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SUMMARY

This thesis consists of two topics: statistical selection and profile monitoring. Statistical

selection is related to ranking and selection in simulation and profile monitoring is related

to statistical process control.

Ranking and selection (R&S) is to select a system with the largest or smallest perfor-

mance measure among a finite number of simulated alternatives with some guarantee about

correctness. Fully sequential procedures have been shown to be efficient, but their actual

probabilities of correct selection tend to be higher than the nominal level, implying that

they consume unnecessary observations. In the first part, we study three conservativeness

sources in fully sequential indifference-zone (IZ) procedures and use experiments to quantify

the impact of each source in terms of the number of observations, followed by an asymp-

totic analysis on the impact of the critical one. Then we propose new asymptotically valid

procedures that lessen the critical conservativeness source, by mean update with or without

variance update. Experimental results showed that new procedures achieved meaningful

improvement on the efficiency.

The second part is developing a wavelet-based distribution-free tabular CUSUM chart

based on adaptive thresholding. WDFTCa is designed for rapidly detecting shifts in the

mean of a high-dimensional profile whose noise components have a continuous nonsingular

multivariate distribution. First computing a discrete wavelet transform of the noise vectors

for randomly sampled Phase I (in-control) profiles, WDFTCa uses a matrix-regularization

method to estimate the covariance matrix of the wavelet-transformed noise vectors; then

those vectors are aggregated (batched) so that the nonoverlapping batch means of the

wavelet-transformed noise vectors have manageable covariances. Lower and upper in-control

thresholds are computed for the resulting batch means of the wavelet-transformed noise

vectors using the associated marginal Cornish-Fisher expansions that have been suitably

viii



adjusted for between-component correlations. From the thresholded batch means of the

wavelet-transformed noise vectors, Hotelling’s T 2-type statistics are computed to set the

parameters of a CUSUM procedure. To monitor shifts in the mean profile during Phase II

(regular) operation, WDFTCa computes a similar Hotelling’s T 2-type statistic from succes-

sive thresholded batch means of the wavelet-transformed noise vectors using the in-control

thresholds; then WDFTCa applies the CUSUM procedure to the resulting T 2-type statistics.

Experimentation with several normal and nonnormal test processes revealed that WDFTCa

outperformed existing nonadaptive profile-monitoring schemes.
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CHAPTER I

INTRODUCTION

This thesis consists of two topics: statistical selection and profile monitoring. Statistical

selection is related to ranking and selection in simulation and the other one is related to

statistical process control. In this chapter, we provide an overview and brief literature

review for each topic.

Ranking and selection (R&S) is to select a system with the largest or smallest perfor-

mance measure among a finite number of simulated alternatives with some guarantee about

a correct selection. Bechhofer [3] proposes the indifference-zone (IZ) approach, in which

a decision maker is assumed to care about a practically meaningful difference only. Many

statistical selection procedures are developed under the IZ approach. Kim and Nelson [30]

provide an extensive review of existing R&S IZ procedures.

Among many IZ procedures, fully sequential IZ procedures take only one basic observa-

tion from each active system at each stage, possibly with some elimination steps for clearly

inferior systems. For example, Procedures KN [28] and KN++ [29] are fully sequential IZ

procedures with elimination. In both [28] and [29], Kim and Nelson show that fully sequen-

tial IZ procedures are efficient compared to other existing IZ procedures in terms of the

total number of observations required to make a selection. However, their probabilities of

correct selection (PCS) are often higher than the nominal level, implying that unnecessary

observations are consumed, especially when the number of systems is large. The conser-

vativeness of fully sequential procedures reduces the efficiency of procedures, limits the

number of competing alternatives, and further restricts their applications to optimization

via simulation (OvS) in assisting a promising region/solution search [39].

In this thesis, we first identify conservativeness sources of fully sequential IZ procedures,

by studying the proof of a simple fully sequential procedure, Procedure (P), that is gen-

eralized from Paulson’s procedure in [37], with known unequal variances across systems.
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Then we use experiments to quantify the impact of each source in terms of the number

of observations and determine the critical one. Additionally, asymptotic analysis reveals

the critical conservativeness sources degrades the efficiency significantly for a large number

of systems. Many fully sequential IZ procedures for R&S are extended from Procedure

(P), therefore our conclusions of conservativeness sources provide supportive information

for other researchers to further improve the performance of procedures.

Then we develop two practically useful procedures that remove the critical source in

their derivations and show their asymptotic validity [48]. Experimental results show that

new procedures perform better than their competitor procedures on the efficiency.

The second topic of the thesis is on profile monitoring. Profile monitoring arises in sta-

tistical process control (SPC) for high-dimensional profiles. A profile describes a functional

relationship between a response variable and one or more explanatory variables [51]. The

functional relationship can be linear, nonlinear or too complicated to have an explicit form.

In this thesis, we are interested in developing a distribution-free control chart for profiles

with complicated functional relationships in manufacturing processes, where there is one

explanatory variable, the same setting as [13, 23, 33]. As an example, consider a lumber

manufacturing process. In order to control the quality of sawed boards, we monitor the

thickness along a horizontal or vertical line from an edge of a sawed board. Since lumbering

is a complicated process and affected by a combination of saw configurations, board types,

and sensor locations, no explicit function can properly describe the relationship between

the distance from the edge of the sawed board and its associated thickness. Therefore we

describe the complicated relationship by taking a large number of pairs of points (distance

from the edge and thickness), which results in a high-dimensional profile.

In a manufacturing process, SPC charts are often used to monitor profiles and determine

whether the manufacturing process is in a state of statistical control. Montgomery [36] pro-

vides a comprehensive background of SPC charts. Some SPC charts have been developed

with the aids from nonparametric methods, for example, smoothing spline [19], functional

principal component analysis [41], Fourier transform [12], and discrete wavelet transform

2



(DWT) [13, 23, 24, 25, 33]. Among all nonparametric methods, DWT is a popular tech-

nique to incorporate with SPC charts, since it is a multi-resolution decomposition and has

nice properties in dimension reduction and denoising. Moreover, DWT can preserve local

properties, such as, sharps and jumps, which contain important local information. Most

wavelet-based SPC charts first compute a profile’s DWT or a noise vector’s DWT, and

next construct statistics from a subset of wavelet components, see [33]. The subset size

is much smaller than the original profile’s dimension, therefore these wavelet-based SPC

charts avoid losing power in detecting shifts caused by high dimensionality, see [16].

Noises may exhibit non-normality, variance heterogeneity, or correlation between profile

components, see [20, 33, 51]. Existing wavelet-based distribution-free control charts only

monitor a static subset of wavelet components, whose locations are preselected and fixed,

so they are not sensitive to some types of shifts, such as a shift whose DWT only affect

unselected wavelet components. Therefore we are interested in developing a new wavelet-

based distribution-free control chart with adaptive selection.

The new procedure [49], WDFTCa, first applies DWT on a profile or its noise vector.

Then it employs an adaptive thresholding methods to select a small number of wavelet

components when in-control and more components when out-of-control. In several high-

dimensional normal and non-normal test processes, WDFTCa outperforms its competitors

in detecting various shifts.

The thesis is organized as follows. Chapter 2 studies conservativeness sources of fully

sequential indifference-zone (IZ) procedures and proposes new procedures. Chapter 3 pro-

poses a new wavelet-based distribution-free CUSUM chart with adaptive selection for profile

monitoring, and show its experimental results. At the end, we summarize our contributions

in Chapter 4.
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CHAPTER II

REDUCING THE CONSERVATIVENESS OF FULLY SEQUENTIAL

INDIFFERENCE-ZONE PROCEDURES

In order to find a system with the largest or smallest performance measure among a finite

number of simulated systems, some R&S procedures take the IZ approach, see [3], where

the decision maker is assumed to be indifferent to systems whose true means are within

a practically meaningful difference, δ > 0, from the best performance. The positive con-

stant δ is called the IZ parameter. Fully sequential IZ procedures are one of efficient R&S

procedures.

Among R&S IZ procedures, sequential procedures keep the number of stages small,

say 1, 2 or 3, where a stage occurs whenever a simulation of a system is initiated to obtain

observations. For example, see [42] for a sequential procedure with two stages. On the other

hand, fully sequential procedures take only one basic observation from each active system at

each stage and tend to have a large number of stages, but they are more efficient compared

to other existing IZ procedures in terms of the total number of observations required to

reach a decision, see [28, 29]. However, their PCS are often higher than the nominal level,

implying that procedures are conservative and unnecessary observations are consumed.

Our contributions are in two aspects: (i) providing an insight on how each conserva-

tiveness source affects the performance of fully sequential procedures and which source is

critical under various configurations, and (ii) proposing new improved fully sequential IZ

procedures. Therefore, we first discuss three sources of conservativeness of fully sequential

IZ procedures, use experiments to compare the number of additional observations overused

due to each source, and identify which source is critical. Our experiments show that the slip-

page means configuration (SC) assumption, where all inferior systems’ means are assumed

to be exactly δ apart from the best, degrades the efficiency of fully sequential procedures the

most. Then we present new asymptotically valid procedures that lessen conservativeness
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due to the SC assumption. The main idea of the new procedures is to replace the IZ param-

eter δ with a function of estimated mean differences between systems. A similar idea is used

in sequential procedures [9, 10, 11]. Our procedures are different in that: (i) their function

is related to a confidence interval for the best system’s mean, while our function is related to

a confidence interval of the mean difference between a pair of systems; (ii) their procedures

are sequential while ours are fully sequential; and (iii) both procedures are asymptotically

valid as δ goes to zero with a finite first-stage sample size, but the proofs are done under dif-

ferent assumptions. Their asymptotical validity is shown under the assumption that means

are known while our procedures do not require this assumption.

This chapter is organized as follows: Section 2.1 defines a R&S problem with the IZ

approach, sets up notation and assumptions, and discusses sources of conservativeness in

fully sequential procedures. In Section 2.2, we quantify the impact of each source in terms

of the number of additional observations by experiments and provide asymptotic analysis on

the critical source, the SC assumption. Section 2.3 provides new asymptotically valid pro-

cedures that lessen the impact of the SC assumption and Section 2.4 presents experimental

results of the new procedures. Concluding remarks are followed in Section 2.5.

2.1 Background

In this section, we first formulate a R&S problem with the IZ approach and set up notation

and assumptions. We then explain why a statistically valid fully sequential procedure

becomes conservative, using a simple procedure developed for known variances.

2.1.1 Problem, Notation and Assumptions

We assume that there are k simulated systems (k ≥ 2). Let Xij be the jth observation from

system i for i = 1, . . . , k and j = 1, 2, . . .. We let µi = E[Xij ] and σ2
i = Var[Xij ] be the

expected performance measure and marginal variance of system i, respectively. Observa-

tions Xij and X`j from systems i and `, i 6= `, can be correlated due to the use of common

random numbers (CRN). Further, let Xj = (X1j , X2j , . . . , Xkj)
T denote a vector of jth

observations for all k systems where AT represents the transpose of a vector or matrix A.
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Further, let R+ and Z+ represent the sets of all positive real numbers and all positive inte-

gers, respectively. Our objective is to find a system with the largest performance measure

µi with a pre-specified nominal level 1− α.

The following assumptions are assumed to hold throughout this Chapter.

Assumption 1 Xj
IID∼ MN(µ,Σ), j = 1, 2, . . . , where

IID∼ represents ‘are independent and

identically distributed as’, MN denotes multivariate normal, µ = (µ1, µ2, . . . , µk)
T , and Σ

is a positive definite k × k covariance matrix.

Assumption 2 µ1 − δ ≥ µ2 ≥ . . . ≥ µk−1 ≥ µk for δ ∈ R+. Also, there exist ci ≥ 1 such

that µ1 − µi = ciδ for ci ∈ R+, i = 2, . . . , k.

Additional notation is defined in Table 1 as below. Note that I(·) represents the indi-

cator function, and n0 ≥ 2 and r denote the initial sample size and the current number of

observations, respectively.

Table 1: Notation summary.

δi` ≡max(δ, |µi − µ`|);
δ̂i`(r) ≡max(δ, |X̄i(r)− X̄`(r)| −Ai`(r)) where Ai`(r) is a non-negative random variable

discussed in Assumption 3;

σ2
i` ≡Var(Xij −X`j), the variance of differences between systems i and `;

X̄i(r) ≡1

r

r∑
j=1

Xij , the sample mean of system i based on r observations;

S2
i`(r) ≡ 1

r − 1

r∑
j=1

[
Xij −X`j − (X̄i(r)− X̄`(r))

]2
, the sample variance of differences

between systems i and ` based on r observations;

R(r; a, b, d) ≡max

{
0,
bd

a
− a

2e
r

}
for any a, b, d ∈ R+ and for e ∈ Z+;

g(η) ≡
e∑
v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
exp

{
−η(2e− v)v

e

}
for e ∈ Z+;

g′(η, r) ≡
e∑
v=1

(−1)v+1

(
1− 1

2
I(v = e)

)(
1 +

2η(2e− v)v

e

)−(r−1)/2
for e ∈ Z+;

T di ≡min

{
r : r ∈ Z+ and

r∑
j=1

(X1j −Xij) ≥ R(r; δ, η, σ2
1i)

}
,

T ci ≡min

{
t : t ∈ R+ and σ1iW

(
t,
µ1 − µi
σ1i

)
≥ R(t; δ, η, σ2

1i)

}
.
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2.1.2 Sources of Conservativeness

It is known that R&S procedures with the IZ approach tend to be conservative especially

when the number of systems is large. We first present a simple fully sequential procedure

denoted as Procedure (P), a generalization of Paulson’s procedure [37] from known equal

variances to known unequal variances across systems, review the validity proof, and discuss

why the procedure becomes conservative. Procedure (P) is described in Figure 1. Many

fully sequential IZ procedures for R&S are extended from this simple procedure and thus

share similar steps for their validity proofs.

Procedure (P)
Setup: Select the nominal level 1− α and the IZ parameter δ. Calculate η from g(η) = α/(k − 1).
Set I = {1, . . . , k}. Take one observation from each system. Set r = 1 and go to Screening.
Screening: Set Iold = I. Let

I =

{
i : i ∈ Iold and

r∑
j=1

(Xij −X`j) ≥ −R(r; δ, η, σ2
i`), ∀` ∈ Iold and ` 6= i

}
.

Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best one.
Otherwise, take one additional observation Xi,r+1 from each active system i ∈ I, set r = r+ 1 and go to
Screening.

Figure 1: Algorithmic statement of Procedure (P).

Two lemmas are needed to prove the validity of a number of procedures presented.

Lemma 1 [22] Suppose that a continuation region H(t) is (−h(t), h(t)) given by a non-

negative function h(t), t ≥ 0. Consider two processes: a continuous process {W(t,∆), t ≥ 0}

with ∆ > 0, and a discrete process obtained by observing W(t,∆) at a random, increasing

sequence of times {ti : i = 1, 2, . . .} taking values in a given countable set. Let TC = inf{t :

W(t,∆) /∈ H(t)} and TD = inf{ti : W(ti,∆) /∈ H(ti)}, and assume that TD < ∞ almost

surely. Note that TD ≥ TC . The error probabilities are

Pr{EC} ≡ Pr{W(TC ,∆) ≤ −h(TC)} = Pr{W(TC ,∆) < 0},

Pr{ED} ≡ Pr{W(TD,∆) ≤ −h(TD)} = Pr{W(TD,∆) < 0}.

Consider an outcome {(b(t); t ≥ 0), {ti}}, where b(t) is the path of a Brownian motion.

