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SUMMARY 

 

Understanding possible variations in muscle activation patterns and their 

functional implications to movement and motor control is crucial for rehabilitation. Inter- 

and intra-subject variability is often observed in muscle activity measured during 

performance of the same task in both healthy and impaired individuals. However, the 

extent to which muscle activation patterns can vary under specific neuromuscular 

conditions and how they may differ functionally are still not well understood. Current 

musculoskeletal modeling approaches using optimization techniques cannot adequately 

address such questions because they focus on identifying a unique optimal muscle 

activation pattern, though many possible patterns exist that could produce the same 

movement. Therefore, we need an alternative modeling framework to explore and 

characterize the range of possible muscle activation patterns for a given task and to 

explain the functional implications of such variations.  

Here I developed a novel computational framework that uses a detailed 

musculoskeletal model to reveal the latitude the nervous system has in selecting muscle 

activation patterns for a given task with respect to various biomechanical and neural 

constraints. I specifically focused on an isometric endpoint force generation task relevant 

to standing balance behavior in cats using a cat hindlimb model. By identifying the 

explicit bounds on activation of individual muscles defined by biomechanical constraints 

of the limb and the task, I demonstrate that there exists a wide range of feasible activation 

patterns that may be sufficient to account for experimentally observed variability. By 

investigating the possible biomechanical and neural bases of using the same muscle 



 xiv 

activation pattern to produce a force across limb postures, I demonstrate that demand for 

generalization of function can affect the selection of muscle activation patterns that is not 

granted by limb biomechanics nor a single optimality criterion. By characterizing the 

landscape of the solution space with respect to two functional properties, effort and 

stability, I also demonstrate a possible trade-off in neural selection of muscle activation 

patterns for a given task that may explain individual differences. In addition, I discuss  

work where I have extended the method to the dynamic task of human walking. Finally, I 

present preliminary work showing how the modeling framework developed in this thesis 

can be used for understanding impaired motor control by considering altered 

biomechanical and neural constraints. 

Neuromechanical principles underlying functional and impaired movements can 

be elucidated by understanding the allowed variability in muscle activation patterns and 

evaluating the functional consequences of such variations. Specifically, we may gain 

valuable insights to explaining individual differences in movement strategies, motor 

learning, or compensation to neuromuscular disorders. Furthermore, this framework can 

be useful in developing novel biologically-inspired control principles for robots and 

effective patient-specific treatments and rehabilitation strategies. 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 In control of movement, humans respond to unexpected perturbations in a robust 

manner and flexibly adapt to novel tasks. Yet, how the nervous system achieves such 

graceful control is not fully understood. In particular, redundancy at multiple levels of 

sensorimotor transformation poses a degrees of freedom problem (Bernstein 1967)  in 

that there are many ways in how the same motor task can be achieved. Accordingly, 

substantial inter- and intra-subject variability is observed in muscle activity measured 

during a movement in both healthy and impaired individuals (Gottlieb 1998; Horak and 

Nashner 1986; Winter and Yack 1987). Understanding this motor abundance manifested 

in such allowed variability is essential to elucidating the neuromechanical control 

underlying functional and impaired movements. 

 What determines the differences? That is, what determines which muscle 

activation pattern is to be used for a given task? The main question that has remained 

unanswered is the degree to which a muscle activation pattern for a given movement is 

determined by biomechanical or neural constraints. Biomechanical constraints refer to 

limiting factors owing to the capability of the musculoskeletal system such as the 

anatomical arrangement of limb musculature, and the task requirements. Musculoskeletal 

redundancy may allow for ample room in how multiple muscles can be coordinated to 

achieve a movement under given biomechanical constraints, especially for sub-maximal 

tasks. Thus, kinematic or morphological differences may not solely account for 

differences in muscle activity across individuals or trials (Walter et al. 2014). On the 

other hand, neural constraints refer to the principles or control strategies by which the 

nervous system selects particular solutions to be used. Neural redundancy may, as well, 

allow for many functionally equivalent solutions, which may not be necessarily optimal 
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but are “good enough” for a given motor task (Loeb 2012). Specific neuromuscular 

conditions may affect the possible choices. For example, compromised systems such as 

weakened muscles or reduced cortico-spinal input due to neurological pathologies may 

induce a compensatory mechanisms to achieve a functional motor task.  

 However, it is difficult to understand or interpret variability in muscle activity. 

Questions may arise: What are the functional differences between one muscle activation 

pattern and another? What are the possible changes that can be made to muscle activation 

patterns in individuals with impairment for recovering function? In order to address these 

types of questions, it is crucial that we understand possible variations in muscle activation 

patterns and its functional implications to movement and motor control. 

 Current musculoskeletal modeling approaches use optimization techniques that 

cannot adequately address such questions because they focus on identifying a unique 

optimal muscle activation pattern among the many possible patterns that could produce 

the same movement. Accordingly, optimal predictions often deviate from measured 

muscle activity and cannot account for experimental variability (Buchanan and Shreeve 

1996; Herzog and Leonard 1991; Thelen and Anderson 2006). Nevertheless, detailed 

musculoskeletal models can be useful tools because they provide high-resolution access 

to internal variables, such as muscle force, and definitive causal relationships allowing 

isolated control over parameters of interest (Bunderson and Bingham in press; Hicks et al. 

2015). We currently lack a quantitative modeling framework to explore the range of 

possible muscle activation patterns for a given task using musculoskeletal models, and to 

predict the functional implications of such variations. 

 To this end, this thesis presents a novel computational framework that uses a 

detailed musculoskeletal model to reveal the latitude the nervous system has in selecting 

muscle activation patterns for a given task with respect to various biomechanical and 

neural constraints.  
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1.1 Background  

1.1.1 Challenges in studying neural control of movement 

 Studying neural control of movement is a difficult problem because it involves 

complex interaction among neuromechanical elements at multiple hierarchical levels 

(Nishikawa et al. 2007; Ting et al. 2012). At the execution level, muscle activity is an 

output of the nervous system that incorporates control signals from multiple sources such 

as reflexive feedback from spinal circuits and volitional commands descending from 

higher centers. On the other hand, the transformation from muscle activation to actual 

movement occurs in a highly nonlinear manner where forces exerted by active muscles 

result in net moments at the joints that subsequently produce joint movement or limb 

endpoint forces (Ting and Chiel in press). Biomechanical constraints such as interaction 

torques (Gribble and Ostry 1999; van Antwerp et al. 2007) and state dependency of 

muscles’ force generation on the dynamics of the body (Gordon et al. 1966; Hill 1953; 

Rack and Westbury 1969; Zajac 1989) further complicate the problem. What remains 

largely unknown is the extent to which either biomechanical or neural constraint 

determines the selection of a particular solution for a given movement. 

 In particular, understanding the influence of musculoskeletal redundancy on the 

selection of muscle activation patterns is difficult. Because the number of muscles 

exceeds the number of joints to be controlled, any movement can be produced with 

multiple patterns of muscle activation. Accordingly, muscle patterns used during 

production of similar biomechanical outputs such as joint kinematics or endpoint force 

varies across individuals and across trials, as measured in substantial variability in 

electromyography (EMG) (Horak and Nashner 1986; Torres-Oviedo et al. 2006; Torres-

Oviedo and Ting 2007). However, it is difficult to interpret such variability with respect 

to the biomechanical latitude that the nervous system has when selecting muscle 

activation patterns. There have been only a few studies that have quantitatively examined 
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the implications of musculoskeletal redundancy on muscle activity (Collins 1995; Kutch 

and Valero-Cuevas 2011; Martelli et al. 2015; Martelli et al. 2013). 

 In addition, the functional criteria by which the nervous system may select a 

specific muscle activation pattern among many possible is not readily identifiable. 

Variability in neuromotor behaviors results naturally from a large space of equivalent 

solutions (Klein et al. 2010; Prinz et al. 2004; Raphael et al. 2010). Nevertheless, the 

nervous system seems to coordinate muscles in a specific manner, exhibiting robust 

patterns across many functional behaviors (Carlsöö 1972; Elble et al. 1994; Mann et al. 

1979; Winter 1987; Winter and Yack 1987). However, multiple objectives and individual 

habits or preferences that may be involved in such selection (de Rugy et al. 2012; Ganesh 

et al. 2010; Hasson et al. 2012) obscure the landscape of the solution space. 

 Furthermore, it is often difficult to evaluate the functional implications of a given 

muscle activation pattern with respect to a task-level goal of movement. The 

sensorimotor transformation between abstract goals and execution-level neural 

commands can be inferred by describing the relationship between experimentally 

measurable variables. For example, recruitment of muscles has been shown to reflect 

global task-level variables such as whole-body center of mass in standing balance 

(Lockhart and Ting 2007; Nashner 1976; 1977; Ting 2007) or angular momentum in 

walking (Herr and Popovic 2008; Silverman et al. 2012). Local variables such as 

individual joint angles do not predict well the observed responses in muscle activity or 

joint torques (Gollhofer et al. 1989; Park et al. 2004; Peterka 2000; Ting and Macpherson 

2004). However, these experimental approaches are descriptive such that it is difficult to 

predict how variations to the observed muscle activation pattern or using different muscle 

activation patterns will affect the goal of a movement at a global level. 

 

1.1.2 Limitations in current modeling approaches 
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 Realistic musculoskeletal models and simulations can be useful tools in studying 

movement in that they serve as a test bed on which viability of certain hypothesized 

neural control strategies can be dissected (Hicks et al. 2015; Zajac 1993). For example, 

knowing how muscles are coordinated to produce net joint moments that result in a given 

movement is essential for understanding the underlying neural control. However, because 

direct measurement of muscle forces is mostly restricted in vivo (Fleming and Beynnon 

2004), musculoskeletal models can be used to predict muscle activation or force (Erdemir 

et al. 2007). 

 Studies using musculoskeletal models to identify muscle patterns required for 

generating a given movement often utilize optimization techniques to resolve the 

redundancy problem. There have been mainly three types of approaches: the inverse 

approach, the forward approach, and the optimal control strategy approach.  

The inverse approach computes required net joint torques from measured kinematics and 

external forces (inverse dynamics) and uses optimization to identify a unique muscle 

activation pattern that satisfies the joint torque requirement. An implicit assumption is 

made about the criteria by which muscle patterns are organized, represented as a cost 

function to be minimized, often related to neural effort in terms of muscle forces 

(Crowninshield and Brand 1981). The forward approach uses forward simulation and 

dynamic optimization to determine activation patterns that track experimental data 

(kinematics, kinetics) where the goal is to minimize error from prescribed motion 

(McLean et al. 2003; Neptune et al. 2001). Sometimes experimental EMG data is directly 

incorporated in predictions by tracking the activation profiles in subset of muscles that 

were measured experimentally (Piazza and Delp 1996; 2001). Alternatively, the optimal 

control strategy approach provides insights to how muscles should be coordinated to 

maximize the specified performance in a given movement. In this approach, forward 

simulation and dynamic optimization are used to identify a muscle activation pattern to 

achieve a goal that needs to be specified explicitly (Pandy 2001). Such an approach has 
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been successful in predicting various motor behaviors such as human walking (Anderson 

and Pandy 2001a), maximum-height jumping (Anderson and Pandy 1999) or maximum-

speed pedaling (Raasch et al. 1997). 

 However, the above approaches fail to predict different neural control strategies 

that can be used to achieve the same motor goal. In both the inverse and forward 

approaches, the objective is to replicate prescribed experimental data, e.g. motion 

(kinematics and kinetics) or muscle activity, rather than predicting a behavior de novo 

based on task-level goals. Optimal control approaches are capable of predicting a 

behavior when a well-defined explicit goal exists for a given motor task. However, 

optimal control solutions typically converge to a global extremum only when the 

capability of the model is pushed towards its biomechanical limits such as maximal tasks. 

Available solutions are highly restricted in such cases, likely leaving only one possibility 

that may not be relevant to most sub-maximal tasks. An optimal control solution for sub-

maximal tasks such as walking likely converges to one of the many local extrema, and 

thus represents one particular solution from the many that may have similar performance. 

Overall, these approaches cannot account for variations from an optimum or allowed 

variability the nervous system possess in selecting muscle activation patterns because 

they identify only a unique solution from many possible solutions that produce the same 

movement. Indeed, predicted solutions often deviate from experimentally measured 

muscle activity (Buchanan and Shreeve 1996; Herzog and Leonard 1991). Therefore, 

these approaches may not necessarily reveal the underlying neural principles in control of 

movements beyond biomechanical considerations. 

 Moreover, simulated movements produced by these optimal solutions are not 

robust to internal or external perturbations because stability is not considered. Local 

stability of a musculoskeletal system conferred by the active stiffness and viscosity of 

muscles can be tuned through the selection of muscle activation patterns producing 

equivalent motor output (Bunderson et al. 2008). Studies show that animals use viable 
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solutions that provide intrinsic postural stability, even during the sensorimotor feedback 

delay (Jacobs and Macpherson 1996), that may not necessarily be the most efficient 

solution (Bunderson et al. 2010). Because current modeling studies lack neuromechanical 

principles to guide selection of muscle activation patterns based on physiologically 

meaningful stability, simulations are often vulnerable to small changes in modeling 

parameters or variation to the solution, especially for unstable tasks such as walking 

(John et al. 2013; Risher et al. 1997). 

 

1.1.3 Balance control as a paradigm 

 Postural control for standing balance is a motor task that is highly suited for 

studying neural control of movement. Understanding how postural stability is achieved in 

standing balance has significant clinical importance because falls due to loss of balance 

often lead to increased morbidity in the elderly (Anderson et al. 2004). 

 In addition, the contributions of different neuromechanical elements involved can 

be identified. Delayed responses in muscles elicited by the perturbation can be temporally 

decoupled into reflexive response (~25ms in cats and ~50ms in humans) and automatic 

postural response (APR) which occurs around 50 and 100ms, in cats and humans, 

respectively, after perturbation onset (Horak and Macpherson 1996). Disassociation of 

the neural command in terms of different control sources is not practically possible for 

voluntary movements in contrast. 

 Furthermore, the primary task-level goal for balance control is clearly defined: to 

maintain the center of mass (CoM) over the base of support (Carpenter et al. 1999; 

Diener et al. 1988). Moreover, the relationship between the muscle activity and 

biomechanical output can be assumed to be more direct and linear (Kuo and Zajac 1993; 

Valero-Cuevas 2000; Valero-Cuevas et al. 1998) because the task can be considered 

quasi-static, involving small changes in biomechanical parameters (Ting and Macpherson 
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2004). Nonetheless, redundancy at both kinematic and muscle level provides ample room 

in which the nervous system can exploit a multitude of viable solutions that achieve the 

goal. The redundancy of the solution space is illustrated in different strategies used to 

coordinate multi-joint torques, or variability observed in muscle activity during responses 

to support perturbation (Horak and Nashner 1986; Runge et al. 1999). 

 However, studies using computational models to understand balance control have 

not focused on investigating neural principles underlying spatial coordination across 

muscles. The majority of studies used simplified models with reduced level of 

biomechanical complexity, e.g. inverted pendulum or segmental models, to understand 

the role of sensory feedback, or optimal control strategies in torque space for regulating 

postural equilibrium (Alexandrov et al. 2001; Bortolami et al. 2003; Kiemel et al. 2002; 

Kuo 1995; Park et al. 2004; Peterka 2000; Runge et al. 1995; van der Kooij et al. 1999). 

Only a few studies have used musculoskeletal models to predict experimentally-observed 

balance behavior assuming various neural feedback mechanisms (Jo and Massaquoi 

2004; Mansouri and Reinbolt 2014; Nataraj et al. 2012 ; Nataraj et al. 2010). Yet, these 

studies still do not address the question of how the nervous system organizes spatial 

structure of coordination pattern across muscles during balance control.  

 

1.1.4 Muscle synergy hypothesis for balance control 

 More recent studies examining the underlying structure in coordination of 

muscles suggest that the nervous system may use a set of a few synchronously activated 

groups of muscles, called muscle synergies, which can be combined to produce a large 

repertoire of movement (d'Avella et al. 2003; Hart  and Giszter 2004; Ivanenko et al. 

2004; Ting and Macpherson 2005; Tresch et al. 1999). Such modular organization may 

simplify control by reducing the number of independent degrees of freedom to be 

controlled (Ting 2007) and making the system more linear and controllable.  
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 Experimental studies in balance control also suggests the existence of a modular 

control scheme where muscle synergies are used in robust manner across a variety of 

different conditions. In postural behavior during standing balance in cats and humans, 

muscle synergies were found to produce a specific ground reaction force to exert 

appropriate acceleration at the CoM (Chvatal et al. 2011; Ting and Macpherson 2005; 

Torres-Oviedo and Ting 2007). Temporal recruitment of postural muscles synergies have 

been shown to reflect task-level feedback based on CoM kinematics (Lockhart and Ting 

2007; Safavynia and Ting 2013; Welch and Ting 2008). Further, a common set of muscle 

synergies producing consistent endpoint forces with respect to limb orientation across 

different postural configurations has been observed in cats (Torres-Oviedo et al. 2006).  

 However, the criteria by which certain muscle activation patterns may be selected 

for muscle synergies, as the building blocks for functional movement, remain unknown. 

Muscle synergy patterns used to produce similar force vectors during balance control 

varies across individuals in both cats (Torres-Oviedo et al. 2006) and humans (Torres-

Oviedo and Ting 2007). The reason for such variations in spatial organization of muscle 

synergies across individuals could not be explained because experimental approaches 

have been mainly descriptive (Tresch and Jarc 2009). It is still controversial whether 

muscle synergies are indeed a choice of the nervous system, as opposed to an emergent 

structure from biomechanical constraints of the task (Bizzi and Cheung 2013; Kutch and 

Valero-Cuevas 2012).  

 In conclusion, how various costs, constraints, and strategies would affect the 

selection of specific patterns for functional muscle synergies has not been studied. 

Although musculoskeletal models have been successful in simulating behaviors using 

muscle synergies (Alessandro et al. 2013; McKay and Ting 2008), patterns for muscle 

synergies were synthesized in these studies either according to an implicit optimality 

criteria (McKay and Ting 2012; Steele et al. 2013), or by using experimentally-observed 

patterns directly (Allen and Neptune 2012; Neptune et al. 2009).  
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1.2 A new computational framework 

 I propose a novel computational framework that explores the complete range of 

muscle activation patterns that can be used for a given movement, and examines the 

functional implications of possible variations within the multitudes of solutions. The 

proposed framework overcomes the limitations of experimental approaches that are 

mainly descriptive (Alessandro et al. 2013; Pandy and Andriacchi 2010; Tresch and Jarc 

2009), and the current computational modeling approaches that use optimization 

techniques to examine only a single solution (Buchanan and Shreeve 1996; Collins 1995; 

Herzog and Leonard 1991). In essence, this new paradigm maximizes the potential utility 

of the detailed musculoskeletal models that provide full access and isolated control over 

neuro-musculoskeletal parameters of interest (Bunderson and Bingham in press; Zajac 

1993).  

 The principle of the proposed framework is to identify the explicit bounds in the 

solution space defined purely by the biomechanical constraints. These bounds represent 

the biomechanical latitude that the nervous system has in selecting muscle activation 

patterns, and quantifies the range in which all theoretically possible solutions lie. The 

biomechanical constraints for a given movement are determined by the torque-producing 

capability of the muscles and net joint torque requirements (task demand) from measured 

or specified kinematics and kinetics. 

 Next, the proposed framework imposes additional constraints or considers costs 

that may narrow the range of possible solutions, based on hypothesized principles by 

which the nervous system organizes the spatiotemporal structure of muscle activation 

patterns. This identifies sub-ranges in muscle activation space, or subsets of solutions that 

meet certain functional criteria or confer a certain functional property to the system. 

Different constraints and costs can be considered such as generalization of movement 

across multiple biomechanical conditions, neural criteria regarding energetic cost or 

control strategies, or neuromuscular impairments.  
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 Finally, the proposed framework evaluates and compares muscle activation 

patterns in terms of function. Neuromechanical constraints and costs that affect the 

selection of muscle activation patterns are used as quantitative metrics to evaluate and 

compare different solutions in terms of functional implications of using a particular 

solution. Using these metrics, high-dimensional muscle activation space can be mapped 

with respect to their functional properties. By constructing a map that can be visualized in 

low-dimensional (two or three) functional property space, one can predict how certain 

variations to muscle activation pattern result in differences in functional implications, 

both in terms of the direction (qualitative measure of what kind of change) and distance 

(quantitative measure of how much different).   

 The proposed computational framework provides quantitative tools that can be 

used for elucidating the underlying neuromechanical principles by which the nervous 

system selects particular functional muscle activation patterns, and to explain individual 

differences. Sources of variability in muscle activation patterns that can be used to 

produce the same movement may arise from neural selection (Bernstein 1967). Therefore, 

examining variability is crucial for understanding the neural control of functional and 

impaired movements. In particular, the proposed framework can be used to identify the 

full range of possible variations – the way in which neuromuscular redundancy shapes 

the bounds on how different solutions can be, and predict the functional implications of 

such variations – predicting the consequences of using certain solutions as well as to 

explain why one solution is chosen versus another. 

 

1.3 Thesis overview 

 In this thesis, I seek to investigate the principles by which the nervous system 

may explore and select viable muscle activation patterns used in the functional behavior 

of balance control. In particular, I focused on an isometric endpoint force generation task 
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relevant to muscle synergies used for standing balance behavior in cats. To this end, I 

developed a novel computational framework to reveal the latitude the nervous system has 

in selecting muscle activation patterns for a given task with respect to various 

biomechanical and neural constraints. In particular, I used a highly redundant 

musculoskeletal model of the cat hindlimb to characterize the solution space available for 

a given task. In addition, I utilized forward dynamic simulations to evaluate the 

functional properties of given solutions with respect to dynamics of the whole limb. 

 My overall hypothesis is that the nervous system flexibly selects muscle patterns 

for functional muscle synergies that are “good enough” regarding energetic efficiency, 

stability, and generalizability. A further implication is that biomechanical constraints nor 

a single optimality criterion alone are insufficient to define muscle activation patterns for 

producing an observed force during reactive balance behavior. I predict that 

biomechanical redundancy confers a multitude of functionally equivalent solutions that 

are energetically suboptimal but provides stability and generalizable function. 

 In order to test this hypothesis, I addressed three relevant, yet independent, 

questions. The general scheme is to consider from pure biomechanical constraints to 

more neural constraints in selecting muscle activation patterns for a given task: I examine 

the range of possible muscle activation patterns to satisfy a single biomechanical 

condition (chapter 2), multiple biomechanical conditions (chapter 3), and multiple neural 

criteria regarding cost and implication to local dynamics of the body (chapter 4).  

 In Chapter 2, I asked: To what extent can activation of individual muscles vary 

for a given task? This question tests whether biomechanical constraint is sufficient to 

define muscle activation pattern for a muscle synergy with a given biomechanical 

function, e.g. isometric force generation. By identifying the explicit bounds on activation 

of individual muscles defined by biomechanical constraints of the limb and the task, I 

demonstrated that there exists a wide range of feasible activation patterns, which may 

sufficiently account for experimentally observed variability. 
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 In Chapter 3, I asked: How does a functional requirement for generalization 

across biomechanical conditions affect the range of possible solutions? This question 

tests whether a limited range of viable solutions for muscle synergy patterns emerges 

from a requirement for generalization of function across different conditions. By 

investigating the possible biomechanical and neural bases of using the same muscle 

activation pattern to produce a force across limb postures, I demonstrated that a demand 

for generalization of function can affect the selection of muscle activation patterns that 

are not granted merely by limb biomechanics nor a single optimality criterion. 

 In Chapter 4, I asked: How do neural criteria regarding the intrinsic properties 

of muscle activation patterns affect the selection? This question tests whether a functional 

property of muscle activation patterns relevant to the task determines the way in which 

one solution is selected over another. By characterizing the landscape of the solution 

space with respect to two functional properties, effort and stability, I demonstrated a 

possible trade-off in neural selection of muscle activation patterns for a given task that 

may explain individual differences.   
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CHAPTER 2 

MUSCLE FEASIBLE RANGE DEFINED BY BIOMECHANICAL 

CONSTRAINTS OF THE LIMB AND THE TASK 

This chapter was originally published as an article in the Journal of Biomechanics: 

 

Sohn MH, McKay JL, and Ting LH. Defining feasible bounds on muscle activation in a redundant 

biomechanical task: practical implications of redundancy. J Biomech 46: 1363-1368, 2013.  

 

Used with permission by Elsevier. 

 

 Measured muscle activation patterns often vary significantly from 

musculoskeletal model predictions that use optimization to resolve redundancy. Although 

experimental muscle activity exhibits both inter- and intra-subject variability we lack 

adequate tools to quantify the biomechanical latitude that the nervous system has when 

selecting muscle activation patterns. Here, we identified feasible ranges of individual 

muscle activity during force production in a musculoskeletal model to quantify the degree 

to which biomechanical redundancy allows for variability in muscle activation patterns. 

In a detailed cat hindlimb model matched to the posture of three cats, we identified the 

lower and upper bounds on muscle activity in each of 31 muscles during static endpoint 

force production across different force directions and magnitudes. Feasible ranges of 

muscle activation were relatively unconstrained across force magnitudes such that only a 

few (0~13%) muscles were found to be truly “necessary” (e.g. exhibited non-zero lower 

bounds) at physiological force ranges. Most muscles were “optional” having zero lower 

bounds, and frequently had “maximal” upper bounds as well. Moreover, “optional” 

muscles were never selected by optimization methods that either minimized muscle 

stress, or that scaled the pattern required for maximum force generation. Therefore, 
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biomechanical constraints were generally insufficient to restrict or specify muscle 

activation levels for producing a force in a given direction, and many muscle patterns 

exist that could deviate substantially from one another but still achieve the task. Our 

approach could be extended to identify the feasible limits of variability in muscle 

activation patterns in dynamic tasks such as walking.  

 

2.1 Introduction 

 Musculoskeletal redundancy (Bernstein 1967) in biomechanical models is often 

addressed through optimizations that identify a unique muscle activation pattern among 

many possible. One popular criterion is minimizing muscle stress (Crowninshield and 

Brand 1981) which has been widely applied to predict muscle coordination in simulations 

(Anderson and Pandy 2001b; Erdemir et al. 2007; Thelen et al. 2003). However, 

measured muscle activity often varies significantly from these predictions (Buchanan and 

Shreeve 1996; Herzog and Leonard 1991; Thelen and Anderson 2006; van der Krogt et al. 

2012). We currently lack methods for analyzing high-dimensional musculoskeletal 

models that would allow us to quantify the degree to which muscle activity may feasibly 

vary for a given motor task. 

 A first step to understanding the variability in muscle activity with respect to 

musculoskeletal redundancy is to identify absolute biomechanical constraints on muscle 

activity for a given task. In contrast to optimization, this approach seeks to find the full 

range of possible solution sets available to the nervous system (Kutch and Valero-Cuevas 

2011). In particular, identifying the explicit bounds on muscle activation can reveal 

whether predicted or measured muscle activity is due to biomechanical requirements 

necessary to perform the task, or because of allowable variability in how the task can be 

achieved. Identifying feasible bounds of muscle activity can also describe the degree to 

which muscle activity may deviate from optimal solutions. 
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 This study was motivated by experimentally-observed inter- and intra-subject 

variability during reactive balance control (Horak and Nashner 1986; Torres-Oviedo et al. 

2006; Torres-Oviedo and Ting 2007). For example in cats, when producing an extensor 

force vector (Fig. 2.1A, FEXT), knee extensor vastus medialis (VM) was recruited 

consistently across animals, but hip and knee flexor medial sartorius (SARTm) was 

recruited at different levels across animals (Fig. 2.1B, FEXT). Conversely, when 

producing a flexor force vector (Fig. 2.1A, FFLEX), VM recruitment varied across animals 

but SARTm was recruited consistently in all animals (Fig. 2.1B, FFLEX). 

 

 

Figure 2.1: Experimental data and model. (A) Experimentally-measured hindlimb endpoint 

force vectors in cat Bi from Torres-Oviedo et al. (2006). Extensor force vector (FEXT, red) and 

flexor force vector (FFLEX, yellow) vectors were essentially identical across cats. (B) Range of 

experimental muscle activity across producing FEXT and FFLEX across three cats. When producing 

FEXT, VM was consistently activated in all animals, whereas the activation level of SARTm 

varied across animals. For FFLEX, SARTm was activated consistently in all animals and VM was 

activated at varying levels across animals. (C) Musculoskeletal model of the cat hindlimb 

(Burkholder and Nichols, 2004) with seven rotational degrees of freedom (3 at the hip, 2 each at 

the knee and ankle) and 31 muscles. In this static model, the pelvis was fixed to the ground and 

the endpoint, defined at the MTP joint, was connected to the ground via gimbal joint where 

moments were constrained to be zero. 

 

 Here, we identified feasible ranges of muscle activation during static force 

production in a detailed model of the cat hindlimb (Fig. 2.1C; (Burkholder and Nichols 

2004; McKay and Ting 2008). We identified the upper and lower bounds on muscle 

activity in each of 31 muscles during endpoint force production in different directions 
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and magnitudes. Muscles with non-zero lower bounds were classified as “necessary”, 

whereas muscles with zero lower bounds were classified as “optional”. Muscles were 

further classified to have “sub-maximal upper bound” or “maximal upper bound”. To 

examine the degree to which feasible muscle activation patterns could deviate from an 

optimal solution, we compared these bounds to muscle activation patterns predicted by 

minimizing muscle stress (Crowninshield and Brand 1981), or scaling the pattern 

required for maximum force generation (Valero-Cuevas 2000). 

 

2.2 Methods 

2.2.1 Musculoskeletal model 

 The static three-dimensional musculoskeletal model of the cat hindlimb 

(Burkholder and Nichols 2004) included seven rotational degrees of freedom (Fig. 2.1C). 

31 muscles (Table 2.1) produced net joint torque   (7×1), and a resulting endpoint 

wrench (force and moment vector) EndF  (6×1) at the metatarsophalangeal (MTP) joint. 

The MTP was connected to the ground via a gimbal joint (Fig. 2.1C), representing the 

experimental condition of a freely standing cat where the foot never lost contact or 

slipped with respect to the ground (Jacobs and Macpherson 1996). Endpoint moments 

were constrained to be zero, a conservative approximation of the small moments that can 

be supported by the contact area of cat’s foot (McKay et al. 2007). The model defined the 

mapping from muscle activation vector e  (31×1) to endpoint wrench EndF : 

EndAFL e F  T
RF J ,  (2.1) 

where J is a geometric Jacobian (6×7), R is a moment arm matrix (7×31) that maps 

muscle forces to joint torques, and FAFL is a diagonal matrix (31×31) of scaling factors 

based on the active force-length property of muscle (Zajac 1989). To approximate the 

operating region on the force-length relationship curve commonly observed in habitual 
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postures, all muscles were set to 95% optimal fiber length (Burkholder and Lieber 2001; 

Roy et al. 1997; Sacks and Roy 1982). We found matrices J and R for each of 3 cats Bi, 

Ni, and Ru based on their average kinematic configuration measured during quiet 

standing (McKay et al. 2007) using Neuromechanic software (Bunderson et al. 2012). 

 

Table 2.1. Muscles included in the hindlimb model and abbreviations 

Name Abbreviation Name Abbreviation 

Adductor femoris ADF Plantaris PLAN 

Adductor longus ADL Iliopsoas PSOAS 

Biceps femoris anterior BFA Peroneus tertius PT 

Biceps femoris posterior BFP Pyriformis PYR 

Extensor digitorum longus EDL Quadratus femoris QF 

Flexor digitorum longus FDL Rectus femoris RF 

Flexor hallicus longus FHL Sartorius SART 

Gluteus maximus GMAX Semimembranossus SM 

Gluteus medius GMED Soleus SOL 

Gluteus minimus GMIN Semitendinosus ST 

Gracilis GRAC Tibialis anterior TA 

Lateral gastrocnemius LG Tibialis posterior TP 

Medial gastrocnemius MG Vastus intermedius VI 

Peroneus brevis PB Vastus lateralis VL 

Pectineus PEC Vastus medialis VM 

Peroneus longus PL   

 

 

2.2.2 Target endpoint forces 

 Five experimentally-derived force vectors in each cat measured during postural 

responses to translational support perturbation (Torres-Oviedo et al. 2006) were used as 

target endpoint force vector directions (Fig. 2.1A). These force vectors represented the 

active response of the cats following perturbation, measured as the change in the ground 

reaction force from the background level, averaged over the postural response period 

150-200 ms following the perturbation (Jacobs and Macpherson 1996), where only small 

angular deviations in joint angles (≤2°) are observed (Ting and Macpherson 2004). To 



 19 

examine biomechanical constraints across force magnitudes, we scaled each force vector 

from 0 to the maximum feasible level that could be produced by the model, identified 

using linear programming. We found the muscle activation pattern 
MAX

e  that maximized 

force magnitude: 

MAX

e : Find e  s.t. ( ) ( )ExpAFL e FT
RF J  is maximized, while ( ) ( ) 0ExpAFL e F T

RF J ,

 (2.2) 

where the cross product constraint in Eq. (2.2) ensured the preservation of force direction. 

