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Herrera Castro, Daniel, From images to point clouds. Practical considerations for
three-dimensional computer vision
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Computer Science and Engineering
Acta Univ. Oul. C 536, 2015
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Three-dimensional scene reconstruction has been an important area of research for many decades.
It has a myriad of applications ranging from entertainment to medicine. This thesis explores the
3D reconstruction pipeline and proposes novel methods to improve many of the steps necessary
to achieve a high quality reconstruction. It proposes novel methods in the areas of depth sensor
calibration, simultaneous localization and mapping, depth map inpainting, point cloud
simplification, and free-viewpoint rendering.

Geometric camera calibration is necessary in every 3D reconstruction pipeline. This thesis
focuses on the calibration of depth sensors. It presents a review of sensors models and how they
can be calibrated. It then examines the case of the well-known Kinect sensor and proposes a novel
calibration method using only planar targets.

Reconstructing a scene using only color cameras entails di_erent challenges than when using
depth sensors. Moreover, online applications require real-time response and must update the
model as new frames are received. The thesis looks at these challenges and presents a novel
simultaneous localization and mapping system using only color cameras. It adaptively triangulates
points based on the detected baseline while still utilizing non-triangulated features for pose
estimation.

The thesis addresses the extrapolating missing information in depth maps. It presents three
novel methods for depth map inpainting. The first utilizes random sampling to fit planes in the
missing regions. The second method utilizes a 2nd-order prior aligned with intensity edges. The
third method learns natural filters to apply a Markov random field on a joint intensity and depth
prior.

This thesis also looks at the issue of reducing the quantity of 3D information to a manageable
size. It looks at how to merge depth maps from multiple views without storing redundant
information. It presents a method to discard this redundant information while still maintaining the
naturally variable resolution.

Finally, transparency estimation is examined in the context of free-viewpoint rendering. A
procedure to estimate transparency maps for the foreground layers of a multi-view scene is
presented. The results obtained reinforce the need for a high accuracy 3D reconstruction pipeline
including all the previously presented steps.

Keywords: 3D reconstruction, camera calibration, depth map inpainting, free viewpoint
rendering, point cloud merging, simultaneous localization and mapping





Herrera Castro, Daniel, Kuvista pistepilveksi. Käytännön näkökulmia
kolmiulotteiseen tietokonenäköön
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta,
Tietotekniikan osasto
Acta Univ. Oul. C 536, 2015
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Kolmiuloitteisen ympäristöä kuvaavan mallin rakentaminen on ollut tärkeä tutkimuksen kohde
jo usean vuosikymmenen ajan. Sen sovelluskohteet ulottuvat aina lääketieteestä viihdeteollisuu-
teen. Väitöskirja tarkastelee 3D ympäristöä kuvaavan mallin tuottamisprosessia ja esittää uusia
keinoja parantaa korkealaatuisen rekonstruktion tuottamiseen vaadittavia vaiheita. Työssä esite-
tään uusia menetelmiä etäisyyssensoreiden kalibrointiin, samanaikaisesti tapahtuvaan paikan-
nukseen ja kartoitukseen, syvyyskartan korjaamiseen, etäisyyspistepilven yksinkertaistamiseen
ja vapaan katselukulman kuvantamiseen.

Väitöskirjan ensi osa keskittyy etäisyyssensoreiden kalibrointiin. Työ esittelee erilaisia sen-
sorimalleja ja niiden kalibrointia. Yleisen tarkastelun lisäksi keskitytään hyvin tunnetun Kinect-
sensorin käyttämiseen, ja ehdotetaan uutta kalibrointitapaa pelkkiä tasokohteita hyväksikäyttä-
en. Pelkkien värikameroiden käyttäminen näkymän rekonstruointiin tuottaa erilaisia haasteita
verrattuna etäisyyssensoreiden käyttöön kuvan muodostamisessa. Lisäksi verkkosovellukset
vaativat reaaliaikaista vastetta. Väitös tarkastelee kyseisiä haasteita ja esittää uudenlaisen yhtäai-
kaisen paikannuksen ja kartoituksen mallin tuottamista pelkkiä värikameroita käyttämällä. Esi-
tetty tapa kolmiomittaa adaptiivisesti pisteitä taustan pohjalta samalla kun hyödynnetään eikol-
miomitattuja piirteitä asentotietoihin.

Työssä esitellään kolme uudenlaista tapaa syvyyskartan korjaamiseen. Ensimmäinen tapa
käyttää satunnaispisteitä tasojen kohdentamiseen puuttuvilla alueilla. Toinen tapa käyttää 2nd-
order prior kohdistusta ja intensiteettireunoja. Kolmas tapa oppii filttereitä joita se soveltaa Mar-
kov satunnaiskenttiin yhteisillä tiheys ja syvyys ennakoinneilla. Tämä väitös selvittää myös
mahdollisuuksia 3D-information määrän pienentämiseen käsiteltävälle tasolle. Työssä selvite-
tään, kuinka syvyyskarttoja voidaan yhdistää ilman päällekkäisen informaation tallentamista.
Työssä esitetään tapa jolla päällekkäisestä datasta voidaan luopua kuitenkin säilyttäen luonnolli-
sesti muuttuva resoluutio.

Viimeksi, tutkimuksessa on esitetty läpinäkyvyyskarttojen arviointiproseduuri etualan ker-
roksien monikatselukulmanäkymissä vapaan katselukulman renderöinnin näkökulmasta. Saadut
tulokset vahvistavat tarkan 3D-näkymän rakentamisliukuhihnan tarvetta sisältäen kaikki edellä
mainitut vaiheet.

Asiasanat: 3D kuvanmuodostus, kameran kalibrointi, pistepilvien yhdistäminen,
syvyyskartan korjaaminen, vapaa katselukulmapohjainen renderöinti





Preface

A doctoral dissertation is a symbolic conclusion to a long journey into the world of
research. This is especially the case with a compilation thesis, like this one, where the
previous articles speak for themselves. They show parts of the progression along this
journey and the contributions made. But there are parts of this journey that are not
reflected in the publications or the dissertation though they were very important.

My journey into computer vision started before I chose to do so. I was deeply
inspired during my bachelor studies by Dr. Pablo Alvarado, a.k.a. el Doc. The first,
and for a long time the only, person I met with a doctoral degree. He demonstrated
that knowledge, passion, and humility can go hand in hand. He introduced me to the
computer vision field and opened a door for me that I did not know existed, and for that
I am very grateful.

The doctoral journey was, like Finland, a somewhat lonely and exotic thing for
me. The people who helped me along the way were like shining stars that turned an
otherwise dark and scary night into a beautiful starry landscape. I would like to thank
them all here for everything they have done for me. Unfortunately, there is not enough
space in this book to list all the stars in the sky. And so, even though some may shine
brighter than others, know that I’m truly thankful to all for lighting my way.

Perhaps, the brightest star has been my mentor, Dr. Juho Kannala. It’s an inspiration
to work with someone who speaks math better than English, even though his English is
exceptional. He has been an excellent and patient guide throughout my journey, as well
as a role model of what kind of doctor I would like to be. I’m convinced that I would be
a worse researcher if I had not had him to check and challenge me. Thank you.

I’m also thankful to my Professor Janne Heikkilä who believed in me, even when I
struggled, and provided a lot of valuable support. When I was too short-sighted to see
only the tree, he always reminded me of the forest.

I’d like to thank the NVIDIA research team for their help and collaboration. In
particular, Dr. Kihwan Kim, who went beyond the supervisor role and shared his
friendship with me.

A journey of only academics, equations, and code would be bland and tasteless. I’m
immensely grateful to those who added some spice and color to it. Miguel Bordallo and
Matteo Pedone made the department a much warmer place for me. Special thanks to
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Hannakaisa Aikio, who went beyond her duties to help me get established in Oulu. She
has been a valuable friend both at work and outside.

Perhaps, one of the most important aspects of my journey has been lunch. Not
only because it staves off the ever lurking hunger, but because it has kept my human
mind sane in the midst of this computer world. I thank my early lunch group with Ville
Ojansivu, Sami Huttunen, and Jari Hannuksela. The beginning was so much brighter
because of your company. I cannot thank my new lunch group enough. Your charisma
and friendship turns a simple lunch into an exotic discussion surrounded with dwarves,
rangers, witches, and elves.

Finally, I would like to thank my family for their love and support. Though the
distance may be large, it is comforting to know that there is always a place where I
belong.

Oulu, March 2015 Daniel Herrera C.

8



Abbreviations

| · | Absolute value
|| · || L2-norm
2D Two-dimensional
3D Three-dimensional
α Interpolation or transparency factor
α Expert function parameters for a FoE formulation
b Background color vector
c Color vector
c The speed of light
c0,c1 Kinect disparity to depth coefficients
D(xn) Camera distortion function
DIBR Depth-image based rendering
DoF Degrees of freedom
f Foreground color vector
fx, fy Focal length parameters
FoE Field-of-Experts
FVR Free-viewpoint rendering
GPU Graphics processing unit
I Image plane
I Image matrix
Î Warped image matrix
j Vector of linear filter coefficients
K(xn) Intrinsic projection function
K Intrinsic matrix of a pinhole camera
k1,k2, . . . ,kn Radial distortion coefficients
kdu Kinect disparity units
λ Relative weighting factor between data and regularization terms
L(x,y,z, θ,φ) The plenoptic function.
m 2D coordinates of a point on the image plane
MRF Markov random field
ν The frequency of light
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ν̂(x) Perspective division function
N Set of neighbourhoods in a Markov random field
φ(x;α) Expert function for a FoE formulation
�d Projective space of dimension d

P(x) Camera projection function
P Point cloud
p(·) Probability density function
p1, p2, ..., pN Tangential distortion coefficients or 3D point samples from a surface
QPBO Quadratic pseudo-Boolean optimization
ρ(x) Robust cost function
�d Real space of dimension d

R Rigid 3D transformation
R 3D rotation matrix
R(x) Regularization prior term
RANSAC Random sample consensus
SDF Signed distance function
SLAM Simultaneous localization and mapping
SVD Singular value decomposition
Θ Parameters of a probability distribution
τ Threshold value
t 3D translation vector
ToF Time-of-flight
U(x) Unary energy data term
(u0,v0) Principal point of the camera
V Virtual image plane or the set of pixels with missing values
W Weighting function
x 3D coordinates of a point in Euclidean space
xn 2D coordinates of a point on the virtual image plane
x(k) A vector containing the values of the pixel in neighborhood k
Z(Θ) Partition function that normalizes a probability distribution
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1 Introduction

1.1 Background and motivation

The goal of computer vision is to extract useful information from images. It is a very
attractive field of research because of the large amount of information contained in an
image. Humans use visual information for a myriad of tasks. A single image can be
used to recognize the identity of a person and his mood. Most fruits can be judged to be
ripe or not by mere visual appearance. We can estimate the slipperiness of a surface or
even reconstruct the structure of a building from images only. As a discipline, computer
vision aims to give these very same abilities to computers.

Computer vision methods take many different forms depending on the information
required and the imaged scene. Classification methods can assign global labels to an
image, e.g. “is scenery”, “contains a person”, “is happy”. Detection methods can locate
the place in the image where an object is present, e.g. a car, a pedestrian. Registration
methods determine the pose of a given object, e.g. face registration to determine the
exact configuration of a face in an image. Reconstruction methods extract a model from
noisy and incomplete data, e.g. three-dimensional reconstruction of a room from images.
Each of these can be considered a separate area within computer vision and they often
use very different techniques. In practice they also overlap and complement each other.
For example, feature detection can be of great help for 3D reconstruction.

In a similar way, computer vision is not an isolated field. It borrows from some
and contributes to others. Mathematics is the intrinsic language of computer vision.
Problems and solutions are both expressed in mathematical terms. Due to the noisy
nature of the world and its measurements algorithms are often probabilistic in nature and
rely on concepts and methods from statistics. Geometry provides valuable insight and
constraints that are used widely in computer vision and in this thesis. Machine learning
plays a crucial role in many areas of computer vision. Many tasks, e.g. classification,
can be solved by learning a function from the input data. The recent advances in deep
convolutional neural networks mixed with image processing techniques have resulted in
the most accurate recognition systems to date. The solutions and algorithms have to be
implemented and tested which is a software engineering task. Also, computer graphics
can be said to perform the inverse function to computer vision. Whereas computer
vision tries to recover information from images, computer graphics uses models to
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generate images. Still, they share many common techniques since they both have images
as a central concept.

So far, a generic solution that can extract and categorize all information available in
an image of an arbitrary scene has remained out of reach. Nevertheless, impressive
achievements have been made in many areas of computer vision. Face verification
methods have surpassed human accuracy (Lu & Tang 2015). Image inpainting algorithms
can replace foreground objects with an automatically generated yet realistic and
convincing background (Roth & Black 2009). Three-dimensional reconstruction
algorithms can produce city-wide 3D models from images directly obtained from
an internet search (Agarwal et al. 2015a). A dense map of the environment can be
reconstructed in real-time from an arbitrarily moving camera (Engel et al. 2014).
Google’s self-driving cars rely heavily on 3D reconstruction to estimate the world around
them and have driven thousands of kilometres with no human assistance. Computer
vision has seen a fast-paced and constant development in the last decade and continues
to advance.

The advancements in computer vision come from many directions. Naturally, many
of them come from basic research done within the field. A better understanding of
epipolar and multi-view geometry has enabled better constraints for reconstruction
(Hartley & Zisserman 2000, Hongdong & Hartley 2006, Ponce & Hebert 2014). The
development of view-invariant methods for feature detection and description has
significantly improved recognition, registration, and reconstruction algorithms (Lowe
2004, Heikkilä et al. 2009). Other fields have enabled many of the recent advancements.
Hardware developments constantly increase the computational power available and
enable new types of algorithms. Most of the top-performing algorithms would not have
been possible ten years ago due to hardware constraints. The quantity and quality of the
training data have had a tremendous impact on the quality of the algorithms. The recent
advances in deep convolutional neural networks have been made possible by training the
system with many thousands of labelled images. Such massive databases have only
recently become available. New algorithms for numerical optimization enable computer
vision systems to include more accurate constraints, more data, and better priors. New
sensors have opened the way for more ambitious systems. Depth sensors produce a
dense reconstruction of a scene with minimal computational cost and have enabled
research on more advanced applications like autonomous navigation and large-scale
dense mapping.
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Fig 1. An example of a 3D reconstruction pipeline using depth maps and point clouds as the 3D
model. The sparse and dense reconstruction stages can be avoided or simplified when using a
depth sensor.

1.2 Scope of the thesis

Computer vision is a very broad field and a doctoral thesis can only cover a small part of
it. This thesis is no exception and focuses on the area of 3D reconstruction. It aims to
contribute knowledge and practical methods that can be used to improve reconstruction
systems. The thesis describes the 3D reconstruction process as a pipeline that takes
images as input and produces a 3D model as output. However, the exact stages of the
pipeline and the structure of the output model are not fixed. There are many ways to
approach the reconstruction problem. Instead of suggesting a concrete pipeline, this
thesis proposes several improvements to different stages of it. As an example, Figure
1 shows a reconstruction pipeline that includes all the components mentioned in this
thesis. The topics and problems considered in Papers I–VII may appear diverse, but they
all support the idea of a reconstruction system. This section briefly describes these
components and how they are related to the thesis.

Reconstructing the scene structure from images has been a central area of research
since the beginnings of computer vision (Marr 1982, Faugeras 1993, Hartley & Zisserman
2000, Faugeras et al. 2001). The output model can be the goal itself or it can be the
input to higher level applications like augmented reality or free viewpoint rendering.
The reconstruction process itself is typically divided into sub-problems, as seen in
Fig. 1. Camera calibration, feature detection and matching, sparse reconstruction, and
all the other possible stages are complicated problems on their own and most are not
considered solved yet. Impressive reconstruction systems have been built using the
methods currently available for these components, but it is only natural to expect that
improving the components will lead to even better systems.

An important part of the thesis deals with camera calibration. A calibrated camera
is necessary to perform a metric reconstruction which is what we are after here. The
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contributions are centered around calibrating depth sensors, however, this is still closely
related to the calibration of color images.

