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SUMMARY

The overarching goal of this thesis is to provide an algorithm-centric approach

to analyzing the relationship between time, energy, and power. This research is aimed

at algorithm designers and performance tuners so that they may be able to make

decisions on how algorithms should be designed and tuned depending on whether the

goal is to minimize time or to minimize energy on current and future systems.

First, we present a simple analytical cost model for energy and power. Assuming a

simple von Neumann architecture with a two-level memory hierarchy, this model pre-

dicts energy and power for algorithms using just a few simple parameters, such as the

number of floating point operations (FLOPs or flops) and the amount of data moved

(bytes or words). Using highly optimized microbenchmarks and a small number of

test platforms, we show that although this model uses only a few simple parameters,

it is, nevertheless, accurate.

We can also visualize this model using energy “arch lines,” analogous to the

“rooflines” in time. These “rooflines in energy” allow users to easily assess and com-

pare di↵erent algorithms’ intensities in energy and time to various target systems’

balances in energy and time. This visualization of our model gives us many inter-

esting insights, and as such, we refer to our analytical model as the energy roofline

model.

Second, we present the results of our microbenchmarking study of time, energy,

and power costs of computation and memory access of several candidate compute-

node building blocks of future high–performance computing (HPC) systems. Over a

dozen server-, desktop-, and mobile-class platforms that span a range of compute and

power characteristics were evaluated, including x86 (both conventional and Xeon Phi

xiii



accelerator), ARM, graphics processing units (GPU), and hybrid (AMD accelerated

processing units (APU) and other system–on–chip (SoC)) processors.

The purpose of this study was twofold; first, it was to extend the validation of the

energy roofline model to a more comprehensive set of target systems to show that the

model works well independent of system hardware and microarchitecture; second, it

was to improve the model by uncovering and remedying potential shortcomings, such

as incorporating the e↵ects of power “capping,” multi–level memory hierarchy, and

di↵erent implementation strategies on power and performance.

Third, we incorporate dynamic voltage and frequency scaling (DVFS) into the

energy roofline model to explore its potential for saving energy. Rather than the

more traditional approach of using DVFS to reduce energy, whereby a “slack” in

computation is used as an opportunity to dynamically cycle down the processor clock,

the energy roofline model can be used to determine precisely how the time and energy

costs of di↵erent operations, both compute and memory, change with respect to

frequency and voltage settings. This information can be used to target a specific

optimization goal, whether that be time, energy, or a combination of both.

In the final chapter of this thesis, we use our model to predict the energy dissi-

pation of a real application running on a real system. The fast multipole method

(FMM) kernel was executed on the GPU component of the Tegra K1 SoC under

various frequency and voltage settings and a breakdown of instructions and data ac-

cess pattern was collected via performance counters. The total energy dissipation of

FMM was then calculated as a weighted sum of these instructions and the associated

costs in energy. On eight di↵erent voltage and frequency settings and eight di↵erent

algorithm–specific input parameters per setting, for a total of 64 total test cases,

the accuracy of the energy roofline model for predicting total energy dissipation was

within 6.2%, with a standard deviation of 4.7%, when compared to actual energy

measurements.
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Despite its simplicity and its foundation on the first principles of algorithm anal-

ysis, the energy roofline model has proven to be both practical and accurate for real

applications running on a real system. And as such, it can be an invaluable tool for al-

gorithm designers and performance tuners with which they can more precisely analyze

the impact of their design decisions on both performance and energy e�ciency.
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CHAPTER I

INTRODUCTION

Contents

1.1 A Roofline Model of Energy . . . . . . . . . . . . . . . . 2

1.2 Algorithmic Time, Energy, and Power on Candidate

High Performance Computing Building Blocks . . . . . 4

1.3 Adapting the Energy Roofline Model for Dynamic Volt-

age and Frequency Scaling . . . . . . . . . . . . . . . . . 5

1.4 Analysis of the Fast Multiple Method Using the Energy

Roofline Model . . . . . . . . . . . . . . . . . . . . . . . . 7

The overarching goal of this thesis is to develop a simple explanation, aimed at

algorithm designers and performance tuners, about the relationship between time,

energy, and power. For that audience, a useful model would directly connect prop-

erties of an algorithm – such as concurrency and locality – with architectural time

and energy costs. It would explain whether there is any di↵erence in optimizing an

algorithm for time versus optimizing for energy, why such di↵erence exist, and what

properties of the architecture might lead to non–trivial time–energy trade–o↵s.

1



1.1 A Roofline Model of Energy

To address this challenge, we start from a simple analytical model grounded in the first

principles of algorithm analysis. Our analysis is inspired by a similar set of thought

experiments based on “Amdahl” analysis written by and for architects [59, 128, 133].

Such analyses, based on Amdahl’s Law [3], o↵er architectural insights, but abstract

away essential properties of an algorithm. By contrast, our analysis more explicitly

connects algorithmic and architectural parameters. However, for clarity we pose

and study an intentionally simple – but not overly so – model, with some initial

experimental tests to confirm its basic form. Our analytical model is known as the

energy roofline model, and below, we summarize what our model implies. These

claims both reflect familiar intuition and also yield new or alternative explanations

about time, energy, and power relationships.

First, when analyzing time, the usual first–order analytic tool is to assess the

balance of the processing system [80, 60, 61, 12, 89, 126], where balance is the ratio

of work (e.g., flops) the system can perform per unit of data transfer (e.g., bytes). To

this notion of time–balance, we define an energy–balance analogue, which measures

the ratio of flops and bytes per unit of energy (e.g., Joules). We compare balancing

computations in time against balancing in energy.

Second, we use energy–balance to develop an energy–based analogue of the time–

based roofline model [126], which can be used to visualize our model. Because time

can be overlapped, while energy cannot, the energy–based “roofline” (hence, the name

energy roofline model) is actually a smooth “arch line.” Interestingly, if time–balance

di↵ers from energy–balance, then there are distinct notions of being “compute bound”

versus “memory bound,” depending on whether the optimization goal is to minimize

time or to minimize energy. We can measure this di↵erence as a time–energy balance

gap. We also posit an analogous “powerline” model for power.

Third, when a balance gap exists and energy–balance exceeds time–balance, the

2



arch line predicts that optimizing for energy may be fundamentally more di�cult

than optimizing for time. It further suggest that high algorithmic energy e�ciency

may imply time e�ciency, while the converse – that time e�ciency implies energy

e�ciency – is not true.

Fourth, we test the basic form of the model using experiments on real CPU and

GPU platforms. Using our model and these data, we show that the hypothetical

balance gap described above does not yet really exist, which consequently explains

why on today’s platforms race–to–halt is likely to work well [6]. This raises the

question for architects and hardware designers about what the fundamental trends

in the balance gap will be: if energy–balance will eventually overtake time–balance,

race–to–halt could break. We further use the experiments to highlight both the

strengths and the limitations of our model and analysis.

Lastly, we ask under what general conditions we should expect an algorithmic

time–energy trade–o↵. “Algorithmic” here stands in contrast to “architectural.” Ar-

chitecturally, for instance, increasing frequency reduces time, but increases energy,

due to the non–linear relationship between frequency and power. What is the story

for algorithms? We consider one scenario. Suppose it is possible algorithmically to

trade more compute operations for less communication. One may derive a general

necessary condition under which such a trade–o↵ will improve energy e�ciency. Fur-

thermore, we show what improvements in energy e�ciency may or may not require a

slowdown, and by how much. Again, these conditions depend fundamentally on how

time–balance compares to energy–balance.

Taken together, these theoretical analyses, supported by experiments on real plat-

forms, can be used to improve the collective understanding of the relationship among

algorithm properties and their costs in time, energy, and power.
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1.2 Algorithmic Time, Energy, and Power on Candidate
High Performance Computing Building Blocks

In this section, we extend and further validate the energy roofline model to increase

its accuracy and usability. We claim three key contributions.

First, we add several important components to our model. These components

include explicit modeling of a power cap and the energy cost of accessing di↵erent

levels of the memory hierarchy. The power cap is especially significant, as it implies

a way to predict power–throttling requirements. That is, if we wish to keep average

power below some threshold, the model predicts by how much compute and memory

operations should slow down. These additions come as a direct result of validating

the model on real systems, where we discovered that certain systems operate under a

strict power budget, and a power “cap” prevented them from achieving the expected

peak performance. We also discovered that without individually accounting for the

cost of accessing di↵erent levels of the memory hierarchy, it was di�cult to predict

energy consumption accurately for a real application.

Second, we compare the model to measurements on 12 platforms. These include

x86 (both conventional, and Xeon Phi accelerators), several flavors of ARM, desktop

and mobile GPUs and accelerated processing units (or APUs, such as those from

AMD and other system–on–chip (SoC) manufacturers). These experiments validate

the basic form of the extended model and yield empirical estimates of the e↵ective

energy required to perform flops and to move data. Breaking down the energy costs

to these di↵erent components allows us to consider energy e�ciency at di↵erent arith-

metic intensity points, allowing more flexibility and analytical precision than simply

dividing, say, peak performance by thermal design power (TDP). Moreover, these

basic estimated constants may in and of themselves be useful reference values.

The microbenchmarks used in these measurements have been carefully tuned with

the necessary architectural details in mind, in order to properly stress the targeted
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operations. These benchmarks, including the ones used in the previous section, have

been written in an array of programming environments, including assembly [66],

C (with SIMD intrinsics), CUDA [99], and OpenCL [2]. We have made these mi-

crobenchmarks available for download in a public repository as part of this thesis 1.

We claim our analysis and conclusion, drawn from the extensive experimental

data collected from a dozen systems, as our final contribution. It includes comparing

platforms on how power is allocated between memory and processing and the potential

for reconfiguring power between memory and processing to improve or adapt energy

e�ciency to computation. It also includes comparing platforms for power throttling

scenarios, where the “usable” power (i.e., power dedicated to computation and data

movement, not including overhead) is reduced to satisfy a power budget and how

such action impacts performance.

Beyond specific findings and data, we emphasize the methodological aspect of

this section. In particular, architects may find our high–level approach to be a useful

additional way to assess systems across computations; our analysis technique aims

to provide more insight than a collection of blackbox benchmarks provides but with-

out having to know too much detail about the specific computation. Similarly, we

hope algorithm designers may find ways to reason about algorithmic techniques for

managing energy and power, and trade–o↵s, if any, against time.

1.3 Adapting the Energy Roofline Model for Dynamic Volt-
age and Frequency Scaling

So far, we have assumed a fixed cost for all operations, in both time, and energy. This

allowed us to keep our model and analysis simple and easy to understand; however, in

more practical settings, DVFS can have a strong impact on energy e�ciency by taking

advantage of superlinear reduction in power with reduced frequency (and therefore

1http://hpcgarage.org/archline
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voltage). We incorporate DVFS into the energy roofline model and validate it on a

unique new SoC from NVIDIA.

We consider DVFS di↵erently from how other have done in the past in that, rather

than focusing on predicting “slack” in computation as an opportunity to arbitrarily

lower frequency and voltage, we attempt to determine precisely by how much perfor-

mance and energy of di↵erent operations change. Our new model can predict what

the optimal frequency and voltage settings are for di↵erent computations, and tell us

which algorithm would be better suited for a particular application under di↵erent

constraints, such as a power cap. We show that our model is accurate to within 6.56%

using 16–fold cross validation of our experimental data and to within 2.87% using the

holdout method (2–fold cross validation).

We also evaluate and compare our new test platform, Jetson TK1, based on the

Tegra K1 SoC which combines a single CUDA–capable SMX with a ARM Cortex A15

CPU, to high–end GPUs. Jetson TK1 is unique in that it is one of the first low–power

platforms that can run scientific kernels and applications written in CUDA, and also

in that it can vary frequency and voltage of both its processors and memory over a

wide range, making it an ideal platform for DVFS studies.

We first compare Jetson TK1 to a GTX Titan, the highest–end desktop GPU from

NVIDIA. In an iso–energy comparison, where we scale up the number of Jetson TK1

systems so that the aggregate TDP matches that of a single GTX Titan, we show that

a 22⇥ Jetson TK1 “cluster” outperforms GTX Titan over all arithmetic regimes in

both performance and energy e�ciency. When compared to a Tesla K40c GPU, the

latest server–grade GPU, a cluster of 15⇥ Jetson TK1 systems closely matches K40c

in both performance and energy e�ciency. Our study suggests that despite e↵orts in

pushing mobile SoC for HPC [108, 106, 52], there is nothing fundamentally more, or

less, energy e�cient about low–power devices; that is, you get (in performance) what

you pay for (in power).
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1.4 Analysis of the Fast Multiple Method Using the Energy
Roofline Model

As the final chapter of this thesis, we apply the energy roofline model to predicting

the energy consumption of a real application on a real system. We target the fast

multipole method (FMM) running on the CUDA–capable GPU of a Jetson TK1

system.

Given a system of N source particles, with positions given by {y
1

, . . . , y
N

}, and
N targets with positions {x

1

, . . . , x
N

}, we wish to compute the N sums,

f(x
i

) =
NX

j=1

K(x
i

, y
i

) · s(y
j

), i = 1, . . . , N

where f(x) is the desired potential at target point x; s(y) is the density at source point

y; andK(x, y) is an interaction kernel that specifies “the physics” of the problem. For

instance, the single-layer Laplace kernel,K(x, y) = 1

4⇡

1

||x�y|| , might model electrostatic

or gravitational interactions.

Evaluating these sums appears to require O(N2) operations. The FMM instead

computes approximations of all of these sums in optimal O(N) time with a guar-

anteed user-specified accuracy ✏, where the desired accuracy changes the complexity

constant [54]. As such, FMM is used in a variety of scientific simulations including

electromagnetic, fluid, and gravitational phenomena [14], and has been hypothesized

to be of increasing importance on future exascale systems [131].

We begin our analysis by using nvprof, a command–line performance counter

monitor provided by NVIDIA, to break down the FMM kernel to its basic operations.

These operations include various floating point instructions, such as fused–multiply–

add (FMA), multiply, and add, as well as integer operations, which are typically used

for loops and address calculation. We also break down data access to di↵erent levels

of the memory hierarchy; for GPUs these are accesses to shared memory, L1 cache,

L2 cache, and main memory.
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Once we have this breakdown, we simply take a weighted sum of these operations

with the derived energy costs (§ 5.1–5.3) to get the final energy consumption estimate.

To get the energy dissipated by constant power, ⇡
0

, we also need the execution time of

the kernel. Although we use measured execution time in our validation, we could use

the modeling and analysis technique developed in our previous work [20, 23] to get

a time estimate as well. The FMM implementation used in this section is also from

our previous work [20, 23], where we developed a highly tuned CPU–GPU hybrid

implementation of FMM.

For validation, we take eight di↵erent voltage and frequency settings and run

eight di↵erent configurations of FMM for each setting, and then compare our energy

estimates with physical measurements. We observed a mean error of 6.17% and a

standard deviation of 4.65%. We found that although we use very basic operations

to represent our algorithm, our model can, nevertheless, yield an accurate estimate

of energy consumption under various DVFS settings.
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CHAPTER II

PREVIOUS WORK

Contents

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Current Research . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 History

This is not the first time that power and cooling concerns have been raised in the

history of computing. As early as 1947, ENIAC, which is considered to be the first

digital computer, dissipated 174 KW using 17,468 vacuum tubes [11], a considerable

amount of power considering its capability (or lack thereof). Although it consumed a

large amount of power, cooling was not such a di�cult problem because of the large

physical size of a vacuum tube (i.e., areal power density, or watts per unit area, was

relatively low).

Transition to relatively lower-power bipolar junction transistor (BJT) kept power

dissipation in check. For example, the Intel 4004, the first commercially available

microprocessor, was produced in 1971 and had a similar compute capability as the

ENIAC while only dissipating a few watts. However, during the 1980s increasingly

denser transistor integration led to a rapid rise in power dissipation and density.

Power delivery and cooling once again became a concern and companies such as IBM
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and Cray produced liquid-cooled supercomputers in order to meet high performance

targets [78].

In the early 1990s transition from bipolar to complementary metal-oxide-semiconductor

(CMOS) transistors once again brought a temporary relief from power challenges.

CMOS transistors had the appealing behavior of dissipating power only during switch-

ing transitions. The complementary gate structure meant that early gates drew little

or no current between transition points because in a stable state the gate has no clear

path to ground. Although some initially considered CMOS too slow for widespread

use in high–performance computing, when power concerns became too great to deal

with, widespread adoption of CMOS brought technology improvements that signifi-

cantly improved their performance.

2.2 The Problem

Initially, most of the power dissipated by CMOS transistors came from switching

(this is known as dynamic power). Due to the imperfect nature of transistors, there

was also some leakage of current even when the transistor was not switching, or

“turned o↵” (i.e. the supply voltage was below some threshold voltage). At first, this

contributed only an insignificant amount of power (this is known as leakage or static

power).

For decades, supply voltage dropped steadily with each technology generation [65,

64, 67] and because of its cubic influence on dynamic power, processor designers were

able to keep the overall areal power density in check. However, when supply voltage

is lowered, gate delay increases, and therefore the threshold voltage has to be lowered

as well in order to maintain performance. Unfortunately, lowering threshold voltage

has an exponential influence on leakage power; since no exponential can last forever,

what was initially insignificant now makes up a significant proportion of the total

power budget. Moreover, there is a limit to how low the threshold voltage can be set
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and once this limit is reached, changing supply voltage can only trade o↵ power for

performance, and scaling performance and maintaining constant areal power density

will no longer be feasible. That is, more performance will necessarily mean more

power consumption.

For future supercomputers, operational costs of powering and cooling the system

are expected to exceed the cost of building them. Currently, the most “green” su-

percomputer in the world is the L-CSC supercomputer at the GSI Helmholtz Center

for Heavy Ion Research which consists of Intel Xeon CPUs and AMD FirePro GPUs

and is capable of processing 5.3 GFLOPs for every watt of power [53]. However, the

next generation of supercomputers, expected to come into service around 2018 and

perform at Exa-FLOPS levels, has been capped at 20 MW in power [42]. This is

approximately equivalent to performing at 50GFLOPS/W. So, in order to build the

next generation of supercomputers, the research community must come up with a way

to improve power e�ciency by a factor of 10 within the next few years! Considering

that we have already hit a wall, this is a daunting task.

2.3 Current Research

The perspective of this work is algorithms, rather than architecture, systems, or

embedded software, where time, power, and energy are traditionally studied (see the

survey of Kaxiras et al. [72].) Our work is perhaps most similar to a recent work by

Demmel et al. [34, 33, 49]. However, our model is more parsimonious and, as such,

clarifies a number of issues such as the notion of a balance gap or why race-to-halt

works on current systems. At a more technical level, we also di↵er in that we assume

computation-communication overlap and have furthermore tried to validate the basic

form of our model with experiments.

Additional algorithmic theory work The algorithms community has also con-

sidered the impact of energy constraints, particularly with respect to exploiting
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scheduling slack and there have been numerous other attempts to directly explore

the impact of energy constraints on algorithms. These include new complexity mod-

els, including new energy-aware Turing machine models [121, 88, 68, 10]; this body of

work addresses fundamental theoretical issues but is hard to operationalize for practi-

cal algorithm design and tuning. Other algorithmic work takes up issues of frequency

scaling and scheduling [79, 5, 4]. Such models are particularly useful for exploiting

slack to reduce energy by, for instance, reducing frequency of non-critical path nodes.

Systems-focused frequency scaling In more practical software-hardware set-

tings, the emphasis is usually on reducing energy usage through Dynamic Voltage and

Frequency Scaling (DVFS). DVFS attempts to minimize energy consumption with

little or no impact in performance by scaling down the frequency (and therefore the

voltage) when processor speed does not limit performance [47, 44, 71, 46, 114, 84, 1].

This work suggests a di↵erent flavor of time–energy trade–o↵, which comes from the

superlinear scaling of power and energy with frequency, than what we consider in

this paper. Among these, the work by Lively et al. uses principle component analysis

(PCA) method to model execution time and power consumption using a small set of

performance counters, which is then used to determine the appropriate DVFS and

dynamic concurrency throttling (DCT) settings. It is, however, not explicit about

algorithmic features such as intensity.

Dynamic concurrency throttling is a technique that limits the number of active

cores to reduce energy consumption [27, 19, 28, 74], and is particularly e↵ective

when employing an additional core brings a limited performance improvement but a

significant increase in power. This technique is, like DVFS, system–centric and does

not provide algorithmic insight into energy e�ciency.

Microbenchmarking studies Kestor et al. [75] and Molka et al. [93] have devel-

oped a microbenchmarking methodology similar to our own. In particular, Kestor et
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al. focus on measuring energy costs due to the memory hierarchy and communication.

