using ground-

supported (non-handheld) objects such as an office cart. The key concept that allows a

battering ram to be a multi-object structure is that additional objects can be attached to a

mobile body to increase its mass and momentum.

Overall, a battering ram system defines a relation between the target body ot , a mobile

body om to use as a ram, and zero or more auxiliary bodies (oi)
k
i=0 which the robot can

use to augment the mass of om. Executing a ram action involves accelerating om over a

linear trajectory which terminates at the desired contact point cptm on the target body. To

define the action we must therefore specify appropriate initial poses for each object in the

system. We use ip j
i to denote the initial pose of object oi in the frame of o j, and ipw

i the

corresponding world pose.

Ram constraints must define a space of valid initial poses ipw
m for for the ram, and the

115

local configurations (ipm
i)

k
i=1 of all k auxiliary bodies which satisfy the following proper-

ties:

1. The total mass M(om)+∑
k
i=1 M(oi) is large enough to provide the necessary impact

momentum for some impact velocity vi.

2. The distance between om and ot is large enough to attain vi given the maximal appli-

cable force Fr.

3. The swept volume of om along a linear trajectory between ipw
m and cpw

tm is collision-

free.

4. All auxiliary objects oi
a are statically supported by om.

Given an estimate of the required impact momentum pt , we can then place mass and po-

sition constraints on the mobile body using the equations for momentum, work and kinetic

energy:

pt = mv (momentum) (22)

Frd =
1
2

mv2 (work and kinetic energy) (23)

with d denoting distance and m mass. This yields the following constraints:

d ≥ p2
t

2mFr
(distance constraint) (24)

m≥ p2
t

2dFr
(mass constraint) (25)

Eq. 24 states the minimum distance needed for an object with mass m and a maximal

robot force Fr. Eq. 25 on the other hand expresses the minimum weight an object has to

have to achieve the necessary impact momentum given d and Fr.

As with the lever system, the battering-ram system contains interdependent constraints:

the necessary mass of om depends on how much space the robot has to accelerate it before

116

Procedure 12: 2: Ram Structure
1 max d← getMaxDist(door);

2 min m← p2
t

2max dFr
;

3 for o ∈ O do
4 if o.m > min m or o not manipulatable then
5 continue;

6 d← p2
t

2o.mFr
;

7 try(o, d, door); // check collisions etc.
8 if succ then
9 return (o, d);

// no solution found, attempt to increase weight:
10 for o ∈ O do
11 if o not manipulatable then
12 continue;

13 m+← p2
t

2max dFr
−o.m;

14 attemptWeightIncrease(o,m+);
15 if succ then
16 d← p2

t
2o.mnewFr

;
17 try(o, d, door);
18 if succ then
19 return (o, d, addedOb js);

20 return ()

it impacts the target object, and the necessary space depends on the (maximum) available

mass of the mobile body. We address this by first assuming that the mass of an object is

fixed and attempting to find a solution according to the constraints. If this is not possible,

we reason about how much the mass has to be increased according to the maximal distance

available.

Procedure 12 summarizes this subroutine. The function first determines the actual max-

imal distance available in the environment and then uses Eq. 25 to compute the minimum

mass necessary to achieve the required impact momentum. Given this information, the pro-

cedure now iterates through the list of movable environment objects. For each object that

is heavier than the required weight and the robot can manipulate, it is verified if it could be

117

used (line 3-9). In our implementation this verification step included collision checks from

the robot’s current configuration to the object, from the object’s configuration to its target

location and finally for the swept volume necessary to accelerate the object. The first object

that is found to work is returned. However, if no object is available in the environment that

fulfills the weight constraint, this step cannot discover a solution.

In that case the mass constraint can be propagated forward and the procedure attempts

to increase the weight of existing objects in the environment such that the necessary mo-

mentum can be achieved. This is summarized in line 9-19. The procedure starts by iterating

through objects the robot could use and utilizes Eq. 25 to compute how much mass needs to

be added to the object such that, given the maximal available distance, the required impact

momentum can be achieved. The procedure then attempts to add auxiliary environment

object to the mobile object such that its mass is increased by the required amount. This

was prototyped in our implementation by iterating through the objects in the environment

that the robot can carry and attempting to place them collision-free on the object9. If this

was successful, the procedure computes the new minimal acceleration distance based on

the updated weight and the same verification step as above is called to ensure collision-free

motions. If successful, the object to use, distance and list of objects to add to the object

prior to acceleration are returned.

5.2.5 Evaluation

We have implemented the proposed algorithm using the dynamic simulator DART [68]

and performed 1000 randomized experiments on a 10m× 10m workspace with uniformly

sampled number of objects (3−10), object sizes, object weights, object locations as well as

required force (40−80N) for jammed inwards opening doors and momentum (80−120Ns)

for outwards opening locked doors. For inwards opening doors, the door was set to be

jammed at a 30◦ angle. The robot’s maximal force was set to 30N. The environments were

9Note that in general it also has to be verified that the objects are rigidly attached such that they do not
keep moving upon impact.

118

(a) (b) (c)

Figure 32: (a) Constraint propagation method with constraint space. (b) Solution for a
different run. (c) Rejected configuration based on force direction.

generated such that a solution exists by ensuring that for jammed doors at least one long

enough object is presented, and for locked doors either a heavy enough movable object is

present or the required weight could be added to a movable object. Fig. 1(a) and 1(b) show

example domains.

Depending on the state of the door, the planner attempts to construct an appropriate

structure to gain the necessary mechanical advantage: for inwards opening jammed doors

the planner attempts to find a lever like structure and for outwards opening locked doors

battering ram like structures. We will now iterate on these sub-procedures in turn.

5.2.5.1 Example Solutions

Lever Fig. 32 shows example solutions as well as a rejected sample for finding lever

structures for an environment similar to Fig. 1(a). The constraint propagation method de-

termined that in general an edge on the cart could be used as a fulcrum point and attempted

to place an edge of the cart in the constraint space. If the algorithm found a solution, it was

obtained after an average of 16 samples. Fig. 32(c) shows a configuration that was rejected

by the algorithm. The configuration was rejected because the contact force between the

cart and the lever was opposing the force direction the robot needed to apply to the lever.

119

(a) Superimposed direct solutions. (b) Solution obtained by adding books to the cart.

Figure 33: Battering ram example solutions.

Battering Ram Fig. 33(a) shows two separate solutions superimposed for an environ-

ment similar to Fig. 1(b). While the small cart needed to be placed further back from

the door than the printer, both solutions allowed the robot to achieve the necessary impact

momentum.

Fig. 33(b) shows a solution for a similar environment, however without the cart and

printer from the previous solution. The only movable object remaining, the grey cart,

was not heavy enough to achieve the required momentum within the available space. The

determined solution therefore included placing books, originally located on the table, onto

the cart. The updated weight of the cart was then used to find the configuration visualized in

Fig. 33(b) as a solution. Similar cases occurred in 27% of all solutions requiring battering

ram structures for which an average of 50.6kg needed to be added to objects.