Naturally, the theory and geometry behind 3D reconstruction is central to this thesis.
The contributions of the thesis focus on sparse reconstruction. Although dense depth
maps are used in later parts of the thesis, dense reconstruction methods are out of scope.
Efficient reconstruction methods that can be executed in real-time on a mobile device
are more closely examined than offline batch processing methods.

Image inpainting may seem to be unrelated to 3D reconstruction. However, many
applications require dense depth maps, whereas some systems produce only semi-dense
reconstructions. Thus, depth map inpainting has also been explored in this thesis and
several contributions have been made to this field.

The use of depth sensors simplifies some aspects of reconstruction systems but also
brings new complications. For example, the high resolution and frame rate of new depth
sensors makes it challenging to process and store all the information produced. This
thesis approaches this problem by merging depth maps into a single point cloud, thus,
the area of point cloud simplification and its theory are of interest to this work.

Free-viewpoint rendering is included in the scope of this thesis as an application
of the reconstructed 3D model. In this context, matting (i.e. recovering the true color
and transparency of a foreground object) is also explored. The thesis analyses the
artefacts produced by transparency in free-viewpoint renderings and addresses them
using matting techniques.

1.3 Contributions of the thesis

The main contributions of the thesis are listed below.

– An accurate, practical, and widely applicable calibration algorithm for depth and
color camera pairs. It uses only a planar surface as the calibration target and avoids
the need for detecting corners in the depth images.

– A distortion model that improves the reconstruction accuracy of the Kinect sensor.
– A publicly available Matlab toolbox that implements the calibration algorithm and the

distortion model with a user interface to calibrate a Kinect sensor.
– An algorithm to efficiently utilize both, matches that have been triangulated and

matches that have no depth, during camera pose estimation and bundle adjustment.
– A publicly available and open source implementation of a real-time SLAM system

that utilizes this algorithm for pose estimation and bundle adjustment.
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– An inpainting algorithm for depth maps that uses a second-order smoothness prior
and graph cuts to fill missing areas.

– A publicly available Matlab toolbox that implements this inpainting algorithm using a
second-order smoothness prior.

– An inpainting algorithm for aligned depth and intensity images using a learned
Markov random field prior. The shape of the prior is learned from a database of
natural images so that the inpainting produces visually plausible results that match
the statistics of the natural images.

– An inpainting algorithm for depth maps that assumes piece-wise planar regions to
quickly fill missing areas using the boundary pixels as cues.

– An algorithm for merging depth maps into a global non-redundant point cloud while
retaining the input resolution.

– A multi-view matting algorithm to separate the observed colors into foreground and
background layers with color and transparency information. This matting algorithm
was then applied and tested in a free-viewpoint video application.

1.4 Summary of the original articles

This thesis is based on seven previously published articles. The contributions listed
above were first published in these articles. The original articles are reprinted in the
appendix and their content is summarized below.

Paper I presents an algorithm to jointly calibrate a depth and color camera pair. The
method is very practical because it uses only a planar calibration target, thus, avoiding
complicated 3D calibration targets. It avoids the detection of depth discontinuities
as calibration constraints due to the well-known noise in depth images around edges.
Instead, it formulates the calibration constraints based on the coplanarity of depth pixels
away from the depth discontinuities and the rigid transformation between depth and
color cameras. It also proposes a novel distortion model for the Kinect sensor (Latta
2010) and evaluates the accuracy of the resulting algorithm calibrating several Kinect
sensors.

Paper II introduces a complete real-time SLAM (simultaneous localization and map-
ping) system. Traditionally, keyframe-based SLAM systems have used an initialization
step were an initial map is computed from two frames with a good baseline. After this
initialization step, only detected features that had been previously triangulated are used
for pose estimation and bundle adjustment. The main contribution of Paper II is an
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algorithm that mixes triangulated and non-triangulated features in a cost function that is
minimized for pose estimation and bundle adjustment. This removes the need for an
explicit initialization stage, allows the system to be robust to purely rotational motions
where no feature can be triangulated, and improves accuracy by using all available
information.

Paper III describes an inpainting algorithm for depth maps that enforces a second-
order smoothness prior. A second-order smoothness prior is better than traditional
first-order priors since it is invariant to camera 3D rotation. However, it is also harder to
optimize. The proposed algorithm uses graph cuts to optimize a cost function based on
the triple cliques resulting from the prior. When available, an aligned intensity image is
used to weight the effects of the prior and favour depth discontinuities at intensity edges.

Paper IV proposes an inpainting algorithm for an aligned intensity and depth image
pair following the idea that higher-order priors are more flexible. The high-order prior is
based on Markov random fields. The images are processed by a bank of filters and the
result is evaluated with a series of expert functions. The optimal bank of filters and the
parameters of the expert functions are automatically learned from a database of natural
images. This produces a generative model of the statistics of natural depth and intensity
image pairs. The model is applied to inpaint real depth maps produced by the Kinect
sensor and to perform super-resolution of depth maps.

Paper V presents a simpler inpainting algorithm for depth maps that assumes
piece-wise planar surfaces. Many reconstruction systems produce semi-dense point
clouds, e.g. Furukawa & Ponce (2010). However, many applications require dense
depth maps. This inpainting algorithm takes an oriented semi-dense 3D patch cloud as
input and produces a dense depth map for a reference image. It uses random sample
consensus (RANSAC) to find candidate planes in the point cloud. To find planes that are
relevant to the missing areas, only pixels on the boundary of the missing area are used
as seeds for RANSAC. Once a list of candidate planes is obtained, a graph-cut-based
optimization labels the missing pixels.

Paper VI describes an algorithm that takes a series of depth maps and merges them
into a single non-redundant point cloud. Merging point clouds in 3D is problematic
because of the need to choose a suitable clustering distance threshold. The proposed
algorithm uses the 2D grid imposed naturally by the depth map resolution to find
candidates to merge. Points are described using their position and uncertainty and
merging only happens if their statistical model suggests they might belong to the same
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physical point. Thus, preserving the maximum resolution obtained during scanning but
removing redundancies.

Paper VII proposes a multi-view transparency estimation algorithm in the context of
free-viewpoint rendering. Traditional reconstruction systems do not take transparency
into account which produces visible artefacts during free-viewpoint rendering. The
algorithm proposed takes several images of a scene with their corresponding depth maps
and separates each into foreground and background layers with corresponding colors
and transparency values. The algorithm uses ray-tracing to gather samples from physical
points. From these samples, a series of linear constraints are assembled to estimate
the foreground color, the background color, and the observed transparency. A final
graph-cut optimization enforces smoothness on the transparency values. Finally, the
algorithm is implemented and tested as a free-viewpoint rendering algorithm.

1.5 Outline of the thesis

This thesis consists of an overview and an appendix. The appendix contains the original
articles described in the previous section. The rest of the overview is organized as
follows. Chapter 2 deals with geometric camera calibration, giving an overview of
camera models and calibration techniques. Chapter 3 discusses 3D reconstruction
techniques. Chapter 4 covers image inpainting and the different types of priors used.
Chapter 5 reviews the theory behind point cloud simplification and depth map merging.
A concrete application of 3D reconstruction is analysed in Chapter 6, free-viewpoint
rendering. Finally, Chapter 7 presents conclusions.
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2 Geometric camera calibration

Geometric camera calibration is the process in which the geometric properties of a
camera are estimated. Camera calibration is an essential step for any 3D reconstruction
pipeline. Knowledge of the geometric properties of the camera is necessary to make any
geometric measurements of the scene (e.g. angles, length ratios, etc.).

Through calibration, a mapping is established between the scene points and the
image points. This mapping consists of a forward- and a back-projection. The forward-
projection maps a 3D scene point to its corresponding image point. For traditional color
cameras, the back-projection is a one-to-many mapping that maps a 2D image point to a
set of 3D scene points (usually a collinear set of points that pass through the optical
center). For depth sensors, however, the back-projection is exact and matches an image
point to a single 3D scene point.

Sections 2.1 and 2.2 review the color camera and depth camera models, respectively.
The chapter then explores some of the algorithms used for calibrating these models in
Section 2.3. Finally, Section 2.3.3 discusses Paper I, one of the major contributions of
the thesis. It presents an accurate, practical, and widely applicable calibration algorithm
for depth and color camera pairs, and shows results of this algorithm applied to the
popular Kinect sensor. The algorithm uses only planar targets and does not require
the detection of depth discontinuities, which would introduce noise in the calibration.
Moreover, a novel distortion model is proposed for the Kinect that achieves a better
accuracy than the state of the art.

2.1 Color camera models

Camera calibration is a two part process which consists of first determining the camera
model and then estimating the parameters of this model. Selecting the model is a
compromise. Models with fewer parameters are more robust to noise but may not be
flexible enough to accurately capture the mapping. On the other hand, models with
many parameters are more flexible but may lead to over fitting. Oftentimes, the model is
manually selected based on knowledge about the camera and its structure.

A camera can be seen as a collection of pixels. Each pixel has a 2D coordinate in
image space and is associated with an optical ray in 3D space. A pixel images the closest
point along this optical ray. A color camera images the color of this point, whereas a
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depth camera images the distance along the optical ray. From the geometric point of
view, the forward-projection of a color camera takes the 3D position of the scene point
and results in a 2D pixel position. Depth sensors augment this by mapping a 3D scene
point to a 3D quantity where the first two components indicate the 2D pixel position and
the last is a function of the distance to the sensor. Oftentimes, depth sensors have similar
optics to color cameras, so that we can use the same models to obtain the mapping of
the 2D pixel position. Thus, this section first reviews the most common color cameras
models and the next section then examines how these are extended for depth sensors.

The most generic model for a color camera describes each pixel with an independent
optical ray. Each optical ray is represented as a 3D half-line. This can effectively model
any camera that captures light travelling in a straight line between the camera and the
opaque surfaces of a scene. This generic model can be useful, and indeed required for
some types of cameras (e.g. modelling several cameras as a single sensor (Grossberg
& Nayar 2001), non-central mosaics captured under rotational motion (Swaminathan
et al. 2003)). It is possible to model and calibrate regular cameras using this model
(Ramalingam et al. 2005). However, very often constraints are used to regularize the
optical ray orientation and reduce the number of parameters.

Axial models assume that all optical rays intersect at a single line in space called
the camera axis. For example, this is useful to model crossed-slit cameras (Feldman
et al. 2003, Gupta & Hartley 1997). A more common and more restrictive constraint is
to assume that all rays pass through a single point in space. These are called central

models (Kannala et al. 2008). The most common central model is the perspective
camera model. This model is now described in detail because it serves as a base to the
more complicated depth sensor models presented in the following section.

2.1.1 The perspective camera

The perspective camera, also known as the pinhole camera model, consists of a plane
and a point, as seen in Fig. 2. The plane represents the image plane and the point is the
optical center of the camera. The optical rays travel from the observed surfaces in a
straight line passing through the optical center and intersecting the image plane.

The perspective camera images straight lines as straight lines on the image plane.
This projection is a linear mapping between �3 and �2. Thus, mathematically, the model
can be described compactly in homogeneous coordinates by a single multiplication with
a 3×4 matrix (Hartley & Zisserman 2000). However, for clarity, we will define the
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Fig 2. The perspective camera model. The scene point x is projected to point m on the image
plane I by a camera located at O. The plane Z = 1 is the virtual image plane V. The mapping
fromV to I is defined by the intrinsic camera parameters.

model in inhomogeneous coordinates where it becomes a non-linear mapping from �3

to �2.
We can decompose the forward-projection into two parts: the extrinsic transformation

R, and the intrinsic transformationPc. This decomposition is useful because the extrinsic
component depends solely on the position and orientation of the camera in the world
and the intrinsic part is only a function of the internal characteristics of the camera. The
forward-projection function is then a composition of the form:

m = P(x) = (Pc ◦R)(x), (1)

where x = [x,y,z]> is the scene point in world coordinates and m = [u,v]> is the
measured position in pixel units.

The extrinsic transformation is a rigid Euclidean transformation, R :�3→�3, that
translates points from the scene coordinate frame to a camera-centric coordinate frame.
It rotates and translates the scene to align it with the camera coordinate frame. That is,
after applying R the optical center is the origin of the coordinate frame, the Z-axis is
perpendicular to the image plane, and the X-axis is aligned with the horizontal axis of
the image plane. Such a rigid transformation can be defined by a function using a 3×3
rotation matrix R and a translation vector t:

xc =


xc

yc

zc

 = R(x) = Rx + t. (2)
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For a perspective camera, the intrinsic projection function is composed of a perspec-
tive division ν̂ and an affine map

Pc(xc) = (K ◦ ν̂)(xc). (3)

The perspective division is a constant function that divides a vector by its last element
and discards this last element. This makes the forward-projection mapping highly
non-linear.

xn =

xn

yn

 = ν̂(xc) =

xc/zc

yc/zc

 . (4)

The affine map converts from normalized coordinates:

m =

uv
 =K(xn) =

 fx γ

0 fy

 xn

yn

+

u0

v0

 (5)

The focal lengths fx and fy determine the horizontal and vertical field-of-view respec-
tively, γ determines the skew of the pixel axes, and the offsets u0 and v0 determine the
location of the principal point (the projection of the optical axis) in the image. It is
worth noting that in homogeneous coordinates, Equations 1 through 5 can be expressed
succinctly as a single equation

m ∝K [R|t]x, (6)

where the equality is up-to-scale due to the use of homogeneous coordinates. The matrix
K is known as the intrinsic matrix and contains the internal parameters of the pinhole
model

K =


fx γ u0

0 fy v0

0 0 1

 (7)

2.1.2 Inverting the mapping

In practice the forward-projection m = P(x) is a model of the physical process through
which a camera images a point in the scene. It is often desirable to invert the process
and obtain x from m, especially in the context of 3D reconstruction. In order to obtain
this backward-projection the individual components must be inverted, i.e.

P−1(m) = (R−1 ◦P−1
c )(m)

= (R−1 ◦ ν̂−1 ◦K−1)(m). (8)
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Assuming a calibrated camera, i.e. all parameters in P are known, we observe that
R−1 and K−1 are easy to obtain and produce a one-to-one inversion. However, inverting
ν̂ is problematic because information is discarded when ν̂ is applied. At best, ν̂ can be
inverted with one degree-of-freedom

ν̂−1(xn) =


zcxn

zcyn

zc

 , (9)

where zc is the unknown depth of the point. Thus, because the forward-projection maps
all the points along an optical ray to the same pixel position, the backward-projection
P−1 takes a pixel position and returns the ray containing all possible points that may
have originated the measurement.

2.1.3 Distortion

The perspective camera model is an ideal model. Real cameras deviate from this model
due to many factors, e.g. lens imperfections, lens decentering, manufacturing tolerances.
Instead of trying to model each factor independently, it is common to model them jointly
with a flexible distortion component that models the deviation from the ideal perspective
camera. The distortion functionD acts on the normalized coordinates after perspective
division xn. The projection becomes

Pd(xc) = (K ◦D◦ ν̂)(xc). (10)

The distortion function is often formulated in polar coordinates using the lens’ optical
center, also known as the principal point, as the origin. Using polar coordinates, the
distortion is often separated into two main components: radial and tangential. Radial
distortion alters the coordinates of the projected point based solely on the distance to the
principal point. Radial distortion can produce either a barrel or a pincushion effect, as
seen in Fig. 3. Tangential distortion also alters the coordinates of the projected point but
it mostly depends on the polar angle.

Following Heikkilä (2000) we can separate the distortion function into its radial and
tangential components:

D(xn) = xn +Dr(xn) +Dt(xn). (11)
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Fig 3. Radial distortion effects. Left: barrel distortion, lines bulge out away from the image center.
Right: pincushion distortion, lines bend towards the center.

The radial component is approximated using the following expression

Dr(xn) = (k1r2 + k2r4 + . . .)xn, (12)

where r2 = x2
n + y2

n is the distance to the principal point and k1,k2, . . . are coefficients for
radial distortion. Typically, one or two coefficients are enough to compensate for the
distortion. The expression for the tangential component can be written as

Dt(xn) =

2p1xnyn + p2(r2 + 2x2
n)

p1(r2 + 2y2) + 2p2xnyn

 , (13)

where p1 and p2 are the tangential distortion coefficients. These two components
are flexible enough to model most deviations from the pinhole camera model for
narrow-field-of-view cameras.