Our modeling approach di↵ers, with power caps being its most notable distinction.

Diop et al. present a microbenchmark–based modeling technique for chip multi-

processors (CMP) and AMD APUs [35]. However, unlike ours, the microbenchmarks

used in their work are not explicit about algorithmic properties and their methodol-

ogy requires additional performance information from the Multi2Sim simulator [122]

and performance monitoring counters (PMC).

Czechowski et al. also use microbenchmarks to evaluate a set of Intel CPUs that

span a range of microarchitecture and process technology generations [31]. The au-

thors demonstrate that various microarchitectural improvements in recent generations

of Intel processors, and subsequent increase in the complexity of these “big cores,”

have contributed to improving both performance and energy e�ciency. Their work

is more focused on processor comparison than modeling, and is specific to only Intel

processors.

Profiling and observation-based studies There are a number of empirical stud-

ies of time, power, and energy in a variety of computational contexts, such as linear

algebra and signal processing [36, 43, 16, 48, 86, 41, 37, 13, 56]. One notable ex-

ample is the work of Dongarra et al., which observes the energy benefits of mixed

precision [36]; another is the study by Blem et al. [13] that debunks the myth that

complex instruction set computing (CISC) instructions are inherently less energy ef-

ficient than reduced instruction set computing (RISC) instructions.

Esmaeilzadeh et al. measure chip power for a variety of applications, with a key

high-level finding being the highly application-dependent behavior of power consump-

tion [41]. They create abstract profiles to capture the di↵ering characteristics of these

applications. However, they do not ascribe specific properties of a computation in

a way that programmers or algorithm designers can use to understand and change
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time–energy behavior.

Tools Although we adopted PowerMon 2 [8] as our measurement infrastructure,

there are numerous other possibilities. Perhaps the most sophisticated alternative is

PowerPack [48], a hardware-software “kit” for power and energy profiling. However,

the infrastructure is relatively elaborate and expensive to acquire, in contrast to Pow-

erMon 2. In future studies, we expect to be able to use even simpler measurement

methods based on vendor-provided hardware support. These include Intel hardware

counters for power [109] and NVIDIA’s Management Library for power measure-

ment [100]. However, unlike Intel’s tool, NVML only provides power consumption

monitoring for the entire GPU, including the memory. Also, NVML on certain GPU

models show a number of anomalous behaviors that require correction [17]

In terms of tools that help with energy e�ciency, there is eprof [111] that can

pinpoint energy–hungry sections of code, and other methods that attempt to reduce

energy consumption through various hardware features [90, 91].

Other modeling approaches The direct inspiration for this paper comes from

studies of architecture-cognizant extensions to Amdahl’s Law, balance, and the time-

based roofline [32, 29, 59, 128, 133, 80, 60, 61, 12, 89, 126, 70, 73].

However, there are numerous other approaches. For instance, numerous recent

studies have developed detailed GPU-specific models [62, 7, 132]; though these models

are capable of directly predicting time, they require very detailed characterizations of

the input program and/or intimate knowledge of the GPUmicroarchitecture. As such,

it is nontrivial to translate the output of these models into actionable algorithmic or

software changes. There are also numerous models that try to incorporate power and

energy [46, 85, 119, 63, 114, 118, 115, 96, 57]. However, like the time-based models,

much of this work is systems centric, abstracting away algorithmic properties.
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Simulators for power and energy Other e↵orts to model power dissipation in-

clude CACTI [127], McPAT [82], and GPUWattch [81] simulators. The underlying

models derive from device–level estimates of power dissipation for caches and pro-

cessor cores. The tools enable design–space exploration by quantifying the cost of

new features and materials over di↵erent process technology generations. However,

CACTI and McPAT are only validated against other simulators or against a break-

down of TDP published by the vendors. GPUWattch validates against real measure-

ments but only on NVIDIA GPUs. Also, it was noted by Nowitzki et. al [97] that all

of these simulators are often overfitted to certain benchmarks or configurations for

validation purposes, and can therefore have significant modeling errors. An interest-

ing question may be to what extent these tools corroborate, complement or contradict

our experimental data and modeling approach.

Low-power system for HPC Interest in embedded/mobile SoC for HPC has

grown rapidly in recent years. The most notable and perhaps the largest work is the

Mont Blanc project [108] which attempts to build a supercomputer from low–power,

low–performance ARM SoCs. However, there are numerous others that also employ

mobile SoC for HPC [45, 69, 117, 52, 87, 106, 95, 116, 107], as well as those that

use them for more general–purpose applications such as computer vision and speech

processing [55, 125, 124, 113, 22]

Notably, Fürlinger et al. [45] assembled a cluster of ARM Cortex-A8 based systems

(Apple TV) to test the viability of an ARM-based system for HPC using the LIN-

PACK benchmark. In the work by Reddi et. al [69], the authors consider low-power

atom processor as an alternative to conventional server processors in the context of

search engines. A study by Stanley-Marbell et. al [117] compares ARM, Atom, and

Freescale systems in the context of dense linear algebra, graphs, and MapReduce.

These studies are typically limited to specific systems or applications and cannot
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easily be extended to a wider range of architectures and workloads.

Architectural studies In the work by Hameed et al. [58], the authors use H.264

decoder as a case study to compare general purpose processors to ASICs in terms of

energy e�ciency. The authors show that ASICs achieve orders of magnitude higher

energy e�ciency by reducing instruction overhead that typically make up over 90%

of the energy cost associated with each computation.

Others have found ways to circumvent the energy problem altogether by designing

general purpose processors that use a di↵erent paradigm. Esmaeilzadeh et al. [38]

propose a new architecture and programming framework for o↵-loading portions of

annotated code that does not require exact computation to accelerators that approx-

imates the result using neural networks. In [104, 105], the authors propose processors

that are designed specifically for the sole purpose of computing matrix multiplication.

These solutions are unique and innovative, but less practical in the foreseeable

future. One distinction of our study is its analysis of o↵-the-shelf components, which

may be better suited to near-term design space exploration and experimentation.

Design space exploration for energy e�ciency Hardware–software co–designing

where traditional architecture design space exploration is tightly coupled with appli-

cation tuning can lead to energy–e�cient systems [92, 83]. In particular, Libuschewski

et al. formulate this challenge as an optimization problem and utilize an evolutionary

algorithm to automatically reach the optimal solution.

Others have proposed “overprovisioning” as a viable solution to tackling limited

power budget for supercomputers [103, 40, 39]. Patki et al. [103] predict that in the

future supercomputing centers will buy more compute capacity than can be used,

and, instead of running them simultaneously as before, allow users to customize the

system to the application to achieve better performance. The idea of “dark silicon”

proposed by Esmaeilzadeh et al. [40, 39] suggests that we will not be able to power

16



all transistors simultaneously (hence, there will be “dark” or unpowered transistors)

in the future. In that case, these unpowered transistors may become specialized units

and will only be turned on when the application can benefit from them, which is

similar to the idea behind overprovisioning.

Metrics Our models reason directly about the basic measures of time, energy, and

power. When considering trade–o↵s and multiobjective optimization, other metrics

may be better suited. These include the energy delay product (EDP) and gener-

alizations [51, 9], FLOP/s per Watt (i.e., flops per Joule) [112], and The Green

Index [120].
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In this section, we describe the energy roofline model and demonstrate how this

model can help guide analysis and tuning for energy e�ciency. In § 3.1, we derive

the basic model and define new terms, such as the energy–balance and the time–

energy balance gap of a system. We also show how our model can be visualized

using rooflines in energy (or arch lines), analogous to the rooflines in time [126],

to aid in algorithmic energy–e�ciency analysis. In § 3.2 we show how the balance

gap impacts average power and discuss our experimental setup and microbenchmarks

in § 3.3. In § 3.4, we discuss our fitted parameters and experimental result. We also

apply our model to a real application to see how closely the model can predict energy

consumption, and discuss why our predictions are not accurate and what can be
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Slow memory

xPU

Q transfers

W operations

Fast memory
(total size = Z)

Figure 1: A simple von Neumann architecture with a two-level memory hierarchy. In
our first analysis, suppose that an algorithm performs W arithmetic operations and
Q memory operations, or “mops,” between slow and fast memories.

done to remedy it. We conduct a hypothetical study on work–communication trade–

o↵, where we reduce communication in exchange for extra computation, to test its

viability for saving energy § 3.5. Finally, we give our conclusion in § 3.6.

3.1 A Basic Model and its Interpretation

Assume the simple architecture shown in fig. 1. This architecture has a processing

element, labeled “xPU”, as well as two levels of memory, namely, an infinite slow

memory and a fast memory of finite capacity. This system roughly captures every-

thing from a single functional unit (xPU) attached to registers (fast memory), to a

manycore processor (xPU) attached to a large shared cache (fast memory). Further

assume that the xPU may only perform operations on data present in the fast mem-

ory. As such, an algorithm for this architecture must explicitly move data between

slow and fast memories.
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3.1.1 Algorithm characterization

Let W be the total number of “useful” compute operations that the algorithm per-

forms and let Q be the total amount of data it transfers between the slow and fast

memories. (Table 1 summarizes all of the parameters of our model.) By useful, we

mean in an algorithmic sense; for example, we might only count flops when analyzing

matrix multiply, or comparisons for sorting, or edges traversed for a graph traversal

algorithm. For simplicity, we will assume W is measured in units of scalar flops.

(That is, a 4-way SIMD add is 4 scalar flops; a FMA is two scalar flops.) We will also

refer to W as the total work of the algorithm. Regarding Q, we will for simplicity

not distinguish between loads and stores, though one could do so in principle. We

will refer to Q as mops measured in some convenient storage unit, such as a word or

a byte.

In a typical algorithm analysis, both W and Q will of course depend on charac-

teristics of the input, such as its size n;1 in addition, Q will depend on the size of the

fast memory. We discuss these dependences momentarily.

For performance analysis and tuning, we may measure the algorithm’s computa-

tional intensity, which is defined as I ⌘ W/Q. Intensity has units of operations per

unit storage, such as flops per word or flops per byte. Generally speaking, a higher

value of I implies a more “scalable” algorithm. That is, it will have more work than

mops; therefore, it is more likely to improve as the architecture’s compute throughput

increases, which happens as cores increase or SIMD lanes widen.

What should we expect about the value of I? Recall that Q depends on fast

memory capacity, which we denote by Z units of storage (words or bytes), as shown

in fig. 1. Therefore, intensity will also depend on Z . A well-known result among

1That is, imagine a W (n) = O(n) style of analysis. However, unlike the traditional forms of
such analysis, we will also want to characterize constants and costs much more precisely whenever
possible.
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Table 1: Summary of model parameters

Variable Description

W # of useful compute operations, e.g., # of flops
Q # of main memory operations (“mops”)
I Intensity, or W/ Q (e.g., flops per byte)

⌧
flop

Time per work (arithmetic) operation, e.g., time per flop
⌧
mem

Time per mop
B

⌧

Balance in time, ⌧
mem

/ ⌧
flop

(e.g., flops per byte)
✏
flop

Energy per arithmetic operation
✏
mem

Energy per mop
B

✏

Balance in energy, ✏
mem

/ ✏
flop

(e.g., flops per Joule)
✏
0

Constant energy per flop
✏̂
flop

⌘ ✏
flop

+ ✏
0

Minimum energy to execute one flop
⌘
flop

Constant–flop energy e�ciency, ✏

flop

✏

flop

+✏

0

⇡
0

Constant power, e.g., Joule per second = Watts
⇡

flop

Baseline power per flop excluding constant power, ✏

flop

⌧

flop

B̂
✏

(I) E↵ective energy-balance (⇡
0

� 0)

T
flops

Total time to perform arithmetic
T

mem

Total time to perform mops
T Total time

E
flops

Total energy of arithmetic
E

mem

Total energy of mops
E

0

Total “constant” energy
E Total energy
P Average power

Z Fast memory size (e.g., words, bytes)
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algorithm designers is that no algorithm for n ⇥ n matrix multiply can have an

intensity exceeding I = O
⇣p

Z
⌘
[70]. Consequently, if we improve an architecture by

doubling Z , we will improve the inherent algorithmic intensity of a matrix multiply

algorithm by no more than
p
2. Contrast this scenario to that of just summing all

of the elements of an array. Intuitively, we expect this computation to be memory

bandwidth bound if the array is very large. Indeed, it has an intensity of I = O(1),

that is, a constant independent of problem size or Z . Thus, increasing Z has no

e↵ect on the intensity of this kind of reduction. In short, the concept of intensity

measures the inherent locality of an algorithm.

3.1.2 Time and energy costs

Next, we translate the abstract W and Q into concrete time and energy costs. We

will distinguish between the costs of performing work versus that of data transfer.

Furthermore, our model of energy cost will have two significant di↵erences from our

model of time cost, namely, (i) time costs may be overlapped whereas energy may

not; and (ii) we must burn constant energy, which is an additional minimum baseline

energy on top of operation and data movement costs. These distinctions are critical,

and together determine whether or not one should expect an algorithmic time–energy

trade–o↵ (see § 3.5).

More formally, suppose T
flops

and T
mem

are the total time (seconds) to execute

all work operations and all mops, respectively. Further assume, optimistically, that

overlap is possible. Then, the total time T is

T ⌘ max (T
flops

, T
mem

) . (1)

Similarly, suppose that E
flops

and E
mem

are the total energy (Joules) for work and

mops. In addition, let E
0

(T ) be the constant energy of the computation. Constant

energy is the energy that must be expended for the duration of the computation,

which we will further assume is a fixed cost independent of the type of operations
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Table 2: Sample values for model parameters,
based on best case (peak) capabilities of cur-
rently available systems. See table 1 for a sum-
mary of the definitions of these parameters.

Representative values

Variable NVIDIA “Fermi” GPU [123]

⌧
flop

(515 Gflop/s)�1 ⇡ 1.9 ps per flopa

⌧
mem

(144 GB/s)�1 ⇡ 6.9 ps per byteb

B
⌧

6.9/1.9 ⇡ 3.6 flops per byte

✏
flop

⇡ 25 pJ per flopc

✏
mem

⇡ 360 pJ per byte

B
✏

360/25 ⇡ 14.4 flops per Joule
a Based on peak double-precision floating-point
throughput.

b Based on peak memory bandwidth.
c Based on 50 pJ per double-precision fused
multiply-add.

being performed. (see § 3.2 for a more detailed description of the constant term).

Then, our model of energy cost is

E ⌘ E
flops

+ E
mem

+ E
0

(T ). (2)

Consider the component costs, beginning with time. Suppose each operation has

a fixed time cost. That is, let ⌧
flop

be the time per work operation and ⌧
mem

be the time

per mop. We will for the moment tacitly assume throughput-based values for these

constants, rather than latency-based values. (See table 2 for sample parameters.) This

assumption will yield a best-case analysis,2 which is only valid when an algorithm has

a su�cient degree of concurrency; we discuss a more refined model based on work-

depth in prior work [32]. From these basic costs, we then define the component times

2Additionally, assuming throughput values for ⌧
mem

implies that a memory-bound computation
is really memory bandwidth bound.
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(a) Rooflines versus arch lines. The red line with the sharp inflection shows the roofline
for speed; the smooth blue line shows the “arch line” for energy e�ciency. The time- and
energy-balance points (3.6 and 14 FLOP:Byte, respectively) appear as vertical lines and
visually demarcate the balance gap.
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(b) A “power-line” chart shows how average power (y-axis, normalized to ⇡
flop

) varies with
intensity (x-axis, flop:byte). Going from bottom to top, the horizontal dashed lines indicate
the flop power (y=1), the memory-bound lower limit (y=B✏

B⌧
=4.0), and the maximum power

(y=1 + B✏
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).

Figure 2: Rooflines in time, arch lines in energy, and power lines. Machine parameters
appear in table 2, for an NVIDIA Fermi-class GPU assuming constant power is 0.
Dashed vertical lines show time- and energy-balance points.
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as T
flops

⌘ W ⌧
flop

and T
mem

⌘ Q⌧
mem

. Then, under the optimistic assumption of perfect

overlap, the algorithm’s running time becomes

T = max (W ⌧
flop

, Q⌧
mem

)

= W ⌧
flop

·max

✓
1,

B
⌧

I

◆
, (3)

where we have defined B
⌧

⌘ ⌧
mem

/⌧
flop

. This quantity is the classical time-balance

point, or simply time-balance [80, 60, 61, 12, 89, 126]. Time-balance is the architec-

tural analogue of algorithmic intensity and has the same units thereof, e.g., flops per

byte. Furthermore, if we regard W ⌧
flop

as the ideal running time in the absence of

any communication, then we may interpret B⌧
I

as the communication penalty when

it exceeds 1. We refer to this condition, I > B
⌧

, as a balance principle [32]. Our

algorithmic design goal is to create algorithms that minimize time and have high

intensity relative to machine’s time-balance.

We might hypothesize that a reasonable cost model of energy is similar to that of

time. Suppose each work operation has a fixed energy cost, ✏
flop

, and for each mop a

fixed cost, ✏
mem

. Additionally, suppose the constant energy cost is linear in T , with

a fixed constant power of ⇡
0

units of energy per unit time. (This notion of constant

power di↵ers from leakage power; see § 3.1.5.)

Then,

E = W ✏
flop

+Q✏
mem

+ ⇡
0

T

= W ✏
flop

·
✓
1 +

B
✏

I
+

⇡
0

✏
flop

T

W

◆
, (4)

where B
✏

⌘ ✏
mem

/✏
flop

is the energy-balance point, by direct analogy to time-balance.

When ⇡
0

is zero, B
✏

is the intensity value at which flops and mops consume equal

amounts of energy.

Let us refine eq. (4) so that its structure more closely parallels eq. (3), which in

turn will simplify its interpretation. Let ✏
0

⌘ ⇡
0

· ⌧
flop

be the constant energy per flop,
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that is, the energy due to constant power that burns in the time it takes to perform

one flop. Moreover, ✏̂
flop

⌘ ✏
flop

+ ✏
0

becomes the actual amount of energy required

to execute one flop, given non-zero constant power. Next, let ⌘
flop

⌘ ✏
flop

/✏̂
flop

be the

constant flop energy fe�ciency. This machine parameter equals one in the best case,

when the machine requires no constant power (⇡
0

= 0). Then, substituting eq. (3)

into eq. (4) yields

E = W · ✏̂
flop

·
 
1 +

B̂
✏

(I)

I

!
, (5)

where B̂
✏

(I) is the e↵ective energy-balance,

B̂
✏

(I) ⌘ ⌘
flop

B
✏

+ (1� ⌘
flop

)max (0, B
⌧

� I) . (6)

The ideal energy is that of just the flops, W ✏̂
flop

. On top of this ideal, we must

pay an e↵ective energy communication penalty, which B̂
✏

(I)/I captures. Therefore,

similar to the case of execution time, our algorithmic design goal with respect to

energy is to create work-optimal algorithms with an intensity that is high relative to

machine’s e↵ective energy-balance. That is, just like time,‘ there is a balance principle

for energy, B̂
✏

(I) ⌧ I.

When B
⌧

= B̂
✏

(I), optimizing for time and energy are most likely the same

process. The interesting scenario is when they are unequal.

3.1.3 Rooflines in time and energy

We can visualize the balance principles of eqs. (3) and (5) using a roofline diagram [61,

126]. A roofline diagram is a line plot that shows how performance on some system

varies with intensity. Figure 2a depicts the simplest form of the roofline, using the

values for ⌧
flop

, ⌧
mem

, ✏
flop

, and ✏
mem

shown in table 2. Keckler et al. presented these

values for an NVIDIA Fermi-class GPU [73]; but since they did not provide estimates

for constant power, for now assume ⇡
0

= 0. The x-axis shows intensity I. The y-axis

shows performance, normalized either by the maximum possible speed (flops per unit
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time) or by the maximum possible energy e�ciency (flops per unit energy). That is,

the roofline with respect to time is the curve given byW ⌧
flop

/T = min(1, I/B
⌧

) plotted

against I. Similarly, the curve for energy is given by W ✏̂
flop

/E = 1/(1 + B̂
✏

(I)/I). In

both cases, the best possible performance is the time or energy required by the flops

alone.

The roofline for speed is the red line of fig. 2a. Since the component times may

overlap, the roofline has a sharp inflection at the critical point of I = B
⌧

. When

I < B
⌧

, the computation is memory bound in time, whereas I � B
⌧

means the

computation is compute bound in time. Assuming that all possible implementations

have the same number of operations, the algorithm designer or code tuner should

minimize time by maximizing intensity according to the balance principle.