Activation of each muscle was constrained between 0 and 1, and endpoint moments were 

constrained to be zero. The maximum feasible force in direction of the experimental force 

vector is given by: 

MAX

MAX AFL
Exp Exp

Exp

e
F F

F


T

RF

J
.    (2.3) 

 

2.2.3 Lower and upper bounds on muscle activation 

 We used linear programming to identify the lower bound (em
LB

)  and the upper 

bound (em
UB

) on the feasible activation level of each muscle as the magnitude (α) of each 

of the target endpoint force vectors was scaled from 0 to 1 (Eq. (2.4) and (2.5)). Grid 

spacing Δα=0.1 was used from α=0.0 to 0.9, and grid spacing Δα=0.02 from α=0.9 to 1.0 

because initial tests revealed rapid changes for higher values of α. For each muscle and 

each value of α, the lower and upper bound was identified as follows: 

meLB : Find e  s.t. me is minimized, while ExpAFL e F 
MAXT

RF J ,  (2.4) 

meUB : Find e  s.t. me is maximized, while ExpAFL e F 
MAXT

RF J .  (2.5) 

 Each muscle was classified as necessary or optional based on whether, and at 

what force magnitude the muscle became biomechanically required to generate endpoint 

force, corresponding to a nonzero lower bound. Similarly, we classified muscles as 
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having sub-maximal upper bound or maximal upper bound based on whether the upper 

bound was less than or equal to full activation. Considering all combinations of animals, 

muscles, bounds, endpoint force vectors, and levels of α resulted in 13,206 separate linear 

programming calls. 

 Lower and upper bounds identified at α=0 were considered a special case because 

they do not depend on direction of the endpoint force vector and reveal the feasible 

muscle activation patterns associated with zero net torque production, which we call the 

physiological null space. 

 

2.2.4 Comparison to predicted solutions from suggested neural strategies 

 We compared the feasible range of individual muscle activity to solutions for 

muscle activation patterns identified by 1) minimizing muscular stress (Crowninshield 

and Brand 1981) in the form of sum-squared muscle activation (Thelen et al. 2003) and 

2) scaling the muscle activation pattern for the maximal task (Valero-Cuevas 2000). For 

the minimum stress strategy, muscle patterns 
min

e  were identified for each level of α via 

quadratic programming as follows: 

min

e : Find e  s.t. 
31

2

1

m

m

e


  is minimized, while ExpAFL e F 
MAXT

RF J . (2.6) 

For the scaling strategy, 
MAX

e  identified in Eq. (2.2) was scaled proportional to α. 

 

2.3 Results 

2.3.1 Bounds on muscle activation during endpoint force production 

 The feasible range of muscle activity for each muscle changed non-uniformly as 

force magnitude α increased from zero to maximal in a given target endpoint force 

direction (e.g. Fig. 2.2B, shaded region). This range was defined by the difference 
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between the lower bound (Fig. 2.2B, bottom trace) and upper bound (Fig. 2.2B, top trace) 

at a given α. In each animal, similar patterns of the feasible range of muscle activity was 

identified across muscles and force directions. Therefore, two force directions are used 

for detailed illustration of the results: an extensor force FEXT (Fig. 2.2A, red) and a flexor 

force FFLEX (Fig. 2.2A, yellow). 

  

 

Figure 2.2: Target force directions and muscle feasible ranges. (A) Two representative target 

endpoint force directions for cat Bi: FEXT (red, top row) and FFLEX (yellow, bottom row). (B) 

Identified feasible range of activation as a function of normalized force magnitude (α) for five 

muscles in cat Bi: GRA, PT, SART, SOL and VL. Feasible range (shaded) is defined by the 

difference between the lower bound (em
LB

, bottom trace) and the upper bound (em
UB

, top trace). 

Muscles with zero lower bounds were categorized as  optional (OPT), e.g. GRAC, PT, SOL for 

FEXT, and GRAC Sol and VL for FFLEX. Muscle were  categorized as necessary if they were 

nonzero at any force level, and further subdivided into categories of becoming necessary 

gradually (grad), e.g. SART for FEXT and FFLEX; only near maximal force, e.g. PT for FFLEX; or 

always, e.g. VL for FEXT.  Muscles were also classified as  having maximal (MUB) upper bounds 

e.g. PT, SART, SOL for FEXT and PT, SART, for FFLEX; or having sub-maximal (SUB) upper 

bounds, either monotonically, e.g. GRAC in FEXT and VL in FFLEX; nonmonotonically, e.g. 

GRAC in FFLEX; or conditionally, e.g. VL in FEXT and SART in FFLEX. The vertical line indicates 

the experimental force levels at which most muscles had zero lower bound and were practically 

“optional”; of the muscles shown, only VL for FEXT was truly “necessary”. Feasible ranges were 

wide in general, where activity of a muscle could deviate substantially from the solutions 

predicted by either minimizing muscle stress (dots), or scaling the pattern required for maximal 

force (dashed lines). Note that neither strategy predicted the recruitment of optional muscles.  
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 Most muscles had zero lower bound for all force magnitudes (em
LB

=0 for all α) and 

were classified as optional (OPT). Muscles for which lower bound became nonzero for 

some α were classified as necessary; they were either always necessary (NECalways: em
LB

>0 

for all α), or became gradually necessary as α increased (NECgrad: em
LB

>0 at 0<c<α<1), or 

became necessary only at the maximum force level (NECabrupt: em
LB

 >0 only at α≈1). 

Across cats, 71±7% of muscles were optional for the generation of FEXT, and 58%–but 

not the same muscles–were optional for generation of FFLEX (Table 2.2). For example, in 

cat Bi (Fig. 2.2B), GRAC, PT, SOL were OPT for FEXT, and GRAC, SOL, VL were OPT 

for FFLEX. VL was NECalways for FEXT, SART was NECgrad in both FEXT and FFLEX, and 

PT was NECabrupt for FFLEX. 

 Less than 1/3 of muscles had an upper bound of one for all force magnitudes and 

were classified as having maximal upper bound (MUB: em
UB

=1 for all α). Muscles with 

upper bound less than one for some range of α were classified as having sub-maximal 

upper bound conditionally (SUBcond: em
UB

<1 for 0<α<c or c<α<1). Muscles for which the 

upper bound was always less than one were classified as having sub-maximal upper 

bound (em
UB

<1 for all α), but were further categorized based on whether the upper bound 

changed monotonically (SUBmono) or non-monotonically (SUBnon). Across cats, 32±3% of 

the muscles had maximal upper bound for generating FEXT, 22±2% had sub-maximal 

upper bound for generating FFLEX (Table 2.3). For example, PT, SART, SOL were MUB 

for FEXT, and PT and SART were MUB for FFLEX in cat Bi (Fig. 2.2B). VL was SUBcond 

and GRAC was SUBmono for FEXT, whereas SOL was SUBcond, VL was SUBmono, and 

GRAC was SUBnon for FFLEX . 

 Muscle classification in terms of the lower and upper bounds depended on the 

target endpoint force direction (Tables 2.2 and 2.3). In total, 20 muscles in Bi, 20 in Ni, 

19 in Ru, showed different behavior for FFLEX as compared to FEXT. The classification of 

muscles was relatively consistent across cats for a given force direction: for the upper 

bound, only 4 muscles were categorized differently across 3 cats for both FEXT and FFLEX, 
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and for the lower bound, only 3 muscles were categorized differently across all cats for 

both FEXT and FFLEX. Because the direction of endpoint force vectors was very consistent 

(cos>0.998) across cats for both FEXT and FFLEX , these  differences in the categorization 

were due to differences in posture. 

 Regardless of classifications, the feasible range of muscle activity at physiological 

levels of force did not identify a clear pattern of muscle activity necessary to achieve the 

task. At experimentally-observed force magnitudes (Fig. 2B, vertical lines), lower bounds 

were often zero, suggesting that most muscles were optional at those force levels. Across 

animals, αexp was 0.32, 0.77, 0.19 in Bi, Ni and Ru for FEXT and 0.12, 0.11, 0.11 for FFLEX. 

 

2.3.2 Comparison of identified bounds and predictions of neural strategies 

 Because of the large feasible range, muscle activity could deviate substantially 

from two commonly suggested muscle coordination strategies. Both solutions fell within 

the feasible ranges of muscle activity, and typically near–but not necessarily at–the lower 

bound. Both the scaling strategy (Fig. 2.2B, dashed line) and the minimum stress strategy 

(Fig. 2.2B, dotted line) recruited necessary muscles at the earliest nonzero α even though 

the lower bounds on feasible muscle activity were typically zero at low force magnitudes 

(e.g. Figure 2.2B, VL for FEXT and SART for FFLEX). Optional muscles were never 

selected in either strategy (e.g. Figure 2.2B, GRAC for FEXT and VL for FFLEX). Although 

the upper and lower bounds typically converged on a unique solution for maximum force 

production (Fig. 2.2B, bottom row), this was not always the case in ankle muscles for 

FEXT (Fig. 2.2B, top row, PT and SOL), indicating that redundancy remained even at 

maximum force magnitudes. This resulted from low ankle torque (~0.004N-m) compared 

to knee torque (~0.5N-m) required to produce FEXT. 
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Table 2.2. Muscle classification in terms of lower bound (em
LB

) behavior 

   Bi   Ni   Ru 

   FEXT FFLEX   FEXT FFLEX   FEXT FFLEX 

ADF  OPT OPT   OPT OPT   OPT OPT 

ADL  OPT OPT   OPT OPT   OPT OPT 

BFA  OPT OPT   OPT OPT   OPT OPT 

BFP  NECalways NECgrad   NECalways NECgrad   NECgrad NECgrad 

EDL  OPT NECgrad   OPT NECgrad   OPT NECgrad 

FDL  OPT OPT   OPT OPT   OPT OPT 

FHL  OPT OPT   OPT OPT   OPT OPT 

GMAX  OPT OPT   OPT OPT   OPT OPT 

GMED  NECabrupt NECgrad   NECgrad NECgrad   NECgrad NECgrad 

GMIN  OPT OPT   OPT OPT   NECabrupt NECabrupt 

GRAC  OPT OPT   OPT OPT   OPT OPT 

LG  OPT NECgrad   OPT NECgrad   OPT NECgrad 

MG  OPT NECabrupt   OPT NECabrupt   OPT OPT 

PB  OPT NECabrupt   OPT NECgrad   OPT OPT 

PEC  OPT OPT   OPT OPT   OPT OPT 

PL  OPT NECabrupt   OPT NECgrad   OPT NECabrupt 

PLAN  OPT OPT   OPT OPT   OPT OPT 

PSOAS  NECgrad NECgrad   NECgrad NECgrad   NECgrad NECgrad 

PT  OPT NECabrupt   OPT NECabrupt   OPT NECabrupt 

PYR  NECgrad NECgrad   NECgrad NECgrad   NECgrad NECgrad 

QF  NECgrad NECgrad   NECgrad NECgrad   NECgrad NECgrad 

RF  OPT OPT   OPT OPT   NECgrad OPT 

SART  NECgrad NECgrad   NECgrad NECgrad   NECgrad NECgrad 

SM  OPT OPT   OPT OPT   OPT OPT 

SOL  OPT OPT   OPT OPT   OPT OPT 

ST  OPT OPT   OPT OPT   OPT NECabrupt 

TA  NECabrupt NECgrad   OPT NECgrad   NECabrupt NECgrad 

TP  OPT OPT   OPT OPT   OPT OPT 

VI  NECabrupt OPT   OPT OPT   NECgrad OPT 

VL  NECalways OPT   NECalways OPT   NECgrad OPT 

VM  OPT OPT   OPT OPT   OPT OPT 

 

OPT: em
LB

 is always zero; NECalways: em
LB

 is always non-zero; NECgrad: em
LB

 becomes non-zero 

gradually; NECabrupt: em
LB

 becomes non-zero abruptly at maximal force magnitude. Muscle that 

changed classifications of necessary versus optional across the two force directions are shown in 

bold black. Muscles that differ in sub-classifications across force directions are shown in bold 

gray. 
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Table 2.3. Muscle classification in terms of upper bound (em
UB

) behavior 

   Bi   Ni   Ru 

   FEXT FFLEX   FEXT FFLEX   FEXT FFLEX 

ADF  SUBmono SUBmono   SUBmono SUBmono   SUBmono SUBnon 

ADL  SUBcond SUBcond   SUBcond SUBcond   SUBcond SUBcond 

BFA  SUBmono SUBmono   SUBmono SUBnon   SUBmono SUBnon 

BFP  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBnon 

EDL  SUBcond MUB   SUBCond SUBnon   SUBCond MUB 

FDL  MUB SUBcond   MUB SUBcond   MUB SUBcond 

FHL  SUBcond SUBcond   SUBcond SUBcond   SUBcond SUBcond 

GMAX  SUBcond SUBcond   SUBcond SUBcond   SUBcond SUBcond 

GMED  SUBmono SUBmono   SUBmono SUBnon   SUBnon SUBmono 

GMIN  SUBcond SUBcond   SUBcond SUBcond   MUB MUB 

GRAC  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBnon 

LG  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBmono 

MG  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBmono 

PB  MUB SUBcond   MUB SUBcond   MUB SUBcond 

PEC  SUBcond SUBcond   SUBcond SUBcond   SUBcond SUBcond 

PL  MUB MUB   MUB MUB   MUB SUBcond 

PLAN  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBmono 

PSOAS  MUB MUB   MUB MUB   MUB MUB 

PT  MUB MUB   MUB MUB   MUB MUB 

PYR  MUB MUB   MUB MUB   MUB MUB 

QF  SUBcond SUBcond   MUB SUBcond   SUBcond SUBcond 

RF  SUBmono SUBnon   SUBmono SUBnon   SUBcond SUBcond 

SART  MUB MUB   MUB MUB   MUB MUB 

SM  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBnon 

SOL  MUB SUBcond   MUB SUBcond   MUB SUBcond 

ST  SUBmono SUBnon   SUBmono SUBnon   SUBmono SUBnon 

TA  MUB MUB   MUB MUB   MUB MUB 

TP  SUBmono SUBmono   SUBmono SUBmono   SUBmono SUBmono 

VI  SUBcond SUBcond   SUBcond SUBcond   MUB SUBcond 

VL  SUBcond SUBmono   SUBcond SUBmono   SUBcond SUBmono 

VM  SUBmono SUBnon   SUBmono SUBnon   SUBcond SUBcond 

 

MUB: em
UB

 is always one (maximal); SUBcond: em
UB

 is sub-maximal only at certain range of α; 

SUBmono: em
UB

 is always sub-maximal and changes monotonnically; SUBnon: em
UB

 is always sub-

maximal and changes non-monotonically. Muscle that changed classification of sub-maximal 

upper bound versus maximal upper bound across the two force directions are shown in bold black. 

Muscles that differ in sub-classifications across force directions are shown in bold gray. 
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2.3.3 Physiological null space at α=0 

 Approximately 1/3 of muscles had upper bounds of less than one for zero net 

torque production, defining the physiological null space (Fig. 2.3). Because the torque 

generated by each muscle must be counterbalanced by activation of other muscles, those 

producing large torques (e.g. large moment arms and maximum isometric force) typically 

had low upper bounds (≤0.53) because of the lower torque-generating capabilities of their 

antagonists (Ait-Haddou et al. 2004; Jinha et al. 2006). 

 

 

Figure 2.3: Physiological null space. Physiological null space, defined as the feasible range at 

α=0 in cat Ru. While many muscles could be maximally activated, several muscles were limited 

in the maximum activation that would allow zero net torque production. Upper bounds of muscles 

that produce large torques (e.g. BFP) were typically limited, because of the lower torque-

generating capabilities of their antagonists. 

 

2.4 Discussion 

 Here, we identified the feasible ranges of individual muscle activation during 

endpoint force generation as a way of understanding the degree to which biomechanical 

redundancy allows for variability in muscle activation patterns. Feasible ranges of muscle 

activation were relatively unconstrained across force magnitudes in a cat hindlimb model 

(7 non-orthogonal DoF’s, 31 muscles). Although we identified muscles that became 

biomechanically “necessary” at higher levels of force (e.g. nonzero lower bound), few 

muscles were found to be truly “necessary” at physiological force ranges. Thus, 



 27 

biomechanical constraints were generally insufficient to specify muscle activation levels, 

demonstrating that many possible muscle patterns exist that could deviate substantially 

from one another. In contrast, the biomechanical bounds on muscle activity in finger 

force generation (4 orthogonal DoF’s, 7 muscles) was shown to be highly constrained, 

even at sub-maximal force magnitudes (Kutch and Valero-Cuevas 2011), demonstrating 

differences in the biomechanical redundancy of the cat hindlimb limb versus the index 

finger. 

 The ubiquity of “optional” muscles in both agonist and antagonists across most 

force levels highlights the necessity to understand neural strategies governing selection of 

muscle activation patterns. The large space of functionally equivalent solutions is 

consistent with variations in neural and muscular activity observed across individuals in a 

variety of neuromotor behaviors (Klein et al. 2010; Prinz et al. 2004; Raphael et al. 

2010).  Moreover, “optional” muscle were never selected by typical methods that resolve 

biomechanical redundancy, e.g. minimizing stress (Thelen et al. 2003), or scaling patterns 

that produce maximal force (Valero-Cuevas 2000), suggesting that other optimization 

criteria may need to be considered, such as impedance (Burdet et al. 2001), stability 

(Bunderson et al. 2008), fiber velocity (Prilutsky et al. 1997; Walmsley et al. 1978), 

metabolic energy (Alexander 2005; 1989; Hoyt and Taylor 1981), or more likely a 

combination of multiple goals in interplay (Franklin et al. 2008; Ganesh et al. 2010; 

Todorov 2004). Alternatively, variations in muscle activation patterns may be due to 

neural constraints of activating muscles in groups (d'Avella et al. 2006; Hart  and Giszter 

2004; Ting and Macpherson 2005), or habitual movement patterns (de Rugy et al. 2012). 

One implication is that altering the biomechanical properties of a muscle, e.g. via 

weakening or surgery (Arnold et al. 2005; Correa et al. 2012; Hicks et al. 2008; Valero-

Cuevas and Hentz 2002), in a highly redundant system may not affect muscle activation 

patterns even if the limb’s force generating capabilities are altered (Damiano et al. 2010 ; 

Scianni et al. 2009). 
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 Despite some limitations in our modeling assumptions, our estimates of feasible 

muscle range are likely robust and somewhat conservative.  Although we specified zero 

endpoint moment, specifying a different moment values is not likely to alter our results. 

However, allowing a range of small endpoint moments would increase the set of 

redundant solutions (McKay et al. 2007), increasing the feasible range of muscle activity. 

Further, individual variations in morphology of each animal compared to our generic 

musculoskeletal model (Burkholder and Nichols 2004) are not expected to change the 

basic categorizations found. Torque-generating capabilities of muscles based on 95% 

optimal fiber length were only altered by -9 to +3% when physiological ranges of 80-

110% optimal fiber length (Burkholder and Lieber 2001) were used, and would not 

change significantly if tendon elasticity were included (Biewener et al. 1998). Finally, the 

activation-dependent changes in the force-length relationship (Rack and Westbury 1969), 

would alter the mapping from muscle force to activation, but would only minimally affect 

the bounds on feasible muscle activation. 

 Comparing the predicted feasible muscle activation ranges to experimental data is 

still difficult due to differences between the model and experimental conditions. Direct 

comparisons of EMG to feasible limits were not possible because a reference level of 

muscle force was unknown (and could be estimated by maximum voluntary contraction). 

Further, because our technique only examines the feasible limits of a single muscle, we 

cannot use the predictions to identify specific multi-muscle patterns to perform a given 

task. The measured EMGs may not correspond exactly to the muscles or muscle 

groupings represented in the model. Finally, for direct comparison to our specific 

experimental data, we need to take into account background force for standing, which 

required that the pre-existing force level be considered. For standing, this would decrease 

extensor force redundancy, increase flexor force redundancy, and likely have a small 

effect in other directions. 
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 Nonetheless, our approach provides important insight as to the relative variability 

allowed for a muscle activity that is applicable to both static and dynamic tasks. In 

contrast to the dimension of the solution space (Bunderson et al. 2008), our approach 

identifies explicit constraints on muscle activation patterns. The identified bounds could 

be used to assess confidence of predicted muscle activity as well as possible variations 

when alternate cost functions or strategies are considered. The feasible muscle range also 

quantifies the degree to which measured muscle activity is expected to be variable or 

deviate from predictions. An advantage of our method is that the number of muscles that 

can be solved is not limited and can be applied to any high-dimensional musculoskeletal 

models. Our method could also be extended to analysis of dynamic tasks (Ackland et al. 

2012; Thelen and Anderson 2006; van der Krogt et al. 2012) that use methods where each 

time step of a movement is solved independently, e.g. inverse dynamics or static 

optimization (Anderson and Pandy 2001b). 
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CHAPTER 3 

FUNCTIONAL REQUIREMENT FOR GENERALIZABILITY 

ACROSS BIOMECHANICAL CONDITIONS 

 

3.1 Introduction 

 It has been suggested that the nervous system may use a repertoire of fixed 

muscle patterns called muscle synergies that can be flexibly combined to achieve 

functional motor goals. Muscle synergies have been shown to account for experimentally 

observed variability in muscle activity across different motor behaviors in various species 

(Chvatal et al. 2011; d'Avella et al. 2006; Hart  and Giszter 2004; Raasch and Zajac 1999; 

Roh et al. 2012; Ting and Macpherson 2005). Each muscle synergy is hypothesized to 

produce a consistent biomechanical sub-task (Giszter and Kargo 2000; McKay and Ting 

2008). The level of recruitment during any given task is dependent on the spatiotemporal 

requirements of the task-level goal (Safavynia and Ting 2013). For example, muscle 

synergies used for standing balance in cats and humans produced ground reaction force 

vectors that have distinct functions for controlling the center-of-mass (Chvatal et al. 

2011; Ting and Macpherson 2005). Muscle synergies used in human walking are 

associated with biomechanical sub-tasks such as body support, forward propulsion, or 

leg-swing (Allen and Neptune 2012; Lacquaniti et al. 2012; Neptune et al. 2009). 

 The degree to which biomechanical versus neural constraints organize the spatial 

structures of muscle synergies is widely debated. Experimental evidence suggests 

substantial inter-subject variability in muscle synergy structure despite similar motor 

outputs (Chvatal et al. 2011; Clark et al. 2010; Frere and Hug 2012; Torres-Oviedo et al. 

2006; Torres-Oviedo and Ting 2007). While some studies suggest that biomechanical 

constraints may largely define the structure of muscle synergies (Kutch and Valero-
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Cuevas 2012), our recent work suggests that muscle activity for performing a motor task 

in a single condition is largely unconstrained (Sohn et al. 2013). A wide range of 

activations for individual muscles was found to be feasible for generating experimentally-

observed endpoint forces in a static cat hindlimb model. Similarly, a large number of 

“good-enough” solutions can be identified to perform any motor task (Loeb 2012; 

Raphael et al. 2010), demonstrating our ability to take advantage of the highly redundant 

motor solution space. Thus, it should be no surprise that computational approaches that 

rely on a single optimization criteria to mimic neural control mechanisms cannot predict 

experimentally-observed variability across subjects (Buchanan and Shreeve 1996; Herzog 

and Leonard 1991; Sohn et al. 2013; van der Krogt et al. 2012). It is likely that multiple 

criteria are required to explain neural principles for determining muscle synergy patterns 

(Ganesh et al. 2010). 

 Muscle synergies may represent a set of motor solutions that are selected based on 

their ability to be generalized across different contexts. The structure, or pattern, of 

muscle synergies has been shown to be robust across a variety of motor behaviors and 

biomechanical conditions. In cats, consistent muscle synergies and the ground reaction 

forces they produce (Ting and Macpherson 2005) robustly explained the reactive balance 

responses across a variety of postures (Torres-Oviedo et al. 2006). In humans, common 

muscle synergies are observed across variations in standing postures, reactive balance 

strategies (Chvatal et al. 2011; Torres-Oviedo and Ting 2010), walking with altered loads 

(McGowan et al. 2010), reaching in various dynamic and postural conditions (d'Avella et 

al. 2006), as well as during isometric force generation in multiple directions at different 

postures in human arm (Roh et al. 2012). Further evidence suggests that muscle synergies 

may even be shared across different motor tasks, such as reactive balance and walking 

(Chvatal and Ting 2013), forward and backward locomotion (Raasch and Zajac 1999; 

Ting et al. 1999), and a range of different lower limb motor tasks in frogs, such as 
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jumping, swimming, kicking, and reflexive wiping in the frog (Cheung et al. 2005; 

Cheung et al. 2009; d'Avella and Bizzi 2005; Hart  and Giszter 2004; Roh et al. 2011). 

 In particular, we were interested in functional muscle synergies associated with 

force production during balance control across several different postural configurations in 

cats (Ting and Macpherson 2005; Torres-Oviedo et al. 2006). Based on prior 

experimental findings, we previously demonstrated the rotation of the muscle synergy 

force vectors could be predicted by applying a common simulated muscle synergy pattern 

across different postures (McKay and Ting 2008). While the results were largely similar 

across widely varying muscle synergy patterns that produced the same force, the 

differences in the generalizability of different muscle synergy patterns was not explicitly 

tested. Further, we predicted that functional requirements for generalizability would 

narrow the range of possible muscle activation patterns for muscle synergies. Our prior 

method for identifying feasible ranges in muscle activation (Sohn et al. 2013) considered 

only biomechanical constraints for a single task, but the range of feasible solutions may 

become significantly restricted when multiple task constraints are superimposed (Keenan 

et al. 2009; Loeb 2000; Racz et al. 2012). That is, the selection of a particular muscle 

synergy could be influenced by its ability to satisfy biomechanical task constraints across 

a range of limb postures. 

 Here we used a musculoskeletal model of the cat hindlimb to investigate possible 

biomechanical and neural bases of using a consistent muscle synergy to produce a force 

across different limb postures. In particular, we explicitly tested a hypothesis, along with 

two alternate hypotheses, by which generalizability of muscle activation pattern across 

biomechanical conditions may arise from. First, we hypothesized that generalizability 

reflects the selection of specific muscle activation pattern that provide similar functions 

across postures. This hypothesis predicts that muscle activation patterns that can be used 

across different biomechanical configurations are sub-optimal at any single configuration, 

and further that the generalizability constraint will reduce the range of possible solutions. 
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Second, we hypothesized that generalizability is a property of an optimal (e.g. minimum-

effort) solution for a single posture. Finally, we hypothesized that generalizability is a 

property of limb biomechanics such that all muscle activation patterns are predicted to 

generalize their function across postures. To test these hypotheses, we examined muscle 

activation patterns that produced the experimentally-observed ground reaction force 

vector at a preferred stance posture according to three different selection criteria: a best-

generalizable solution that minimizes deviations from the experimentally-observed force 

vectors across all postures, a minimum-effort solution, and random solutions. We found 

that only a few selected muscle activation patterns could be generalized across postures. 

Our results demonstrate that functional demand for generalization across postures can 

affect the selection of muscle activation patterns, and does not arise from limb 

biomechanics or a single optimality criterion alone.  

 

3.2 Methods 

 In summary, we used a detailed musculoskeletal model of the cat hindlimb to test 

the generalizability of muscle activation patterns across stance postures based on three 

different selection criteria: (1) a solution that explicitly minimized deviation from the 

experimentally-observed forces across all postures, (2) an optimal solution minimizing 

muscle effort at preferred posture, and (3) a set of random solutions. For each selection 

criteria, we generated muscle activation patterns that produced the experimentally-

observed force vectors at preferred stance posture. We then applied these muscle 

activation patterns to three other stance postures and simulated the resulting endpoint 

force vectors. We assessed generalizability of each muscle activation pattern by 

measuring the angular deviations in the simulated force vectors from the experimentally-

observed force vectors. We further tested whether feasible range of activation in 

individual muscles for producing the experimentally-observed force vector at preferred 

posture is reduced with a generalizability constraint. 
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3.2.1 Experimental synergy force vector data 

 Experimentally-observed force vectors were taken from a previous study 

investigating reactive balance behavior in cats (Torres-Oviedo et al. 2006). Cats stood 

quietly at four different postures with varying fore-hindlimb stance distances: shortest, 

short, preferred and long (Macpherson 1994). Across all stance distances, five muscle 

synergies (W1~W5) in each cat robustly explained active changes in muscle activity and 

hindlimb forces in response to multi-directional horizontal support-surface perturbations. 

Experimental synergy force vectors (
iWF ) were found by extracting three-dimensional 

endpoint force vector components that were co-modulated with recruitment level of each 

muscle synergy. These synergy force vectors rotated with the limb axis across postures 

(Fig. 3.1A).  

 
Figure 3.1: Experimental data and model. (A) Experimental synergy force vector (FW1~5) data 

in two cats Bi and Ru from Torres-Oviedo et al., (2006). A common set of muscle synergies 

(W1~W5) that explained reactive balance behavior in cats across different postural configuration 

(Shortest, Short, Preferred, and Long stance) produced consistent endpoint force vectors with 

respect to limb orientation, i.e., synergy force vectors that rotated with the limb axis across 

postures. Two force vectors, the extensor synergy force vector (red) and the flexor synergy force 

vector (yellow), were selected as representative conditions for detailed results. Note that for cat 

Ru only selected data at Preferred stance is shown here. (B) Musculoskeletal model of the cat 

hindlimb (Burkholder and Nichols, 2004) with seven rotational degrees of freedom (3 at the hip, 

2 each at the knee and ankle) and 31 muscles. In this static model, the pelvis was fixed to the 

ground and the endpoint (MTP joint) was connected to the ground via gimbal joint.  
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3.2.2 Musculoskeletal model 

 We used a previously developed three-dimensional musculoskeletal model of the 

cat hindlimb (Fig. 3.1B; (Burkholder and Nichols 2004). Details of this model are 

described elsewhere in both static (McKay et al. 2007; Sohn et al. 2013) and dynamic 

conditions (Bunderson et al. 2008; Bunderson et al. 2010). Briefly, the model included 7 

degrees-of-freedom at anatomical joints (3 at the hip, 2 at the knee, 2 at the ankle) and 31 

hindlimb muscles (list and abbreviations in Table 3.1). The posture of the model was 

matched to kinematics of each cat at each of the stance configurations (McKay and Ting 

2008). The pelvis was fixed to ground and the endpoint was defined at the metatarsal-

phalangeal joint (MTP), which was connected to the ground via gimbal joint. At static 

equilibrium, the model defined a linear mapping between muscle activation and endpoint 

force:  

T
EndAFL e FRF J      (3.1), 

where R is the moment arm matrix (7×31), FAFL is the diagonal matrix (31×31) of scaling 

factors for active muscle force generation, e  is the muscle activation vector (31×1),  J is 

the geometric Jacobian (3×7), and FEnd is the endpoint force vector (3×1). Muscle 

moment arm (R), geometric Jacobian (J), and muscle parameters required to characterize 

active muscle force generation (FAFL), i.e, maximum isometric force and force-length 

relationship (Zajac 1989), were acquired using Neuromechanic, a previously developed 

and freely-available software (Bunderson et al. 2012). Muscle fiber lengths were set at 

65% of optimal fiber length for all muscles at preferred posture so that muscles operated 

on the ascending slope on force-length relationship curve and were at physiological 

operating ranges across all postures.  

 The experimental synergy force vector at preferred posture in each of two cats (Bi 

and Ru) was used as the target endpoint force vector to simulate in the model. Synergy 

force vectors at the other three postures (shortest, short and long) were used to define the 
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desired directions to which simulated endpoint forces in the model were compared (see 

3.2.2 Musculoskeletal model). Because cats were highly trained in experiments for the 

particular task of postural balance, their behavior was most consistent and robust in a 

normative condition, e.g. preferred postures. Therefore, we tested whether muscle 

activation patterns specifically used for this posture could generalize its function across 

other conditions. 

 Muscle activation patterns that produced a given target force, i.e., synergy force 

vector at preferred posture, were found using the static linear model (Eq. 3.1). Endpoint 

force vectors produced by given muscle activation patterns at other postures were 

simulated using Neuromechanic; the full dynamic model was integrated forward a small 

time step (1ms) such that reaction forces satisfying the kinematic constraints were 

computed but before any acceleration and thus other inertial and velocity-dependent 

forces were developed. 

 

Table 3.1. Muscles included in the hindlimb model and abbreviations 

Name Abbreviation Name Abbreviation 

Adductor femoris ADF Plantaris PLAN 

Adductor longus ADL Iliopsoas PSOAS 

Biceps femoris anterior BFA Peroneus tertius PT 

Biceps femoris posterior BFP Pyriformis PYR 

Extensor digitorum longus EDL Quadratus femoris QF 

Flexor digitorum longus FDL Rectus femoris RF 

Flexor hallicus longus FHL Sartorius SART 

Gluteus maximus GMAX Semimembranossus SM 

Gluteus medius GMED Soleus SOL 

Gluteus minimus GMIN Semitendinosus ST 

Gracilis GRAC Tibialis anterior TA 

Lateral gastrocnemius LG Tibialis posterior TP 

Medial gastrocnemius MG Vastus intermedius VI 

Peroneus brevis PB Vastus lateralis VL 

Pectineus PEC Vastus medialis VM 

Peroneus longus PL   
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3.2.3 Best-generalizable solution 

 In order to determine the degree to which a single solution can be generalized 

across different conditions, we explicitly searched for a single muscle activation pattern 

that best approximated experimental synergy force vectors across postures. We 

formulated a nonlinear optimization problem to identify a unique muscle activation 

pattern (
Best

e ) that produced experimental synergy force vector at preferred posture 

(
i

Preferred

WF ) while minimizing the deviation between simulated and experimentally-

observed synergy force vector at other postures (
i

Shortest

WF ,
i

Short

WF , and 
i

Long

WF ): 

 minimize 
i

2
Posture

W , 

subject to i

Preferred

W
T

AFL e FRF J ,  and lb e ub             (3.2), 

where
i

Posture

W  is a force angle deviation calculated from vector angle difference between 

the experimental synergy force vector (
i

Posture

WF ) and simulated endpoint force in the 

model (
Posture

EndF ) at a given posture. Force angle deviations were computed using the angle 

defined by the inverse cosine of the dot product between the two 3-dimensional force 

vectors: 

i

i

i

Posture Posture

WPosture 1

W Posture Posture

W

cos ( )
End

End

F F

F F
  

 


           (3.3). 