Usually, the distortion function (11) is a one-to-one mapping and therefore it can be
inverted to obtain the backward-projection. However, the complex form of Eqs. (12)
and (13) means that it cannot be inverted analytically. Instead, an iterative method is
usually employed to invertD numerically. For example, the normalized coordinates xn

corresponding to each discrete image pixel may be stored in a look-up table.

2.1.4 Beyond perspective cameras

The distorted perspective camera model is a good approximation to most narrow
field-of-view cameras and has been used successfully for many applications (Hartley &
Zisserman 2000). However, the underlying perspective model is inherently limited to
a narrow field-of-view. Figure 4 illustrates this limitation. As the angle between the
optical ray and the optical center increases, the ratio xc/zc grows disproportionately. At
an angle of 90◦, the ratio reaches infinity and the model breaks down.

The limitation lies on the mapping from 3D camera coordinates to the virtual
image plane. The perspective camera model uses a linear projection in projective
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Fig 4. Limitation of the perspective camera model. As the angle θ of the optical ray with the
optical axis increases, the coordinates tend to infinity. Note that at θ = 90◦ the optical ray is
parallel to the virtual plane and never intersects. The pinhole camera model is unable to model
cameras with a field-of-view of 90◦ or greater.

space for this mapping, i.e. perspective division. We can model cameras with a wider
field-of-view by instead using a non-linear mapping function. For example, to model
omnidirectional cameras, Kannala & Brandt (2006) parametrize the point by its spherical
angle coordinates and apply a radially symmetric function based on a polynomial of the
angles.

The distortion model must also be adjusted to suit this generic model. Equation (11)
models the distortion as a function of the virtual plane coordinates. In the case of an
omnidirectional camera, it has been recommended to model the distortion as a function
of the spherical angle parameters.

Although these models are more general and support a wider range of cameras than
the perspective model, their increased complexity makes them harder to calibrate and
use. Therefore, many algorithms and applications still use the distorted perspective
camera model. In particular, most depth sensors have a field-of-view considerably less
than 180◦ and therefore use the perspective camera model as a base.

2.2 Depth sensor models

Depth sensors are similar to normal color cameras except that, instead of imaging the
color of a scene point, they measure the distance of the point to the camera. The direct
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Fig 5. A stereo sensor consists of two cameras denoted left and right. Each camera can be mod-
elled as a perspective camera centred at OL and OR respectively. The sensor is completely de-
scribed by the intrinsic parameters for each camera and the relative rigid transformation between
the camera centers RRL. The 3D position of an observed point can be recovered by triangulation,
i.e. intersecting the optical rays.

implication of this is that with a depth sensor we can measure the depth zc and obtain a
one-to-one mapping for P−1(m).

The term sensor is used here because a depth sensor is often comprised of more than
a camera. There are different principles by which depth sensors are constructed and each
requires different hardware, e.g. a stereo system uses two color cameras, a structured
light sensor uses a camera and a projector, a Time-of-Flight sensor uses an infrared light
source and a special camera, etc. In the following, the principles of the most common
depth sensors are outlined.

2.2.1 Stereo sensors

One of the most well-known ways of measuring the depth of a scene is to use a rig of
two (or more) cameras that observe the scene from a different point-of-view. Such a rig,
also known as a stereo rig, is illustrated in Fig. 5. Although a stereo rig consists solely
of regular color cameras, we dub this a depth sensor because it is possible, through
analysis of the images, to estimate the depth of the observed scene.
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The stereo depth sensor is based on two principles to estimate depth of a scene.
First, matches are found between the two images. This matching tells, either sparsely or
densely, which pixel positions in the first camera observes the same scene point in the
second camera. Thus, a match is described by a pixel pair m1,m2. This is, in fact, a very
hard problem due to occlusion, low texture, repeating patterns, etc., and therein lies the
main complexity of stereo depth sensors. Then, given a match and knowing that the two
optical rays must intersect on the real point, it is possible to triangulate the position of
the point in the scene and implicitly recover the depth.

A stereo rig is completely described by the model of two color cameras and the
relative position between them. It has the advantage of a simple model that is easy to
calibrate but suffers the cost of complicated algorithms for matching. Moreover, it is
intrinsically limited by the texture of the scene and areas with little or repeating texture
oftentimes cannot be reconstructed.

2.2.2 Time-of-Flight sensors

Time-of-Flight (ToF) sensors are active sensors that emit light and measure the time
it takes for it to travel to the scene and back. By measuring this round-trip time and
knowing the speed of light, it is then easy to calculate the distance to the scene. ToF
sensors usually work with infrared light to avoid interfering with normal color cameras
or the human eye.

ToF sensors can be divided into two categories, based on their working principle:
pulse runtime sensors and continuous wave sensors. A pulse runtime sensor operates in
the following way. It sends a pulse of light and starts a timer, then waits until it detects
the reflection and stops the timer, thus directly measuring the round-trip time. This is an
intuitive and direct way of measuring depth, but it requires very accurate hardware.
Because the round-trip time tRTT is measured directly, the depth can be simply computed
as

z =
tRTT c

2
, (14)

where c is the speed of light.
A more common and more affordable type of ToF is the continuous wave sensor. It

emits a continuous stream of modulated light, measures the phase shift in the observed
reflections, and calculates the depth based on this phase shift. Given the frequency of
the emitted light ν and the observed phase shift of the reflected light φ, the depth can be
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calculated as

z =
φc
4πν

. (15)

The phase shift can be efficiently obtained by sampling the cross-correlation function of
the emitted and received signals four times (Lange & Seitz. 2001). Due to the periodic
nature of the phase shift, the working range of this type of sensor depends on the
frequency and is usually around ten meters (Kahlmann & Ingensand 2006).

In both cases, the optics of the ToF sensor can usually be modelled by the distorted
perspective camera model (10). This model then provides the optical ray and the
calculated depth can be used to obtain the 3D point position corresponding to each pixel.

In practice, however, the formulas to estimate the depth (14) and (15) are only
approximations. Real sensors exhibit many types of noise and distortions that must be
accounted for to get an accurate reconstruction of the scene. For example, ToF sensors
are susceptible to shot noise, mixed pixels, multiple reflections, and depth distortions
due to reflectance and distance (Lindner & Kolb 2007, Fuchs & Hirzinger 2008).

Complex distortion models have been used to translate the measured round-trip
time to the real depth. A common option is to use a B-spline to model deviations of the
measured depth from the true depth (Fuchs & Hirzinger 2008). This allows an arbitrarily
complex modelling of distortion function, limited only by the number of control points,
at the expense of more calibration data. If reflectance distortions are to be taken into
account it is possible to use a 2D B-spline (Lindner & Kolb 2007). However, proper
sampling of the 2D reflectance-depth space for calibration becomes very costly. As a
compromise, it has been suggested to model them separately by first normalizing the
observed intensity based on the measured distance, and then applying two independent
correction factors based on measured distance and normalized intensity (Lindner et al.

2010).

2.2.3 Structured light sensors

Structured light sensors are another type of active depth sensor. They also emit a light
signal on the scene but the modulation is done spatially instead of temporally. It is very
similar to a stereo sensor except that one of the cameras is replaced by a projector. In
fact, the same model as in Fig. 5 is used because a projector can also be represented with
the distorted perspective model.
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Fig 6. Binary coded patterns used for a structured lighting sensor. Each pattern is projected
separately and an image is taken. After projecting n patterns each camera pixel will have an n-bit
vector that uniquely describes the matching projector pixel.

Structured light sensors also work on the same principle as a stereo sensor. First,
matches are made between the optical rays of the projector and the camera. Then,
the scene points are triangulated from the pair of optical rays. Since we control the
projected image, we can make sure that there is good texture in the scene, thus making
the matching stage much easier.

There are different types of patterns that one can project depending on the accuracy
and speed requirements. A common method is to project several binary coded patterns

and capture one image for each pattern (Salvi et al. 2004). An example of a binary
coded pattern is shown in Figure 6. This allows every projector pixel to be identified and
matched producing a very dense and accurate reconstruction. However, it also requires
the scene to be static during the capture.

An approach that has become very popular for both 3D reconstruction and gaming is
to project an image with small unique patches that can be easily identified and matched.
This allows the device to obtain projector-camera matches with only a single image, thus
eliminating the need for a static scene. This is the approach taken by the first generation
of the Microsoft Kinect (Freedman et al. 2008) which is able to reconstruct the scene at
30 fps. We will explore the details of the Kinect sensor both because of its popularity
and because its calibration is one of the main contributions of this thesis.
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Fig 7. Sample Kinect images from a scene. From left to right: color, infrared, and depth.

The exact details of the Kinect are proprietary but much is known from patents (Latta
2010) and reverse engineering. An infrared light is passed through a diffraction grating
that generates a unique speckle pattern, see Fig. 7. During construction, the Kinect
memorizes the speckle pattern by projecting it onto a flat wall at a known distance.
Then, during operation, it projects the pattern onto the scene and finds how the speckle
pattern has shifted compared to the memorized image. A region growing algorithm is
then used to infer a semi-dense depth map from the observed deviations.

In practice, the Kinect provides three types of images: color, infrared, and depth.
Color images are taken with a regular color camera. Infrared images are taken with a
second camera that observes only infrared light. These infrared images show a mix of
the original scene texture and the projected speckle pattern. Finally, the depth images
are derived from the infrared images using the internal algorithms of the Kinect.

The depth image, also known as depth map, is given in what we call Kinect disparity

units (kdu). It has been shown that these units can be roughly translated to metric units
using the formula

z(d) =
1

c1d + c0
, (16)

where d is the disparity in kdu and c0 and c1 are constants. The distorted perspective
model can be used to describe the depth camera since it is a narrow-field infrared camera.
However, it has been observed that even though the depth image is derived from the
infrared image, they are not aligned, i.e. there is an offset between their coordinate
frames. Thus, the perspective model parameters for the infrared and depth images may
be different.

Naturally, Eq. (16) is only an approximation and distortions are always present. Due
to the proprietary nature of the Kinect algorithms, it is hard to definitely state the source
of these distortions. It has been observed, however, that some of these sources of error
are systematic and can be corrected through calibration. This process is described in
detail in Paper I and will be reviewed in Section 2.3.3.

36



2.3 Calibration methods

All the models reviewed in the previous sections have several parameters that vary from
camera to camera. These parameters have to be estimated for each device. Even in
the case of a simple model whose parameters may be estimated from manufacturer
specifications, e.g. the focal length of the perspective model based on the camera’s
field-of-view, it is often best to calibrate them due to imperfections and tolerances
during manufacturing. The following section first reviews the common methods used
to calibrate the distorted perspective camera model of Eq. (10). Then, Section 2.3.2
reviews the extensions necessary to calibrate depth sensors.

2.3.1 Calibrating the pinhole model

We wish to estimate the parameters of the model based on image measurements. In
the case of the distorted perspective camera model, the parameters to estimate are the
camera pose (2), the distortion coefficients (11), and the intrinsic matrix coefficients (5).

We can use Eq. (10) to establish constraints between the scene and pixel coordinates
of a point. However, the non-linear nature of the distortion model results in non-linear
constraints that cannot be solved analytically. Therefore, it is customary to start by
calibrating the distortionless model (1) in closed-form and using this as an initial guess
for an iterative optimization of the full model (10).

It has been proven that if we do not assume anything about the scene the camera
parameters can only be reconstructed up to a projective transformation (Hartley &
Zisserman 2000). This is not enough for a 3D reconstruction pipeline because a
projective transformation deforms the scene in undesirable ways. Thus, it is necessary
to know something about the scene or cameras to eliminate this ambiguity during
calibration. Mathematically, calibration is simplest if the coordinates of the scene points
are known and they are not coplanar. In this case, the projection matrix can be estimated
directly from linear constraints (Hartley & Zisserman 2000). It is, however, impractical
to use a 3D calibration object with precisely known coordinates. A more practical and
popular technique is to use a plane with known texture (e.g. a checkerboard) and take
several images with the same camera, thus assuming that the intrinsic matrix is constant
(Zhang 1999).

It is also possible to calibrate a camera without any knowledge of the scene, a
procedure known as self-calibration. However, more constraints are needed in this case,
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for example, fixed intrinsic matrix or only varying focal length. In these cases, it is
possible to perform self-calibration of a moving camera, either with general motion or
purely rotational motion (Hartley & Zisserman 2000).

2.3.2 Calibrating depth sensors

Stereo sensors are straightforward to calibrate because they are composed of standard
color cameras. It is possible to calibrate each camera independently with the techniques
described in section 2.3.1. The relative position of the cameras can then be easily
calibrated by simultaneously observing a simple calibration pattern (e.g. a checkerboard)
with both cameras. For optimal results, a non-linear least squares minimization over all
parameters (intrinsics, relative position between cameras, and position of the pattern)
and all images can be performed. The images where the pattern is observed in only one
camera will only constrain that camera’s intrinsic parameters and the images where the
pattern is observed in both cameras will constrain both the intrinsics and the relative
position between cameras.

Calibrating a projector-camera rig follows a similar procedure as a stereo rig.
However, it presents the added difficulty that a projector cannot perform measurements.
A projector can be thought of as the dual of a camera, i.e. it follows the same model but
emits light instead of measuring it. Therefore, a camera is needed to make measurements
for the projector. A common procedure is to first independently calibrate the rig’s
camera and then use this camera to calibrate the projector. Once the camera is calibrated,
a pattern is projected onto a surface of known geometry and position (e.g. a plane).
Because the geometry and position are known, the camera can be used to establish
correspondences between features on the 3D surface and features on the original 2D
pattern, thus providing the necessary data for calibration (Gockel et al. 2004).

Time-of-Flight sensors produce two kinds of images: active brightness and measured
depth. Both images are generated from the same underlying measurements and are
thus taken from the same exact viewpoint and share the same projection parameters.
This is very useful for calibration because it is hard to obtain accurate scene-to-image
correspondences from a depth image. Therefore, one can use the same planar-pattern
calibration technique as before to obtain most of the model parameters (Hansard et al.

2012). Yet, ToF sensors present the added difficulty that the measured depth must be
corrected to obtain the true depth. The measured depth presents distortions that are a
function of the reflectance and true distance (Lindner et al. 2010). In order to make
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the calibration practical, it is usually assumed that all pixels share the same distortion
function. This simplifies calibration, yet it is still necessary to sample over different
reflectances and distances to recover the distortion function. For example, Lindner
et al. (2010) use a checkerboard pattern with varying brightness and place it at various
distances to sample the reflectance-depth space.

2.3.3 Contribution: calibrating the Kinect

The Kinect is a special type of structured-light depth sensor and its proprietary nature
presents unique challenges for calibration. Even though the depth image is internally
derived from the infrared image, they are not aligned. Since the processing algorithm
is unknown and may change, it is desirable to calibrate the Kinect without using
the infrared images. However, unlike Time-of-Flight sensors, the Kinect provides
measurements in Kinect disparity units whose mapping to metric units must be calibrated
as well. This introduces additional degrees of freedom in the model that easily make
calibration with a single depth camera an under-constrained problem.

Several approaches have been proposed to calibrate the Kinect. It is possible to
estimate the offset between the infrared and depth images, so that calibration is done
with the infrared images and the obtained intrinsics are transformed to match the depth
images (Smisek et al. 2013). This offset and the implied transformation, however,
depend on the internal algorithms of the Kinect, which might change at any point.
Moreover, this requires an external infrared illumination, which makes the method
less practical. It is thus highly desirable to perform calibration directly from the depth
images.

Unfortunately, intensity discontinuities are not visible in depth images which
complicates the process of obtaining constraints for calibration. It is in theory possible to
use depth discontinuities in a similar way. However, this requires a 3D calibration object
with known structure which is not easy to fabricate. Moreover, depth discontinuities are
often very noisy, as seen in Fig. 7. Paper I proposes a generic calibration method that
overcomes these limitations.

We propose the use of a planar calibration target for calibration. Instead of enforcing
point-to-point matches via discontinuity detection, the algorithm uses the constraint
that all points on the target are coplanar. This constraint is less restrictive than a set of
point-to-point matches, e.g. the camera can be rotated around the plane’s normal without
any effect. The use of several images observing the plane from different angles provides
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(a) Plane at 0.56m (b) Plane at 1.24m
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Fig 8. Kinect error residuals of a planar scene, in disparity units, without distortion correction.

complimentary constraints that contribute to calibration. However, if the parameters of
the disparity to depth equation (16) are unknown, the experiments performed for Paper I
showed that the calibration is under-constrained even with multiple images observing
the plane from different angles. The missing constraint are provided by a color camera
rigidly attached to and jointly calibrated with the depth sensor.