5.2.5.2 Failure Cases

While all generated environments were theoretically solvable, only 82% were actually

solved by our algorithm. The main failure points occurred during attempts to find a batter-

ing ram structure and were caused by objects, other than the one selected, being located in

front of the door. This prevented a collision free acceleration of the chosen object.

Additional unsolved environments included failures to find a lever structure before hit-

ting the sample threshold, which was set to 20 in our implementation.

120

5.2.5.3 Computation Time

If a lever like structure was needed, the algorithm first had to compute the free space re-

gion containing the robot in order to construct the constraint space. This was done using

a Breath-First-Search with a grid resolution of 20cm and took 5.5s on average. The re-

maining construction of the constraint space region then took 1.24s. An average of 16

configurations of potential fulcrum points and lever objects needed to be tested within the

constraint space before a valid solution was found. This took 1.37s on average, yielding

an overall average computation time of 8.11s for finding lever structures. Determining a

battering ram structure took an average of 1.4s.

5.2.5.4 Comparison

To be able to evaluate the usefulness of the constraint propagation method more generally,

we implemented the baseline approach described in Section 5.2 for finding lever structures.

Recall that the baseline regression-planning approach involves searching over object

configurations sequentially, in the order defined by the constraints. However, even for a

single object, the search space is too large for an exhaustive search. We must therefore use

heuristics to prioritize the configurations to explore, which are difficult to define given the

interdependence between choices of the planner.

The algorithm begins by selecting a specific contact point with the door cpdl . To find

a good cpdl , the algorithm samples a set of cpdl candidate points. Fig. 34(a) visualizes

an example output of this step. The obtained points are then sorted according to a custom

scoring function (the heuristic) defined as a weighted sum of the force required at this

point to release the door and the height of the point relative to the robot’s workspace. The

algorithm then iterates through this sorted list of candidate points and attempts to find a

fulcrum point. As a fulcrum point always has to lie on the edge of an object, the algorithm

first determines edge points that form a collision-free line with cpdl . To achieve this, an

infinitely long lever is placed at cpdl and rotated 360◦. Every collision point with an edge

121

during this rotation constitutes a potential fulcrum point. Fig. 34(b) visualizes an example

collision. However, fulcrum points can not be on the target object itself and the angle

between the lever and the desired force direction has to be roughly 90◦. Collision points

that do not fulfill these requirements are therefore rejected. Fig. 34(c) shows an example

of a collision point that was rejected because of the angle relative to the required force

direction.

For collision points that are not rejected, Eq. 19 is now used to compute cpel . Eq. 18

then directly yields the minimal length an environment object has to have such that the

required mechanical advantage can be achieved. This information is now used to limit the

environment objects that are considered to be used as a lever. If any of these candidate

object can be fitted, the procedure returns.

This method is conceptually simple and computationally efficient as it is not necessary

to construct the reduced search space directly. However, it has two substantial shortcom-

ings:

1. The method does not reason about creating fulcrum points by first moving an object

to a different position.

2. It is not obvious where to backtrack to if no solution could be found.

The first shortcoming does not allow the algorithm to solve scenarios as depicted in

Fig. 1(b). The second shortcoming makes it difficult to determine that no solution exists

as a different choice during the search, such as the contact point with the door, could have

permitted a solution. For example, if the initial cpdl was chosen too high in Fig. 34 the cart

would not have been considered as a fulcrum point despite yielding a solution. In general, it

is not obvious which decision during the planning stage caused a failure and the algorithm

potentially has to evaluate multiple choices at each level of the plan.

If a solution not requiring to first move a fulcrum object into position exists, such as

in Fig. 34, the algorithm returns a solution within 3.4s on average. This is almost 60%

122

(a) Contact point samples. (b) Infinite lever.

(c) Rejected sample due to force direction. (d) Valid fulcrum point.

Figure 34: Example configurations.

faster than the proposed method, which always computes the reduced search space first.

However, if no simple solution exists, the methods takes 64.2s on average to return as the

algorithm backtracks through the entire search tree and iterates through all cpdl samples,

40 in our implementation, before declaring failure.

We can see that our proposed method is outperformed if simple solutions exist, as the

computation of the reduced space is computationally expensive. However, our proposed

method is able to find solutions for more complex scenarios.

5.2.6 Discussion

In this section we addressed the combinatorial search complexity inherent to multi-object

configuration problems by back-propagating physical constraints between useful combina-

tions of objects. Our method is applicable to domains in which the robot has access to all

relevant attributes of applicable structures and was successfully applied to the problem of

123

autonomously escaping a room with a jammed door using available objects. The algorithm

was able to chose between constructing a lever for prying the door, ramming it with a cart,

and even loading the cart with books to attain the required momentum.

While, to our knowledge, this is the first time these reasoning patterns have been ex-

hibited autonomously, much work is still required for a real robotic system to reliably use

environment objects as tools. From an algorithmic perspective the system should be able

to automatically determine the physical constraints imposed by the task. In addition, the

back-propagation of these constraints needs to be generalized. From a practical perspec-

tive, the system needs to be able to handle the uncertainty and imperfect knowledge present

on a real robotic system. In the following chapter, we therefore present a system that ex-

tends the NUMO domain to cases where the robot has substantial initial state uncertainty

and only obtains environment information through the use of onboard sensors.

124

CHAPTER VI

NAVIGATION USING MANIPULABLE OBJECTS WITH ONLY

ONBOARD SENSING

The previous chapter introduced the NUMO domain as a generalization of the NAMO

domain and presented two complete systems for the cases of overcoming geometric and

force constraints. However, both systems assumed full world-knowledge. In this chapter

we present a system that allows a robot to reason about using a environment object to

overcome an obstruction despite substantial lack of initial state information1. The system

is able to solve I1UU class problems (Section 1.2).

Suppose one is trapped in a room with burning gasoline. The human searches the

environment for something that can be placed over the gasoline, finds a long enough board,

places it over the fire and escapes. Typically, such situations can not be anticipated a-priori,

and no predetermined action plan exists. Rather, the present situation and objects have to

guide the actions online. Possessing such capabilities becomes essential for robots that are

expected to operate autonomously in complex, unstructured environments such as disaster

areas.

To bring robots closer to such capabilities, this chapter presents the first framework

that allows a robot to reason online about using an environment object to facilitate its task

completion. To understand the value of such a framework, consider the example visualized

in Fig. 35(a) in which a robot is tasked with escaping a damaged building. As typical for

such scenarios, we assume that the robot has access to a map containing the static environ-

ment properties, but has no knowledge about the existence, size or location of non-static

environment objects and no knowledge about any potential structural damages. Unaware

1This work appears in [62].

125

(a) Initial environment configuration. The robot is
not aware of the location of any non-static environ-
ment objects or the hole in the floor, which prevents
the robot from escaping the building.

(b) The robot successfully escapes the building by
using a board it found in the environment to get over
the hole.