 We also computed muscle feasible ranges (MFR; (Sohn et al. 2013)) for 

producing experimental synergy force vectors at preferred posture to specify the absolute 

lower and upper bounds in individual muscles. This nonlinear optimization problem (Eq. 

3.2) was solved using fmincon in Matlab (Mathworks, Natic, MA). In order to ensure 

convergence to a global minimum solution, we performed the search using 100 random 

initial conditions (
0

e ) in which activation levels of individual muscles were uniformly 

distributed between 0 and 1, which is the physiological range. 
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3.2.4 Minimum-effort solution 

 To test whether a solution that is optimal for a single posture can be generalized 

across postures, we assessed force angle deviations of an optimal solution at preferred 

posture across all stance configurations. The optimal solution was selected based on the 

criteria used most often in musculoskeletal modeling (Erdemir et al. 2007), minimizing 

sum of squared muscle activations (Eq. 3.4) (Anderson and Pandy 2001b; Crowninshield 

and Brand 1981; Thelen et al. 2003). For each synergy, we used quadratic programming 

to identify a unique muscle activation pattern (
minE

e ) that minimized sum of squared 

muscle activations while matching experimental synergy force vector at preferred stance:  

 minimize 
T

e e , 

subject to i

Preferred

W
T

AFL e FRF J ,  and  lb e ub             (3.4). 

Force angle deviations of the minimum effort solutions (
minE

e ) from simulated forces 

across all other postures were computed as in Eq. 3.3, and were compared to that of the 

best-generalizable solution. 

 To determine how much more effort is required for the best-generalizable 

solutions, we evaluated their effort levels and compared to the minimum-effort solutions 

at each posture (Eq. 3.4). To compare across conditions, we normalized the effort levels 

of each muscle activation pattern to that of the maximum-effort solution at each posture 

found using an optimization similar to Eq. 3.4 but subject to maximizing instead of 

minimizing the sum of squared muscle activations. The effort level of the best-

generalizable solution at the preferred stance distance was applied uniformly across 

postures without scaling the activation patterns to match the magnitude of simulated 

forces vectors to the experimental synergy force vectors. We did not control for the 

magnitude of simulated force vector because force vector direction is a more relevant 

performance measure for the given task or reactive balance; nonetheless, simulated force 

magnitudes ranged around 75~155% of the experimental synergy force vectors. 
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3.2.5 Random solutions 

 In order to demonstrate that generalizability may be a functional constraint that 

the nervous system may consider, rather than a pure anatomical constraint of the 

hindlimb, we tested the generalizability of random solutions found at preferred posture to 

other stance conditions. We first generated 100 random muscle activation patterns that 

produced the experimental synergy force vectors at preferred posture. These random 

solutions were generated by finding the nearest solution to each of the 100 random 

patterns that were used as initial conditions (
0

e , see 3.2.2 Best generalizable solutions), 

projecting them to a solution manifold in least-square sense. This optimization problem 

was solved using quadratic programming (quadprog in Matlab): 

 minimize 
0 0T( ) ( )e e e e  , 

 subject to i

0 Preferred 0

W( ) T

AFL AFLe e F e  RF J RF ,  and 

0 0 0

lb e e e ub e            (3.5). 

These random solutions were then applied to the other postures and the resulting force 

angle deviations were computed and compared to that of the best-generalizable solution. 

 

3.2.6 Muscle feasible ranges with generalizability constraint 

 In order to test whether a functional requirement for generalizability across tasks 

restricts the feasible range of activation in individual muscles, we identified sub-range of 

muscle activation patterns that are more generalizable than others. We computed the 

feasible bounds on individual muscles for which a muscle activation pattern satisfied 

production of experimental synergy force vectors at preferred posture while deviations in 

force directions at other postures were kept within a given tolerance (Tol). Based on the 

results from force angle deviations of best-generalizable solutions which was typically 

less than ~10°, the tolerance (Tol) was defined to be 10°. In one case where the maximum 
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force angle deviation of the best-generalizable solution exceeded 10° in certain posture, 

the tolerance was set to 110% of the maximum: 11.6° at shortest stance for the flexor 

synergy force vector in cat Bi. Tolerance of 10° was comparable to expected variability in 

active forces generated across trials during experiment, which should be greater than 

variability observed in the total ground reaction force vector during initial passive period 

of 100 ms of ~5° (Ting and Macpherson 2004). 

 The minimum allowable activation for generalizability in a muscle was found by 

solving a nonlinear optimization: 

 
lb

mGen : Find e  such that me  is minimized, 

 subject to i

Preferred

W
T

AFL e FRF J , lb e ub  , and 

i

Posture

W Tol   for all postures shortest, short, and long  (3.6). 

Similarly, the maximum allowable activation for generalizability in each muscle was 

found by solving a nonlinear optimization: 

 
ub

mGen : Find e  such that me  is maximized, 

 subject to i

Preferred

W
T

AFL e FRF J , lb e ub  , and 

  
i

Posture

W Tol   for all postures shortest, short, and long  (3.7). 

In total, 62 independent optimizations were run (two empirical bounds for each of 31 

muscles), resulting in 62 muscle activation patterns for each synergy.  

 We qualitatively examined at preferred posture whether the muscle feasible 

ranges are reduced in each muscle with the functional requirement for generalizability, 

across postures compared to the absolute muscle feasible ranges for producing the 

experimental synergy force vectors. In particular, we categorized the difference in each 

muscle in terms of an increased lower bound, decreased upper bound, or both. Although 

these bounds represent the limit regarding activation level of individual muscles for 

which a generalizable solution can be found, note that it is only a necessary (not 
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sufficient) condition that a pattern within this range is always generalizable within the 

specified tolerance. 

 To test whether the muscle feasible ranges computed with the generalizability 

constraint could represent a reduced solution space for muscle activation patterns that are 

more generalizable, we compared the dimensionality and generalizability of a set of 

random solutions that were inside these constrained muscle feasible ranges versus a 

control set in which muscle activations were allowed to violate these muscle feasible 

ranges. Specifically, we generated 100 random solutions satisfying the synergy force 

vector at preferred posture as in Eq. 3.5, but using the feasible range with the 

generalizability constraint as the bounds for each muscle. For the control set, we used the 

previously generated random solutions (see 3.2.5 Random solutions), because most of 

these solutions were found to lie outside the feasible range with generalizability 

constraint. Only a few solutions for the extensor synergy force vector in both cats (1 in 

cat Bi, and 3 in cat Ru) were strictly inside the feasible range with generalizability 

constraint; more than one muscle violated the feasible range with generalizability 

constraint in all other cases. 

 Dimensionality was compared by computing the rank of a matrix composed of 

each set of 100 random solutions. Further, in order to test whether narrowing of the 

ranges imposes more constraints in terms of co-variation across muscles, correlation 

coefficient (R
2
, Pearson coefficient of correlation, evaluated at significance level α= 0.05) 

was computed for activation levels of all muscle pairs in each of the two sets. 

Furthermore, in order to test whether muscle feasible ranges identified with 

generalizability constraint within a given tolerance could be indicative of a sufficient 

condition for the generalizabity requirement, we compared force deviations in solutions 

that were within the feasible range with generalizability constraint and those that violated 

the feasible range with generalizability constraint using one-way ANOVA ( α= 0.05). 
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3.3 Results 

 Only specific muscle patterns could be generalized across postures, suggesting 

that generalizability can be a functional constraint. This was consistent across all 

conditions (each cat and each synergy force vector) (Table 3.2). Therefore, for detailed 

illustration of the results, we selected two synergy force vectors that were the most 

consistent in force direction across cats in all postures: the extensor synergy force vector 

(
1WF ; Fig. 3.1A, red) and the flexor synergy force vector (

2WF ; Fig. 3.1A, yellow). For 

each case we were able to find a single solution that produces the experimental synergy 

force vector at the preferred posture and approximates the direction of the synergy force 

vectors at the three other postures, which we refer to as the best-generalizable solutions.. 

In general, deviations in the simulated forces produced by the best-generalizable 

solutions (Fig. 3.2, blue force vectors) were small, always less than 12° across all 

conditions (cats, synergies, and postures). For example, deviations in the simulated forces 

produced by the best-generalizable solution for the extensor synergy force vector in the 

model matched to cat Ru were less than 4° in all three postures (Fig. 3.2C). The largest 

deviation was found for the flexor synergy force vector in model matched to cat Bi (Fig. 

3.2B) at shortest stance, which was 12°. Across all cats and synergies, force angle 

deviations of the best-generalizable solutions were always greatest at the shortest stance, 

indicating that more controlled selection may be required for muscle activation patterns 

to be generalizable at this more extreme posture. 

 Most searches for the best-generalizable solution converged to the same local 

minimum solution, regardless of the different initial conditions from which the search 

was started, suggesting that we were able to find the global minimum. In these cases the 

nonlinear optimization yielded essentially the same solution: the standard deviations in 

individual muscle activations for all conditions (cats and synergies) were always less than 

less than 10
-10

 in most cases (always less than 10
-4

) and the average standard deviations in 
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force angle deviations across all postures were less than 10
-3

° in most cases (always less 

than 10
-2

°). There were only a few cases when the search converged to a different local 

minimum given different initial conditions. Further analyses were based on the solutions 

where the maximum deviation in force were the smallest across all initial conditions. 

 The optimal solutions minimizing effort at preferred postures were not 

generalizable across postures. When applied to the other postures, the force angle 

deviations (Fig. 3.2, black force vectors with dotted lines) were generally greater than the 

best-generalizable solutions (Fig. 3.2, blue force vectors), especially at the short and 

shortest stance. For example, force angle deviations for the flexor synergy force vector at 

shortest stance was 39° (Fig. 3.2B) and 44° (Fig. 3.2D) in cat Bi and Ru, respectively. On 

the other hand, at long stance, force angle deviations of the minimum-effort solution were 

 

Table 3.2. Force angle deviations in all conditions 

 Bi  Ru 

 Best-G 
 

Min-E 
 

Random 
 

Best-G 
 

Min-E 
 

Random 

FW1 

Shortest 6.90°  29.8°  43.3°±17.2°  3.53°  24.5°  23.5°±16.6° 

Short 2.97°  11.0°  9.75°±4.08°  1.10°  15.3°  11.4°±6.83° 

Long 5.54°  4.04°  9.51°±2.32°  0.38°  5.35°  7.76°±2.37° 

            

FW2 

Shortest 11.6°  39.4°  63.2°±26.7°  9.98°  44.2°  67.8°±23.3° 

Short 2.50°  30.1°  109°±35.4°  4.57°  26.5°  44.3°±17.3° 

Long 5.93°  19.1°  133°±31.3°  6.21°  8.77°  97.0°±56.0° 

            

FW3 

Shortest 3.20°  17.7°  53.1°±25.1°  4x10
-4

°  6.09°  26.2°±14.6° 

Short 1.65°  8.96°  9.36°±6.25°  6x10
-4

°  7.58°  27.9°±15.7° 

Long 2.06°  0.89°  13.7°±3.82°  2x10
-4

°  53.1°  80.9°±6.82° 

            

FW4 

Shortest 3.93°  9.61°  63.0°±12.2°  0.34°  7.01°  115°±20.1° 

Short 2.41°  7.21°  69.4°±17.9°  0.45°  2.58°  112°±30.1° 

Long 3.08°  24.8°  101°±7.12°  0.03°  3.47°  92.1°±27.1° 

            

FW5 

Shortest 7.67°  41.1°  78.4°±27.0°  1.85°  39.0°  76.4°±35.0° 

Short 2.50°  38.9°  149°±8.87°  1.79°  25.0°  61.0°±36.3° 

Long 0.06°  67.0°  149°±13.8°  0.12°  21.1°  153°±6.73° 

Best-G: Best-generalizable solutions, Min-E: Minimum-effort solutions, Random: Random solutions  
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Figure 3.2: Generalizability of simulated endpoint force vectors.  Simulated endpoint force 

vectors for FW1 in (A) cat Bi and (B) cat Ru, and for FW2 in (C) cat Bi and (D) cat Ru. Muscle 

activation patterns were found to match the experimental synergy force vector at Preferred stance, 

and were applied to other postures to generate endpoint force vectors. At Shortest, Short, and 

Long stances, force angle deviations compared to experimental synergy force vectors of the best-

generalizable solution (blue force vectors), optimal minimum-effort solution (black force vectors), 

and 100 random solutions (gray force vectors) were found for FW1 (red) and FW2 (yellow). Force 

angle deviations of the best-generalizable solution was small (<10°) in general (numbers in blue). 

Force angle deviations in all other solutions (numbers in black for the minimum-effort solution 

and in gray for random solutions) were generally greater, especially at Shortest stance. 
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relatively small and comparable to that of the best-generalizable solutions. For example, 

force deviations for the extensor synergy force vector at long stance were only 4.0° 

(Fig.3.2A) and 5.4° (Fig.3.2C) in cat Bi and Ru, respectively. 

 In addition, randomly selected solutions did not generalize across postures, 

suggesting that generalizability is not a property of biomechanics of the limb. Deviations 

in forces at other postures with random solutions (Fig. 3.2, gray force vectors) that 

produced the experimental synergy force vector at the preferred posture were, in general, 

substantially greater than the best-generalizable solution (see Table 3.2 for detailed 

numbers). Similar to solutions selected with other criteria, the force angle deviations were 

greatest at shortest stance. For example, force angle deviations of the random solutions 

for the extensor synergy force vector were 43°±17° in cat Bi and 24°±17° in cat Ru. 

 The best-generalizable solutions were always sub-optimal in terms of effort. The 

relative effort level of the best-generalizable solution was greater than the minimum-

effort solution in all conditions (Fig. 3.3). For example, in cat Ru, effort level of the best-

generalizable solutions were around 50% for both synergy force vectors, compared to the 

minimum-effort solutions with ~10% (Fig. 3.3 right, blue solid lines versus black dotted 

lines). The smallest difference between the effort level of the best-generalizable solution 

and the minimum-effort solutions was found in cat Bi, for extensor synergy force vector 

(Fig. 3.3 left, red dots on blue solid lines and black dotted lines). Increased effort of the 

best-generalizable solutions was due to high activation levels in only a few muscles. In 

particular, the activation level of some muscles in the best-generalizable solutions were at 

physiological maximum, e.g. 4 muscles for the flexor synergy force vector in cat Bi (Fig. 

3.4A, bottom row). 
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Figure 3.3: Effort level comparison. Normalized effort levels of the best-generalizable solution 

(Best-gen) and optimal solution (minimum-effort, Min-E) for cat Bi (left) and cat Ru (right). 

Effort levels were normalized to the maximum value that can be found for corresponding 

experimental synergy force vector at each posture. Best-generalizable solutions were always sub-

optimal: effort levels of the best generalizable solutions were greater than the optimal solutions 

across all condition, i.e., cats and forces. 

 

 The requirement for generalizability across different tasks restricted the feasible 

range of activation levels in some muscles but many retained a wide feasible range (Fig. 

3.4B, filled boxes). Overall, muscle feasible ranges identified with the generalizability 

constraint, (i.e., tolerance in force angle deviations <10°) were smaller than the absolute 

muscle feasible range for the experimental synergy force vector at preferred posture in 

many of the muscles: 71±30% and 62±37% across muscles for the extensor and flexor 

synergy force vector, respectively, in cat Bi; 93±14% and 61±36% in cat Ru. Reduction 

in feasible ranges with the generalizability constraint was due to decreased upper bounds 

(Fig. 3.4B, left, e.g. BFP, MG, or VM), increased lower bounds (Fig. 3.4B, left, e.g. TA), 

or both (2 muscles for the flexor synergy force vector in cat Ru, not shown). However, 

many muscles had no change in their feasible range when the generalizability constraint 

was added, such that activation levels were still allowed to vary from 0 to 1 (Fig. 3.4B, 

left, e.g. ADL, PSOAS, or SOL). Specific changes for each cat and synergy force vector 

are summarized in Table 3.2. 
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Figure 3.4: Muscle activation patterns and muscle feasible ranges. (A) Muscle activation 

patterns of minimum-effort solutions (top row) and best-generalizable solutions (bottom row) for 

FW1 (left) and FW2 (right) in cat Bi. Some muscles in the best-generalizable solution for FW2 have 

activation levels at physiological maximum of 1, resulting in high level of effort compared to the 

minimum-effort solution. (B) Absolute muscle feasible ranges (thick lines) for producing 

experimental synergy force vector at preferred stance, muscle feasible range with the 

generalizability constraint in each muscles (filled boxes), i.e., keeping the force angle deviations 

< Tol across all postures. The requirement for generalizability (<Tol) narrowed the feasible range 

of activation in some muscles: e.g. BFP, MG, or VM by decreasing the upper bound, and TA by 

increased lower bound for FW1 (left). However, many muscles were still allowed to vary from 0 to 

1 (e.g. ADL, SOL, PSOAS, or SOL for FW1), illustrating redundancy in muscle activation space 

even with requirement for generalization of function across postures. 
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Table 3. 3. Changes in feasible bounds with the generalizability constraint compared to 

absolute bounds 

   Bi  Ru 

   FW1  FW2  FW1  FW2 

   UB LB  UB LB  UB LB  UB LB 

ADF  - -  ↓ -  - -  ↓ - 

ADL  - -  - -  - -  - - 

BFA  - -  ↓ -  - -  ↓ - 

BFP  ↓ -  ↓ -  ↓ -  ↓ - 

EDL  ↓ -  ↓ -  - -  ↓ - 

FDL  ↓ -  ↓ -  - -  ↓ - 

FHL  ↓ -  ↓ -  ↓ -  ↓ ↑ 

GMAX  - -  - -  - -  - - 

GMED  - -  - -  ↓ -  ↓ - 

GMIN  - -  - -  - -  - - 

GRAC  ↓ -  ↓ -  - -  ↓ - 

LG  ↓ -  ↓ -  ↓ -  ↓ - 

MG  ↓ -  ↓ -  ↓ -  ↓ - 

PB  ↓ -  ↓ -  - -  - - 

PEC  - -  - -  - -  - - 

PL  - -  - -  - -  - ↑ 

PLAN  ↓ -  ↓ -  ↓ -  ↓ - 

PSOAS  - -  - -  - -  - - 

PT  - -  - -  - -  - ↑ 

PYR  - -  - -  - -  - - 

QF  - -  - -  - -  - - 

RF  ↓ -  ↓ -  ↓ -  ↓ - 

SART  - -  - -  - -  - - 

SM  ↓ -  ↓ -  - -  ↓ - 

SOL  - -  ↓ -  - -  ↓ - 

ST  ↓ -  ↓ -  - -  ↓ - 

TA  - ↑  - ↑  - -  - ↑ 

TP  ↓ -  ↓ -  - -  ↓ ↑ 

VI  ↓ -  ↓ -  - -  ↓ - 

VL  ↓ -  ↓ -  - ↑  ↓ - 

VM  ↓ -  ↓ -  - -  ↓ - 

↓: decreased upper bound  ↑: increased lower bound  -: same upper or lower bound  
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 The space of feasible ranges with the generalizability constraint was reduced in 

dimension. Dimension, or rank, of the random solutions that violate the feasible range 

with generalizability constraint was 25 in all conditions, whereas the rank of the random 

solutions that were inside the feasible range with generalizability constraint was 18 and 

20 for the extensor synergy force vector in cat Bi and Ru, respectively, and 23 in both 

cats for the flexor synergy force vector. The modest reduction in dimension was likely 

due to increased co-variations across muscles in random solutions that were inside the 

feasible range with generalizability constraint. For example, for the extensor synergy 

force vector in cat Bi, there were five muscle pairs that had R
2
 greater than 0.50 (p<0.05) 

with the generalizability constraint, compared to only one pair in solutions that violated 

the feasible range with generalizability constraint. 

 The feasible ranges with the generalizability constraint did not always predict 

solutions that are generalizable to a given tolerance (Fig. 3.5, dotted lines). Force angle 

deviations of the solutions that were inside the feasible range with the generalizability 

constraint could often be substantially greater than the specified tolerance in most 

conditions (Fig. 3.5, light bars). 

 The feasible ranges with the generalizability constraint did not always predict 

solutions that are generalizable to given tolerance (Fig. 3.5, dotted lines). Force angle 

deviations of the solutions that were inside the feasible range with the generalizability 

constraint could often be substantially greater than the specified tolerance in most 

conditions (Fig. 3.5, light bars). However, in many cases, the solutions inside the feasible 

range with the generalizability constraint had smaller force angle deviations than the 

solutions that violated the constrained feasible range (Fig. 3.5, dark bars). For example, 

force angle deviations of the 100 random solutions that were inside the feasible range 

found with the generalizability constraint were always smaller (p<0.05) than the other 

100 random solutions that violated the feasible range with generalizability constraint at 

all stance distances in both cats for the flexor synergy force vector (Fig. 3.5, right).  
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Figure 3.5: Generalizability of random solutions inside feasible range with generalizability 

constraint. Force angle deviations of 100 random solutions that were strictly inside the feasible 

range with generalizability constraint (light bar) compared to random solutions that violated the 

feasible range with generalizability constraint (dark bar) for the extensor synergy force vector 

(left column) and the flexor synergy force vector (right column) in cat Bi (top) and cat Ru 

(bottom). Force angle deviations of solutions that were strictly inside the feasible range with 

generalizability constraint could often be substantially greater than the specified tolerance (dotted 

lines) in most conditions. In many case, solutions that were inside the feasible range with the  

generalizability constraint were more generalizable, i.e., smaller force angle deviations (p<0.05), 

than solutions that violated the feasible range with the generalizability constraint. 

 

3.4 Discussion 

 In this study, we demonstrated that a functional requirement of generalizability 

across biomechanical conditions reduces the range of feasible muscle activation patterns 

for force generation. Our results reject two alternative hypotheses about the origin of 

generalizability of muscle activation patterns observed experimentally. By showing that 

most solutions at one posture do not generalize across postures, we demonstrate that 
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generalizability is not granted merely by anatomical arrangement and function of limb 

musculature (i.e., biomechanical constraints) (Kutch and Valero-Cuevas 2012). Second, 

by showing that the optimal solution based on a minimum-effort criteria does not 

generalize across postures we demonstrate that a single optimization criterion (Todorov 

2004) may not be sufficient for the nervous system to organize the spatial structure of 

muscle synergies. In contrast, it is possible to select solutions that are generalizable 

across postures. This supports our hypothesis based on experimental observations that 

muscle synergies represent fixed entities that are neurally encoded, or selected from, 

among many possible solutions. We also showed that solutions explicitly selected to be 

generalizable across postures, i.e., the best-generalizable solutions, were always sub-

optimal at a given posture in terms of effort. Our results further showed that even with 

functional requirements for generalizability within a given tolerance, feasible ranges of 

muscles were wide. This may explain inter-subject variability in muscle synergy patterns 

that produce essentially same biomechanical output (Chvatal and Ting 2012; Clark et al. 

2010; Torres-Oviedo et al. 2006), as well as deviations of optimal predictions from 

experimentally-observed muscle patterns (Buchanan and Shreeve 1996; Thelen and 

Anderson 2006). Our framework of using computational models to predict and evaluate 

muscle activation patterns according to functional properties and optimality criteria may 

be useful in examining possible variations in range of solutions that are functional in 

various contexts.  

 Consideration of biomechanical constraints from multiple conditions narrows the 

range of possible muscle activation patterns that can be generalized across conditions. 

Biomechanical constraints such as muscle’s function and capability as well as task 

demands (Bunderson et al. 2010; Delp and Loan 2000; Kaya et al. 2008; Valero-Cuevas 

2009; van Antwerp et al. 2007) determine how much room is allowed for motor control 

solutions. Available solutions may be more strictly constrained in less redundant systems 

such as human finger (Kutch and Valero-Cuevas 2011), or for a maximal task (Valero-
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Cuevas 2000). Alternate task demands such as the need to modulate limb impedance (Hu 

et al. 2012; Perreault et al. 2001; 2002) may require adjustment in the biomechanical 

condition itself, such as change in postures (Franklin et al. 2013; Trumbower et al. 2009). 

In general, however. the latitude the nervous system has in selecting muscle activation 

pattern for a single sub-maximal task is wide (Martelli et al. 2015; Martelli et al. 2013; 

Sohn et al. 2013). Nevertheless. superimposition of multiple task constraints may restrict 

the feasible range of solutions (Keenan et al. 2009; Loeb 2000; Racz et al. 2012). Our 

results show that only a few of the redundant muscle activation patterns that satisfy a 

single task constraint can generalize to other conditions and meet the subsequent task 

constraints. A tight regulation in force production was required for muscle activation 

patterns to be generalized in certain conditions such as short stance. Therefore, 

identifying motor solutions that can be generalized across conditions cannot be 

guaranteed by satisfying a single task constraint or biomechanical changes corresponding 

to each task. The reduction in feasible ranges of muscle activation patterns we identified 

with a generalizability constraint may reflect the sensitivity of muscles’ torque-producing 

characteristics across changes in posture. For example, the recruitment of muscles that 

undergo substantial changes in moment arm length due to changes in hip angle may have 

been suppressed, as indicated by the decrease in their upper bound. The robustness of 

muscle synergies that can be generalized across conditions that vary in biomechanical 

constraints (Cheung et al. 2005; Chvatal and Ting 2013; d'Avella and Bizzi 2005; Hart  

and Giszter 2004) may support the  neural origin hypothesis of muscle synergies, a topic 

that has been widely debated (Bizzi and Cheung 2013; Hart and Giszter 2010; Kutch and 

Valero-Cuevas 2012; Tresch and Jarc 2009).  

 Muscle synergies may be sub-optimal in terms of a single criterion such as effort 

for a given motor task, but optimal in a more global sense. The best-generalizable 

solutions found in this study were always sub-optimal in terms of effort. On the other 

hand, effort-wise optimal solutions that were selected for a single posture were not 
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generalizable across conditions. They were less generalizable than most of the randomly 

selected solutions. Therefore, it is unlikely that spatial patterns of muscle synergies are 

organized based on the single optimality principle of minimizing effort. Rather, muscle 

synergies may be optimal in a more global sense. They may result from a balance 

between multiple goals and criteria such as generalizability (Tsianos et al. 2014), 

computational efficiency or the facilitation of motor learning (Berger et al. 2013; 

Berniker et al. 2009; Byadarhaly et al. 2012; Giszter et al. 2007; McKay and Ting 2012; 

Mussa-Ivaldi and Giszter 1992; Mussa-Ivaldi et al. 1994). However, if muscle synergies 

are neural entities that have been acquired over an extended period of learning and 

refinement (Lacquaniti et al. 2013; Loeb 2012; McKay et al. 2007; Wu et al. 2014), they 

may also be near optimal regarding single criterion. Many modeling studies have shown 

that spatial organization of muscle synergies resemble solutions obtained from optimal 

control process such as minimizing errors or control effort (De Groote et al. 2014; Steele 

et al. 2013; Todorov and Jordan 2002), or that exploits natural limb dynamics (Berniker 

et al. 2009). Thus, muscle synergies may represent “good enough” solutions (Loeb 2012) 

that can be flexibly used across different conditions.   

 The redundancy remaining in the functionally equivalent solutions that can be 

generalized across conditions may account for individual differences, and suggests that 

additional neural criteria are likely involved in selection of muscle activation patterns for 

muscle synergies. Our results showed that even when imposing constraint for 

generalization, the feasible range of activations in many muscles were allowed to vary 

substantially. This suggests that there can be many different muscle activation patterns 

that are equally generalizable, but differ in their spatial structures. This is consistent with 

experimental variability observed in muscle synergy patterns that are used for same 

biomechanical function across biomechanical conditions (Chvatal and Ting 2012; Clark 

et al. 2010; Torres-Oviedo et al. 2006). Variability in muscle synergy patterns across 

individuals may therefore reflect individual differences in habits or preferences (de Rugy 



 54 

et al. 2012; Ganesh et al. 2010), or additional selection criteria regarding energetics 

(Alexander 2005; 1989; Huang and Kuo 2014; Neptune et al. 2008) or stability 

(Bunderson et al. 2008; Liao et al. 2013; Sohn et al. 2013).  
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CHAPTER 4 

TRADE-OFFS BETWEEN FUNCTIONAL PROPERTIES OF 

EFFORT AND STABILITY 

 

4.1 Introduction 

 Variability is commonly observed in experimental muscle activation patterns used 

for performing a motor task (Gottlieb 1998), but little is known about neural principles 

underlying variability. Musculoskeletal redundancy allows for individuals to exploit 

many different ways to produce a same movement (Bernstein 1967). Accordingly, even 

for stereotypical patterns of movement (e.g. joint kinematics and kinetics) such as in 

walking, muscle activity as measured by electromyography (EMG) exhibit both inter- 

and intra-subject variability (Liu et al. 2008; Winter and Yack 1987). Likewise, during 

standing balance in both humans and animals, different muscle patterns are used across 

individuals to produce similar reactive force at the endpoint (Horak and Nashner 1986; 

Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007). Such variability reflects a 

large space of equivalent solutions that can achieve the same task, suggesting that neural 

selection of muscle activation patterns may involve multiple criteria that vary according 

to the context (Loeb 2012). For example, minimization of metabolic energy or control 

effort has often been proposed as a governing principle for tasks such as reaching 

(Alexander 1997; Nakano et al. 1999; Soechting et al. 1995; Todorov 2004; Todorov and 

Jordan 2002; Torres and Zipser 2002; Uno et al. 1989) or walking (Alexander 2005; 

1989; Zarrugh et al. 1974). However, when similar tasks are performed in dynamically 

unstable environments, functional requirements for stability elicit changes in the 

solutions that are used. During reaching in a divergent force field (Franklin et al. 2008) or 

walking down-slope (Hunter et al. 2010), subjects increased co-activation across muscles 
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to stiffen the joints and gain stability, but at the cost of increased effort. On the other 

hand, pathological motor deficits (Dietz and Sinkjaer 2007) or preference for habitual 

patterns (de Rugy et al. 2012; Ganesh et al. 2010; Hasson et al. 2012; Kistemaker et al. 

2010) may prevent individuals from using a solution with a better functional property, e.g. 

either a more efficient or a more stable one. Understanding possible variations in muscle 

activation patterns for a given task, and thus the neural selection in a redundant muscle 

space requires examination of multiple functional criteria that may be involved and 

possible trade-offs between them. 

 Current computational approaches using musculoskeletal models and single 

optimization criterion such as minimizing effort are insufficient to address variability. 

These approaches inherently forbid explicit exploration of various solutions that can be 

used for a given task because it identifies a unique solution based on an optimality 

criterion. Among many of the various criteria proposed in literature (Anderson and Pandy 

1999; Harris and Wolpert 1998; Hogan 1984), one popular cost function that has been 

widely used is to minimize neural effort, often in terms of muscle forces or activations 

(Anderson and Pandy 2001b; Crowninshield and Brand 1981; Erdemir et al. 2007; 

Thelen et al. 2003). However, measured muscle activity often deviates from these 

optimal predictions (Buchanan and Shreeve 1996; Herzog and Leonard 1991; Thelen and 

Anderson 2006; van der Krogt et al. 2012). These deviations may contradict studies 

suggesting that musculoskeletal system significantly constrains the possible motor 

patterns such that all of the feasible motor solution are substantially similar (Kutch and 

Valero-Cuevas 2011). We recently demonstrated that in a musculoskeletal model of a cat 

hindlimb, muscle activation patterns for generating an isometric endpoint force could 

deviate substantially from one another (Sohn et al. 2013). Importantly, a great deal of 

biomechanical latitude was revealed, and minimizing effort could not explain the 

recruitment of muscles often observed experimentally. Therefore, in order to account for 

natural variability in selection of motor solution (Martelli et al. 2013; Prinz et al. 2004; 
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Raphael et al. 2010), physiologically relevant criteria other than just effort need to be 

considered. 

 Stability of the musculoskeletal system conferred by active muscles is a critical 

functional requirement for producing physiological behaviors. Neural control of 

movement can be inherently unstable because sensorimotor feedback is delayed due to 

slow neural conduction (Hasan 2005; Miall et al. 1993). Intrinsic stability, i.e. the 

capability of the open-loop musculoskeletal system to be stable, may ensure functionally 

robust behavior by prolonging the time until feedback corrections need to occur. 

Maintaining posture in response to perturbations illustrates the necessity for open-loop 

stability (Crevecoeur and Scott 2014; Perreault et al. 2004). Reactive responses in 

muscles elicited by perturbations during standing balance occur around 50 and 100ms 

after perturbation onset in cats and humans, respectively (Horak and Macpherson 1996). 