Assume that the conditional distribution of {ti} given W(t,∆) = b(t), t ≥ 0, is the same as

7



the conditional distribution of {ti} given W(t,∆) = −b(t), t ≥ 0. Under these conditions,

Pr{ED} ≤ Pr{EC}.

Lemma 2 [15] Consider a standard Brownian motion process with drift W(t,∆) with ∆ >

0 and t ≥ 0. Let h(t) = a − γt for some a > 0 and γ ≥ 0. Let H(t) denote the interval

(−h(t), h(t)) (so that H(t) = ∅ when −h(t) ≥ h(t)), and let T = inf{t : W(t,∆) /∈ H(t)}

be the first time W(t,∆) does not fall in the triangular continuation region defined by

(H(t); t ≥ 0). Finally, let E be the event {W(T,∆) ≤ −h(T ) and H(T ) 6= ∅, orW(T,∆) ≤ 0

and H(T ) = ∅}. If γ = ∆/(2e) for any positive integer e, then

Pr{E} =

e∑
v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
exp{−2aγ(2e− v)v}.

The proof of statistical validity of Procedure (P) is as follows. Let an incorrect selection

(ICS) denote the event that the best system (system 1) is eliminated. This event implies

that the partial sum
∑r

j=1(X1j −Xij), which is the cumulated differences between system

1 and some alternative system i, exits through the lower boundary −R(r; δ, η, σ2
1i).

Note that T di is the first passage time that a discrete process
∑r

j=1(X1j − Xij) exits

the continuation region
(
−R(t; δ, η, σ2

1i), R(t; δ, η, σ2
1i)
)

for t ≥ 0; and T ci is the first passage

time that a continuous process, σ1iW(t, µ1 − µi), exits the same continuation region. Then

Pr{ICS} = Pr


T di∑
j=1

(X1j −Xij) ≤ −R(T di ; δ, η, σ2
1i) for any i 6= 1

 (1)

BI
≤

k∑
i=2

Pr


T di∑
j=1

(X1j −Xij)

σ1i
≤ −max

{
0,

(
ησ1i

δ
− δ

2eσ1i
T di

)} (2)

DTC
≤

k∑
i=2

Pr

{
W
(
T ci ;

µ1 − µi
σ1i

)
≤ −max

{
0,

(
ησ1i

δ
− δ

2eσ1i
T ci

)}}
(3)

SC
≤

k∑
i=2

Pr

{
W
(
T ci ;

δ

σ1i

)
≤ −max

{
0,

(
ησ1i

δ
− δ

2eσ1i
T ci

)}}
(4)

=
k∑
i=2

[
e∑
`=1

(−1)`+1

(
1− 1

2
I(` = e)

)
exp

{
−η(2e− `)`

e

}]
(5)

=

k∑
i=2

g(η) = α, (6)
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where the first inequality (2) is due to the BI; the second inequality (3) employs Lemma 1,

denoted as DTC; the third inequality (4) holds because the smallest mean difference between

the best system and any inferior system i is δ under the SC assumption; and Equation (5)

is due to Lemma 2. Since we choose η such that g(η) = α
k−1 , the last equality holds.

Many fully sequential IZ procedures are developed similar to Procedure (P). From the

proof above, we can identify three sources of conservativeness:

2.1.2.1 Bonferroni inequality (BI)

Suppose that there are events Ei for i = 1, . . . ,m and m ∈ Z+. The BI implies that

Pr{∪mi=1Ei} ≤
∑m

i=1 Pr(Ei). The BI enables us to focus on the probability of incorrect

selection for a pair of systems instead of that for all k systems, and and is useful to get a

lower bound on PCS.

2.1.2.2 Discrete process to continuous process (DTC)

A lemma from [22] bounds the probability of making an error in a discrete stochastic process

by the probability of making an error in the corresponding continuous stochastic process,

usually a Brownian motion process. Many properties are known for a Brownian motion

process, which is helpful in deriving statistically valid procedures.

2.1.2.3 Slippage means configuration (SC) assumption

This assumption makes the probability of incorrect selection free of unknown mean param-

eters but is often an unrealistic mean configuration for a large k.

2.2 Impact of Conservativeness Sources

In this section, we quantify the impact of the three conservativeness sources in terms of the

number of observations by experiments under various mean and variance configurations,

and identify a critical source that degrades the efficiency the most.

We first present three additional procedures: Procedures (E), (BI), and (BI +DT C)

in Figure 2. These three procedures are statistically valid and designed to quantify the

loss due to each conservativeness source. However, they are not implementable in practice

because they require prior knowledge on the identity of the best system and the true mean

9



difference between each pair of systems. They are only used in this chapter to study the

impact of each conservativeness source on the efficiency of Procedure (P). The difference

between Procedures (E) and (BI), (BI) and (BI +DT C), (BI +DT C) and (P) indicates

the impact of the BI, DTC, and the SC assumption, respectively.

Procedures (E), (BI), and (BI +DT C)
All steps in the three procedures are the same as those in Procedure (P) except that δ is replaced with
δi` in R(r; .) for comparing systems i and `, and η is the solution to the following equations:
Procedure (E)

Pr


Td
i∑

j=1

(X1j −Xij) ≤ −R(T di ; δ1i, η, σ
2
1i) for any i 6= 1

 = α,

Procedure (BI)
k∑
i=2

Pr


Td
i∑

j=1

(X1j −Xij) ≤ −R(T di ; δ1i, η, σ
2
1i)

 = α,

Procedure (BI +DT C)

k∑
i=2

Pr

{
W
(
T ci ;

µ1 − µi
σ1i

)
≤ −max

{
0,

(
ησ1i

δ1i
− δ1i

2eσ1i
T ci

)}}
= α.

Figure 2: Algorithmic statement of Procedures (E), (BI), and (BI +DT C).

2.2.1 Experimental Setup

In this subsection, we present the experimental setup to quantify the impact of each con-

servativeness source. Two mean configurations are considered: SC and group decreasing

means configuration (DC). Under the SC, µ1 = δ and µi = 0 for i = 2, . . . , k. The DC is

designed in the way to avoid the situation where the mean difference between the best and

an alternative is so large that comparison can be done with a few observations. The DC is

as follows:

µi =



δ for i = 1,

0 for i = 2, . . . , d(k − 1)/5e+1,

−0.5δ for i = d(k − 1)/5e+ 2, . . . , 2d(k − 1)/5e+1,

−δ for i = 2d(k − 1)/5e+ 2, . . . , 3d(k − 1)/5e+1,

−1.5δ for i = 3d(k − 1)/5e+ 2, . . . , 4d(k − 1)/5e+ 1,

−2δ for i = 4d(k − 1)/5e+ 2, . . . , k.

For the setting of the DC, three variance configurations are considered: equal variances

10



(EQUAL), σ2
i = 1; group increasing variances (INC), σ2

i = 1+ |µi−δ|; and group decreasing

variances (DEC), σ2
i = 1/(1+ |µi− δ|). We also run experiments with means in the SC, but

with the same variances as in the DC. Therefore there are six mean-variance configurations

in total: SC-EQUAL, SC-INC, SC-DEC, DC-EQUAL, DC-INC, and DC-DEC.

The number of systems k varies over 2, 5, 10, 25, 50, 75, and 100. The nominal level is

1 − α = 0.95. For correlation due to the use of CRN, we let ρ be a common correlation

across each pair of systems and test ρ = 0, 0.3, and 0.6. We set the IZ parameter δ = 0.3

and take the constant e = 1, which is recommended in [28].

For Procedures (E) and (BI), the value of η is searched empirically based on 40,000

macro replications for each configuration. On the other hand, η is determined analytically

as the solution to g(η) = α/(k−1) for Procedures (BI +DT C) and (P). We report average

total number of observations (OBS) until a decision is made. The numbers are reported

based on 40,000 macro replications for Procedures (E) and (BI) and 500 macro replications

for Procedures (BI +DT C) and (P). With 500 macro replications, the first three digits of

average total number of observations are meaningful. See [43] for determining the number

of meaningful digits in point estimates.

2.2.2 Results

We now report experimental results and discuss the impact of each source on the efficiency

of Procedure (P) to identify the most critical source. For reasons of brevity, we present

numerical results for the SC and the DC with group increasing and decreasing variances

and correlation ρ = 0 and 0.6. For a given mean configuration and ρ, average total number

of observations with equal variances lie between those with group increasing and decreasing

variances. Let OBSE , OBSBI , OBSBI+DTC , and OBSP represent average total number of

observations for Procedures (E), (BI), (BI +DT C), and (P), respectively. In Figures 3

and 6, lines represent percentages of average additional number of observations overcon-

sumed due to conservative sources. More specifically, lines labeled BI, DTC, and SC show

OBSBI−OBSE
OBSE

×100%,
OBSBI+DTC−OBSBI

OBSE
×100%, and

OBSP−OBSBI+DTC
OBSE

×100%, respectively,

as a function of k under the SC and the DC with group increasing and decreasing variances
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when ρ = 0.

Our main results are as follows.

2.2.2.1 Impact of the BI

From the lines labeled BI in Figures 3–6, we notice that the impact of the BI gets stronger

as k increases. For example, from k = 5 to k = 100, the percentages of average additional

observations due to the BI increase from 5% to 8% and 9% to 30% under SC-INC and

SC-DEC with ρ = 0, respectively. This is expected because the Bonferroni bound becomes

more conservative as the number of systems in consideration increases.
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Figure 3: Percentages of average additional number of observations under the SC with INC
(left) and DEC (right) variances when ρ = 0.
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Figure 4: Percentages of average additional number of observations under the DC with
INC (left) and DEC (right) variances when ρ = 0.

We also notice that the impact of the BI gets stronger under group decreasing than

increasing variances. When k = 100, the percentage of additional observations is 17%

under the DC-DEC, but only 4% under the DC-INC. We observe similar tendency for other
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Figure 5: Percentages of average additional number of observations under the SC with INC
(left) and DEC (right) variances when ρ = 0.6.
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Figure 6: Percentages of average additional number of observations under the DC with
INC (left) and DEC (right) variances when ρ = 0.6.

values of k. This is due to stronger positive correlation between X1j −Xij and X1j −X`j

for i 6= ` 6= 1 under group decreasing variances than under group increasing variances. It

is well known that the BI becomes more conservative when events under consideration are

positively correlated.

2.2.2.2 Impact of DTC

The lines labeled DTC in Figures 3–6 show the impact of DTC. The percentages of average

additional observations due to DTC are small (around 5%) and no more than 10% in most

cases. This implies that the partial sum of differences
∑r

j=1(X1j−Xij) is well approximated

by a continuous drifted Brownian motion process and the impact of DTC is not significant.
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Table 2: Percentages of additional observations due to the SC assumption.

DC-INC DC-DEC
k = 5 k = 100 k = 5 k = 100

ρ = 0 41% 70% 35% 55%
ρ = 0.6 42% 72% 36% 56%

2.2.2.3 Impact of the SC Assumption

The lines labeled SC quantify the impact of the SC assumption in Figures 4 and 6. When

the true mean configuration is the DC, Procedure (P) uses δ to determine the continuation

region (−R(r; ·), R(r; ·)) while Procedure (BI +DT C) uses δi`. As a result, the continuation

region of Procedure (BI +DT C) is narrower than that of Procedure (P) and eliminations

of inferior systems occur faster.

Table 2 shows the percentages of additional observations due to the SC assumption, and

implies that the impact of the SC assumption overwhelms when k is large under the DC.

2.2.2.4 Impact of Correlation

By comparing Figures 3 and 5, 4 and 6, we observe that the impacts of the BI, DTC, and

the SC assumption are similar for independent and correlated systems. The impact of the

BI becomes slightly stronger for correlated systems than independent systems, because a

positive correlation ρ makes incorrect selection events more strongly correlated. The impact

of DTC is still very minor and the percentages of average additional observations due to

the SC assumptions are similar for independent and correlated systems.

Overall, this study indicates that the impact of DTC is not significant but the BI and

the SC assumption are more critical. Though the actual percentages of average additional

observations due to the BI and the SC assumption depend on the true mean and vari-

ance configurations, our experimental results show that the BI and the SC are critical.

Inefficiency of a fully sequential procedure is mainly due to the BI when the true mean

configuration is indeed the SC. Unfortunately, developing a statistically valid fully sequen-

tial procedure without the use of the BI is very difficult because it requires studying the

behaviors of a (k − 1)-dimensional drifted Brownian motion process with component-wise
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correlation. On the other hand, when means are different from the SC, which is likely for

large k, the SC assumption deteriorates efficiency significantly more than the BI. Thus,

if one is to develop an efficient procedure that works well for large k, it seems more im-

portant to remove the SC assumption than the BI, which is the focus of this chapter. In

next subsection, we analytically calculate asymptotic percentage of savings we can expect

from Procedure (BI +DT C) compared to Procedure (P) under general mean and variance

configurations.

2.2.3 Asymptotic Analysis on the Impact of the SC Assumption

We employ a similar heuristic argument from [38] to approximate the number of observa-

tions for Procedures (P) and (BI +DT C). The following happens for Procedures (P) and

(BI +DT C) as α→ 0: (i) procedures stop making mistakes and system 1 is always found

superior to other systems; and (ii) a larger number of observations is needed to make a

decision, and hence sample mean X̄i(r) behaves like the true mean µi for system i.

Let NP
i and NB

i be the number of observations that system i takes until a decision is

reached in Procedures (P) and (BI +DT C), respectively. For Procedure (P), system i is

eliminated when

µ1 − µi ≥
1

r
R(r; δ, η, σ2

1i) =
ησ2

1i

rδ
− δ

2
and NP

i ≈
ησ2

1i

δ(µ1 − µi + δ/2)
, for i = 2, . . . , k.

System 1 keeps receiving additional observations until all inferior systems are eliminated

and thus takes NP
1 = max(NP

2 , . . . , N
P
k ). Similarly, for Procedure (BI +DT C),

µ1−µi ≥
1

r
R(r; δ1i, η, σ

2
1i) =

ησ2
1i

rδ1i
− δ1i

2
and NB

i ≈
ησ2

1i

δ1i(µ1 − µi + δ1i/2)
, for i = 2, . . . , k.

Also let NB
1 = max(NB

2 , . . . , N
B
k ).

Then, the asymptotic ratio of savings between the total number of observations for

Procedures (BI +DT C) and (P) is

S ≡ 1−
∑k

i=1N
B
i∑k

i=1N
P
i

= 1−
∑k

i=2
ησ2

1i
3(µ1−µi)2/2 + maxi∈{2,...,k}N

B
i∑k

i=2
ησ2

1i
δ(µ1−µi+δ/2) + maxi∈{2,...,k}N

P
i

The following Table 3 shows the asymptotic ratios S and empirical ratios based on 500

macro replications, when the mean configuration follows the DC with α = 0.01 and ρ = 0.
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Theoretical asymptotic ratios S match well empirical ratios. In addition, S range from 23%

to 41% under the DC and this is the magnitude of savings one can expect when the SC

assumption is removed under the DC. The savings can be greater if the means of systems

are even more spaced out than the DC.

Table 3: Asymptotic ratios S and empirical ratios under the DC, with α = 0.01 and ρ = 0.

INC EQUAL DEC
S Empirical S Empirical S Empirical

k = 5 0.277 0.273 0.259 0.256 0.247 0.233
k = 10 0.345 0.334 0.324 0.311 0.310 0.276
k = 25 0.391 0.375 0.368 0.351 0.354 0.319
k = 50 0.406 0.393 0.384 0.365 0.370 0.323
k = 75 0.412 0.396 0.390 0.369 0.375 0.327
k = 100 0.415 0.406 0.392 0.375 0.384 0.378

Next we present practically implementable versions of Procedure (BI +DT C) that are

asymptotically valid as δ goes to zero.