Figure 35: Example execution of the proposed framework.

that the floor has been critically damaged, making the only exit unreachable, our system

starts by computing a motion plan for the robot to escape the building using the exit. As

the robot executes the motion plan it obtains sensor readings about the environment and

eventually detects the hole in the floor. Similar to existing systems such as [47], our system

re-evaluates the current path based on this new information and realizes that there is no

alternative path to exit the building. In contrast to existing work however, our method does

not just declare failure and stop the robot. Instead, it guides the robot to evaluate the envi-

ronment for ways of overcoming the obstruction. For the example in Fig. 35(a), the robot

searches its environment, finds a long enough board in the room, places it over the hole and

successfully escapes the building. Fig. 35(b) visualizes this successful escape. We are not

aware of any other method that would have enabled the robot to escape this situation.

To achieve such behaviors, the proposed framework builds upon execution monitoring

(Chapter 4) and constraint relaxed planning (Chapter 5). First, it uses execution monitoring

to determine online if the current path is obstructed. If an obstruction is detected, our

method utilizes constraint relaxed planning to determine if the obstruction can be avoided

or not. For cases in which an obstruction cannot be avoided, the framework determines

what properties (e.g. dimensions) an object needs to have to be helpful in overcoming the

126

obstruction. The robot is then guided to search the environment for any object with these

properties. If a suitable object is found, the framework computes the necessary grasp and

drop motions and finally guides the robot to use the object to overcome the obstruction.

6.1 Overview

We now provide an overview of the proposed system before discussing implementation

details in the following section.

6.1.1 Assumptions

We assume that the world is static and that the robot has access to a map containing im-

mobile environment objects such as walls and stairs. We do not assume that the robot has

a-priori knowledge of any structural differences between the real world and the map or of

the existence or location of manipulable environment objects prior to any sensing actions.

The framework focuses on cases in which a single object can be used to resolve an

obstruction. We also assume that obstructions can be solved independently.

6.1.2 Framework

The framework, as visualized in Fig. 36, is initialized by computing a motion plan for the

robot from its current location to the goal configuration. To be able to handle obstructions,

the framework uses constraint relaxed path planning (Chapter 5). In contrast to traditional

motion planning systems, that either return a sound path or no path at all [52], the constraint

relaxed planning system might return a path that violates robot constraints as it treats ob-

structions as soft constraints rather than hard constraints. Consequently, if no alternative

path existed, this planning step could return a path that requires the robot to move over a

gap. While such a path would not directly be executable by the robot, constraint relaxed

planning provides two crucial insights. First, it establishes whether a low cost path to the

goal without obstructions exists. Second, if no such paths exists and obstructions need to

be overcome, it provides information to subsequent planning steps about which obstruction

127

constraint relaxed path planning

path contains
obstructions?

sense environment

no

path still
clear?

no

execute path as
far as sensed

yes

determine necessary
object atributes

yes

search for object

found a
suitable
object?

mark obstruction
as unsolvable

no

use object to
clear obstruction

yes

Figure 36: Flowchart of the proposed framework.

needs to be cleared. While this property was only utilized to reduce the search space in

Chapter 5, the proposed framework explicitly uses this information to gain insight into the

kind of object the robot needs to search for in order to be able to clear the obstruction.

To handle the fact that the constraint relaxed planning step could either output a sound

path or a path containing constraint violations, the proposed framework branches. If the

constraint relaxed planning step finds a path to the goal without obstructions, the robot is

tasked with moving along the path while continuously sensing the environment for potential

obstructions. In case an obstruction is intersecting the path, the framework guides the robot

to evaluate the environment for options to overcome the obstruction.

To find helpful objects in the environment, the framework directly utilizes the output

of the constraint relaxed planning step to determine the necessary properties any suitable

object needs to have. It then controls the robot to search the environment for such an

object. Note that this process stands in contrast to traditional object recognition problems

(e.g. [69]) in which the task is to find a specific object. Here, the goal is to find any

object that is usable by the robot. If a suitable object is found, the frameworks proceeds by

128

(a) Obstruction detection. The green polygon indi-
cates the detected obstruction.

(b) Constraint relaxed planning step output. The
red portion of the plan indicates a constraint vio-
lation, requiring the robot to resolve the constraint
prior to following this part of the plan.

Figure 37: Obstruction detection and constraint relaxed planning step examples.

guiding the robot to use the object to overcome the obstruction. Independent of whether this

operation succeeds or fails, the framework loops. This looping mechanism allows the robot

to just treat the environment configuration resulting from the repositioning of an object as

a new problem instance. In turn, this enables the robot to recover from failure situations

in which the usage of an object did not result in the anticipated outcome (e.g. a gap is not

completely covered).

6.2 Implementation

While the previous section provided a general overview of the proposed framework, we

now provide a detailed description of an actual implementation and demonstrate example

outputs. Our realization of the general framework described above focuses on cases where

ground damages such as holes could prevent the robot from reaching its goal.

The framework requires execution monitoring to ensure that the robot does not collide

with previously unknown objects and to detect obstructions. We avoid unknown objects by

not allowing the robot to enter any space that it has not previously scanned (e.g. using a

Kinect [112]) and for which the scans do not indicate free space. Detecting obstructions,

such as structural damages, however, is more challenging. We now detail upon our specific

129

implementation for detecting holes and oil spills.

6.2.1 Detecting Obstructions

To detect crucial ground obstructions, we are utilizing a head mounted Kinect sensor. To

support liquid ground obstructions as well as structural damages such as as hole, our im-

plementation utilizes the fact that these kind of obstruction usually result in a very different

ground colors than normal ground, and color threshold the Kinects RGB camera data. This

allows us to detect obstructions in real-time. In order to not sacrifice 3D information about

potential obstructions by restricting ourselves to vision methods, we are associating the

color information provided by the Kinect’s RGB camera with the depth information ob-

tained by the Kinect’s depth sensor. The world coordinates of the obstruction’s bounding

polygon are then directly given by the 3D information associated with the thresholded pix-

els.

This process is sufficient for cases where the robot either observes a complete obstruc-

tion or no obstruction at all. However, if the robot drives towards an obstruction, each

scan could reveal more parts of an obstruction, resulting in a frequently changing bounding

polygon and consequently many subsequent calls to the path planning system. To minimize

the occurrence of such partial obstruction reports, our implementation is not reporting de-

tected obstructions to the planning system until either the obstruction’s dimensions do not

increase anymore, or the robot is getting too close to the obstruction. Fig. 37(a) visualizes

an example output of this obstruction detection method for the scenario shown in Fig. 35.

6.2.2 Planning

If the obstruction detection algorithm reports an obstruction to the planning system, the ob-

struction is added to the internal cost map and re-planning is triggered. Similar to Chapter 5,

the planner performs an A* search over the discretized representation of the configuration

space of the robot but considers collisions with obstructions as soft constraints rather than

130

hard constraints. A heuristic cost penalty is applied for each initial intersection with an ob-

struction. The A* search returns a motion path for the robot as well as a list of obstructions

that have to be resolved to clear the path. Fig. 37(b) shows the output of the constraint

relaxed planning step following the detection of the hole in Fig. 37(a). The output indicates

that the robot has to cross the hole in order to reach the goal.

6.2.3 Object Search

If the constraint relaxed planning step indicates that an obstruction needs to be resolved for

the robot to be able to get to the goal, the framework continues by abandoning the process

of attempting to reach the goal through pure navigation. Instead, the robot is now tasked

with finding a suitable object in the environment to overcome the obstruction. For example,

in the scenario visualized in Fig. 37, the robot needs to find an object to help it cross the

hole.