Thus, background muscle activation patterns used during quiet standing in cats are 

sufficient to provide intrinsic stability such that joint angle deviations are <5° in absence 

of any active control or sensorimotor feedback (Jacobs and Macpherson 1996). It is also 

known that cats with spinal cord transaction can be trained to bear weight in quiet 

standing and withstand small perturbations (De Leon et al. 1998), but lack appropriate 

directional responses at longer latency that are mediated by supraspinal circuitry 

(Macpherson and Fung 1999). Open-loop stability in musculoskeletal systems has mainly 

been attributed to intrinsic viscoelastic properties in active muscles (Burdet et al. 2001; 

Franklin et al. 2008; Hogan 1984). Intrinsic stability at the joint or whole-limb level can 

be achieved solely by preferential selection of muscle activation patterns (Bunderson et 

al. 2008). Nevertheless, other intrinsic mechanisms such as muscle short-range stiffness 

(Cui et al. 2008; Epstein and Herzog 2003) or proprioceptive length feedback 

(Burkholder and Nichols 2000; Nichols 1989 ; Wilmink and Nichols 2003) can contribute 

to stability at relatively short timescales, and prevent having excessive levels of muscle 

tone. 
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 Whether the two functional properties effort and stability reflect a true trade-off in 

high dimensional muscle activation space for a redundant musculoskeletal system has not 

been explicitly tested. In multi-muscle systems effort and stability may compete against 

each other, since increased effort owing to muscle co-activation generally results in 

improved stability by stiffening the joints (Osu et al. 2002). To our knowledge, however, 

no study has quantitatively examined the landscape of effort and stability across the space 

of possible muscle activation patterns for a given task. Studies investigating feed-forward 

control of arm stability have mostly examined regulation of limb stiffness due to changes 

in muscle co-activation in terms of the resulting task error or variability (Burdet et al. 

2006; Franklin et al. 2008; Hu et al. 2012; Selen et al. 2009). Few studies have explicitly 

examined stability conferred by active muscles during simulated behavior in 

musculoskeletal models. Recently, the open-loop stability conferred by muscle activation 

patterns was examined in a human arm model to assess possible improvements in 

stability for functional electrical stimulation (Liao et al. 2013). For a given posture, it was 

demonstrated that the maximum-effort solution, which had a high level of muscle co-

activation, drastically improved stability compared to the minimum-effort solution. It has 

been shown that different muscle activation patterns that produce equivalent motor output 

in a cat hindlimb model can have widely varying local stability, as measured by time 

constants of the linearized system, or Lyapunov stability (Bunderson et al. 2008). A 

three-dimensional simulation of human walking was used show that intrinsic muscle 

properties play a role in stabilization against a disturbance (John et al. 2013). However, 

none of the above studies have examined how much cost, in terms of effort, is necessary 

to achieve certain level of stability.  

 Analytical tools and frameworks to explore the landscape of the solution space 

with respect to effort and stability may provide insight into how the nervous system finds 

a solution, or solutions, that satisfy certain functional properties. Furthermore, we may be 
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able to predict how easy or difficult it is, or what kind of a change needs to be made in a 

muscle pattern, to find another solution with a desired level of effort and stability. 

 Developing neuromechanical principles to guide selection of muscle activation 

patterns based on physiologically-meaningful stability metrics also has important 

implications for using models to study neural control of movement. Open-loop stability is 

important for forward dynamic simulations because it provides dynamic responses of the 

body that are more physiologically-relevant, and a numerically-stable basis for testing 

neural controllers (Ting et al. 2009). However, intrinsic stability is often lacking in 

simulations using musculoskeletal models. Solutions predicted from optimization are not 

robust in that simulations are vulnerable to small changes in modeling parameters or 

variation to the solution, especially for unstable tasks such as walking (John et al. 2013; 

Risher et al. 1997). For example, when a minimum-effort solution for producing an 

experimentally observed endpoint force was used in a cat hindlimb model, a slight 

change in configuration leads to unrecoverable joint angle deviations in forward dynamic 

simulations (Bunderson et al. 2010). Stable solutions can be useful for generating 

simulations that are robust to sources of instability such as noise, numerical round-off 

error, disturbances or inaccuracies in the modeling parameters (Alexandrov et al. 2005; 

Higginson et al. 2006; Risher et al. 1997). 

 Here, we sought to explore the landscape of the solution space with respect to the 

two functional properties of effort and stability during an isometric task of endpoint force 

production in a cat hindlimb model. We evaluated a multitude of possible muscle 

activation patterns in terms of sum-squared activation for effort versus stability predicted 

from linearized system using the Lyapunov indirect method, and mapped them onto a 

two-dimensional functional property space. In order to characterize the landscape of this 

space, we examined how variations in redundant muscle activation patterns change 

functional properties. Finally, we investigated whether effort and stability show 

reciprocal relationships and thus demonstrate a true trade-off by searching for the Pareto 
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front that illustrates the optimal border for maximizing stability while minimizing effort. 

Our results suggest that a large space of equivalent solutions is also reflected in vastly 

different functional properties of the solutions that can be explored by changing muscle 

activity within the constraint of the task. Further, differences in sensitivity of stability to 

changes in muscle pattern according to different region of the functional property space 

implies that there are multiple ways of finding a “better” solution, e.g. more stable 

solution with small increase in effort, which may explain difference in how individuals 

learn or acquire new solutions, e.g. optimal patterns in athletes versus pathological 

patterns in patients. 

  

4.2 Methods and materials 

4.2.1 Musculoskeletal model and target endpoint force 

 We used a detailed musculoskeletal model of a cat hindlimb (Burkholder and 

Nichols 2004) to examine muscle activation patterns to produce an experimentally 

observed endpoint force during postural response in a cat (Torres-Oviedo et al. 2006). 

Details of this three-dimensional model are described elsewhere (Bunderson et al. 2008; 

Bunderson et al. 2010; McKay and Ting 2008; Sohn et al. 2013), but briefly, the model 

included seven rotational degrees of freedom at the anatomical joints and 31 Hill-type 

muscles (Fig. 4.1A). The pelvis was fixed to the ground and endpoint of the limb defined 

at the metatarsophalangeal (MTP) joint was modeled as a gimbal joint. Model posture 

was matched to experimentally-measured kinematics of a cat during quiet standing 

(McKay et al. 2007; Torres-Oviedo et al. 2006). The equations of motion describing the 

dynamics of the limb using joint angles as generalized coordinates ( q ) can be given as: 

( ) ( , ) ( ) ( , , ) ( )M Endq q V q q q F q q e q F   T
M R J    (4.1),  
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where q  and q  are joint velocity and acceleration vector respectively; e  is a vector of 

muscle activation; M is the inertia matrix; R is the moment arm matrix; J is the endpoint 

Jacobian; MF  is a vector of muscle forces; EndF  is the target endpoint force vector; V  is 

the Coriolis force vector. Note that the model corresponds to generation of endpoint 

forces based on no background activity and in the absence of gravity, similar to previous 

models examining the feasible forces that can be generated by a limb (McKay et al. 2007; 

Schmidt et al. 2003; Valero-Cuevas 2000). 

 

 

Figure 4.1: Model and task. (A) Musculoskeletal model of the cat hindlimb with seven 

rotational degrees of freedom (3 at the hip, 2 each at the knee and ankle) and 31 muscles. In this 

dynamic model, the pelvis was fixed to the ground and the endpoint (MTP joint) was connected 

to the ground via gimbal joint. (B) Target endpoint force vector (red) derived from active postural 

responses (gray box) during reactive balance task in cats. Kinematic changes were small during 

this active response period (80ms window following 120ms after onset of perturbation), and the 

task could be approximated quasi-static.  

 

 We defined a linear mapping from muscle activation vector to the net joint torque 

vector required to produce the target endpoint force vector to represent this model at 

static equilibrium ( 0q q  ): 

M EndAFLF e F   T
R RF J      (4.2). 
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Note that muscle force vector ( MF ) is further factored into a diagonal scaling matrix for 

isometric force generation ( AFLF ) based on the force-length relationship (Zajac, 1989), 

multiplied by muscle activation ( e ). All muscles were set at 65% optimal fiber length in 

ascending region of the force-length relationship curve (Gordon et al. 1966) to avoid 

inherent instability owing to lack of intrinsic stiffness in muscles (Bunderson et al. 2008). 

 For the target endpoint force vector, we used an extensor force vector (Fig. 4.1B) 

that was experimentally measured in active response of a cat following translational 

support perturbation (Torres-Oviedo et al. 2006). This force vector represented the 

change in the ground reaction force from the background level, averaged over 120-200 

ms following the perturbation (Jacobs and Macpherson 1996), in which posture of the cat 

could be approximated quasi-static (Ting and Macpherson 2004). 

  

4.2.2 Defining metrics for effort and stability 

 In order to evaluate functional properties of redundant muscle patterns that 

generate the same endpoint force and to map a functional property space in terms of 

effort and stability, we defined quantitative metrics for each criterion. We defined the 

metric for effort (E) to be the sum of squared activations (Eq. 4.3), which is equivalent to 

summing muscle stress (Anderson and Pandy 2001b; Crowninshield and Brand 1981; 

Thelen et al. 2003):  

 
31

2

1

m

m

E e


      (4.3). 

To normalize the level of effort across different muscle activation patterns, we identified 

the global minimum-effort solution (
min E

e ) and maximum-effort solution (
max E

e ) for the 

static mapping (Eq. 4.2), using quadratic programming. The effort for \any muscle 

activation pattern examined in this study was then normalized to percent of the global 

maximum, i.e., E of the maximum-effort solution. 
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 We defined the metric for stability using Lyapunov stability of the linearized 

model. The full nonlinear system (Eq. 4.1) was linearized about a static equilibrium 

point, defined by a muscle activation pattern that satisfies the endpoint force generation 

(Eq. 4.2), using software Neuromechanic (Bunderson et al. 2012). Spec\ifically, the 

system equation incorporated joint torques generated by muscles: 

1( )M Endf q V F F    T
M R J    (4.4). 

The system was linearized by numerically computing the partial derivatives with respect 

to kinematic states using first-order Taylor-series expansion to obtain the state space 

representation: 

q q

q q

   
   

   
A ,  where,  f f

q q

 
   
 
   

0 I

A    (4.5). 

The state matrix (A) was used to calculate the eigenvalues ( ) of the linearized system. 

For a given muscle activation pattern, the metric for stability (S) was defined as the 

maximum real part of the 14 eigenvalues of A such that 

max{Re( )}S       (6). 

We only considered 8 out of 14 eigenvalues that had the largest real parts in magnitude, 

which correspond to the 8 modes (or eigenvectors) that are relevant to the dynamics of 

the system in physiological timescale. Due to the constraint that eliminates endpoint 

translation in 3 directions, effective degrees of freedom of the model is reduced from 7 to 

4. As a result, 6 of the 14 eigenvectors are modes that do not affect the dynamics of the 

system, corresponding to the 6 eigenvalues that are near zero (similar to rigid-body 

modes) which are very small in magnitude. These 6 eigenvalues typically were less than 

10
-5

 in magnitude, and thus were not relevant in physiological time scales: the time at 

which the magnitude of a perturbed response is reduced to 50% is longer than 6.9×10
4
 

seconds. In contrast, the 8 eigenvalues that were considered in S for a given solution were 

typically larger than 10
-3

 in magnitude. 
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 A solution of the system defined by a given muscle activation pattern was 

determined “stable” if S<0, and “unstable” if S>0. Further, because the magnitude of S 

predicts the rate at which a perturbed system will return to (if S<0), or deviate from (if 

S>0) the equilibrium, a solution is to be “less stable” for greater value of S, and “more 

stable” for smaller value of S. This metric from system theory, i.e., Lyapunov indirect or 

linearization method, has been shown to predict the behavior of perturbed nonlinear 

systems in simulations (Bingham and Ting 2013; Bunderson et al. 2008; Bunderson et al. 

2010; Sohn 2011). 

 

4.2.3 Mapping the null-path between minimum and maximum-effort solutions 

 In order to explicitly examine how stability changes along a given direction in the 

null space across all possible effort levels, we evaluated effort (E) and stability (S) of 49 

intermediate solutions that were evenly spaced between the minimum- and maximum-

effort solutions in muscle activation space. These solutions ( th

null

ne ) were computed by 

linearly scaling the difference between the minimum-effort solution (
min E

e ) and the 

maximum-effort solution (
max E

e ): 

min max min

th ( ) / 50
null E E E

ne e n e e        (4.7). 

Note that difference between any two solutions that satisfy the torque requirement (Eq. 

4.2) belongs to the 24-dimensional null space defined by the linear mapping matrix 

( AFLRF ), i.e., the vector difference will produce zero torque (e.g. 

max min

( ) 0
E E

AFL e e RF ). Therefore, solutions generated as above (Eq. 4.7) lie along the 

“null direction” defined by the vector difference 
max min

( )
E E

e e . Here, we defined the 

unique path between any two solutions in the muscle activation space as a “null-path” 

(schematically illustrated in Fig. 4.2). 



 65 

 We mapped the null-path onto the functional property space by evaluating the 

effort (E) and stability (S) of each intermediate solution, revealing the projection from the 

linear muscle activation space to the functional property space. In particular, we were 

interested in whether the minimum-effort solution, representing the least amount of co-

activation for a given task, is unstable, and whether the maximum-effort solution, with 

highest level of co-activation, is stable. Further, this null-path was used to demonstrate 

whether an unstable solution can be made stable by following a defined direction in 

muscle activation space, and to quantify the amount of effort necessary to make the 

 

 

Figure 4.2: Schematic illustration of a null-path. (A) Linear scaling of a muscle activation 

pattern. The vector difference between two solutions belongs to null space defined by linear 

mapping in Eq. 4.2. Thus, intermediate solutions between any two solutions can be generated by 

linearly scaling from one solution, e.g. initial activation pattern (ACTInit, light blue), to another 

solution, e.g. final activation pattern (ACTFin, dark blue). For example, the intermediate solution 

ACTInt0.5 (blue) is half way from ACTInit to ACTFin. (B) Mapping of the null-path (thick gray dotted 

line) on the functional property space. The functional property space is a 2-dimensional space on 

which functional properties of muscle activation patterns are evaluated in terms of effort (E, on x-

axis) and stability (S, on y-axis). A unique path in functional property space can be found by 

mapping the linearly scaled solutions as described in (A). For example, the null-path between 

solutions that is very efficient but unstable (ACTInit, ‘x’ in light blue) and a solution that is very 

stable but costly (ACTFin, ‘x’ in dark blue) can be defined by evaluating effort and stability of 

intermediate solutions, e.g. ACTInt0.5 (‘x’ in blue). 



 66 

minimum-effort solution stable. For these 51 solutions on the null-path ( th

null

ne ) between 

the minimum and the maximum effort solutions, we further investigated how altering the 

muscle force-length relationship and other possible intrinsic muscle properties that 

contribute to stability affect the mapping in the functional property space (see 4.A 

Appendix: Altered mapping due to other factors contributing to stability). 

 

4.2.4 Exploring the neighboring solutions 

 In order to reveal the local landscape of the solution space with respect to effort 

and stability, we explored the neighboring solutions around the null-path (
null

ne ) between 

the minimum- and maximum-effort solution, and mapped them onto the functional 

property space. The seed (
seed

e ) for each exploration was defined as each of the 51 

solutions on the null-path (minimum- and maximum-effort solutions, and 49 intermediate 

solutions). We defined neighboring solutions (
neighbor

e ) as the solutions that were pseudo-

randomly distributed around the seed in muscle activation space in which the amount of 

change, either positive or negative, in any muscle from the seed was constrained to be 

within a given step size specified for each muscle: 

 neighbor seed

m me e step size       (4.8). 

 The step size was defined for each muscle as a percentage of the muscle feasible 

range (MFR) of activation (Sohn et al. 2013) for the target endpoint force production, so 

that the amount of change in any muscle is normalized. To vary the extent to which area 

in the functional property space is explored by the neighboring solutions around a given 

seed solution, we used step sizes of 1, 2, 5, 10, 25, 50, and 100%  MFR. 

 We generated 262 neighboring solutions (
neighbor

e ) for each seed and step size 

using the following four steps (schematically illustrated in Fig. 4.3). In summary, our 

goal was to explore the functional property space in every possible direction around a 
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Figure 4.3: Schematic illustration of generating neighboring solutions. (A) Randomly 

distributed solutions around a seed muscle activation pattern. We generated solutions that were 

randomly distributed around a given seed on the null-path, e.g. ACTInt0.5 (‘x’ in blue). Note that 

activation level in each muscle is distributed randomly, whereas the patterns themselves are all 

solutions that satisfy the joint torque requirement. (B) Step size defined using muscle feasible 

range (MFR). For each muscle, we defined the step size, i.e., the extent to which activation of a 

muscle in the neighboring solution can vary from the level of corresponding muscle in the seed 

solution. For a given seed, we used different step sizes at varying magnitudes which was defined 

with respect to MFR, e.g. 25% or 50% MFR. Depending on the step size, normal distribution was 

truncated at physiological bounds in muscle activation (e.g. step size 50% MFR). (C) 

Neighboring solutions mapped on the functional property space. Region in the functional 

property space explored by the neighboring solutions can be represented with convex polygon 

that encapsulates all of the neighboring solution for a given seen and step size. Dots inside the 

convex polygon show individual neighboring solutions mapped on the functional property space 

(e.g. shown for 25%MFR). Importantly, the distance and the shape of the area explored in the 

functional property space depends on the seed, e.g. ACTInit (convex polygons in light blue) and 

ACTFin (convex polygons in dark blue), and the step size, e.g. 25% MFR (convex polygon with 

solid line) and 50% MFR (convex polygon with dotted line). 

 

given seed, reaching the maximum extent in distance for a given amount of changes 

allowed in the muscle activation space. To this end, we generated sets of solutions that 

were randomly distributed around a given seed with varying distance in muscle activation 

space controlled by the step size:  
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1) In order to induce random deviations to muscle activations near each of the 

seed solutions, we first generated 200 perturbed patterns (
pert

e ), in which each 

element in 
pert

e , i.e., pert

me , was randomly drawn from a normal distribution 

with mean (  ) at activation level of the seed ( seed

me ) and variance (
2 ) equal 

to the muscle-specific step size:  

     2( , )pert

me N       (4.9), 

where seed

me   and 
2  step size  .   

However, in order to examine perturbed patterns in which pert

me  was always 

within physiological limits (0, 1), we limited the range from which the values 

were drawn using an algorithm for simulating a truncated normal distribution 

on a finite interval (Chopin 2011), implemented in MATLAB (Mazet 2012). 

The interval of each muscle was defined as the smaller value of physiological 

limits (0,1) or two times the step size away from the seed:  

interval [max{0, 2 (  )},min{1, 2 (  )}]seed seed

m me step size e step size      (4.10).  

2) We then identified the nearest solutions (
proj

e ) to all 
pert

e  that produced the 

specified force. To find projections of 
pert

e  to the solution manifold in a least-

squares sense, we performed optimizations to find muscle activation patterns 

(
proj

e ) that minimized sum-squared difference to each of the perturbed 

patterns:  

   minimize ( ) ( )
proj pert proj pertTc e e e e  Q    (4.11).  

Note that we used a scaling matrix Q, which is a diagonal matrix that 

penalizes the difference between perturbed and projected muscle activation.  

Elements of Q were weighted inversely to the feasible range to prevent 

projection only occurring in muscles with small feasible ranges. Each 
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optimization was subject to an equality constraint for satisfying the torque 

requirement:  

   ( )
proj pert pert

EndAFL AFLe e F e  T
RF J RF     (4.12), 

and inequality constraints specifying the search limits (
lower

lim  and 
upper

lim ) 

defined either by the step size or the bounds from the feasible range identified 

for given task:  

    ( )
lower pert proj pert upper pert

lim e e e lim e         (4.13), 

( FRmax{ ,  }lower seed

m m mlim lb e step size  ; FRmin{ ,  }upper seed

m m mlim ub e step size  ). 

We then evaluated the induced changes in muscle activation patterns with 

respect to different muscles, step sizes and seed solutions, where we compared 

the spatial structure of the projected solutions (
proj

e ) to both the perturbed 

patterns (
pert

e ) and the initial seed solution (
seed

e ) (see 4.C Appendix: 

Analysis in muscle activation space).  

3) To search the functional property space, we defined a new null-path between 

seed

e  and each 
pert

e , and found extrapolated solutions (
ext

e ) along those paths 

until muscle activation met the search limits.  Null-paths were computed in a 

same way described above (see 4.2.3 Mapping the null-path between 

minimum and maximum-effort solutions), where the change (
proj seed

e e ) was 

further extrapolated along the null direction until any of the muscles reached 

either the lower or upper bound (Eq. 4.13) for given step size. Extrapolated 

solutions (
ext

e ) generated this way are true solutions that satisfy the torque 

requirement, with at least one of the muscle activations lying on the search 

limits. These were defined as the neighboring solutions of the initial seed 

solution for a given step size. To visualize the path in the functional property 

space to get to the corresponding neighboring solution, we also computed four 
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intermediate solutions linearly interpolated along the null-path from the seed 

to each of the neighboring solutions. 

4) Finally, in order to encourage the generated neighboring solutions to span the 

full possible range in muscle activation space for a given step size, we further 

generated solutions (
limits

e ) that lie on the search limits (Eq. 4.13). Limit 

solutions were computed by specifying activation level of each muscle at its 

lower ( lower

mlim ) and upper limit ( upper

mlim ), and pushing the other 30 muscles as 

close as possible to their lower and upper limits. This optimization is similar 

to that for projected solution (Eq. 4.11-13), where the problem is reduced to 

solving for a 30-dimensional muscle activation vector that minimizes the 

distance to either lower or upper limit vector (Eq. 4.13), specified for a given 

step size. Although solutions generated this way were not guaranteed to 

satisfy the torque requirement, especially when small step sizes were allowed, 

more than 57 (60± 1.1 across seed and step size) limit solutions were 

generated for each seed and added to the set of neighboring solutions of the 

seed for a given step size. 

 

4.2.5 Characterization of the local landscape 

 We examine the local landscape around each seed solution using the neighboring 

solutions mapped in the functional property space. For each seed and each step size, we 

identified a convex polygon that encompassed all points in the two dimensional 

functional property space mapped by a given set of neighboring solutions and the seed, 

using a ‘convhull’ algorithm in MATLAB. We further characterized the shape of the area 

explored by the neighboring solutions, we computed radial distance ( r ) and angle ( ; 

rightward direction of effort axes is 0° and clockwise direction is positive) from the seed 
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to each of the neighboring solutions, and was compared across different step sizes for a 

given seed: 

2 2( ) ( )neighbor seed neighbor seedr E E S S       (4.14), 

and  1cos ( )
neighbor seed

neighbor seed

S S

E E
  



    (4.15). 

Although Euclidian distance in the functional property space may be an arbitrary measure 

because the effort and stability metrics have different units, r  determines the extent to 

which the neighboring solutions are explored the functional property space in a given 

direction ( ). More importantly,   represents the distribution of qualitative changes in 

the solutions and determines whether the neighboring solutions for a given seed explored 

the full possible range of changes in the functional property space. For example, 

90 0      means that solution became “more stable and more costly”, whereas 

180 90       means that solution became “more stable and less costly”. In 

particular, we examined whether the change to the neighboring solutions spanned the full 

range of possible directions ( 180 180     ), and the relative distributions of solutions 

that became more stable versus more unstable. 

 To examine how step size determines the degree to which solutions with different 

functional properties can be explored, we compared effort and stability values of the 

neighboring solutions found for a given seed, across different step sizes. Differences in 

the effort (E) and stability (S) values of neighboring solutions found with different step 

sizes were compared using one-way ANOVA evaluated with a significance level of 

α=0.05 adjusted with a Bonferroni correction for multiple comparison. 

 

4.2.6 Characterization of the global landscape 

 To determine whether differences in effort (E) or stability (S) explored by the 

neighboring solutions depend on the location of the seed solution is in functional property 
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space, we conducted two-way ANOVA (step size × seed) on the differences in each effort 

(E) or stability (S) of the neighboring solutions evaluated with a significance level of 

α=0.05 adjusted with a Bonferroni correction for multiple comparisons.  

 We also computed the sensitivity of stability to changes in muscle pattern across 

the seeds. For each set of neighboring solutions, sensitivity was defined as change in 

stability ( S ) over sum-squared amount of changes in the muscle activation pattern 

( e ): 

seed

S
Sensitivity

e

 
 
 
 

     (4.16). 

Sensitivity was computed using neighboring solutions generated with 1% FR step size. 

Sensitivity was averaged across neighboring solutions for each seed solution and were 

examined across the effort level. However, in order to examine how sensitivity changes 

as amount of allowed variation is increased, we computed sensitivity for 2, 5, and 10% 

step sizes. Step sizes bigger than 10% were disregarded because changes in both muscle 

activation and stability were substantial and no longer represented differential changes. 

 We found a global maximum-stability and defined the edge that connected the 

minimum-effort solution, global maximum-stability solution as the Pareto front and 

compared the values and shape to the null-path between the minimum- and maximum-

effort solutions. To examine an explicit trade-off for minimizing effort while maximizing 

stability, we identified Pareto front that quantifies the maximum level of stability that can 

be achieved for a given amount of effort, or vice versa, the minimum amount of effort 

required to achieve certain level of stability. Along the perimeter of the area in the 

functional property space that is explored by all of the solutions examined, the most 

important edge regarding the trade-off between effort and stability is the outer-most edge 

connecting the minimum-effort solution, the global maximum-stability solution. To 

define this edge, we first performed a heuristic search that identified the global 
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maximum-stability solution (most stable with smallest S). Across all solutions we found 

the solution with smallest values of S (
max S

e ) to explore neighboring solutions (see 4.2.4 

Exploring the neighboring solutions). If solutions that were more stable was found, it was 

assigned as the new global maximum-stability solution and the search was repeated with 

the new seed. Even when no solution more stable than 
max S

e  was found in a given 

iteration, we continued the search using the same until there were no change in maximum 

stability for 20 consecutive iterations.  

 To determine the extent to which solutions for a given task can be unstable, we 

also performed a heuristic search that identified the global minimum-stability solution 

(most unstable solution with largest S). The search was similar to that for finding the 

global maximum-stability solution, where here any solution that was more unstable 

compared to the current minimum-stability solution was assigned as the new seed in each 

iteration. 

 

4.2.7 Investigating redundancy within equivalent functional properties 

 In order to examine the extent to which solutions can vary and still have similar 

functional properties, we compared multiple solutions that are within a small range of 

effort (E) and stability (S). Specifically, we were interested in whether near-maximal 

stability could be achieved using vastly different muscle patterns. Thus, among all 

neighboring solutions investigated, we examined solutions that were nearest to the local 

maximum stability solution on the null-path between the minimum- and maximum-effort 

solutions. We chose the local maximum stability solution instead of global maximum 

stability solution because it possibility to find solutions that are around in all possible 

directions in the functional property space. In order to avoid selecting solutions that are 

inherently similar in muscle activation pattern, we first sorted five solutions that were 

nearest in distance (Eq. 4.14) to the local maximum stability solution from each set of 
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neighboring solutions around a given seed, across step sizes. Among these 255 solutions 

(5 from each of 51 seeds), we selected solutions that had both effort and stability within 

10% difference from the local maximum stability solution. This resulted in total 105 

solutions near the local maximum stability solution. To characterize the difference, we 

computed the range of cosine angle differences of the selected solutions to the local 

maximum stability solution on the null-path between the minimum- and maximum-effort 

solutions. We also examined range of activation levels in the 31 muscles with respect to 

feasible range for each muscle.  Further, to determine whether similar level of stability 

was achieved by different types of stiffening across the joints, we computed the level of 

co-activation in each joint for the 108 selected solutions using a co-activation index (c.i.) 

for a given degrees of freedom (DoF): 

. . ( )
ago antexc

DoF

net ago ant

c i
 

  


 


    (4.17), 

where 
ago  is sum of torques produced by all muscles that are agonistic in terms of 

requirement for the task, and net  is the net torque requirement. This index gives a 

measure of excessive torque ( exc ) at a joint relative to the net required torque, that is, the 

resulting torque balanced out by the antagonistic muscles ( ant ). We then constructed a 

single 7-dimensional vector . .C I  with co-activation indices for all of the 7 DoFs. 

 

4.3 Results 

4.3.1 Null-path between minimum and maximum-effort solutions 

 The null-path from the minimum-effort solution to the maximum-effort solution 

revealed a reciprocal relationship between effort and stability (Fig. 4.4, dotted line), and 

demonstrated that stable solution can be found with small increase in effort. The 
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minimum-effort solution was unstable (S=18.9) with effort (E) being 0.77% of the 

maximum (Fig. 4.4, ‘x’ in light blue), whereas the maximum-effort solution (Fig. 4.4, ‘x’ 

in black) was stable (S=-2.25 and E=100%). Solutions on the null-path when mapped on 

the functional property space demonstrated a reciprocal change in stability (S) as a 

function of effort (E). Overall, S was decreased (i.e., stability was improved) drastically 

as effort increased near minimum effort region and flattened out as it approached the 

maximum-effort solution. Among the solutions on the null-path, the lowest S (S=-2.34, 

i.e., local maximum stability) was found at moderately low effort level E=14.9% (Fig. 

4.4, ‘x’ in dark blue). The first solution on the null-path that became stable (S<0) was 

found at S= -0.0066 and E=2.77% (Fig. 4.4, ‘x’ in blue), which had only 2% increase in 

effort from the minimum-effort solution. 

 

4.3.2 Local landscape explored by the neighboring solutions 

 We found that the extent to which solutions with different functional properties 

can be found depended on the step size, representing the amount of change in the 

activation of each muscle, and the seed, the initial solution from which a change is made. 

The local landscape explored around the seed solutions with the neighboring solutions 

was represented by characteristics of the convex polygon that encompasses all of the 

neighboring solutions explored for a given step size (Fig.4.4, sub-figures). In general, the 

size of the convex polygons, which represents the distance reached in the functional 

property space, increased as step size increased. For example, the area explored with a 

10% step size (Fig.4.4, convex polygon with dotted line) was larger and encapsulated the 

area explored with a 5% step size (Fig.4.4, convex polygon with dotted line). The far 

right and left edge of the convex polygons were comprised mostly of the limit solutions, 

where limit solutions pushed to the lower and upper search limits were distributed 

towards low and high effort regions, respectively, within a given convex polygon. On the 
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Figure 4.4: Null-path and neighboring solutions. Null-path between the minimum- and the 

maximum-effort solution revealed a reciprocal relationship between effort and stability (thick 

dotted line in main figure, top right corner). The minimum-effort solution (‘x’ in light blue) was 

unstable and the maximum-effort solution (‘x’ in black) was stable. A stable solution, i.e., S<0 

(shaded region in green) could be found with small increase in effort from the minimum-effort 

solution (first stable solution, ‘x’ in blue). The most stable solution (‘x’ in dark blue) had 

moderately low effort level. Examples of neighboring solutions (sub-figures in gray boxes) show 

explored regions in functional property space around four seed solutions on the null-path with 5% 

(convex polygon with solid line) and 10% step size (convex polygon with dotted line). Note that 

different scales are used for better visualization of the convex polygons encapsulating the 

neighboring solutions; axis limits in each figure correspond to the window, on the global 

functional property space (top right corner), boxed around a given solution with gray lines. The 

shape of the convex polygon depended on the seed and step size. In general, the size of the 

convex polygons, which represents the distance reached in the functional property space, 

increased as step size increased. For example, area explored with 10% step sizes (convex polygon 

with dotted line) was larger and encapsulated the area explored with 5% step size (convex 

polygon with dotted line). Across the seeds at varying effort level, the shape of the convex 

polygon was slender near low effort region (e.g. around min-effort solution, in light blue), 

relatively round in intermediate effort levels (e.g. around first stable solution, in blue), and 

became flat in high-effort region (e.g. around max-effort solution, in black). The shape, however, 

was more distinct across different seeds with smaller steps size. 
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other hand, the shape of the convex polygons illustrated how the explored neighboring 

solutions were distributed around the seed and became more spread across the functional 

property space as step size increased, always converging to a shape similar to that of the 

null-path. 

 More specifically, the shape of the convex polygons, especially with smaller step 

sizes, showed distinct characteristics across seed solutions at different effort levels (Fig. 

4.4, sub-figures in gray boxes). In general, the shape was more slender near low effort 

regions (e.g. around minimum-effort solution, Fig. 4.4, convex polygon in light blue) in 

which the neighboring solutions mainly varied in stability. The shape gradually changed 

to be more flat towards higher effort levels (e.g. around maximum-effort solution, Fig. 

4.4, convex polygon in black) where the change in functional property occurred mostly in 

effort. Here, we describe the details of the local landscape from four representative seed 

solutions at varying effort levels characterized with radial distance ( r ) and angle ( ): the 

minimum-effort solution, the first stable solution, locally most stable solution (inflection 

point of the null-path), and the maximum-effort solution. Around the minimum-effort 

solution (Fig. 4.5A), convex polygons were in general slender, indicating that 

neighboring solutions were mostly more stable than the seed with small change in effort. 