2.3 New Procedures

In this section, we propose two new procedures, namely, WK and WK++ that lessen

the impact of the SC assumption and are asymptotically valid as δ approaches to zero.

Procedure (BI +DT C) replaces δ with the true mean differences δi` in calculating the

continuation region R(r; ·), which is impossible in practice. Instead, we replace δ with

δ̂i`(r), a function of estimated mean differences. Procedure WK updates estimated mean

differences between systems as more observations become available. We also consider a

version with variance update, calledWK++, which incorporates the idea of updating sample

variances as in [29, 35] to achieve further efficiency. A function of estimated mean differences

δ̂i`(r) needs a random variable Ai`(r) that satisfies the following assumption:

Assumption 3 For i 6= ` and i, ` ∈ {1, . . . , k}, Ai`(r) ≥ 0 for all r ∈ Z+ and Ai`(r) → 0

with probability one, as r →∞.

The purpose of Ai`(r) is to prevent early termination of the new procedures. We use

Ai`(r) = ξq
Si`(n0)√

r
for WK and Ai`(r) = ξq

Si`(r)√
r

for WK++ where ξq is the q quantile of
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Procedures WK and WK++
Setup: Select the nominal level 1− α, the IZ parameter δ and the first-stage sample size n0. For WK,
h2 = η(n0− 1) where the constant η is the solution to the equation g′(η, n0) = α

k−1
. For WK++, h2 = η

where η is the solution to g(η) = α
k−1

.
Initialization: Set I = {1, . . . , k} and obtain n0 observations Xij , j = 1, . . . , n0 from all systems i, i ∈ I.
Set r = n0 and go to Variance Update.
Variance Update: For all i 6= `, i, ` ∈ I, compute S2

i`(r), the sample variance of differences between
systems i and ` based on r observations. Then go to Mean Update.
Mean Update: For all i 6= `, i, ` ∈ I, compute X̄i(r) − X̄`(r), the sample mean difference between
systems i and ` based on r observations, and calculate δ̂i`(r) (the choice of Ai`(r) is discussed in As-
sumption 3). Then go to Screening.
Screening: Set Iold = I. For WK,

I =

{
i : i ∈ Iold and

r∑
j=1

(Xij −X`j) ≥ −R(r; δ̂i`(r), h
2, S2

i`(n0)), ∀` ∈ Iold, ` 6= i

}
.

For WK++,

I =

{
i : i ∈ Iold and

r∑
j=1

(Xij −X`j) ≥ −R(r; δ̂i`(r), h
2, S2

i`(r)), ∀` ∈ Iold, ` 6= i

}
.

Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best. Otherwise,
take one additional observation Xi,r+1 from each system i ∈ I and set r = r + 1. For WK, go to Mean
Update. For WK++, go to Variance Update.

Figure 7: Algorithmic statement of Procedures WK and WK++.

the standard normal random variable for q ≥ 0.5, but other random variables satisfying

Assumption 3 can be used.

Procedures WK and WK++ are described in Figure 7 and we now present our main

theorems.

Theorem 1 If Assumptions 1, 2, and 3 hold, then Procedure WK guarantees

lim inf
δ→0

Pr(CS) ≥ 1− α,

where CS is the event that system 1 is selected.

Theorem 2 If Assumptions 1, 2, and 3 hold, then Procedure WK++ guarantees

lim inf
δ→0

Pr(CS) ≥ 1− α.

The asymptotic validity of the proposed procedures is shown as δ → 0. Kim and Nelson

[29] use the same asymptotic regime to prove the validity of their procedures and explain

the importance of Assumption 2 which ensures the true mean differences also converges to

zero as δ converges to zero. The proofs of Theorems 1 and 2 are shown in Appendix A.
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Procedure WK++ with h2(r)
Same as Procedure WK++ in Figure 7, except the following two steps:
Variance Update: For all i 6= `, i, ` ∈ I, compute S2

i`(r), the sample variance of differences between
systems i and ` based on r observations. Update ηr, the solution to g′(η, r) = α

k−1
and h2(r) = ηr(r−1).

Then go to Mean Update.
Screening: Set Iold = I. Let

I =

{
i : i ∈ Iold and

r∑
j=1

(Xij −X`j) ≥ −R(r; δ̂i`(r), h
2(r), S2

i`(r)),∀` ∈ Iold, ` 6= i

}
.

Figure 8: Algorithmic statement of Procedure WK++ with h2(r).

Note that h2 = η in WK++ is the same constant used in Procedure (P) which assumes

known variances of all systems. AlthoughWK++ is asymptotically valid, the use of h2 = η

may cause a severe under-coverage problem in finite samples, therefore h2(r) = ηr(r− 1) is

recommended where g′(η, r) = α
k−1 . The procedure is still asymptotically valid with h2(r)

because h2(r) is larger than h2. Then steps in WK++ are modified as in Figure 8.

2.4 Experiments

In this section, we compare the performances of WK and WK++ with two existing fully

sequential procedures: KN [28] and KN++ [29, 35]. Procedures KN and KN++ use the

BI, DTC, and the SC assumption for their validity. WK and WK++ are counterparts of

KN and KN++ without the use of the SC assumption, respectively. For WK++, we use

the version with h2(r).

We employ the same mean and variance configurations described in Section 2.2.1 and

report average total number of observations and estimated PCS based on 10,000 macro

replications. The initial sample size is n0 = 10. The new procedures are tested with

five different values of ξq for Ai`(r): ξ0.5 = 0, ξ0.6 = 0.25, ξ0.8 = 0.84, ξ0.95 = 1.64 and

ξ0.975 = 1.96. We present selected results of our experiments.

1) Estimated PCS: Table 4 reports estimated PCS under various mean and variance

configurations for k = 10 and k = 100 with ρ = 0. Estimated PCS are meaningful up to the

thousandths place with 10,000 macro replications. We focus on the SC to discuss validity

of the new procedures. When k = 10, Table 4 shows that estimated PCS are reasonably

acceptable (all over 90%) except under the SC-INC configuration with q close to 0.5. For

example, estimated PCS are 87.4% for WK and 83.3% for WK++ when q = 0.5. When q
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Table 4: Estimated PCS when k = 10 and 100 with ρ = 0.

k = 10
SC DC

INC DEC INC DEC

KN 0.960 0.965 0.989 0.989
WK (0.50) 0.874 0.925 0.953 0.968
WK (0.60) 0.894 0.937 0.965 0.975
WK (0.80) 0.929 0.955 0.979 0.984
WK (0.95) 0.953 0.967 0.989 0.987
WK (0.975) 0.957 0.965 0.986 0.990
KN++ 0.955 0.962 0.989 0.988
WK++ (0.50) 0.833 0.906 0.936 0.964
WK++ (0.60) 0.869 0.922 0.955 0.968
WK++ (0.80) 0.914 0.946 0.973 0.984
WK++ (0.95) 0.943 0.958 0.983 0.986
WK++ (0.975) 0.947 0.955 0.984 0.986

k = 100
SC DC

INC DEC INC DEC

KN 0.964 0.971 0.990 0.992
WK (0.50) 0.835 0.925 0.944 0.963
WK (0.60) 0.858 0.931 0.951 0.978
WK (0.80) 0.908 0.957 0.971 0.984
WK (0.95) 0.942 0.965 0.985 0.988
WK (0.975) 0.943 0.966 0.985 0.990
KN++ 0.968 0.978 0.990 0.991
WK++ (0.50) 0.748 0.898 0.904 0.949
WK++ (0.60) 0.809 0.916 0.929 0.964
WK++ (0.80) 0.879 0.942 0.964 0.979
WK++ (0.95) 0.929 0.965 0.980 0.988
WK++ (0.975) 0.944 0.967 0.982 0.986

is close to 0.5, δ̂i`(r) is essentially sample mean difference which can overestimate the true

mean difference δi`. This overestimation of the true mean differences can result in early

termination of the procedures and degradation in PCS. On the other hand, q close to 1 is

likely to result in δ̂i`(n0) = δ or δ̂i`(r) = δ. This helps achieve the nominal PCS but at the

cost of observations because the new procedures will not be much different from Procedure

KN or KN++.

When k = 100, estimated PCS in Table 4 are lower than those for when k = 10 and

quite small for q = 0.5 and 0.6 under the SC. However, low estimated PCS for q = 0.5 or

0.6 are under the very unrealistic mean configuration that ninety-nine systems are exactly

δ away from the best. When k = 100, the DC is more realistic and estimated PCS under
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Table 5: Average total number of observations (OBS) under the DC with ρ = 0.

k = 10 k = 100
INC DEC INC DEC

KN 996 617 14434 7643
WK (0.50) 552 392 7596 4878
WK (0.60) 615 427 8327 5214
WK (0.80) 735 497 9846 5932
WK (0.95) 871 567 11574 6671
WK (0.975) 905 587 12155 6879
KN++ 630 406 8800 4919
WK++ (0.50) 351 264 3664 2642
WK++ (0.60) 385 287 4075 2883
WK++ (0.80) 466 330 5141 3434
WK++ (0.95) 551 375 6546 4091
WK++ (0.975) 578 386 7041 4298

the DC are acceptable for all five values of q. When means are known to be different from

the SC, a choice of q = 0.6 seems good in terms of achieving the nominal PCS. If the mean

configuration is believed to be indeed the SC, the choice of q = 0.95 is safe.

2) Efficiency: Table 5 reports average total number of observations under the DC and

various variance configurations for k = 10 and 100 with ρ = 0. We do not report average

total number of observations under the SC because we already know that there is not much

savings forWK andWK++ compared to KN and KN++ under the SC. Under the DC, we

observe significant savings for q = 0.5, 0.6, and 0.8. For example, under the DC-INC, when

k = 10 and q = 0.6, WK spends 38.3% fewer observations compared to KN , and WK++

achieves 38.9% savings compared to KN++. When k = 100 and q = 0.6, the percentages

of savings increase to 42.3% and 53.7% for WK and WK++, respectively. With q = 0.8,

the percentages of savings are 26.0% for both WK and WK++ when k = 10 and increase

to 31.8% and 41.6% when k = 100, forWK andWK++, respectively. The choice of q = 0.5

or 0.6 brings large savings in observations but at the cost of PCS. The choice of q = 0.8

results in significant savings and good PCS. Considering both estimated PCS and average

total number of observations, q = 0.8 seems a good compromise.

3) Impact of Correlation: From estimated PCS when ρ = 0.3 and 0.6, that we do not

report here for reasons of brevity, we observe that estimated PCS increase and average
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total number of observations decrease as correlation due to CRN becomes stronger. This

is well expected because variances of differences between systems get smaller and thus

comparisons become easier. Estimated PCS with ρ = 0.6 are all over 90% even with q = 0.5

for all configurations we tested. From Figure 9, one can notice that percentage of savings in

average total number of observations is still significant but smaller when ρ = 0.6 compared

to ρ = 0. This is related to the fact that we have to take n0 = 10 initial observations from

all systems and savings in average total number of observations may not be fully recognized

when comparison between a pair is so easy that ten observations are already more than

enough to reach a decision. Figure 10 shows estimated PCS for WK and WK++ when

ρ = 0 and 0.6.
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Figure 9: Average total number of observations (OBS) under the DC-INC with ρ = 0 (left)
and ρ = 0.6 (right).
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2.5 Conclusion

We study conservativeness of fully sequential procedures. Both the BI and the SC assump-

tion are critical sources that affect the efficiency of fully sequential procedures significantly.

The impact of the SC assumption overwhelms when the number of system is large with the

mean configuration different from the SC. Two new procedures,WK andWK++, lessen the

impact of the SC assumption and are shown to be efficient compared to existing procedures.
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CHAPTER III

MONITORING NONLINEAR PROFILES ADAPTIVELY WITH A

WAVELET-BASED DISTRIBUTION-FREE CUSUM CHART

With the rapid development of sensor technology, we can collect massive process and product

data to monitor, control, and improve process performance and product quality. Massive

data may lead to a data overabundance. For an example, Jin and Shi [24] study a tonnage

signal from an automotive stamping process, where a press can typically perform 200 strokes

per minute with more than 6000 data points in each stroke, i.e., 1.2 million data points per

minute. Staudhammer et al. [45] use laser range sensors (LRSs) to measure the thickness

of sawed boards from a lumber manufacturing process, and each LRS provides more than

2000 data points for each sawed board.

These series of data points for each stroke or sawed board are called profiles. A profile

describes the functional relationship between a response variable and one or more explana-

tory variables [51]. In this chapter, we restrict attention to one explanatory variable, the

same setting used in [13, 23, 33]. The functional relationship sometimes has a linear or

nonlinear representation, but it also can be too complicated to have a well-known func-

tional form. Examples, including tonnage signals or LRS data, often have jumps, cusps,

oscillations, and other types of non-smooth behavior.

Monitoring linear profiles, such as some calibration processes, widely employ linear re-

gression models. In order to detect a shift in the mean of successive observed profiles, control

charts are applied to regression parameters, such as estimated intercepts and slopes. For

simple linear profiles, Kang and Albin [27] perform a single control chart on a multivariate

T 2-statistic constructed on estimated intercepts and slopes. For polynomial linear profiles

and general linear profiles, Zou et al. [52] monitor all estimated regression parameters within

a single chart using multivariate exponentially weighted moving average (EWMA) schemes.

Nonlinear profiles, such as product shapes and consecutive measurements of the same
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variable at different locations on individual products, are often modeled by nonlinear re-

gression models; and a control chart is performed on estimated regression parameters from

the observed profiles. Williams et al. [50] use a Hotelling’s T 2-chart to monitor parame-

ters of a nonlinear regression model for a particle board manufacturing process. To detect

several complex sawing defects in lumber manufacturing, Staudhammer et al. [45] model

LRS profiles with a combination of two regression models, multiple linear and nonlinear, to

describe roughness and waviness of surfaces, respectively; and then they monitor regression

parameters from different models with separate multiple profile charts.

Even though Gupta et al. [21] point out that the use of control charts based on estimated

regression parameters is effective in terms of average run length performance, there are some

issues in using regression models for profile monitoring. First, regression methods tend to

use smooth models to estimate in-control mean profiles; thus we lose some important local

information, such as jumps and cusps. Secondly, the performance of control charts highly

depends on the choice of models. If an inappropriate model is selected, then we may get

misleading results and not detect shifts in the mean profile adequately. For example, Chicken

et al. [13] show that when a change occurs in the mean profile, the selected regression

model possibly still yields the same parameter estimates so that the shift is undetectable.

In addition, fitting a sufficiently accurate regression model to observed profiles can be time-

consuming. Lastly, some process profiles, such as tonnage signals and LRS data, can be too

complex to be modeled adequately by parametric regression models.

As a consequence, some profile monitoring charts have been based on nonparametric

regression techniques, such as smoothing splines, functional principal components analysis

(FPCA), Fourier analysis, and wavelet analysis. Gardner et al. [19] use a smoothing spline

to model the thickness at selected locations of a wafer surface in a semiconductor manu-

facturing process. Ramsay and Silverman [41] propose methods based on FPCA that can

be used in nonparametric profile monitoring. Chen and Nembhard [12] compute the Fast

Fourier Transform (FFT) of profiles and construct an adaptive Neyman test statistic from

the corresponding Fourier coefficients. However, splines, FPCA, and Fourier transforms

cannot model locally sharp changes well—for example, see [13, 17, 23]. Instead, the discrete
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wavelet transform (DWT) has been suggested and shown to be effective for detecting and

diagnosing process faults [16, 25]. Some advantages of using DWTs for profile monitoring

are summarized as follows.