This is particularly practical for the Kinect sensor because it contains both cameras
and both need to be calibrated. Calibrating both cameras jointly is preferable to separate
calibration because the cameras help constrain each other’s calibration, thus obtaining
a potentially better result. Additionally, it is possible to jointly calibrate another
high-resolution camera rigidly attached to the Kinect to increase calibration accuracy.

It has been observed that, just like for ToF sensors, the measured depth for a
Kinect pixel presents distortions. Figure 8 shows the reconstruction error obtained
after calibration of a planar scene. Smisek et al. (2013) corrected this distortion with a
per-pixel constant offset in metric units. Paper I showed that this distortion is more
accurately corrected in disparity space. In this case, a per-pixel offset is added to the
measured disparity, but it was found that the offset decays with increasing distance. The
method presented in Paper I is able to calibrate this distortion model and obtains a more
accurate calibration than previous approaches.

2.4 Discussion

The models presented in Sections 2.1 and 2.2 are the necessary first step to any
geometric computer vision algorithm. Properly modelling the structure of the sensor
and its measurement process is essential to using its measurements effectively. 3D
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reconstruction would not be possible without a proper modelling of how the 3D structure
of the world is transformed into the observed image.

Although generic models were presented in Section 2.1 that can potentially cover
almost any kind of camera, the more specific models discussed are more efficient and
easier to calibrate and use. The model used will depend on the application and the
expected variability of the sensor.

The proposed calibration method of Paper I (Section 2.3.3) is one of the main
contributions of the thesis. It is an example of a combination of three key aspects of
camera calibration: accuracy, flexibility, and practicality. In particular, using only a
planar surface for depth camera calibration and avoiding depth discontinuities resulted
in a very practical algorithm that still achieves high accuracy.

The algorithm is flexible to calibrate different depth sensor types because the infrared
images are not used. For example, the Kinect version 2 is no longer a structured light
sensor but uses Time-of-Flight instead, yet the same calibration algorithm can potentially
be applied with minimum changes to the model.

Camera calibration is an important part of any 3D reconstruction pipeline. The
proposed algorithm has been used for a wide variety of applications. For example,
camera tracking (Tykkälä et al. 2014), analysis of plants from depth images (Chéné et al.

2014), hand gesture recognition (Dominio et al. 2014), gaze estimation (Funes Mora
et al. 2014), and robotic manipulation of food items (Morales et al. 2014), among others.
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3 3D reconstruction

The problem of 3D reconstruction consists of recovering the physical structure of the
scene and the camera positions from a set of images. It has been a driving force in the
development of computer vision since its early stages and still remains a challenging
problem. It is known by different names depending on the field of research (e.g.
photogrammetry, structure from motion, SLAM). Some fields tend to have different
requirements, for example, in robotics, the reconstruction is often expected to be
real-time to allow the robot to navigate using vision. This is often termed simultaneous

localization and mapping (SLAM) because of the need to localize the robot and map the
environment. On the other hand, in photogrammetry, the sequences are processed offline
and high accuracy is expected. However, since the terms are also used interchangeably,
this thesis makes no distinction between them.

The complexity of the problem varies greatly depending on the requirements and
assumptions made. We can reduce the complexity of the problem by using a calibrated
camera, limiting the structure of the scene (e.g. a planar scene), and/or by limiting the
camera trajectory (e.g. pure rotations or translation in a plane). In the following, Section
3.1 explores the nature of the reconstruction problem and analyses some relevant special
cases. Sections 3.4 and 3.5 look at the particular requirements of doing a sparse and
a dense reconstruction respectively. The contribution of this chapter is an important
part of the thesis and is discussed in Section 3.4.2 and Paper II. It consists of a novel
method of merging triangulated and non-triangulated features inside a SLAM system.
Both feature types are used during real-time pose estimation and background bundle
adjustment to improve the pose estimate. Moreover, this allows the system to correctly
handle pure camera rotations where no features have been triangulated.

3.1 A three-part problem

We look at the reconstruction problem here from a calibrated perspective, i.e. all cameras
involved have been calibrated and the images have been warped to eliminate distortion.
Thus, the equations to follow can ignore distortion without any loss of generality. Even
though a calibrated setting simplifies the reconstruction problem, it is still complicated
because we need to estimate the scene structure and camera positions simultaneously. In
a connected scene, all point positions and camera poses are (at least indirectly) related to
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each other through the measurement Equation (6). The equation is revisited below with
additional indices to show how a measurement mi j depends on point i and camera j

mi j ∝K j
[
R j|t j

]
xi. (17)

This shows that the reconstruction problem is a three-part problem involving the
measurements, the camera poses, and the point positions. These form a tripartite graph,
i.e. if two parts of the problem are known (e.g. the measurements and camera poses),
each element of the third (e.g. the point positions) can be estimated independently.
We explore these special cases first before addressing the more general problem of
simultaneous estimation.

Although determining the measurements is an integral part of the 3D reconstruction
problem, this chapter focuses on the estimation of camera pose and scene structure.
Most of the 3D reconstruction algorithms rely on image correspondences to work.
An image correspondence consists of two pixel positions in two different images that
correspond to the same physical point in 3D. Obtaining these matches is a non-trivial
problem and is still a rich area of research. Often, the process is divided in two steps:
feature detection, where interest points are located in each image, and feature matching,
where the interest points are matched between images. These matches may even be
refined after the reconstruction is complete to iteratively refine the result (Furukawa
& Ponce 2009). Feature detection and matching is beyond the scope of this thesis.
A review of different methods can be found in (Szeliski 2010). In the following, we
assume that these tasks are completed and the correspondences are available.

3.1.1 Triangulation

Given a set of images from a scene with known pose and calibration, we can estimate
the position of each observed point independently. This is known as triangulation.
Equation (17) produces two constraints for each camera that observes the point (Hartley
& Zisserman 2000). Thus, two observations are sufficient to obtain the 3D position of a
point. This is illustrated in Figure 5. Geometrically, triangulation consists of finding the
intersection of the optical rays.

There are a few ways of performing the triangulation, as described in (Hartley &
Zisserman 2000). It is ultimately a non-linear problem due to outliers and distortion.
However, a recurring theme in computer vision is the solving of a series of non-linear
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constraints by first obtaining an approximation through linear means and then refining it
using non-linear optimization. This also applies to triangulation.

To obtain the linear triangulation, we derive constraints from Equation (17). Because
the point is expressed in homogeneous coordinates, it is tempting to fix the last coordinate
of the point to one, thus obtaining a linear system of the form A[x,y,z]> = b which
can easily be solved through the pseudoinverse of A. However, this process becomes
numerically unstable when the optical rays of the measurements are close to parallel.
This can happen either when the baseline between the cameras is small or when the
point is very far away from the camera, situations that are both very common in most
sequences. Therefore, it is preferable to estimate a homogeneous quantity. This results
in a homogeneous linear system of the form A[x,y,z,w]> = 0 which can be solved
through the SVD decomposition of A.

It is important to note that even though the homogeneous triangulation equations are
numerically stable, this does not mean that the position of the point is well constrained.
For example, in the extreme case where the transformation between cameras is a pure
3D rotation (i.e. no translation), the corresponding optical rays are parallel and no depth
can be estimated. Any point along the optical ray will satisfy the constraints, including a
point at infinity.

3.1.2 Camera pose estimation

The dual to triangulation is camera pose estimation with a known scene structure. Given
a map that contains a set of points with known 3D position and a set of observations of
these points in the images, we can estimate the position of each camera independently.
In the calibrated case, we only need to estimate the rotation and translation of the camera
(6 DoF). This is known as the Perspective-n-Point problem and can be solved minimally
with only 3 points (Quan & Lan 1999).

A special case for pose estimation is when relative pose between the cameras is a
pure 3D rotation. In this case, the true depth of the points can be ignored. The rotation
can be recovered by assigning a constant depth to all measurements and solving through
a simple SVD decomposition (Kanatani 1994).
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3.2 Simultaneous structure and motion

It is also possible to estimate the camera pose without knowing the scene structure.
In this case, there is no reference coordinate system as the one implied by a map.
Thus, the pose of a camera is estimated relative to a reference camera. The relative
pose can be estimated using only matches between corresponding points in both
images. The geometric constraints between two calibrated images are encoded into
the essential matrix, which implicitly contains the relative camera pose. A minimum
of five correspondences is needed to estimate the essential matrix which decomposes
into a rotation and translation (Hongdong & Hartley 2006). However, due to the well-
known scale ambiguity for visual reconstruction, the scale of the obtained translation is
unconstrained and can be chosen arbitrarily. The selected scale of this translation will
determine the scale of the reconstructed scene.

This already provides the foundation to perform 3D reconstruction from a set of
image correspondences. The camera pose is first estimated from the correspondences
and then the 3D point positions can be obtained through triangulation. This is a
straightforward solution when reconstructing a scene from two images. However, when
more images are available, there are more constraints to take into account. The pose
recovered from image correspondences is always up to scale. Thus, if the scene is
reconstructed independently using two different image pairs, the scales will not match.
In fact, as it is to be expected, a set of correspondences across three images produces
stronger constraints than considering only the pairwise constraints between each pair of
the same images.

This constraint is encoded in the trifocal tensor, as described in Hartley & Zisserman
(2000). The trifocal tensor can be accurately estimated from image correspondences,
just like the pairwise essential matrix. It implicitly contains the relative poses between
all three images in a coherent scale. Once estimated, it can be readily decomposed
into respective camera poses needed for triangulation. If more than three images are
available, it is still necessary to match scales between the different triplets. Fitzgibbon &
Zisserman (1998) presented a hierarchical approach that uses image triplets as the basic
building block for 3D reconstruction over long image sequences.
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3.3 Bundle adjustment

In most cases, it is necessary to use a linear approximation to obtain an initial solution.
Distortion and other non-linearities are either ignored or approximated to solve the
problems of triangulation and pose estimation efficiently. Moreover, the quantities are
often estimated using only image pairs or triplets, even though there are many more
images that can better constrain the solution. Therefore, once an initial reconstruction is
obtained, it is necessary to perform a non-linear optimization of all parameters to obtain
an optimal reconstruction. This is known as bundle adjustment (Hartley & Zisserman
2000). The quantity minimized is a robust function of the reprojection error. The general
form of the bundle adjustment problem is

argmin
Kk ,Rk ,tk ,xi

∑
k

∑
i

ρ(|mik −Pk(xi)|2), (18)

where the projection function depends implicitly on the camera intrinsics K and extrinsics
[R, t]. The function ρ(·) is a robust function that limits the effect of outliers. Bundle
adjustment requires a large-scale optimization framework. The optimization takes place
over all point positions, camera poses, and often times also the camera intrinsics. Even
medium-sized reconstructions contain hundreds of thousands of parameters to optimize.

Efficient optimization of such large scale problems has proven possible thanks to
careful use of its sparse matrix structure (Triggs et al. 1999, Hartley & Zisserman 2000).
Because not all points are observed by all cameras, the resulting Jacobian of the cost
function has block diagonal sparsity. Through matrix manipulation, the scale of the
problem can be considerably reduced. In particular, the Schur complement (Agarwal
et al. 2015b, Zhange 2005) permits us to factor out the scene structure and solve only
for the camera poses in an optimal way.

3.4 Sparse scene reconstruction

Structure from motion has made considerable progress and produced very impressive
results. Snavely et al. (2007) published an open source implementation called Bundler

that applies this pipeline to an unordered set of images. Their research was taken by
Microsoft and expanded into a fully functional application called PhotoSynth that allows
the user to explore a collection of photos using the recovered 3D structure and poses.
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3.4.1 Online methods

Some applications of 3D reconstruction require real-time performance. For example,
robot navigation and augmented reality require very low-latency estimations of the
camera pose. This demands a careful balance of resources to satisfy the computational
demands with current hardware. Pose estimation becomes a critical component of
the system because applications such as augmented reality require a valid pose to
render content. Offline methods can examine the entire image set and select the optimal
frames for reconstruction, whereas online methods receive frames sequentially and must
generate a valid camera pose for each incoming frame.

Initial approaches avoided bundle adjustment by using a filtering framework that
collapses all previous measurements into the current state of the system (e.g. MonoSLAM
(Davison et al. 2007) and Eade & Drummond (2007)). The state models the position of
the points and cameras, as well as their first-order uncertainty through a covariance
matrix. Each new measurement updates the state and reduces the covariance of the
observed features. However, updating a large state is costly and thus such systems were
limited to tracking a small number of features, which limits accuracy (Strasdat et al.

2010).
Klein & Murray (2007) presented one of the first real-time SLAM systems using

bundle adjustment. They reduced the processing time required for each frame by
estimating the scene structure only from a subset of key frames. Moreover, they
separated processing into two parallel threads, one real-time for pose estimation and user
interface, and the other for scene reconstruction and bundle adjustment, thus shifting
the slower components to the background. The efficiency of this approach has been
highlighted by recent developments. Forster et al. (2014) presented a visual odometry
system based on a similar structure that is lightweight enough to run on a micro aerial
vehicle with very limited hardware.

3.4.2 Contribution: deferred triangulation under varying baseline

A major contribution of this thesis is a SLAM system that builds upon the framework of
Klein & Murray (2007). It extends the framework by including a reprojection term for
features that have not yet been triangulated. This allows unrestricted camera motions
and utilizes all available matches to estimate the camera pose and scene structure. A
brief summary of the system is provided here, more details can be found in Paper II.
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Fig 9. A sample reconstruction from Paper II, including a pure rotation. Blue points are triangu-
lated points. Green points are non-triangulated points plotted at a unit depth.

Most key frame-based SLAM systems represent all the model points in 3D. However,
when the baseline between key frames is small compared to the depth of the point, the
triangulation ambiguity is high and the erroneous 3D points corrupt the map and degrade
tracking. To cope, most systems avoid adding points when there is little baseline (e.g.
when camera is only rotating). However, this ignores image correspondences that can in
fact constrain the pose between images.

The framework proposed in Paper II tracks and maps both triangulated and non-
triangulated features. All features contribute to estimating the camera pose and building
the map. Triangulation is deferred until enough parallax is observed from at least two
key frames. The key aspect of the system is the addition of a reprojection term to Eq. 18
for points that haven’t been triangulated yet. Without depth, a point from one image
reprojects to a line segment on another image. The new reprojection error measures the
distance between the observed measurement and the reprojected line segment. This
constraint is weaker than a direct point-to-point distance, but it still constrains the
rotation and the direction of translation between cameras.

Because all image correspondences are tracked between frames, the system can
detect pure rotations and estimate the camera pose even when no triangulated points are
observed. Moreover, the system can effectively decide when a new key frame should be
added based on whether it will contribute new features or enable new triangulations.
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3.5 Dense scene reconstruction

The approaches presented so far reconstruct a scene based on feature matches. These
matches are sparse and result in a sparse reconstruction of the scene. Although a sparse
reconstruction can still be useful, specially for the recovered camera poses, it is often
desirable to obtain a dense reconstruction of the scene. There has been very promising
progress in this area. Seitz et al. (2006) provide a review and comparison of early
multi-view dense reconstruction approaches. Their benchmark has been kept up to date
and shows a comparison of many modern reconstruction methods. Although a thorough
review of dense reconstruction methods is out of the scope of this thesis, some examples
from the literature will be highlighted to give an impression of the state of the art.

A very popular semi-dense reconstruction software was released by Furukawa &
Ponce (2010) called Patch-based Multi-view Stereo (PMVS). It uses the camera poses
produced by a sparse reconstruction algorithm as input and focuses on the feature
matching and triangulation aspects. It iteratively matches and triangulates features,
starting with the most salient and easy to match. It uses the obtained depths as to aid the
matching of less salient patches. In this way, the algorithm is able to cope with very
weak or ambiguous texture. However, areas with no texture are not reconstructed and
thus the algorithm produces a semi-dense reconstruction.

Vu et al. (2012) achieved very impressive results on large scale datasets by developing
a two-stage pipeline. First, a semi-dense point cloud is generated by integrating
photometric and visibility constraints. Then a mesh-based variational refinement
captures small details. The reconstructed scenes can range from small objects with
millimetre precision to city-wide reconstructions.