There is also a “roofline” for energy e�ciency, shown by the smooth blue curve

in fig. 2a. It is smooth since we cannot hide memory energy and since ⇡
0

= 0. As

such, we may more appropriately refer to it as an “arch line.” The energy–balance

point I = B
✏

is the intensity at which energy e�ciency is half of its best possible

value.3 Put another way, suppose W is fixed and we increase I by reducing Q. Then,

B
✏

is the point at which mops no longer dominate the total energy. In this sense, an

algorithm may be compute bound or memory bound in energy, which will di↵er from

time when B
⌧

6= B
✏

.

3.1.4 The balance gap

The aim of rooflines and arches is to guide optimization. Roughly speaking, an

algorithm or code designer starts with some baseline having a particular intensity (x-

axis value). A roofline or arch line provides two pieces of information: (a) it suggests

the target performance tuning goal, which is the corresponding y-axis value; and (b)

it suggests by how much intensity must increase to improve performance by a desired

3This relationship follows from a+ b  2max(a, b).
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amount. Furthermore, it also suggests that the optimization strategies may di↵er

depending on whether the goal is to minimize time or minimize energy.

The balance points tell part of the story. Ignoring constant power, we expect

B
⌧

< B
✏

. The reason is that wire length is not expected to scale with feature size [73].

An algorithm with B
⌧

< I < B
✏

is simultaneously compute bound in time while being

memory bound in energy. Furthermore, assume that increasing intensity is the hard

part about designing new algorithms or tuning code. Then, B
⌧

< B
✏

suggests that

energy e�ciency is even harder to achieve than time e�ciency. The balance gap, or

ratio B
✏

/B
⌧

, measures the di�culty.

Having said that, a nice corollary is that energy e�ciency may imply time e�-

ciency. That is, I > B
✏

implies that I > B
⌧

as well. However, the converse—that

time e�ciency implies energy e�ciency—would not in general hold. Of course, roofs

and arches are only bounds, so these high-level claims are only guidelines, rather than

guaranteed relationships. Nevertheless, it may suggest that if we were to choose one

metric for optimization, energy is the nobler goal.

If, on the other hand, B
⌧

> B
✏

, then time e�ciency would tend to imply energy

e�ciency. Under this condition, so-called race-to-halt strategies for saving energy will

tend to be e↵ective [6].4

Lastly, the analogous conditions hold when ⇡
0

> 0, but with B̂
✏

(I) in place of B
✏

.

Higher constant power means lower ⌘
flop

; consequently, referring to eq. (6), it would

cause B̂
✏

(I) to be lower than B
✏

.

3.1.5 Interpreting constant power

Constant power in our model di↵ers from conventional notions of static (or leakage)

power and dynamic power [76]. Static power is power dissipated when current leaks

through transistors, even when the transistors are switched o↵; dynamic power is

4The race-to-halt strategy says that the best way to save energy is to run as fast as possible and
then turn everything o↵.
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power due to switching (charging and discharging gate capacitance). These terms

refer primarily to the device physics behind processor hardware, whereas constant

power in our model represents a more abstract concept that depends on hardware

and the algorithm or software that runs atop it.

With respect to hardware, constant power includes everything that is required to

operate the device on top of leakage power. For example, constant power on a GPU

will also include chips and circuitry on the printed circuit board, cooling fan, and

other parts of the microarchitecture. These components may or may not be directly

involved in computing or fetching data but would need to be on for the GPU to run

at all.

Our constant power model does not explictly express the concept of dynamic

power, which may lead to measurable inaccuracy. However, hardware designers are

aggressively implementing techniques that can, for instance, turn o↵ unused cores or

aggressively gate clocks. These and other techniques tend to significantly reduce the

impact of dynamic power.

With respect to software, our model of constant power can also capture ine�-

ciencies in the algorithm or code. If a program is running ine�ciently due to not

having enough threads to saturate the processors or the memory units, there will be

unused cores and/or longer instruction latencies due to stalls. The model includes

such ine�ciencies by charging a constant energy cost that depends on constant power

and the total running time T .

3.2 What the Basic Model Implies About Power

Assuming our time and energy models are reasonable, we can also make analytic

statements about the average power of a computation, P ⌘ E/T .

Let ⇡
flop

⌘ ✏
flop

/⌧
flop

be the power per flop. This definition excludes constant power.
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Then, dividing eq. (5) by eq. (3) yields

P =
⇡

flop

⌘
flop

"
min(I, B

⌧

)

B
⌧

+
B̂

✏

(I)

max(I, B
⌧

)

#
. (7)

The “power-line” diagram of fig. 2b depicts the most interesting features of eq. (7),

again using the parameters of table 2 with ⇡
0

= 0 (⌘
flop

= 1). If the computation

is severely memory bound (I ! 0), then P � ⇡
flop

B✏
B⌧

. If it is instead very compute

bound (I ! 1), P decreases to its lower limit of ⇡
flop

. Power P achieves its maximum

value when I = B
⌧

. From these limits, we conclude that

⇡
flop

B
✏

B
⌧

 P  ⇡
flop

✓
1 +

B
✏

B
⌧

◆
. (8)

Relative to ⇡
flop

, we pay an extra factor related to the balance gap. The larger this

gap, the larger average power will be.

3.3 An experiment

The model of § 3.1 is an hypothesis about the relationships among intensity, time,

and energy. This section tests our model on real systems.

3.3.1 Experimental Setup

Hardware Table 6 shows our experimental platforms, which include an Intel quad-

core Nehalem CPU and two high-end consumer-class GPUs (Fermi and Kepler). We

use two tools to measure power. The first is PowerMon 2, a fine-grained integrated

power measurement device for measuring CPU and host component power [8]. The

second is a custom in-house PCIe interposer for measuring GPU power. At the time

of this writing, our consumer-grade NVIDIA GPU hardware did not support fine-

grained power measurement via NVML, NVIDIA’s API [100].

Figure 10 shows how the measurement equipment connects to the system. Pow-

erMon 2 sits between the power supply unit and various devices in the system. It

measures direct current and voltage on up to eight individual channels using digital
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Table 3: Platforms – TDP is Thermal design power.

Peak
performance Peak

Single memory
(Double) bandwidth TDP

Device Model GFLOP/s GB/s Watts

CPU Intel Core 106.56 25.6 130
i7-950 (Nehalem) (53.28)

GPU 1 NVIDIA GeForce 1581.06 192.4 244
GTX 580 (Fermi) (197.63)

GPU 2 NVIDIA GeForce 3532.8 192.2 190
GTX 680 (Kepler) (147.2)

power monitor integrated circuits. It can sample at 1024 Hz per channel, with an

aggregate frequency of up to 3072 Hz. PowerMon 2 reports formatted and time-

stamped measurements without the need for additional software, and fits in a 3.5 inch

internal hard drive bay.

Modern high-performance GPUs have high power requirements. Typically, they

draw power from multiple sources, including the motherboard via the PCIe connector.

In order to measure the power coming from the motherboard we use a PCIe interposer

that sits between the GPU and the motherboard’s PCIe connector. The interposer

intercepts the signals coming from the pins that provide power to the GPU.

Measurement method The GPU used in our study draws power from two 12

Volt connectors (8-pin and 6-pin) that come directly from the ATX PSU, and from

the motherboard via the PCIe interface, which supply 12 V and 3.3 V connectors.

When benchmarking the GPU, PowerMon 2 measures the current and voltage

from these four sources at a regular interval. For each sample, we compute the

instantaneous power by multiplying the measured current and voltage at each source

and then sum over all sources. We can then compute the average power by averaging

the instantaneous power over all samples. Finally, we compute the total energy by

multiplying average power by total time. In this setup, we are able to largely isolate

31



GPU power from the rest of the system (e.g., host CPU).

ATX PSU

PowerMon2

PCIe 
Interposer

GPU

CPU

Motherboard

Input

Output

Figure 3: Placement of the measurement probes, PowerMon 2 [8] and our custom
PCIe interposer

The PSU provides power to our CPU system using a 20-pin connector that pro-

vides 3.3 V, 5 V and 12 V sources and a 4-pin 12 V connector. As with the GPU,

PowerMon 2 measures current and voltage from these four sources; we compute

the average power and total energy in the same manner as above. For our CPU

measurements, we physically remove the GPU and other unnecessary peripherals so

as to minimize variability in power measurements.

In the experiments below, we executed the benchmarks 100 times each and took

power samples every 7.8125 ms (128 Hz) on each channel.

3.3.2 Intensity microbenchmarks

We created microbenchmarks that allow us to vary intensity, and tuned them to

achieve very high fractions of the peak FLOP/s or bandwidth that the roofline pre-

dicts. We then compared measured time and power against our model. The results

for double precision and single precision appear in fig. 4 and fig. 5 respectively, with
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Figure 4: Measured time and energy for a double-precision synthetic benchmark
corroborates eqs. (3) and (5). The impact of constant energy can be profound: GPUs
have B̂

✏

< B
⌧

< B
✏

(see vertical dashed lines). In other words, time e�ciency implies
energy e�ciency because of constant power, which further suggests that “race-to-halt”
is a reasonable energy-saving strategy; were ⇡

0

! 0, the situation could reverse.
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Figure 5: Same as fig. 4, but for single precision. In this case, all platforms have
B̂

✏

 B
✏

< B
⌧

.
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measured data (shown as dots) compared to our model (shown as a solid line). We

describe these benchmarks and how we instantiated the model below5.

The GPU microbenchmark streams a multi-gigabyte array and, for each element,

executes a mix of independent FMA operations. We autotuned this microbenchmark

to maximize performance on the GPU by tuning kernel parameters such as number

of threads, thread block size, and number of memory requests per thread. The GPU

kernel is fully unrolled. To verify the implementation, we inspected the PTX code

and compared the computed results against an equivalent CPU kernel. The CPU

microbenchmark evaluates a polynomial and is written in assembly, tuned specifically

to maximize instruction throughput on a Nehalem core. Changing the degree of the

polynomial e↵ectively varies the computation’s intensity. The kernel is parallelized

using OpenMP to run on all four cores. Although the CPU and GPU benchmarks

di↵er, their intent is simply to permit varying of intensity and achieving performance

as close to the roofline as possible. As such, what they compute is not as important

as being highly tuned and having controllable intensity.

Figures 4 and 5 show that both microbenchmarks perform close to the roofline

in most cases. Refer specifically to the “Time” subplots, where the roofline is drawn

using peak GFLOP/s and bandwidth numbers from table 6. For instance, on the

GTX 580 the double-precision version of the GPU benchmark achieves up to 170 GB/s,

or 88.3% of system peak when it is bandwidth bound, and as much as 196 GFLOP/s,

or 99.3% of system peak when it is compute bound. For single precision, the kernel

performs up to 168 GB/s and 1.4 TFLOP/s respectively. However, performance does

not always match the roofline. Again on the NVIDIA GTX 580, we see the largest

gap near the time-balance point; this gap is much smaller on the GTX 680. We revisit

this phenomenon in light of our model in § 3.4.2.

Percentage of system peak performance observed on GTX 680 was somewhat

5The microbenchmarks are available for download at http://hpcgarage.org/archline
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Table 4: Fitted energy coe�cients. Note that ✏
mem

is given in units of picoJoules per
Byte. As it happens, the ⇡

0

coe�cients turned out to be identical to three digits on
GTX 580 and i7-950 which are built on 40 nm and 45 nm technologies respectively,
whereas GTX 680 is built on a significantly lower technology of 28 nm.

NVIDIA GTX 680 NVIDIA GTX 580 Intel Core i7-950

✏
s

43.2 pJ /FLOP 99.7 pJ / FLOP 371 pJ / FLOP
✏
d

262.9 pJ / FLOP 212 pJ / FLOP 670 pJ / FLOP
✏
mem

437.5 pJ / Byte 513 pJ / Byte 795 pJ / Byte
⇡
0

66.37 Watts 122 Watts 122 Watts

lower than that of GTX 580 and it took slightly more e↵ort and tuning to achieve it.

The maximum observed bandwidth was 147 GB/s, or 76.6% of system peak in both

single precision and double precision. The maximum observed performance when

the benchmark was compute bound was 148 GFLOP/s, or 101% of system peak in

double-precision and 3 TFLOP/s, or 85.6% of system peak in single precision. These

percentages are based on the 1150 MHz “Boost Clock” specification. We speculate

that these variations (even exceeding 100%) are due to the aggressive DVFS employed

on Kepler GPUs which allows over-clocking from the “Base Clock” of 1006 MHz as

long as the GPU remains under its TDP, even exceeding the Boost Clock.6

The CPU microbenchmark achieves up to 18.7 GB/s and 99.4 GFLOP/s, or 73.1%

and 93.3% of peak in single precision performance. The achieved bandwidth is sim-

ilar to that of the STREAM benchmark7 and the lower fraction of peak bandwidth

observed is typical for CPU systems. Double-precision performance is 18.9 GB/s

(73.8%) and 49.7 GFLOP/s (93.3%), respectively.

Model instantiation To instantiate eq. (3), we estimate time per flop and time

per mop using the inverse of the peak manufacturer’s claimed throughput values as

shown in table 6. For the energy costs in eq. (5), such specifications do not exist.

6
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.

pdf

7
streambench.org
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Therefore, we estimated them using linear regression on our experimental data.8 In

particular, the data points are a series of 4-tuples (W,Q, T,R), where we choose W

and Q when running the microbenchmark, T is the measured execution time, and R

is a binary variable set to 0 for single precision and 1 for double precision. We use

linear regression to find the coe�cients of the model,

E

W
= ✏

s

+ ✏
mem

Q

W
+ ⇡

0

T

W
+�✏

d

R, (9)

which yields the energy per single-precision flop, ✏
s

; energy per single-precision word,

✏
mem

; constant power, ⇡
0

; and �✏
d

, which is the additional energy required for a

double-precision flop over a single-precision flop.9 That is, the energy per double-

precision flop is ✏
d

⌘ ✏
s

+ �✏
d

. We summarize the fitted parameters in table 4. We

then plug these coe�cients into eq. (5) to produce the model energy curves shown

in fig. 5 and fig. 4. These curves visually confirm that the fitted model captures the

general trend in the data. We analyze these curves in § 3.4.

3.3.3 Cache microbenchmarks

Exploiting data locality is the main algorithmic tool for controlling I, though so far

we have ignored the cost of explicit cache access. Let Q
cache

be the number of cache

accesses (measured in words) that our computation incurs, which are distinct from

the Q that we may assume all go to main memory. We may modify eq. (4) to account

for Q
cache

as follows, assuming a per-cache access energy cost of ✏
cache

:

E = W ✏
flop

+Q✏
mem

+Q
cache

✏
cache

+ ⇡
0

T. (10)

This equation assumes the two-level memory hierarchy of fig. 1. It would be straight-

forward to add terms for a memory hierarchy with more than two levels.

8We use the standard regression routine in R, r-project.org.
9Normalizing the regressors by W produces high-quality fits, with R2 (residual) coe�cient near

unity at p-values below 10�14.
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Figure 6: Measured power for the double-precision microbenchmark corroborates the
“powerline” model. On the GTX 580 platform, NVIDIA reports a limit of 244 Watts,
which explains the discrepancy between the observed data and the predicted powerline
in the single-precision GTX 580 case.
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Figure 7: Measured power for the single-precision microbenchmark .
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We created a pointer-chasing microbenchmark for the GPU to help measure cache

access energy. First, consider the last-level L2 cache on Fermi- and Kepler-class

GPUs. Our benchmark computes k = A[k], where initially k == A[k] == the

local thread ID. As such, the first thread block to access the array will fetch data

from main memory into cache; threads from other thread blocks with the same local

thread ID e↵ectively fetch that same element over and over from cache. The number

of threads is limited so that the entire array fits in cache. We compile the microbench-

mark with -Xptxas -dlcm=cg, which forces the compiler to generate code that

caches data in the L2 cache only. Let ✏
L2

be the L2 cache energy access cost; using

our previously fitted values of ✏
mem

and ⇡
0

, we can compute ✏
L2

via

✏
L2

=
E �W ✏

flop

�Q✏
mem

� ⇡
0

T

Q
L2

(11)

where we use performance counters to estimate the number of L2 accesses, Q
L2
.

We can adjust then reuse this microbenchmark to estimate L1 cache energy cost.

First, recall that the GPU L1 caches are private to each multiprocessor. When L1

caching is enabled, the very first thread block to fetch a particular array element will

load the corresponding cache line into both the L2 cache and the L1 cache of the

multiprocessor in which it resides. Then, all subsequent and first thread blocks in

each multiprocessor will fetch the array from the L2 cache into their respective L1

caches. After that, subsequent thread blocks will then access this array from their

own L1 caches. Since we have already calculated the cost of fetching data from the L2

cache (✏
L2
), the energy cost ✏

L1
of fetching data from the L1 cache can be computed

using

✏
L1

=
E �W ✏

flop

�Q✏
mem

� ⇡
0

T �Q
L2
✏
L2

Q
L1

. (12)

This scheme works for NVIDIA Fermi-class GPUs, but we must modify it for

those based on Kepler. There, the L1 cache is reserved exclusively for spilling local
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Table 5: Estimated energy costs of explicitly fetching data from L1 and L2 caches on
GTX 580, and from shared memory and L2 on the GTX 680.

NVIDIA GTX 680 NVIDIA GTX 580

✏
L1

51 pJ /Byte (shared memory) 149 pJ / Byte
✏
L2

195 pJ / Byte 257 pJ / Byte

data.10 Therefore, we instead estimate the energy cost of fetching data from the

explicitly-programmed scratchpad memory, or “shared memory” in NVIDIA CUDA

parlance. However, doing so will have two consequences. First, we may observe

more L2 cache accesses than we would if we used L1. The reason is that a copy of

the array is required per thread block, rather than per multiprocessor. Secondly, we

may observe di↵erent e↵ective energy costs, since the shared memory and L1 cache

hardware implementations di↵er. The reader should, therefore, interpret “L1” energy

cost estimates on Kepler accordingly.

The estimated costs of fetching data from L1 and L2 caches on Fermi and Kepler-

class GPUs appear in table 5, where ✏
L1

is the L1 (or shared memory) access cost,

and ✏
L2

is the L2 cost. The median relative residuals between the fitted model and

the measured microbenchmark data were less than 4.5% on the GTX 680, and less

than 4% on the GTX 580.

As expected, the costs of fetching data from L1 and L2 caches are much smaller on

the Kepler-class GPU. Note that Kepler-based GPUs use a better process technology

than Fermi (28 nm vs. 40 nm on Fermi). We will analyze these estimates in § 3.4.1.

3.4 Discussion, Application, and Refinement

3.4.1 The fitted parameters

We may compare the fitted parameters of table 4 against those that Keckler et al.

provide [73]. Since they only discuss Fermi-class GPUs, giving estimates for only

45 nm and 10 nm process technologies, we will limit the following discussions of our

10See: http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html

41



energy cost estimates to the GTX 580.

First, Keckler et al. state that the energy cost of the floating-point unit that per-

forms one double-precision FMA is about 50 pJ, or 25 pJ per flop; our estimate in

table 4 is about eight times larger. This discrepancy arises because the 50 pJ FMA

cost excludes various instruction issue and microarchitectural overheads (e.g., regis-

ters, component interconnects), which our measurement implicitly includes. Based

on our estimates, these overheads account for roughly 187 pJ/flop.

Second, the discussion of Keckler et al. on memory access costs suggests a base-

line memory–energy cost of 253–389 pJ per Byte. This cost includes DRAM access

costs, interface costs, and wire transfer. However, this estimate ignores instruction

overheads and possible overheads due to cache. Recall that we estimated the instruc-

tion overhead for a floating point instruction to be roughly 187 pJ, or approximately

47 pJ/Byte in single precision. Adding this number to the baseline produces an esti-

mate of 300-436 pJ/Byte. We also have to account for the costs of storing and reading

the data from the L1 and L2 caches as it travels up the memory hierarchy. From Keck-

ler et al.’s paper, we can estimate this cost to be approximately 1.75 pJ/Byte per

read/write for both L1 and L2 (assuming they are both implemented using SRAM),

or a total of 7 pJ/Byte for both L1 and L2 read and write tra�c. This brings the

total cost estimate to 307–443 pJ/Byte. Our estimate of ✏
mem

is larger, which may

reflect additional overheads for cache management, such as tag matching.

Another point of note is the cost of fetching data from the L1 and L2 caches.

Since the cost of reading the data from SRAM is only 1.75 pJ/Byte and the cost of

transferring the data over the wire is roughly 10–20 pJ/Byte, instruction overhead

accounts for most of the cost. Streamlining the microarchitecture to reduce this

overhead is an opportunity for future work.

There is no information provided to check our constant power estimate. For

reference, we measured true GPU idle power—when the GPU is on but not running
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anything—to be approximately 40 Watts. Thus, what we estimate as constant power

is not the same as idle power.