• Sparsity: the DWT can use substantially fewer wavelet basis functions to achieve a

comparably accurate approximation for profiles, especially non-smooth profiles.

• Localization: the DWT is localized in both the frequency and time domains, that is,

a frequency change causes changes only in certain time segments. By contrast, the

Fourier transform is localized only in the frequency domain, which means a frequency

change can cause changes everywhere in the time domain. Therefore the DWT can

preserve locally sharp changes in profiles well and help diagnose process faults.

• Fast computation: For a profile of dimension n, the computational complexity of the

profile’s DWT is O(n), see [34]; and this is smaller than the complexity O(n log2 n)

of the profile’s FFT.

Therefore wavelet-based approaches have gained popularity, especially for monitoring

high-dimensional profiles with non-smooth behaviors. The DWT is usually used as either

a denoising method or a dimension-reduction method in nonparametric profile monitoring.

Jeong et al. [23], Jin and Shi [25] use a DWT to denoise observed profiles via universal

thresholds and then monitor the preserved components with control charts. The num-

ber and locations of preserved components change from profile to profile; therefore moni-

tored wavelet components are selected adaptively. Their wavelet-based control charts with

adaptive selection detect shifts effectively, but those control charts require assumptions of

marginal normality and sometimes independence among components. Without the normal-

ity assumption, it is challenging to obtain distributions of monitored statistics and construct

analytical control limits for control charts.

On the other hand, Jin and Shi [24], Lada et al. [32], and Lee et al. [33] employ the

DWT as a dimension-reduction technique. Based on engineering knowledge of the auto-

motive stamping operation that different process failures correspond to changes in different
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segments of the tonnage signal from the stamping process, Jin and Shi [24] construct dif-

ferent thresholds for different profile segments. Then they monitor a fixed selection of

wavelet components according to the determined thresholds, and detect process faults in

the tonnage signals. Lada et al. [32] reduce profile dimensions by minimizing the weighted

relative reconstruction error (WRRE), in order to balance model parsimony against data

reconstruction error. Lee et al. [33] apply WRRE to an in-control mean profile to determine

locations of wavelet components whose values need to be monitored. A reduced-dimension

DWT vector of a profile is formed by keeping wavelet components from the determined

locations only; and then a distribution-free CUSUM chart is applied to Hotelling’s T 2-type

statistics computed from the reduced-dimension DWT vectors. Since both control charts

in [24] and [33] select wavelet components from the same locations in each profile’s DWT,

the selection method for wavelet components is considered to be static or nonadaptive.

Even though some wavelet-based control charts with static selection (specifically [33]) are

distribution-free, they are insensitive to some shifts or even fail to detect some shifts—for

instance, a shift only affecting the unselected wavelet components. Extending static selec-

tion to dynamic (adaptive) selection is not trivial. Because the selected components change

from profile to profile and the number of selected components is affected by the correlations

between profile components, monitoring statistics tend to have a large variance; and the

distribution of monitored statistics can be quite complicated.

In this section we formulate and evaluate WDFTCa, a wavelet-based distribution-free

CUSUM chart with adaptive selection that dynamically adjusts the number and locations

of preserved components for each monitored DWT vector. In brief WDFTCa consists of

the following steps. First computing a DWT of the noise vectors for randomly sampled

Phase I (in-control) profiles, WDFTCa uses a matrix-regularization method to estimate

the covariance matrix of the wavelet-transformed noise vectors; then those vectors are ag-

gregated (batched) so that the nonoverlapping batch means of the wavelet-transformed

noise vectors have manageable covariances. Lower and upper in-control thresholds are com-

puted for the resulting batch means of the wavelet-transformed noise vectors using the
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associated marginal Cornish-Fisher expansions that have been suitably adjusted for corre-

lations between the components of those vectors. From the thresholded batch means of the

wavelet-transformed noise vectors, Hotelling’s T 2-type statistics are computed to set the

parameters of a CUSUM procedure. To monitor shifts in the mean profile during Phase II

(regular) operation, WDFTCa computes a similar Hotelling’s T 2-type statistic from succes-

sive thresholded batch means of the wavelet-transformed noise vectors using the upper and

lower in-control thresholds; then WDFTCa applies the CUSUM procedure to the resulting

T 2-type statistics for rapid detection of an out-of-control condition.

Ideally, in Phase I (in-control) operation WDFTCa will retain relatively few detail co-

efficients; on the other hand, when the observed profiles are out-of-control, WDFTCa’s

estimators of both the scaling and detail coefficients will exhibit significant shifts from their

in-control counterparts. Thus we can rapidly detect such shifts by monitoring changes in

T 2-type statistics computed from the selected components. In this chapter, we extend the

wavelet-based control chart with static selection of [33] to formulate new control charts

with adaptive selection. Experimental results show the new control charts can detect vari-

ous shifts more effectively than the method of [33] under a general noise distribution.

Chapter 3 is organized as follows. Section 3.1 briefly defines the problem and notation,

provides motivating examples, and introduces the DWT. In Section 3.2, we describe the

new profile-monitoring procedure WDFTCa, and we discuss distribution-free thresholding

methods and covariance matrix estimation. Section 3.3 presents experimental results for

WDFTCa and its competitors, followed by conclusions in Section 3.4.

3.1 Background

In this section, we first define our problem and provide notation; then we discuss a moti-

vating example and present a brief overview of DWT.

3.1.1 Notation and Problem

For j = 1, 2, . . . , we consider the jth observed profile Yj = (Yj,1, . . . , Yj,n)T as an n-

dimensional random vector; and for i = 1, . . . , n, the ith component Yj,i of that profile

is the response associated with the ith prespecified level xi of the designated explanatory
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variable so that we have the functional relationship

Yj,i = f(xi) + εj,i for i = 1, . . . , n and j = 1, 2, . . . , (7)

where εj,i is the error (noise) in the ith component of the jth profile. (Throughout this

chapter, we letAT denote the transpose of a vector or matrixA.) If we let x = (x1, . . . , xn)T

denote the n× 1 vector of preselected levels of the explanatory variable that are used with

each profile, and if we let εj = (εj,1, . . . , εj,n)T denote the corresponding n×1 vector of noise

terms for the jth profile, then the functional relationship (7) may be compactly expressed

as Yj = f(x) + εj for j = 1, 2, . . . , where f(x) ≡ [f(x1), . . . , f(xn)]T . We assume that

E[εj ] = 0 and that the covariance matrix Cov[εj] = E[εjε
T
j ] = Σ0. In general the components

of εj may be non-normal and correlated. With this setup, the jth profile Yj has mean vector

E[Yj ] = f(x) and covariance matrix Σ0. In addition, the marginal variance of Yj,i or εj,i is

denoted by σ2
i = [Σ0]ii.

We assume that when f(·) is the in-control function f0(·), i.e., E[Yj ] = f0(x), the

monitored process is in control and Yj is an in-control profile. When f(·) is some out-

of-control function f1(·), i.e., E[Yj ] = f1(x) 6= f0(x), the monitored process is out of

control and Yj is an out-of-control profile. Our problem is to detect rapidly the onset of an

out-of-control condition.

To simplify notation, we let f0 ≡ f0(x) and f1 ≡ f1(x) 6= f0, where f0 = [f0,1, . . . , f0,n]T

and f1 = [f1,1, . . . , f1,n]T . Without loss of generality, we assume f0 is centered, i.e.,∑n
i=1 f0,i = 0. The profile dimension is set to n = 2J for some positive integer J . Let

L ∈ {0, . . . , J − 1} denote the coarsest level of resolution in a given DWT system (see Sec-

tion 3.1.3) and W denote the associated DWT matrix for the given DWT system with

the selected L. We apply the DWT to f0, Yj and εj for j = 1, 2, . . ., obtaining the

corresponding DWTs θ0 = Wf0 = (θ0,1, . . . , θ0,n)T , dj = WYj = (dj,1, . . . , dj,n)T , and

ωj = Wεj = (ωj,1, . . . , ωj,n)T , respectively. The first 2L components in θ0, dj and ωj

are scaling coefficients and contain important features of the original vectors at the lower

levels of resolution. The remaining n − 2L components are called detail coefficients. The

covariance matrix of dj or ωj is Λ0 = WΣ0W
T . All notation is summarized in Table 6.
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Table 6: Notation summary.

f0 The n× 1 in-control mean profile;
Yj The jth n× 1 observed profile, for j = 1, . . .;
εj =Yj − f0, the n× 1 noise vector of the jth observed profile Yj ;
θ0 =Wf0, the n× 1 DWT of the in-control mean profile;
dj =WYj , the n× 1 DWT of the jth observed profile Yj ;
ωj =Wεj = dj − θ0, the n× 1 DWT of the noise vector of the jth observed profile Yj ;

ωk(r) =r−1
∑r
u=1ω(k−1)r+u, the DWT of the kth non-overlapping batch mean of noise vectors

with batch size r;

λL ={λL1 , . . . , λLn}, an n× 1 lower threshold vector;

λU ={λU1 , . . . , λUn }, an n× 1 upper threshold vector;
ω∗k (r) ={ω∗k,1(r), . . . ,ω∗k,n(r)}, the thresholded DWT of the kth non-overlapping batch mean of

noise vectors, i.e., applying lower and upper thresholds λL and λU on ωk(r), where
ω∗k,i(r) = ωk,i(r)(1− 1λL

i <ωk,i(r)<λU
i

) and 1 is an indicator function;

ωN =N−1
∑N
j=1 ωj , the sample mean of ω1, . . . ,ωN , where N is the size of a data set;

Λ̂0 =(N − 1)−1
∑N
j=1(ωj − ωN )(ωj − ωN )T , n× n sample covariance matrix of noise vectors;

Λ̃0 The regularizated version of Λ̂0, see discussion in Section 3.2.3;

Λ̃0(r) =Λ̃0/r.

In this chapter, we define the in-control average run length, ARL0, as the average number

of in-control profiles that are observed before a (false) out-of-control alarm is raised; similarly

the out-of-control average run length, ARL1, is the average number of out-of-control profiles

that are observed before a (true) out-of-control alarm is raised. We compare and analyze

different control charts in terms of ARL0 and ARL1.

3.1.2 Motivation

In this subsection, we show that a wavelet-based monitoring chart with static selection

can miss certain shifts, which in turn demonstrates the need for new charts with adaptive

selection. More specifically, we examine the performance of WDFTCs from [33], which is a

distribution-free tabular CUSUM chart on T 2-type statistics constructed from preselected

locations of wavelet components. Recall that preselected locations are fixed for all profiles

regardless of shift types. A brief description of Procedure WDFTCs is provided in Figure 11

as below; also see Figure 2 in [33] for more details.

In our preliminary experiments, we use Mallat’s piecewise smooth function as f0 with

n = 512 equispaced data points, as depicted in Figure 12. This function exhibits some
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Procedure WDFTCs

Phase I—Obtain the n×1 DWT of the in-control mean profile θ0 and assign weights q and 1− q
(0 ≤ q ≤ 1), to the compression ratio and reconstructed error of the in-control mean profile f0 in
WRRE, which is defined in Equation (6) from [32]. Then determine p (p < n) wavelet locations
of θ0 that minimize WRRE. WDFTCs monitors p components from selected locations instead of
all n components in each DWT. For observed in-control profiles {Yj : j = 1, . . . , N}, follow the
following steps.

1. For j = 1, . . . , N , obtain the reduced-dimension DWT ω#
j , by keeping components from

the selected wavelet locations in the DWT ωj = W (Yj − f0). Calculate sample covariance

matrix, denoted as Λ#
0 , from {ω#

j : j = 1, . . . , N}.

2. Apply Algorithm CMR (see Figure 3 in [33]) to regularize Λ#
0 and obtain Λ̃#

0 .

3. Determine the batch size r by Algorithm BSD (see Figure 4 in [33]) and calculate non-

overlapping batch means, ω#
1 (r), . . . ,ω#

bN/rc(r), where ω#
k (r) = r−1

∑r
u=1ω

#
(k−1)r+u. Let

Λ̃#
0 (r) = Λ̃#

0 /r. The Hotelling’s T 2-type statistic is constructed as

T 2
k (r) =

(
ω#
k (r)

)T (
Λ̃#

0 (r)
)−1

ω#
k (r), for k = 1, . . . , bN/rc. (8)

4. Calculate sample mean µ̂T 2(r) and sample variance σ̂2
T 2(r) of T 2

k (r). With K = 0.1σ̂T 2(r) and

a prespecified in-control average run length ARL0, solve the root H from Equation (12).

Phase II—Obtain new observed profiles {Yj : j = 1, 2, . . .} and compute non-overlapping batch
means Yk(r) = r−1

∑r
u=1Y(k−1)r+u, for k = 1, 2, . . ..

5. Compute the DWT of the kth batch mean ωk(r) = WYk(r) and its reduced-dimension

version ω#
k (r), for k = 1, 2, . . ..

6. Raise an alarm when S+(k) ≥ H or S−(k) ≥ H, where S±(k) is defined in (13).

Figure 11: Algorithmic description of WDFTCs.
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Figure 12: Mallat’s piecewise smooth function.

problematic characteristics, such as cusps and jumps, which are often seen in manufac-

turing profiles. The noise components are assumed to follow independent and identically

distributed (IID) standard normal distributions. We consider two types of shifts, namely

the wavelet global (WG) shift and the wavelet local (WL) shift, with different values of the

30



-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  100  200  300  400  500

GL3

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  100  200  300  400  500

LC3

Figure 13: Wavelet global shift function (left) and wavelet local shift function (right).

shift size η; and thus the out-of-control mean profile is f1 = f0 + ηζ, where ζ denotes the

shift type and η ∈ {0.25, 0.5, 0.75, 1, 2}. These two types of shifts only affect unselected

DWT components in WDFTCs and are shown in Figure 13. More details of WG and WL

are in Section 3.3.1.1. The target ARL0 is set to 200.

Table 7 shows ARL1 of WDFTCs with different values of the shift size η. The perfor-

mance of ARL1 implies that WDFTCs fails to detect both types of shifts (WG and WL),

even for a large shift size, such as η = 2. This is not surprising, because the WG and

WL shifts do not affect the statistical properties of the preselected wavelet components;

and thus constructed T 2-type statistics in WDFTCs have the same statistical properties

(i.e., the mean and variance of the relevant T 2-type statistics do not change from in-control

profiles to out-of-control profiles). Other existing wavelet-based control charts with a pre-

selected subset of wavelet components also exhibit similar limitations. To overcome this

problem, we consider DWTs of noise vectors of profiles and determine adaptively the lo-

cations of preserved wavelet components in the noise DWT vectors. More specifically, for

each DWT of a noise vector, we preserve all scaling coefficients and a number of detail

coefficients whose values turn out to be outliers. Therefore locations of preserved wavelet

components can be different for each observed profile and can be affected by any type of

shift.

To emphasize the need for a new chart, extreme shifts are considered in this section.

Comparisons between WDFTCs and the proposed new chart on more realistic shifts are

discussed in Section 3.3.
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Table 7: ARL1 delivered by WDFTCs for wavelet global shift and wavelet local shift.