Recently, online dense reconstruction methods have become a possibility. Newcombe
et al. (2011b) present a real-time system using GPU hardware. They bootstrap their
reconstruction with the camera poses from a sparse reconstruction. Using hundreds of
images from a video stream, they construct a photometric cost volume and minimise a
global spatially regularised energy functional. This produces a dense depth map for
selected key frames in the sequence. Once a depth map is generated, the system tracks
the pose of the camera using the dense reconstruction.

Engel et al. (2014) published a method that avoids the need for a sparse reconstruction.
It is a direct method in the sense that it does not extract features but works directly
on pixel intensities throughout the system. Thus, it produces a full resolution depth
map directly. They keep track of the estimated depth and uncertainty for each pixel,
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probabilistically refining them as new images are received. Depth maps are then linked
together and their relative poses globally optimized to create a large scale reconstruction.

The arrival of consumer depth cameras, like the Microsoft Kinect, have contributed
considerably to this field and have reduced the complexity of dense reconstruction.
Image correspondences between depth cameras already contain 3D positions. This
means that recovering the camera pose is a simple absolute orientation problem and
there is no need to triangulate points. This leads to very fast and simple SLAM systems
(e.g. Dryanovski et al. (2013)).

The quality of the reconstruction can also be significantly improved by merging
overlapping depth images. Newcombe et al. (2011a) initially presented a system to
merge several depth maps into a high quality surface volume. This was later extended by
Chen et al. (2013) into a large scale SLAM system that uses only depth maps, thus
demonstrating the high potential of depth cameras for this field.

3.6 Discussion

3D reconstruction has been one of the most active areas of research in computer vision.
The fundamental mathematical framework has been established already for a long time,
yet robust, flexible, and accurate systems are still hard to find. The recent move towards
dense reconstruction systems reflects the improvements in computational capacity and
depth sensor hardware. Yet, real-time, large-scale, and scalable sparse reconstruction is
still a challenging problem.

The possible applications are many and impose different requirements. Offline
reconstruction methods are nowadays mature and robust, but real-time systems are still a
challenge. In particular, mobile platforms with limited computational complexity and
battery life make real-time sparse reconstruction methods particularly attractive.

The system presented in Paper II fits in this category of real-time sparse reconstruc-
tion algorithms. Its contributions are aimed at making the reconstruction more robust
and stable by using all available matches. Moreover, the system is presented to the
community as open source software to foster cooperation. We expect other researches to
use this system as a base for further research and improvements.

The scenes and videos used in Paper II are only small scale reconstructions. More
tests and optimizations are, of course, needed to have a scalable algorithm that can
reconstruct efficiently larger areas. Furthermore, the area seems to be moving towards
depth sensors to improve reconstruction and lower the computational complexity, both
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in desktop and mobile. The algorithm of Paper II uses only a monocular color camera
for reconstruction. However, extending the algorithm to use depth information provided
by a depth sensor is a possibility and would increase the robustness of the method.
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4 Depth map inpainting

A dense image is one in which all pixels have known values. Most cameras produce
dense images, though not all. Depth cameras in particular often produce semi-dense
images in which a small subset of pixels have no measurements. Depending on what the
images are used for this might be unacceptable. Some applications, like free-viewpoint
rendering (see Chapter 6), require a dense depth map. In such cases, it is necessary to
infer (or guess) the values of the missing pixels from the rest of the image. This process
is known as image inpainting.

The causes for missing pixels are many and depend on the technology of the camera.
Stereo depth cameras have occluded areas that only one camera can see and thus no
depth can be estimated. Most passive depth estimation methods require texture to work
and thus produce no depth for textureless areas. Structured-light sensors overcome this
by creating texture with specially crafted light, however, they still suffer from occlusions.
Active depth cameras are often limited by the surface material. Highly specular or
very dark surfaces may not be reconstructed and will produce missing pixels. Finally,
inpainting is also very relevant to color images in cases where the image has been
corrupted, e.g. old scanned photographs, or when we would like to remove an object
from the scene.

In most cases, it is impossible to recover the true values for the missing pixels.
However, the true values are often not necessary, a set of plausible values that are
consistent with the known pixels is sufficient. For example, Figure 10 shows three
possible inpaintings for a sample color image 1. One is clearly wrong but the other two
are equally plausible. In theory all pixels in the image determine what is a plausible
solution. However, the pixels in the boundary around the missing pixel region have a
much higher impact because discontinuities may produce very obvious artifacts.

Image inpainting in itself is an active field of research. It is an ill-posed problem and
thus strong regularization or priors are needed. Solving the inpainting problem consists
of two major things. First, one must find the right model that favours plausible solutions.
This includes a noise model for the measurements and a suitable prior. Second, one must
be able to optimize the image values under the chosen model to obtain a good solution.

1Because it is hard to evaluate a depth map with the naked eye, Fig. 10 shows color image inpainting examples.
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Fig 10. A color image inpainting example. Three possible inpaintings for a missing region. The
first inpainting looks clearly incorrect, whereas the last two are equally plausible.

There has been considerable progress in color image inpainting (Bertalmio et al.

2000). Many of the ideas used in color image inpainting have been applied to depth
images as well. However, although similar, the problems of color and depth image
inpainting are not identical. Section 4.1 discusses the differences between them. Still, a
lot has been learned from the efforts of color image inpainting that are applicable to
depth images.

The image inpainting problem is often cast as an energy minimization problem. An
energy function is defined that captures our knowledge about the problem (the available
measurements, the noise model, the priors) and it allows us to rank different solutions.
The solution with the lowest energy is considered the best solution. Unfortunately, the
complexity of the minimization depends on the shape of the energy function and can
easily become untractable. This forces us to consider the shape of the prior carefully and
select different optimization methods. Some of these priors and optimization methods
are reviewed in Section 4.2. Alternatively, some algorithms avoid modelling the energy
function and implicitly contain the priors in the algorithm itself. This is reviewed in
Section 4.3.

The contributions of this chapter are discussed in Sections 4.2.3, 4.2.5, and 4.3.1,
which discuss Papers III, IV, and V, respectively. Each presents a different approach
to depth map inpainting. Paper III proposes an inpainting method with a 2nd-order
prior that favours planar surfaces and does not suffer from a fronto-parallel bias. Paper
IV uses a high-order prior based on natural image statistics. It learns the shape of
the prior from a database of images and builds a generative distribution to model the
image statistics. It extends previous approaches that have applied similar a prior to
color images by expanding the prior to include aligned depth and color images. This
allows the inpainting to take cues from the color image when deciding the location
of inpainted depth discontinuities. Finally, Paper V presents a much simpler but also
faster inpainting algorithm that also tries to enforce planarity in the scene without bias.
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Fig 11. Intensity and depth images side-by-side. It is easy to determine which is which based on
their structure.

It inpaints missing regions in a local fashion by extracting candidate planes from the
boundary of the missing region.

4.1 Differences between color and depth inpainting

There are two major differences that separate color and depth image inpainting. First,
the statistics of the images are themselves different. Second, there often exists more
information in the depth map inpainting problem.

4.1.1 Image statistics

The biggest difference between inpainting color and depth images lies in the underlying
structure of the images. In other words, the statistics of color and depth images are
different. To see this, it is enough to place an intensity and a depth image side-by-side,
as in Fig. 11. It is almost trivial to guess which is which because of their structure, e.g.
depth images have larger continuous areas with smoother gradients.

The priors used to regularize the inpainting impose a predetermined structure on the
result. Thus, since we expect different image structures, we can also expect that different
priors should be used for colors and depth images.

4.1.2 Joint depth and intensity

The other major difference between color and depth image inpainting is the presence
of additional information. Often times when inpainting depth images, we have a
corresponding dense color image available. Time-of-Flight sensors inherently produce
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an intensity image alongside the depth image from the same exact viewpoint. Even
stereo and structured light depth sensors can produce such aligned image pairs with
minimum processing.

The intensity and depth channels of an image are clearly correlated. For example,
depth discontinues very often result in intensity discontinuities. Thus, an aligned
intensity image provides additional information that can be used to obtain a better
inpainting solution. However, the exact nature of the correlation is non-trivial, e.g. depth
discontinuities often produce intensity discontinuities but the opposite is less likely.
Some approaches have tried to manually codify this relationship. For example, paper III
uses a weighting function on the prior based on the gradient of the intensity channel.
This paper is reviewed in more detail in Section 4.2.3. To avoid the manual codification
of the intensity-depth correlation and the possible inaccuracies that it might produce,
other approaches have attempted to learn the correlation from sample data. Paper IV
explores this idea further and is described in Section 4.2.5.

4.2 Markov random field models

Markov random fields provide a useful framework for defining priors based on an
energy function that clearly separates the noise model and the regularization prior.
The energy function is split into a unary data term (U) and a regularization term (R).
The data term operates individually per-pixel and models the measurement noise. The
regularization term jointly considers the values of all pixels in a neighborhood and
models the regularization prior.

Ideally, we would like to use a prior that reflects the statistics of the observed scene
and captures all the interactions between the different parts of the scene. However, a
compromise is often made and simpler priors are selected to lower the computational
complexity and make the problem tractable. Moreover, modelling the statistics of natural
images is still a work in progress (Hyvärinen et al. 2009). A general version of the
energy function has the form

E =
∑
p∈V

U(xp) +λ
∑
k∈N

R(k), (19)

where λ controls the relative weight between the data and regularization terms. The set
V contains all the pixel positions with measured values. Naturally, for an inpainting
problem, V will have missing values. The data term will have no effect on these
missing values and their final value will be solely determined by the regularization term.
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However, the model allows the optimization of all values, not only the missing pixels, by
taking the noise model into account inside of the data term.

The set N contains all the neighborhoods of the image. Each vector k containes the
pixel positions of the pixels in one neighborhood. The number of elements k determines
the order of the prior and, together with the shape of R, the type of prior. The order of
the prior has a profound impact on what kind of structure the prior can enforce and the
computational complexity of the optimization.

4.2.1 1st-order priors

Perhaps, the most common type of regularizer is a first-order prior. Such a prior works
on neighborhoods of two pixels. It enforces smoothness in the resulting image by
penalizing the difference between neighboring pixels, e.g.

R1st(p,q) = |xp− xq|
2, (20)

where xp is the actual value for pixel p. In the case of a depth image where the values of
x represent distances from the camera, the prior biases the result towards a fronto-parallel
structure. This prior clearly does not capture the statistics of depth images. For example,
the reconstructed structure depends strongly on the viewpoint since the alignment of
a fronto-parallel surface changes as the camera rotates. Moreover, it unnecessarily
penalizes slanted surfaces. However, it has been studied extensively due to its simplicity
and very efficient optimization techniques exist.

The optimization of energies of this form has been studied under many contexts, e.g.
stereo disparity estimation (Zhang & Seitz 2007), discrete object labelling, and image
segmentation (P. et al. 2006). Levin et al. (2004) presented a colorization algorithm that
uses a first-order prior similar to Eq. 20. They use user-drawn scribbles to fix the color
of some pixels, then only the colors of the remaining pixels are optimized. The data
term from Eq. 19 is not used and the simple form of the regularization term allows them
to solve the problem in closed form. Although it was originally meant for colorization,
color and depth share a similar relation to intensity. The algorithm has been directly
applied to depth map inpainting (Silberman et al. 2012).

Both continuous and discrete optimization have been examined. Since depth maps
are often quantized, discrete solutions are especially attractive due to their speed and
efficiency. For example, a fronto-parallel plane sweeping approach provides initial
guesses that are consistent with the prior and can be easily merged through graph cuts
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(Gallup et al. 2007). A modern application of 1st order priors to depth image inpainting
can be found in Chen & Koltun (2014). They demonstrate how such energies can be
optimized very efficiently even with robust energy terms. However, even though Yanover
et al. (2006) obtained global solutions to low-level vision problems with non-convex
pairwise MRFs, their results indicate that pairwise models are incapable of producing
very high-quality solutions for stereo problems, thus suggesting that a pairwise prior is
insufficient.

A pairwise prior is still attractive due to its low computational cost during optimiza-
tion. To overcome its fronto-parallel bias and limited expression power, it has been
suggested to reformulate the problem as a discrete labelling. For example, if we assume
that the scene is piecewise planar, we can obtain candidate planes from the initial point
cloud and then assign a plane (and implicitly a depth) to each missing pixel. A simple
way of modelling a discrete labelling problem uses the Potts energy model, where the
prior has zero cost if the labels are equal or a constant cost λP if they are different, i.e.

Rpotts(p,q) =

0, if lp = lq

λP, otherwise,
(21)

where lp is the label of a pixel.
Several depth reconstruction approaches have used a labelling formulation. Furukawa

et al. (2009) used a strong Manhattan-world prior where only three orthogonal plane
directions are allowed. This produces poor reconstructions of natural outdoor scenes
but is a good approximation of man-made indoor scenes. Sinha et al. (2009) enforces
a planarity constraint while allowing for arbitrary plane directions. They recover
candidate planes using standard multi-view reconstruction methods and a final depth
map is generated by labelling the pixels with the candidate plane labels. Although
their approach is flexible in plane direction, it does not take non-planar surfaces into
consideration. Gallup et al. (2010) extend this approach by including a non-planar label
as well as a classifier to detect areas with non-planar texture.

4.2.2 2nd-order priors

Using neighborhoods of three pixels leads to a second-order prior. This is a much more
expressive and flexible prior. For example, it can be used to enforce a smooth derivative
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with a regularization term of the form

R2nd(p,q,r) = |xp−2xq + xr |
2, (22)

where the neighborhood is defined as three consecutive pixels in either vertical, hor-
izontal, or diagonal direction. Such a prior biases the solution towards flat surfaces.
Although it is clear that real scenes are not always piecewise planar, assuming a planar
structure for areas of constant color is often a good guess and produces plausible
results. Moreover, the solution is in theory independent of the viewpoint since no plane
orientation is favoured. Therefore, this prior models the environment considerably better
than the first-order prior.

Unfortunately, minimizing the energy function under a second-order smoothness
prior is also considerably harder. Local methods like gradient descent (Strecha et al.

2004) and level sets (Faugeras & Keriven 1998) struggle with long range interactions
and often find poor local minima. Finding the true minimum through global methods
is untractable because the energy function is non-submodular when triple cliques are
used. Kohli (2007) provides an extensive review of the challenges and methods of
minimizing higher order energy functions. A direct application of a smooth derivative
prior for stereo reconstruction was presented by Woodford et al. (2008). It shows that
Quadratic Pseudo-Boolean Optimization (QPBO) (Boros et al. 1991, Hammer et al.

1984, Ishikawa & Geiger 2006) can be used to minimize the energy function by merging
proposal depth maps. However, in this case, fronto-parallel planes are not sufficient as
proposals because of the non-submodularity of the energy function. Thus, generating
the appropriate proposals becomes a challenging problem. Woodford et al. (2008) use a
series of local stereo reconstruction methods with varying parameters to generate noisy
depth maps. A series of plane proposals are obtained through RANSAC from these
noisy depth maps. Finally, the proposals are merged using QPBO under a second-order
prior, thus obtaining the best combination of these local algorithms on a per-pixel basis.

4.2.3 Contribution: a second-order joint prior using QPBO

In Paper III, this thesis presents a method to perform depth map inpainting under a
second-order smoothness prior. The aim is to provide a plausible solution to the missing
areas. In this case, two requisites are considered to determine a structure as plausible.
First, a surface is expected to be continuous and smooth. This is enforced through the
smoothness prior. Second, the discontinuities between surfaces are often aligned with
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color discontinuities. To accomplish this alignment, the smoothness prior is weighted in
relation to the intensity gradient. Areas with high intensity gradient have a very small
weight for the prior. Thus, when necessary, depth discontinuities are encouraged to be
placed along nearby intensity discontinuities. This results in a regularization term of the
form

R(p,q,r) = W(p,q,r)ρ(xp−2xq + xr), (23)

where W is the weighting term that reduces the influence of the prior in neighbourhoods
of high intensity gradient and ρ(x) = min(|x|, τr) is a robust function that truncates the
energy to reduce the effect of outliers. This prior has also been called the weak plate
model (Blake & Zisserman 1987).