The estimates of CPU energy costs for both flops and memory are higher than

their GPU counterparts. This observation is not surprising since a CPU processing

core is widely regarded as being more complex than its GPU counterpart. Similarly,

memory energy costs are higher in the CPU system than the GPU system. A likely

explanation is that GPU memory sits closer to the GPU processor than CPU memory

does to the CPU processor. All of these characteristics have a profound impact on

the balance gap, discussed next.

3.4.2 Balance gaps and power caps

Consider the rooflines and arch lines of fig. 4 and fig. 5. In all cases, the time–balance

point exceeds the y=1/2 energy–balance point, which means that time e�ciency will

tend to imply energy e�ciency. That is, once the microbenchmark is compute bound

in time (I > B
⌧

), it is also within a factor of two of the optimal energy e�ciency.

We believe this observation explains why race-to-halt can be such an e↵ective energy-

saving strategy in practice on today’s systems [6].

If instead it were possible to drive ⇡
0

! 0, then the situation could reverse. In

the two bottom-left subplots of fig. 4, we show this scenario using the hypothetical

energy-balance lines labeled, “const=0.” However, also observe that having ⇡
0

= 0

does not invert the balance gap on the Intel platform. As table 4 suggests, ✏
flop

and

✏
mem

on the Intel platform are much closer than they are on the NVIDIA platform.

Reflecting on these two types of systems, one question is to what extent ⇡
0

will go

toward 0 and to what extent microarchitectural ine�ciences will reduce.

As noted previously, the single-precision NVIDIA GTX 580 performance in fig. 5

does not track the roofline closely in the neighborhood of B
⌧

. The reason is that our

model does not include explicit power caps. To see this e↵ect, refer to the powerlines
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of fig. 6 and fig. 7 and the theory of fig. 2b. Our model demands that power increase

sharply as I approaches B
⌧

(see § 3.2). For instance, on the GPU in single-precision,

our model says we will need 387 Watts on the GPU as shown in fig. 7. This demand

would in reality cause excessive thermal issues. Indeed, the GTX 580 has a maximum

power rating of 244 Watts, which our microbenchmark already begins to exceed at

high intensities. Thus, incorporating power caps will be an important extension for

future work.

3.4.3 Applying and refining the model: FMM
U

on the GPU

To see how well we can estimate time and energy using our model, we apply it to

the FMM. The FMM is an O(n) approximation method for n-body computations

that would otherwise scale as O(n2) [54]. We specifically consider the most expensive

phase of the FMM, called the U-list phase (FMM
U

). For this exercise, we consider

just a GPU version of FMM
U

.

Algorithm 3.4.1 The FMM
U

algorithm

1: for each target leaf node, B do
2: for each target point t 2 B do
3: for each neighboring source node, S 2 U(B) do
4: for each source point s 2 S do
5: (�

x

, �
y

, �
z

) = (t
x

� s
x

, t
y

� s
y

, t
z

� s
z

)
6: r = �2

x

+ �2
y

+ �2
z

7: w = rsqrtf(r) {Reciprocal square-root}
8: �

t

+ = d
s

⇤ w {d
s

and �
t

are scalars}

Algorithm sketch The FMM
U

phase appears as pseudocode in Algorithm 3.4.1.

The n points are arranged into a spatial tree, with leaf nodes of the tree containing

a subset of the points. For every leaf node B, FMM
U

iterates over its neighboring

leaf nodes. The list of neighbors is called the “U-list,” denoted as U(B). The node

B is the target node, and each neighbor S 2 U(B) is a source node. For each pair

(B, S), FMM
U

iterates over all pairs of points (t 2 B, s 2 S) and updates �
t

, a
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value associated with the target point t. According to lines 5-8, each pair of points

involves 11 scalar flops, where we count “reciprocal square-root” (1/
p
r) as one flop.

Furthermore, each leaf contains O(q) points for some user-selected q; the number of

flops is therefore O(q2) for every O(q) points of data, with q typically on the order of

hundreds or thousands. Thus, the FMM
U

phase is compute bound.

In prior work, we generated approximately 390 di↵erent code implementations of

this benchmark [20, 23]. These variants use a variety of performance optimization

techniques and tuning parameter values.

Fitting We use the values in table 4 and table 5 to estimate the total energy cost

of each FMM
U

implementation on the NVIDIA GTX 680. All implementations are

in single precision. We derive the number of flops from the input data and the num-

ber of bytes read from the DRAM and caches using hardware counters provided by

NVIDIA’s Compute Visual Profiler. The average error for estimated energy con-

sumption as compared to measured was 32%, which is much worse than our cache

microbenchmark.

There are two culprits. First, we count only flops, thereby ignoring the overhead of

integer instructions, branches, and other non-flop operations. Secondly, our method

of estimating flop energy does not distinguish between types of flops. Recall that

our flop energy estimate is half the cost of a FMA instruction. Our simple estimate

will usually underestimate the true energy consumption of multiplies, divisions, and

(reciprocal) square roots, for instance. For the 390 FMM
U

implementations, we

always underestimated total energy.

3.4.4 Refining the performance estimate

Though compute bound, the FMM
U

instruction mix is more complex than a series of

FMAs. As such, we should evaluate time and energy with respect to a refined notion

of peak that accounts for the instruction mix. Below, we show how to do so for the
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GTX 580 (Fermi). A similar line of reasoning is possible for the GTX 680 (Kepler).

The intrinsic operations that the FMM
U

must perform require 11 scalar flops,

where reciprocal square root counts as a single flop. These flops occur over eight oper-

ations: one transcendental (reciprocal square root), three FMAs, and four individual

floating–point add and subtract operations.

To achieve peak on the GTX 580 (Fermi), consider its microarchitecture. The

GPU processor has 512 clusters of functional units, called “CUDA cores,” spread

among 16 SM units. Each of these cores runs at 1.54 GHz. Thus, the processor

can perform (512 scalar instructions) times (1.54 GHz) = 788 billion instructions per

second. If each instruction is a scalar FMA, the peak performance is 1.58 TFLOP/s.

However, there is a restriction owing to the dual-warp schedulers in each SM. A warp

is a group of 32 threads that execute instructions in lock-step.11 An SM may select

one instruction each from two independent warps in a cycle. That is, to achieve peak

there must be at least two independent warps each with a ready FMA in every cycle.

Otherwise, achieving peak is impossible.

For transcendental instructions like reciprocal square root, there are more limits.

Only one of the two warp schedulers in an SM may issue a transcendental operation

each cycle. Furthermore, there are only four special function units (SFUs) capable of

executing such operations on each SM. Therefore, to issue a transcendental operation

for a warp requires (32 threads) divided by (4 SFUs per cycle) = 8 cycles.

The key to deriving a refined estimate of peak, given the architecture and in-

struction mix, lies with the instruction issue rate and the dual-warp scheduler. The

FMM
U

instruction mix requires at least 3 cycles (for the FMAs) + 4 cycles (adds

and subtracts) + 8 cycles (reciprocal square root) = 15 cycles. However, the issue

rate varies during these 15 cycles: when issuing FMAs and other floating point in-

structions, if there is at least one other warp available to issue the same type of

11This style of execution is sometimes called SIMT execution.
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instructions, the SM will issue a total of 32 instructions. However, when issuing re-

ciprocal square roots, no more than 4+16=20 instructions may issue if there is at

least one other warp available that can issue FMAs or floating point instructions.

Therefore, the average issue rate is (7⇥32+8⇥20)/15 = 25.6 scalar instructions per

cycle. However, this does not di↵erentiate FMAs and floating point instructions. As

such, we can redefine issue rate in terms of flops/cycle. In this case, the average issue

rate is (3⇥64+4⇥32+8⇥20)/15 = 32 flops/cycle. Then the maximum performance

is (32 flops/cycle/SM) ⇥ (16 SMs) ⇥ (1.54 GHz) = 788 GFLOP/s.

To verify this estimate, we wrote a synthetic benchmark where each thread exe-

cutes many independent copies of this particular floating-point instruction mix in a

fully unrolled loop. The performance levels o↵ at approximately 785 GFLOP/s as we

increase the size of the loop. Unfortunately, we cannot completely unroll our loops in

FMM
U

since we do not have any prior knowledge of the number of neighbors in the

U-list, or the number of points in each neighbor. When we put our instruction mix

in a loop (i.e., not unrolled), the performance drops to approximately 512 GFLOP/s.

We believe this performance is the true peak that we should expect from the ideal

FMM
U

kernel. In fact, the best performance observed among our 390 kernels was

467 GFLOP/s, or 91% of this refined peak.

3.4.5 Constant power

The constant power and energy terms exhibit a large impact on energy consumption.

When we ran our microbenchmark in compute-only mode, it spent 55% of its energy

on flops on the GTX 580 and 69% on the GTX 680. The flop energy for FMM
U

, as

a result, was even worse. The FMM
U

spent just 23% to 50% of its energy on flops

when running on the GTX 580, and 40% to 70.27% on the GTX 680. These relatively

low fractions suggest that significant energy savings are still possible.

Additionally, the wide range of energy for flops observed for the FMM
U

stress
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the importance of algorithmic and software–level techniques. Otherwise, we could

end up wasting as much as 80% of the total energy judging by the 23% expenditure

of energy for flops observed on the GTX 580. Beyond algorithms and software, for

FMM
U

specifically there is also a strong case for even more specialized function

units.

3.5 Algorithmic Trade–o↵s

With the background of § 3.1, we may now ask what the consequences for algorithm

design may be. One interesting case is that of a family of algorithms that exhibit

a work–communication trade–o↵. Such a trade–o↵ is one in which we can reduce

memory communication at the cost of increasing computation. Below, we state when

a work–communication trade–o↵ improves time or energy, or both or neither.

The most interesting scenario will be when there exists a balance gap. As such,

we will in this section assume ⇡
0

= 0. The same analysis for ⇡
0

> 0 appears in § 3.5.5

3.5.1 Notation and key definitions

Denote an abstract algorithm that executes W flops and Q mops by the pair, (W,Q).

A “new” algorithm (fW, Q

m

) exhibits a work–communication trade–o↵ with respect

to the baseline (W,Q) if f > 1 and m > 1. From § 3.1, the time and energy of this

algorithm are

T
f,m

= W ⌧
flop

max

✓
f,

1

m

B
⌧

I

◆
(13)

and E
f,m

= W ✏
flop

✓
f +

1

m

B
✏

I

◆
, (14)

respectively. The intensity I ⌘ W/Q is that of the baseline algorithm.

Higher intensity does not mean less time. The new algorithm’s intensity is fmI

by definition. Though this value is higher than that of the baseline, the new algorithm

takes less time only if 1 < f < B⌧
I

, i.e., the baseline was initially memory bound.
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Instead, the best way to compare times is to do so directly. As such, our analysis

will also use the usual measure of speedup, denoted by �T and measured relative to

the baseline:

�T ⌘ T
1,1

T
f,m

=
max

�
1, B⌧

I

�

max
�
f, 1

m

B⌧
I

� . (15)

The algorithm exhibits a speedup if �T > 1 and a slowdown if �T < 1.

Similarly, we may ask whether the algorithm uses less energy than the baseline. In

the same way that eq. (15) measures time e�ciency, we may measure energy e�ciency,

or “greenup” �E, as

�E ⌘ E
1,1

E
f,m

=
1 + B✏

I

f + 1

m

B✏
I

. (16)

The new algorithm is more energy e�cient than the baseline if �E > 1.

3.5.2 A general “greenup” condition

Equation (16) implies that a (fW, Q

m

) algorithm decreases energy relative to the base-

line when �E > 1, or (after algebraic rearrangement)

f < 1 +
m� 1

m

B
✏

I
. (17)

Equation (17) is a general necessary condition for a work–communication trade–o↵

to reduce energy.

Acccording to eq. (17), a work–communication trade–o↵ may increase intensity

but only up to a limit. Reducing communication (increasing m) increases the slack

that permits extra work (higher f) to still pay o↵. But the energy communication

penalty imposes a hard upper limit. In particular, even if we can eliminate commu-

nication entirely (m ! 1), the amount of extra work is bounded by f < 1 + B✏
I

.

To get a feeling for what this might mean, suppose we have a baseline computation

that is compute bound in time, and furthermore is maximally tuned. In the language

of the roofline of fig. 2a, “compute bound in time” means I � B
⌧

, lying at or to
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the right of the sharp inflection; and “maximally tuned” means minimum time (or,

equivalently, maximum performance), which occurs at y-values that are on the roofline

itself. Equation (17) says that a new algorithm exhibiting a work-communication

trade–o↵ may reduce energy even if it requires increasing flops. However, there is

a limit; even if we eliminate communication, we must have f < 1 + B✏
I

 1 + B✏
B⌧

.

For the NVIDIA Fermi GPU architecture of table 2, this upper bound is about five,

meaning we should not increase the flops by more than a factor of five.12 The relative

gap between B
⌧

and B
✏

determines the slack for extra work.

3.5.3 Time and energy relationships

Equation (15) suggests that we consider three cases in relating speedup �T and

greenup �E:

1. Both the baseline algorithm and the new algorithm are memory bound in time.

2. The baseline algorithm is memory bound in time but the new algorithm is

compute bound in time.

3. Both the baseline algorithm and the new algorithm are compute bound in time.

(The fourth logical case, that the baseline is compute bound in time while the new

algorithm is memory bound in time, is impossible since we only consider f,m > 1.)

In each of these cases, we will calculate �T and then ask what the resulting lower

and upper bounds on �E may be. From this analysis, we will see when a speedup, a

greenup, or both may be possible.

Case 1: Baseline and new algorithms are memory bound in time If the

baseline and new algorithms are memory bound in time, then I < B
⌧

and f < 1

m

B⌧
I

.

We may conclude from eq. (15) that �T = m > 1, where the inequality follows from

assumption. In this case, we should always expect a speedup.

12This factor does not depend asymptotically on the input size, n.
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We can get a lower bound on �E using eq. (16) and upper bounds on f and 1

m

.

The only upper bound on f is 1

m

B⌧
I

. The only upper bound on 1

m

is 1. Substituting

these inequalities into eq. (16), we have

�E >
1 + B✏

I

B⌧
I

+ B✏
I

=
1 + I

B✏

1 + B⌧
B✏

. (18)

Since both the numerator and denominator are greater than one but I < B
⌧

, this

lower-bound will generally be slightly less than 1, meaning a small loss in energy

e�ciency can occur.

To get an upper bound on �E, we need lower bounds on f or 1

m

or both. By

definition, we have f > 1. By memory boundedness, we also have 1

m

> f I

B⌧
. Thus,

�E <
1 + B✏

I

1 + B✏
B⌧

. (19)

By memory boundedness of the baseline algorithm, I < B
⌧

and so the value of the

upper bound of eq. (19) will be greater than 1, but limited by the balance gap.

Equations (18) and (19) exhibit a natural symmetry and, furthermore, are inde-

pendent of m and f .

Case 2: Baseline is memory bound and new algorithm is compute bound

If the baseline is memory bound in time but the new algorithm is compute bound,

then I < B
⌧

, 1

m

B⌧
I

< f , and �T = 1

f

B⌧
I

. The expression for speedup says that we only

expect a speedup if the increase in flops is not too large relative to the communication

time penalty.

To get a lower bound on greenup using eq. (16), we need upper bounds on f ,

1

m

, or both. The only such bounds are 1

m

< 1, by definition, and 1

m

< f I

B⌧
, by

compute boundedness of the new algorithm. Which of these is smaller depends on

specific values of the various parameters; however, since both must hold we may

conservatively assume either. Choosing the latter, we find

�E >
1

f
· 1 +

B✏
I

1 + B✏
B⌧

= �T · 1 +
I

B✏

1 + B⌧
B✏

. (20)
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The rightmost factor is less than 1 since I < B
⌧

, by assumption. Thus, eq. (20)

makes it clear that whatever speedup (or slowdown) we achieve by exploiting the

work-communication trade–o↵, the energy e�ciency can be slightly lower.

To get an upper bound on �E, we need lower bounds on f , 1

m

, or both. For f ,

we have two: f > 1 and f > 1

m

B⌧
I

. The latter is more general, though it will be

pessimistic when m � B⌧
I

. With that caveat, we obtain

�E < m · 1 +
I

B✏

1 + B⌧
B✏

. (21)

Equation (21) emphasizes the critical role that reducing communication plays in

increasing energy e�ciency.

Case 3: Baseline and new algorithms are compute bound in time If both

the baseline and new algorithms are compute bound in time, then we may deduce that

I > B
⌧

and �T = 1

f

< 1. That is, we should generally expect a slowdown because

flops already dominate; increasing flops only increases work without the possibility of

saving any time.

We can obtain a lower bound on �E by invoking upper bounds on 1

m

or on f .

Our choices are 1

m

< 1, by definition; and 1

m

< f I

B⌧
, which follows from the new

algorithm being compute bound. The tightest of these is first; thus,

�E >
1 + B✏

I

f + B✏
I

= �T
1 + B✏

I

1 + 1

f

B✏
I

> �T . (22)

Substituting �T for 1

f

leads to the final equality and inequality. Equation (22)

says that the greenup will be no worse than the speedup. However, in this case

�T < 1, which means that a loss in energy e�ciency is possible.

We can get an upper bound on �E using eq. (16) with a lower bound on f . The

two choices are f > 1 and f > 1

m

B⌧
I

. Since the baseline was also compute bound in

time, meaning B⌧
I

 1, the latter lower bound is strictly less than the trivial lower
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bound. Thus, the tighter upper bound is

�E =
1 + B✏

I

f + 1

m

B✏
I

<
1 + B✏

I

1 + 1

m

B✏
I

< 1 +
B

✏

I
, (23)

where the last inequality shows the limit of the new algorithm having no commu-

nication (m ! 1). We may conclude that even though in this case we will always

slowdown in time, a greenup may be possible, albeit bounded by roughly the energy

communication penalty.

3.5.4 Summary of the three cases

We summarize the three cases as follows.

Case 1 Baseline and new algorithms are memory bound in time:

I < B
⌧

1 <�T= m

1 + I

B✏

1 + B⌧
B✏

<�E<
1 + B✏

I

1 + B✏
B⌧

.

Case 2 Baseline is memory bound in time while the new algorithm is compute

bound:

I < B
⌧

�T=
1

f

B
⌧

I

�T · 1 +
I

B✏

1 + B⌧
B✏

<�E< m · 1 +
I

B✏

1 + B⌧
B✏

.

Case 3 Baseline and the new algorithm are compute bound in time:

B
⌧

< I

1

f
=�T< 1

�T · 1 + B✏
I

1 + 1

f

B✏
I

<�E<
1 + B✏

I

1 + 1

m

B✏
I

.
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Figure 8: Illustration of the speedup and greenup bounds summarized in § 3.5.4.
Points correspond to (�T,�E) pairs at particular values of I, f , and m; horizontal
and vertical lines indicate the corresponding minimum lower bounds and maximum
upper bounds on speedup and greenup, taken over all values of I, f , and m in each
case.

Illustration To illustrate the preceding bounds, consider fig. 8. There, we compute

the speedups, greenups, and their lower and upper bounds, for a variety of intensity

values I 2 [B
⌧

/4, B
✏

]. Figure 8 shows modeled speedups and greenups as points; the

minimum and maximum bounds are shown as horizontal and vertical lines. Figure 8

clarifies how it is unlikely that one will improve time (�T > 1) while incurring a

loss in energy e�ciency (�E < 1). However, there are many opportunities for the

converse, particularly in either Case 2 or Case 3.

3.5.5 Time and Energy Trade-o↵s under Constant Power

This section generalizes the work-communication trade–o↵ of § 3.5 to the case of

⇡
0

> 0.
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3.5.6 Total energy, E
f,m

Equation (5) expresses total energy E(W, I) as a function of W and I. Therefore, we

may write E
f,m

as

E
f,m

= E(fW, fmI) (24)

= fW ✏̂
flop

·
 
1 +

B̂
✏

(fmI)

fmI

!
= W ✏̂

flop

·
 
f +

1

m

B̂
✏

(fmI)

I

!
. (25)

3.5.7 E↵ective energy balance, B̂
✏

(I)

When analyzing work–communication trade–o↵s, we will make use of the following

relationship between B̂
✏

(I) and B̂
✏

(fmI).

Lemma 3.5.1. Let f,m � 1. Then, B̂
✏

(I) � B̂
✏

(fmI).

Proof. This fact follows simply from the definition of B̂
✏

(I).

B̂
✏

(I) ⌘ ⌘
flop

B
✏

+ (1� ⌘
flop

)max (0, B
⌧

� I)

� ⌘
flop

B
✏

+ (1� ⌘
flop

)max (0, B
⌧

� fmI)

= B̂
✏

(fmI).