Wavelet global shift (WG) Wavelet local shift (WL)
η 0.25 0.5 0.75 1 2 0.25 0.5 0.75 1 2

ARL1 202.72 195.54 198.19 203.19 189.25 212.47 206.64 202.42 201.03 202.22

3.1.3 Discrete Wavelet Transform

The wavelet transform is analogous to the Fourier transform, but it employs scaling and

wavelet basis functions instead of the sine and cosine basis functions used in the Fourier

transform. Let L2[0, 1] denote the space of real-valued square-integrable functions defined

on the unit interval [0, 1]. The wavelet transform of a function g ∈ L2[0, 1] represents g as an

infinite series involving orthonormal scaling or wavelet basis functions. A scaling function

φ ∈ L2[0, 1] has an associated wavelet function ψ ∈ L2[0, 1]; and from φ or ψ, we can derive

an orthonormal set of basis functions for L2[0, 1] similar to the trigonometric functions used

in the Fourier series representation. Assuming that φ and ψ are based on the Haar wavelet

for simplicity, we explain the mechanism of the wavelet transform.

The wavelet representation of a function g ∈ L2[0, 1] is given by

g(z) = lim
B→∞

B−1∑
`=−∞

d2`e−1∑
m=0

〈g, ψ`,m〉ψ`,m(z) = lim
B→∞

2B−1∑
m=0

〈g, φB,m〉φB,m(z) (9)

for almost all z ∈ [0, 1], where: h`,m(z) = 2`/2h(2`z − m) for h = ψ, φ; and 〈g1, g2〉 =∫ 1
0 g1(z)g2(z) dz is defined as the inner product operator for g1, g2 ∈ L2[0, 1].

Let PB(g) represent the Bth partial sum on the far right-hand side of Equation (9).

It is clear that the quantity PB(g) becomes more accurate as B increases, and it provides

an approximation to g for a finite B. The scaling coefficients of g are defined as the

quantities {C`,m = 〈g, φ`,m〉}, which represent the low-frequency components or the smooth

parts of g(z). The detail coefficients of g are the quantities {D`,m = 〈g, ψ`,m〉}; and they

represent the high-frequency components or local behaviors of g(z). Due to the discrete

nature of measurements from a physical device, suppose that we take g ≈ PJ(g) for some

finest (highest) level of resolution J ; and we stop the successive function-approximation

operations at some coarsest (lowest) level of resolution L, where L < J . Then we obtain an
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approximate representation of g based on its DWT,

g(z) ≈
2J−1∑
m=0

CJ,mφJ,m(z) =
2L−1∑
m=0

CL,mφL,m(z) +
J−1∑
`=L

2`−1∑
m=0

D`,mψ`,m(z) (10)

for almost all z ∈ [0, 1].

The DWT can also be presented in terms of matrices, and we use the matrix repre-

sentation throughout the chapter. Let W denote an n × n orthogonal matrix associated

with the selected functions φ(t) and ψ(t), where n has the form n = 2J for some positive

integer J . For any n × 1 vector Y , the matrix-vector multiplication d = WY yields the

corresponding DWT of Y . Let L ∈ {0, 1, . . . , J − 1} denote the coarsest level of resolution

in the given wavelet system. Thus the first 2L components of d are scaling coefficients, and

all remaining components are detail coefficients.

3.2 New Procedure

In this section, we introduce a new chart that monitors statistics constructed from adap-

tively thresholded DWT vectors. We first present our proposed procedure WDFTCa, and

then discuss different adaptive thresholding methods and covariance matrix estimation.

3.2.1 Procedure WDFTCa

WDFTCa first applies DWT to each observed profile, thresholds components of DWT

vectors adaptively, and then constructs T 2-type statistics from thresholded DWT vectors.

In order to maintain the power of control charts [16], a desirable thresholding method selects

a small number of components (e.g., mainly scaling coefficients) when in-control, so that

monitored statistics have manageable variability and can be approximated as a Brownian

motion process properly. On the other hand, the thresholding method should select more

components (e.g., including some extreme outliers of detail coefficients) when out-of-control,

so that monitored statistics have significant changes and can quickly detect shifts in the

mean profile. Additionally, scaling coefficients contain prominent information of a profile

due to the nature of wavelet transform, while extreme outliers in DWT vectors vary for

different observed profiles and thus should be selected adaptively.
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Combining with an adaptive thresholding method, WDFTCa becomes more sensitive

to detect a wide range of shift types than existing wavelet-based control charts with static

selection. The detailed steps in WDFTCa are described in Figure 14 as below.

Procedure WDFTCa

Phase I — Obtain vectors dj = Yj − f0, from observed profiles {Yj : j = 1, . . . , N} where N is
the size of Phase I data set. Calculate DWTs ωj = Wdj , and then perform the following steps:

1. Compute sample covariance matrix Λ̂0 from {ωj : j = 1, . . . , N}, see Notation Summary.

Apply Algorithm CMR (Figure 15) as follow to regularize Λ̂0 and obtain Λ̃0. Next de-

termine the batch size r by Algorithm BSD (Figure 16) as follow and let Λ̃0(r) = Λ̃0/r.
For k = 1, 2, . . . , bN/rc, compute the kth non-overlapping batch mean vector ωk(r) =
r−1

∑r
u=1 ω(k−1)r+u.

2. Determine the lower and upper threshold vectors λL and λU as Section 3.2.2.

3. Threshold ωk(r) with λL and λU ; and obtain ω∗k (r), see Notation Summary. Compute the
Hotelling’s T 2-type statistics

T 2
k (r) =

(
ω∗k (r)

)T(
Λ̃0(r)

)−1(
ω∗k (r)

)
(11)

4. Calculate sample mean µ̂T 2(r) and sample variance σ̂2
T 2(r) from {T 2

k (r) : k = 1, 2, . . . , bN/rc}.
Solve a root H from Equation (12) with K = 0.1σ̂T 2(r) and prespecified ARL0.

σ̂2
T 2(r)

2K2

(
exp

{
2K
[
H + 1.166σ̂T 2(r)

]
σ̂2
T 2(r)

}
− 1−

{
2K
[
H + 1.166σ̂T 2(r)

]
σ̂2
T 2(r)

})
=

2ARL0

r
, (12)

Phase II — Obtain DWTs ωj = W (Yj − f0) from new observed profiles Yj , j = 1, 2, . . ., and
non-overlapping batch mean vector ωk(r) = r−1

∑r
u=1 ω(k−1)r+u, k = 1, 2, . . ..

5. Threshold ωk(r) with λL and λU ; and obtain thresholded DWTs ω∗k (r). Calculate the
associated statistic T 2

k (r) from (11).

6. Raise an alarm for ωk(r) if S+(k) ≥ H or S−(k) ≥ H, where

S±(k) =

{
0, for k = 0,
max

{
0, S±(k − 1)± (T 2

k (r)− µ̂T 2(r))−K
}
, for k = 1, 2, . . . .

(13)

Figure 14: Algorithmic description of WDFTCa.

Remark 1 In some applications, the in-control mean profile f0 may not be known. As an

alternative, we use sample mean of Phase I data f̂0 =
∑N

j=1 Yj/N as an estimator of f0.

Correspondingly, θ0 is replaced with θ̂0 = Wf̂0.

Remark 2 Lee et al. [33] show batching reduces covariances and improves the ARL1 per-

formance of control charts.
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Algorithm CMR

1. Divide the Phase I data set into two disjoint subsets S1 and S2 with size N1 = bN(1 −
logN)/ logNc and N2 = N −N1, respectively.

2. Calculate the sample covariance matrices Λ̂#
S1 and Λ̂#

S2 .

3. Compute the estimated threshold,

τ̂ = arg min
τ̂≥0

∑
(µ 6=ν) and

(2L<µ or 2L<ν)

{[
Λ̂#
S1

]
µ,ν

1
[∣∣[Λ̂#

S1

]
µ,ν

∣∣ ≥ τ̂ ]− [Λ̂#
S2

]
µ,ν

}2

. (14)

4. Calculate the sample covariance matrix Λ̂#
0 using the entire Phase I data set of size N and

apply the threshold τ̂ from (14) to Λ̂#
0 and obtain the regularized sample covariance matrix

Λ̃#
0 as below.

Λ̃#
0 =

{ [
Λ̂#

0

]
µ,ν
, if (i) µ 6= ν or (ii) µ ≤ 2L and ν ≤ 2L,[

Λ̂#
0

]
µ,ν

1
( ∣∣ [Λ̂#

0

]
µ,ν

∣∣ ≥ τ̂) , otherwise,

where 1(·) is the indicator function.

Figure 15: Algorithmic description of CMR.

WDFTCa and WDFTCs have quite different mechanisms. WDFTCs analyzes the DWT

of the in-control mean profile and only monitors a subset of DWT components, while

WDFTCa watches nonzero components from thresholded DWTs, whose locations vary for

different observed profiles. More specifically, WDFTCs constructs T 2-type statistics by

p× 1 reduced-dimension DWTs of profiles and the corresponding p× p covariance matrix.

On the other hand, WDFTCa constructs T 2-type statistics by n× 1 thresholded DWTs of

profiles and the n×n covariance matrix, but the number of nonzero components of thresh-

olded DWTs is far smaller than n when in-control, so matrix multiplications to calculate

monitored statistics can be accelerated by exploring sparsity of thresholded DWTs.

3.2.2 Thresholding Methods

Many researchers have developed wavelet thresholding methods with Gaussian noise as a

canonical model. For example, minimax thresholding method and universal thresholding

method from [14] are used for Gaussian white noise, while a level-dependent thresholding

method from [26] works for cross-correlated Gaussian noise. Since WDFTCa is designed
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Algorithm BSD

1. Obtain τ̂ and the regularized sample covariance matrix Λ̃#
0 from Algorithm CMR. Set

a subset O = {(µ, ν) : µ 6= ν, 2L < µ ≤ n, and 2L < ν ≤ n} containing all off-diagonal

elements of Λ̃#
0 but excluding the estimated covariances between pairs of scaling coefficients.

2. Let Q denote the number of nonzero elements in O.

Q =
∑

(µ,ν)∈O

1
(∣∣[Λ̃#

0

]
µ,ν

∣∣ > 0
)
.

2a. If Q = 0, then set r = 1 and stop. Otherwise, go to step [2b].

2b. Calculate the average magnitude ζ of nonzero elements in O. Then set the batch size
r =

⌈√
2ζ/τ̂

⌉
and stop.

ζ =
∑

(µ,ν)∈O

∣∣[Λ̃#
0

]
µ,ν

∣∣/Q.

Figure 16: Algorithmic description of BSD.

to be distribution-free, we need a thresholding method that is both distribution-free and

effective in the presence of cross correlations among noise components. In this subsection,

we propose a distribution-free thresholding method to incorporate with WDFTCa.

When the monitored process is in-control, the difference between an observed profile

and the in-control mean profile has zero expected value, E[dj ] = E[Yj − f0] = 0, so does

its DWT vector E[ωj ] = E[Wdj ] = 0. Thus it would be best to suppress all components

of ωj . Some existing thresholding methods can achieve this goal at least in the asymptotic

sense for Gaussian white noise model, for example, universal thresholds that are mentioned

above. On the other hand, when a shift occurs, the expected value of the difference between

an out-of-control profile Yj and an in-control mean profile f0 becomes f1 − f0 6= 0, so it is

desirable to keep more components after thresholding so that shifts can be detected faster.

This implies that a desired thresholding method in WDFTCa should satisfy the following

three critical properties: (a) it is distribution-free, (b) it keeps scaling coefficients but filters

out most detail coefficients when in-control, and (c) it keeps some detail coefficients in

addition to scaling coefficients when out-of-control.

Property (b) helps monitored statistics satisfy the underlying assumption of Equa-

tion (12) (i.e., cumulative sum statistics S±(k) behave like reflected Brownian motion pro-

cesses when in-control). If we threshold both scaling coefficients and detail coefficients, it
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is possible that there is no component survived after thresholding for some profiles. Thus

we may often obtain statistics with zero values, and behaviors of such statistics are hardly

approximated well by a Brownian motion process. Additionally, scaling coefficients contain

important information of profiles due to the nature of wavelet transform, such as the mag-

nitude of noise. Therefore we prefer to keep all scaling coefficients without thresholding.

On the other hand, if the number of preserved detail coefficients changes significantly from

one profile to another when in-control, which is often caused by small thresholds or high

correlations between components, the variability of T 2-type statistics becomes extremely

large and it takes many observations until S±(k) exhibits appropriate asymptotic behaviors.

As a result, actual ARL0 of the control chart may be larger than the target value for finite

target ARL0. To ensure well-behaved T 2-type statistics when in-control, Property (b) is

required.

Property (c) is critical to the effectiveness of control charts. Thresholds cannot be too

large to filter out all of the important coefficients when out-of-control, since shift information

can also be filtered out. This would cause a control chart inefficient in shift detection. It is

recommended that one chooses relatively large but not extremely large thresholds and keep

more detail coefficients when out-of-control, so that T 2-type statistics become larger and

S±(k) exit control limits faster when a shift occurs. To ensure Properties (b) and (c), we

design our thresholding method in a way that it keeps all scaling coefficients and relatively

large outliers of detail coefficients only.

Next, we review the universal thresholding method and then propose our new thresh-

olding method developed from the fourth moment Cornish-Fisher expansion from [4].

3.2.2.1 Universal Thresholds

Universal thresholds, developed by Donoho and Johnstone [14], are one of the most well-

known wavelet thresholds. They provide some desirable asymptotic characteristics, which

are stated below.

Lemma 3 If z1, z2,. . . ,zn are independent and identically distributed as a standard normal

distribution, P{max1≤i≤n |zi| >
√

2 log n} → 0 as n→∞. Therefore,
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lim
n→∞

max1≤i≤n |zi|√
2 log n

= 1, almost surely.

The universal threshold for the ith noise component is defined as λi = σi
√

2 log n, where

σi is the marginal standard deviation of the ith component. Because the term
√

2 log n is

independent from distribution parameters, this thresholding method is called universal and

known to be robust to different signals or profiles.

Supported by Lemma 3, universal thresholds are designed to filter out all detail coeffi-

cients asymptotically, so that zero components in the underlying mean profile are estimated

as zero with high probability. This implies that universal thresholds satisfy Property (b)

and (c). However, those properties do not hold any longer when noises are non-normal

and/or have cross correlations. In [1] and [2], Averkamp and Houdré present thresholding

methods for non-normal noises. But their thresholds vary from distributions and have no

closed forms, making it hard to implement. Besides, their thresholds also tend to select

more components than universal thresholds, violating Property (b). Instead, we present a

distribution-free thresholding method that has similar properties as the universal thresh-

olding method.

3.2.2.2 Cornish-Fisher Expansion Thresholds

We interpret the universal threshold by connecting it to a hypothesis testing:

H0 : E[ωj,i] = 0 versus H1 : E[ωj,i] 6= 0, for 2L < i ≤ n and j = 1, 2, . . . .

When |ωj,i| > σ̂i
√

2 log n, we reject H0 and keep ωj,i. Otherwise, we filter out ωj,i and

set ωj,i = 0. Let q = Φ(
√

2 log n), where Φ represents the standard normal cumulative

distribution function. If noises are assumed to follow IID normal distributions, universal

thresholds can be considered as q-quantile estimates. We extend this idea to a general noise

distribution as follows.

• If ωj,i < z1−q
i or ωj,i > zqi , reject H0 and keep ωj,i, where z1−q

i and zqi are the (1− q)-

and q-quantiles of the underlying distribution of ωj,i.