Areas of missing values do not need a data term. However, as discussed in Chapter 2,
the pixels on the boundary are often unreliable. To account for this, the missing region is
expanded by a few pixels. The values of these pixels are included in the optimization
and a data term is included to bias these pixels towards the measured values.

In a similar manner to Woodford et al. (2008), the algorithm uses QPBO to merge
proposals and fill in the missing regions. The proposals are generated by sampling the
boundary of the missing regions and extrapolating candidate planes. This results in
plausible solutions that are sharper and more visually pleasing than previous methods.
Details of the comparisons can be seen in Paper III.

4.2.4 Higher order priors: Field-of-Experts

Although a second-order prior is a considerable improvement over the simple first-order
prior, it still cannot capture the complicated structure of a depth map. Occlusions
create long reaching dependences between pixels that can span long distances. A
higher-order prior is needed to properly describe such interactions. However, manually
crafting a high-order prior is also difficult due to the high-dimensionality of images, their
non-Gaussian statistics, and the need to model such long-reaching dependences. Thus, it
is highly desirable to learn the prior from example images to avoid the need to carefully
craft it by hand. Learning the prior not only avoids the effort involved in manually
defining the prior, it also allows the system to learn complicated and non-obvious
relationships inside the data that may have been missed by a person.

In order to learn the prior, we need a more flexible representation. We may generalize
the notation of Eqs. (20) and 23 by the use of a bank of linear filters ji. We may express
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Fig 12. Linear filters for simple priors using a 3× 3 neighborhood. Left: 1st-order prior. Right:
2nd-order prior.

our prior as

R(k) =
∑

i

ρ(j>i x(k)), (24)

where the vector x(k) contains the values of all pixels in the neighborhood k. Figure 12
shows the filters that would produce Eqs. (20) and (23) using a 3×3 neighborhood. The
order of the prior is now limited only by the size of the neighborhood and the number of
active coefficients in the linear filters.

Roth & Black (2009) developed an MRF framework for learning high-order priors
based on this formulation called Field-of-Experts. They apply a series of learned filters
to overlapping neighborhoods in the image. The output of these filters is processed by a
series of corresponding expert functions whose parameters are also learned. They follow
a probabilistic approach and define the prior probability density for an image x as

pFoE(x;Θ) =
1

Z(Θ)

∏
k∈N

∏
i

φ
(
j>i x(k);αi

)
. (25)

Here, the vector Θ contains all the learned parameters, i.e. the filters ji and the expert
function parameters αi. The function Z(Θ) is a normalizing function that ensures it is
a valid probability density. Function φ(·) is the expert function. Initially, the expert
functions where based on the student’s T distribution, but an updated version of the
framework by Schmidt et al. (2010) showed improved flexibility and performance using
Gaussian Mixture Models. This probability density results in an energy of the form

EFoE(x;Θ) =
∑
k∈N

∑
i

φ
(
j>i x(k);αi

)
− logZ(Θ), (26)

which has a regularization term with the same form as Eq. 24. The normalizing function
Z(Θ) has a complicated shape and is expensive to compute. During inference, it is
constant and can be ignored, as was done for the methods in the previous sections.
However, during learning, the normalizing function changes and must be taken into
account.

The complexity of the normalizing function makes Maximum Likelihood impractical
for learning. In order to avoid the normalizing function, the FoE framework uses

61



Fig 13. Obtained filters. Blue (1st and 3rd rows) are the intensity filters and green (2nd and 4th

rows) are the corresponding disparity filters.

contrastive divergence (Hinton 2002) as a learning rule. Contrastive divergence uses
random sampling from the current distribution to estimate the gradient of the model
parameters. This results in an approximation to Maximum Likelihood that is much
faster and tractable.

4.2.5 Contribution: a MRF-based learned joint prior

Paper IV applies the Field-of-Experts framework to the problems of depth map inpainting
and depth map upsampling. It extends the framework to jointly model an intensity image
and its depth map. The FoE framework has been extended to handle multi-channel
images before. Both McAuley et al. (2006) and Zhang et al. (2007) presented extensions
to model color images. However, these extensions increase the number of parameters
considerably and previous approaches have had problems to learn them efficiently. For
example, McCauley et al. only learned the parameters of the potential function and kept
the filters fixed, whereas Zhang et al. resorted to alternatively optimizing the potential
function parameters and the filters separately.

The method presented in Paper IV directly extends the formulation from Schmidt
et al. (2010) to jointly model an intensity image and its disparity map. Disparity was
chosen instead of depth because it better represents the accuracy of the depth sensor
used. The joint formulation follows an analogous derivation as the original in Schmidt
et al. (2010) and can thus also utilize contrastive divergence to learn both filters and the
Gaussian mixture model parameters simultaneously.
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Fig 14. Inpainting results of Paper IV. From left to right: intensity image, mask of missing pixels,
inpainted depth map, and depth map overlaid on the intensity channel.

Fig 15. More inpainting results from Paper IV. Top: missing pixel mask. Bottom: depth map
overlaid on the intensity channel.

Figure 13 shows the obtained 3×3 filters. Some filters can be interpreted as image
derivatives similar to those of Fig. 12. Moreover, sometimes, the shape of the intensity
and disparity filters is very similar, but this is not always the case. This suggests that
some filters model the case where intensity and disparity edges align, while others
model the cases where they do not. These filters demonstrate the complicated nature of
natural image statistics.

The obtained prior was used to inpaint holes in semi-dense depth maps. The
prior on the missing depth pixels is formulated as a conditional probability density
function given the known depths and intensities. Because the missing depth pixels
have intensity information and are surrounded by known depth values, this conditional
probability provides a strong prior. The final inpainting is performed by sampling from
this conditional distribution and obtaining the Bayesian minimum mean squared error
estimation. Figures 14 and 15 show some sample inpainting results.
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4.3 Non-energy based models

An energy function provides a clear and formal definition of the prior. However, not all
inpainting approaches formulate the prior as an energy in the form of Eq. 19. The prior
can be implicitly encoded into the inpainting algorithm.

An example of this is inpainting through bilateral filtering (Tomasi & Manduchi
1998). Bilateral filtering is an edge-preserving filtering technique. It can be applied
repeatedly to an image with missing regions to propagate the information from the
edges into the missing pixels. It has been applied to depth map inpainting by using an
intensity image to guide the filtering (He et al. 2013). The prior in this case is implicit.
The missing values are inpainted by diffusion from the edges, which implicitly enforces
similarity between neighboring pixels, and the filtering is guided by the intensity
gradient, which aligns depth and intensity edges.

Another important class of algorithms relies on copying existing patches to perform
inpainting. It has been shown that most small image patches in a natural image tend
to recur redundantly (Zontak 2011). This has been used to perform super-resolution
(Glasner et al. 2009) and noise-removal (Dabov et al. 2006) on color images. It has
also been applied to depth map inpainting and super-resolution (Ikehata et al. 2013). A
similarity function is used to find patches that match the known values surrounding the
missing regions and available intensity information. In the case of color images, several
patches are merged to better match the surrounding areas. However, in the depth case,
this leads to smoothing artefacts. Ikehata et al. (2013) use a sparse coding approach to
minimize the number of patches to merge.

4.3.1 Contribution: local planar surface models

Paper V presents a depth inpainting algorithm that assumes a piecewise-planar structure.
It builds upon the results of 3D reconstruction algorithms that produce an estimate of the
surface normal. Algorithms like Furukawa & Ponce (2010) produce a cloud of planar
patches (i.e. points with a 3D position and normal orientation). These patches can be
projected onto one of the source images to produce a semi-dense depth map as seen in
Fig. 16.

The algorithm extracts candidate planes and assigns plane labels to the missing
pixels. It is closely related to the discrete reconstruction methods presented at the
end of Section 4.2.1 (Furukawa et al. 2009, Sinha et al. 2009, Gallup et al. 2010).
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Fig 16. Inpainting results of using a local planar surface model (Paper V). Left: source image.
Center: semi-dense reconstruction from Furukawa & Ponce (2010). Right: after inpainting.

However, the formulation is slightly different because it is aimed at inpainting and not
full reconstruction. The biggest difference with the aforementioned methods is that
Paper V takes a local approach to extract the plane candidates which increases the quality
of the candidate planes given a fixed number of possible candidates. Moreover, because
we only fill in the missing pixels, we cannot reduce the quality of the reconstruction by
incorrectly assigning a non-planar region as planar.

The proposed algorithm uses the reconstructed normal and 3D position of pixels
around the boundary of a missing region to generate candidate planes. Support for
the candidate planes is determined from all the pixels with available depth. The best
candidates are kept and a photometric consistency function is evaluated for each missing
pixel. The final depth for each missing pixel is assigned by a single graph-cut labeling
using the candidate planes as labels and the photometric consistency as a cost function.

This approach implicitly enforces a second-order prior because of its planarity
constraint. However, it is less flexible than the approach presented in Paper III. Yet, for
scenes with large planar structures or very small holes, it can produce plausible results
with less computations, as seen in Fig. 16.

4.4 Discussion

This chapter presented the image inpainting problem and some of the most popular
methods that have been used to approach it. The chapter focused on a formulation of the
problem based in Markov random fields. This is not the only formulation possible but it
provides a solid mathematical framework and efficient optimization techniques. In fact,
many other formulations can be expressed in a MRF framework. Image inpainting is a
large area of study in itself but this thesis is mostly concerned with its connection to 3D
reconstruction and how it can be applied to depth maps.
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Because of the different statistics between intensity and depth images, the inpainting
method must be tailored to depth maps or it must learn the statistics from natural images.
The algorithms from Papers V and III fall in the former category and that of Paper IV
in the latter. The three algorithms explore the compromise between accuracy with a
complicated prior and a faster alternative. The MRF formulation of Paper IV is the
most flexible and promises better results, but it requires a lot of training data and long
training and inpainting times. In contrast, the QPBO-based algorithm of Paper III uses a
hand-crafted prior which is less flexible but allows for faster optimization and requires
no training.

The idea of using an intensity and depth image jointly for inpainting (Papers III and
IV) follows a trend in the proposed contributions of this thesis, namely to use all the
information available simultaneously. Given that depth sensors can often provide an
aligned intensity image, the information contained in it can help constrain the inpainting
problem and improve the result.
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5 From depth maps to point clouds

Point clouds are a very useful and common representation of 3D geometry. Sparse
3D reconstruction methods, as seen in Chapter 3, often directly produce a point cloud.
Even advanced dense multi-view reconstruction methods often use point clouds as
intermediate representations (e.g. Vu et al. (2012)). Moreover, the depth map produced
by a depth sensor can directly be converted to a point cloud when the sensor is calibrated.
These point clouds can be the final representation desired or they can be the input
used to reconstruct a dense model (e.g. a mesh surface). Many of the applications and
reconstruction algorithms where point clouds are used are themselves quite involved and
require substantial amounts of memory and computation. Oftentimes, they do not scale
well to increasing model sizes and resolution.

It is often a challenge to process these point clouds because of the massive amount
of data they contain. Large scenes can easily become problematic to reconstruct due to
computation and memory constraints. The recent advances in depth sensors have made
this problem even more relevant. The Kinect sensor, for example, produces 12.3 million
points per second (640 by 480 pixels at 30 fps). Many of these points are redundant,
especially when sensor movement is small. Simply merging these individual depth
maps into a combined point cloud results in too much data that is not suitable for most
applications.

Depending on the application, one may approach the point cloud simplification
problem in two ways. One can specify the desired size of the point cloud, thus
emphasizing the memory and computational constraints, or one can specify an error
bound on the geometric deviation between the initial and simplified clouds, thus
emphasizing the accuracy of the model. Imposing hard limits on the size of the model is
useful for real-time applications that have limited computational resources, whereas
offline reconstruction methods often focus on higher accuracy.

This chapter reviews different ways of reducing the amount of data in the point
cloud while trying to keep the maximum amount of information possible. Section 5.1
reviews different approaches that look at the point cloud as a whole and try to simplify it
by comparing the result with the original point cloud. Section 5.2 looks at the case
when the point cloud is constructed from a series of overlapping depth maps. The
contribution of this chapter is described in Section 5.2.4 which consists of a novel point
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cloud simplification algorithm from Paper VI. The algorithm takes advantage of the
input depth map resolution to produce a variable resolution point cloud that contains all
the information from the input depth maps but with less redundancy.

5.1 Point cloud simplification

The problem of point cloud simplification can be formulated as follows (Moenning
& Dodgson 2004): The input is a set of samples PN = {p1, p2, . . . , pN} acquired from
a smooth, compact two-manifold surface embedded in �3. We wish to convert it to
a point cloud PM so that M < N subject to a user defined refinement condition. The
simplified point cloud does not need to be a strict subset of the original. In fact, the
simplification process may smooth out noise and result in a point cloud of better quality.
Also, the points in the original set may be non-uniformly sampled.

5.1.1 Implicit surfaces

Initial approaches to geometry simplification used a mesh representation of the scene.
The explicit connectivity between vertices in a mesh structure can be easily leveraged in
these simplification methods and leads to methods that can efficiently process local
neighbourhoods (Heckbert & Garland 1997). However, building a mesh structure from
a point cloud is an error-prone and computationally intensive process. Topological
distortions resulting from incorrect mesh construction can cause topology-preserving
simplification algorithms to produce inferior results (Wood et al. 2002).

Pauly et al. (2002) showed that it is not only possible but also beneficial to perform
the simplification directly on the point cloud before constructing the mesh. The basis of
this approach is to recognize that a point cloud implicitly represents a connected surface.
The explicit vertex connections from a mesh are replaced by spatial proximity of the
sample points for sufficiently dense point clouds (Amenta et al. 1998).

Levin (2001) introduced a point-based surface representation called Moving Least

Squares surfaces. The surface is approximated locally at each point in space by a local
reference plane and a bivariate polynomial that encodes the offset from the plane. The
plane and polynomial are both estimated from the nearest neighbours. This implicitly
defines a closed surface around the point cloud.

Okabe et al. (2000) proposed an implicit surface based on Voronoi diagrams. They
define a geodesic distance between points in the cloud based on Fast Marching (Mémoli
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& Sapiro 2003). Using this distance measure, they construct a Voronoi diagram that
implicitly defines a surface.

Once a surface has been defined the relation of the individual points with the surface
can be evaluated. For example, a geodesic distance between points can be calculated
and used to determine connectivity. This can be used to then simplify the point cloud.
As mentioned by Pauly et al. (2002), the simplification algorithms on generic point
clouds can be broadly grouped in the following three categories.

5.1.2 Iterative simplification

Iterative simplification methods remove one point at a time until the desired size or
error bound is reached. This is similar to mesh-based simplification methods that
create progressive meshes (Hoppe 1996). Early work (Alexa et al. 2001, Linsen 2001)
performed simple point removal at each iteration. The points were ordered according
to the error introduced by their removal. This straightforward formulation leads to a
decimated point cloud that is a strict subset of the original which is prone to aliasing and
often creates uneven sampling distributions.

Pauly et al. (2002) used an improved decimation operator that contracts point-
pairs. The possible point-pair contractions are rated to select the one that produces the
minimum error. The surface is approximated locally by a series of tangent planes and
the error metric measures the deviation from the k-neareast neighbouring planes. The
point-pairs contract to a single point which effectively resamples the surface.

It is also possible to iteratively add points instead of removing them. Moenning &
Dodgson (2004) use an implicit surface based on Voronoi diagrams as mentioned in the
previous section. They define a geodesic distance along the implicit surface and use this
distance to iteratively add the point farthest away from the current simplified set.

5.1.3 Clustering-based simplification

Another approach to point cloud simplification is based on local clustering of points.
Clustering has been extensively used in computer graphics (Rossignac & Borrel 1993)
and computer vision (Achanta et al. 2012) to reduce the complexity of the input data.
The standard approach to point cloud simplification is to subdivide the model’s space
into grid cells and replace all points inside a cell with a single representative point.
Although this method can be very fast it has some serious drawbacks. When using cells
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of fixed size, the method cannot adapt to non-uniformities in the sampling distribution
or different levels of complexity. Moreover, disconnected parts of the surface may
be joined if spanned by a single cell. To avoid this, Pauly et al. (2002) first proposed
clustering the points using an implicit surface on the point cloud. The clusters are built
by collecting neighbouring samples with regards to the local sampling density.