The shape was more slender for smaller step size (e.g. 5% step size, features with solid 

line in Fig. 4.5A), where   was mostly concentrated around -90° (more stable with no 

change in effort). As step size increased,   became more evenly distributed between -90° 

to 0° (becoming more stable with increase in effort) where r  increased in all of these 

directions (e.g. 10% step size, features with dotted line in Fig. 4.5A). Across step size, 

there were only a few neighboring solutions near 90° (more unstable with no change in 

effort). Around the first stable solution (Fig. 4.5B), the shape of the convex polygons 

were oriented diagonally with negative slope, following the curvature of the null-path at 

this point. The neighboring solutions were distributed in all possible directions around the 

seed in the functional property space; this was true for all seed solutions on the null-path 
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Figure 4.5: Local landscape characteristics. Convex polygons (shaded region) encapsulating 

the neighboring solutions (circles on top of line segments) of selected seed solutions. Around the 

minimum-effort solution (A), convex polygons were slender, where the neighboring solutions 

were distributed mostly near -90° (more stable region with almost no change in effort). The shape 

was more slender for smaller step size (e.g. 5% step size, solid line), where distance (r) was 

greater as step size increased (e.g. 10% step size, dotted lines). Few neighboring solutions existed 

near 90° (more unstable with no change in effort). Around the first stable solution (B), convex 

polygons were diagonally oriented. The neighboring solutions were distributed in all possible 

directions around the seed in the functional property space, but concentrated near -45° (becoming 

less stable with decrease in effort) and 135° (becoming more stable with increase in effort). 

Around the most stable solution (C), convex polygons were round, spanning all possible 

directions in the functional property space (from -180° to 180°). Around the maximum-effort 

solution (D), convex polygons were mostly flat, where the neighboring solutions were highly 

concentrated near -180° and near 180° (decrease in effort but with small changes in stability). 
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except the minimum- and maximum-effort solutions. The majority of the neighboring 

solutions, however, were concentrated around -45° (becoming less stable with decrease in 

effort) and 135° (becoming more stable with increase in effort). Around the most stable 

solution (Fig. 4.5C), the shape of the convex polygons were generally round spanning all 

possible directions in the functional property space (from -180° to 180°), where distance 

r was more consistent across direction   for smaller step sizes (e.g. 5% step size). 

Consistently across step sizes, r could be greater in directions from -90° to -180°, 

indicating that neighboring solutions could reach out further to more unstable regions. 

Around the maximum-effort solution (Fig. 4.5D), the shape of the convex polygons was 

mostly flat, where neighboring solutions decreased in effort but with small changes in 

stability. Because no solutions can have greater effort than the seed,   could only span 

from 90° to 180°, and -180° to -90°. However,   was highly concentrated near -180° and 

180° consistently across step sizes, where r  increased with increasing step size (e.g. 

compare 5% and 10% step size).  

 Step size determined whether different values of effort and stability were found 

by the neighboring solutions in functional property space for a given seed in most cases. 

Overall, for 48 of 51 seed solutions, both effort and stability of the neighboring solutions 

were different across different step size (p<0.05). For one seed solution with E = 2.76% 

and S = -0.0066, stability was not different (p=0.025), and for two seed solution with E = 

37.8% and S = -2.30, and E = 40.2% and S = -2.29, effort was not different (p=0.023 and 

p=0.200, respectively) across step size. 

 However, multiple comparisons across step sizes (α=0.05, with a Bonferroni 

correction) of the differences in effort and stability level of the neighboring solutions 

from the seed had different characteristics depending on the locations of the seed solution 

in the functional property space (Fig. 4.6). In terms of effort, solutions with more distinct 

levels of effort were discovered across different step sizes for seeds near low and high 

effort regions (Fig. 4.6A). For example, effort levels of the neighboring solutions around 
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the minimum-effort solution with 1, 2, 5, and 10% step size were significantly different 

(p<0.05) from those with 25, 50, and 100% step size, whereas those with 25, 50, and 

100% step size were different from all other step sizes; this was same for the first and the 

most stable solutions (Fig. 4.6A). On the other hand, for an intermediate seed with 

E = 37.8% and S = -2.30, effort levels of the neighboring solutions were not significantly 

different from each other for any step size. In terms of stability, solutions with more 

distinct levels of stability were discovered across different step sizes for seeds at lower 

effort regions and less distinct towards high effort regions (Fig.4.6B). For example, 

stability levels of the neighboring solutions around the minimum-effort solution found 

were significantly different across step sizes (p<0.05) except for 25% and 50% and  

 

 

Figure 4.6: One-way ANOVA multiple comparison across step size. Difference in effort (A) 

and stability (B) level of the neighboring solutions to the seed compared across step sizes. Only 

statistically significant (p<0.05) comparisons are shown in blue (i.e., otherwise not significant) or 

statistically insignificant (p>0.05) comparisons are shown in red (i.e., otherwise significant). For 

seed solutions at relatively low-effort region (around <10%), effort levels of the neighboring 

solutions found with small step sizes (e.g. 1, 2, 5, and 10%) were not different from each other 

(e.g. min-effort, first stable, and most stable solutions). Neighboring solutions with more distinct 

stability level were found for seed solutions in low-effort region (e.g. min-effort solution). For 

seed solutions at relatively high-effort region (around >30%), stability levels of neighboring 

solutions were not different from each other across step sizes, except for the 100% step size (e.g. 

max-effort solution). 
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between 50% and 100% step size (Fig. 4.6B, min-effort solution). However, beyond the 

seed solution with E = 37.8% and S = -2.30, stability levels found with only 100% step 

size were different from all other step sizes (p<0.05), which was also true for the 

maximum-effort solution (Fig. 4.6B, max-effort solutions).  

 

4.3.3 Global landscape across effort level 

 Two-way ANOVA (step size x seed) showed that seed solutions at different levels 

of effort determined whether solutions with different effort and stability were explored by 

the neighboring solutions (p<0.05 with Bonferroni correction). 

 Sensitivity of stability to change in muscle activity for the solutions on the null-

path varied globally across effort level in the functional property space (Fig. 4.7). In 

general, sensitivity of stability to change in muscle activity was greater in the low-effort 

 

 
Figure 4.7: Sensitivity. Sensitivity of stability to change in muscle activation. Sensitivity of 

stability to change in muscle activation was greater in low-effort region. For example, sensitivity 

on average (black solid line) was highly negative, however with large variability (standard 

deviation in red error bars). This indicates that very small changes in muscle activation may cause 

large decrease in stability, i.e., increased stability. In contrast, stability was nearly insensitive 

(zero) to changes in muscle activation in high-effort region, e.g. beyond effort region greater than 

10%. This means that for stable solutions with high effort, it is difficult to induce any change in 

level of stability by varying muscle activations. Sensitivity calculated using step sizes greater than 

1% had diminishing effect only near small effort region (gray box). Sensitivity calculated using 

2%, 5%, and 10% step size are shown on top, up to 5% effort level. 
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 region, indicating that small changes in muscle activation may cause large difference in 

resulting stability. In contrast, stability was nearly insensitive to changes in muscle 

activation in the high-effort region, suggesting that for stable solutions with high effort, it 

is difficult to induce any change in stability by varying muscle activation. More 

specifically, for seed solutions that were in very low-effort region (<1%), sensitivity had 

very large negative values on average (Fig. 4.7, black solid line), but with large 

variability (Fig. 4.7, standard deviation in red error bars). Sensitivity values on average 

became positive once effort exceeded 1% and gradually approached zero with drastic 

decrease in variability near 5% effort (Fig. 4.7, gray-boxed region). Beyond 10% effort, 

sensitivity was essentially zero, with almost no variability. However, high sensitivity near 

low effort region became diminished, i.e., negative value in smaller magnitude, and 

converged to zero value with less overshoot when sensitivity was calculated using greater 

step sizes (Fig. 4.7, sensitivity calculated using 2%, 5%, and 10% step size in gray lines). 

 The Pareto front, defined by all of the solutions examined in this study, illustrated 

an explicit trade-off in optimality for minimizing effort while maximizing stability (Fig. 

4.8). The heuristic search for a global maximum-stability solution was terminated after 

144 iterations, and reached at S=-3.56 and E=20.2% (Fig. 4.8, ‘x’ in green). The Pareto 

front generated between the minimum-effort solution (Fig. 4.8, ‘x’ in light blue) and the 

maximum-stability solutions reflected a reciprocal relationship (Fig. 4.8, bold black line) 

similar to the null-path between the minimum- and maximum-effort solutions (Fig. 4.8, 

white dotted line), where it closely followed the null-path near very low effort region. 

However, the Pareto front was more stable, i.e., lower S, at lower effort levels.  

 Increased co-activation was not always stabilizing; therefore effort may not 

provide sufficient stability information. The most unstable solution found heuristically 

had S = 50.3 and E = 31.0%. Search parameters (e.g. initial seed, stop criteria) were 

manually adjusted due to the bumpy landscape in functional property space with many 

local extrema. Nevertheless, multitudes of such unstable solutions with effort higher than 
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Figure 4.8: Pareto front. Pareto front illustrating explicit trade-off between effort and stability. 

Global maximum-stability solution (‘x’ in green) was found with heuristic search. The Pareto 

front (bold black line) generated between the minimuim-effort solution (‘x’ in light blue) and the 

global maximum-stability solution reflected the reciprocal relationship between minimizing effort 

and maximizing stability. The Pareto front reached more efficient and more stable regions 

compared to the null-path between the minimum- and maximum-effort solutions (white dotted 

line). Among all solutions examined, solutions near the Pareto front (e.g. more stable than the 

min-effort solution and more efficient than the max-stability solution) are shown with gray dots.  

 

the minimum-effort solution demonstrated that increased effort can be sometimes 

destabilizing and does not always reflect the trade-off between effort and stability. 

 

4.3.4 Redundancy in solutions with equivalent functional properties 

 Multiple solutions can have similar functional properties, e.g. low effort and near-

maximal stability.  Substantial redundancy was observed in spatial structures of muscle 

activation patterns that are close in functional property space, e.g. low effort and near-

maximal stability. For 105 solutions that were nearest to the local maximum-stability 

solution on the null-path between the minimum- and maximum-effort solutions had E of 

14.9±0.314% and S of -2.33±0.108. However, how such functional properties were 
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achieved in terms of muscle pattern could be vastly different. Angle difference in muscle 

activation patterns of these 105 solutions to the local maximum-stability solution was 

15±10° and ranged from 0.63° to 35°. The range in activation level in each of the 31 

muscles was 38±14% of the feasible range. Interestingly, the way in which these 

solutions achieved stability through co-activation at the joints was similar. The majority 

of co-activation occurred at the ankle: co-activation index for ankle extension was 

121±16, compared to 14±1.9 and 3.4±0.57 and for hip flexion and knee extension, 

respectively. Nevertheless, solutions that were similar in functional property could be 

achieved by different type of co-activation across joints. For example, one solution (e.g. 

ACT1) that was 26.5° from the local maximum-stability solution achieved S of -2.25 

with co-activation index 18.1, 4.73 and 94.4 at hip, knee and ankle extension, whereas 

another solution (e.g. ACT2) with 28.6° cosine angle achieved S of -2.54 with co-

activation index of 12.1, 3.68 and 167.4 at hip, knee and ankle extension. The muscle 

activation patterns differed across these two solutions. For example, activation of vastus 

medialis (knee extensor) was absent and activation level of gluteus minimus (hip flexor) 

and sartorius (hip and knee flexor) was very low in ACT2 compared to ACT1. On the 

other hand, activation level of tibialis anterior (ankle flexor) was high in ACT2, but very 

low in ACT1. 

 

4.4 Discussion 

 Here, we used a novel computational framework to explicitly map out trade-offs 

between effort and intrinsic stability in a redundant muscle activation space for an 

isometric force production task. In contrast to current modeling approaches that only 

examine an optimal solution with respect to single criterion (Anderson and Pandy 2001b; 

Crowninshield and Brand 1981; Thelen and Anderson 2006; Todorov 2004; Todorov and 

Jordan 2002), our framework seeks to explore a multitude of solutions and evaluates 
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them in terms of multiple functional criteria. To this end, we characterized the landscape 

of the solution space in terms of how variations in muscle activation patterns are mapped 

onto a two-dimensional functional property space of effort and stability. Thorough and 

extensive exploration of this space revealed a general reciprocal relationship between 

effort and stability. More importantly, the nature of functional changes that can be made 

by altering muscle activation patterns depended on the location of the current solution in 

functional property space and the size of the deviations in muscle activity. In particular, 

the sensitivity of stability to changes in muscle activation differed between solutions with 

low and high effort. Sensitivity provided a measure of how difficult or easy it is to find a 

new solution with altered functional properties. Our framework reveals the way in which 

changes to a given muscle activation pattern result in functional changes in performing 

the same task. Thus, it can be used to examine possible variations in muscle activation 

patterns for a given motor task and predict their functional implications in various 

contexts. Ultimately, it may explain individual differences in finding a new motor 

solution with different functional properties, e.g. more stable or efficient, which has 

important implications for motor learning in general and rehabilitation for individuals 

with pathological motor patterns. 

 The high sensitivity of stability to changes in muscle activity in the low-effort 

region demonstrates that stable sub-optimal solutions can be “easily” found near the 

globally optimal minimum-effort solution, which may be unstable. Optimal minimum-

effort muscle activation patterns result in the least amount of co-activation across muscles 

(Collins 1995; Herzog and Leonard 1991) which may provide only provide low levels of 

joint stiffness (Gomi and Osu 1998; Hu et al. 2012; Liao et al. 2013; Milner and Leger 

1995). Therefore, a musculoskeletal system using effort-wise optimal solutions are likely 

to be dynamically unstable in response to perturbations, as shown here and elsewhere 

(Bunderson et al. 2010; John et al. 2013). However, we found that small variations in the 

global minimum-effort solution can result in large increase in stability. This suggests that 
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it is relatively “easy” to find an intrinsically stable solution with near-minimum effort 

even with relatively conservative exploration, Thus individuals who perform a task in an 

energetically optimal way such as highly trained athletes may have adapted to such near-

optimal motor solutions from stable solutions. Subtle difference in cost in terms of effort 

or metabolic energy, however, may not be distinguishable in experimentally measured 

muscle activity or from metabolic cost, and thus may have been regarded as optimal 

(Alexander 1989). 

 On the other hand in high-effort regions, the low sensitivity of stability and to 

changes in muscle activation suggests that that making functional changes can be 

“difficult” when searching from a high-effort solutions. High cost in terms of effort 

results co-contracting antagonistic muscles that stiffen the joint. This may be the most 

intuitive feed-forward mechanism of stabilization in tasks, such as maintaining limb 

(McIntyre et al. 1996; Mussa-Ivaldi et al. 1985; Perreault et al. 2008; Selen et al. 2009) or 

upright trunk posture (Gardner-Morse and Stokes 1998; McGill et al. 2003), or reaching 

(Franklin et al. 2008; Osu et al. 2002). Accordingly, voluntary or involuntary use of more 

stable solutions is commonly observed in the presence of environmental instability 

(Franklin et al. 2004). Increased stability at the cost of increased effort is also commonly 

observed in individuals with low back pain (Hansen and Anders 2014; Jones et al. 2012). 

However, prolonged use of costly solutions requiring high effort can be problematic 

because it may induce muscle fatigue or joint loading, which be detrimental to dynamic 

stability (Granata and Gottipati 2008; Granata and Marras 2000). Interestingly, our 

results revealed potential barriers to changing functional properties in high-effort 

solutions by varying muscle activation patterns. Deviations in muscle activation patterns 

in the high-effort region hardly affected stability and also were limited in reaching to 

lower-effort regions. The low sensitivity of high-effort solutions may explain difficulties 

commonly experienced in training individuals with neurological disorders (Fisher and 

Sullivan 2001; Fisher et al. 2008; Will et al. 2004), low back pain (Dubois et al. 2011; 



 87 

Stokes and Gardner-Morse 2001) who often exhibit high-level of  co-contraction that can 

be irrelevant to the task demands. 

 Substantial redundancy across solutions that have similar functional properties 

may account for intra- and inter-subject variability in muscle activation patterns that 

produce similar behavioral output. Our results demonstrate a bumpy landscape with many 

local minima where muscle patterns with similar effort and stability can vary 

significantly from each other even near various optima, e.g. minimum effort or maximum 

stability solutions. This may explain observed variability in muscle activation patterns 

used across individuals that achieve the same task with qualitatively similar performance 

(McGill et al. 2003). For example, in standing balance task in cats, different animals were 

able to maintain balance using the same extensor force vector, as used in this study. 

However, the experimentally-recorded muscle activity used to produce the same force 

vector varied across animals (Torres-Oviedo et al. 2006). A large set of functionally 

equivalent solutions is consistent with natural variability in many neuromotor solutions 

(Klein et al. 2010). Although such motor solutions are not necessarily strictly optimal, 

they may represent families of solutions that are “good enough” for a given task (Loeb 

2012). 

 Our current approach of mapping the redundant solution space in terms of 

functional properties relevant to the task can be useful tool for describing the exploratory 

behavior during motor learning. When performing the same task repeatedly, individuals 

learn to use solutions with a better functional properties. For example, humans adapt to 

environmental instability by adjusting the mechanical impedance of limb endpoint along 

the direction of instability (Krutky et al. 2013; Selen et al. 2009). A redundant solution 

space provides a multitude of muscle activation patterns that have similar functional 

properties, and individuals may exploit such allowed variability to discover new patterns 

during motor learning (Pekny et al. 2015; Tsianos et al. 2014; Wu et al. 2014). Similar 

exploratory processes of motor learning have been shown in studies with other species 
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such as song birds (Sober et al. 2008; Tumer and Brainard 2007), rodents (Costa 2011) 

and primates (Mandelblat-Cerf et al. 2009 ; Takikawa et al. 2002). This further implies 

that variability in muscle activation patterns cannot be simply attributed to noise (see 4.B 

Appendix: Effect of signal-dependent noise) inherent in the sensorimotor system (Harris 

and Wolpert, 1998), but may reflect individual differences in selection amongst the 

abundance of functionally equivalent motor solutions (Latash 2012; Loeb 2012). By 

evaluating motor solutions with respect to functional properties relevant to the task, the 

landscape over which one searches heuristically to acquires a new motor solution can be 

described. For example, the bumpiness of the landscape may explain why habitual versus 

optimal patterns are preferred (de Rugy et al. 2012; Ganesh et al. 2010; Hasson et al. 

2012; Kistemaker et al. 2010). Although we used two functional properties of effort and 

stability, other multi-objective criteria can be used (see later discussion), such as 

minimizing trajectory error, energetics (Krishnaswamy et al. 2011), and ability to 

generalize (Thoroughman and Shadmehr 2000; Tsianos et al. 2014) or switch (Zenzeri et 

al. 2014) across motor tasks. 

 The ability to make desired functional changes in muscle activation patterns for a 

given task could be further limited by other biomechanical or neural constraints. When 

searching for neighboring solutions in this study, we allowed random changes to muscle 

activation patterns assuming independent control of each muscle. Hence, the range space 

of the neighboring solutions spanned all theoretically-possible directions in the null 

space. The corresponding area in the functional property space also reached in all 

possible directions for most sub-optimal cases, meaning that any direction of changes in 

functions were possible by varying muscle activation. However, the control of muscle 

may not be so independent. First, biomechanical constraints in musculoskeletal system 

such as tendinous connections (Valero-Cuevas 2005; Valero-Cuevas et al. 2007), force 

transmission through connective tissues (Huijing 2003; Maas and Sandercock 2010), or 

mechanical coupling of joints (Debicki and Gribble 2004; Gribble and Ostry 1999; van 
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Antwerp et al. 2007; Yamasaki et al. 2008) may restrict independent variations in muscle 

activation patterns and thus changes in functional properties. Second, neural constraints  

in healthy individuals, or due to pathology may affect the possible changes that can be 

made to a given muscle activation pattern. For example, individuals (d'Avella et al. 2006; 

Ting and Macpherson 2005) have more difficulty in adapting to task demands that are 

incompatible with the coordination of muscles within muscle synergies (Berger et al. 

2013). Neuromuscular impairments may further impose pathological constraints. 

Saturation in activation of muscles due to weakness (McCrea et al. 2005) or abnormal 

coupling across muscles are often present (Brunnström 1970; Dewald and Beer 2001; 

Dewald et al. 1995) in individuals with stroke. Such constraints can limit available 

muscle activation pattern for altering functional properties of the limb, and may account 

for compensatory behaviors that requires additional change in the biomechanical 

configuration (Beer et al. 2004; Beer et al. 2007; Reisman and Scholz 2006).  

 Although we examined a relatively simple task and feed-forward control of 

isometric endpoint force generation, consideration of more complex tasks or control 

mechanisms is not likely to alter our findings. Other intrinsic mechanisms such as short-

range stiffness (Cui et al. 2008; Loram et al. 2009; Rack and Westbury 1969) or stretch 

reflexes (Burkholder and Nichols 2000; Nichols 1989 ; Wilmink and Nichols 2003) may 

further contribute to limb stability (see 4.A Appendix: Altered mapping due to other 

potential mechanisms contributing to intrinsic stability). However, we predict that how 

changes in functional properties occur by altering feed-forward commands for voluntary 

tasks will not be qualitatively different if these additional mechanisms are considered. 

For example, the ease or difficulty of inducing changes to functional property of a given 

solution will still depend on where the initial solution was located and how far one 

reaches out from it. In addition, redundancy remains in that there can be many different 

ways to obtain similar functional properties. In fact, consideration of more complex tasks 

or control mechanisms adds more flexibility in terms of available motor solutions to 
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produce a functionally “better” behavior. For example, dynamic tasks such as arm 

reaching or walking requires coordination of multiple joints over time, which adds 

kinematic redundancy to how a motor goal can be achieved. On the other hand, feedback 

mechanisms contributing to early reactions in resisting external perturbations provide 

stability in the absence of volitional intervention or integrated neural correction. For 

example, long-latency stretch reflexes have been suggested as an involuntary neural 

mechanism for impedance modulation, which can be highly adaptable in context-

dependent manner (Krutky et al. 2010; Perreault et al. 2008). Such additional 

mechanisms may enable the nervous system to cope with more complicated tasks that 

may involve multiple goals (Shemmell et al. 2010). 

 Different metrics for effort and stability, or additional functional properties could 

also be considered using our method. For example, metabolic energy consumption based 

on mechanistic or phenomenological models of muscle contraction (Bhargava et al. 2004; 

Ma and Zahalak 1987) or respiratory process (Ellis et al. 2013; Huang et al. 2012)  may 

more closely represent the energetic cost relevant for many motor tasks such as walking 

(Donelan et al. 2001 ; Donelan et al. 2002 ; Ralston et al. 1976 ).  

 More behavior-based metrics for stability may better explain functional motor 

tasks. Adopting a metric of stability from classical control theory in biological systems 

can be problematic because stability in behavioral contexts often contradicts with 

mathematical definitions of stability (Hasan 2005). For example, stride-to-stride 

variability (Hausdorff 2007) or extrapolated CoM position (Hof et al. 2005) have been 

used as stability measures during walking. Dynamic postural instability has also been 

examined using a center of mass time-to-contact measure (Hasson et al. 2008). 

Nevertheless, mathematical measures from systems control theory have been shown to 

predict local dynamic behavior. For example, a local divergence exponent or maximum 

Floquet multipliers for orbital trajectories during walking have been used to examine 

whole-body stability (Bruijn et al. 2013; Dingwell and Kang 2007; Kao et al. 2014; 
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McAndrew et al. 2011). The maximum Lyapunov exponent has also been extensively 

used for examining the stability of the lumbar spine (Dupeyron et al. 2013; Graham et al. 

2014; Granata and Gottipati 2008). Stability radius, which is a single measure that 

represents the relative sensitivity of eigenvalues to system parameters based on pseudo-

spectra analysis has been used to explain selection of different biomechanical 

configurations during standing balance (Bingham and Ting 2013). Because tasks 

considered in this study, i.e., production of endpoint force during quiet standing, can be 

considered quasi-static, the maximum real part of the eigenvalues of linearized system 

matrix closely predicts local dynamic behavior of the nonlinear system (Sohn 2011). 

More importantly, the novelty is in that our stability metric accounts for how active 

muscles contribute to whole limb dynamics, which is readily applicable to systems that 

incorporate muscle activation dynamics, elasticity in tendons, and feedback control 

(Bunderson et al. 2012). In contrast, previous approaches using torque-controlled systems 

cannot examine contributions of muscle activity to stability. 

 In conclusion, our approach serves as a first step in establishing methodology to 

explore the functional landscape of a redundant motor solution space. In addition to 

revealing principles by which a muscle activation pattern with desirable functional 

properties can be found, it has important implications in many aspects. First, our 

framework can be generalized to other musculoskeletal systems and tasks, used to design 

with experiments. For example, motor solutions for dynamic tasks such as arm reaching 

or orbital trajectories during walking (Holmes et al. 2006) can be evaluated with respect 

to relevant functional criteria. Further, an experiment can be designed to explicitly test 

whether humans exploit variability in varying task demands and varying environmental 

stability. Second, being able to find and use stable muscle activation patterns in muscle-

driven musculoskeletal models may be beneficial in forward dynamic simulations. 

Whereas unstable muscle activation patterns drive the system to deviate from desired 

states rapidly under numerical perturbations (Higginson et al. 2006; Risher et al. 1997), 
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stable muscle activation patterns may allow system dynamics to tolerate such 

perturbation and facilitates optimization. Intrinsic stability of musculoskeletal dynamics 

conferred by muscle activation pattern can be also useful for testing neural feedback 

controllers that regulates a perturbed behavior on top of more physiological muscle tone. 

Finally, understanding the possible variations in motor solutions and their functional 

consequences has important implication for rehabilitation. By using computational tools 

to predict functional outcomes of possible alterations to given motor solutions, we may 

gain valuable insights to explaining individual differences in strategies, learning, or 

compensation in neuromuscular disorders. This is especially critical for developing novel 

and effective patient-specific treatments and rehabilitation strategies.  
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4.A Appendix: Altered mapping due to other potential mechanisms  

contributing to intrinsic stability 

 For the 51 solutions on the null-path ( th

null

ne ) between the minimum and the 

maximum effort solutions, we investigated how altered condition force-length 

relationships and other possible intrinsic mechanisms that can contribute to stability 

affect the mapping in functional property space.  

 First, we computed a set of solutions that constituted a null-path but with a 

modified model where fiber lengths of all muscles were set at 95% optimal fiber length, 

i.e., the plateau region of the force-length relationship curve (Zajac 1989) and thus more 

prone to destabilization. Note that these solutions are not the same as the original 

solutions, because the scaling matrix for isometric force generation ( AFLF ) in Eq. 4.2 is 

different. However, each of the 51 solutions in the two models (65% and 95%) was very 

similar (cosine of the angle between the two muscle activation vectors was 0.998±0.002 

across 51 solution pairs). These solutions were mapped on the functional property space, 

where the effort was scaled to that of the maximum found in the 65% model.  

 Secondly, stability of the original 51 solutions on the null-path was evaluated in a 

model implemented with a short-range stiffness (SRS) in muscles (Cui et al. 2008; Hu et 

al. 2011) to represent the instantaneous force-length behavior upon muscle stretch. 

However, the SRS model  was slightly modified because we assumed tendons to be 

inelastic in the static mapping in Eq. 4.2. Hence, our SRS model represented the 

instantaneous stiffness solely from the muscle, assuming infinite stiffness in the tendons 

in series with the muscle. As a result, we used a force-relationship curve with constant 

slope (value was adopted from that estimated in Cui et al., 2008) that was significantly 

greater than that of the generic force-length relationship curve. In addition, we included 

the force-velocity relationship that provided damping as in the generic model because its 

contribution may be large in the numerical process for linearization.  



 94 

 Third, we used another model with autogenic length feedback with no delay in 

each muscle fiber (Bunderson et al. 2010; Burkholder and Nichols 2000), and evaluated 

the stability of the same 51 solutions from the original null-path. Here, on top of the 

constant activation in the 51 solutions, each muscle received an additional neural input 

that was proportional to the change in muscle fiber length. We adopted the length 

feedback gains for each muscle from a previous study (Bunderson et al. 2010) which 

used data from ramp-and-hold experiments in decerebrate cats (Burkholder and Nichols 

2000; Nichols 1989 ; Wilmink and Nichols 2003). 

 The stability of the null-path between the minimum- and maximum-effort 

solutions could be altered when the model was varied with mechanisms affecting the 

intrinsic stability conferred by given muscle activation pattern (Fig. 4.A). For the 95% 

 

 

Figure 4.A: Null-path in altered conditions. Change in the null-path between the minimum- 

and maximum-effort solutions when other potential mechanisms affecting intrinsic stability were 

considered. Solutions on the original null-path (black solid line) were shifted towards more 

unstable regions when provided with unstable force-length relationship, e.g. 95% optimal fiber 

length on the force-length (f-l) relationship curve (gray dotted line). On the other hand, adding 

intrinsic stabilizing mechanisms such as short-range stiffness (orange dotted line) or autogenic 

length feedback (blue dotted line) shifted the solutions towards more stable region. 
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model in which all muscles operated on the plateau region of the force-length relationship 

curve, the null-path was shifted up in the functional property space (Fig. 4.A, gray dotted 

line), i.e., solutions on the null-path became more unstable. For the 95% model, solutions 

on the null-path were always unstable (S>0) including the minimum-effort solution with 

S=21.1 (compare to S=18.9 for the 65% model) and the maximum-effort solution with 

S=3.92 (compare to S=-2.25 for the 65% model).  

 When other intrinsic stabilizing mechanisms such as short-range-stiffness (SRS) 

and autogenic length feedback were considered, the null-path was shifted down towards a 

more stable region in the functional property space. For the SRS model (Fig. 4.A, orange 

dotted line), the minimum-effort solution was still unstable (S=11.4) but more stable than 

the 65% model using the generic force-length relationship curve, with S=18.9. However, 

the null-path entered the stable region with a sharp change and solutions on the null-path 

became stable. The local minimum for stability S=-18.3 occurred at E=1.80% level, and 

the null-path flattened out until it reached to S=-16.2 for the maximum-effort solution. 

The null-path for the model with an autogenic length feedback (Fig. 4.A, blue dotted line) 

was always within in the stable region, where the minimum-effort solution was at S=-

7.07. Stability was further improved until it reached the local minimum for stability S=-

23.5 which occurred at E=1.14%, similar to the SRS model. However, beyond the local 

minimum, solutions on the null-path soon became less stable, even less stable than the 

minimum-effort solution, and gradually reached to the maximum-effort solution which 

was at S=-3.43.  

 In summary, we investigated how the mapping of the set of solutions along the 

null-path between the global minimum- and maximum-effort solutions is altered when 

other mechanisms potentially affecting stability were considered. As expected, solutions 

shifted towards more unstable region with unstable force-length relationships, and 

towards more stable region with adding intrinsic stabilizing mechanisms. 
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4.B Appendix: Effect of signal-dependent noise 

 In order to investigate the possible trade-offs between effort and robustness of 

solutions to noise, stability, and task performance, we selected subset of muscle 

activation patterns from the perturbed patterns generated across seeds and step size. Note 

that the perturbed patterns (
pert

e ) in Eq. 4.9 do not meet the torque requirement for 

producing the specified force (Eq. 4.2), and thus are not “true” solutions for the task. 

Nevertheless, these patterns can be considered as solutions contaminated by signal-

dependent noise (Harris and Wolpert 1998), when the variance of the noise (
pert seed

e e ) 

across muscles have a proportional relationship to the effort level of corresponding seed 

solution. A subset of these perturbed patterns were used to further investigate 

implications to signal-dependent noise (SDN). 

 Among all of the perturbed patterns across all seeds and different step sizes, we 

selected muscle patterns that approximately met the criteria that variance within the noise 

(
pert seed

e e ) is proportional to effort where mean is close to zero: 

 2( 0, )
pert seed

w e e N    . where 2 ( )
seed seedT seedk e e kE    (4.B.1) 

The proportionality constant k and threshold for deviation from zero mean were manually 

chosen (k = 1.36%; threshold: 0.075) so that these patterns were sampled from all 51 

effort levels of the seed on the null-path between the minimum- and the maximum-effort 

solutions. More than 10 solutions were selected for all 51 levels of effort. Stability of 

these patterns were evaluated with the metric (S). Task error was defined as the 

deviations in the endpoint force vectors from the target force direction, simulated using 

the selected patterns as input. For each effort level, we further investigated whether the 

task error due to SDN can be correlated with stability. 

 An additional trade-off for minimizing effort was found for robustness in 

production of the endpoint force in the presence of SDN. Solutions on the null-path from 
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the minimum-effort to the maximum-effort solution no longer produced the specified 

endpoint force when contaminated with SDN. The extent to which endpoint force vectors 

deviated from the original vector increased with effort level. In general, error in the task 

space as measured by force angle deviation from the desired direction increased with the  

levels of noise (Fig. 4.B, left). All muscle activation patterns were unstable after signal-

dependent noise injection (S>0), and level of instability tended to increase with effort 

level (Fig. 4.B, right). However, there was substantial variability in both the task error 

and stability across different muscle activation patterns selected for a given effort level 

(Fig. 4.B, shaded area; ±standard deviations in red lines, where values for actual muscle 

activation patterns are shown with gray dots). Thus, even for muscle activation patterns 

with high level of noise, both task error and stability could be similar to ones with low 

level of noise. 

 However, task error (force angle deviation) and stability across noise-injected 

muscle activation patterns at a given effort level were negatively correlated. Among 51 

effort levels, negative correlations between task error and stability (p<0.05) were found in 

29 effort levels with R
2
 = 0.20±0.07 (R

2
 = 0.14±0.09 across all 51 effort levels).  