As mentioned above, in contrast to most existing research in object detection, this step

does not focus on detecting a known object, but rather on finding any object that the robot

could utilize to overcome the obstruction. To achieve this, our object detection algorithm

is based on the output of the constraint relaxed planning step. Recall that the constraint

relaxed planning step returns the exact obstruction that is currently blocking the robot. We

can now utilize this information to determine the minimum dimensions for a suitable object

and use these dimensions to guide the search. For the example visualized in Fig. 37, we

need to find an object that has at least the length of the hole and is at least as wide as

the robot base. The robot needs to explore the environment to find such an object. While

reasoning about most likely locations of candidate objects is an interesting research area

in itself (e.g. [108, 109]), our implementation takes advantage of simple heuristics such as

on-the spot rotations and wall following to compute exploration waypoints for the robot

that cover the entire reachable space as defined by the current cost-map2.

2We do not consider resolving obstructions just to increase the searchable space for the robot.

131

(a) Robot detects suitable obstacle. (b) Robot executes grasping subroutine.

Figure 38: Constraint resolution example.

The robot now proceeds by navigating to the exploration waypoints while scanning the

environment for candidate objects using the Kinect’s point cloud data. To detect suitable

objects, we segment the point cloud data into individual object clusters. This is achieved

by using the environment map to remove the ground plane as well as walls from the point

cloud prior to clustering. Clusters that do not fulfill the dimensionality requirements, as

determined above, are then rejected. Further, any clusters that are above a size threshold,

indicating that the robot would likely not be able to manipulate the corresponding object,

are rejected. The remaining clusters are then sorted based on a custom cost function. We

used a scoring function that attempts to capture the notion of “manipulable” using surface

smoothness and object width. In the order defined by the cost function, the robot is now

tasked with attempting to use the objects to overcome the current obstruction.

Fig. 38(a) visualizes an example output of this obstacle detection method.

6.2.4 Grasping and Dropping

If a candidate object has been found, the framework computes a navigation plan to the ob-

ject. When the robot has reached the object grasp position, which in our implementation

is determined to be 20cm in front of the cluster, our implementation computes a detailed

motion plan to grasp the object. We use the cluster information to determine pre-grasp con-

figurations for the grippers. These configurations are computed to be 5cm from the edges

132

of the cluster on each side. Given these pre-grasp configurations, the system performs a

RRT-connect search with smoothing [50] for each arm individually and moves the grip-

pers into those configurations. The arms are then controlled to move the grippers inwards

until contact with the object is established. Upon contact, the grippers are closed and the

shoulder joint of each arm controlled to lift the object from the ground.

If the object is successfully grasped, the algorithm computes a motion plan to guide

the robot to the obstruction and align the robot with the obstruction. The alignment is

determined based on the initial path direction. If the robot has reached this drop location,

the robot executes a drop motion. We implemented the drop motion as a reversion of the

grasp motion with the addition of a slight motion of the robot base in the direction of the

obstruction. This is done to ensure that the object falls in the correct direction. If the drop

was successful, the algorithm marks the new location of the object as traversable space and

re-starts the constraint relaxed planning system. Fig. 35(b) shows the behavior of the robot

after the successful drop of the object.

6.3 Evaluation

We implemented the proposed framework in simulation on the PR2 robot using Gazebo and

ROS [78]. We performed multiple runs on environments similar to Fig. 35 with varying

start locations of the robot and varying positions of the objects.

Prior to running the experiments, we generated a map of the static environment prop-

erties by teleoperating the robot in the empty environment and running a SLAM algo-

rithm [102]. For each experiment run, the robot was given access to the according environ-

ment map.

6.3.1 Runtime

Obstruction Detection The obstruction detection subroutine took an average of 74ms,

allowing the robot to constantly monitor the ground in front of it.

133

Planning The constraint relaxed planning subroutine took an average of 1.7s if no ob-

struction was blocking the goal and an average of 14.6s if all paths to the goal were blocked

by obstructions. We can observe that if no direct path to the goal existed, this step takes sub-

stantially longer. This is caused by the fact that we used a very high penalty for initial path

intersections with obstruction to avoid unnecessary environment modifications. Conse-

quently the planner explored a larger portion of the space before intersecting obstructions.

If no known obstructions were disconnecting the robot from the goal, the planner could

explore the space more efficiently. This behavior is similar to what was observed in [64].

Object Search Evaluating the point clouds for potential candidate objects to resolve a

given obstruction took an average of 2.72s. In our experiments, the robot needed to repeat

this procedure an average of 43 times at different exploration poses before finding a suitable

object.

Object Grasp and Drop Planning for object grasp motions took an average of 1.3s. As

the drop motions were implemented as a reversion of the grasp motion, no planning was

necessary for dropping the objects.

6.3.2 Failure Cases

While all our experimental setups where solvable in principal, we encountered failure cases.

First, we encountered task level failures due to insufficient grasps. As our implementation

computes grasp configurations solely based on the cluster information and does not reason

about force closure or stable grasp configurations, the object occasionally slipped during

locomotion. Frequently, such slippage caused the object to fall into a configuration that

did not allow the robot to pick the object up again. If no other object was available in the

environment, the robot was not able to exit the building, resulting in task level failure.

Second, the drop motion of the object would not always result in a satisfactory posi-

tioning of the object. While, as discussed above, the framework can handle such cases to

134

some degree due to the fact that the algorithm loops and the robot just treats the current

environment configuration as a new problem instance, we encountered cases in which the

object would critically block the hole, again resulting in task-level failure.

We anticipate that future iterations of our implementation will deploy more sophisti-

cated grasp and drop methods.

6.4 Discussion

To our knowledge, this chapter presented the first framework that allows robots to reason

online about using the environment to make progress towards a goal that is not directly

reachable. The framework builds upon execution monitoring and constraint relaxed plan-

ning to detect potential obstructions and uses manipulation planning to help the robot over-

come critical obstructions. We presented a complete implementation of the framework in

realistic simulation on the PR2 robot, allowing it to solve previously unsolvable problems.

The framework reasons from the current obstruction the robot is facing to the kind of

object properties needed to overcome the obstruction. The mapping from object proper-

ties to possible actions can be regarded as an affordance mapping [28]. In contrast, the

introduced framework identifies ”inverse affordances” - mappings from desired actions to

required object properties for task completion. We expect future research to extend upon

this insight.

135

CHAPTER VII

CONCLUSION

In this thesis we showed that robots can autonomously modify their environment to achieve

task completion in the presence of lack of support for mobility, the need to increase force

capabilities and partial knowledge. As an initial step, we demonstrated how the Naviga-

tion Among Movable Obstacles (NAMO) domain, which allows a robot to autonomously

move objects out of its way, can be extended to cases with incomplete a-priori environment

knowledge. We introduced a NAMO planner that, for cases in which adjacent free-space

regions can be connected by manipulating a single object, allows a robot to take its current

degree of uncertainty about relevant object properties into account when deciding on which

objects to move out of its way. Building on these results, we then showed how a robotic

system can perceive partially occluded objects using onboard sensing and use such capa-

bilities to perform NAMO even with substantial uncertainty in sensing and action as well

as fundamental lack of information about the initial state. The system was successfully

executed on a real robot.