• Otherwise, filter out ωj,i and set ωj,i = 0.
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In other words, critical quantile values z1−q
i and zqi serve as the lower and upper thresholds

for ωj,i. By using quantiles, we can determine whether a wavelet component is significant

with an approximately similar confidence level as universal thresholds, no matter what

underlying distributions are. Moreover, as n→ 0, q → 1, Lemma 3 still holds.

For profiles with a moderate dimension size n = 512, the probability from universal

thresholds is q = Φ(
√

2 log 512) = 0.9998. The 0.9998-quantile is considered as an extreme

quantile. It is known that accurate estimation of extreme quantiles is difficult. However,

for our purpose, we only need relatively good thresholds that are large enough to guarantee

Properties (a)–(c), instead of accurate quantile estimates. We consider indirect quantile

estimation with the Cornish-Fisher (CF) expansion from [4], because it can provide good

quantile estimates with a moderate data set and low data storage requirements. Addi-

tionally, experimental results in [4] show applaudable performance with the fourth moment

expansion. A q-quantile estimator from the CF expansion is defined as follows.

zqi = µ̂i + σ̂ix
q
i , where xpi = zq +

1

6
(z2
q − 1)γ̂1i +

1

24
(z3
q − 3zq)γ̂2i −

1

36
(2z3

q − 5zq)γ̂
2
1i, (15)

where zq is the q-quantile of the standard normal distribution, and µ̂i, γ̂1i and γ̂2i are

sample mean, sample central standardized skewness, and sample central standardized excess

kurtosis for the ith component from Phase I data, respectively.

Bekki et al. [4] also point out that quantile estimates based on the CF expansion may

be inaccurate for extreme quantiles for skewed distributions, but perform reasonably well

for symmetric distributions. Since wavelet coefficients are weighted averages and tend to be

more symmetric than the raw data, so the CF expansion provides relatively good thresholds

for WDFTCa.

Consider profiles with IID exponential noise distributions. We set the profile dimension

n = 512 and each noise component to follow centralized exponential distributions with

parameter 1 (i.e., εij ∼ exp (1) − 1, i = 1, 2, . . . , n, and j = 1, 2, . . .). If we apply Haar

DWT, the highest level of wavelet components is difference of two exponential random

variables, which follows the distribution, Laplace(0, 1). We calculate theoretical values of

the 0.0002- and 0.9998-quantiles from Laplace(0, 1) and also estimate them with the CF

expansion based on 500 randomly sampled noise vectors. Since wavelet components at the
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highest level (n/2 < i ≤ n) follow the same distribution, we can obtain average and standard

error (SE) of the 0.0002- and 0.9998-quantile estimates based on results of n/2 components.

Table 8 provides average and SE for the CF expansion (CF), and also provides theoretical

values for the Laplace distribution (Laplace) and universal thresholds (Universal). For

IID exponential noises, the CF expansion provides more accurate quantile estimates than

universal thresholds and the CF estimates are also close to the theoretical values. On the

other hand, universal thresholds ±3.53 are clearly off for such a non-normal distribution.

Table 8: Average and Standard Error (SE) of the 0.0002- and 0.9998-quantile estimates for
wavelet components at the highest level.

The 0.0002-quantile The 0.9998-quantile
CF Universal Laplace CF Universal Laplace

Average 7.324 3.53 7.824 -7.537 -3.53 -7.824
SE 0.091 N/A N/A 0.105 N/A N/A

3.2.2.3 Inflation Factor

With the probability q = Φ(
√

2 log n) from universal thresholds, the CF expansion provides

good thresholds for independent normal and non-normal profiles. However, when positive

cross correlations exist, more components tend to survive after thresholding and associated

T 2-type statistics change significantly from one profile to another even when in-control. It

becomes more difficult to achieve a good approximation of a Brownian motion process, and

thus Equation (12) does not work well. We want to adjust q value when there are strong

correlations. To this end, we employ an inflation factor γ and redefine q = Φ(γ
√

2 log n) for

estimating quantiles z1−q and zq.

Recall that Λ denotes the profile covariance matrix. When all components in a profile’s

DWT are independent, Λij = 0 for i 6= j. When there exist cross correlations among

components in a profile’s DWT, Λij becomes nonzero for some i 6= j. Since positive

correlations among detail coefficients or among detail coefficients and scaling coefficients,

cause more survived components after thresholding, we determine an inflation factor by

comparing the actual covariance matrix Λ and its “ideal” covariance matrix S, where S

has the same marginal variances for all coefficients as Λ (i.e., Sii = Λii), but zero correlation
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(i.e., Sij = 0 for i 6= j). Parameter t, set in Equation (16), can be interpreted as a measure

of similarity between the actual covariance matrix Λ and its “ideal” covariance matrix S.

If Λ = S, i.e., all profile variables are independent, t is equal to 1; while t becomes small if

Λ and S are different.

When Λ and S are quite different, 1/
√
t turns to be very large. However, if an inflation

factor is too large, less components survive and Property (c) is violated. Therefore we set

an upper bound for an inflation factor in Equation (17). We recommend to take γmax = 1.5

to maintain Property (c). Note that without an inflation factor, estimated quantiles by CF

expansion are already quite large, therefore an inflation factor should be relatively small

and 1.5 is a good empirical choice. Algorithm CFI as follow states procedures for computing

an inflation factor γ.

Algorithm CFI
The inflation factor γ is determined by the following steps.

1. Let Λ = Λ̃0(r), where Λ̃0(r) is a covariance matrix estimate in (11).

2. Set an n× n matrix S with Sii = Λii and Sij = 0 for i 6= j and 1 ≤ i, j ≤ n.

3. Calculate a correlation-type statistic t as follows.

t =

∑
1≤i,j≤n (Λij − Λ̄)(Sij − S̄)√(∑

1≤i,j≤n (Λij − Λ̄)2
)(∑

1≤i,j≤n (Sij − S̄)2
) , (16)

where Ā =
∑

1≤i,j≤nAij/n
2 for any matrix A.

4. Set an inflation factor

γ = min(
1√
t
, γmax) (17)

and let q = Φ(γ
√

2 log n).

Figure 17: Algorithmic description of Algorithm CFI.

We prove 0 < t ≤ 1 and 1 ≤ γ ≤ 1.5 in the Appendix B. If profiles have independent

noises, t equals to 1 and inflation factor γ also equals to 1, so the probability q is as same

as the probability from universal thresholds. Additionally, a small t implies that a big

discrepancy between the actual covariance matrix and the “ideal” case, and thus both γ

and thresholds take larger values. On the other hand, when cross correlation is low, t takes

large values and γ is small. Additionally, when negative correlations exist in Λ, we get a
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larger t (or γ close to 1), compared to the case where all correlations are positive with the

same level of correlation. WDFTCa with CF thresholds is given as below.

Step 2 of Procedure WDFTCa

By employing CF thresholds, Step 2 of WDFTCa states as follows.

2. For i = 1, . . . , n, calculate sample mean µ̂i, sample standard deviation σ̂i, sample cen-
tral standardized skewness γ̂1i, and sample central standardized excess kurtosis γ̂2i, from
{ωk,i(r) : k = 1, . . . , bN/rc}, where ωk,i(r) is the ith component of the kth batch means
vector ωk(r). Then determine the inflation factor γ as Equation (17) from Algorithm CFI.
Obtain q = Φ(γ

√
2 log n), and calculate corresponding estimated quantiles z1−qi and zqi from

Equation (15). The lower and upper thresholds λL and λU are determined by

λL = {z1−q1 , . . . , z1−qn } and λU = {zq1 , . . . , zqn}.

Figure 18: Algorithmic description of Step 2 of Procedure WDFTCa with CF thresholds.

3.2.3 Covariance Matrix Estimation

When WDFTCa constructs T 2-type statistics, a covariance matrix estimate of profile DWTs

is required, if the true covariance matrix is unknown. Because the locations of survived

DWT components vary from one profile to another, we need the information of the entire

n× n covariance matrix.

Several researchers developed some covariance matrix estimation methods for high-

dimensional vectors, such as [5] and [7]. We employ the regularization method from [5],

because their method is robust to different forms of high-dimensional covariance matrices

and easy to implement as shown in [33]. Bickel and Levina [5] divide the data set into two

groups with the ratio (logN − 1) : 1, where N is the size of the data set, and obtain sample

covariance matrices for each group, Σ̂1 and Σ̂2, and search for a threshold s that minimizes

the difference between the thresholded Σ1 by s and Σ2 in the Frobenius metric. Then the

covariance matrix estimate is calculated by thresholding the sample covariance of the entire

data set with s.

Algorithm CMR is the regularization method from [5] and also used in [33], but Lee et

al. [33] use a splitting ratio 2 : 3 that does not perform well for higher dimensional profiles.

Note that we work with n× n matrix, while Lee et al. [33] work with p× p matrix, where

p� n. We find that the original splitting ratio (logN − 1) : 1 in [5] performs better. Thus
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Algorithm CMR employs the splitting ratio (logN−1) : 1 for covariance matrix estimation.

3.3 Experiment

In this section, we test two different in-control mean profiles: Mallat’s piecewise smooth

function and the LRS data from a lumber manufacturing process. We present comprehensive

experimental results of WDFTCa and compare with its competitor WDFTCs mentioned

in Section 3.1.2. Recall that WDFTCs is an effective wavelet-based control chart with

static selection, i.e., only monitoring a subset of wavelet components. On the other hand,

WDFTCa monitors adaptively selected wavelet components that vary for different sample

profiles.

3.3.1 Mallat’s Piecewise Function

To investigate the effectiveness of WDFTCa, we take Mallat’s piecewise smooth function as

the in-control mean profile and test processes on various noise distributions and shifts. We

assume that the true covariance matrix of profiles is known for Mallat’s piecewise smooth

function, but this assumption is relaxed for the LRS data in the next subsection.

We take n = 512 equally spaced data points from each observed profile and apply

Symmlet 8 wavelets with the coarsest level of resolution L = 5. The size of Phase I data

set is N = 20, 000. Set the target ARL0 = 200 and actual ARL0 and ARL1 are calculated

based on 1000 independent replications. Since we use the true covariance matrix, the batch

size cannot be determined by a sample covariance matrix, we use the average batch size

reported in [33] as our batch size for both WDFTCs and WDFTCa. For example, the

average batch size of WDFTCs for IID standard normal noises is 3 from Table 4 in [33],

and thus we use 3 as batch size in both WDFTCs and WDFTCa. The inflation factor is

determined by comparing the true covariance matrix with its “ideal” case.

Additionally, the weight in WRRE for WDFTCs is set to 0.5 for Mallat’s piecewise

smooth function, and thus 62 fixed components are selected to construct their statistics.

43



3.3.1.1 Shift Configurations

The out-of-control mean profile is set to be f1 = f0+ηζσ, where shift size η ∈ {0.25, 0.5, 0.75, 1, 2}

and σ = (σ1, . . . , σn)T is the vector of marginal standard deviations of profiles. We define

distinctive shifts by using different ζ. First, ζ has a form of a diagonal matrix, i.e., ζ = ∆,

where ∆ = diag(δ1, . . . , δn). We define four shifts as follows.

• Global straight line shift (G1): δi = 1 for i = 1, . . . , n.

• Global stepwise shift (G2): δi = 1 for i = 1, . . . , n/2 and δi = −1 for i = n/2+1, . . . , n.

• Local straight line shift (L1): δi = 1 for i ∈ A1 = {3, 4, . . . , 15} ∪ {344, 345, . . . , 347}

and δi = 0 for i 6∈ A1.

• Local flare shift (L2): δi = (i − 480)/32 for i ∈ A2 = {481, . . . , 512} and δi = 0 for

i 6∈ A2.

Next, ζ changes its form to ζ = W−1Θ, where Θ = diag(θ1, . . . , θn), a diagonal matrix

defined as the same as Section 3.1.2, only affecting non-selected components from the static

selection in WDFTCs.

• Wavelet global shift (WG): θi = 1 in ζ1, for i = 1, . . . , n, see Figure 13 (Left).

• Wavelet local shift (WL): θi = 1 in ζ2, for i ∈ B1 = {80, 81, . . . , 88} and θi = 0 for

i 6∈ B1, see Figure 13 (Right).

3.3.1.2 Noise Distributions

We consider three multivariate normal distributions, SMN, CMN and GMN, with mean

zero and covariance matrices ΣS , ΣCN , and ΣG, respectively, and two multivariate shifted

exponential distributions, EXP and CEXP, with mean zero and covariance matrices ΣE and

ΣCE , respectively. All five noise distributions SMN, CMN GMN, EXP and CEXP, with

their covariance matrices are defined as below.

• SMN: ΣS = In, where In is an n× n identity matrix.
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• CMN: All diagonal elements in ΣCN are equal to 1 and all off-diagonal elements in

ΣCN have value 0.5.

• GMN: Diagonal elements [ΣG]ii are taken from Example 2 of [18], defined as Equa-

tion (18) with values from 9.5 to 14.8, and off-diagonal elements are [ΣG]i1,i2 = [ΣG]
1/2
i1i1

[ΣG]
1/2
i2i2

ρ(i1−i2) for i1 6= i2, where ρ(·) are determined by the following Equation (19),

originally taken from [47].

[ΣG]ii = σ2
0

(
1 +

{
0.5− 2.5

[
(i− 1)/n− 0.515

]2}2
)2

, where σ2
0 = 9.50. (18)

ρ(`) = Corr[εi,j, εi+`,j] = (−α2)|`/2|
[

sin (|`|ω + ξ)

sin (ξ)

]
, where ` = 0,±1, . . . ,±(n− 1), α1 =

4

3
,

α2 = −8

9
,ω = cos−1

[
α1

2
√
−α2

]
∼= 0.785, ξ = tan−1

[
1− α2

1 + α2
tan(ω)

]
∼= 1.51. (19)

• EXP: ΣE = In, the same as ΣS .

• CEXP: We employ the NORTA method in [8] to generate CEXP, by transforming a

CMN vector into a shifted exponential (CEXP) vector. Thus the covariance matrix

ΣCE has diagonal elements [ΣCE ]ii = 1 and off-diagonal elements [ΣCE ]i1,i2 close to

0.5 but slightly less than 0.5 on the average.

3.3.1.3 Results

We first present the actual values of ARL0 delivered by WDFTCs and WDFTCa for various

distributions. Table 9 shows that WDFTCs delivers an actual value of ARL0 close to the

target, while WDFTCa delivers an actual value of ARL0 that slightly deviates from the

target. This is mainly due to the larger variance of the T 2-type statistics used in WDFTCa

compared with WDFTCs. Thus we get a less accurate estimate of the relevant covariance

matrix with 20, 000 Phase I data. However, we confirm that this problem goes away when we

increase Phase I data. Nevertheless, the deviation from target 200 in Table 9 is acceptable.

Tables 10–11 compare ARL1 between WDFTCs and WDFTCa. For all tested noise

distributions, both control charts are able to detect the first four shifts (G1, G2, L1, and

L2), but WDFTCa outperforms WDFTCs. Moreover, WDFTCa performs significantly

better than WDFTCs on small shift size. For example, when shift size η = 0.25, WDFTCa

detects local shifts L1 and L2 by 9.4% to 32.2% faster than WDFTCs, where local shifts
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Table 9: Actual ARL0 from WDFTCs and WDFTCa for Mallat’s piecewise smooth function
under various noise distributions.