Clustering can be achieved in mainly two ways: by region-growing, where points
are iteratively aggregated to form clusters, and by splitting, where the point cloud is
iteratively partitioned to create progressively finer clusters. Both methods create a set of
clusters and each is replaced by a representative sample to create the simplified point
cloud.

Region-growing methods typically choose a random point as the starting seed.
Nearest neighbours are added to the cluster until it reaches a maximum bound. The
bound can be a simple bound on the point count, which enforces a simple constraint on
the resulting point cloud size, or a bound on the variation of some property. When the
variation on the position is bounded, it results in a curvature-adaptive clustering where
more and smaller clusters are created in areas of high complexity. The sequential nature
of this type of clustering leads to fragmented clusters where many clusters did not reach
the expected bound because their growth was restricted by adjacent clusters (Pauly et al.

2002).
Hierarchical clustering methods use a top-down approach. Starting with a single

cluster containing the entire point cloud, clusters are recursively split using similar
rules as the region-growing methods. If a cluster exceeds a certain bound (e.g. size or
variation), it is split across the direction of maximum variance as in Brodsky & Watson
(2000), Shaffer & Garland (2001). This results in a tree structure whose leaves are the
final clusters.

More recently, Song & Feng (2008) proposed a global clustering approach that uses
Voronoi diagrams to partition the model space. By choosing a set of representatives,
they can partition the space and obtain the clusters. Their insight is that changes in the
selection of the representative points only affects the geometry locally. Thus, they are
able to efficiently calculate a global geometric deviation error and fine tune the local
composition of the clusters.
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5.1.4 Particle simulation

A third option to surface resampling is particle simulation. Turk (1992) first proposed
this approach for mesh-based surfaces. It was later extended by Pauly et al. (2002) to
use implicit surfaces and be applied directly to point clouds. An initial set of points is
randomly distributed along the surface, then a repulsion force between points refines
their position to create a good simplified representation of the original point cloud.

The initial distribution of points plays an important role in the final result. The
points are placed randomly using the point density of the original cloud as a probability
distribution. Once an initial distribution has been obtained, the process iterates between
simulating the point movement due to the repulsion forces and projecting the points back
onto the surface. The repulsion forces can be modulated based on the curvature of the
model, resulting in more points allocated to more complex areas. The point projection
uses the implicit surface to ensure that the points do not introduce any unnecessary
artefacts.

5.2 Merging depth maps

The approaches discussed in Section 5.1 simplify a point cloud without taking into
consideration the origin of the data. In our case, we are interested in point clouds
originating from depth maps that are merged together. Point cloud simplification
becomes a considerably important step when we have a depth sensor and we are able to
estimate the sensors position. It is then straightforward to convert the depth maps to a
series of point clouds that are aligned on the same Euclidean space. The algorithms
presented in Section 5.1 could then be used on the merged depth maps, however, there
are difficulties with this simple approach.

The biggest problem is memory and computational constraints. Due to the very
large bandwidth of modern depth sensors, it is unrealistic to process a large number of
frames simultaneously as it would result in too many points. Thus, it is necessary to use
algorithms that can filter out redundancy and simplify the point clouds after receiving
each depth map.

The perspective nature of most depth sensors means that points observed at different
distances represent areas of different size. Points further away from the camera
correspond to larger areas than those closer. Some reconstruction systems, like Henry
et al. (2010), use a surfel representation to encode this size difference. However, it is not
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clear how to merge two surfels that have different sizes but the same position. This is a
problem when a surface is observed from different distances. The different depth maps
will have varying accuracy and resolution yet must be merged into a single point cloud.

This perspective nature also produces different uncertainties for the reconstructed
points. Points closer to the depth sensor are more accurately localized than those farther
away. Moreover, the uncertainty is directional. The uncertainty in the direction of the
optical axis is much higher than the lateral uncertainty. However, as the camera moves,
the direction of the optical axis changes and points are thus reconstructed with very
different uncertainties.

5.2.1 Enforcing consistency

Depth maps contain a lot of redundant information that can be used to remove noise and
detect outliers. A depth map can be back-projected to Euclidean space and reprojected
to another image, thus generating a second depth map from the same viewpoint.
Corresponding pixels can then be analysed to determine if they are consistent. If their
depth is similar, they are probably separate measurements of the same surface. On the
other hand, if the reprojected depth is smaller than the original depth, there is a clear
inconsistency. In order to have made the original measurement, the optical ray must
be empty from the camera center to the measured surface, yet the second depth map
contains a point in between. Thus, only one measurement can be correct.

Merrell et al. (2007) presented a depth map merging algorithm that uses these
visibility constraints to eliminate outliers. They produce a series of depth maps with
corresponding confidence maps using plane-sweeping stereo (Gallup et al. 2007).
Several depth maps are reprojected onto a reference view and a counting rule is used to
determine if a reference point is consistent with the other depth maps. The depth and
confidence are then updated using the depths that reproject closer to a given threshold.
The consistent depth maps are then merged together into a single point cloud.

5.2.2 Voxelization

Voxelization has become a very popular alternative to surface reconstruction due to the
high bandwidth of depth sensors. The most popular approach so far was introduced
by Newcombe et al. (2011a): KinectFusion. They divide the Euclidean space into
voxels using a predefined resolution. The voxel grid contains a discretized version of a
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Fig 17. Sample KinectFusion results. Left: color image from Kinect. Middle: a single depth map
from Kinect. Right: reconstructed surface using KinectFusion (Newcombe et al. 2011a).

signed distance function (SDF), i.e. each voxel contains the signed distance from the
voxel’s center to the reconstructed surface. This implicitly defines a surface that can be
efficiently extracted from the grid.

More importantly, the SDF can be very efficiently updated when new measurements
are available. Each depth map obtained is integrated into the grid by estimating
the camera position and back-projecting the measured depths into the grid. Each
measurement updates a group of voxels at the measured depth and along its optical ray
(the SDF is truncated to reduce computation). In this way, the depth maps are quickly
merged into a single surface and the amount of data is kept constant.

This approach produces very convincing results, see Fig. 17. It is able to eliminate
most of the noise from the input depth sensor and fill holes by combining depth maps
from different points of view. However, using a fixed resolution for the grid limits the
amount of detail that can be modelled and truncates the scene to the grid edges. More
recently, the approach has been extended to large-scale reconstruction by defining the
working grid as sliding window on a larger volume (Whelan et al. 2012, Chen et al.

2013), but the fixed resolution still limits the amount of detail in any given area.

5.2.3 Multi-resolution voxelization

Although there have been many surface reconstruction methods proposed in the literature,
few of them have considered the effect of multi-resolution sampling. It is common that
different areas of the scene are observed with different resolution or scale. Areas of
interest are often observed closely at high-resolution, whereas other areas are sampled
more coarsely. Low-resolution samples usually correspond to a low-pass filtered
version of the original surface (Klowsky et al. 2012), which results in a lower quality
reconstruction when high-resolution and low-resolution samples are mixed as equals.
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Fuhrmann & Goesele (2014) present a formulation similar to that of KinectFusion
(Newcombe et al. 2011a) where they aggregate all samples to evaluate an implicit
function, however, instead of a sample casting a single vote on a single voxel, a sample’s
influence is distributed according to their scale. Moreover, to account for the variable
resolution, an octree is used instead of fixed-resolution grid. The scale of the sample is
determined from the characteristics of the capture device. In general, samples further
away from the device have a larger scale (lower resolution). The final surface can then
be recovered from the zero-crossings in the octree with sub-voxel accuracy. This method
has shown very good quality results. Although it is now tailored the dense surface
reconstruction problem, it might be possible to adapt it to point cloud simplification.

5.2.4 Contribution: modelling uncertainty and adaptive point resolution

Paper VI presents a depth map merging algorithm that addresses some of the issues
discussed so far. It takes in depth maps sequentially and merges them into a point cloud
with the explicit purpose of eliminating redundant information. The algorithm presents
two main contributions. First, it supports an adaptive 3D resolution by using the image
space grid naturally determined by the input image resolution. Second, it models the
position uncertainty to improve point merging.

The algorithm considers the depth maps sequentially. When a new depth map is
received, the relevant area of the current point cloud is projected onto the image space.
The new measurement is only compared to those points projecting onto its corresponding
pixel. This effectively results in an adaptive 3D resolution. As the camera moves towards
the surface, the point density becomes sparser and new points will not be merged
together, thus maintaining the highest level of observed detail without introducing
redundancy. Figure 18 shows the results of algorithm applied to a reconstruction of a
scene. The algorithm applies less subsampling in areas with less input data.

The points are modelled with position and a 3D Gaussian uncertainty to take the
sensor noise model into account. This not only gives an idea of the expected noise
of the point cloud, but the algorithm is also able to determine if two measurements
correspond to the same surface in a more formal probabilistic fashion. When a point is
projected onto the same pixel as a measurement, the result of their potential merging is
calculated. If the Mahalanobis distance between both of the original points and the
merged result is below a set threshold, the points are said to intersect. They are then
merged together using the best linear unbiased estimator which results in an improved
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Fig 18. Results of Paper VI. Left: simple merging. Right: result from Paper VI. The merging
algorithm corrects the non-uniform sampling behind the cube.

Fig 19. Noise-removal results of Paper VI. Left: planar structures after simple merging. Right:
after merging the variation is reduced (thinner structures). Top: single plane from a whiteboard.
Bottom: cross-section of a three-sided cube.

position and reduced uncertainty. Figure 19 shows how the noise of the model is reduced
after merging. Paper VI contains more detailed results.
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5.3 Discussion

Point clouds have proven to be a common way to represent 3D information and are
therefore an interesting topic. They are closely related to depth maps since one can
easily transform one into the other. However, they are not limited by image resolution
as depth maps are and can thus grow without limit. This chapter explored some of
the options to reduce the size of point clouds without reducing the quality of the 3D
structure.

The final algorithm used will depend on the application. For example, volumetric
approaches (Section 5.2.2) regularize the sampling of the data and limit resolution,
which could be useful or negative depending on the application. In particular, Section
5.2 showed that if the information is known to come from depth maps, we can use this
to improve the simplification algorithm.

The contributions presented in Paper VI show such improvement. By using the
natural 2D resolution of the images as an upper bound on the 3D resolution of the
point cloud, the algorithm can eliminate redundant data and noise without sacrificing
quality. Although the complexity of the proposed algorithm is too high for a real-time
implementation, similar ideas could be used to design a system that discards redundant
information from a point cloud capturing system in real-time.
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6 Application: Free-viewpoint rendering

The depth maps and point clouds produced by the methods discussed in the previous
chapters have many potential applications, e.g. exploring photo collections (Snavely
et al. 2007, Kushal et al. 2012), augmented reality (Reitmayr et al. 2010), virtual
tours (Xiao & Furukawa 2014), and image-based rendering (Shum et al. 2007), among
others. This chapter focuses on one particular application of 3D reconstructed geometry:
Free-viewpoint rendering (FVR). The goal is to allow the user to view the scene from a
novel viewpoint, one not directly captured. The system should be able to synthesize
a visually plausible image from the captured images that corresponds to the novel
viewpoint. This can produce a more interactive user experience for both images and
videos. For example, panoramas can exhibit structure by interactively displaying parallax
(Zheng et al. 2007) and replays for sports event can be viewed from arbitrary angles
(Shum et al. 2007).

Free-viewpoint rendering is part of the field called image-based rendering (Shum
et al. 2007). Image-based rendering covers techniques used to produce novel images
from real images. It includes techniques such as view interpolation, view-dependent
texture mapping, image morphing, light field rendering, and others. Many of these
techniques have been used to synthesize an image that corresponds to a novel viewpoint.
However, the simpler methods, like view-dependent texture mapping (Debevec et al.

1996), require some human interaction during processing and might limit the type of
novel viewpoints that can be synthesized. For example, methods based purely on image
morphing (Chen & Williams 1993) can only generate viewpoints form inside the visual
hull of the captured camera centers.

There is a fundamental trade-off between space and complexity requirements in view
synthesis methods. Light field-based methods can produce high quality images without
reconstructing the scene but require a lot of data, whereas image warping-based methods
use correspondences and scene structure to allow sparser sampling. Section 6.1 presents
a brief summary of light field rendering methods. Section 6.2 explores the different
types of image warping-based approaches and how the final image is synthesised.
Section 6.3 explores the problem of transparency in FVR and the contributions made by
Paper VII in this area. In particular, Section 6.3.2 presents an algorithm to estimate the
transparency of foreground objects in a multi-view dataset. This information is then
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used in a transparency-aware free-viewpoint rendering algorithm to create images from
novel viewpoints without transparency artefacts.

6.1 Light field-based rendering

Light field-based methods avoid modelling the structure of the scene in favour of a
sampling-based approach. The distribution of light in an environment is described
by the plenoptic function (Adelson & Bergen 1991). The plenoptic function is a
five-dimensional quantity L(x,y,z, θ,φ) that describes the flow of light at a given position
(x,y,z) and direction (θ,φ) 2. The plenoptic function contains all information necessary
to render any image from any viewpoint. In fact, an image from a central camera is a
discrete sampling of the plenoptic function at a fixed position, i.e. the camera center,
where the directions sampled correspond to the directions of the optical rays. However,
a dense sampling of the plenoptic function is often impractical.

The dimensionality can be reduced from 5D to 4D using a light field. The basic
assumption behind it is that the intensity of a light ray does not change as it travels
through empty space. We can define an arbitrary surface in front of the scene, e.g. an
infinite plane, such that there is only empty space between the camera and the surface.
Once the light rays cross the surface, their intensity will not change before they reach
the camera. Thus, we can define the light field as a four-dimensional function L(u,v, θ,φ)
that describes the flow of light through a given position in the surface (u,v) with direction
(θ,φ). The light field contains all necessary information to render any image from any
viewpoint behind the surface.

The light field was first used for synthesising novel views by Gortler et al. (1996)
and Levoy & Hanrahan (1996). They simultaneously proposed a method to capture
a light field and synthesise novel views. Gortler et al. (1996) resample the light rays
captured through images onto a regular grid, resulting in a very fast rendering algorithm.
Buehler et al. (2001) later extended their work to use unstructured lumigraphs to avoid
the resampling. The unstructed lumigraph rendering technique was recently improved
on by Davis et al. (2012) and coupled with a SLAM system to provide feedback during
capture.

Modern light field-based methods can produce very high quality renders (Davis et al.

2012, Kim et al. 2011). They are especially useful in 3D movie production since they
can give editors fine control over disparity (Kim et al. 2011). It has also been explored

2Considering time, wavelength, and polarization adds more dimensions. They are omitted here for simplicity.
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to use light fields as input to reconstruct high quality depth maps (Kim et al. 2013).
However, many applications cannot use light fields as inputs due to their large size.

Sampling the 4D light field function is more practical than sampling the 5D plenoptic
function. Yet, it is still a complicated task. A rather dense sampling is required to
avoid artefacts. Gortler et al. (1996) suggested incorporating geometry information to
compensate for parallax, thus reducing ghosting artefacts when the sampling density is
not high enough. This captures a fundamental trade-off in view synthesis methods:
simpler rendering methods require a prohibitively large amount of data to produce high
quality images, whereas methods that use scene structure or correspondences can cope
with sparser sampling.

6.2 Image warping-based rendering

In most scenes, much of the information contained in a light field is redundant. A
Lambertian surface, for example, exhibits the same appearance when observed from
different directions. Thus, all light rays originating from the same surface point will
contain the same information. When these surfaces are imaged by several cameras, they
will appear in different parts of the image due to scene movement and depth-induced
disparity, but their appearance will stay the same. By modelling how the surfaces
appear to move in image space, we can warp the captured images to synthesize a novel
viewpoint.

There are two leading ways of modelling the image deformation between views.
Section 6.2.1 explores how the warping can be modelled directly in the 2D image space
by finding correspondences between images or calculating the optical flow. Alternatively,
camera calibration and depth maps can be used to backproject the pixels to 3D space
and reproject them onto a novel viewpoint, a technique known as depth-image based
rendering and discussed in Section 6.2.2. Finally, regardless of the warping method
used, once the different input images have been warped to match the novel viewpoint
they need to be merged to synthesise the final image. This is reviewed in Section 6.2.3.