While the extension of the NAMO domain to the more realistic setting of state and

action uncertainty is a major step towards fully autonomous robots capable of operating

in common household environments or even disaster areas, this thesis also pointed out

that it may not always be sufficient to just reason about moving objects out of the way.

If the robot is separated from the goal through a gap it cannot cross, or by a stuck door

that it cannot open directly, no amount of reasoning about moving objects out of the way

will allow the robot to reach its goal. We therefore generalized the NAMO domain to the

Navigation Using Manipulable Obstacles (NUMO) domain which enables a robot to reason

about using environment objects as tools.

136

We presented multiple NUMO realizations for the cases of geometry or force constraint

limitations. First, we resented a system enabling a real humanoid robot to autonomously

use environment objects to build itself a bridge and a stair step. The system is applicable

to situations in which a single object can be used to overcome an obstruction. Second,

we introduced a framework allowing a robot to use existing knowledge about lever and

battering ram structures to reason about using environment objects to open a stuck or locked

door. Finally, we showed how the NUMO domain can be extended to operate online using

onboard sensing.

We now outline some future research directions before concluding with final remarks.

7.1 Future Work

Extending NAMO-MDP problem classes. The NAMO-MDP as presented in this thesis

is currently restricted to cases where free-space regions are disconnected by a single object

and free-space connections can be reasoned about independently. This is an instance of the

I1UL problem class as defined in Section 1.2.1.1. It would be interesting to investigate if

the NAMO-MDP can be extended to support more complex cases.

Reason about most likely position of objects. Our framework for NUMO with lack of

initial state knowledge takes advantage of simple heuristics to determine where to look for

environment objects that could be used to overcome an obstruction. To allow for scaling to

larger environments, it would be beneficial if the system would reason about most likely lo-

cations of object. It should be investigated if systems such as [108, 109] can be generalized

to reason about the location of suitable objects.

Discovering object attributes. We presented a NUMO system that allows a robot to

reason about using environment objects despite substantial lack of initial state information

and relying only onboard sensing. The system selected the first object the robot detected

that was large enough to overcome the constraint at hand. However, a robot typically

137

cannot directly perceive material properties of an environment object. It should test an

object’s applicability to the task before deciding to use it. For example, a robot should

test the strength of a board by attempting to bend it before deciding to use it to cross a

gap. In more general terms, algorithms for the NUMO domain should support reasoning

about information gathering actions. It would be interesting to investigate methods for

determining the most suitable information gathering action, such as [25], within the NUMO

domain.

Reasoning about multiple object solutions. The NUMO domain realizations presented

in this work are mostly restricted to cases where constraints can be resolved through the

use of a single object. However, it is not always possible to find a single object in the

environment to sufficiently change the environment topology. Instead, the robot should be

able to reason about creating entire structures or simple machines from objects found in the

environment.

Discovery of required mechanical advantage. Our system for NUMO domains with

force requirements should be generalized. The presented system requires substantial pre-

programming of physics knowledge for the problem at hand. Ideally, the robot should

be able to autonomously determine the necessary mechanical advantage for a given sce-

nario. It would be interesting to investigate the use of a general purpose physics engine

to automatically recover the required mechanical structure. Further, to execute the plans

determined by the planner on a real robot system, additional forces such as friction at the

fulcrum should be considered.

Action uncertainty in NUMO. The NUMO systems presented in this work are able to

handle action uncertainty to some extent through re-planning. However, as shown for the

NAMO domain, it is beneficial if the robot can reason about the uncertainty of interacting

with a specific object. A robot should prefer the use of a rod that it is certain is strong

138

enough over the use of a rod that it believes might break during use. To achieve such a

behavior, it would be interesting to investigate the applicability of the NAMO-MDP frame-

work to NUMO cases.

7.2 Final Remarks

The reasoning methods described in this work are vital for robots to operate autonomously

in unstructured environments. If in the near future robots are to replace humans in dan-

gerous search and rescue missions, assist humans in household environments, work at con-

struction sides or operate more autonomously over large distances, robots need to be able

to get to their goal by all means necessary. A robot that is kept from reaching a victim or

critical instruments and tools just because it is blocked in by easily movable objects is not

a valuable replacement for a human counterpart. In fact, just like humans, a robot should

even be able to reason about ways of using environment objects to create itself a traversable

path if none exists. Robots should be able to do Navigation Using Manipulable Objects.

We expect that future work based on the concepts presented in this thesis will allow robots

to achieve the intelligent tool-orientated behavior which is characteristic of human beings.

139

APPENDIX A

PLANAR-GRAPH CONSTRAINT

In Section 3.3.4.1 we exploited a standard result regarding planar graphs, which we repro-

duce here for completeness.

First, recall Euler’s formula, which places a constraint on the number of possible edges

e, vertices v, and faces f in a planar graph:

v− e+ f = 2 (26)

Now consider the set of all possible edge-face pairs p ∈ P, (for v > 2) where an edge is

added to P for each face in which it appears. Observe that since an edge can contribute

to at most 2 faces, we have |P| ≤ 2e. In addition, each face must have at least 3 edges,

implying |P| ≥ 3 f . Plugging this into Eq. 26, we have e≤ 3v−6.

140

REFERENCES

[1] “Fukushima accident 2011,” World Nuclear Association, 2011.

[2] “pybox2d.” http://code.google.com/p/pybox2d/, June 2012.

[3] ALTEROVITZ, R., GOLDBERG, K., and OKAMURA, A., “Planning for steerable
bevel-tip needle insertion through 2d soft tissue with obstacles,” in IEEE Interna-
tional Conference on Robotics and Automation, 2005.

[4] ATKESON, C. G., MOORE, A. W., and SCHAAL, S., “Locally weighted learning,”
Artificial intelligence review, vol. 11, no. 1-5, pp. 11–73, 1997.

[5] BARTO, A. and MAHADEVAN, S., “Recent advances in hierarchical reinforcement
learning,” Discrete Event Dynamic Systems, vol. 13, no. 4, pp. 341–379, 2003.

[6] BESL, P. and MCKAY, N., “A method for registration of 3-d shapes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 239–256, 1992.

[7] BICICI, E. and ST AMANT, R., “Reasoning about the functionality of tools and
physical artifacts,” tech. rep., Department of Computer Science, North Carolina
State University, 2003.

[8] BLODOW, N., MARTON, Z., SOOS, A., and BEETZ, M., “Towards 3D object maps
for autonomous household robots,” IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 3191–3198, Oct. 2007.

[9] BONET, B. and GEFFNER, H., “Planning under partial observability by classical re-
planning: Theory and experiments,” in Proceedings of the International Joint Con-
ference on Artificial Intelligence, 2011.

[10] BRAFMAN, R. I. and SHANI, G., “Replanning in domains with partial information
and sensing actions,” Journal of Artificial Intelligence Research, vol. 45, 2012.

[11] BRATMAN, M., Intention, Plans, and Practical Reason. The David Hume series,
CSLI Publications, 1987.