 

 
Figure 4.B: Task error and stability with SDN. Error in the task space in terms of force angle 

deviation to target force direction (left) and stability (right) with signal-dependent noise (Harris 

and Wolpert, 1998). In general, both task error and instability (positive S) increased with level of 

effort, and thus the level of noise. However, variability was large in all effort levels (black bold 

line: mean, shaded area in red: ±std, gray dots: actual muscle activation pattern). 
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 These results imply that task error due to signal-dependent noise may not always 

result in destabilization. For example, although all muscle activation patterns themselves 

were unstable, actual values of S had decreased (i.e., became “less unstable”) in many 

muscle activation patterns compared to the seed solution, especially in low-effort regions. 

Further, there may be muscle activation patterns that deviate from a solution inducing 

only small errors in the task space as well as providing increased stability. Although such 

case may be very rare from the limited set of selected muscle activation patterns 

examined here, it can be further speculated that noise may not always be detrimental in 

neuromotor system (Herzfeld and Shadmehr 2014; Wu et al. 2014), provided that large 

redundancy exists. 
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4.C Appendix: Analysis in muscle activation space 

 In order to characterize the changes that occurred in muscle activation patterns 

between the perturbed patterns (
pert

e ) to the projected solutions (
proj

e ), we examined the 

changes in distribution and range of activation levels, cosine of the angle between 

solutions, and the dimensions of each set of 200 patterns for given step size and seed. 

However, to simplify the comparison, we chose 5 seeds that were spaced approximately 

25% apart in effort level including the minimum and the maximum effort level, and step 

sizes of 1, 10 and 100%. In particular, the effect of the projection was examined mainly 

with respect to step size, and values for comparison were averaged across seeds at 

different effort levels for a given step size.  

 To characterize how the normal distribution in the perturbed patterns change by 

projection, we categorized the distribution of activation in the projected solutions into 

“normal distribution”, “condensed at lower limit”, “condensed at upper limit”, 

“condensed at both limits”, based on the percentiles of activation in the projected 

solutions. In order to measure the extent to which distribution of activation in the 

projected solutions resembled the distribution of activation in the perturbed patterns, we 

computed R
2
 between the percentiles of each set of 200 activation levels in perturbed 

patterns and projected solutions. Further, for a given step size, we determined whether 

distribution of activation levels in each muscle spanned the full search limit or not. 

 In order to determine the extent to which each perturbed patterns and projected 

solutions deviate from the seed in terms of vector direction, we computed the vector 

difference as cosine angle (Eq. 4.C.1) between each of the 200 patterns in each set and 

the seed solution for a given step size: 

cos

pert seed

pert seed

e e

e e






  and cos

proj seed

proj seed

e e

e e






   (4.C.1). 
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To test whether there mean difference in the cosine of the angles between perturbed 

patterns and projected solutions, we performed paired t-test with a significance level of 

α=0.05 for given seed and step size. 

 We examined the reduction in dimension as perturbed patterns were projected 

onto the solution manifold. Dimensionality was computed as the rank of the data matrix 

constructed by stacking the 200 patterns into columns (31x200). In order to test whether 

the reduction in dimension in solution space involves any correlation in terms of changes 

in of any two muscles, we computed R
2
 between all muscle pairs from the data matrix 

constructed by stacking the 200 difference patterns, i.e., difference between projected 

solutions and seed, which represented the 200 samples in the null space. 

 We found that projections of the perturbed patterns to the solution manifold 

imposed constraints in spatial structure due to net joint torque requirement. Distributions 

of activation for a muscle in the projected solutions were changed from the perturbed 

patterns, which was initially a truncated normal distribution about the seed. Overall, 

change occurred in more muscles for smaller step sizes and about the seed solutions near 

the extreme effort levels.  

 Distributions of muscle activations in projected solutions was more condensed at 

the limits (lower, upper, or both) for smaller step size, and more closely maintained the 

original normal distribution for greater step size. For example, the number of muscles 

categorized as “condensed at both limits” was 9.0±2.8 across effort levels for 1% step 

size (R
2 

= 0.94±0.04), 8.6±2.8 for 10% step size (R
2
=0.94±0.04), and 0.4±0.54 for 100% 

step size (R
2 

= 0.99±0.0002). On the other hand, number of muscles categorized as 

“normal distribution” was 3.8±0.83 across effort levels for 1% step size (R
2 

= 0.98±0.03), 

3.8±0.45 for 10% step size (R
2 

= 0.98±0.02), and 5.4±0.89 for 100% step size (R
2 

= 

0.97±0.03). R
2
 value was in general small for the “condensed at lower limit” distribution 

category. Detailed categorization of muscles based on changes in distribution from 

perturbed solution to projected solution are listed in Table 4.C.2.  
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Table 4.C.1. Categorized changes in distribution from perturbed to projected solutions 

Categorization # of muscles across effort level (R
2
 value) 

normal distribution 

3.8±0.83 for 1% step size  (0.98±0.03) 

3.8±0.44 for 10% step size (0.98±0.02) 

5.4±0.89 for 100% step size (0.97±0.03) 

condensed at lower limit 

13.8±2.6 for 1% step size  (0.65±0.23) 

14.0±2.9 for 10% step size (0.68±0.22) 

18.4±0.55 for 100% step size (0.77±0.21) 

condensed at upper limit 

4.4±2.5 for 1% step size (0.94±0.05) 

4.6±2.8 for 10% step size (0.91±0.08) 

6.8±0.45 for 100% step size (0.92±0.07) 

condensed at both limits 

9.0.±2.8 for 1% step size (0.94±0.04) 

8.6±2.8for 10% step size (0.94±0.04) 

0.4±0.55 for 100% step size (0.99±0.0002) 

 

 

 Activation level of muscles in the projected solutions less likely spanned the full 

possible range, i.e., from lower limit to upper limit, for greater step size. The number of 

muscles that spanned the full range of activation was similar for 1% and 10% step sizes, 

but was substantially smaller for 100% step sizes. Across effort levels, 17.6±3.85 muscles 

spanned the full possible range for 1% step size, 18.2±5.01 muscles for 10% step size, 

and 3.6±0.55 muscles for 100% step size.   

 Patterns became more similar to the seed solution in terms of vector direction in 

31-dimensional space. The cosine of the angle between the seed solutions and perturbed 

patterns changed from 1.93±2.34° to 1.15±1.29° across effort levels for 1% step size, 

from 15.5±16.1° to 10.2±10.3° for 10% step size, from 46.4±12.1° to 35.4±10.9° for 

100% step size in projected solutions. Differences in all conditions were significantly 

different statistically (p<0.05).  

 The dimension of the solution sets was always reduced from 31 to 25. We found 4 

sets of muscle pairs in which change in activation levels of two muscles were correlated 

and thus may contribute to reduction in dimensionality. These muscle pairs were biceps 
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femoris posterior and rectus femoris, flexor digitorum longus and tibialis posterior), 

gluteus medius and quadratus femoris), gluteus medius and sartorius (R
2
 values across 

conditions are listed in Table 4.C.2). 

 

Table 4.C.2. Muscle pairs with high correlation in projected solutions 

Muscle Pairs R
2
 across effort level p value 

biceps femoris posterior 

 and rectus femoris 

0.81±0.05 for 1% step size  
p<<0.05 in all 

conditions 
0.84±0.04 for 10% step size 

0.81±0.03 for 100% step size 

flexor digitorum longus  

and tibialis posterior 

0.38±0.10 for 1% step size  p>0.05 at min-effort 

level for 1% step size 

(p<<0.05 otherwise) 

0.45±0.04 for 10% step size 

0.40±0.04 for 100% step size 

gluteus medius  

and quadratus femoris 

0.50±0.10 for 1% step size 
p<<0.05 in all 

conditions 
0.50±0.04 for 10% step size 

0.50±0.05 for 100% step size 

gluteus medius  

and sartorius 

0.55±0.16 for 1% step size 
p<<0.05 in all 

conditions 
0.47±0.13 for 10% step size 

0.55±0.03 for 100% step size 
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CHAPTER 5 

SIGNIFICANCE 

 

5.1 Implications for computational modeling 

5.1.1 A paradigm: Models as tools for building a map on which to locate one’s 

behavior 

 The framework developed in this thesis proposes a paradigm in which detailed 

musculoskeletal models can be most useful for revealing neuromechanical principles 

underlying neural control of movement: using models to build a map that lays out 

complete range of motor solutions (or behaviors) with respect to costs, constraints, goals 

and strategies relevant to the task. The essential utility of such map is to evaluate where 

an individual’s motor solution is located and thereby infer the principles that may have 

guided such specific choice. On the same basis, different motor solutions across 

individuals or conditions can be compare, providing explanation for such variations in 

selection (e.g. in healthy individuals) or compensation (e.g. in individuals with movement 

disorders). 

 One serious critique that can be given to a particular line or research using 

musculoskeletal models is inferring muscles’ function during movement based on 

optimal predictions. “Measuring” biomechanical functions of individual muscles based 

on the exerted force on body segments (or torque at the joints) during movement is 

practically not plausible in vivo (Fleming and Beynnon 2004; Pandy and Andriacchi 

2010). Therefore, muscle forces (or activations) predicted using optimization techniques 

in musculoskeletal models are often used to infer their role during movement (Erdemir et 

al. 2007; Hicks et al. 2015). For example, the contribution of muscles to leg swing, 

propulsion or body support in terms of CoM acceleration during human walking or 
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running (Anderson and Pandy 2003; Dorn et al. 2012; Hamner and Delp 2013; Hamner et 

al. 2010; Liu et al. 2008)  have been extensively examined based on muscle activation 

patterns predicted by minimizing effort (Thelen et al. 2003). However, spatiotemporal 

discrepancy between optimal predictions and experimentally-observed muscle activity is 

often neglected (Thelen and Anderson 2006; van der Krogt et al. 2012); an optimal 

solution is merely one of many muscle activation patterns that replicate measured 

movement. Therefore, any conclusion drawn from such inferences should be taken with 

caution because they may not reflect the actual neural control, and thus may not be valid 

scientifically. For example, optimal solutions may deviate substantially from the 

pathological muscle activation patterns observed in impaired movements such as crouch 

gait in children with cerebral palsy (Steele et al. 2012a; Steele et al. 2010; Steele et al. 

2012b) or hemiparetic gait in individuals with stroke (Jansen et al. 2014).  

 The proposed paradigm suggests an alternative approach: rather than making 

predictions based on a particular assumption (e.g. optimality) and comparing it to actual 

behavior (e.g. measured EMG), models can be used to identify and explicitly map out the 

window in which a viable solution may lie. The first step here is to identify the full range 

of possible solutions that satisfy the biomechanical task constraint (chapter 1). Previously, 

musculoskeletal models have been used to identify the set of feasible solutions in motor 

output space, e.g. biomechanical variables such as limb endpoint force (Valero-Cuevas 

2009). For example, feasible forces that can be generated at the endpoint have been 

shown in a human lower limb (Gruben et al. 2003; Schmidt et al. 2003) and finger 

(Valero-Cuevas 2000; Valero-Cuevas et al. 1998), and a cat hindlimb (McKay et al. 

2007). Similarly, the set of all feasible acceleration that muscles can induce at the joints 

or and hand had been examined in human lower limb (Kuo and Zajac 1993) and whole-

body models (Khatib et al. 2009). A need for applying this type of explorative approach 

at a muscle level has recently been recognized. For example, possible range of muscle 

fiber length, which is one of the key determinants of a muscle’s mechanical capability, 
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has been examined in walking and running (Arnold and Delp 2011). In a few recent 

studies, the feasible set of solutions for a given movement in muscle activation space has 

been investigated (Kutch and Valero-Cuevas 2011; Martelli et al. 2015; Martelli et al. 

2013; Simpson et al. in review; Sohn et al. 2013); see Appendix A for Simpson et al., in 

review. 

 The most significant potential of the proposed paradigm is in its ability to provide 

a range of predicted motor solutions to which experimentally-observed behavior can be 

compared. A motor solution an individual currently uses is a product of the selection 

process which may involve various costs, constraints, goals, and strategies (Loeb 2012; 

Tsianos et al. 2014). Experimental evidence suggests that in motor learning, individuals 

exploit the allowed variability, actively exploring the vastly redundant solution space to 

efficiently search for a viable solution (Wu et al. 2014). Detailed musculoskeletal models 

can be used first as a substrate on which a multitude of solutions that vary in their 

properties regarding various certain costs, constraints, goals, or strategies can be 

generated and evaluated (chapter 2 and chapter 3). By placing the experimentally-

observed motor solution (or behavior) on this map, the properties of particular selections 

can be examined quantitatively and compared across individuals and conditions. Such 

investigation further provides viable bases on which one can infer the principles by which 

a specific solution was selected over the other.  

 The following studies illustrate examples of how conceptually similar approach 

had been used to answer important questions of motor control: Bingham et al., (2011) 

used a planar biomechanical model of standing balance to investigate how altered 

biomechanics (e.g. stance width) affects the range of possible feedback gains to stabilize 

the system in frontal plane (Bingham et al. 2011). Specifically, by mapping out the full 

range of stabilizing feedback gains with respect to stance width, they could explain the 

changes in behavior in both healthy and neurologically impaired individuals. Hu et al., 

(2012) explored biomechanical constraints on the ability to modulate endpoint stiffness 
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across a variety of conditions using an upper extremity model (Hu et al. 2012). The 

resulting functional map could explain the limited voluntary modulation of endpoint 

stiffness observed in experiments (Perreault et al. 2001). Franklin et al., (2013) showed 

that subjects’ selection of limb posture in an unstable virtual environment reflected 

solutions that ensured stability in the presence of motor noise while maximizing energetic 

efficiency, which was mapped and evaluated across the work space using 

neuromechanical simulations (Franklin et al. 2013). Similarly, Liao et al., (2014) showed 

that selected postures could be explained by the cost map that incorporates the stability 

criterion evaluated using a musculoskeletal model, and built across the joint space (Liao 

et al. 2014). Further, a cost map for a different force field could predict the variability of 

arm postures observed in experiments (Trumbower et al. 2009).  

 Meanwhile, a range of predicted motor solutions or behavior in a model may not 

always encompass physiological behavior because models are too “strict” in that 

variations in parameters are not allowed, unless intended. Such rigidity results, inevitably, 

from modeling effort to mathematically and deterministically representing physiological 

features of the neuro-musculoskeletal system with inherent variability and uncertainty 

(Higham and Biewener 2011; Lieber and Ward 2011). For example, many muscles insert 

into a broad area on the bone, or have varying moment arm due to functional and 

architectural complexity that cannot be simply modeled with cable actuators (Ting and 

Chiel in press; Yeo et al. 2011; Yeo et al. 2008). Hard constraints on biomechanical 

parameters in a model has important implications when linking model predictions to 

experimental data. In particular, experimentally-derived control signals, e.g. muscle 

activation pattern, may produce substantial errors in the task space (de Rugy et al. 2013). 

Vice versa, flexible recruitment in experimental muscle activity may not be present in 

predicted muscle activation patterns (Steele et al. 2015). Sensitivity analysis has been the 

gold standard validating the predictions and was applied in studies using musculoskeletal 

models (Hicks et al. 2015), or in studies explicitly testing the validity of such approaches 
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(Ackland et al. 2012; De Groote et al. 2010). Nevertheless, they still suffer from the 

possibility of lacking relevance to actual neural control if results were predicted using 

muscle activation patterns based on single optimal criterion, as discussed above.  

 An approach that is more coherent with the paradigm suggested here has been 

proposed more recently. This framework seeks to explicitly explore the range of feasible 

predictions of a model itself to mirror the distribution of experimental data (Santos et al. 

2009; Valero-Cuevas et al. 2009). In addition to systematic exploration of the parameter 

space, its use can be extended for testing neural control hypotheses (Kutch et al. 2008). 

Adding to the proposed paradigm which gives range of predicted behaviors using an 

individual model, exploration of the possible variations in the model itself may provide 

more abundant space to represent a behavior, and thus lend more relevance to the 

experimental data that it is to be overlaid with. 

 

5.1.2 Finding muscle activation patterns that provide stability to musculoskeletal 

dynamics 

 One practical implications of computational methods developed in chapter 4 is 

that more stable solutions can be found for forward dynamic simulations. Stable solutions 

may confer robustness to sources of instability such as numerical round-off error or noise 

in simulations (Alexandrov et al. 2005; Higginson et al. 2006; Risher et al. 1997). 

Intrinsic stability is often lacking in simulations using muscle-driven musculoskeletal 

models, in which case the system states deviate catastrophically from desired states under 

numerical perturbations (Bunderson et al. 2010; John et al. 2013). Being able to find and 

use stable muscle activation patterns in muscle-driven forward dynamic simulations is 

beneficial, especially for dynamic optimizations in inherently unstable tasks such as 

walking or running (Anderson and Pandy 2001a; Neptune 1999). Dynamically stable 
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initial conditions conferred by active muscles in forward simulations may allow system 

dynamics to tolerate such instability and facilitates the search. 

 The method used here to evaluate local dynamic stability conferred by active 

muscles can be extended, in general, to dynamic tasks such as walking or arm reaching. 

Although I examined local dynamic stability of the cat hindlimb system linearized with 

respect to a static equilibrium point (chapter 4), linearized system dynamics at any 

instance predicts the local response characteristics of the states with respect to the 

original dynamic equilibrium point on the movement trajectory. A similar approach using 

systems theory has been used to quantify and characterize local orbital stability in human 

walking, e.g. short-term local divergence exponent or maximum Floquet multipliers 

which represents the response of a system to small discrete perturbations from cycle to 

cycle (Bruijn et al. 2013; Dingwell and Kang 2007; Kao et al. 2014; McAndrew et al. 

2011). However, such measures examine stability with respect to trunk motion, e.g. 

kinematic states at C7, which does not address how stability is achieved through 

functional coordination of the limb, and ultimately by the muscles. On the other hand, 

extension to arm reaching tasks provides novel opportunities to examine neural control 

strategies for stabilization at muscle level that has previous been studied extensively in 

the framework of endpoint impedance regulation at joint torque level (Burdet et al. 2001; 

Burdet et al. 2006). 

 More generally, understanding neuromechanical principles to guide selection of 

muscle activation patterns based on physiologically meaningful stability also has 

important implication for using models to study neural control of movements. Ensuring 

the dynamics of the body that is more physiologically relevant and numerically stable 

provides ground on which viability of any hypothesized neural controller can be tested 

(Ting and Chiel in press). 
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5.2 Implications for muscle synergy hypothesis in motor control 

5.2.1 Guiding principles for acquiring generalizable motor solutions 

 Muscle synergies are hypothesized to be the building blocks of movement that 

can generalize its function across tasks and flexibly combined to produce a large 

repertoire of movements (Cheung et al. 2005; Cheung et al. 2009; Chvatal and Ting 

2013; Chvatal et al. 2011; d'Avella et al. 2006; d'Avella and Bizzi 2005; Hart  and Giszter 

2004; Roh et al. 2011; Roh et al. 2012; Torres-Oviedo et al. 2006; Torres-Oviedo and 

Ting 2010). However, the actual existence of such modular entities as neural substrate is 

constantly debated (Bizzi and Cheung 2013; Kutch et al. 2008; Kutch and Valero-Cuevas 

2012; Tresch and Jarc 2009). Nevertheless, structure and function in various parts of the 

nervous system involved in development, motor learning, skill acquisition, and 

adaptation constitute evidence for utility of such pre-selected primitives for motor control 

(Callebaut and Rasskin-Gutman 2005; Giszter and Hart 2013; Minai 2015; Ting et al. in 

press; Wagner et al. 2007). Regardless of its origin, understanding muscle synergies as 

acquired motor solutions is a useful framework for explaining the fundamental 

organization underlying motor behaviors. 

 One crucial premise for the very idea of flexibly combining few muscle synergies 

to generate a vast range of complex movements is that each muscle synergy itself must be 

functionally robust. Although spatial structure of muscle synergies with a specific 

biomechanical function can be pre-organized at multiple time-scales (d'Avella et al. 2003; 

Tresch et al. 1999), the coordinated recruitment across muscle synergies is modulated 

spatially or temporally according to the task-level goals. For example, recruitment level 

of muscle synergies used during postural balance tasks are tuned, spatially, to the 

direction of perturbation (Ting and Macpherson 2005; Torres-Oviedo and Ting 2007). On 

the other hand, recruitment level of muscle synergies used during human walking are 

modulated temporally during specific episodes of the gait cycle (Chvatal and Ting 2013). 
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For both cases, however, the biomechanical condition at which a muscle synergy is 

actively performing its function may change due to alterations in the body configurations 

or task requirements. Further necessity for robustness in using muscle synergies across 

varying conditions arise when muscle synergies are required to generalize their function 

across different tasks (Cheung et al. 2005; Chvatal and Ting 2013; d'Avella and Bizzi 

2005; Hart  and Giszter 2004), or when they are subject to regulation through feedback 

mechanisms (Lockhart and Ting 2007; Safavynia and Ting 2013). 

 In this thesis, I examined the principles, and possibly the processes, by which a 

neural selection could be guided towards a motor solution that meets functional demands 

for generalizability (chapter 3) and intrinsic stability (chapter 4). In particular, I 

demonstrated in chapter 3 the possibility of finding muscle activation patterns that can 

generalize its function, e.g. isometric endpoint force, across a range of postures. Sub-

optimality of such generalizable solutions further supported the idea that the process of 

acquiring a pattern for a muscle synergy is more likely through learning and refinement 

(Ting et al. in press), rather than online optimization, e.g. optimal feedback control 

(Todorov 2004; Todorov and Jordan 2002). In addition, muscle activation patterns that 

provide intrinsic stability at local joint-levels over a physiological range of variation in 

biomechanical configuration are more likely to ensure the linear mapping from activation 

of a muscle synergy to its motor output. Moreover, superposition of the output from 

multiple input in linear fashion, e.g. linearly combining few synergies, is more likely to 

be expected in stable systems. The heuristic exploration algorithm developed in chapter 4 

can be used to search for sets of solutions that are intrinsically stable.  

 Furthermore, muscle synergies themselves can evolve over time. New muscle 

synergies can be developed (Dominici et al. 2011 ; Lacquaniti et al. 2013) or learned 

(Kargo and Nitz 2003 ; Ruckert and d'Avella 2013). Alternatively, spatiotemporal 

recruitment of pre-existing or acquired muscle synergies can be adapted to novel task 

requirement or challenges (Berger et al. 2013; Cheung et al. 2009; Clark et al. 2010). The 
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landscape of the solution space with respect to functional properties of a muscle 

activation pattern which I explored in chapter 4 may possibly illustrate such search or 

adaptation processes. I showed that functional properties of an acquired solution after 

making a change in muscle activation may depend critically on where one is at, i.e., the 

current solution, and how radical or conservative one is in making changes, i.e., the step 

size. Redundancy in muscle patterns across different solutions with similar functional 

properties further suggests a possible explanation for observed variability in the spatial 

structure of muscle synergies of a similar function, across individuals (Chvatal and Ting 

2012; Clark et al. 2010). 

 Lastly, and more practically, the method developed to identify muscle feasible 

range in chapter 2 can extend its application for predicting feasible range in unobserved 

muscles during experiments. The number of muscles that can be recorded are often 

limited in experiments for studying the organization of coordinated movement using 

muscle synergy analysis. However, the number and choices of muscles included in 

muscle synergy analysis may affect the structure of extracted muscle synergies, e.g. over-

estimating variance accounted for with smaller number of muscles (Steele et al. 2013). 

Furthermore, the missing contributions from muscle that were not measured in 

experiments has been one of the main limiting factors in using experimentally-observed 

muscle synergy patterns directly in detailed musculoskeletal models (Kargo et al. 2010; 

McKay and Ting 2008; 2012; Neptune et al. 2009). In the framework of muscle feasible 

range analysis, we can use observed coordination in a subset of muscles, e.g., muscle 

synergy patterns, as a constraint to infer the possible range of variations within a synergy 

for muscles that were not measured during the experiment (see Appendix B for 

preliminary results). The effect of a synergy constraint will be reflected in muscle 

activation space, i.e., feasible ranges, as well as motor output space, e.g. feasible forces 

(Valero-Cuevas et al. 1998), which may predict the physiological behavior observed in 

experiments (Borzelli et al. 2013; McKay and Ting 2008; 2012). 
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5.2.2 Modular control in real-world applications 

 The computational framework developed in this thesis can be useful for 

developing novel biologically-inspired control principles in many applications such as 

robotics or functional electrical stimulations (FES). Constructing complex movements 

from a few sets of modules is an appealing control scheme. By reducing the number of 

control variables it grants the nervous system computational efficiency (Byadarhaly et al. 

2012; McKay and Ting 2012) which facilitates learning and adaptation (Alessandro et al. 

2013; Ting et al. in press; Tsianos et al. 2014). In implementing a modular controller in 

any real-world applications, challenges remain in the same vein as what the nervous 

system faces when selecting an activation pattern for functional muscle synergies: 

selecting from among many, and selecting the ones that are functionally robust.   

 In robotics, ‘movement primitives’, or kinematic synergies, has been commonly 

used in the framework of reinforcement motor skill learning, and has been successfully 

applied in controlling high DoF robots for complex movements (Hauser et al. 2011; 

Ijspeert et al. 2003; Meier et al. 2011). On the other hand, physiological behavior has 

been successfully reproduced in computer simulations using musculoskeletal models, 

with synergy-based controllers in a variety of motor tasks (Berniker et al. 2009; Kargo et 

al. 2010; McKay and Ting 2008; 2012). However, only a few actual robotic applications 

exist that directly borrows control from muscle synergy in biological systems 

(Alessandro et al. 2013; Chhabra and Jacobs 2006; Ison and Artemiadis 2015). 

Understanding the principles of how the nervous system may organize muscle synergies 

that are functionally robust provides insights into synthesizing modular solutions that can 

control the dynamics of robots in real physical world (de Rugy et al. 2013).  

 Furthermore, the ability to find functional muscle activation patterns such as  

muscle synergies can inform the design of functionally viable control for an FES 

paradigm (Davoodi et al. 2003; Denis et al. 2013; Muceli et al. 2010) or myoelectric 

control in powered prostheses (Hargrove et al. 2009; Parker et al. 2006).  
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5.3 Clinical relevance 

 Understanding the functional implications of neuromechanical alterations in 

movement disorders is crucial for developing effective rehabilitation interventions and 

treatments. To this end, the computational framework developed in this thesis can be a 

very powerful tool for predicting the effects of specific pathological constraints to 

functional behavior. Such predictions made in models can provide insights to better 

understand the neuromuscular impairments afflicting individuals with neuromuscular and 

sensory disorders such as stroke, cerebral palsy, or spinal cord injury. 

 

5.3.1 Neuromechanical alterations following stroke  

 Many of the motor deficits in individuals with stroke can be simulated in detailed 

musculoskeletal models. In particular, the deficits in impaired multi-joint limb control 

following stroke involve muscle weakness (Chang et al. 2013), spasticity (Dietz and 

Sinkjaer 2007), impaired joint individuation (Zackowski et al. 2004), as well as 

systematically disturbed feed-forward control (Beer et al. 2000). 

 For example, spasticity, phenomenologically, is regarded as hyper-excitability in 

muscle spindle reflexes, and can be simulated in models by increasing the feedback gains 

to length and velocity changes in muscles (Jansen et al. 2014; Mansouri and Reinbolt 

2014). The adverse effect of this altered sensorimotor feedback on the overall behavior in 

motor tasks such as postural control or walking can be evaluated in terms of changes in 

dynamic stability at the local limb level or the whole body level (chapter 4). Further, 

limitations in possible compensatory corrections predicted under such simulated 

impairments may explain the impaired stretch reflex behavior in stroke patients that is 

exaggerated and insensitive to changes in task demand.  

 Abnormal co-activation of muscles often present in individuals with stroke 

(Brunnström 1970; Dewald and Beer 2001; Dewald et al. 1995) can be modeled simply 
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by the coupling of muscles, i.e., certain muscles are constrained to receive and be 

activated with a single command. Such neural constraint at the muscle level may explain 

the difficulty stroke patients have in producing antigravity torque in the upper limb, 

beyond the biomechanical constraints of the limb (see Appendix B). Alternatively, 

together with muscle weakening which induces saturation in the activation of muscles in 

stroke patients (McCrea et al. 2005), the model may predict the alteration of postures, e.g. 

out-of-plane movements in arm reaching (Beer et al. 2004; Beer et al. 2007; Reisman and 

Scholz 2006), as a biomechanical compensatory strategy. 

  Finally, the functional consequences of altered muscle synergy patterns can be 

assessed in musculoskeletal models. During human walking, altered muscle synergies in 

individuals with stroke were found to be a resultant of merging of two different synergies 

observed in healthy control (Clark et al. 2010). Using dynamic simulation of 

musculoskeletal model using muscle synergies, Allen et al., (2013) has examined the 

influence of merged synergies on walking performance in terms of the altered 

contributions to body support, forward propulsion, mediolateral control and leg swing 

(Allen et al. 2013). On the other hand, during an isometric force generation task in a 

human arm, the spatial structure of muscle synergies was altered in individuals with 

stroke, compared to healthy controls (Roh et al. 2013). Muscle feasible range analysis 

(chapter 2) can be used to predict the functional consequences of such alterations in 

spatial organization of muscle synergy patterns. For example, coupled activation of 

deltoid muscles in muscle synergy from individuals with stroke (Roh et al. 2013) may 

limit the biomechanical capability of the limb in producing forces in certain directions. 

Furthermore, abnormal coordination pattern in subset of muscles may also influence the 

spatial organization of other muscles, revealing how the other muscles must compensate 

for such pathology (see Appendix B for preliminary results).  
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5.3.2 Altered kinematics of crouch gait in cerebral palsy  

 Crouch gait is an impaired movement pattern typically observed in individuals 

with cerebral palsy. Such altered kinematics is often characterized by excessive hip, knee 

and ankle flexion during the stance phase (Wren et al. 2005). This impaired gait is known 

to be energetically inefficient (Rose et al. 1989; Waters and Mulroy 1999), to induce pain 

in the joints (Jahnsen et al. 2004) and induce deformation of bones (Graham and Selber 

2003). Muscle weakness, which is common in individuals with cerebral palsy, has been 

suggested as a potential cause for crouch gait (Damiano et al. 1995; Wiley and Damiano 

1998). Thus, strength training has been the one focus for remedying crouch gait (Dodd et 

al. 2002; Mockford and Caulton 2008; Pippenger and Scalzitti 2004). However, its 

outcomes are variable or questionable at some times (Damiano et al. 2010 ; Kerr et al. 

2006; Liao et al. 2007), and the underlying mechanisms remain unclear. Short hamstrings 

due to spasticity have been suggested as another potential mechanism for this abnormal 

gait pattern in cerebral palsy (Baumann et al. 1980; Crenna 1998 ; Tuzson et al. 2003). 

The remedy for this has been surgical lengthening of the hamstrings. However, the 

outcomes of these procedures are inconsistent (Abel et al. 1999; DeLuca et al. 1998; Kay 

et al. 2002; Novacheck et al. 2002), which critically impedes the prediction of which 

patient will benefit from such treatment (Arnold et al. 2006a). 

 Previously, musculoskeletal models have been used to examine altered muscle 

contributions to body acceleration during crouch gait (Correa et al. 2012; Steele et al. 

2012a; Steele et al. 2010). Further, the extent to which specific muscle groups can be 

weakened before alteration to unimpaired kinematics occurs were predicted (Steele et al. 

2012b). However, in these studies optimal solutions minimizing effort (Thelen and 

Anderson 2006) have been used to simulate muscle forces during crouch gait. As 

discussed before, the discrepancy between the actual neural control versus optimal 

prediction was ignored. As expected, simulations of unimpaired gait controlled with 

optimal solutions exhibited robustness to muscle weakness (van der Krogt et al. 2012).  
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Alternatively, models were also used to examine the difference in the force-generating 

capacities of muscles due to altered kinematics (Arnold et al. 2006b; Hicks et al. 2008) 

that may or may not be reflected in how muscles are actually used.  

 Muscle feasible range analysis explicitly identifies the full possible range of 

muscle activation, and thus possible compensations. Results shown in chapter 2 suggests 

that even with muscle weakness, muscle activation patterns may not be determined by 

biomechanics, and thus can deviate substantially from optimal solutions. Muscle feasible 

ranges for normal walking (Martelli et al. 2015; Simpson et al. in review) further verified 

such speculation, where most muscles were “unnecessary” for the most part. A wide 

muscle feasible range also suggests that morphological (biomechanical) changes in a 

muscle, e.g. lengthening of the hamstring, may not necessarily elicit changes in the 

functional use of the muscle in terms of neural control. Known neuromuscular 

pathologies involved in cerebral palsy can be further incorporated, on top of muscle 

feasible range identified for patient-specific kinematics, to investigate potential 

mechanisms for crouch gait and provide predictive outcome measures for treatments. 

 

5.3.3 Difficulties in training individuals with motor impairments  

 Clinicians often experience difficulties in training individuals with motor 

impairments to replicate functional, or “normal”, movement patterns. Intuitively, this is 

because what would be an optimum in a healthy individual may not be an optimum for an 

individual with neuromuscular deficits. Ignoring the possible neuromechanical 

differences in such compensated systems may be the reason why rehabilitation strategies 

to enforce a stereotyped movement pattern is unsuccessful. One obvious example can be 

illustrated in inconsistent outcomes from robot-assisted gait training in individuals with 

impaired gait or balance such as stroke or Parkinson’s disease patients (Cao et al. 2014; 

Hussain 2014; Picelli et al. 2014; Swinnen et al. 2014 ). 
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 The computational framework developed in this thesis can address the 

fundamental questions of what is “possible”, and what is a “better” solution for an 

individual with a particular neuromuscular alteration. Muscle feasible ranges (chapter 2) 

can explain the difference in the space in which activation of individual muscles can vary 

(see Appendix B), as well as the extent of possible deviation from an optimal solution. 