3.5.8 Greenup, �E

By the definition of greenup, eq. (16),

�E =
1 +

ˆ

B✏(I)

I

f
⇣
1 +

ˆ

B✏(fmI)

fmI

⌘ =
1 +

ˆ

B✏(I)

I

f +
ˆ

B✏(fmI)

mI

. (26)

3.5.9 General necessary condition for greenup

We derive a general necessary condition for an actual greenup, or �E > 1. Let I

be the intensity of the baseline algorithm. Suppose the new algorithm increases flops
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by f > 1 while reducing memory operations by a factor of m > 1. By eq. (26), the

condition �E > 1 implies

f < 1 +
B̂

✏

(I)

I
� 1

m

B̂
✏

(fmI)

I
< 1 +

B̂
✏

(I)

I
, (27)

where the last inequality follows from lemma 3.5.1. This upper bound on f also holds

in the limit that we eliminate communication entirely (m ! 1). From here, there

are two interesting cases to consider.

Compute bound limit. Suppose the baseline algorithm is compute bound, so that

I � B
⌧

. Then,

f < 1 +
B̂

✏

(I)

I
= 1 + ⌘

flop

B
✏

I
 1 + ⌘

flop

B
✏

B
⌧

. (28)

In the limit that ⇡
0

! 0, ⌘
flop

! 1 and the bound matches that of § 3.5.2.

Memory-bound limit. Suppose instead that the baseline is memory bound, so

that I < B
⌧

. Then,

f < 1 +
B̂

✏

(I)

I

= 1 + ⌘
flop

B
✏

I
+ (1� ⌘

flop

)

✓
B

⌧

I
� 1

◆

= ⌘
flop

+
⌘
flop

B
✏

+ (1� ⌘
flop

)B
⌧

I
. (29)

That is, the upper limit on the extra flop factor f is related to a weighted average of

the time- and energy-balance constants.
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3.5.10 �E bounds for case 1: New algorithm is memory bound in time

Lower Bound Suppose fmI < B
⌧

and 1

m

< 1. Then,

�E =
1 +

ˆ

B✏(I)

I

f + 1

m

ˆ

B✏(fmI)

I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·max(0,B⌧�I)

I

f + 1

m

⌘

flop

B✏+(1�⌘

flop

)·max(0,B⌧�fmI)

I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + 1

m

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�fmI)

I

. (30)

Applying f < 1

m

B⌧
I

and 1

m

< 1 yields

�E >
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

B⌧
I

+
⌘

flop

B✏+(1�⌘

flop

)·(B⌧�B⌧ )

I

=

I+⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

B⌧+⌘

flop

B✏

I

=
I + ⌘

flop

B
✏

+ (1� ⌘
flop

) · (B
⌧

� I)

B
⌧

+ ⌘
flop

B
✏

=
B

⌧

· (1� ⌘
flop

) + ⌘
flop

· (B
✏

+ I)

B
⌧

+ ⌘
flop

B
✏

. (31)

When ⇡
0

= 0, we recover eq. (18). Otherwise, whether there is a greenup depends on

⌘
flop

, since B
⌧

· (1� ⌘
flop

) < B
⌧

but ⌘
flop

· (B
✏

+ I) > ⌘
flop

B
✏

.

Upper Bound To derive an upper bound on �E, consider the conditions 1 < m <

B⌧
fI

or f I

B⌧
< 1

m

< 1 and f > 1. From these,

�E =
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + 1

m

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�fmI)

I

.

Applying the lower bounds on f, 1

m

,m, we get

�E <
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

1 + I

B⌧

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

,

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

1 +
⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

B⌧

.
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Again, ⇡
0

= 0 recovers eq. (19). Since B
⌧

> I, the right hand side will always be

greater than 1, meaning that a greenup is always possible. However, the balance gap

and the intensity of the original algorithm will limit it.

3.5.11 �E bounds for case 2: baseline is memory bound but new algo-
rithm is compute bound in time

Lower Bound To derive a lower bound, consider the conditions I < B
⌧

, fmI > B
⌧

,

and �T = 1

f

B⌧
I

. From these,

�E =
1 +

ˆ

B✏(I)

I

f + 1

m

ˆ

B✏(fmI)

I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·max(0,B⌧�I)

I

f + 1

m

⌘

flop

B✏+(1�⌘

flop

)·max(0,B⌧�fmI)

I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + 1

m

⌘

flop

B✏+(1�⌘

flop

)·(0)
I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + 1

m

⌘

flop

B✏

I

.

Applying the upper bound 1

m

< f I

B⌧
yields,

�E >
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + f I

B⌧

⌘

flop

B✏

I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + f ⌘

flop

B✏

B⌧

=
1

f
· 1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

1 + ⌘

flop

B✏

B⌧

= �T · I + ⌘
flop

B
✏

+ (1� ⌘
flop

) · (B
⌧

� I)

I

B
⌧

B
⌧

+ ⌘
flop

B
✏

I

B
⌧

= �T · I + ⌘
flop

B
✏

+ (1� ⌘
flop

) · (B
⌧

� I)

B
⌧

+ ⌘
flop

B
✏

= �T · ⌘flop

B
✏

+B
⌧

� ⌘
flop

B
⌧

+ ⌘
flop

I

B
⌧

+ ⌘
flop

B
✏

= �T · B⌧

(1� ⌘
flop

) + ⌘
flop

(B
✏

+ I)

B
⌧

+ ⌘
flop

B
✏

.

If ⇡
0

= 0, this equation yields eq. (20).
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Since B
⌧

(1� ⌘
flop

) < B
⌧

and ⌘
flop

(B
✏

+ I) > ⌘
flop

B
✏

, we cannot determine if this

lower-bound on �E will be greater or less than the speedup.

Upper Bound To derive an upper bound, consider the conditions I < B
⌧

and

fmI > B
⌧

. From these,

�E =
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

f + 1

m

⌘

flop

B✏

I

.

Applying the lower bound f > 1

m

B⌧
I

,

�E <
1 +

⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

1

m

B⌧
I

+ 1

m

⌘

flop

B✏

I

,

= m · 1 +
⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

B⌧
I

+ ⌘

flop

B✏

I

,

= m ·
I+⌘

flop

B✏+(1�⌘

flop

)·(B⌧�I)

I

B⌧+⌘

flop

B✏

I

,

= m · I + ⌘
flop

B
✏

+ (1� ⌘
flop

) · (B
⌧

� I)

B
⌧

+ ⌘
flop

B
✏

,

= m · B⌧

� ⌘
flop

B
⌧

+ ⌘
flop

B
✏

+ ⌘
flop

I

B
⌧

+ ⌘
flop

B
✏

,

= m · B⌧

(1� ⌘
flop

) + ⌘
flop

(B
✏

+ I)

B
⌧

+ ⌘
flop

B
✏

.

When ⇡
0

= 0, this inequality recovers eq. (21). As with the lower bound, the equation

cannot tell us if the right hand side will be greater than or less than m, but does stress

its importance.
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3.5.12 �E bounds for case 3: baseline is compute bound in time

Lower Bound To derive a lower bound on �E, consider the conditions I > B
⌧

,

fmI > B
⌧

, 1

m

< 1, and �T = 1

f

. From these,

�E =
1 +

ˆ

B✏(I)

I

f + 1

m

ˆ

B✏(fmI)

I

=
1 +

⌘

flop

B✏+(1�⌘

flop

)·0
I

f + 1

m

⌘

flop

B✏+(1�⌘

flop

)·0
I

=
1 + ⌘

flop

B✏

I

f + 1

m

⌘

flop

B✏

I

.

Applying the tighter upper bound of 1

m

< 1 (rather than fmI > B
⌧

) yields,

�E >
1 + ⌘

flop

B✏

I

f + ⌘

flop

B✏

I

=
1

f
· 1 + ⌘

flop

B✏

I

1 + 1

f

⌘

flop

B✏

I

= �T · 1 + ⌘

flop

B✏

I

1 + 1

f

⌘

flop

B✏

I

> �T.

In this case, greenup will be at least as good as the speedup, at least in theory. In

reality, performance will tend to decrease so that a loss in energy e�ciency is also

likely.

Upper Bound To derive an upper bound on �E, consider the conditions I > B
⌧

,

fmI > B
⌧

, 1

m

< 1, and �T = 1

f

. From these,

�E =
1 + ⌘

flop

B✏

I

f + 1

m

⌘

flop

B✏

I

.

Using the trivial lower-bound f > 1 (rather than f > 1

m

B⌧
I

),

�E <
1 + ⌘

flop

B✏

I

1 + 1

m

⌘

flop

B✏

I

,
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In the limit of eliminating communication, (m ! 1),

�E <
1 + ⌘

flop

B✏

I

1 + 1

m

⌘

flop

B✏

I

< 1 +
⌘
flop

B
✏

I
.

Recall that the condition �T = 1

f

implies there will always be a slowdown in time.

However, eq. (32) implies that a greenup may nevertheless be possible. The upper

limit on any such greenup will be roughly the energy communication penalty.

3.5.13 Summary

Relative to § 3.5.2, the fact of constant power (⇡
0

> 0) removes any guarantee on

whether we will see a greenup. However, greenups are nevertheless possible, albeit

at a reduced amount related to the e�ciency factor ⌘
flop

. It then becomes critical

to understand the architectural and hardware trends most likely to a↵ect ⇡
0

(and

therefore also ⌘
flop

).

3.6 Conclusion

In our view, the most interesting outcome of our analysis is the balance gap, or the

di↵erence between the classical notion of time–balance, B
⌧

, and its energy analogue,

B
✏

. We believe balance gaps have important consequences for algorithms as we have

shown in § 3.5. Today, B
⌧

> B
✏

, due largely to idle power and other microarchitectural

ine�ciencies; consequently, race-to-halt strategies will be the most reasonable first-

order technique to save energy. Will this conclusion change significantly in the future?

Our study reinforces three relevant trends that suggest the balance gap will shift.

First, we observed that the newer Kepler-class GPU, based on a 28 nm process tech-

nology, had a significantly lower constant power compared to the 40 nm Fermi-class

GPU: 66 W for the Kepler-based GTX 680 vs. 122 W for the Fermi-based GTX 580.

Secondly, GPUs in general exemplify simpler core microarchitecture design when com-

pared to general-purpose CPU platforms. The balance gap did not appear possible

on the CPU system in our study, even with no constant power; however, it did emerge
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on the GPU platforms in a hypothetical ⇡
0

= 0 scenario. Thirdly, although the cost

ratio between reading data from memory and computing on data is expected to re-

main constant [73], wire capacitance will not scale with time. Consequently, the cost

of moving data will stay the same. Unless the distance between o↵-chip memory and

the processing cores decreases significantly (e.g., via die stacking), the balance gap

will increase.

Limitations Our model is just a first cut at bridging algorithm and architecture

analysis. Regarding its limitations, these are the most important in our view.

First, we have suppressed latency costs, under the assumption of su�cient con-

currency; we have done so in prior work [32] and plan to extend it for energy.

Second, we consider the best-case scenario of flops-centric (and on GPUs, FMA-

centric) computation. In order for our model to estimate energy consumption more

accurately, a more nuanced accounting of the instruction mix is necessary.

Third, we ignored power caps, which can cause our analysis to overestimate power

consumption and performance (§ 3.4). Having said that, at least the predictions

appear empirically to give upper bounds on power and lower bounds on time.

In spite of these limitations, we hope algorithm designers, performance tuners,

and architects will find our basic model an interesting starting point for identifying

potential new directions lying at the intersection of algorithms and architecture.
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CHAPTER IV

ALGORITHMIC TIME, ENERGY, AND POWER ON

CANDIDATE HPC COMPUTE BUILDING BLOCKS
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In the previous chapter [§ 3], we described the basic model and presented its impli-

cations for energy e�ciency of algorithms. We also validated the model using a small

number of microbenchmarks and test platforms [§ 3.3.1,§ 3.3.2], as well as attempted

to accurately predict the energy consumption of a real application [§ 3.4.3]. From

our experience on real systems, we learned that many high–performance systems are

overprovisioned (i.e., their capability exceeds the TDP [§ 3.4.2]), and that caches and

shared memory play an important role in improving energy e�ciency, and therefore,

must be properly accounted for when trying to predict energy consumption [§ 3.4.3].

In this chapter, we focus on improving our model to account for these shortcom-

ings, and also demonstrate how our model and experimental data can be used to

precisely analyze and assess candidate compute–node building block systems across
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computations.

We start by giving a simple demonstration in § 4.1 to give the readers a taste of

what our model can accomplish. In § 4.2, we incorporate power cap into our model,

and in § 4.3, we describe our extended experimental setup and microbenchmark suite.

In § 4.4 we discuss our model fitted parameters, and consider example scenarios, such

as power throttling and power bonding. We give our conclusion in § 4.5.

4.1 A Demonstration

As a quick preview, suppose we wish to know whether overall time, energy, and

power to compute would be better if the system building block is a high-end desktop

GPU or a low-end low-power mobile GPU. Specifically, consider the desktop-class

NVIDIA GTX Titan against the “Arndale GPU,” the on-chip GPU component of

the Samsung Exynos 5 mobile processor. The GTX Titan has a peak performance

of 5 trillion floating-point operations per second (5 Tflop/s) in single precision and

250 Watts TDP for the whole card; the Arndale GPU has a 72 Gflop/s peak and

its standard developer board uses less than 10 Watts. These specifications suggest

GTX Titan is better, based on its considerably higher flop/s per Watt. Yet, there

are also active e↵orts to build systems from close equivalents to the latter.1 Which is

“correct?”

While a natural response is, “it depends,” our model o↵ers a more precise analysis,

which fig. 9 summarizes. It compares time e�ciency (performance, or operations per

unit time), energy e�ciency (operations per unit energy), and power (energy per unit

time) of the two platforms. The y-axis measures this performance on a normalized

scale. (The power and energy costs include the entire board, including memory and

on-board peripherals, but excluding any host system.) The x-axis abstracts away

1E.g., The Mont Blanc Project: http://www.montblanc-project.eu/ [108].
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Figure 9: Comparison of the time e�ciency (performance), energy e�ciency, and
power required by a mobile GPU (from an “Arndale” Samsung Exynos 5 developer
board) versus high-end gaming-grade desktop GPU (NVIDIA GTX Titan), over a
range of synthetic computations with varying computational intensities (flop:Byte).
Combining 47 of the mobile GPUs to match on peak power can lead to a system that
outperforms the desktop GPU by up to 1.6⇥ for relatively bandwidth bound codes
(flop:Byte less than 4), but at the cost of sacrificing peak performance (less than 1⁄2)
for compute–bound codes.

a possible computation by its operational intensity, or the ratio of computation-to-

communication (flop:Byte ratio). Decreasing values of intensity indicate increasing

memory bandwidth boundedness. The dots are measured values from a synthetic

microbenchmark (§ 4.3); the dashed lines indicate our model’s predictions. The model

and measurements correspond well.

While the GTX Titan is much faster, in energy e�ciency the Arndale GPU com-

pares well to it over a range of intensities; the two systems match in flops per Joule

(flop/J) for intensities as high as 4 flop:Byte. For reference, a large sparse matrix-

vector multiply is roughly 0.25–0.5 flop:Byte in single precision and a large fast Fourier

transform (FFT) is 2–4 flop:Byte [126]. And even at more compute bound intensities,

the Arndale is within a factor of two of the GTX Titan in energy e�ciency despite

its much lower peak. It therefore appears to be an attractive candidate.
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From these data, what is the best case scenario for an Arndale GPU-based “su-

percomputer,” assembled from enough Arndale GPUs to match the GTX Titan in

peak power? Matching on power may require up to 47 Arndale GPUs, yielding the

hypothetical system shown by a dashed brown line. This system would have less than

half of the GTX Titan’s peak, but would also have an aggregate memory bandwidth

that is up to 1.6⇥ higher for intensities up to about 4 flop:Byte, which could include,

for instance, a large multidimensional FFT. However, this best-case ignores the sig-

nificant costs of an interconnection network, or further potential improvements to

the Arndale GPU system by better integration. As such, the 47 Arndale GPUs are

more likely to improve upon GTX Titan only marginally or not at all across the full

range of intensities. Regardless of one’s interpretation, this type of analysis o↵ers an

analytical way to compare these as building blocks.

4.2 Modeling Power Cap

As discussed in § 3.1, our model of time, energy, and power assumes the abstract

von Neumann architecture of fig. 1. The system comprises a processor attached to a

fast memory of finite capacity (Z words), which is then attached to an infinite slow

memory. The fast memory is e↵ectively a last-level cache and may be generalized in

the presence of a memory hierarchy. An abstract algorithm running on this machine

executes W = W (n) flops and transfers Q = Q(n;Z) bytes of data between slow and

fast memory, given an input of size n. (In what follows, we suppress the arguments n

and Z unless needed explicitly.2) Below, we describe how we estimate time, energy,

and power for the abstract algorithm running on this abstract machine. The model

derives partly from our earlier work [25, 26] from § 3.1; here, we highlight the additions

we have made to our model.

2If flops are not the natural unit of work, one could imagine substituting, for instance, “compar-
isons” for sorting or “edges traversed” in a graph traversal computation.
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Cost model Let the abstract machine be described by four fundamental time and

energy costs: the time per flop, ⌧
flop

; the time per byte, ⌧
mem

; the energy per flop,

✏
flop

; and the energy per byte, ✏
mem

. Time and energy have units of, for instance,

seconds (s) and Joules (J), respectively. In our abstract model, we do not take ⌧
flop

and ⌧
mem

to be latency costs; rather, we will use throughput values based on peak

flop/s and peak memory bandwidth, respectively. That is, these costs are optimistic.

They also imply power costs, in units of energy per unit time. These are the peak

power per flop, ⇡
flop

⌘ ✏
flop

/⌧
flop

, and the peak power per byte, ⇡
mem

⌘ ✏
mem

/⌧
mem

.

In addition, our abstract machine will require a minimum amount of constant

power, ⇡
0

. This power is what the machine requires independent of what operations

are executing. In contrast to other notions of “static power” in the literature, con-

stant power in our model may include the power of other system components and

peripherals, taken together.

Modeling execution energy To estimate an algorithm’s energy cost, we tally the

total energy to execute all flops, to move the full volume of data, and to run given

the cost of constant power. That is, the total energy E is

E = E(W,Q) ⌘ W ✏
flop

+Q✏
mem

+ ⇡
0

T (W,Q), (32)

where T (W,Q) is the total running time of the computation, estimated below. The

basic form of eq. (32) is identical to our earlier energy model [25, 26]from § 3.1.

We will sometimes consider another form of eq. (32), parameterized by intensity,

I ⌘ W/Q, and energy balance, B
✏

⌘ ✏
mem

/✏
flop

. Both these quantities have units

of flops per Byte, with I expressing an intrinsic property of the algorithm and B
✏

expressing an intrinsic property of the machine with respect to energy. From these

definitions, eq. (32) becomes

E = E(W, I) = W ✏
flop

✓
1 +

B
✏

I

◆
+ ⇡

0

T

✓
W,

W

I

◆
. (33)
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Equation (33) clarifies that the total energy, relative to the minimum energy W ✏
flop

to execute the flops alone, increases with increasing energy balance, decreases with

increasing intensity, and increases with relative increases in constant power or other

time ine�ciencies.

Modeling execution time Executing W flops takes W ⌧
flop

time and moving Q

bytes takes Q⌧
mem

time. In the best case, we may maximally overlap flops and memory

movement, in which case T will be the maximum of these two values. Indeed, this

definition was exactly our previous model [26] from § 3.1.

Here, we extend our model of T to include power caps. Our previous model

sometimes overpredicted performance and average power [26]. For some GPU and

low-power systems we consider in this section, which go beyond the original work,

ignoring a potential power cap can have severe consequences(§ 4.4).

We model a power cap as follows. Suppose that on top of the ⇡
0

constant power,

the system has �⇡ additional units of usable power to perform any operations. The

parameter�⇡ is now a new fundamental parameter of the system. Thus, an algorithm

limited only by �⇡ will require no more than (W ✏
flop

+ Q✏
mem

)/�⇡ time to execute.

Then, the best-case execution time is

T = T (W,Q) ⌘ max

✓
W ⌧

flop

, Q⌧
mem

,
W ✏

flop

+Q✏
mem

�⇡

◆
. (34)

That is, if there is enough usable power to run at peak operational or memory per-

formance, we do so assuming maximal overlap; otherwise, we must throttle all oper-

ations, which the third term of max captures. We may also rewrite eq. (34) as,

T = T (W, I) = W ⌧
flop

max

⇢
1,

B
⌧

I
,
⇡

flop

�⇡

✓
1 +

B
✏

I

◆�
, (35)

where B
⌧

⌘ ⌧
mem

/⌧
flop

is the time balance of the system. This value is more commonly

referred to as the intrinsic flop-to-Byte ratio of the machine, and defines the intensity

at which the time to execute flops and time to execute memory operations are equal.
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Modeling power Given models of E and T , we may model average instantaneous

power as P ⌘ E/T .