[12] BRATMAN, M. E., ISRAEL, D. J., and POLLACK, M. E., “Plans and resource-
bounded practical reasoning,” Computational Intelligence, vol. 4, pp. 349–355,
1988.

[13] BROOKS, R. A. and LOZANO-PEREZ, T., “A subdivision algorithm in configu-
ration space for findpath with rotation,” IEEE Transactions on Systems, Man and
Cybernetics, no. 2, pp. 224–233, 1985.

141

[14] CHEN, H., SHENG, W., XI, N., SONG, M., and CHEN, Y., “Automated robot trajec-
tory planning for spray painting of free-form surfaces in automotive manufacturing,”
in IEEE International Conference on Robotics and Automation, 2002.

[15] CHEN, P. and HWANG, Y., “Practical Path Planning among Movable Obstacles,”
in Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 444–449, 1991.

[16] CHESTNUTT, J., NISHIWAKI, K., KUFFNER, J., and KAGAMI, S., “An adaptive ac-
tion model for legged navigation planning,” in IEEE-RAS International Conference
on Humanoid Robots, 2007.

[17] COOK, G. E., “Robotic arc welding: research in sensory feedback control,” Indus-
trial Electronics, IEEE Transactions on, no. 3, 1983.

[18] DAVIES, B., HARRIS, S., LIN, W., HIBBERD, R., MIDDLETON, R., and COBB,
J., “Active compliance in robotic surgerythe use of force control as a dynamic con-
straint,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, vol. 211, no. 4, 1997.

[19] DEMAINE, E., O’ROURKE, J., and DEMAINE, M. L., “PushPush and Push-1 are
NP-hard in 2D,” in In Proceedings of the 12th Canadian Conference on Computa-
tional Geometry, pp. 211–219, 2000.

[20] DIETTERICH, T., “An overview of MAXQ hierarchical reinforcement learning,”
Abstraction, Reformulation, and Approximation, pp. 26–44, 2000.

[21] DIFTLER, M. A., CULBERT, C., AMBROSE, R., PLATT JR, R., and BLUETH-
MANN, W., “Evolution of the nasa/darpa robonaut control system,” in IEEE Inter-
national Conference on Robotics and Automation, 2003.

[22] DOGAR, M. and SRINIVASA, S., “A planning framework for non-prehensile manip-
ulation under clutter and uncertainty,” Autonomous Robots, pp. 1–20, 2012.

[23] EPPE, M. and DIETRICH, D., “Interleaving planning and plan execution with in-
complete knowledge in the event calculus,” in STAIRS, 2012.

[24] FIKES, R. E., HART, P. E., and NILSSON, N. J., “Learning and executing general-
ized robot plans,” Artificial Intelligence, vol. 3, 1972.

[25] FITZPATRICK, P., METTA, G., NATALE, L., RAO, S., and SANDINI, G., “Learn-
ing about objects through action-initial steps towards artificial cognition,” in IEEE
International Conference on Robotics and Automation, vol. 3, 2003.

[26] FRITZ, C. and MCILRAITH, S. A., “Generating optimal plans in highly-dynamic
domains,” in Conference on Uncertainty in Artificial Intelligence, 2009.

[27] GARIMORT, J. and HORNUNG, A., “Humanoid navigation with dynamic footstep
plans,” in IEEE International Conference on Robotics and Automation, 2011.

142

[28] GIBSON, J., “The concept of affordances,” Perceiving, acting, and knowing, 1977.

[29] HADFIELD-MENELL, D., KAELBLING, L. P., and LOZANO-PEREZ, T., “Opti-
mization in the now: Dynamic peephole optimization for hierarchical planning,”
in IEEE Conference on Robotics and Automation, 2013.

[30] HAUSER, K., “The Minimum Constraint Removal Problem with Three Robotics
Applications,” in Workshop on the Algorithmic Foundations of Robotics, 2012.

[31] HOFFMANN, J., “Ff: The fast-forward planning system,” AI magazine, vol. 22, no. 3,
p. 57, 2001.

[32] HOLZ, D., SCHNABEL, R., DROESCHEL, D., STÜCKLER, J., and BEHNKE, S.,
“Towards semantic scene analysis with time-of-flight cameras,” in RoboCup 2010:
Robot Soccer World Cup XIV, pp. 121–132, Springer, 2011.

[33] HORTY, J. F. and POLLACK, M. E., “Evaluating new options in the context of
existing plans,” Artificial Intelligence, vol. 127, 2001.

[34] HOWARD, R., Dynamic probabilistic systems, vol. 317. John Wiley & Sons New
York, 1971.

[35] HSIAO, K., KAELBLING, L., and LOZANO-PEREZ, T., “Grasping POMDPs,” in in
Proc. IEEE International Conference on Robotics and Automation, pp. 4685–4692,
2007.

[36] H.WU, LEVIHN, M., and STILMAN, M., “Navigation Among Movable Obstacles
in Unknown Environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 2010.

[37] JOHNSON, A. and HEBERT, M., “Using spin images for efficient object recognition
in cluttered 3D scenes,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 21, no. 5, pp. 433–449, 2002.

[38] KAELBLING, L. P., LITTMAN, M. L., and MOORE, A. W., “Reinforcement learn-
ing: A survey,” Journal of artificial intelligence research, pp. 237–285, 1996.

[39] KAELBLING, L. P. and LOZANO-PÉREZ, T., “Hierarchical task and motion plan-
ning in the now,” in IEEE International Conference on Robotics and Automation,
2011.

[40] KAELBLING, L. P. and LOZANO-PÉREZ, T., “Integrated task and motion planning
in belief space,” International Journal of Robotics Research, vol. 32, 2013.

[41] KAKIUCHI, Y., UEDA, R., KOBAYASHI, K., OKADA, K., and INABA, M., “Work-
ing with movable obstacles using on-line environment perception reconstruction us-
ing active sensing and color range sensor,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010.

143

[42] KAVRAKI, L., SVESTKA, P., LATOMBE, J., and OVERMARS, M., “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” Robotics and
Automation, IEEE Transactions on, vol. 12, no. 4, pp. 566–580, 1996.

[43] KEARNS, M., MANSOUR, Y., and NG, A., “A Sparse Sampling Algorithm for
Near-Optimal Planning in Large Markov Decision Processes,” Machine Learning,
vol. 49, 2002.

[44] KHLER, W., The mentality of apes. Routledge, 2013.

[45] KOCSIS, L. and SZEPESVARI, C., “Bandit based monte-carlo planning,” Machine
Learning: ECML, 2006.

[46] KOENIG, S. and SIMMONS, R., “Xavier: A Robot Navigation Architecture Based
on Partially Observable Markov Decision Process Models,” in Artificial Intelligence
Based Mobile Robotics: Case Studies of Successful Robot Systems, pp. 91–122, MIT
Press, 1998.

[47] KOENIG, S. and LIKHACHEV, M., “d∗ lite,” in Proceedings of the national con-
ference on artificial intelligence, pp. 476–483, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2002.

[48] KOENIG, S. and LIKHACHEV, M., “Fast replanning for navigation in unknown ter-
rain,” IEEE Transactions on Robotics, vol. 21, no. 3, 2005.