Noise type r̄ γ WDFTCs WDFTCa
SMN 3 1.00 202.61 190.62
CMN 3 1.50 204.22 199.58
GMN 8 1.29 196.42 197.26
EXP 3 1.00 196.57 195.91
CEXP 3 1.50 203.99 214.33

are more difficult to detect than global ones. Furthermore, WDFTCa can effectively detect

wavelet shifts ζ1 and ζ2, where WDFTCs fails. Even though correlations in the CEXP noise

distribution lead to a large inflation factor and make it difficult for WDFTCa to detect

wavelet shifts until the shift size η reaches 2, WDFTCa still performs better than WDFTCs

because WDFTCs cannot detect wavelet shifts of any size. Results with the theoretical

covariance matrix for Mallat’s piecewise smooth function show that WDFTCa performs

better than WDFTCs in most scenarios and also detects shifts missed by WDFTCs.

3.3.2 Lumber Manufacturing Process

We compare experimental results between WDFTCs and WDFTCa for LRS data from a

lumber manufacturing process. LRS data are generated by a statistical model developed in

[46] and implemented in [33, 44, 45]. An LRS profile is the thickness of a large number of

tested points on a sawed board, measured along a vertical line from an edge of the board,

by an LRS at a certain location of the sawed board.

Given a saw configuration, a board type and a LRS location, a sampled LRS profile

is Yj = {Yj,1, . . . , Yj,n}, where Yj,i = f0,i + εj,i is the measured thickness of the jth board

at the ith horizontal distance xi cm along the length of the board, i = 1, . . . , n, and f0,i

denotes the true mean of thickness at the same tested point. f0 = {f0,1, . . . , f0,n} is the

in-control mean of LRS data, taken over the population. However, f0 shown in Figure 19,

cannot be presented by an explicit form.

We take n = 2048 tested points on each sawed board and again use Symmlet 8 wavelets

with the coarsest level of resolution L = 5. Set the target ARL0 to 370 and the size of

Phase I data to N = 30, 000. Delivered ARL’s are calculated based on 1000 independent
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Table 10: ARL1 for Mallat’s piecewise smooth function with SMN, CMN and GMN noise
vectors.

SMN CMN GMN

Shift type η WDFTCs WDFTCa WDFTCs WDFTCa WDFTCs WDFTCa
G1 0.25 3.81 3.44 195.45 191.12 8.00 8.00

0.5 3.00 3.00 150.01 123.36 8.00 8.00
0.75 3.00 3.00 86.27 62.03 8.00 8.00
1 3.00 3.00 49.86 34.14 8.00 8.00
2 3.00 3.00 12.69 9.38 8.00 8.00

G2 0.25 3.88 3.51 3.00 3.00 8.00 8.00
0.5 3.00 3.00 3.00 3.00 8.00 8.00
0.75 3.00 3.00 3.00 3.00 8.00 8.00
1 3.00 3.00 3.00 3.00 8.00 8.00
2 3.00 3.00 3.00 3.00 8.00 8.00

L1 0.25 123.58 103.38 73.12 51.56 40.42 28.34
0.5 33.63 30.83 18.15 13.16 11.81 9.08
0.75 15.58 13.78 8.65 6.69 8.02 8.00
1 9.09 8.08 5.55 4.12 8.00 8.00
2 3.03 3.00 3.00 3.00 8.00 8.00

L2 0.25 141.21 116.22 84.31 60.26 44.88 30.43
0.5 40.26 35.06 21.31 15.20 13.58 9.76
0.75 17.84 15.89 9.80 7.38 8.07 8.00
1 10.47 9.47 6.18 4.77 8.00 8.00
2 3.16 3.07 3.00 3.00 8.00 8.00

WG 0.25 200.64 58.88 191.77 189.33 203.66 8.00
0.5 197.93 11.96 198.71 139.10 203.87 8.00
0.75 198.33 4.19 213.91 31.00 201.18 8.00
1 195.84 3.01 202.34 6.14 202.12 8.00
2 201.35 3.00 198.42 3.00 190.07 8.00

WL 0.25 205.53 161.06 199.45 196.02 203.02 190.21
0.5 207.34 49.86 210.75 125.44 188.08 145.39
0.75 202.78 11.03 202.32 13.24 204.72 58.94
1 200.93 4.39 200.85 3.43 200.82 18.97
2 200.46 3.00 193.36 3.00 202.68 8.00

 2.53

 2.54

 2.55

 2.56

 2.57

 2.58

 2.59

 2.6

 0  500  1000  1500  2000

LRS

Figure 19: LRS data from a lumber manufacturing process (cm).
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Table 11: ARL1 for Mallat’s piecewise smooth function with EXP and CEXP noise vectors.

EXP CEXP

Shift type η WDFTCs WDFTCa WDFTCs WDFTCa
G1 0.25 4.23 4.32 199.33 172.44

0.5 3.00 3.00 171.77 153.04
0.75 3.00 3.00 157.02 111.57
1 3.00 3.00 131.06 75.63
2 3.00 3.00 43.50 19.82

G2 0.25 4.35 4.39 6.05 3.34
0.5 3.00 3.00 3.00 3.00
0.75 3.00 3.00 3.00 3.00
1 3.00 3.00 3.00 3.00
2 3.00 3.00 3.00 3.00

L1 0.25 139.06 124.92 185.56 138.96
0.5 38.49 36.97 66.38 34.26
0.75 17.20 16.54 27.54 15.12
1 9.93 9.67 15.37 8.84
2 3.09 3.02 5.06 3.00

L2 0.25 145.67 131.99 191.12 148.23
0.5 44.50 43.58 76.19 41.38
0.75 19.94 19.45 33.38 17.61
1 11.22 11.08 17.87 10.23
2 3.43 3.33 5.57 3.01

WG 0.25 206.36 117.92 202.43 218.82
0.5 199.38 38.63 209.50 215.50
0.75 201.11 13.64 208.58 211.14
1 197.65 6.39 210.53 207.17
2 208.70 3.00 203.63 160.85

WL 0.25 203.22 178.99 207.62 211.78
0.5 203.96 99.86 210.83 206.97
0.75 202.04 22.81 201.89 211.72
1 211.41 6.96 209.04 203.71
2 197.41 3.00 211.53 5.31

replications. For LRS data, we estimate covariance matrix by using Algorithm CMR with

ratio (logN − 1) : 1.

Additionally, the weight in WRRE for WDFTCs is set to 0.7 for LRS data, and thus 92

fixed components are selected to construct their statistics.

3.3.2.1 Noise Distributions

As mentioned early, Staudhammer et al. [44] points that the thickness of a sawed board

is affected by a saw configuration, a board type and an LRS location, and thus noise

components have the form
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εj,i = f(xi) + Bj + Lv + BLjv + `jvi for i = 1, . . . , n, (20)

where: (a) Bj ∼ N(0, σ2
B) with σB = 0.0204 cm, is the random effect of the jth sample

board; (b) Lv ∼ N(0, σ2
L) with σL = 0.0052 cm, is the random effect of the vth laser

location; (c) BLuv ∼ N(0, σ2
BL) with σBL = 0.0238 cm, is the random effect caused by

the interaction of the board and laser-location effects; (d) `jvi is the random affect arising

from the interaction of the board, laser-location and the distance xi along the board, so

that the process {`jvi : i = 1, . . . , n} is assumed to be stationary and represented by an

ARIMA(1,1,1) time series model, where

(1− αB)(`jvi − `jv(i−1)) = (1− βB)εi for i = 1, 2, . . . , (21)

where: (a) B is the backshift operator so that (1 − αB)`jvi = `jvi − α`jv(i−1); and (b)

{εi : i = 1, 2, . . .} is a white noise process, where εi ∼ N(0, σ2
ε) with σ̂ε = 0.00967 cm.

Staudhammer et al. [44] use the autoregressive parameter α̂ = 0.00053 cm and the moving-

average parameter β̂ = 0.00178 cm.

3.3.2.2 Shift Configurations

We take the same four types of process faults as [33]: machine positioning problem (MPP),

taper, flare and snake, see Figure 20, and briefly explain their causes and associated shifts

as follows. Set δ = {δ1, . . . , δn} as an associated shift vector, and thus the out-of-control

mean profile has the form f1 = f0 + δ. More details can be found in [44] and [45].

Figure 20: Four major types of process faults.
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• MPP is caused by incorrect positions of saw guides and results in a uniform change

in thickness along the length of the board, with δi = τ for i = 1, . . . , n

• Taper is caused by machine misalignment and results in a gradual increment or decre-

ment in the board thickness along the length of the board, with δi = xiτ/xn for

i = 1, . . . , n.

• Flare is caused when feed roll does not engage at a proper time, and results in an

unexpected increment in the board thickness at the end of the board, with δi = 0 for

i < i0 and δi = (xi − xi0)τ/(xn − xi0) for i ≥ i0, where i0 = max{i : xi < xn − 15}.

• Snake is usually caused by several saw problems and results in a waveform with the

period along the length of the board, with δi = τ sin(2πxi/P) for i = 1, . . . , n, where

τ is the amplitude and the period P = 182.88 cm.

Parameter τ takes values from {0.0254, 0.0508, 0.0762, 0.1016} cm for MPP, while τ ∈

{0.0508, 0.1016, 0.1524, 0.2032} cm for others.

3.3.2.3 Results

From Algorithm CFI, we obtain an inflation factor for WDFTCa from each replication and

the average of 1000 replications is γ̄ = 1.35. Table 12 show ARL0 and ARL1 for both

WDFTCs and WDFTCa. Both charts deliver actual ARL0 close to the target value, but

WDFTCa performs significantly better than WDFTCs for all shifts and detects some shifts

with almost half observed profiles compared to WDFTCs. Similar to Mallat case, WDFTCa

achieves more ARL1 saving on small shifts. For some shifts that are difficult to detect, such

as flare, WDFTCa uses less than 28.9% to 42.9% observed profiles than WDFTCs, and this

saving is larger than some global shifts, such as MPP.

WDFTCa keeps only 32.000022 components on the average when in-control, including

all 2L = 32 scaling coefficients. On the other hand, WDFTCs selects 92 components for each

observed profile. WDFTCa does not only select significantly fewer wavelet components than

WDFTCs, but also chooses components adaptively with as much information as possible.

Moreover, fewer monitored components speed up shift detecting and especially benefits
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small shifts, see [23]. Hence WDFTCa outperforms WDFTCs on LRS data and achieves

practical improvement.

Table 12: ARL’s for LRS data.

τ WDFTCs WDFTCa
ARL0 0 361.72 367.23

MPP 0.0254 156.48 138.74
0.0508 43.18 38.87
0.0762 20.94 19.86
0.1016 13.65 12.75

Taper 0.0508 168.92 89.06
0.1016 46.47 27.11
0.1524 22.24 13.40
0.2032 14.07 9.71

Flare 0.0508 269.26 153.87
0.1016 91.75 65.27
0.1524 42.30 27.81
0.2032 24.45 14.08

Snake 0.0508 88.29 57.07
0.1016 23.85 16.73
0.1524 12.54 9.49
0.2032 10.17 8.19

3.4 Conclusion

We develop a wavelet-based control chart with adaptive thresholds for high-dimensional

profiles with general noise distributions and some correlations. The main idea of WDFTCa is

to employ an adaptive thresholding method to select a small number of wavelet components

when in-control and more components when out-of-control. CF thresholds are the adaptive

thresholds implemented in WDFTCa and can be considered as the lower and upper quantiles

associated with the probability of universal thresholds in the standard normal distribution.

WDFTCa performs well for high-dimensional profiles and is especially sensitive to small

shifts and/or local shifts. It can also detect shifts that are missed by existing wavelet-

based control charts with static selection. Experimental results show WDFTCa outperforms

WDFTCs for both Mallat’s piecewise smooth function and LRS data. WDFTCa achieves

significant improvement with LRS data and reveals its potential in real applications.
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CHAPTER IV

DISCUSSION AND CONCLUSIONS

In Chapter 2, we studied the conservativeness of fully sequential procedures. There are

three conservativeness sources: (a) the BI, which enables us to focus on making selections

between a pair of systems instead of among all k systems; (b) the DTC, which bounds the

probability of making an incorrect selection in a discrete stochastic process by that in a

corresponding continuous stochastic process; and (c) the SC assumption, which sets us free

of unknown mean parameters.

Both the BI and the SC assumption are critical sources that affect the efficiency of

fully sequential procedures significantly. The other source, the DTC, affects the proce-

dures’ efficiency insignificantly. When the number of system is large, the impact of the

SC assumption overwhelms. To develop an efficient procedure that works well for large

k, we proposed two new procedures, WK and WK++, which lessen the impact of the SC

assumption and achieve more than 30% savings under the DC, compared to existing pro-

cedures. The savings can be even greater if the means of the systems are even more spaced

out. Additionally, the same technique can help other researchers to improve the efficiency

of some other fully sequential procedures, such as [39, 40].

In Chapter 3, we developed a wavelet-based distribution-free tabular CUSUM chart

based on adaptive thresholding, WDFTCa, for quickly detecting shifts in the mean of high-

dimensional profiles with general noise distributions and some correlations. The idea of

adaptive selection is to select a small number of wavelet components (e.g., mainly scaling

coefficients) when in-control and more components (e.g., including some extreme outliers

of detail coefficients) when out-of-control, so that when the process is in-control, monitored

statistics have manageable variability and can be well approximated as a Brownian motion

process; while when the process is out-of-control, monitored statistics change significantly

and can quickly detect shifts in the mean profile.
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On the other hand, it is not trivial to extend some existing wavelet-based distribution-

free control charts [33] from static selection to adaptive selection. Since (a) with adaptive

selection, the selected components change from profile to profile and the number of selected

components is also affected by the correlations between profile components, both result

in a large variance for monitoring statistics; and (b) the distribution of monitored statis-

tics can be very complicated. WDFTCa was designed to overcome these difficulties. In

order to maintain manageable covariances, WDFTCa computes monitored statistics from

nonoverlapping batch means of the wavelet-transformed noise vectors and uses a matrix-

regularization method to estimate their covariance matrix. WDFTCa makes adaptive se-

lection with CF thresholds, which uses the associated marginal Cornish-Fisher expansions

that have been suitably adjusted for between-component correlations.

Moreover, experimentation with several normal and nonnormal test processes reveals

that WDFTCa outperforms existing nonadaptive profile-monitoring schemes. WDFTCa

performs well on small shifts and/or local shifts and can detect shifts missed by its competi-

tors. Additionally, WDFTCa achieves significant improvement in a lumber manufacturing

case and shows its potential in practical applications.
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APPENDIX A

PROOFS OF THEOREMS 1 AND 2

A.1 Proof of Theorem 1

We need the following lemmas for the proof of Theorem 1.

Lemma 4 Define the standardized partial sum for system i as

Ci(t, r) ≡
∑brtc

j=1Xij − rtµi
σi
√
r

, 0 ≤ t ≤ 1 and r ∈ Z+, (22)

where b·c indicates truncation of any fractional part. The probability distribution of Ci(t, r)

over D[0, 1], the space of functions that are right-continuous and have left-hand limits, con-

verges to that of a standard Brownian motion process, W(t), as r increases; i.e., Ci(·, r)⇒

W(·) as r →∞, where ⇒ denotes convergence in distribution. Further, we assume that for

any t ∈ [0, 1], the family of random variables {C2
i (t, r) : r = 1, 2, . . .} is uniformly integrable.

Lemma 4 is basically Functional Central Limit Theorem [6]. It is straightforward that

Lemma 4 holds under Assumption 1.

Lemma 5 If Assumptions 1, 2 and 3 hold, then there exists N ∈ Z+ such that δ ≤ δ̂1i(r) <

(ci + κ)δ with probability 1 (w.p.1), for any r > N and some κ ∈ R+.