There are many ways to expand this definition, one of which we present here. Let

B+

⌧

⌘ B
⌧

max

✓
1,

⇡
mem

�⇡ � ⇡
flop

◆
(36)

and B�
⌧

⌘ B
⌧

min

✓
1,

�⇡ � ⇡
mem

⇡
flop

◆
. (37)

Observe that B�
⌧

 B
⌧

 B+

⌧

. When �⇡ � ⇡
flop

+ ⇡
mem

, there is enough usable power

to run flops and move data at their maximum rates, in which case B+

⌧

= B�
⌧

= B
⌧

.

Otherwise, [B�
⌧

, B+

⌧

] defines an interval containing B
⌧

. From these definitions, one

can show that P becomes

P = P (I) = ⇡
0

+

8
>>>><

>>>>:

⇡
flop

+ ⇡
mem

B⌧
I

if I � B+

⌧

⇡
flop

I

B⌧
+ ⇡

mem

if I  B�
⌧

�⇡ otherwise

. (38)

Equation (38) reflects what we might expect. As I increases beyond B+

⌧

toward

infinity, P decreases toward flop-only power, ⇡
flop

. Similarly, as I decreases away

from B�
⌧

toward 0, P decreases toward memory–only power, ⇡
mem

. The peak power

occurs when B�
⌧

 I  B+

⌧

. In particular, when there is enough usable power,

meaning �⇡ � ⇡
flop

+⇡
mem

, then P (I) peaks at the value, ⇡
0

+⇡
flop

+⇡
mem

, at I = B
⌧

;

otherwise, the power cap dominates and P (I) = ⇡
0

+�⇡ for all B�
⌧

 I  B+

⌧

.

4.3 Experimental Setup and Microbenchmarks

We benchmarked and assessed the nine systems shown in table 6. For the four discrete

coprocessors—NVIDIA GTX 580, 680, Titan, and Intel Phi—we consider just the card

itself and ignore host power and host-to-coprocessor transfer costs. Additionally, three

of the systems—labelled “NUC3,” “Arndale,” and “APU”—have hybrid CPU+GPU

processors. We considered their CPU and GPU components separately, i.e., running

3Next Unit of Computing
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no or only a minimal load on the other component. As such, we claim to evaluate

twelve “platforms.”

For each platform, we wrote an architecture-specific hand–tuned microbenchmark

that gets as close to the vendor’s claimed peak as we could manage. These mi-

crobenchmarks measure “sustainable peak” flop/s, streaming bandwidth (from main

memory, L1, and L2 caches where applicable), and random main memory access.

The measured values appear parenthetically in columns 8–10 of table 6, and should

be compared against the theoretical peaks shown in columns 3–5. For cache band-

width, we were not able to determine theoretical peaks on all platforms; therefore,

we report only measured values in columns 11 and 12. Lastly, we fitted our model to

the microbenchmark data. The model parameters appear as columns 6–13 of table 6.

Intensity microbenchmark The intensity microbenchmark, identical to the one

used in § 3.3.2, varies intensity nearly continuously, by varying the number of floating

point operations (single or double) on each word of data loaded from main memory.

We hand tuned these microbenchmarks for each platform. Examples of specific tun-

ing techniques we used include unrolling, to eliminate non-flop and non-load/store

overheads that might otherwise distort our energy estimates; use of fused-multiply

adds where available; tuning the instruction selection and instruction mix, carefully

considering pipeline and issue port conflicts; prefetching; and resorting to assem-

bly where needed; to name a few. We test single- and double-precision operations

separately; their energy costs appear as ✏
s

and ✏
d

, respectively.

Random access microbenchmark Our random access microbenchmark imple-

ments pointer chasing, as might appear in a sparse matrix or other graph compu-

tation. It fetches data from random places in the memory rather than streaming

the data, reporting sustainable accesses per unit time. By its nature, it cannot fully

use the memory interface width or the prefetching units. Therefore, we expect poor
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performance compared to the system’s bandwidth.

Cache microbenchmarks Our cache microbenchmarks assess the performance

and energy cost of accessing the di↵erent levels of the cache. These are similar to

the ones described in § 3.3.3, but refined to stress the memory system further; on

CPU systems, these can be either the pointer chasing or the intensity benchmark,

depending on which gives better performance. We need only ensure the data set size

is small enough to fit into the target cache level.

GPUs have di↵erent memory hierarchy designs, which requires platform-dependent

coding and tuning. On NVIDIA Fermi GPUs, we assess L1, L2 caches; on Kepler

systems, we test L2 and shared memory, since the L1 cache is no longer used to store

data and all data reuse has to be done manually via the shared memory. On AMD

HD 7340 and ARM Mali-T604, we use the software-managed scratchpad memory.

ATX PSU

PowerMon2

PCIe 
Interposer

GPU

CPU

Motherboard

Input

Output

Figure 10: Placement of the measurement probes, PowerMon 2 and our custom PCIe
interposer
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Power measurement infrastructure Our extended power measurement setup

appears in fig. 10. As before, we use two tools to measure power. The first is

Powermon 2, a fine-grained integrated power measurement device for measuring direct

current (DC) voltage and current [8]. The second measurement tool is a custom-made

PCIe interposer that sits between the motherboard and the target PCIe device (i.e.,

GPU) to measure the power provided by the motherboard. For the mobile systems

that we have newly added in this section, we measure system-level power, which

includes CPU, GPU, DRAM, and peripherals. Readers may refer to § 3.3.1 for more

details on how these tools work.

4.4 Results and Discussion

We divide the analysis and discussion of our experiments into four parts. First, we

compare the power-capped model of this paper with our prior model [25, 26], showing

both qualitative and quantitative improvements (§ 4.4.1). Second, we explain our

memory hierarchy measurement results (§ 4.4.2). Third, we analyze the platforms in

detail (§ 4.4.3), to show what one might conclude about their relative time e�ciency,

energy e�ciency, and power characteristics. Lastly, we use the model to consider

a variety of “what-if” scenarios, such as what we expect to happen under power

throttling or power bounding (§ 4.4.4).

We focus on single-precision results, since full support for double is incomplete on

several of our evaluation platforms. However, the interested reader can still find the

main summary estimate of double-precision flop energy cost in table 6.

4.4.1 Model fitting and accuracy

For each of the twelve platforms shown in table 6, we ran our microbenchmark suite

(§ 4.3) at varying W and Q values, and measured total execution time and energy.

These include runs in which the total data accessed only fits in a given level of the

memory hierarchy. We then used (nonlinear) regression parameter fitting techniques
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Figure 11: Summary of modeling errors with respect to performance (FLOP/s). We
compare the prediction errors of our prior model (“free” or uncapped; [25, 26]; § 3.1)
against our new model (“capped”), which notably includes an explicit power cap.
Qualitatively, the distribution of errors on all platforms improves, becoming either
lower in median value or more tightly grouped. On platforms labeled by double-
asterisks (“**”), the free and capped distributions di↵er statistically (at p < .05) by
the Kolmogorov-Smirnov test [77].

to obtain statistically significant estimates of the values ⌧
flop

, ⌧
mem

, ✏
flop

, ✏
mem

, ⇡
0

, and

�⇡, as well as the corresponding parameters for each cache level where applicable.4

The resulting set of parameters appears in columns 6–13 of table 6.

To assess the model fits, we evaluated both our prior “uncapped” model [25] and

our new “capped” model, eqs. (32)–(38). We compared them against the measured

values by first calculating the relative error, (model �measured)/measured, at each

intensity value. Given a platform and model, we regard the set of errors over all

intensity values as the error distribution. For each platform, we compared our prior

and new models by comparing their distributions.

Figure 11 summarizes these error distributions. (We have similar data for time

and energy, omitted for space.) Each platform appears on the x-axis, and the y-axis

measures relative error. Each observed error value appears as a dot; the boxplots

reflect the median, 25%, and 75% quantiles of the distribution of those errors. Plat-

forms are sorted in descending order of median uncapped model’s relative error. That

4The precise fitting procedure follows our prior work [25] and is part of our publicly released
source code: http://hpcgarage.org/archline
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is, our original model does relatively better as we move from platforms on the left

toward platforms on the right of fig. 11.

Qualitatively, fig. 11 shows that the new capped model tends to reduce the mag-

nitude and spread of relative error compared to the previous model. The bias is to

overpredict, i.e., most errors greater than zero. To facilitate a more rigorous quantita-

tive comparison, we also performed the Kolmogorov-Smirnov non-parametric test of

whether two empirical distributions di↵er, against a null hypothesis that the distribu-

tions come from the same underlying distribution. (The K-S test makes no assump-

tions about the distributions, such as normality, and so may be pessimistic.) Any

platform for which the null hypothesis may be rejected (at a p-value less than 0.05)

is marked with two asterisks (“**”) in fig. 11. In this statistical sense, seven of the

12 platforms–Arndale GPU, NUC GPU, Arndale CPU, GTX 680, PandaBoard ES,

Xeon Phi, and APU GPU—the uncapped and capped error samples likely come from

di↵erent distributions.

4.4.2 Interpreting memory hierarchy energy costs

Some care is needed to correctly interpret the memory hierarchy parameter estimates

of table 6. The key principle is that our energy cost estimates reflect inclusive costs.

Alternatively, one should regard the energy cost of a memory hierarchy operation in

our model as the additional energy required to complete one additional instance of

that operation. The following examples clarify how this interpretation works.

The cost of loading a byte from DRAM (✏
mem

) includes not only the costs of reading

the byte from the DRAM cells and driving the wires, but also the energy spent by the

memory controller as well as the cost of going through the memory hierarchy (e.g., the

L1 and L2 caches). The rationale is that these costs are unavoidable whenever data

moves between DRAM and registers. Note that we currently do not di↵erentiate reads

and writes, so consider ✏
mem

as the average of these costs. Also, in order to prevent
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the prefetcher from loading unused data, we have designed our microbenchmark to

“direct” the prefetcher into prefetching only the data that will be used.

We define ✏
L1

, ✏
L2

, and ✏
rand

in a similar manner as ✏
mem

. The energy cost of loading

data from the L2 cache (✏
L2

) includes the energy consumed by reading data from the

L2 memory cells as well as those consumed by reading from and writing data to the L1

cache as the data moves up the cache hierarchy. It also includes instruction overheads,

as well as any other costs that might be involved such as the energy consumed by the

cache coherency protocol. Naturally, we expect ✏
L1

to be smaller than ✏
L2

on the same

system as they would most likely incur similar overheads, but fetching data from the

L1 cache will not involve going through the L1 cache itself. This also serves as a way

of sanity checking our model and as it can be seen in table 6, ✏
L1

 ✏
L2

for every

system.

The energy cost of accessing memory at random locations (✏
rand

) will include the

cost of reading an entire cache line from the memory, as well as the usual overheads

such as instruction, memory hierarchy, and associated protocols. As such, we expect

this cost to be at least an order of magnitude higher than ✏
mem

, as table 6 reflects.

4.4.3 Constant power and power caps across platforms

There is a wide range of power behaviors across platforms, but also a narrow relative

range within each platform. Refer to fig. 12, which shows the power of the twelve

platforms from table 6. It compares model (solid lines) to measurements (dots), and

facilitates cross-platform comparisons across a full range of intensities (x-axis). The

platforms are ordered from top-left to bottom right in decreasing order of peak energy

e�ciency, with the GTX Titan in the top left at 16 Gflop/J and the Desktop CPU

(Nehalem) at the bottom right at just 620 Mflop/J.

Across platforms, power allocation between memory and processing di↵ers. Flops

on the GTX Titan consume more of the power budget than memory operations, while
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the Arndale GPU exhibits just the opposite behavior. However, there are no strongly

discernable patterns in the architectural power allocations as energy e�ciency varies.

The Arndale GPU, for example, has a peak energy e�ciency within a factor of two

of the GTX Titan (8.1 Gflop/J vs. 16 Gflop/J), while putting much more of its

power into the memory system. Consequently, its design yields on peak flop energy

e�ciency to boost memory energy e�ciency, e.g., 1.5 Gflop/J on the Arndale GPU

vs. 1.3 Gflop/J on GTX Titan.

But within a platform, the measurements vary only between the range of 0.65

to 1.15, or less than 2⇥. A narrow range means there is little room to reconfigure

power to improve or adapt energy e�ciency to a computation. The main obstacle

is the relatively large value of constant power, ⇡
0

, shown in table 6. Indeed, the

fraction of maximum power that ⇡
0

consumes, or ⇡
0

/(⇡
0

+ �⇡), is more than 50%

for seven of the 12 platforms in table 6. As it happens, this fraction correlates with

overall peak energy e�ciency, with a correlation coe�cient of about -0.6 (not shown).

Thus, driving down ⇡
0

would be the key factor for improving overall system power

reconfigurability.

Indeed, the mere fact of ⇡
0

can invert our expectations. Consider a hypothetical

workload that simply streams data from memory. How much energy does this com-

putation use? Referring to table 6, the Xeon Phi has the lowest ✏
mem

(136 pJ/B). It

is lower than, for instance, the higher bandwidth GTX Titan (267 pJ/B) and lower-

power Arndale GPU (518 pJ/B). However, we must also pay a constant energy charge

of ⌧
mem

⇥ ⇡
0

, which adds 994 pJ/B to Xeon Phi, 515 pJ/B to GTX Titan, and just

153 pJ/B to the Arndale GPU. Then, the total energy per byte is 671 pJ/B for the

Arndale GPU, 782 pJ/B for the GTX Titan, and 1.13 nJ/B to the Xeon Phi. This

example underscores the critical role that ⇡
0

plays.

The extent to which power capping, as we model it, a↵ects the power characteris-

tics of a given platform varies widely. Caps apply over a wider range of intensities on
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the hybrid NUC CPU+GPU and AMD APU platforms than they do on the GTX Ti-

tan and Xeon Phi. However, our approach to capping appears inaccurate on the

NUC GPU and Arndale GPU. Although these mispredictions are always less than

15%, they raise questions about what mechanisms are operating. On the NUC GPU,

as it happens measurement variability owes to OS interference.5 However, on the

Arndale GPU, the mismatch at mid-range intensities suggests we would need a dif-

ferent model of capping, perhaps one that does not assume constant time and energy

costs per operation. That is, even with a fixed clock frequency, there may be active

energy–e�ciency scaling with respect to processor and memory utilization.

4.4.4 Power throttling scenarios

Using the model, we may consider a variety of “what-if” scenarios related to power.

Power throttling Suppose we lower �⇡. What could the impact on maximum

system power, performance, and energy e�ciency be, assuming all other model pa-

rameters, including ⇡
0

, remain equal?

Figure 13 shows power when the power cap is set to �⇡/k, where �⇡ is the

original power cap (see table 6) and k 2 [1, 8] is the reduction factor.

First, consider the extent to which reducing �⇡ reduces overall system power.

Figure 13 confirms that, owing to constant power ⇡
0

> 0, reducing �⇡ by k reduces

overall power by less than k. It further shows that the Arndale GPU has the most

potential to reduce system power by reducing �⇡, whereas the Xeon Phi, APU CPU,

and APU GPU platforms have the least. More node-level headroom—that is, low

⇡
0

compared to �⇡—may be very important, since it leaves more relative power for

other power overheads, including the network and cooling.

Next, consider the extent to which reducing �⇡ reduces performance. Figure 14a

5OpenCL drivers for NUC are available only when running Windows, which lacks easy user-level
power management support.
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shows the variability across platforms and computational intensities. Highly memory-

bound, low intensity computations on the GTX Titan degrade the least as �⇡ de-

creases, since its design overprovisions power for compute. By contrast, for highly

compute–bound computations, the NUC CPU degrades the least, since its design

overprovisions power for memory. A similar observation holds for energy e�ciency,

fig. 14b.

Power bounding The preceding scenarios may have further implications for the

idea of dynamic power bounding, which Rountree et al. have suggested will be a

required mechanism of future systems [110].

Recall fig. 9 from § 4.1, which compared GTX Titan and Arndale GPU building

blocks. That analysis suggested that, as configured, an Arndale GPU building block

would, even in the best case, o↵er only marginal improvements over GTX Titan, and

would likely be worse.

However, in a power bounding scenario, it might be necessary to reduce node

power to a particular level. Suppose that, in a system based on GTX Titan nodes, it is

necessary to reduce per-node power by half, to 140 Watts per node. This corresponds

to a power cap setting of �⇡/8 in fig. 13, which in turn will imply a performance

of approximately 0.31⇥ at I = 0.25 relative to the default �⇡. One can determine

that, in the best case, assembling 23 Arndale GPUs will match 140 Watts but will

be approximately 2.8⇥ faster at I = 0.25, which is better than the 1.6⇥ scenario

from fig. 9. Essentially, a lower power grainsize, combined with a compute building

block having a lower ⇡
0

, may lead to more graceful degradation under a system power

bound.

4.5 Conclusion

Our study adopts an algorithmic first-principles approach to the modeling and anal-

ysis of systems with respect to time, energy, and power. This approach can o↵er
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high-level analytical insights for current debates about the form of future HPC plat-

forms. Our central example is the ability to consider—even in the model’s relatively

simple form—a variety of “what-if” scenarios, including what would happen if it

became necessary to impose a power cap on any of the 12 evaluation platforms.

Constant power, ⇡
0

, is a critical limiting factor. It accounts for more than 50%

of observed power on seven of the 12 evaluation platforms. Its impact is to reduce

the degree of power reconfigurability, and invert our expectations relative to the

time and energy costs of primitive operations. These observations raise a natural

question for device designers, architects, and system integrators: To what extent can

⇡
0

be reduced, perhaps by more tightly integrating non-processor and non-memory

components?

Beyond these observations, we hope the microbenchmarks and modeling method-

ology, as well as the parameters of table 6, will prove useful to others. Indeed, table 6

is full of interesting data points, such as the fact that random memory access is on

the Xeon Phi requires at least one order of magnitude less energy per access than any

other platform, suggesting its utility on highly irregular data processing workloads.

The main limitations of this work are its many simplifying assumptions and its

microbenchmark-only evaluation. Consequently, there may be a considerable gap

between the best-case abstract analysis of this paper and actual applications. In the

next two sections, we will consider a more complex application and incorporate DVFS

into our model to further enhance its utility.
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CHAPTER V

INCORPORATING THE EFFECT OF DYNAMIC
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To keep our model and analysis simple, we have, so far, assumed fixed costs for

operations (both time and energy) and constant power by disabling or circumventing

voltage and frequency scaling mechanisms. In this section, we consider the impact

that DVFS can have on energy e�ciency by incorporating its e↵ect into our model.

We consider DVFS di↵erently from how others have done (§ 2.3) in that, rather

than focusing primarily on predicting “slack” in computation as an opportunity to

arbitrarily lower frequency and voltage, we attempt to determine precisely by how

much performance and energy of di↵erent operations change. Our model can predict

what the optimal frequency voltage settings are for di↵erent computations, and tell

us which algorithm would be better suited for a particular application under di↵erent

constraints (e.g., a power cap).

In section § 5.1, we describe the new model which combines our basic model (§ 3.1)
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with equations that describe the dynamic and leakage power of CMOS transistors [72].

In section § 5.2, we describe our experimental setup that includes the evaluation of a

new and unique SoC from NVIDIA that is well suited for our DVFS study. We present

our results and discuss their implications in section § 5.3 and give our conclusion

in § 5.4.

5.1 Modeling Dynamic Voltage and Frequency Scaling

We adapt our previous work in energy roofline modeling [26, 24] (§ 3.1,§ 4.2) to incor-

porate processor and memory frequency scaling.

The original model assumed fixed frequency (and therefore performance) for both

processor and memory which allowed us to assume fixed time and energy costs for

operations, as well as a fixed constant power, ⇡
0

[26]. This allowed us to keep our

model and analysis simpler and easier to understand; however, in more practical

settings, DVFS can have a strong impact on energy e�ciency. In order to account

for changes in processor and memory frequencies, we must assume that these costs

are now variable with respect to the frequency (or rather, the voltage).

The basic equations for dynamic power and static (leakage) power for CMOS

transistors [72] are given by eqs. (39) and (40), respectively.

P
dyn

/ CV 2Af (39)

P
leak

/ V
�
ke�qVth/(akaT )

�
(40)

For eq. (39), C is the load capacitance, V is the supply voltage, A is the activity

factor, and f is the clock frequency. For eq. (40), V
th

is the threshold voltage, T is

temperature, and the parameters q, a, k
a

are related to the logic design and fabrication

characteristics (which we assume is constant for a given system).