[49] KOENIG, S., LIKHACHEV, M., LIU, Y., and FURCY, D., “Incremental heuristic
search in AI,” AI Magazine, vol. 25, no. 2, p. 99, 2004.

[50] KUFFNER JR, J. and LAVALLE, S., “RRT-connect: An efficient approach to single-
query path planning,” in IEEE International Conference on Robotics and Automa-
tion, 2000.

[51] KURNIAWATI, H., DU, Y., HSU, D., and LEE, W., “Motion planning under un-
certainty for robotic tasks with long time horizons,” The International Journal of
Robotics Research, vol. 30, no. 3, pp. 308–323, 2011.

[52] LAVALLE, S. M., Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006. Available at http://planning.cs.uiuc.edu/.

[53] LAVALLE, S. and KUFFNER JR, J., “Randomized kinodynamic planning,” The In-
ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[54] LEMIEUX, C., Monte Carlo and Quasi-Monte Carlo Sampling. Springer Verlag,
2009.

[55] LEVEN, P. and HUTCHINSON, S., “A framework for real-time path planning in
changing environments,” The International Journal of Robotics Research, vol. 21,
no. 12, 2002.

144

[56] LEVIHN, M., IGARASHI, T., and STILMAN, M., “Multi-robot multi-object rear-
rangement in assignment space,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2012.

[57] LEVIHN, M., KAELBLING, L., LOZANO-PEREZ, T., and STILMAN, M., “Foresight
and reconsideration in hierarchical planning and execution,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2013.

[58] LEVIHN, M., NISHIWAKI, K., KAGAMI, S., and STILMAN, M., “Autonomous
environment manipulation to assist humanoid locomotion,” in IEEE International
Conference on Robotics and Automation, 2014.

[59] LEVIHN, M., SCHOLZ, J., and STILMAN, M., “Hierarchical decision theoretic
planning for navigation among movable obstacles,” in Workshop on the Algorith-
mic Foundations of Robotics, 2012.

[60] LEVIHN, M., SCHOLZ, J., and STILMAN, M., “Planning with movable obstacles in
continuous environments with uncertain dynamics,” in IEEE International Confer-
ence on Robotics and Automation, 2013.

[61] LEVIHN, M. and STILMAN, M., “Using environment objects as tools: Unconven-
tional door opening,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2014.

[62] LEVIHN, M. and CHRISTENSEN, H., “Getting there: Using environment objects to
facilitate task completion in unknown environments,” in Humanoids Workshop on
Policy Representation, 2014.

[63] LEVIHN, M., DUTTON, M., TREVOR, A., and STILMAN, M., “Detecting partially
occluded objects via segmentation and validation,” in IEEE Workshop on Robot Vi-
sion (WoRV), 2013.

[64] LEVIHN, M., NISHIWAKI, K., KAGAMI, S., and STILMAN, M., “Autonomous
environment manipulation to assist humanoid locomotion,” in IEEE International
Conference on Robotics and Automation, 2014.

[65] LEVIHN, M., STILMAN, M., and CHRISTENSEN, H., “Locally optimal navigation
among movable obstacles in unknown environments,” in IEEE-RAS International
Conference on Humanoid Robots, 2014.

[66] LIHACHEV, M., FERGUSON, D., GORDON, G., STENTZ, A., and THRUN, S.,
“Anytime search in dynamic graphs,” Artificial Inteliigence, vol. 172, no. 14, 2008.

[67] LIKHACHEV, M. and STENTZ, A., “Probabilistic planning with clear preferences
on missing information,” Artificial Intelligence, vol. 173, no. 5, pp. 696–721, 2009.

[68] LIU, C., “Dart: Dynamic animation and robotics toolkit.”
https://github.com/dartsim/dart/wiki, October 2013.

145

[69] LOWE, D. G., “Distinctive image features from scale-invariant keypoints,” Interna-
tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[70] LOZANO-PEREZ, T. and WESLEY, M., “An algorithm for planning collision-free
paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10,
pp. 560–570, 1979.

[71] MARTON, Z.-C., PANGERCIC, D., RUSU, R. B., HOLZBACH, A., and BEETZ,
M., “Hierarchical object geometric categorization and appearance classification for
mobile manipulation,” in IEEE-RAS International Conference on Humanoid Robots,
December 2010.

[72] MOZOS, O., MARTON, Z.-C., and BEETZ, M., “Furniture models learned from the
www,” Robotics Automation Magazine, IEEE, vol. 18, pp. 22 –32, june 2011.

[73] NISHIWAKI, K., CHESTNUTT, J., and KAGAMI, S., “Autonomous navigation of
a humanoid robot on unknown rough terrain,” in Intl Symposium on Robotics Re-
search, 2011.

[74] PARR, R. and RUSSELL, S., “Reinforcement learning with hierarchies of machines,”
Advances in neural information processing systems, pp. 1043–1049, 1998.

[75] PINEAU, J., GORDON, G., THRUN, S., and OTHERS, “Point-based value iteration:
An anytime algorithm for pomdps,” in International Joint Conference on Artificial
Intelligence, vol. 3, pp. 1025–1032, 2003.

[76] PLATT, R., TEDRAKE, R., KAELBLING, L., and LOZANO-PEREZ, T., “Belief
space planning assuming maximum likelihood observations,” in Robotics: Science
and Systems, 2010.

[77] POLLACK, M. E. and RINGUETTE, M., “Introducing the tileworld: Experimentally
evaluating agent architectures,” in Association for the Advancement of Artificial In-
telligence, pp. 183–189, 1990.

[78] QUIGLEY, M., CONLEY, K., GERKEY, B. P., FAUST, J., FOOTE, T., LEIBS, J.,
WHEELER, R., and NG, A. Y., “Ros: an open-source robot operating system,” in
ICRA Workshop on Open Source Software, 2009.

[79] RASMUSSEN, C. E., “Gaussian processes for machine learning,” 2006.

[80] ROY, N., GORDON, G. J., and THRUN, S., “Finding approximate pomdp solutions
through belief compression,” J. Artif. Intell. Res.(JAIR), vol. 23, pp. 1–40, 2005.

[81] RUSSELL, S. and NORVIG, P., Artificial Intelligence: A Modern Approach. Upper
Saddle River, NJ, USA: Prentice Hall Press, 3rd ed., 2009.

[82] RUSU, R. B., BRADSKI, G., THIBAUX, R., and HSU, J., “Fast 3d recognition
and pose using the viewpoint feature histogram,” in Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pp. 2155–2162, IEEE, 2010.

146

[83] RUSU, R. B., MARTON, Z. C., BLODOW, N., HOLZBACH, A., and BEETZ,
M., “Model-based and learned semantic object labeling in 3d point cloud maps of
kitchen environments,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009.

[84] SCHOLZ, J., LEVIHN, M., ISBELL, C., and WINGATE, D., “A physics-based model
prior for object-oriented mdps,” in Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pp. 1089–1097, 2014.

[85] SHIMIZU, M. and TAKAHASHI, T., “Training platform for rescue robot operation
and pair operations of multi-robots,” Advanced Robotics, vol. 27, no. 5, pp. 385–391,
2013.