Proof: Under Assumptions 1, 2 and 3, |X̄1(r)− X̄i(r)| −A1i(r)→ ciδ w.p.1 as r →∞

for i ∈ {2, . . . , k}. This follows by the strong law of large numbers and continuous mapping

theorem (CMT) [6]. Set ε = κδ for some κ ∈ R+. Then there exists some N ∈ Z+,

(ci − κ)δ < |X̄1(r) − X̄i(r)| − A1i(r) < (ci + κ)δ and therefore δ ≤ δ̂1i(r) < (ci + κ)δ for

r > N w.p.1.

Proof of Theorem 1: Let r ∈ {n0, n0 + 1, . . .},

T1i ≡ T1i(δ) = min

r :

∣∣∣∣∣∣
r∑
j=1

(X1j −Xij)

∣∣∣∣∣∣ ≥ R(r; δ̂1i(r), h
2, S2

1i(n0))


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and N1i(r) =

⌊
2eh2S2

1i(n0)

δ̂21i(r)

⌋
.

First of all, we will show that T1i → ∞ as δ → 0 w.p.1, which is a fundamental

requirement for the convergence of estimators. We first represent the output process {X1j−

Xij} as {Zj + ciδ}, where Zj
IID∼ N(0, σ2

1i), i = 2, . . . , k and j = 1, 2, . . .. Consider a sample

path going up for which lim supδ→0 T1i = T ∗ ≤ ∞. (When the path goes down, the proof

is analogous.) There must exist δ∗ > 0 such that for all δ ≤ δ∗,
T ∗∑
j=1

Zj + T ∗ciδ ≥
h2S2

1i(n0)

δ̂1i(T ∗)
− δ̂1i(T

∗)

2e
T ∗. (23)

By Lemma 5, there must exist some κ ∈ R+ and n < T ∗ that ensure δ ≤ δ̂1i(r) < (ci + κ)δ

for any r > n w.p.1. This implies that δ ≤ δ̂1i(T
∗) < (ci + κ)δ and we obtain

T ∗∑
j=1

Zj + T ∗ciδ ≥
h2S2

1i(n0)

(ci + κ)δ
− (ci + κ)δ

2e
T ∗. (24)

Equation (24) can be rewritten as follows:

T ∗∑
j=1

Zj + T ∗δ(ci +
ci + κ

2e
) ≥ h2S2

1i(n0)

(ci + κ)δ
.

Note that when T ∗ is finite,
∑T ∗

j=1 Zj is finite w.p.1, but T ∗δ goes to zero while
h2S2

1i(n0)
(ci+κ)δ

goes to infinity as δ → 0. Thus (23) occurs with probability zero and then T1i →∞ w.p.1

as δ → 0. This also ensures that as δ → 0,

δ̂1i(T1i)/δ1i → 1 w.p.1. (25)

Due to (25) and CMT, it is also true that N1i(T1i)→∞ as δ → 0. Let ICSi denote the

event that the best system gets eliminated by an inferior system i, i = 2, . . . , k. Then

Pr{ICSi} = Pr


T1i∑
j=1

(X1j −Xij) ≤ −max

{
0,
h2S2

1i(n0)

δ̂1i(T1i)
− δ̂1i(T1i)

2e
T1i

}
= Pr

{∑T1i
j=1(X1j −Xij)− δ1iT1i

σ1i

√
N1i(T1i) + 1

+
δ1iT1i

σ1i

√
N1i(T1i) + 1

≤

−max

{
0,

h2S2
1i(n0)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

− δ̂1i(T1i)

2eσ1i

√
N1i(T1i) + 1

T1i

}}
(26)

For 0 ≤ t ≤ 1, let

C1i(t, δ) =

∑b(N1i(T1i)+1)tc
j=1 (X1j −Xij)− (N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1
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Further, define

T̂1i = min

{
t ∈
{

n0

N1i(T1i) + 1
,

n0 + 1

N1i(T1i) + 1
, . . . , 1

}
:

∣∣∣∣∣C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

∣∣∣∣∣
≥ h2S2

1i(n0)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

− δ̂1i(T1i)(N1i(T1i) + 1)

2eσ1i

√
N1i(T1i) + 1

t

}
.

Clearly, T̂1i = T1i/(N1i(T1i) + 1). Also define the stopping time of the corresponding

continuous-time process as

T̃1i = min

{
t ≥ n0

N1i(T1i) + 1
:

∣∣∣∣∣C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

∣∣∣∣∣
≥ h2S2

1i(n0)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

− δ̂1i(T1i)(N1i(T1i) + 1)

2eσ1i

√
N1i(T1i) + 1

t

}
.

Notice that for fixed δ, C1i(T̂1i, δ) corresponds to the right-hand limit of a point of discon-

tinuity of C1i(·, δ). We can show that T̂1i → T̃1i w.p.1 as δ → 0, making use of the fact that

1/(N1i(T1i) + 1)→ 0 w.p.1. Thus, in the limit, we can focus on C1i(T̃1i, δ).

Now condition on S2
1i(n0). Then Lemma 4, (25) and CMT imply that

C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

⇒W(t,∆)

as δ → 0, where

∆ = lim
δ→0

(N1i(T1i) + 1)δ1i

σ1i

√
N1i(T1i) + 1

=

√
2eh2S2

1i(n0)

σ1i
.

Still conditional on S2
1i(n0), let

A(δ) =
h2S2

1i(n0)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

δ→0−→

√
2eh2 S2

1i(n0)

2eσ1i
≡ A

B(δ) =
δ̂1i(T1i)(N1i(T1i) + 1)

2eσ1i

√
N1i(T1i) + 1

δ→0−→

√
2eh2 S2

1i(n0)

2eσ1i
≡ B.

Notice that the stopping time T̃1i is the first time t at which the event{∣∣∣∣∣C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

∣∣∣∣∣−A(δ) + B(δ)t ≥ 0

}
occurs. Define the mapping sδ : D[0, 1]→ R such that sδ(Y ) = Y (TY,δ) where

TY,δ = inf {t : |Y (t)| − A(δ) + B(δ)t ≥ 0}
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for every Y ∈ D[0, 1] and δ > 0. Similarly, define s(Y ) = Y (TY ) where

TY = inf {t : |Y (t)| − A+ Bt ≥ 0}

for every Y ∈ D[0, 1] and δ > 0. Notice that

sδ

(
C1i(t, δ) +

(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

)
= C1i(T̃1i, δ) +

(N1i(T1i) + 1)δ1iT̃1i

σ1i

√
N1i(T1i) + 1

s (W(·,∆)) =W(TW(·,∆),∆).

We need to show that

sδ (G1i(·, δ))⇒ s (W(·,∆)) (27)

as δ → 0, where

G1i(t, δ) ≡ C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

(28)

for t ∈ [0, 1] and δ > 0. This follows Proposition 2 from [31] which is established on the

extended CMT [6].

Unconditioning on S2
1i, (27) gives

lim sup
δ→0

Pr{ICSi}

= E
[
Pr
{
W(t,∆) exits continuation region through the lower boundary|S2

1i(n0)
}]

= E

[
e∑

v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
exp

{
−h

2S2
1i(n0)

eσ2
1i

(2e− v)v

}∣∣∣∣∣S2
1i(n0)

]
(29)

= E

[
e∑

v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
exp

{
−η(n0 − 1)S2

1i(n0)

eσ2
1i

(2e− v)v

}∣∣∣∣∣S2
1i(n0)

]
(30)

=

e∑
v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
E

[
exp

{
−
ηχ2

n0−1

e
(2e− v)v

}]

=

e∑
v=1

(−1)v+1

(
1− 1

2
I(v = e)

)(
1 +

2η(2e− v)v

e

)−(n0−1)/2

(31)

=
α

k − 1
,

where (30) holds due to Lemma 2, χ2
f is a chi-squared random variable with degrees of

freedom f , and (31) is from the moment generating function of χ2
f . Finally the probability
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of incorrect selection is less than the nominal level as below.

lim sup
δ→0

Pr{ICS} ≤ lim sup
δ→0

k∑
i=2

Pr{ICSi} ≤ α.

A.2 Proof of Theorem 2

For the proof of WK++ we need the following lemma:

Lemma 6 [6]

If Yn ⇒ Y and Zn
P−→ a where a is a constant vector, then (Yn, Zn)⇒ (Y, a).

Proof of Theorem 2: First set T1i and N1i(r) in the same way as the proof of Theorem

1, except replacing S2
1i(n0) with S2

1i(r). Sample variance S2
1i(n0) in (23) and (24) is also

replaced with S2
1i(T

∗). Then using a similar argument we can show T1i → ∞ as δ → 0

w.p.1 to guarantee the convergence of estimators. This ensures that as δ → 0,

δ̂1i(T1i)/δ1i → 1 and S2
1i(T1i)→ σ2

1i, w.p.1. (32)

Also, N1i(r) → ∞ as δ → 0 w.p.1 due to (32) and CMT. The definition of C1i(t, δ) is the

same as in the proof of Theorem 1. Redefine T̂1i and T̃1i as follows:

T̂1i = min

{
t ∈
{

n0

N1i(T1i) + 1
,

n0 + 1

N1i(T1i) + 1
, . . . , 1

}
:

∣∣∣∣∣C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

∣∣∣∣∣
≥ h2S2

1i(T1i)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

− δ̂1i(T1i)(N1i(T1i) + 1)

2eσ1i

√
N1i(T1i) + 1

t

}
.

T̃1i = min

{
t ≥ n0

N1i(T1i) + 1
:

∣∣∣∣∣C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

∣∣∣∣∣
≥ h2S2

1i(T1i)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

− δ̂1i(T1i)(N1i(T1i) + 1)

2eσ1i

√
N1i(T1i) + 1

t

}
.

We can show that T̂1i → T̃1i w.p.1 as δ → 0 making use of the fact that 1/(N1i(T1i)+1)→ 0

w.p.1. Thus, in the limit, we can focus on C1i(T̃1i, δ).

Since strong consistency implies convergence in probability, (32) and Lemma 6 can be

applied to

C1i(T1i, δ),

 δ̂1i(T1i)/δ1i

S2
1i(T1i)


. By the random-change-of-time theorem [6], the
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followings hold.

C1i(t, δ) +
(N1i(T1i) + 1)δ1it

σ1i

√
N1i(T1i) + 1

⇒W(t,∆)

as δ → 0, where

∆ = lim
δ→0

(N1i(T1i) + 1)δ1i

σ1i

√
N1i(T1i) + 1

=
√

2eh2.

A(δ) =
h2S2

1i(T1i)

δ̂1i(T1i)σ1i

√
N1i(T1i) + 1

δ→0−→
√
h2

2e
≡ A

B(δ) =
δ̂1i(T1i)(N1i(T1i) + 1)

2eσ1i

√
N1i(T1i) + 1

δ→0−→
√
h2

2e
≡ B

The definitions of mappings sδ, s, TY,δ, and TY follow those in the proof of Theorem 1 .

Then (27) holds again. Therefore,

lim sup
δ→0

Pr{ICSi} = Pr {W(t,∆) exits continuation region through the lower boundary}

=
e∑

v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
exp

{
−2

h2

2e
(2e− v)v

}
(by Lemma 2)

=

e∑
v=1

(−1)v+1

(
1− 1

2
I(v = e)

)
exp

{
−η
e

(2e− v)v
}

= α/(k − 1) (33)

where the equality follows from the way we choose η. Finally,

lim sup
δ→0

Pr{ICS} ≤ lim sup
δ→0

k∑
i=2

Pr{ICSi} ≤ α.
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APPENDIX B

PROOFS OF 0 < T ≤ 1 IN SECTION 3.2.2.3

We prove 0 < t ≤ 1 for Equation (16) and thus γ = 1/
√
t ≥ 1. First set the difference

between two matrix averages to be ∇ = Λ̄− S̄. Next we show

Λ̄ < nS̄. (34)

Note that 1 ≤ i, j ≤ n, and

n2Λ̄ =
∑
i

∑
j

Λij =
∑
i

Λii +
∑
i

∑
j 6=i

Λij

≤
∑
i

Λii +
∑
i

∑
j 6=i

√
ΛiiΛjj

≤
∑
i

Λii +
∑
i

∑
j 6=i

Λii + Λjj

2

= n
∑
i

Λii = n
∑
i

Sii = n3S̄, (35)

where the first inequality holds due to the property of correlation; the second inequality

holds due to the inequality of arithmetic and geometric means and Λii ≥ 0, 1 ≤ i ≤ n. On

the other side, the equality holds only when all elements in Λ are the same, i.e., Λi,j = c,

1 ≤ i, j ≤ n and c is a fixed constant. Such Λ implies that all variables are perfectly positive

correlated, which is impossible in reality. Therefore strict inequality (34) holds. Since the

denominator of t is always positive, we first check the sign of the numerator.∑
i

∑
j

(Λij − Λ̄)(Sij − S̄)

=
∑
i

∑
j 6=i

(Λij − Λ̄)(0− S̄) +
∑
i

(Λii − Λ̄)(Sii − S̄)

=
∑
i

∑
j 6=i

(Λij − Λ̄)(−S̄) +
∑
i

(Sii − S̄)2 −∇
∑
i

(Sii − S̄). (36)

Equation (36) holds due to the definition of S, Λii = Sii for 1 ≤ i ≤ n, and Λ̄ = S̄ +∇.

Further,

∑
i

∑
j 6=i

(Λij − Λ̄) =
∑
i

∑
j 6=i

Λij − n(n− 1)Λ̄ =
∑
i

∑
j

Λij −
∑
i

Λii − n(n− 1)Λ̄

= n2Λ̄− n2S̄ − n(n− 1)Λ̄ = nΛ̄− n2S̄ = n(S̄ +∇)− n2S̄ (37)

= n(1− n)S̄ + n∇
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∇
∑
i

(Sii − S̄) = ∇(
∑
i

Sii − nS̄) = ∇(n2S̄ − nS̄) (38)

where (37) holds due to
∑

i

∑
j Λij = n2Λ̄ and (38) holds due to (35). Then

(36) = n(n− 1)S̄2 − n∇S̄ +
∑
i

(Sii − S̄)2 − n2∇S̄ + n∇S̄

= n2S̄2 − nS̄2 +
∑
i

S2
ii − 2

∑
i

SiiS̄ + nS̄2 − n2S̄∇

=
∑
i

S2
ii − n2S̄2 − n2S̄∇ (39)

=
∑
i

S2
ii − n2S̄Λ̄

>
∑
i

S2
ii − n2S̄nS̄ =

∑
i

S2
ii −

(
∑

i Sii)
2

n
(40)

≥
∑
i

S2
ii −

n
∑

i S
2
ii

n
= 0 (41)

Inequality (40) holds due to Inequality (34). The last inequality (41) employs Jensen’s

inequality. Therefore t > 0 holds for any Λ. According to Cauchy–Schwarz inequality,∑
i

∑
j

(Λij − Λ̄)(Sij − S̄)

2

≤

∑
i

∑
j

(Λij − Λ̄)2

∑
i

∑
j

(Sij − S̄)2

 ,

thus it is guaranteed that t ≤ 1 and thus γ ≥ 1. By definition of γ in (17), 1 ≤ γ ≤ 1.5.

Additionally, when negative correlations exist in Λ, ∇, the difference between Λ̄ and

S̄ gets smaller and the numerator of t gets larger due to (39), compared to the covariance

matrix with the same level of correlation but all positively correlated, i.e., a matrix with

the absolutely value of Λ.
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