Further, the landscape of the solution space with respect to functional and altered neural 

constraints (chapter 3 and 4) may explain the limitations in what functional changes one 

can make from the current pathological state (Dubois et al. 2011; Fisher and Sullivan 

2001; Fisher et al. 2008; Stokes and Gardner-Morse 2001; Will et al. 2004). Ultimately, 

by taking into account of the way in which possible changes affect functional outcomes 

in an individual, patient-specific treatments and rehabilitation strategies can lead to 

successful restoring of function, not necessarily “a pattern”. 
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CHAPTER 6 

CONCLUSION 

 

 My long-term goal is to understand how the human nervous system coordinates 

feed-forward (e.g. postural configuration, muscle tone, voluntary activation) and 

feedback (e.g. stretch reflex, automatic postural responses) mechanisms to generate the 

natural repertoire of movements and postures used in everyday life. As a first step 

towards this goal, in this thesis I developed a novel computational framework that 

explores the complete range of motor solutions for a given task, and evaluates functional 

implications of multitudes of solutions.  

 This work advances the utility of detailed musculoskeletal models in elucidating 

neuromechanical control principles underlying functional and impaired movements. The 

computational framework developed here provides useful modeling tools to examine 

allowed variability in muscle activation patterns for a given task with respect to various 

biomechanical and neural constraints. For example, it can aid in interpreting variability in 

measured muscle activity, or explaining individual differences in motor strategies and 

motor learning (de Rugy et al. 2012; Hasson et al. 2012). It can also be used for assessing 

confidence of predicted muscle activity as well as for evaluating possible variations when 

alternate cost functions or strategies are considered. This may provide important 

principles for designing functionally viable control for stimulation paradigms (Denis et al. 

2013), prosthetic devices, and bio-inspired control for robots (Hauser et al. 2011; Ruckert 

and d'Avella 2013). Finally, predicting the possible variations in motor solutions and 

their functional consequences, we may gain valuable insights to explaining differences in 

individuals with motor deficits (Dietz and Sinkjaer 2007), which is crucial for developing 

novel and effective patient-specific treatments and rehabilitation strategies.  
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 In the following sections, I discuss limitations in scope of this thesis, as well as 

possible directions in which future investigations can be pursued to fill in the gaps. I end 

with concluding remarks on desired attitudes towards taking neuromechanical approaches 

in unveiling the principles of neural control of movement. 

 

6.1 Limitations and future works 

6.1.1 Integrating functional requirements for generalizability and stability  

 Generalizability and stability, which are both experimentally-observed functional 

property of a muscle synergy, have not previously been considered simultaneously. In 

chapter 3, I demonstrated that only suboptimal muscle activation patterns for muscle 

synergies generalize motor function across postures; effort-wise optimal solution was not 

generalizable. On the other hand, I showed in chapter 4 that optimal solution in terms of 

effort is dynamically unstable. Thus, chapter 3 and 4 together strongly suggests that 

minimum-effort criterion is not likely the only consideration in determining how the 

spatial structure of a muscle synergy is organized. However, whether generalizable 

solutions provide intrinsic stability, or vice versa, stable solutions are generalizable has 

not been tested explicitly.  

 The two functional requirements of generalizability and stability can be integrated 

to further narrow down the range of viable muscle activation patterns for functional 

muscle synergies. More specifically, additional constraints regarding stability evaluated 

for the linearized system under a given muscle activation pattern can be considered 

within the feasible range considering a generalizability constraint in chapter 3. Remaining 

redundancy in muscle activation space after considering either of the functional 

constraints, i.e. generalizability (chapter 3) or stability (chapter 4), suggest a possibility 

for existence of subset of solutions that meet both requirements. Alternatively, 



 120 

generalizable solutions may not be stable due to biomechanical differences in the model 

across configurations and allowed error in the output space. In such case, the possible 

role of task-level feedback mechanisms can be investigated using dynamic simulations 

and model implemented with controller for stabilization of the task.  

 

6.1.2 Task-level control of whole-body CoM at global level  

 In this thesis, the biomechanical task and dynamic behavior of the system were 

examined only at local level (single limb), and hierarchical feedback control of postural 

behavior at global level, i.e., controlling whole-body CoM dynamics, was not considered. 

Neuromechanical models have been used to demonstrate feasibility of achieving 

observed task performance with muscle synergies (Kargo et al. 2010; Neptune et al. 

2009), and not necessarily predicting a behavior, in a forward way, based on extrinsic 

goal for a given motor task. In order to genuinely test the viability of producing 

functional behavior using muscle synergies in models, predictions made in models 

controlled with muscle synergies must be examined at a behavioral level (Alessandro et 

al. 2013). However, for balance control, task-level control of CoM based on sensorimotor 

feedback has only been demonstrated in simple models, e.g. an inverted pendulum 

(Lockhart and Ting 2007; Welch and Ting 2009; Welch and Ting 2008). On the other 

hand, using muscle synergies in detailed musculoskeletal model to predict global 

behavior of CoM control has only been shown in static condition (McKay and Ting 2012).  

 Challenges in using muscle synergy for balance control in a complex dynamic 

model is that intrinsic stability is required during both a passive period in absence of any 

sensorimotor corrections (Jacobs and Macpherson 1996), and during an active period 

when muscle synergies are recruited as active neural control inputs on top of an existing 

background muscle activity. Moreover, the multiple modular control inputs need to work 

in linear fashion even though the transformation to output occurs through highly 
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nonlinear musculoskeletal dynamics. For such linearity, output of each and combined 

muscle synergies at CoM must be preserved robustly over range of neuromechanical 

alterations: variability in kinematic posture, signal-dependent noise in muscle activity, 

and ongoing biomechanical changes due to the dynamics of the whole body.  

 The above questions can be adequately addressed using computational tools 

developed in this thesis, as well as insights gained from the studies. In particular, we can 

investigate to what extent functional consequence of muscle synergy patterns with 

different level of intrinsic stability can be kept effective and linear over ranges of 

disturbance to the system. We can hypothesize that muscle synergy patterns with greater 

intrinsic stability provide more linear mapping from input, active response in muscle 

activation, to output CoM kinematics. In order to investigate functional consequences of 

activating given muscle synergy patterns in cats in terms of whole-body dynamics, 

however, a dynamic multi-limb model would need to be developed (Martin 2013).  

 One specific question that can be investigated is whether muscle synergy patterns 

selected with different functional properties at local limb-level exhibit different level of 

performance in controlling whole-body CoM. Muscle synergy patterns that have varying 

levels of effort and intrinsic stability can be selected (chapter 4) for each of the five 

experimental synergy force vectors (Torres-Oviedo et al. 2006). The task output of these 

muscle synergy patterns can be simulated by activating each pattern, e.g. by Gaussian 

pulses individually and measuring simulated CoM kinematics as a global output measure. 

The extent to which task space outputs of each synergy can be combined linearly, can be 

assessed by applying pair-wise combination of the synergy patterns and examining the 

resulting CoM behavior compared to predicted CoM behavior by linear superposition.  

 Further challenges in the task-level behavior of balance control can be tested if 

muscle synergy patterns selected with certain level of functional stability indeed ensures 

linear behavior over certain range. For example, translational support perturbation can be 

simulated to induce alterations in kinematic states, similar to those experienced in 



 122 

experiments (Jacobs and Macpherson 1996; Macpherson 1988a; b). Signal-dependent 

noise (Harris and Wolpert 1998) can be applied to each synergy activation pattern to test 

robustness to alteration in muscle activation. We can also test whether effective noise 

rejection, in the presence of disturbance torque at the joints, in quiet standing (Peterka 

2000) can be achieved by feedback control using identified synergies. Alternatively, we 

can test whether desired CoM trajectory can be produced by activating sets of muscle 

synergies in linear combination. Here, the activation profile, or temporal recruitment of 

each synergy can defined by projecting a specified CoM trajectory onto task space output 

of each synergy. Finally, we can implement an optimal feedback controller with delayed 

CoM kinematics to model the balance control behavior using synergy patterns that 

provides intrinsic stability at both local and global level. 

 

6.1.3 Experimental validation  

 The contribution of this thesis using computational models can be augmented by 

validation through actual experiments. In particular, a detailed musculoskeletal model of 

the cat hindlimb predicted that there exists a redundant solution space that allows for 

variability in how muscles can be coordinated for an isometric endpoint force generation, 

and produce different functional properties of the limb. This was true, in general, in a 

biomechanically redundant task using both human lower (see Appendix A) and upper 

extremity (see Appendix B). However, what has not been shown is whether people 

actually utilize the full space and thus exploit the allowed variability in their muscle 

patterns for achieving the same motor task. More specifically, the extent to which 

different levels of variability should be attributed to biomechanical constraint defined by 

the limits of the musculoskeletal system, or neural constraint owing to functional 

requirement, is unknown.  
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 A plausible goal for an experimental study could be to investigate whether and to 

what extent subjects exploit musculoskeletal redundancy in upper extremity while 

performing isometric force generation task in different functional contexts, e.g. task 

demand and environmental stability (Fig. 6.1A). We can hypothesize that less variability 

will be exploited for more demanding task and increased functional requirement for 

stability. This hypothesis can be tested by examining variability in muscle patterns 

measured during the same motor task at varying force level, and in different levels of 

environmental stability rendered by robotic manipulator (Fig. 6.1B; e.g. Haptic-Master; 

Moog-FCS Control Systems, Nieuw-Vennep, The Netherlands). 

 More specifically, in order to test whether task demand affects variability in 

muscle activity measured during isometric force generation, force magnitude that 

subjects needs to produce can be varied at different levels in a given direction. In order to 

test whether functional requirement affects variability in muscle activity measured during 

isometric force generation, environmental stability in which subjects perform the task can 

be varied at different levels by rendering the haptic interaction with different surface 

geometry (Fig. 6.1A). The experimental protocol can be similar to that used previously in 

studies which examined context-dependent modulation of limb impedance (Krutky et al. 

2013; Trumbower et al. 2009) and contributions of long-latency stretch reflex (Krutky et 

al. 2010; Perreault et al. 2008; Trumbower et al. 2010). The modeling framework here 

(Fig. 6.1C) can be further applied using an existing upper extremity model (Holzbaur et 

al. 2005) to provide theoretical map for muscle feasible range across force magnitude 

(chapter 1) and trade-off between effort and stability (chapter 3).  

 I propose four specific questions that can be addressed with this experimental 

design, and corresponding analyses to answer these questions. First, whether task 

demands and functional requirements affect intra/inter-subject variability can be tested by 

comparing variability in experimental muscle activity (EMG) across force levels and 

stability conditions. Second, whether environmental instability (functional requirement)  
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imposes additional limits beyond biomechanical capabilities can be tested by comparing 

maximum voluntary force (MVF) in a given direction across stability conditions. Third, 

the pattern of variation in measured muscle patterns with respect to biomechanical 

redundancy defined in the model can be quantified by comparing experimental variability 

in muscle activity across force levels with respect to the muscle feasible ranges computed 

at corresponding force level in the model.  

 

 
Figure 6.1: Proposed experimental study. (A) Experimental study design. We can investigate 

whether and to what extent subjects exploit musculoskeletal redundancy in upper extremity while 

performing isometric force generation tasks in different functional contexts. (B) Experimental 

setup. Environmental stability can be rendered by haptic interaction with robotic manipulandum. 

(C) Modeling framework. A detailed musculoskeletal model of upper extremity can be used to 

provide theoretical map for muscle feasible range across force magnitude, and functional 

properties of effort and stability. 
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 I predict that, variability in muscle activity for generating force in a given 

direction will be high for low force level, and less variable for high force level (Fig. 

6.2A). In addition, variability in muscle activity for generating same level of force will be 

higher in stable condition than unstable conditions, which require additional control for 

ensuring stability (Fig. 6.2B). Further, maximum force that can be generated in a given 

direction will be lower in magnitude in unstable condition than stable condition. Finally, 

ranges in experimental muscle activity may be smaller, even for low force levels, 

compared to models because feasible ranges in the model using the method presented in 

chapter 2 is computed for individual muscles, i.e., not regarding coordination, and thus 

does not reflect any control strategy beyond biomechanical demand. 

 The same protocol can be used to examine how altered neuromuscular conditions 

affect the ability to exploit musculoskeletal redundancy, i.e., the allowed variability, in 

individuals with stroke. I predict that inability to independently control muscles (Dewald 

and Beer 2001; Dewald et al. 1995) will restrict the range of variability and impair limb 

function. 

 

 

Figure 6.2: Predictions to proposed experimental study. (A) Predicted experimental variability 

in muscle activity across force level. Variability in muscle activity (EMG) for generating force in 

a given direction will be high for low force level, and less variable for high force level. (B) 

Predicted experimental variability in muscle activity across environmental stability. Variability in 

muscle activity (EMG) for generating same level of force will be higher in stable condition than 

unstable condition, which requires functional stability. 
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6.2 Concluding remarks 

 Neuromechanics is an integrative approach that seeks to understand control 

principles underlying functional motor behavior with respect to complex, flexible, and 

context-dependent interactions among the brain, the body, and the environment (Chiel et 

al. 2009; Nishikawa et al. 2007; Ting and Chiel in press). In pursuit of such goals, one 

may choose to use experimental investigation, e.g. examining how individuals achieve a 

given motor task with different strategies, behavior, or execution at muscle level. On the 

other hand, one may choose to use computational models, e.g. using simulations of a 

behavior to make predictions, which can be compared and interpreted with respect to 

physiological behavior. The two approaches can be, and often are, used together to 

augment each other. Regardless of the approach, however, and whether the underlying 

motivation is a scientific question or an engineering problem, two attitudes (that may 

have been too often ignored perhaps) are required for researchers in the field of 

neuromechanics: 

1) We must appreciate variability. Interpreting variability in experimental data, e.g. 

EMG, can be difficult and one may be tempted to examine the data averaged 

across trials, or even across subjects, to make a unifying explanation. However, 

we can be different, and we are different. Understanding the differences is the key 

to elucidating the principles underlying one’s choice, either voluntary or 

involuntary, in a behavior. 

2) We must appreciate discrepancies. Models can be useful if they act as expected, 

producing or predicting an experimentally observed behavior it was supposed to 

model. However, when our models start fail to match the experimental data, that 

is precisely the moment when one can ask “why”, presenting an opportunity to 

reveal the mechanisms underlying such discrepancies. Thus, we must not ignore 

the “disagreements”, and not be afraid of our models falling apart because that is 

when it helps for real. 
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 In conclusion, our questions in studying neural control of movements should be 

focused on examining ‘what we actually do’ on the basis of understanding ‘what we can 

do’, not ‘what we ought to do’. 
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APPENDIX A 

EXTENDING MUSCLE FEASIBLE RANGE ANALYSIS TO 

DYNAMIC TASK OF HUMAN WALKING 

This chapter was submitted to the Journal of Biomechanics and is currently in review. 

 

Simpson CS, Sohn MH, Allen JL, and Ting LH. Muscle feasible ranges in human walking are 

unconstrained by biomechanics. J Biomech (in review) 

 

 

 Although it is possible to produce the same movement using an infinite number of 

different muscle activation patterns owing to musculoskeletal redundancy, both 

biomechanical and neural mechanisms may also impose limits on the possible variations 

in muscle activity observed during movements. However, the extent to which 

biomechanics allow for variations in muscle activation patterns has not been explicitly 

characterized for dynamic motor tasks such as walking. Therefore the degree to which 

observed experimental variability reflects neural versus biomechanical constraints in 

walking is not known. Here, we examined the range of biomechanically permitted muscle 

activations in human walking by identifying muscle feasible ranges using a detailed 

musculoskeletal model combined with experimentally observed kinematics and kinetics. 

Muscle feasible ranges were computed at each time point by performing optimizations on 

a linear equation mapping muscle activations to required joint torques. Our results 

demonstrate that biomechanics are insufficient to constrain muscle activation patterns for 

walking; more than 72% of muscles had muscle feasible ranges of greater than 95% of 

the total range for more than 95% of the gait cycle during walking. Comparison with 

electromyography data revealed that experimental variability in muscle activation 
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patterns was much less than that permitted by the biomechanics, suggesting the influence 

of common neural strategies. Muscle feasible ranges may provide a useful way to 

compare different neural strategies for movement in both healthy and motor impaired 

individuals. 

 

A.1 Introduction 

 The biomechanical constraints of a task imposes limitations on feasible motor 

patterns for movement, but at the same time, musculoskeletal redundancy (Bernstein 

1967) allows for an infinite number of combinations of muscle activation patterns for 

performing a given task. Neuromotor systems are also thought to have preferred 

structures in the patterning of movements and yet are highly flexible and capable of 

producing a wide range of motor patterns. Accordingly, while common features of motor 

patterns are observed in many motor tasks such as walking, variability both within and 

across individuals is also a feature of biological movement (Liu et al. 2008; van der Krogt 

et al. 2012; Winter and Yack 1987). Currently, we lack tools to interpret whether 

experimentally observed variability results from neural versus biomechanical constraints.   

 Current modeling approaches typically assume an optimization criterion as a 

proxy for neural constraints of muscle activation, but these cannot explain experimentally 

observed variations in muscle activation. Typically, a single set of muscle activations is 

selected from the entire range of possible solutions using physiologically based criteria, 

such as minimizing muscle stress (Crowninshield and Brand 1981; Thelen et al. 2003). 

Optimal muscle activation solutions frequently deviate from experimentally recorded 

patterns (Buchanan and Shreeve 1996; Liu et al. 2008; van der Krogt et al. 2012). It has 

been suggested that deviation of optimal solutions from experimental data is due to 

differences in body morphology and biomechanics (Buchanan and Shreeve 1996; Kutch 

and Valero-Cuevas 2011). However, biomechanical constraints do not appear to 
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adequately resolve redundancy, as improved matches to measured data can be achieved 

by adding neural constraints on muscle activation patterns(McKay and Ting 2008; 2012; 

Walter et al. 2014). 

 In order to better understand the role that biomechanical versus neural constraints 

play in shaping muscle activation patterns for movement, the full range of possible 

muscle activation patterns based on biomechanics must first be defined. For instance, in 

situations where the range defined by biomechanical constraints is commensurate with 

observed variability, neural strategy likely has little influence in determining muscle 

activation. If biomechanical models allow considerably more variability than is exhibited 

in recorded data, a neural strategy may be the factor constraining the variability. 

However, the level of model complexity also affects the degree of biomechanical 

redundancy. For example, Kutch and Valero-Cuevas (2011) demonstrated a limited range 

of possible muscle activation patterns during finger force production in a 4 degrees of 

freedom (DoF) model with 7 muscles, suggesting that biomechanics largely defines 

observed muscle activation pattern. Similarly, using a simplified planar leg model with 

14 muscles and three DOF they also demonstrated that loss of a single muscle would 

greatly reduce force production capabilities of the leg. In contrast, using more detailed 

musculoskeletal models both Martelli et al. (2013) and Sohn et al. (2013) have 

demonstrated very wide feasible solution spaces in early stance during human walking 

(10 DoFs, 82 muscles) and in a model of isometric force production in the cat hindlimb 

(7 DoFs, 31 muscles). This suggests that in the human leg, biomechanics allow a great 

deal of variability in choosing muscle activation patterns. However it is not known 

whether similar variability extends to a dynamic task such as walking. 

 Here, our goal was to extend the methods of Sohn et al. (2013) to a dynamic task, 

to define the range of feasible muscle activation patterns during a full gait cycle of human 

walking. Previous studies of muscle feasible ranges examined isometric force 

productions, except Martelli (2013), where only a single timepoint in the gait cycle was 
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examined and the full range of activation was not explicitly found. We identified muscle 

feasible ranges during human walking using experimental data (John et al. 2013) and a 

detailed musculoskeletal model of the human lower extremity with 23 DoF and 92 

muscles (Delp et al. 2007; Delp et al. 1990). We extended Sohn’s (2013) method such 

that each time point in the gait cycle was treated as an independent optimization problem 

where muscle activation patterns were identified to satisfy dynamic equilibrium 

(Anderson and Pandy 2001b). The upper and lower bounds on muscle activation, 

defining the muscle feasible ranges, were identified for each muscle at each time point 

and were compared to experimentally recorded electromyographic (EMG) data reported 

in literature (Perry 1992; van der Krogt et al. 2012). 

 

A.2 Methods 

A.2.1 Experimental data 

 We used experimental kinematic and ground reaction force data (Fig. A.1) of a 

single subject (male; height, 1.83 m; body mass, 65.9 kg) walking at self-selected speed 

(1.36 m/s) on an instrumented treadmill as inputs to the muscle feasible range analyses. 

This data is publically available at https://simtk.org/home/muscleprops (John et al. 2013). 

 

A.2.2 Extraction of parameters from walking simulation 

 Parameters required to calculate the biomechanical constraints (Fig. A.1, model 

outputs) that define the task, i.e. required joint torques and force-producing capability of 

muscles were extracted from a three-dimensional OpenSim musculoskeletal model of the 

human lower extremity with 23 DoF and 92 musculotendon actuators. Built-in OpenSim 

tools were used to scale the model to match subject anthropometrics (Scale Tool), 

calculate joint angles (Inverse Kinematics Tool, Fig. A.2B), and joint torques (Inverse 

https://simtk.org/home/muscleprops
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Dynamics Tool, Fig. A.2C).  Musculotendon lengths and moment arms, R, were 

extracted based on the motion from inverse kinematics analysis.  Additional muscle 

parameters such as optimal fiber length and maximum isometric muscle forces required 

in computing muscle force capabilities were extracted directly from the model file. 

 

 

Figure A.1: Schematic of methods used to identify feasible ranges of muscle activation 

during walking. Experimental data from John et al. (2012) was fed into an OpenSim human 

lower limb musculoskeletal model with 23 degrees of freedom and 92 muscles (Delp et al., 1990, 

2007). Native OpenSim tools (Inverse Kinematics and Inverse Dynamics) were used to calculate 

joint angles and torques as well as to define additional properties necessary to compute muscle 

force production capabilities. Feasible ranges were then computed using linear programming 

(linprog.m) in Matlab.  Experimental EMG data (van der Krogt et al., 2012) was superimposed 

onto the feasible ranges for available muscles. 
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Figure A.2: Experimental data used for computing feasible ranges during walking. (A) 

Ground reaction forces data for one gait cycle from John et al. (2012) and freely available on 

www.simtk.org. The shaded grey region indicates the stance phase of the gait cycle. (B) Joint 

angles computed using the Inverse Kinematics Tool in OpenSim using marker data from John et 

al. (2012). Joint angles were used for computing kinematic properties of muscles, i.e. force-length 

and force-velocity relationships. (C) Joint torques computed using the Inverse Dynamics Tool in 

OpenSim with the ground reaction forces shown in A and the joint angles shown in B. These joint 

torques were used as task requirements for which feasible ranges of muscle activation were 

identified. 

http://www.simtk.org/
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A.2.3 Muscle feasible range calculations 

 A linear mapping was defined between muscle activations (e) and joint torques 

( ) required to produce the dynamic task: 

  (A.1) 

where R is the moment arm matrix dependent on joint angle, AMF is the active muscle 

force contribution (maximum isometric force scaled using the active force length and 

fiber velocity curves), and PMF is the passive muscle force (muscle stretch) contribution.  

Both AMF and PMF were computed according to the force-length and force-velocity 

relationships in a Hill-type muscle model (Thelen 2003). The tendons were assumed to be 

inelastic (Zajac and Gordon 1989). 

 Muscle feasible ranges were computed for each leg at each discretized time point 

for two complete gait cycles (one cycle for each leg; 1.2 seconds at 72 Hz). Linear 

optimizations were performed using the linprog.m function in Matlab on the equation 

mapping muscle activations ( ) to joint torque requirements ( ). For each muscle and 

each time point, the lower ( ) and upper ( ) bounds of muscle activation were 

identified as follows (Sohn et al., 2013): 

: Find  such that  is minimized, while  

 

: Find  such that  is maximized, while  

  (A.2) 

while satisfying the constraint: . While muscle feasible ranges were 

calculated for all 92 musculotendon units in the musculoskeletal model, only the 86 

musculotendon units of the legs were examined. 

 

A.2.4 Analysis 
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 Each muscle was classified as “necessary” or “optional” and “limited” or 

“unlimited” based on the characteristics of the lower and upper bounds, respectively. If a 

muscle exhibited lower bounds greater than “zero” (i.e. 10
-8

, which was the resolution of 

the optimization software) at any point, that muscle was required to be active in order to 

satisfy the dynamics of the system and was therefore classified as “necessary” to perform 

the action. “Optional” muscles exhibited lower bounds close to zero  (<10
-8

) at every time 

point. In the case that a muscle exhibited upper bounds less than “one” (i.e. 1-10
-8

), that 

muscle was constrained to produce less than its maximal force and was therefore 

classified as “limited” rather than “unlimited”. 

 

A.2.5 Comparison to experimental muscle activity 

 Constraints on muscle activations were compared between time points when each 

muscle was active versus inactive. Each muscle was classified as “active” or “inactive” at 

every time point based on previously published normative human walking data (Perry 

1992). The upper bounds during time points when each muscle was classified as active 

were compared with upper bounds during time points when each muscle was classified as 

inactive. This comparison was performed using single-tailed two-sample t-tests with 95% 

confidence levels to examine whether differences in muscle recruitment by the nervous 

system correspond to changes in biomechanically dictated constraints on muscle 

activations. 

 To examine the explicit range defined by biomechanical constraints with respect 

to observed variability in experimental muscle activity, the computed muscle feasible 

ranges were superimposed on experimental EMG data. Since EMG data was not 

available for the subject from whom the kinetic, kinematic, and scaling data came, 

normative EMGs were taken from another study. That study consisted of 5 healthy 

subjects aged 16±1 years that weighed 68±5 kg and were 175±9 cm tall walking at self-
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selected speed (1.08±0.16 m/s) (van der Krogt et al. 2012). To estimate the relative level 

of muscle activation recorded, EMG data was scaled to the peak value from the simulated 

muscle activity identified using the computed muscle control algorithm in OpenSim 

(Thelen and Anderson 2006). 

 

A.3 Results 

A.3.1 Muscle feasible ranges 

 We found that most muscles were not restrained in their muscle feasible ranges 

based on biomechanical constraints of the limb and the torque requirements during 

walking (Fig. A.3). Seventy-three percent (63 out of 86) of muscles had fully 

unconstrained muscle feasible ranges with upper bounds of 1 and lower bounds of 0 for 

the entire gait cycle. Differences in the kinematics and kinetics (Fig. A.2) between the 

two legs resulted in slightly different muscle feasible ranges between legs in some 

muscles (Fig. A.3). Overall, the muscle feasible ranges in the right leg were found to be 

larger than those of the left leg. 

 Almost no muscles were “necessary”, defined as having non-zero lower bound 

(Fig. A.3, lower traces). All muscles in the right leg had a lower bound of zero 

throughout the gait cycle (Fig. A.3, lower traces with dotted lines). Only two left-leg 

muscles, the tibialis anterior (TA) and the anterior compartment of gluteus medius 

(GMED1), had non-zero lower bounds at some point during the gait cycle (Fig. A.3, 

lower traces with solid lines). The left TA was necessary shortly after the initiation of 

stance, consistent with controlling the descent of the toe. The left GMED1 was necessary 

at 50% of the gait cycle, where the hip abduction torque in late stance was also larger in 

the left leg (Fig. A.2C, dotted versus solid line).  However, the GMED has not typically 

been reported to be active (Fig. A.3, red lines) in gait during late stance. 
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Figure A.3: Computed upper and lower bounds of the feasible ranges of muscle activation 

as a function of the gait cycle for all 43 muscles of the two legs in the OpenSim 2392 

musculoskeletal model. Red lines plotted above select plots indicate when muscles are known to 

be active during gait from normative data (Perry, 1992).  The shaded grey region indicates the 

stance phase of the gait cycle.  The feasible ranges are all of the activations bounded by the upper 

and lower bounds.  Feasible ranges were generally very wide, showing that muscle activation is 

virtually unconstrained by biomechanical considerations.  
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Overall, 73% (63 out of 86) of muscles were “unlimited” in their feasible level of 

activity, i.e. have an upper bound (Fig. A.3, upper traces) of 1, at every time point in the 

gait cycle.  Several muscles with action about the hip were limited in their upper bounds 

in late stance phase, e.g. gluteus maximus (GMAX) and gluteus medius (GMED), but 

never in swing phase.  Several ankle plantarflexors, e.g. medial gastrocnemius (MG) and 

lateral gastrocnemius (LG), were also constrained in early stance and late swing 

phase.  The soleus (SOL), the strongest muscle in the model, was the most limited muscle. 

 

A.3.2 Comparison to experimental data 

 Overall, 44% (8 out of 18) of “limited” muscles had smaller upper bounds when 

they are typically inactive. For example, upper bounds on GMED3 were higher when 

istypically active (early stance, Fig. A.3, red bars) than when it is inactive (late stance).  

Only 11% (2 out of 18, the left LG and the left ADL) of “limited” muscles were found to 

have lower upper bounds when they are typically active than when they are inactive. 

 Comparing the muscle feasible ranges with sample experimental EMG data 

revealed that the observed variability is much smaller than the identified muscle feasible 

range based on biomechanical considerations (Fig. A.4).  

 

A.4 Discussion 

 Our results demonstrate that instantaneous biomechanical constraints are not 

sufficient to define the muscle activation patterns during human walking in healthy 

individuals. Based on musculoskeletal properties and joint torque requirements, we 

identified muscle feasible ranges that define the possible solution space from which the 

nervous system can select muscle activation patterns. The largely unconstrained muscle 

feasible ranges indicate a large degree of musculoskeletal redundancy during healthy  
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Figure A.4: Computed upper and lower bounds of feasible ranges of muscle activation as a 

function of the gait cycle with experimental EMG data (Van der Krogt et al., 2012) 

superimposed. Red lines plotted above select plots indicate when muscles are known to be active 

during gait from normative data (Perry, 1992). The shaded grey region indicates the stance phase 

of the gait cycle. The variability of EMG data is much less than that permitted by 

biomechanically determined feasible ranges. 

 

human walking, suggesting a wide range of allowable variability in muscle activation 

patterns. However, observed variability in muscle activation patterns was more limited 

than the muscle feasible ranges, revealing the influence of neural constraints on motor 

variability. Muscle feasible ranges may be a useful tool for examining the effects of 

musculoskeletal and neurological impairments on feasible motor patterns for movement. 

 Here, we extend the computation of muscle feasible range methods developed by 

Sohn et al. (2013) for static force production to dynamic tasks by including the effects of 

inertial and velocity-dependent forces.  Our analysis was posed as a linear programming 

problem independently for each muscle at each time point in the gait cycle using joint 

torque requirements from inverse dynamics computations. While this method does not 

account for muscle activation dynamics, prior work has demonstrated that independent 
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static optimization at each time point produces similar results to dynamic optimization in 

sub-maximal tasks such as human walking (Anderson and Pandy 2001b). Our linear 

programming method can be applied to more complex systems than methods relying on 

computational geometry that are limited to small muscle sets (Kutch and Valero-Cuevas 

2011).  Further, linear programming also identifies the extrema of the muscle feasible 

ranges, which is not guaranteed in Monte Carlo methods (Martelli et al. 2013). 

 In a complex model of human walking, we found virtually no limitations on 

muscle activation, suggesting a great deal of robustness to variation in motor patterns. 

Prior experiments on cadaveric human hands have demonstrated limited robustness to 

muscle weakness that suggests very little musculoskeletal redundancy (Kutch and 

Valero-Cuevas 2011; Valero-Cuevas and Hentz 2002).  However, simulations of healthy 

subjects in normal gait showed surprising robustness to muscle weakness, suggesting 

ample redundancy (van der Krogt et al. 2012).  The wide muscle feasible ranges suggest 

that almost any deviation from an optimal solution is likely feasible (Buchanan and 

Shreeve 1996; Liu et al. 2008; van der Krogt et al. 2012), to the point that individual 

muscles can be completely silenced in walking without reducing the ability to meet the 

biomechanical demands of the task. 

 The lower bound of the muscle feasible range shows the minimum activation and 

by extension, the minimum strength permissible for each individual muscle to complete 

the simulation. Other methods have examined musculoskeletal redundancy using trial and 

error methods of weakening or eliminating muscles or muscle groups to show whether 

deficits in task performance occur (Arnold et al. 2005; Correa et al. 2012; Steele et al. 

2012b; van der Krogt et al. 2012). Further, whereas these studies still use a muscle 

activation pattern from computed muscle control (CMC) optimizations (Crowninshield 

and Brand 1981; Thelen et al. 2003) to identify an optimal compensation for muscle 

weakness, the muscle feasible range identifies the possible variability in such 

compensations. 
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 We recognize that possible variations in muscle activity identified using muscle 

feasible ranges do not allow for the dynamics of the system to be altered. For example, 

muscle weakening or neural constraints might alter kinematics or motor control 

strategies, which could not be investigated using our approach. Optimal control models 

that simulate human walking (Ackermann and van den Bogert 2010; Anderson and Pandy 

2001a) could be used to identify changes in the dynamics of walking due to muscle 

weakness, but also rely on a relevant objective function to identify a single muscle 

activation pattern from among many. Considerable advances in computational methods 

are necessary to combine muscle feasible range analyses with dynamic optimization. 