[86] SHUMAKER, R. W., WALKUP, K. R., and BECK, B. B., Animal tool behavior: the
use and manufacture of tools by animals. JHU Press, 2011.

[87] SINAPOV, J. and STOYTCHEV, A., “Toward autonomous learning of an ontology of
tool affordances by a robot.,” in AAAI, 2008.

[88] SOBEK, R. P. and CHATILA, R. G., “Integrated planning and execution control for
an autonomous mobile robot,” Artificial Intelligence in Engineering, vol. 3, no. 2,
1988.

[89] STEDER, B., GRISETTI, G., LOOCK, M. V., and W, “Robust on-line model-based
object detection from range images,” IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 4739–4744, Oct. 2009.

[90] STEDER, B., RUSU, R., KONOLIGE, K., and BURGARD, W., “Point Feature Ex-
traction on 3D Range Scans Taking into Account Object Boundaries,” IEEE Inter-
national Conference on Robotics and Automation, 2011.

[91] STENTZ, A., “The d∗ algorithm for real-time planning of optimal traverses.,” tech.
rep., DTIC Document, 1994.

[92] STILMAN, M. and KUFFNER, J., “Navigation among movable obstacles: Real-time
reasoning in complex environments,” in Journal of Humanoid Robotics, pp. 322–
341, 2004.

[93] STILMAN, M., NISHIWAKI, K., KAGAMI, S., and KUFFNER, J., “Planning and
Executing Navigation Among Movable Obstacles,” in IEEE/RSJ International Con-
ference On Intelligent Robots and Systems, pp. 820 – 826, October 2006.

[94] STILMAN, M. and KUFFNER, J., “Navigation among movable obstacles: Real-time
reasoning in complex environments,” in IEEE/RAS International Conference on Hu-
manoid Robotics, November 2004.

[95] STILMAN, M. and KUFFNER, J., “Planning among movable obstacles with artificial
constraints,” The International Journal of Robotics Research, vol. 27, no. 11-12,
2008.

147

[96] STILMAN, M., MICHEL, P., CHESTNUTT, J., NISHIWAKI, K., KAGAMI, S., and
KUFFNER, J., “Augmented reality for robot development and experimentation,”
Tech. Rep. CMU-RI-TR-05-55, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 2005.

[97] STILMAN, M., NISHIWAKI, K., KAGAMI, S., and KUFFNER, J., “Planning and
executing navigation among movable obstacles,” Springer Journal of Advanced
Robotics, vol. 21, no. 14, 2007.

[98] STOYTCHEV, A., “Behavior-grounded representation of tool affordances,” in IEEE
International Conference on Robotics and Automation, pp. 3060–3065, 2005.

[99] SUTTON, R., PRECUP, D., and SINGH, S., “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning,” Artificial intelli-
gence, vol. 112, no. 1, pp. 181–211, 1999.

[100] T. NISHIZEKI, N. C., Planar graphs: theory and algorithms. Elsevier Science Ltd,
1988.

[101] THRUN, S., BURGARD, W., and FOX, D., Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[102] THRUN, S., BURGARD, W., and FOX, D., Probabilistic robotics. MIT press, 2005.

[103] URMSON, C., ANHALT, J., BAGNELL, D., BAKER, C., BITTNER, R., CLARK, M.,
DOLAN, J., DUGGINS, D., GALATALI, T., GEYER, C., and OTHERS, “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[104] VAN DEN BERG, J., STILMAN, M., KUFFNER, J., LIN, M., and MANOCHA, D.,
“Path planning among movable obstacles: a probabilistically complete approach,”
Workshop on Algorithmic Foundation of Robotics, 2008.

[105] VISALBERGHI, E. and TRINCA, L., “Tool use in capuchin monkeys: distinguishing
between performing and understanding,” Primates, vol. 30, no. 4, 1989.

[106] WALSH, T., GOSCHIN, S., and LITTMAN, M., “Integrating sample-based planning
and model-based reinforcement learning,” in Proceedings of AAAI, no. 1, 2010.

[107] WILFONG, G., “Motion planning in the presence of movable obstacles,” in SCG
’88: Proceedings of the fourth annual symposium on Computational geometry, (New
York, NY, USA), pp. 279–288, ACM, 1988.

[108] WONG, L. L., KAELBLING, L. P., and LOZANO-PÉREZ, T., “Manipulation-based
active search for occluded objects,” in Robotics and Automation , 2013 IEEE Inter-
national Conference on, pp. 2814–2819, IEEE, 2013.

[109] WONG, L. L., KAELBLING, L. P., and LOZANO-PÉREZ, T., “Not seeing is also
believing: Combining object and metric spatial information,” IEEE International
Conference on Robotics and Automation, 2014.

148

[110] YOON, S. W., FERN, A., and GIVAN, R., “FF-Replan: A baseline for probabilistic
planning,” in ICAPS, 2007.

[111] ZELINSKY, A., “A mobile robot exploration algorithm,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 6, 1992.

[112] ZHANG, Z., “Microsoft kinect sensor and its effect,” MultiMedia, IEEE, vol. 19,
no. 2, pp. 4–10, 2012.

149

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Motivation
	Challenges
	Dimensionality
	Uncertainty

	Approach
	Thesis Overview
	Thesis Statement
	Summary of Contributions
	Document Outline

	Chapter 2 — Related Work
	NAMO Planning
	Planning under Uncertainty
	Robotics and AI
	Decision Theory

	Tool Use
	Object Detection

	Chapter 3 — NAMO with Action Uncertainty
	Overview
	Discretized Environments
	Continuous Environments

	NAMO MDP
	Preliminaries
	NAMO MDP Definition

	Discrete Environments
	Preliminaries
	Discrete NAMO MDP Construction
	Solving the NAMO MDP
	Evaluation

	Continuous Environments
	Preliminaries
	Continuous NAMO MDP Construction
	Solving the NAMO MDP
	Example Implementation
	Evaluation

	Discussion
	State-Space Change
	Summary

	Chapter 4 — NAMO with State and Action Uncertainty
	Detecting Partially Occluded Objects
	Existing Method for Unobstructed Objects
	Algorithm
	Approach
	Experiments and Analysis
	Discussion

	State and Action Uncertainty in NAMO
	Existing Planning Framework
	Enhancing Optimality
	Navigation Among Uncertain Movable Obstacles
	Experiments

	Discussion

	Chapter 5 — Navigation Using Manipulable Objects
	Overcoming Geometric Constraints
	Algorithm
	Implementation
	Experiments
	Discussion

	Overcoming Force Constraints
	Problem Specification
	Approach
	Lever Like Structure
	Battering Ram Structure
	Evaluation
	Discussion

	Chapter 6 — Navigation Using Manipulable Objects with Only Onboard Sensing
	Overview
	Assumptions
	Framework

	Implementation
	Detecting Obstructions
	Planning
	Object Search
	Grasping and Dropping

	Evaluation
	Runtime
	Failure Cases

	Discussion

	Chapter 7 — Conclusion
	Future Work
	Final Remarks

	Appendix A — Planar-Graph Constraint
	References