To start, we assumed that activity factor (how often the transistorsx are switching,

or “working”) and capacitance (physical property of the material and its quantity)
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remain constant, and reduce eq. (39) to eq. (41).

P
dyn

= C
0

V 2f (41)

where C
0

is some constant that reflects the system’s load capacitance and activity

factor.

Similarly, we assume that the system operates at a relatively constant temper-

ature when fully utilized for an extended period of time (which is typical for HPC

applications), and reduce eq. (40) to eq. (42).

P
leak

= C
1

V (42)

where C
1

is some constant. Although the threshold voltage V
th

may reduce as a

result of decreasing the supply voltage, we choose to ignore this e↵ect for two reasons;

threshold voltage is strongly dependent on process technology details (which we do

not have access to) and because the range of allowed values for the supply voltage is

relatively narrow, it may not need to change the threshold voltage to operate at their

respective frequencies.

As a reminder, the basic form of our original model [26] (§ 3.1) is shown again

in eq. (43).

E = W ✏
flop

+Q✏
mem

+ ⇡
0

T (43)

Here, W and Q are the number of floating point operations computed and the number

of bytes moved (from slow to fast memory), respectively. ✏
flop

and ✏
mem

are the energy

costs associated with floating point and memory operations respectively, ⇡
0

is the

constant power (we give the new form for constant power below), and T is the total

execution time of our code.

Due to changing the frequency and voltage settings, ✏
flop

, ✏
mem

, and ⇡
0

are no

longer constants, but variables with respect to these settings, as shown in equa-

tions 44, 45, and 46.
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✏
0

flop

= P
dyn,flop

⌧
flop

= C
0,core

V 2

core

f
core

⌧
flop

= C
00

0,core

V 2

core

(44)

✏
0

mem

= P
dyn,mem

⌧
mem

= C
0,mem

V 2

mem

f
mem

⌧
mem

= C
00

0,mem

V 2

mem

(45)

⇡
0

0

= ⇡
core

+ ⇡
mem

+ ⇡
misc

= P
leak,core

+ P
leak,mem

+ ⇡
misc

= C
1,core

V
core

+ C
1,mem

V
mem

+ ⇡
misc

(46)

where V
core

, f
core

, and V
mem

, f
mem

are the processor and memory supply voltages

and clock frequencies, respectively, and ⌧
flop

and ⌧
mem

are the time costs of floating

point operations and data movement. Note that some constants appear when factors

cancel out in eqs. (44) and (45), but these ultimately become parts of constants C
00
0,core

,

C
00
1,core

and C
00
0,mem

, C
00
1,mem

. For example, in eq. (44) f
core

⌧
flop

= f
core

·1/ (2N
cores

f
core

) =

1/ (2N
cores

) (assuming the system has N
core

cores, each capable of executing a single

fused–multiply–add (FMA) instructions per cycle), so C
00
0,core

= C
0,core

· 1/ (2N
cores

).

We define constant power to be the power that is not directly involved in compu-

tation or data movemement (§ 3.1.5). Such power includes static power and power

consumed by peripherals. In equation 46, we separate these di↵erent components

since some of these components will change with respect to the supply voltage and

clock frequency; ⇡
core

is the constant power dissipated by the processing cores; ⇡
mem
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is the constant power dissipated by the memory units (DRAM, memory controller,

etc.); and ⇡
misc

is the power dissipated by peripherals. In the case of SoCs that have

both a CPU and a GPU on the same chip, ⇡
misc

for the GPU component could also

include the idle power dissipated by the CPU cores, and vice versa.

The final equation for total energy dissipated is shown in eq. (47).

E = WC
00

0,core

V 2

core

+QC
00

0,mem

V 2

mem

+ C
1,core

V
core

T + C
1,mem

V
mem

T

+ ⇡
misc

T (47)

5.2 Experimental Setup

In this section we describe the hardware and the software stack behind our test plat-

form, NVIDIA’s Jetson TK1 mobile SoC development board. One unique aspect of

this device it that it incorporates a single CUDA–capable SMX multiprocessor (with

192 CUDA cores) that is typically found in high–performance GPUs with a quad–

core ARM CPU on the same chip, essentially making it one of the first complete

high–performance computing–capable, yet low–power, platforms. Another interest-

ing feature of this system is its ability to easily change both its core and memory

frequencies (and voltage) over a wide range of values. This allows for a large num-

ber of systems settings with which to experiment, both in terms of performance and

power, making it an ideal platform for DVFS studies.

5.2.1 Hardware

The main processing engine behind this development board is the Tegra K1 SoC which

consists of a 4–plus–1 quad–core ARM Cortex A15 CPU and a single Kepler GPU

multiprocessor (SMX) with 192 CUDA cores. The processor is built on TSMC’s

28nm HPM process and also includes other components typically found on mobile

processors such as audio and video encoder/decoder, and image signal processor (ISP)
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Figure 15: Schematic of the NVIDIA Tegra K1 mobile processor

for processing media content. The multiprocessor used in the Tegra K1 SoC is based

on the Kepler microarchitecture [98] and is capable of delivering 1 single–precision

fused multiply–add (FMA) per cycle per core via four warp schedulers. A schematic

of the Tegra K1 SoC is shown in fig. 15.

When compared to a traditional discrete GPU, one distinct feature is the use of

64–bit wide DDR3L memory rather than 384–bit wide GDDR5 memory which can

deliver significantly higher memory bandwidth. The total memory capacity is limited

to 2 GB and is also shared between the CPU and the GPU.

One downside of the Tegra K1 SoC for use in HPC is that the SMX on Tegra K1

is like those found on desktop–grade GPUs, rather than those found on Tesla–grade

GPUs; its double precision computation capability has been severely limited (1/24⇥
of single precision). As it stands, the Jetson TK1 development board is ill–suited for

HPC. However, we assume that it would be trivial to simply activate the double–

precision cores (if it’s already present but simply deactivated) or to replace the SMX

with a Tesla–grade version.
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5.2.2 Software

In terms of the software stack, the Jetson TK1 system runs Linux for Tegra (L4T),

a modified Ubuntu 14.04 Linux distribution which uses Linux kernel 3.10. The soft-

ware stack also includes CUDA 6 Toolkit, OpenGL 4.4 drivers, and the NVIDIA

VisionWorks Toolkit.

Jetson TK1 allows users to change both the core and memory clock frequencies

from the OS without requiring a reboot. There are 15 and seven di↵erent frequency

settings for the core and the memory respectively, allowing for a total of 15⇥7 = 105

unique system settings. The list of available frequencies and voltage settings can be

accessed through

/sys/sys/kernel/debug/clock/dvfs table

The frequency of the SMX can be set by writing the desired frequency (in Hz) to

/sys/kernel/debug/clock/override.gbus/rate

followed by writing “1” to

/sys/kernel/debug/clock/override.gbus/state

Similarly, the memory frequency can be changed by writing the desired frequency

and “1” respectively to

/sys/kernel/debug/clock/override.emc/rate

and

/sys/kernel/debug/clock/override.emc/state

For more details on the hardware and software specification of Jetson TK1, readers

may refer to its technical brief [101].
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5.2.3 HPC candidate building block bake–o↵

Now that we have analyzed the Jetson TK1 system using our energy roofline model,

we can now add it to our ever–growing database of HPC building blocks [24] and

see how it fares against other candidate systems. Here, we limit our comparison to

single–precision performance only as Jetson TK1 has severely limited double–precision

performance.

In the context of HPC systems, an interesting question that one may ask is this;

given a limited power budget, which systems would you use to build your new super-

computer? Would you build a cluster of HPC nodes made up of traditional server–

grade CPUs and high–end GPU/accelerators? If so, why, and why not an even larger

cluster of platforms based on low–power SoCs? While a natural response is “it de-

pends,” our energy roofline analysis provides one method of answering this question

in a precise and analytical manner.

5.2.3.1 Jetson TK1 vs. GTX Titan

First, let us perform an iso–power comparison of Jetson TK1 to GTX Titan, a high–

end consumer–grade GPU with peak computation and memory bandwidth perfor-

mances of 4.7 TFLOP/s and 288 GB/s respectively. We first calculate the number

of Jetson TK1 systems that are required to match the power dissipation of a single

GTX Titan by taking the maximum observed power dissipation of GTX Titan and di-

viding it by the maximum power dissipation of Jetson TK1; our experimental results

show that it would take approximately 22 Jetson TK1 development boards to match

a single GTX Titan. Then, we generate roofline plots for time, energy, and power

for this hypothetical “cluster” to see how it fares against GTX Titan over a range

of arithmetic intensities. We use arithmetic intensities as a means of parameterizing

target applications using a single, simple metric. These plots are shown in fig. 16.
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Power As it can be see from the right–most powerline plot in fig. 16, 22⇥ Jetson

TK1 cluster’s power dissipation signature follows that of the GTX Titan almost

exactly. This is not entirely surprising given that both of these systems have the

same microarchitecture. However, given that 22⇥ Jetson TK1 systems would provide

a much wider surface area and volume with which to dissipate heat, it would incur

a lower cooling cost and perhaps more stability as a result. On the other hand, the

larger number of units would most likely incur a higher infrastructure set up cost, as

well as a larger floor space to house it. In a real world setting, the actual amount would

depend on the configuration (number of boards per node and number of processors

per board) and the network type (number of required routers and network cards).

Energy e�ciency In terms of energy e�ciency, which is illustrated by the energy

“arch line” in the center plot, Jetson TK1 is slightly more e�cient. Energy e�ciency

as defined by the energy roofline model is a metric of how much energy is used for

“useful” work (i.e., floating point operations) as compared to those that are not useful

(i.e., moving data). Analogous to the time roofline, energy arch line has what we call

an energy balance [26] which is the arithmetic intensity point at which equal amounts

of energy are consumed by computation and data movement (similar to how time

balance point indicates the point where equal time is spent on computation and data

movement). Typically, we desire a low energy balance point, as that allows more

algorithms to be energy–e�cient. For example, for GTX Titan, time balance occurs

at arithmetic intensity of approximately 16, whereas the energy balance occurs at

approximately 8.

Our energy archline plot shows that when the system is memory bound, Jetson

TK1 is only slightly more e�cient, whereas when it’s compute bound, Jetson TK1 is

significantly more energy e�cient. This means that energy cost of data movement,

✏
mem

, is only slightly lower for Jetson TK1, while the cost of computation ✏
flop

is
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significantly lower. There is no plot for a 22⇥ Jetson TK1 cluster as scaling the

number of cores up does not change the energy e�ciency of the system, as we are

ignoring network interconnect cost.

Performance In terms of performance, the left–most plot (time roofline) shows

that the aggregate bandwidth of 22 Jetson TK1 systems is slightly higher, while the

aggregate peak computation is at least 50% better. This means that for applications

that are not network–bound, the 22⇥ Jetson TK1 cluster would perform better.

Dollar cost In terms of dollar cost, a cluster based on Jetson TK1 would be more

expensive; the dollar cost per CUDA core is exactly $1, whereas the Titan retails

for around $1,000 for 2688 CUDA cores. However, if we compare it to a typical

supercomputing node made up of server–class CPU, motherboard, and power supply,

the GTX Titan based system would incur at least a similar cost (we do not include

DRAM cost since the Jetson TK1 is currently limited to only 2 GB of memory). The

story would change yet again if we include the cost of the interconnection network.

One last consideration is the cost of cooling; since a Jetson TK1 cluster would

consist of many more nodes, the infrastructure for cooling would be higher (e.g., larger

housing space, number of heat sinks, etc.), but the running cost of cooling would be

lower due to lower areal density.

Summary It would appear that in a power constrained scenario, Jetson TK1 clus-

ters would make a better building block for a supercomputer in terms of performance,

energy e�ciency, and cooling. Although not quite as apparent, in terms of dollar cost,

Jetson TK1 cluster could also be cheaper in some instances, depending on the the

choice of interconnection network and cooling infrastructure.
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Figure 16: 22⇥ Jetson TK1 vs. GTX Titan

5.2.3.2 Jetson TK1 vs. Tesla K40c

Tesla K40c is the latest generation Tesla–grade GPU from NVIDIA, also based on

the Kepler microarchitecture. It is capable of delivering 4.29 GFLOP/s in single–

precision performance and 288 GB/s in memory bandwidth. When compared to the

GTX Titan, it is significantly more power e�cient – it can deliver similar performance

at much lower power levels. For Tesla K40c, it takes approximately 15 Jetson TK1

systems to match its peak power. Figure 17 shows the comparison between 15⇥
Jetson TK1 cluster and Tesla K40c.

Power In terms of power, the power signature of 15⇥ Jetson TK1 cluster again

closely matches that of Tesla K40c in the lower arithmetic intensity regimes. However,

for compute–bound intensities, Tesla K40c actually dissipates slightly less power.

Although the 15⇥ Jetson TK1 cluster dissipates slightly more power, overall, it would

still maintain most of the advantages of using SoCs, as discussed in section 5.2.3.1.
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Energy e�ciency As with power, energy e�ciency is identical at memory–bound

regimes, while for compute–bound regimes, Tesla K40c is slightly more e�cient. This

seems to indicate that K40c would make for a better HPC building block overall if

energy e�ciency was paramount.

Performance In terms of performance, the two systems are almost identical, both

in terms of aggregate bandwidth and aggregate floating point capability.

Dollar cost Dollar cost is di�cult to compare in this case, as significant percentage

the cost of Tesla–grade GPU comes from using ECC memory. However, if we ignore

this fact, 15 Jetson TK1 systems would cost approximately the same as a single

K40c. When we compare these two systems node–to–node (including the cost of the

CPU, motherboard, etc.), then a cluster of Jetson TK1 would be a much cheaper

alternative.

Summary Comparing a cluster of Jetson TK1 systems to GTX Titan and Tesla

K40c shows that, unfortunately, there isn’t a clear winner. However, this could

be considered good news for proponents of supercomputers based on mobile SoCs.

Current trend in HPC point towards increasingly application–specific hardware sys-

tems [94, 18, 102] and severe limitations on power [42]. Therefore, depending on

the target application and the power constraint, a supercomputer based on Jetson

TK1 could show tangible benefits in terms, performance, energy, power, cooling and

perhaps even more. For example, one such use case could be a distributed applica-

tion written in CUDA that requires high network bi–section bandwidth, such as fast

Fourier transform (FFT) [30] and certain sorting algorithms.

Jetson TK1 in its current form still has several disadvantages when considering

HPC; it lacks support for larger memory capacity due to its having a 32–bit proces-

sor. It also does not have any support for interfacing to high–performance routing
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Figure 17: 15⇥ Jetson TK1 vs. Tesla K40c

networks that are essential for supercomputers. However, we believe that once there

is enough interest in the HPC community for such systems, these problems will be

easily overcome. In fact, the problem of limited memory capacity will most likely

be solved in the near future when the 64–bit Denver processor [15] is integrated into

Tegra K1.

5.3 Results and Discussion

We derive the various constants defined in § 5.1 using linear regression on experimental

data as before (§ 3.3.2) and validate our results.

5.3.1 Fitting and Validation

Linear regression We collected data under 16 di↵erent frequency and voltage

settings on Jetson TK1 using three separate microbenchmarks – intensity (single

and double precision), integer, and cache (both shared memory and L2) – for a

total of 1856 samples (16 ⇥ 116). For each setting, we measured 25 samples from

single–precision intensity benchmark, 36 from double–precision intensity benchmark,

23 from integer benchmark, 16 from shared memory benchmark, and 16 from L2
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cache benchmark (25 + 36 + 23 + 16 + 16 = 116). The 16 settings are summarized

in table 7.

Non–negative least square (nnls) [21] function included with R1 was used for the

fitting, with the fitting equation shown in eq. (48).
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where C
00
0,core,single

is the single precision floating equivalent for C
00
0,core

(eq. (44)), and

C
00
0,core,single

+ �C
00
0,core,double

is the double precision equivalent The binary variable R is

set to 0 for single precision and 1 for double precision.

(W
int

, C
00
0,core,integer

), (Q
SM

, C
00
0,core,SM

), and (Q
L2

, C
00
0,core,L2

) are the integer, shared

memory, and L2 equivalents for W/Q, and C
00
0,core

, respectively. Notice that access to

shared memory and L2 cache depends on the core frequency (V
core

) rather than the

memory frequency (V
mem

), even though they are accessing data.

Once we obtain the coe�cient values, we can then compute ✏
flop

(for both single

and double precision), ✏
mem

, and ⇡
0

using equations eqs. (44)–(46). The cost of integer

computation and access to shared memory and L2 cache can be computed similarly

using eq. (44).

Cross Validation We first used cross validation [50] on our collected data to assess

how well it will generalize to an independent data set when used to make predictions

of energy consumption for other kernels and applications. We chose k–fold cross

validation, where the data is divided into k equal size subsamples, and of the k

1
http://r-project.org
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subsamples, a single subsample is retained as the validation data for testing the

model, and the remaining k� 1 subsamples are used as training data. This process is

repeated k times, with each of the k subsamples used exactly once as the validation

data. The k results from the subsamples are then averaged to produce a single

estimation.

The result of 16–fold cross validation of our data set of 1856 samples shows a mean

error of 6.56%, with a standard deviation of 3.80%. The minimum and maximum

error are 1.60% and 15.22%, respectively.

Prediction trend We also validated our data using 2–fold cross validation (also

known as holdout method) to see how the error rates change with di↵erent bench-

marks and frequency settings when the derived energy costs from one set is applied

to the other. The derived energy costs are summarized in table 7. Data type “T”

was used for training, and type “V” was used for validation.

When compared to measured energy, the mean error for the validation set was

2.87% with a standard deviation of 2.47%, and the minimum and maximum error

were 0.00% and 11.94%, respectively. When we compared error for single precision

data to error for double precision data, we saw that single precision fared much worse

at 4.25% than double precision at 2.67%; we believe that this is caused by the data

overfitting double precision data due to their having more samples (25 vs.36 per

setting). When comparing error rates across arithmetic intensities, we found that

the error rate was much lower for the memory–bound region. This is again likely

caused by having more data points in the memory bound region; although the cost of

computation is fundamentally di↵erent for single and double precision computation,

cost of moving data is the same for both benchmarks, which results in curve fitting

being more biased towards data movement.
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Table 8: Summary of autotuning results. “Energy lost” shows how much more energy
the configuration chosen by our model or the “time oracle” dissipated when compared
to experimentally measured minimum.

Energy lost (%)
Mispredictions Mean Minimum Maximum

Single
Model 0 (out of 25) 0 0 0

Time Oracle 20 (out of 25) 18.52 7.21 26.52

Double
Model 10 (out of 36) 3.11 0.34 7.30

Time Oracle 23 (out of 36) 3.95 0.23 13.90

Integer
Model 6 (out of 23) 2.37 0.32 5.12

Time Oracle 23 (out of 23) 3.56 0.44 9.72
Shared Model 7 (out of 10) 3.31 2.92 3.99
memory Time Oracle 10 (out of 10) 10.64 7.07 12.75

L2
Model 0 (out of 9) 0 0 0

Time Oracle 0 (out of 9) 10.71 10.49 11.28

5.3.2 Autotuning for energy

In the context of “autotuning,” we compare using our model to predict the “best”

(i.e., minimizes energy) system configuration ([f
core

, f
mem

] pair) to using the execution

time to choose the best configuration instead for a given arithmetic intensity on our

intensity microbenchmark. That is, we assume that we have a “time oracle” that can

tell us a priori which configuration yields the best performance for a given arithmetic

intensity. The “best” configuration for each case was chosen from one of the 16

settings shown in table 7, and the resulting energy consumption (chosen by our two

competitors) was compared to the measured energy consumption to see how much

energy was “lost” in each case.

If “race–to–halt2” is true, we should expect the configuration based on execution

time should do just as well or better than our model. However, we found this to be

untrue. Table 8 summarizes our findings.

As it can be seen from table 8, blindly choosing the configuration that yields the

best performance (or the smallest execution time) did not always result in the most

2The race–to–halt strategy says that the best way to save energy is to run as fast as possible and
then turn everything o↵

100



energy e�cient configuration. In the case of the single precision microbenchmark,

adopting the “race–to–halt” strategy resulted in getting energy ine�cient configura-

tion 20 out of 25 cases (arithmetic intensity values), whereas our model never made in-

correct predictions. Surprisingly, despite having predicted energy consumption more

accurately for double precision (§ 5.3.1), our model made incorrect predictions 10 out

of 36 cases. It is still much better than using the “race–to–halt” strategy that made

23 incorrect predictions.