However, it is likely that even more latitude in muscle activation patterns would be 

revealed due to the ability of the model to select dynamics most suitable to its force 

producing capabilities. 

 We explicitly sought to identify the muscle feasible ranges for muscle activation 

in the absence of any neural constraints on muscle activation as a basis to understand the 

degree to which neural constraints could influence muscle activation patterns. Further 

reductions in muscle feasible ranges would be predicted by grouping muscles to assume a 

common neural drive, as it would eliminate compensation within synergistic muscle 

groups.  Muscle feasible ranges could be further narrowed by including additional 

neurally-inspired constraints to the muscle feasible range optimizations such as modular 

activation of multiple muscles across different joints (Ivanenko et al. 2004; Ting and 

Macpherson 2005), generalizability of muscle patterns across tasks (Chvatal et al. 2011; 

Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2010; Walter et al. 2014), multiple 

task constraints(Keenan et al. 2009; Racz et al. 2012), or stability considerations 

(Bunderson et al. 2008). Identifying muscle feasible ranges may thus provide an 

important foundation for understanding actual and possible variations in motor patterns in 

both healthy and impaired populations. 
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Table A.1: Muscles included in the OpenSim 2392 musculoskeletal model and their 

abbreviations. 

Name Abbreviation 

 
Name Abbreviation 

Adductor brevis ADB 

 

Peroneus brevis PB 

Adductor longus ADL 

 

Peroneus longus PL 

Adductor magnus ADM 

 

Peroneus tertius PT 

Biceps femoris long head BFLH 

 

Piriformis  PIR 

Biceps femoris short head BFSH 

 

Iliopsoas PSOAS 

Extensor digitorum ED 

 

Quadratus femoris QF 

Extensor hallucis EH 

 

Rectus femoris RF 

Flexor digitorum FD 

 

Sartorius SAR 

Flexor hallicus FH 

 

Semimembranossus SM 

Gemellus GEM 

 

Soleus SOL 

Gluteus maximus GMAX 

 

Semitendinosus ST 

Gluteus medius GMED 

 

Tibialis anterior TA 

Gluteus minimus GMIN 

 

Tibialis posterior TP 

Gracilis GRAC 

 

Tensor fasciae latae TFL 

Illiacus ILI 

 

Vastus intermedius VI 

Lateral gastrocnemius LG 

 

Vastus lateralis VL 

Medial gastrocnemius MG 

 

Vastus medialis VM 

Pectineus PEC 
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APPENDIX B 

APPLICATION TO IMPAIRED MOTOR CONTROL:  

EXAMPLES IN STROKE AND IN AMPUTEES 

 

 Here, I present preliminary works showing how the modeling framework 

developed in this thesis can be used for understanding impaired motor control by 

considering altered biomechanical and neural constraints. I illustrate this with two 

specific examples. First, I consider a pathological neural constraint of abnormal co-

activation typically observed in individuals following stroke and examine how it affects 

feasible range in muscle space and biomechanical output space. Second, I consider 

biomechanical impairment owing to transtibial amputation in the lower limb and examine 

its effect on feasible range in muscle space and biomechanical output space. Thorough 

investigation is needed to develop each of these examples to an independent study. 

Nevertheless, they serve as examples that demonstrate the possible utility of our 

modeling framework applied in compensated systems with neuromuscular impairments. 

 

B.1 Imposing clinical synergy of shoulder and elbow muscles in stroke 

B.1.1 Background and motivation 

 The ability to properly recruit and coordinate muscles determines performance 

and set of possible solutions that can be used in functional motor task. In stroke 

survivors, abnormal co-activation across shoulder and elbow muscles and thus coupling 

of torque across these joints is commonly observed (Dewald and Beer 2001; Dewald et 

al. 1995). Such clinical synergy typically involves coupling of elbow flexion with 

shoulder abduction-extension-external rotation, and to a lesser extent, coupling of elbow 



 144 

extension with shoulder adduction-flexion-internal rotation (Brunnström 1970). Impaired 

function due to this abnormal coupling is most evident in difficulty in anti-gravitational 

torque generation during isometric (Ellis et al. 2007) or reaching tasks (Beer et al. 2004; 

Reisman and Scholz 2006; Sukal et al. 2007). 

 Muscle weakness may be a potential contributor for clinical synergy in stroke 

patients (Beer et al. 2007). Such biomechanical alteration can be reflected in task or 

output space (Kuo and Zajac 1993; Valero-Cuevas 2000; Valero-Cuevas et al. 1998). For 

example, elimination of particular muscles may affect the feasible set of endpoint forces 

to large extent (Kutch and Valero-Cuevas, 2011). On the other hand, biomechanical 

limiting factor from muscle weakening can also affect muscle activation space for a given 

task, mainly demanding altered coordination in other muscles as a compensation 

(McCrea et al. 2005; Steele et al. 2012b; van der Krogt et al. 2012). 

 However, clinical synergy itself as a pathological neural constraint can affect both 

biomechanical output space as well as muscle activation space. Abnormal coupling of 

muscles following stroke may attributed as a neural constraint, emerging from altered 

descending pathways such as corticospinal tract due to lesion (Dawes et al. 2008; Stinear 

et al. 2007; Ward et al. 2006). It has been shown that functional neural constraint of 

synchronous activation of groups of muscles reduces the range in motor output space, 

which more closely resembled physiological behavior than when muscles are activated 

independently (McKay and Ting 2008; 2012). Likewise, pathological neural constraint of 

abnormal muscle co-activation is likely to affect the biomechanically feasible motor 

outputs as wells as muscle activation space (Wang and Gutierrez-Farewik 2014). 

 Here, I investigated how abnormal coupling of shoulder and elbow muscles 

activation affect the range of feasible endpoint forces that can be  produced in the human 

arm as well as feasible ranges in activation levels muscles (Sohn et al. 2013). I 

hypothesized that abnormal coupling of shoulder and elbow muscles limits the maximum 

force that can be produced in a given direction, and restricts feasible ranges of activation 
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in other muscles for given task. As a proof of concept, I tested this hypothesis by 

imposing a co-activation constraint across subset of muscles involved in clinical synergy, 

and examining the resulting maximum feasible forces and feasible ranges of activations 

in muscles compared to a control case where all muscles were independently controlled. 

 

B.1.2 Approach 

 I used an existing detailed musculoskeletal model of human upper extremity 

(Holzbaur et al. 2005), which was modified (Steele et al. 2013) to reflect experimental 

conditions in Roh et al., (2012; 2013), where wrist joint movement was restrained. 

Briefly, the model had 4 degrees of freedom (DoF) at the anatomical joints of shoulder (3 

DoF: shoulder elevation, flexion/extension, internal/external rotation) and elbow (1 DoF: 

flexion/extension), controlled by 30 muscles (Table B.1). The posture of the model, 

however, was matched to resemble a different experimental setup (Trumbower et al. 

2010): 70° shoulder elevation, 50° shoulder flexion, 90° elbow flexion (Fig. B.1). This 

setup explicitly provided specified posture in accordance to the DoFs defined in the 

model, and did not required further inverse kinematic analysis. The torso was fixed to the 

ground where the endpoint was defined approximately at the 5th metacarpophalengeal 

joint in the model (Liao et al. 2013). 

 In particular, 8 muscles were considered to be involved in clinical synergy as 

reported in literature (Dewald et al. 1995): anterior deltoid (DELANT), medial deltoid 

(DELMED), posterior deltoid (DELPOST), clavicular head of pectoralis (PECMCLAV),  

triceps long head (TRILONG), biceps brachii longhead (BICLONG), brachioradialis (BRD), 

and pronator teres (PT). The clinical synergy constraint was simply implemented by 

having muscles within a clinical synergy group to be activated with single control value, 

while rest of the muscles were left to be independently activated. Although coupling was 

most evident for shoulder abductors/adductors with elbow flexors/extensors in the 
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experimental data, I tested 14 different combinations which ranged from a group only 

involving a muscle pair that showed significant co-variation in the experiments (e.g. and 

DELANT and BICLONG) to an extreme case where all 8 muscles were included as a group. 

 The task was defined simply to produce isometric endpoint force in 4 orthogonal 

directions in the horizontal plane: anterior, posterior, medial, and lateral (Fig. B.1, blue 

arrows). Maximum feasible forces and muscle feasible ranges (MFR) were computed for 

the control case, where all muscle were assumed to be independently controlled, as 

described in our previous study (Sohn et al. 2013). In particular, MFR were identified for 

each target force direction while varying the force magnitude linearly scaled from 0 to the 

maximum value possible in given direction. Similarly, MFR were identified for the 

clinical synergy group and remaining muscles across force magnitude. 

 

 
Figure B.1: Model and target force directions. (A) Detailed musculoskeletal model of human 

upper extremity (Holzbauer et al., 2005) simplified to 4 DoF and 29 muscles (Steele et al., 2013). 

The posture of the model resembled experimental condition in Trumbower et al., (2010). The 

torso was fixed to the ground, and the endpoint was defined at the wrist joint which was locked in 

this simplified model. (B) Target force directions and 8 muscles involved in clinical synergy. The 

task was defined as isometric endpoint force generation in 4 orthogonal direction in the horizontal 

plane (blue arrows), for which maximum feasible force and muscle feasible range were computed 

(Sohn et al., 2013). Only the 8 muscles involved in clinical synergy, reported in Dewald et al., 

(1995) is shown. 
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Table B.1: Muscles included in the musculoskeletal model and their abbreviations. 

Name Abbreviation 

 
Name Abbreviation 

Anterior deltoid DELTANT * 

 

Coracobrachiali CORB 

Medial deltoid DELTMED * 

 

Triceps long head TRILONG * 

Posterior deltoid DELTPOST * 

 

Triceps lateral head TRILAT 

Supraspinatus SUPSP 

 

Triceps medial head TRIMED 

Infraspinatus INFSP 

 

Anconeus ANC 

Subscapularis SUBSC 

 

Supinator SUP 

Teresminor TMIN 

 

Biceps long head BICLONG * 

Teresmajor TMAJ 

 

Biceps short head BICSHORT 

Pronator teres PT * 

 

Brachialis RRA 

Pectoralis major clavicular PECMCLAV * 

 

Brachioradialis BRD * 

Pectoralis major medial PECMMED 

 

Extensor carpi radialis longus ECRL 

Pectoralis major inferior PECMINF 

 

Extensor carpi radialis brevis ECRB 

Latissimus dorsi superior LAT1 

 

Extensor carpi ulnaris ECU 

Latissimus dorsi medial LAT2 

 

Flexor carpi radialis FCR 

Latissimus dorsi inferior LAT3 

 

Flexor carpi ulnaris FCU 

*: muscles involved in clinical synergy reported in Dewald et al., (1995) 

 

B.1.3 Findings 

 In the control case, maximum feasible forces (Fig. B.2, blue arrows) were found 

to be largest in posterior direction (378.8N) and smallest in the lateral direction (125.2N). 

This was consistent with experimental observation that lateral force was the weakest 

direction especially in individuals with stroke (Roh et al., 2012). Across all target force 

directions, muscle feasible ranges were wide in general, across force magnitudes (Fig. 

B.2, gray area enveloped with bold black traces). Upper and lower bounds in some 

muscles did not converge even at maximum force level in particular directions, indicating 

substantial redundancy even for maximal task. For example, MFR spanned full possible 

range, from 0 to 1, in anterior and medial directions in muscle SUPSP (Fig. B.2A, top 

and left), posterior and lateral direction in muscle TRILAT (Fig. B.2B, bottom and right). 

This was also in agreement with previous results from cat hindlimb during 

biomechanically redundant task of isometric force generation (Sohn et al. 2013). 
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 With the clinical synergy constraint, both feasible forces and muscle feasible 

ranges were restricted compared to independently controlled condition (Fig. B.2, red area 

enveloped with bold red traces). Here, I selected the most restricted case in which all 8 

muscles are co-activated as a representative example to illustrate the effect of the clinical 

synergy constraint; other combinations that may be more relevant physiologically had 

essentially the same features qualitatively, but was less prominent.   

 Although maximum feasible force in each target force direction was not 

computed explicitly, model with clinical synergy constraint could not achieve maximal 

endpoint force generation in given direction in many cases. For example, lower bound 

exceeded 1 at sub-maximal level of force in posterior and medial directions in muscle 

SUPSP (Fig. B.2A, bottom and left), and in posterior and lateral directions in muscle 

TRILAT (Fig. B.2B, bottom and right).  

 

 
Figure B.2: Feasible force and muscle feasible range (cont. on next page). (A) Muscle SUPSP. 
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Figure B.2: Feasible force and muscle feasible range (cont. from previous page). (B) muscle 

TRILAT. Maximum feasible force in each direction was computed (blue arrows) in the control 

condition, i.e., independent control. All force levels examined were normalized to this value in 

each condition. Muscle feasible ranges (MFR) were identified in both control (gray area 

enveloped with bold black traces) and clinical synergy constraint condition (red area enveloped 

with bold red traces). Clinical synergy constraint significantly restricted both feasible forces and 

MFR in muscles that were not included. 

 

 Feasible ranges of activation in muscles that were not included in the clinical 

synergy group became significantly more narrow. Muscles became constrained (smaller 

upper bound) earlier at low force magnitudes, e.g. in muscle SUPSP (Fig. B.2A, in all 

directions, upper traces in red). Muscles became necessary (lower bound >0) earlier, e.g. 

in anterior, posterior, and medial directions in muscle SUPSP (Fig. B.2A, top, bottom, 

and left, lower traces in red), and in anterior, posterior, and lateral directions in muscle 

TRILAT (Fig. B.2B, top, bottom, and right, lower traces in red). However, some muscles 

such as TRILAT remained redundant at lower force magnitudes (Fig. B.2B). 
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 Interestingly, clinical synergy constrained the solution space, specifying a pattern, 

as force magnitude increased. A muscle activation pattern was becoming more uniquely 

defined towards higher forces force: e.g. in medial direction in muscle SUPSP (Fig. B.2A, 

top). Sometimes, muscle feasible ranges defined a narrow window showing linear slope 

as force magnitude increased: e.g. in anterior direction in muscle SUPSP (Fig. B.2A, top), 

and in posterior and lateral directions in muscle TRILAT (Fig. B.2B, bottom and right).  

 

B.1.4 Conclusions 

 In summary, I examined how abnormal co-activation of shoulder and elbow 

muscles typically observed in stroke affect the feasible force and muscle feasible range 

during isometric endpoint force generation. Results demonstrated that clinical synergy, or 

pathological coupling, in feed-forward control of muscles adversely affects the 

biomechanical capability of the limb and restricts the flexibility of choices by the nervous 

system. 

 Muscle feasible ranges were wide in general at lower force levels. It may explain 

the absence of clinical synergies during muscle synergy analysis for individuals with 

stroke who performed isometric force generation tasks at low force levels (Roh et al. 

2012; Roh et al. 2013). Further, wide range in activation of muscles implies that 

substantial deviation from any single optimal solution, e.g. minimum-effort (Steele et al. 

2013), is possible. 

 Clinical muscle synergy may constrain the solution space to a “typical” 

pathological pattern that may impair motor function or have poor functional properties, 

especially at relatively higher force levels. In contrast, wide ranges in the control case 

suggest that there may need a neural strategy such as functional muscle synergy (Roh et 

al. 2012) which might serve to constrain windows for more functionally robust solutions. 
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By imposing muscle synergy constraint from healthy people, we may define a restricted 

range of solutions with better functional properties, e.g. efficient and stable. 

 The approach of identifying muscles feasible ranges using observed coordination 

as a constraint has further implication to how measured muscle pattern can be used to 

infer possible variations in unrecorded muscles; practically, not all muscles can be 

measured in experiments. 

 

B.2 Modeling how amputation limits biomechanical capability of the lower limb  

B.2.1 Background and motivation 

 Physical impairments in the musculoskeletal system such as amputated limb can 

alter both biomechanical and neural control strategies for functional movement such as 

balance control or gait (Prinsen et al. 2011; Soares et al. 2009 ; Vrieling et al. 2008; 

Waters and Mulroy 1999). Despite biomechanical deficiencies, the central nervous 

system remains intact in individuals with limb loss, and may adapt compensatory control 

mechanisms. For example, asymmetry in inter-limb coordination often observed in 

individuals with unilateral transtibial limb loss (TTLL) during gait (Childers and Kogler 

2015 (In press); Hak et al. 2014 ) or reactive balance tasks (Bolger et al. 2014) may be 

attributed to functional compensation. However, contribution from biomechanical 

constraints imposed by the prosthesis or missing joint, is not readily distinguishable from 

experimentally observed behavior, e.g. from kinematics or ground reaction forces.  

 Musculoskeletal models can be used to dissociate different contributions from 

biomechanical and neural constraints. In particular, biomechanical capability of the limb 

in generating endpoint force can be quantified with feasible force set (FFS), which 

represents a manifold of all possible endpoint force vectors that can be produced (McKay 

et al. 2007; Valero-Cuevas et al. 1998). By exploring these biomechanically feasible 
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solutions (FFS) available to able-bodied individuals and individuals with TTLL, we can 

infer whether asymmetries represent a biomechanical deficit or a neural control strategy. 

 I hypothesized that “biomechanical constraint alone is insufficient to determine 

asymmetric inter-limb coordination in individuals with TTLL”. I predict that FFS is 

larger than the range of experimentally-observed forces during movement. Further 

implication is that muscle activity during asymmetric inter-limb coordination in 

individuals with TTLL reflects selected neural control strategies, among many solutions 

in the redundant muscle activation space. As a first step to testing this hypothesis, I am 

testing how TTLL may affect the capability of the limb in producing endpoint forces.  

 

B.2.2 Approach 

 I use a musculoskeletal model of the human leg with 7 degrees of freedom (DoF) 

and 43 muscles in each leg (described in detail elsewhere), and considered only the right 

leg. The posture of the model was put to a single static configuration, a slightly flexed 

posture to avoid singularity. Pelvis was fixed to the ground and endpoint was defined as 

gimbal joint and was located at the MTP joint. 

 In a control, Able-bodied model (ABLED), MTP joint was discarded to prevent 

additional constraint imposed by this joint, which had no effect on the endpoint force. In 

result, ABLED model had 6 DoF and 43 muscles. TTLL was modeled by locking distal 

DoF beyond the knee (ankle and subtalar joints) and removing the muscles crossing those 

joints. As a result, the simulated transtibial limb loss model (TTLL) had 4 DoF and 33 

muscles.  

 FFS in both models were computed using methods similar to that described in our 

previous work (Sohn et al., 2013). Maximum feasible force was computed for a given set 

of desired endpoint force directions: 289 directions uniformly distributed around 3-

dimensional unit sphere. 
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 Because of redundancy, muscle activation pattern that produce maximal endpoint 

force in a given direction is not unique. Therefore, I used 25 different initial conditions 

for the search: a pattern with all zeros, another pattern with all ones, and 23 random 

patterns with uniform distribution between 0 and 1. The same set of initial conditions 

were used for both ABLED and TTLL models. Relative redundancy in each case was 

examined with the range in activation spanned by converged solutions. 

 

B.2.3 Findings 

 The biomechanical capability of the lower limb in isometric endpoint force 

generation was limited particularly in leg extension in TTLL (Fig. B.3B, downward). 

 

 
Figure B.3: FFS in ABLED and TTLL. FFSs in ABLED and TTLL showing maximum 

isometric forces that can be produced in 3D directions by (A) an able-bodied model and (B) a 

model with simulated TTLL. Compared to ABLED model, TTLL models could produce lesser 

extensor force, and higher flexor force. Shear forces in the horizontal plane were similar. Arrows 

indicate maximum feasible force vectors in few example target directions (out of 289 uniformly 

distributed directions) in horizontal (top), sagittal (bottom left), and frontal (bottom right) planes. 
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The FFS in ABLED (Fig. B.3A) was qualitatively similar to previous model predictions 

(Gruben et al. 2003; Kutch and Valero-Cuevas 2011; Schmidt et al. 2003). The decrease 

in ability to produce extensor force in TTLL is likely due to absence of ankle joint. 

 Interestingly, however, the TTLL model could produce greater flexion force (Fig. 

B.3B, upward direction), which is likely due to less stringent constraint from the joint 

torque requirement with smaller number of DoF. Subtle differences were found in 

capability of the limb in producing shear forces, i.e., forces in the horizontal plane (Fig. 

B.3, top). Different initial conditions resulted in essentially the same maximal force in 

most directions for the FFS in both ABLED and TTLL model (Fig. B.3). 

 In general, redundancy in muscle space at maximum feasible force levels was 

relatively greater in ABLED (Fig. B.4, left column) than TTLL (Fig. B.4, right column)  

 

 

Figure B.4: Redundancy in muscle space. Range spanned by converged solutions in ABLED 

(left) and TTLL (right) model, starting from the same set of random initial conditions, for 

maximum flexion (top) and extension (bottom) directions. Filled boxes show the range spanned 

by activation levels of each muscle in 25 random initial patterns, whereas dots and bars represent 

average and standard deviations, respectively. Gray bars indicate eliminated muscles in TTLL. In 

general, ABLED model had relatively greater redundancy in muscle activation space than TTLL. 
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model. For example, range spanned by converged solutions from the same set of 25 

random initial conditions were wider in most muscles for maximum flexion (Fig. B.4, 

first row) and extension (Fig. B.4, second row) force directions. 

 

B.2.4 Conclusions 

 Results show that biomechanical capability of the limb as represented by FFS is 

decreased in extension force direction and increased in flexion force direction. This 

results merely reflects mechanical actions of muscles with respect to the joints that it 

cross, which were different in the two conditions: able-bodied (ABLED) and with trans-

tibial limb loss (TTLL).  

 However, many evidence points to possibility of active neural intervention in 

asymmetric inter-limb coordination in TTLL. Subtle difference between ABLED and 

TTLL in feasible horizontal plane forces directions suggests that restricted range of force 

directions used on the prosthetic side in TTLL during balance (Bolger et al. 2014) reflects 

a neural control strategy. In addition, limited potential in producing extensor force in 

TTLL also implies that neural compensation is required in tasks involving bilateral leg 

extension such as rowing or weightlifting (Howard and Enoka 1991; Schantz et al. 1989; 

Secher et al. 1988). Further, redundancy in muscle activation space even for maximal 

force tasks grants ample room for the intact nervous system consider multiple functional 

criteria relevant to the task-level goal (McKay and Ting 2012). 

 Understanding the possible dissociation of neural and biomechanical asymmetries 

in unilateral TTLL has great implication for developing rehabilitation strategies, 

challenging the conventional rehabilitation, which had focused mostly on “recovering” 

symmetry (Hassid et al. 1997; Hesse et al. 2013; Mauritz 2002). 
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APPENDIX C 

TECHNICAL NOTE ON ESTIMATING STATE MATRIX 

This chapter was originally published as an internal document in Neuromechanics lab, Georgia Institute of 

Technology. 

 

Sohn MH and McKay JL. Muscle pattern optimization via estimated system state matrices to save 

computation time in the cat hindlimb model, 2011. 

 

This document was partially included as a section in the published journal article in International Journal 

for Numerical Methods in Biomedical Engineering. 

 

Bunderson NE, Bingham JT, Sohn MH, Ting LH, and Burkholder TJ. Neuromechanic: a computational 

platform for simulation and analysis of the neural control of movement. Int J Numer Method Biomed Eng 

28: 1015-1027, 2012. 

 

 

C.1 Introduction 

 This document describes a computational shortcut that saves time in searching for 

muscle activation patterns in the cat hindlimb model (Bunderson et al. 2010) that 

minimize criteria derived from the linearized system state matrix. In particular, we would 

like to identify muscle patterns in the model that optimize criteria related to limb 

stability, as quantified with the eigenvalues of the state matrix, while also producing a 

given force vector at the endpoint. 

 Calculating the linearized system state matrix at every optimization step within 

NEUROMECHANIC would require substantial computational overhead. However, this 

would numerous calls to NEUROMECHANIC from the optimizer, MATLAB. At each 

optimization step, the following steps would be required: 
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 Writing a body file (filename.nmcb) for given muscle activation with MATLAB 

(write_nmcb.m). 

 Running a forward dynamic simulation in NEUROMECHANIC to generate an 

output file (filename.nmco). 

 Replaying the simulation in order to save the linearized system state matrix 

(filename_replay.nmco). 

 Loading the output file into the MATLAB workspace (read_nmco.m). 

 As can be expected, computational demand for this procedure will increase 

extensively if the search space is large, as in the 31-muscle cat hindlimb model. 

   The shortcut described here saves computation time by estimating the linearized 

system state matrix at every optimization step within MATLAB by multiplying the 

current muscle activation pattern by a matrix of pre-calculated regression coefficients. 

Although this shortcut requires more overhead in the pre-calculation step, it is 

computationally advantageous over an alternative approach of running a dynamic 

simulation for every single function evaluation step during the search. The version of the 

cat hindlimb model used here is built in NEUROMECHANIC and has 14 kinematic 

states: seven for each of joint displacements and velocities. 

 Here, we demonstrate that linearized system state matrices estimated from pre-

calculated regression coefficients in MATLAB are comparable to results calculated in 

NEUROMECHANIC. 

 

C.2 Methods 

C.2.1 Linearized system matrix 

 The linearized system state matrix describes how a small change in each of the 

states will affect the system by linearly approximating the local dynamics of the entire 
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nonlinear musculoskeletal model around an equilibrium point. The eigenvectors of the 

state matrix represent the basis vectors that span all possible variations (modes) that can 

be made on the system. The corresponding eigenvalues determine how the system 

responds to such modes and determines system’s local stability: the system will be stable 

if all eigenvalues are negative. 

 The state matrix for a system with kinematic states 



q can be given as follows. 

From the equations of motion, 

( ) ( ) ( , , ) ( ) ( , ) ( )M Endq q q F q q a q F V q q G q   TM R J
  (D.1), 

where M is the inertia matrix; R is the moment arm matrix; J is the endpoint Jacobian; 



F M  is the vector of muscle forces; 



F End  is the vector of endpoint forces; 



V  is the vector 

of Coriolis terms; and 



G  is the gravitational torque vector. We define the system of the 

kinematic states as, 

( )M Endq f F F V G    -1 T
M R J     (D.2) 

 We obtain the linearized system state matrix about an equilibrium point using the 

first-order Taylor-series expansion. A system is said to be at an equilibrium when it is 

balanced to all external forces and moments and there are no changes in the states with 

respect to time. Therefore, at equilibrium, f  0 , and: 

 
q q

q q

    
   

    
A

   

where the state matrix, f f

q q

 
   
 
   

0 I

A   (D.3). 

 

C.2.2 State matrix as a function of muscle activation  

 If the state matrix can be estimated as a linear function of muscle activation vector 



a , calculation of the state matrix from the muscle activation vector will simply be a 

matrix-vector multiplication. There are two requirements for this to be possible: 
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 Limb configuration is static, so that the inertia matrix, moment arm matrix, 

Jacobian matrix, Coriolis vector, and gravity vector terms in Equation 1 are all 

constant. 

 Hill type Zajac muscle models (Zajac 1989) are used: active muscle force scales 

with muscle activation and inelastic tendon is assumed, so that the vector of 

muscle forces in Equation 1 depends only on muscle activation 



a . 

 In particular, muscle force in the Zajac model is generated by active and passive 

component, both based on the current state of the musculotendon length (MTL) and 

velocity (MTV) each normalized to the optimal fiber length and maximum fiber velocity 

respectively. 

[ ( ) ( ) ( )]cosM Max pennMTL MTV MTLF F afl vf a pfl      (D.4) 

 If the posture is assumed to be fixed, all other variables and parameters in 

Equation 1 except muscle activation 



a  are constant. The above muscle model can then be 

rewritten comprised of the constant active component multiplied by the activation which 

is offset by the constant passive component as, 

M paF a F F  , and in turn the system equation as, 

( )p Endaf a F F V G    -1 T
M RF R J    (D.5). 

 Therefore, it can be said that under the condition given above, the state matrix for 

a given configuration depends solely on the muscle activation and can be expressed in 

explicit form of muscle activation. 

 

C.2.3 Separating parts of the state matrix that are multiplied by muscle activation  

 Specifically, we want to focus on the lower part of the state matrix where the 

elements vary depending on the muscle activation. Defining a new matrix Q as below, 

f f

q q

  
    

T

Q     (D.6). 
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 It can be shown that the constant terms in the matrix Q for a given configuration 

can be separated by the terms that are multiplied by the muscle activation and the terms 

that are not. In column-wise notation where Qi is the i-th column of the matrix Q, 

T

i i
ii i

j j

f f
Q a C

q q

  
   

   

B   where  j = 1,2, … n 

,

( )a i

j

i

a i

j

q

q

 
 
 
 
 

  

-1

-1

RF
M

B
F

M R

  and 

,

( ) ( )p End i ii i

j j j j

i

End i i

j j

F F V G

q q q q
C

F V

q q

     
    

      
  

   
      

T
-1

-1 T

R J
M

M J

  (D.7) 

 In general, if the system has n kinematic degrees of freedom and m muscles, 

dimension of the matrix Q is 2nxn each column, Qi, being 2nx1 where matrix Bi has 

dimension 2nxm and vector Ci 2nx1. For a given configuration, Bi and Ci are constant for 

all i, which in result constitutes the whole state matrix. Therefore, given a set of data 

regarding the muscle activations as predictor variables and its corresponding state 

matrices as response, we can estimate all Bi and Ci, which gives the relationship between 

muscle activations and the state matrix, using linear regression which is to be discussed 

in the following section. 

 

C.2.4 Regression of the separated state matrix onto muscle activation 

 A pool of data set with N observations can be generated using 

NEUROMECHANIC as mentioned in one of  previous sections. Since both the response 

variable (Qi) and the predictor variable (muscle activation a) are vectors of n and m 

dimensions respectively, multivariate multiple linear regression (MMLR) must be used. 

For Qi, this can be arranged in a form where N observations are constructed with N 

predictor inputs using the same coefficient matrix: 
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1 1

2 2

( ) ( )1

1( ) ( )

1
( ) ( )

T T

i

T T T

ii

T T

N Ni

Q a

Q a C

Q a

   
   
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      
   
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T

i
B

  or in short, 
T

iC 
  

  
i,obs in T

i

Q Act
B

 (D.8). 

 Using the commonly accepted criteria of least squares error (other criteria can be 

used, such as), the coefficient matrix can be obtained as below (in MATLAB, this is 

simply left division mldivide):  

1( )

T

iC 
 

 
  

T T

in in in i,obsT

i

Act Act Act Q
B

where the error (residual) is 

T

iC 
  

  
i,obs in T

i

Q Act
B

 (D.9). 

 A single MMLR can be done in order to obtain each of the Qi’s. In conclusion, n 

times of MMLR will yield all the coefficient matrices required to construct Q, and by 

definition, the state matrix. 

 

C.2.5 Comparison of linearized state matrices estimated in MATLAB and calculated 

in NEUROMECHANIC 

 We directly compared linearized state matrices estimated from pre-calculated 

regression coefficients in MATLAB with those calculated directly from 

NEUROMECHANIC based on a sample of 100 muscle activation patterns. Briefly, 

 We used the musculoskeletal model of the cat hindlimb and stance-like force used 

by Bunderson et al, 2010. The model was fixed at both the pelvis (translation and 

rotation) and at the toe (translation only). 

 We generated a set of 100 uniformly-distributed random activation patterns as 

target inputs for the model in NEUROMECHANIC. 

 For each activation pattern, the model was balanced to produce the stance-like 

endpoint force with muscle activation found by NEUROMECHANIC that is 
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closest to the assigned target (NEUROMECHANIC function ‘Equilibrate’) and 

the state matrix was saved. 

 We performed the linearized state matrix separation and regression as described 

above to generate estimated state matrices for each muscle activation pattern. 

 We calculated the mean-squared error between estimated and computed state 

matrices. 

 

C.3 Results 

 State matrices estimated from linear regression within MATLAB and computed 

within NEUROMECHANIC were very similar. Absolute errors between elements of 

state matrices were ≤ 10
-3

. RMS errors between estimated and computed state matrices 

were 1.28x10
-6

 ± 3x10
-7

 %. 

 Initially obtaining computed linearized state matrices from NEUROMECHANIC 

took 397.8 seconds. Once the set of state matrices was available in MATLAB, obtaining 

estimated linearized state matrices took 0.099 seconds. 

 

C.4 Conclusions 

 We have presented a method that can save computation time for nonlinear muscle 

activation optimizations by using pre-calculated estimates of the mapping between 

muscle activation and the resulting system state matrix for searches within MATLAB 

rather than requiring repeated calls between MATLAB and NEUROMECHANIC. We 

found that the state matrix estimates calculated via linear regression within MATLAB 

were generally very similar to those calculated from the full nonlinear model in 

NEUROMECHANIC, but required considerably less computational overhead. The 

advantages of this method are offset somewhat by three factors. First, the regression 
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equations describing the mapping between muscle activation and system state must be 

pre-calculated beforehand. Therefore, if a very small number of optimizations is required, 

the pre-calculation computational overhead may mean that there is no net savings in 

computational time. Second, use of the method requires that a relatively simple Zajac-

style muscle model be used. Therefore, the method may not be appropriate if it is desired 

to investigate the role of passive mechanisms such as elastic tendons. Third, further 

research is required to determine the number of muscle patterns required to assure a given 

level of fidelity in the estimated linearized state matrices. These concerns 

notwithstanding, the presented method generally appears to be computationally 

advantageous over an alternative approach of running a dynamic simulation for every 

single function evaluation step during the search. 
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