For the shared memory and L2 benchmarks, the number of total tests were 10

and nine respectively. This is lower than the number of samples taken (16 for both

cases (§ 5.3.1)) because the total number of unique intensities for these benchmarks

are lower than the number of samples; some of the samples were taken with the

same number of bytes loaded but using di↵erent thread configurations. Although

predictions for shared memory are bad for both cases (seven mispredictions for our

model vs. 10 for the time oracle), the configuration chosen by our model dissipates

at most only 3.99% more, whereas the configuration chosen by the time oracle could

dissipate as much as 12.75% more.

Granted, the energy “lost” by either strategy is relatively small (at most 7.3%

vs. 26.52% more than experimentally determined minimum energy). However, unlike

some other strategies in DVFS, where energy is “gained” only in the presence of

application “slack,” we use time–energy trade–o↵ to find the most energy–e�cient

setting even for a very uniform computation like our microbenchmarks. When we

compare our strategy to other system–wide approaches that try to take advantage

of time–energy trade–o↵ of frequency scaling, we have the advantage of providing a

more precise and analytical approach which can be expressed using algorithm–friendly

metrics.
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5.4 Conclusion

Our experience with the Jetson TK1 development board was overall a positive one.

The ability to change both the core and memory frequency manually allowed us to

validate our new DVFS–aware model, which can predict energy consumption of our

microbenchmarks under di↵erent DVFS settings to within 2.87%. It also allowed

us to conduct interesting time–energy trade–o↵ experiments using DVFS, where we

found that there could be non–trivial energy loss if we assumed “race–to–halt” to

be the best strategy for achieving energy e�ciency. In that regard, an autotuning

framework based on our energy roofline model could help in choosing better system

settings for energy e�ciency.

Our energy and time roofline analysis of the Jetson TK1 and its comparison

against other high–end GPUs have shown that Jetson TK1 can be a competitive

alternative with which to build supercomputers. In terms of performance and energy

e�ciency, 22⇥ Jetson TK1 cluster outperforms the GTX Titan, especially in the

compute–bound regime where the aggregate compute performance of the Jetson TK1

cluster is as much as 1.5⇥ better. The 15⇥ Jetson TK1 cluster closely matches the

latest high–end Tesla GPU in terms of both memory and compute performance. This

suggests that low–power systems are neither better nor worse than high–end systems

such as Tesla GPUs; in the end, you get (in performance) what you pay for (in power).

Limitations Althgough the Jetson TK1 development board shows potential, it is

not without problems. In the context of HPC, the biggest problems are the lack

of high capacity memory, double–precision performance, and interface to high–speed

internconnection network. However, we believe that these problems could be easily

solved if there was enough interest from the HPC community.

Our validation and analysis e↵orts are also not without limitations. Although

useful, our studies are limited to microbenchmarking studies; the more interesting
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question is whether our model can be applied to real applications running on real

systems. We will address this issue in the next section.

Lastly, we ignore the costs of the network. We do so for two main reasons. First, as

far as we are aware, there have been no studies on designing energy e�cient network

components, making it di�cult (and perhaps unfair) to incorporate them in our

analysis. Second, we do not know what kind of network topology would be suitable

for a cluster of embedded SoCs; it may be that a traditional topology with multiple

SoCs per node to mimic current designs is ideal; however, it may just as likely be

that a completely di↵erent type of topology is required for such large number of nodes

( 15⇥more). We believe that this could be an interesting research topic for the future.
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CHAPTER VI

EVALUATING THE FAST MULTIPOLE METHOD

USING THE ENERGY ROOFLINE MODEL

Contents
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6.3 Results and Observations . . . . . . . . . . . . . . . . . . 108
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In our last chapter, we apply our model and analysis to predict the energy con-

sumption of a real and important application, the fast multipole method (FMM),

running on the GPU core of the Jetson K1 platform. We take eight randomly cho-

sen processor and memory frequency settings and run FMM using eight di↵erent

input sets for a total of 64 separate test cases. We use our previously developed and

highly–tuned FMM implementation [23] for the tests.

We first break execute FMM on our test platform to gather relevant performance

counter measurements to breakdown the FMM kernel into its individual components.

Then, we apply the derived costs from § 5.3 as a weighted sum of these components to

get the final energy consumption estimate and compare it against measured energy.

We start this chapter by giving a brief overview of FMM in § 6.1. Then in § 6.2, we

describe the process of deconstructing the FMM kernel into its various components,
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such as floating point and integer operations, and accessing data from various levels

of the memory hierarchy. We present our validation results and observations in § 6.3

and conclude in § 6.4.

6.1 Introduction to the Fast Multipole Method

Given a system of N source particles, with positions given by {y
1

, . . . , y
N

}, and N

targets with positions {x
1

, . . . , x
N

}, we wish to compute the N sums,

f(x
i

) =
NX

j=1

K(x
i

, y
i

) · s(y
j

), i = 1, . . . , N (49)

where f(x) is the desired potential at target point x; s(y) is the density at source point

y; andK(x, y) is an interaction kernel that specifies “the physics” of the problem. For

instance, the single-layer Laplace kernel,K(x, y) = 1

4⇡

1

||x�y|| , might model electrostatic

or gravitational interactions.

Evaluating these sums appears to require O(N2) operations. The FMM instead

computes approximations of all of these sums in optimal O(N) time with a guar-

anteed user-specified accuracy ✏, where the desired accuracy changes the complexity

constant [54]. The FMM is based on two key ideas:

• organizing the points in a spatial tree; and

• using fast approximate evaluations, in which we compute summaries at each

node using a constant number of tree traversals with constant work per node.

We model and implement the kernel-independent variant of the FMM, or KIFMM [130].

KIFMM has the same structure as the classical FMM [54]. Its main advantage is that

it avoids the mathematically challenging analytic expansion of the kernel, instead re-

quiring only the ability to evaluate the kernel. This feature of the KIFMM allows

us to leverage our optimizations and techniques and apply them to new kernels and

problems.
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Tree construction Given the input points and a user-defined parameter Q, we

construct an octree T (or quad-tree in 2D) by starting with a single box representing

all the points and recursively subdividing each box if it contains more than Q points.

Each box (octant in 3D or quadrant in 2D) becomes a tree node whose children are its

immediate sub boxes. During construction, we associate with each node one or more

neighbor lists. Each list has bounded constant length and contains (logical) pointers

to a subset of other tree nodes. These are canonically known as the U , V , W , and X

lists. For example, every leaf box B has a U list, U(B), which is the list of all leaves

adjacent to B. Figure 18 shows a quad-tree example, where neighborhood list nodes

for B are labeled accordingly.

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Figure 18: U , V , W , and X lists of a tree node B for an adaptive quadtree.

Tree construction has O(N logN) complexity, and the O(N) optimality of FMM

refers to the evaluation phase (below). However, tree construction is typically a small

fraction of the total time; moreover, many applications build the tree periodically,

thereby enabling amortization of this cost over several evaluations.

Evaluation Given the tree T , evaluating the sums consists of six distinct compu-

tational phases: there is one phase for each of the U , V , W , and X lists, as well as
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upward (up) and downward (down) phases. These phases involve traversals of T or

subsets of T . Rather than describe each phase in detail, we refer the readers to the

following publications [54, 129, 130].

There are multiple levels of concurrency during evaluation: across phases (e.g.,

the upward and U-list phases can be executed independently), within a phase (e.g.,

each leaf box can be evaluated independently during the U-list phase), and within

the per-octant computation (e.g., vectorizing each direct evaluation).

Another important property of FMM is the variability of its arithmetic intensity.

The two most expensive phases of FMM are U list and V list computations; U list

computation is highly compute bound as it calculates interactions with its nearest

neighbors directly ( O(q2)); the V list computation, on the other hand, is highly

memory bound, as it approximates interactions with far neighbors through fast fourier

transform (FFT) and vector addition kernels. By changing the input Q, the maximum

number of points per box, we can change the workload of these two phases so that

its overall ratio of computation to data movement can be tailored to a particular

platform to maximize performance.

6.2 Breaking Down FMM

We use nvprof performance counter monitor (PCM) to gather the necessary perfor-

mance counter measurements to create a breakdown of our FMM implementation. A

summary of these counters are given in table 9. Type “E” in the table is a counter

event, which corresponds to a single hardware counter value, and type “M” is a

counter metric, which is a characteristic of the running application and is calculated

from one or more events.

For the number of di↵erent instructions, we use the readings given by counter

events directly. However, calculating the number of bytes coming from di↵erent levels

of the memory is a little more complicated, due to the complex nature of the memory
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hierarchy.

• First of all, we can calculate the amount of data coming from L1 cache by mul-

tiplying l1 global load hit by 128 bytes, the cache line size for L1. Total access to

shared memory can be calculated similarly using the event l1 shared load transactions

• The event l2 subp0 total read sector queries multiplied 32 bytes gives the total

request to the L2 cache, or those that missed in the L1 cache. This data will

come from either L2 cache or main memory, described below.

• We can use events l2 subp0 read l1 hit sectors – l2 subp3 read l1 hit sectors to

calculate data that hit in the L2 cache. These counters are summed and mul-

tiplied by 32 bytes to get the total amount.

• We can use the events fb subp0 read sectors and fb subp1 read sectors to calcu-

late data read from main memory, also by summing the counters and multiplying

it by 32 bytes to get the total amount.

• Similarly, we can calculate the total amount of data written back to memory us-

ing counters gst request, 2 subp0 total write sector queries, and l1 shared store transactions.

The breakdown of FMM for di↵erent input parameters is shown in fig. 19a and fig. 19b.

The input parameters shown in the x–axis represent di↵erent combinations of N , the

total number of points, and Q, the maximum number of points per box (§ 6.1).

6.3 Results and Observations

Using the instruction and data breakdown of the FMM kernel (§ 6.2), and the pre-

dicted cost of operations under di↵erent DVFS settings (§ 5.3), we can now predict the

total energy consumption of FMM. We validate our predictions against real energy

measurements of eight DVFS settings and eight di↵erent sets of inputs to our FMM

kernel, for a total of 64 test cases. The DVFS settings and the input parameters are

summarized in table 10
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(a) Instruction breakdown
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Figure 19: Breakdown of the FMM kernel to component instructions and data access
to di↵erent levels of the memory hierarchy
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Table 10: Summary of DVFS settings and input parameters used for validation

System Setting FMM Input

ID
Core Memory

ID N Q
Frequency Frequency

S1 852 MHz 924 MHz F1 262144 128
S2 756 MHz 924 MHz F2 131072 64
S3 180 MHz 924 MHz F3 131072 256
S4 852 MHz 792 MHz F4 131072 512
S5 612 MHz 528 MHz F5 65536 1024
S6 540 MHz 528 MHz F6 65536 512
S7 612 MHz 396 MHz F7 65536 128
S8 852 MHz 204 MHz F8 65536 64

Although we have derived the cost of FMA and integer operations, we have yet to

write microbenchmarks to derive add and multiply instructions separately; in algo-

rithm analysis, add, multiply, and FMA instructions are not di↵erentiated and treated

as floating point operations. However, since a large fraction of energy consumed by

operations are due to instruction overheads [58], we assume that multiply, add and

FMA instructions incur similar cost as they all take similar execution paths.

Figure 20 shows the result of our validation. Over all 64 test cases, we observed a

mean error of 6.17% when comparing our model estimates against measured energy,

with a standard deviation of 4.65%. However, as can be seen from the figure, the

error rate ranges from as low as 0.09% to as high as 14.89%.

Observations Generally speaking, the error rate tends to be higher for inputs with

small values for the number of points per box, Q, regardless of the DVFS setting.

We attribute this to the fact that reducing the number of points per box increases

the portion of the total time spent on the U list phase, which consists of FFT and

vector addition kernels; these kernels, especially FFT, exhibit complicated data access

patterns which, together with the complex memory hierarchy of modern architectures,

may utilize additional hardware whose usage is not captured by our microbenchmarks.

When we break down energy consumption by type – computation, data movement,
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and constant power – we see an interesting trend. As it can be seen in fig. 21, we see

that a large portion of energy is “wasted” on constant power; it accounts for at least

74.39% of the total energy, and as much as 95.98%. Although we see no correlation

between execution time and amount of energy wasted on constant power within the

same DVFS setting, we see that it is particularly high for setting S3 (table 10). At this

setting, the core frequency is set to 180MHz, and the memory frequency is set to the

highest possible at 924MHz. Although, in theory, the performance of FMM settings

that favor data movement (low values of Q) should not be severely a↵ected, this is

not the case; compared to the best setting (S1 ), the speeddown is approximately 3

– 3.9⇥ with no particular correlation to Q. We believe that this is because at such

a low core frequency of 180MHz, instructions can’t issue quickly enough to saturate

the memory system, and as a result, both compute and memory performance su↵er.

This teaches us that we need to be aware of more than just the impact of DVFS on

energy costs, but also on the overall performance at the architecture level.

Figure 21 and fig. 19a also highlight two potential problems for our quest for algo-

rithm redesign for energy e�ciency. First, integer instructions make up approximately

half of the total executed instructions. Integer operations are typically used for loops

and address calculation and while necessary, they do not contribute to useful work.

Unfortunately, there aren’t any practical methods for reducing this integer overhead,

as almost every application uses loops to iterate over data, and address calculation is

fundamental to how modern architectures operate. On the slightly more optimistic

side, in work–communication trade–o↵ settings (§ 3.5), if the extra computation re-

quired to reduce data movement can be done locally (e.g., data decompression), it

may reduce the overall impact of integer overhead.

While the FMM kernel used in our experiments is optimized close to the achievable

peak [23], more than three quarters of the total power is being spent on constant

power, and not on doing useful work (i.e., computation and data movement). As
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in the case of Amdahl’s Law, where speedup is bound by the serial portion of the

code, the amount of greenup (§ 3.5) we can achieve is severely limited by constant

power. This issue is strongly correlated to system utilization. As demonstrated by

our microbenchmarks, achieving full system utilization reduces the portion of energy

spent on constant power to less than half, but requires issuing FMA instructions (or

instructions that yields the highest FLOP/s performance), every cycle. Unfortunately,

most applications have an instruction mix (and dependences) that do not conform to

this behavior, so achieving full system utilization is impossible on most systems.

While this conclusion suggests that current systems are poor platforms for design-

ing algorithms for energy e�ciency, we believe that it also points us to the “right”

direction. That is, future systems should focus on providing support for adapting

performance to specific applications or kernels. For example, “dark silicon” [39, 40]

could be used to implement specific functions or tasks; these could be turned on

for applications that require them, while everything else that is redundant could be

turned o↵. This way, every application could achieve full system utilization, as com-

ponents that are turned o↵ would not contribute to the overhead. An example of

such a function or task could be the commonly used linear algebra operations [104].

6.4 Conclusion

We have demonstrated the utility of the energy roofline model by using it to accu-

rately predict the energy consumption of a real and important scientific application

running on a state–of–the–art mobile platform under a variety of voltage and fre-

quency settings. Unlike other ideas that are focused more modeling the hardware to

predict energy, or heuristics to reduce energy consumption at the system level, our

model directly connects properties of an algorithm with architectural time and energy

costs. This provides algorithm designers and performance tuners with information

that they can use to consider and design algorithms for energy e�ciency.
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Unfortunately, our analysis of FMM on the Jetson K1 SoC has shown that reduc-

ing energy through algorithmic means, such as work–communication trade–o↵, for

real applications may be fundamentally di�cult due to the limitations imposed by

the overhead of constant power. Only certain simple kernels, such as matrix mul-

tiplication or stencil calculation which consist mostly of FMA operations and large

amounts of parallelism, can achieve high percentage of peak throughput on the Jetson

K1’s Kepler GPU core (and other GPU–like systems), and consequently, reduce the

relative overhead of constant power by large enough amount to consider algorithmic

trade–o↵ scenarios. Others will be limited by the amount of available parallelism,

instruction mix, and overall system utilization.

On the other hand, our analysis has suggested a potentially rewarding path for

energy–e�ciency research, in terms of both architecture and algorithm design. We

believe that specialized units will become increasingly important for energy e�ciency,

especially when dark silicon becomes a reality. Utilizing dark silicon to implement

highly–e�cient special functional units will allow the system to “reconfigure” itself to

better fit the application by dynamically enabling and disabling various units. This,

we believe, will lead to better utilization and lower relative overhead in power, which

will in turn allow algorithm designers to make changes to increase energy e�ciency

using our model, analysis, and ideas.
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CHAPTER VII

CONCLUSION

The idea behind this thesis started from a simple question: what can we do to improve

the energy e�ciency of our algorithms and applications?

We address this challenge by starting with a simple model that expresses time and

energy in terms of operations, concurrency, and data movement of algorithms. Our

analysis of this model lead us to new ideas that relate energy with time, such as the

notion of an energy–balance, analogous to the traditional time–balance of a system,

and their di↵erence – the time–energy balance gap.

The time–energy balance gap has important consequences for algorithms; today

time–balance is greater than energy–balance, due largely to constant power, and

consequently, race–to–halt strategies are the most reasonable first–order techniques

to save energy. However, there is a strong possibility that this will change in the

future; as was the case when industry transitioned from BJ to CMOS transistors –

driven by our need to reduce wasted power – much e↵ort is currently being invested

in reducing this overhead, or constant power. These e↵orts include power gating

techniques, drowsy caches, and new transistor technologies (e.g., Tri–gate, FinFET).

When this happens, race–to–halt will most likely break, and open up new possibilities

in algorithmic energy–e�ciency research, such as our idea of work–communication

trade–o↵s.

After establishing the basis for our new model, we validate it on real systems to

see whether our theory and ideas translate to real world settings. We first create a

highly–tuned and architecture–cognizant microbenchmark that can target a particular

arithmetic intensity and stress the system to its maximum throughput performance.
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Using a fine–grained power measurement tool, we collect energy measurements from

our microbenchmark and use linear regression to derive the values of our model pa-

rameters – the cost of floating point operations and data movement. We found that

the measured performance, energy and power closely matches the basic form of our

model.

However, we also encountered a number of limitations; first, under certain arith-

metic regimes, our microbenchmark underperformed on high–performance GPUs,

which we hypothesized as being caused by power limitations; second, for a real ap-

plication, our energy estimates were always significantly lower than measured energy,

which lead us to the conclusion that energy is fundamentally di↵erent from time in

that all actions must be accounted for – there are no overlaps in energy. To account

for these shortcomings we extended our model to include the idea of a power “cap,”

and extended our microbenchmark to include other operations, such as integer and

accessing data from di↵erent levels of the memory hierarchy.

Using our new model and benchmark suite, we extend our evaluation and analysis

to server–, min–, and mobile–class systems that span a wide range of compute and

power characteristics. We demonstrate how our model can be used to precisely and

analytically compare di↵erent systems using concrete examples. For example, we

show which systems are better than others in certain arithmetic regimes, show how

performance may scale under power throttling or bounding scenarios.

As a first cut at bridging algorithm and architecture analysis for time and en-

ergy, we kept our model intentionally simple for reasons of clarity; however, dynamic

voltage and frequency scaling is an important feature for energy–e�cient computing

in most modern system. Using a state–of–the–art CUDA–capable mobile SoC, the

Jetson K1, as our testing platform, we incorporate and validate the impact of DVFS

on our model. We show that our new model is accurate in predicting the change of
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energy cost of operations with frequency and voltage, and demonstrate that race–to–

halt is not necessarily the best strategy for reducing energy consumption, at least in

the context of highly–tuned microbenchmarks; for di↵erent arithmetic intensity val-

ues, our model was better at predicting the best DVFS setting for minimizing energy

when compared to a strategy based on finding the DVFS setting that minimizes time.

Finally, we bring together all the work thus far to predict the energy consumption

of a real, and important, scientific application, the fast multipole method (FMM),

on the Jetson K1 SoC. We show that even with our simple model, we can accurately

predict the energy consumption of FMM under di↵erent DVFS settings. Perhaps

more importantly, we highlight several important issues regarding algorithmic energy

e�ciency. On modern systems and applications, there are a number of large over-

heads that hinder our e↵orts to improve energy e�ciency; first, more than half of

total computation operations are devoted to integer overhead of loops and address

calculation; second, overhead, or constant power, accounts for more than three quar-

ters of the total power, likely due to system underutilization, even for highly–tuned

kernels like our FMM implementation.

While the outlook may be bleak for current systems and applications in terms of

algorithmic energy e�ciency, our research also highlights a path for the future that

may help overcome these issues. We believe that focusing on specialized hardware

functional units, such as those emphasized by proponents of dark silicon and linear

algebra cores, will allow future processors to adapt to specific applications by enabling

and disabling various units on the chip, and alleviate the problems of power overheads

and underutilization.
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