6.2.1 Image warping

Rendering a novel view using a few images of a scene is a long standing research topic.
The first approaches tried to solve the problem purely in 2D image space. The seminal
paper of Chen & Williams (1993) laid the basis for view interpolation based on image
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ma + wab(ma) mb
mb + wba(mb)m̂a = m̂b

Ia Iv Ib

Fig 20. Image warping. The position of a pair of corresponding pixels ma and mb is interpolated
to obtain the warped positions m̂a and m̂b in the novel image Iv.

correspondences. Their rendering formulation was later used for dynamic real-world
recordings (Lipski et al. 2010, Lipsky et al. 2011). The basic algorithm takes two
input images Ia and Ib and interpolate an image Îab that corresponds to a viewpoint
between those of the input images. The algorithm requires a dense correspondence map
between the input images. The mapping wab relates a pixel position m from image a to
its corresponding position in image b

mb = ma + wab(ma). (27)

The mapping is directional and many-to-one due to occlusions and ambiguities, so a pair
of mappings is needed for a pair of input images. The mapping wba gives the mapping
in the other direction. Using these mappings, it is possible to linearly interpolate the
position for the pixels for any viewpoint in between, see Fig. 20. For an interpolation
factor α ∈ [0 . . .1], the interpolated position for a pixels in the source images are simply

m̂a = ma +αwab(ma) and (28)

m̂b = mb + (1−α)wba(mb). (29)

Using the warped pixel positions, we copy the pixel information to produce a warped
image, Îa(m̂a) = Ia(ma). Through this forward-warping process, we obtain two images
Îa and Îb that have been warped to the desired viewpoint. However, these images are
incomplete. Forward-warping and depth-induced disocclusions lead to cracks and holes,
i.e. areas of Îa that do not receive any pixel information from Ia. Merging these images
into a final image Îab is later analysed in Section 6.2.3.

Although simple and intuitive, this method has serious shortcomings. Obtaining
a dense mapping between two images is a complicated task. Optical flow methods
and feature descriptors have been used for this (Eisemann et al. 2008), yet it still
remains an unsolved problem. Manual correction has been needed to achieve visually
convincing results (Klose et al. 2011). Moreover, the real path that a pixel takes between
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viewpoints a and b is most of the time not linear. As was already pointed out by Chen &
Williams (1993), the real path follows a projective transformation and is only linear in
the special case of camera movement parallel to the image plane. Using a linear model
is only an approximation used either to reduce computation or because the projective
transformation cannot be recovered.

6.2.2 Depth-image based rendering

Taking into account the 3D structure of the scene can make the problem of obtaining a
dense mapping much easier. General optical flow is a severely ill-constrained problem,
whereas the epipolar geometry of calibrated cameras reduces the correspondence search
area from the entire image to a line segment (Hartley & Zisserman 2000). More
importantly, if we recover the depth of a pixel, we can easily obtain the true projective
transformation that it undergoes as the camera moves.

Using 3D reconstruction methods and/or depth sensors, we can calibrate the cameras
used for view interpolation and obtain a depth map for each image. This simplifies
the warping and avoids the need for correspondences3. Each input image can be
independently warped to the novel viewpoint by backprojecting the pixels to 3D space
and reprojecting them onto the novel image plane, see Fig. 21. This is known as
depth-image based rendering (DIBR).

Given a calibrated camera and a known depth d, we can backproject a pixel m to a
unique point in 3D space, x = P−1(m,d). Thus, a pixel from image a can be warped
onto a novel viewpoint v by

m̂a = Pv(P−1
a (ma,da)). (30)

The warping produced by Eq. 30 corresponds to the projective transformation induced
by the scene geometry plus the cameras’ distortion, which is a more accurate model than
the linear image-based warping. Moreover, when using depth-based warping, pixels are
transferred with depth and occlusions can be easily resolved using a soft z-buffer (see
Section 6.2.3.

An extensive survey on free-viewpoint video with an emphasis on DIBR has been
conducted by Smolic (2011). Starck et al. (2009) presented a combination of capture
stages and algorithms for DIBR. The use of 3D structure implies either a static scene

3Some 3D reconstruction methods may require correspondences but not all. Depth sensors can avoid the
error-prone correspondence matching problem.
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a (ma,da)
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Fig 21. Depth-image based warping. All pixels are backprojected to 3D space and reprojected
onto the novel image plane.

or synchronized cameras. Dense arrays of synchronized cameras have long been
established as a way to automatically create depth-based free-viewpoint video (Zitnick
et al. 2004). A high quality 3D reconstruction is critical to produce high-quality renders.
High-resolution laser scans have been shown to improve the final quality considerably
(de Aguiar et al. 2008).

Recently, is has proven to be successful to use a hybrid approach that combines
correspondence-based and depth-based warping. Lipski et al. (2014) presented a
method that backprojects points to 3D space and linearly interpolates correspondences
in 3D space before reprojecting to the virtual viewpoint, as seen in Fig. 22. This
eliminates ghosting artefacts and provides a smoother transition between images when
the reconstructed geometry is not accurate. They demonstrated a system that generated
production-quality images with no human interaction.

6.2.3 View synthesis

Once the input images have been warped to the novel viewpoint, they must be merged to
create the final image. Using the blending factor α, we can obtain a straightforward
blend of both warped images

Iv(m) = αÎa(m) + (1−α)Îb(m). (31)
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Fig 22. Hybrid warping (Lipski et al. 2014). Pixels are backprojected to 3D space, their position is
linearly interpolated in 3D space, and then reprojected onto the novel image plane.

Unfortunately, the warped images Îa and Îb are incomplete due to occlusions and
missing regions. Most of the time, there will be information in at least one of the input
images. In this case, we can fix α to 1 or 0 to use only the source pixel that has valid
information. However, a sudden change in the blending weight often leads to visible
artefacts due to mismatched exposures or white-balance between input images. To avoid
this, a per-pixel weighting of the input views is used to enforce a smooth transition over
the image. For example, Pulli et al. (1997) defined it as a combination of three weighting
factors: view proximity, sampling density, and a weight to smoothly blend boundaries.

Not all pixels should be blended, however. Points that project to the same pixel may
come from different surfaces. This is resolved through the use of a soft z-buffer on the
destination image (Pulli et al. 1997). To account for noise on the depth component,
points that project to the same pixel with a similar depth are merged, but if a point with
a considerably larger depth is found, it is discarded.

Another source of rendering artefacts is missing pixels. Disocclusions may lead to
areas in the novel image that are not observed in any source image. Inpainting methods
can produce visually plausible results. Very small holes can be filled by copying the
values from neighbours. The pixels copied must be those with a larger depth to avoid
fattening the foreground object (Pulli et al. 1997). Larger holes can be filled with more
advanced inpainting techniques, e.g. Criminisi et al. (2003).

The techniques described so far have been used to create very high-quality renderings
that allow the artists to create cinematic effects after capture (Zheng et al. 2009). As an
alternative to warping-based rendering, Fitzgibbon et al. (2003) proposed to formulate
the novel view rendering as a color reconstruction problem while using an image-based
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Fig 23. The discrete nature of cameras creates mixed pixels at object boundaries. A black object
on white background creates pixels with intermediate gray values when the foreground object
does not cover the entire pixel area.

prior. It is an interesting alternative because it avoids the reconstruction of depth and
performs the rendering directly.

6.3 Transparency in FVR

Transparency is a major source of artefacts for free-viewpoint rendering. Naturally,
these artefacts can be caused by transparent or translucent materials, but even when the
scene contains only opaque surfaces, transparency artefacts are common due to mixed
pixels. Pixels whose area is not covered entirely by the foreground surface result in a
blend between foreground and background, as seen in Fig. 23. Transparency, due to both
surface material and mixed pixels, is often view-dependent and when semi-transparent
pixels are warped onto a novel image, they lead to ghosting. The outline of foreground
objects can often be seen on the background layer, as in Fig. 24.

Most 3D reconstruction algorithms and depth sensors do not take transparency into
account. Images have only a single color per pixel and depth maps only a single depth.
Semi-transparent pixels may arbitrarily be assigned to the foreground or background
object, depending on its appearance in the image. Either case may lead to ghosting, as
seen in Fig. 24 because the warping does not take into account the view-dependent
transparency. This is a challenging problem since the transparency can have different
causes and the object boundaries are often complex (e.g. hair). To cope with this issue,
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Fig 24. Ghosting artefacts due to semi-transparent pixels using the simple merging from Müller
et al. (2008).

image matting algorithms can be used to estimate the true colour of the foreground
object and its transparency.

6.3.1 Image matting

Image matting is the process simultaneously estimating the transparency and true color
of a foreground object often without knowing the exact color of the background. The
underlying idea is to model the color of a pixel m as a combination of foreground and
background layers, F and B respectively. Because we model each pixel independently
the index m is omitted. The color c of the pixel is modelled by

c = αf + (1−α)b, (32)

where α is the transparency factor. In the case of an RGB color image, a pixel provides
three measurements and seven unknowns. Clearly, when using only a single image,
matting is a severely ill-posed problem. Heavy priors are needed to solve it, as seen in
the benchmark by Rhemann et al.rhemann2009.

For a single color image, the segmentation of foreground and background is
ambiguous. Thus, most of the algorithms require manual segmentation of the image.
The most common form of input is a trimap that segments the image into foreground,
background, and unknown areas. The matting algorithm then computes the transparency
value for the unknown area. Some algorithms accept a sparse labelling with only a few
foreground and background scribbles. Nevertheless, these scribbles are often used to
generate a proper trimap (e.g. Bai & Sapiro (2007), Juan & Keriven (2005), Rhemann
et al. (2008)).

Single view matting methods can be roughly divided into three categories: color
sampling, alpha propagation, and optimization methods. Color sampling methods take
samples from nearby labelled regions and assume color smoothness to interpolate alpha
values between the labelled regions (e.g. shared sampling (Gastal & Oliveira 2010)).
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Alpha propagation methods assume that the alpha values are correlated with some local
image statistics (e.g. closed form matting (Levin et al. 2007)). Optimization methods
combine the previous two approaches to exploit their strengths (e.g. robust matting
(Wang & Cohen 2007)).

Although very impressive results have been shown for single view methods (Rhe-
mann et al. 2009), it is expected that multi-view methods would improve their results,
since more information is available and several observations of the same point can be
used. Moreover, the foreground and background labelling can be done automatically
when depth information is available.

Hasinoff et al. (2006) propose a multi-view method that uses boundary curves
in 3D space to estimate transparency. Their system detects mixed pixels assuming
that the objects are opaque. Joshi et al. (2006) use a multi-view variance measure to
estimate transparency. It internally computes a trimap based on the observed variance
and propagates color statistics. Wexler et al. (2002b) estimate the complete light transfer
function of a foreground object (e.g. a magnifying glass) from multiple views in a
probabilistic fashion by assuming a planar background. In a similar work, Wexler et al.

(2002a) approach the alpha matte estimation under a Bayesian framework but limit the
model to planar layers and model the transparency as view independent, which is not
suitable for mixed boundary pixels.

In the context of free-viewpoint rendering, Zitnick et al. (2004) presented an
algorithm that estimates the alpha matte along depth discontinuities. It uses a variant
of Bayesian matting (Chuang et al. 2001) to estimate colors and transparency for
mixed boundary pixels. Although the stereo and rendering is multi-view, the matting is
performed using a single view using a fixed-width boundary region, which limits the
applicability in scenes with large semi-transparent regions. A popular approach is to
discard the mixed pixel and only use the information from neighbouring views (e.g.
Müller et al. (2008)), however, this discards information, suffers from unnaturally sharp
boundaries, and still produces artefacts for complicated semi-transparent regions.

6.3.2 Contribution: multi-view alpha matte for FVR

Paper VII introduced a multi-view matting method that is able to recover the true color
of foreground objects and the observed transparency. It uses linear constraints on RGB
space obtained from all the views that observe a given point. Eq. (32) must be updated
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Fig 25. Close up of alpha maps produced by Paper VII. Left: Boundary pixels. Middle: Semi-
transparent hair. Right: Incorrect estimation due to mixed pixels in the foreground with a similar
background colour.

to reflect the contribution of each view. Thus, for a point in 3D space observed in view i

ci = αif + (1−αi)bi. (33)

The observed color, the transparency, and background are view-dependent but the true
color of the foreground object is constant. Moreover, by intersecting the optical ray with
the depth maps of neighbouring images, we are able to directly observe the background
color. Thus, if a foreground point is observed by N views, it will have 3N constraints
and only 3 + N unknowns (the constant foreground color and one alpha value for each
view).

The endpoints f and bi of Eq. (33) define a line segment in RGB space. Because
αi and f are unknown, each constraint obtained defines a ray in RGB that starts at the
background color bi and passes through the observed color ci. The foreground color f
must lie at the intersection of these constraints. Once the foreground color is determined,
we can estimate each view’s alpha value by determining the position of the observed
color along the line segment. Paper VII describes heuristics to handle background colors
similar to the foreground color or to each other.

The algorithm of Paper VII begins by calculating a background layer B for each
image by taking samples from all neighbouring images. Once the background is
determined, linear constraints in RGB space are assembled for each pixel, the foreground
color is determined, and the alpha value is finally calculated. To remove the effect of
noise, a final smoothing step is applied by enforcing a low alpha gradient where the
intensity gradient is also low.

Figure 25 presents some of the alpha maps extracted for semi-transparent regions.
The obtained foreground, background, and alpha layers were applied to the problem of
free-viewpoint rendering to generate novel views. Figure 26 shows a comparison of
the render results of Paper VII with the method of Müller et al. (2008). The proposed
method is fully automatic and correctly recovers the information from semi-transparent
materials and mixed pixels.
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Fig 26. Comparison of synthesised views from a novel viewpoint. Left: Müller et al. (2008). Right:
Results of Paper VII.

6.4 Discussion

This chapter presented a concrete application of the 3D reconstruction methods and
sensors explored in the previous chapters: free-viewpoint video. The extensive literature
in the field shows that FVR is an attractive application and still in development. A
major conclusion from the surveyed literature is that using 3D information significantly
improves the quality and speed of FVR methods. The calibration and 3D reconstruction
methods of Chapters 2 and 3 can, thus, be useful in the context of FVR. Dense depth
maps are a default format for representing and transmitting the 3D structure, which
validates the need for methods presented in Chapter 4.

Section 6.3 showed that transparency is unavoidable even in simple scenes and is
a major source of artefacts in FVR. Traditional reconstruction methods do not take
transparency into account and need to be augmented to model it. The contributions of
Paper VII directly address this issue. The multi-view alpha matting approach proposed
creates a multi-layer depth map with transparency. It has the potential to correctly
handle a wider range of transparency cases than single-view approaches.

It remains an issue that transparency and 3D reconstruction are handled separately.
After all, transparency directly affects the appearance of surfaces and 3D reconstruction
methods often use this appearance as a basic constraint. A method that simultane-
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ously estimates 3D structure and transparency is expected to improve over an ad hoc
combination of individual reconstruction and transparency estimation methods.
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7 Summary and conclusion

This thesis has presented novel algorithms as well as practical considerations for several
components of a 3D reconstruction pipeline. The components examined were camera
calibration, simultaneous localization and mapping, depth map inpainting, depth map
merging, and transparency estimation. These cover a wide range of topics and the
contributions may, at first, seem disconnected to each other. However, as described in
previous chapters, they can all be applied to the general reconstruction problem and thus
follow a common direction, i.e. to recover information about a scene from images using
strong geometric and natural priors.

The first topic discussed was camera models and calibration in Chapter 2. A practical
and accurate algorithm was proposed to jointly calibrate a depth and color camera
pair. The algorithm uses only a planar calibration target, thus avoiding the need to
detect noisy depth discontinuities in depth images. The algorithm was applied to the
Kinect sensor and a novel distortion model was also introduced. The combination of the
distortion model and the calibration algorithm improved the reconstruction accuracy of
the device at close range. These developments were implemented and publicly released
as a Matlab toolbox to be used by the computer vision community. From a practical
standpoint, this was a considerable contribution since at the time there were no other
comprehensive calibration methods for the Kinect.

Chapter 3 reviewed the general theory behind 3D reconstruction and presented a
system for simultaneous localization and mapping for mobile platforms. The system
introduced a method to enforce constraints on a camera’s pose based on the observed
features in an image. The method can simultaneously utilize features that have been
triangulated and those that have not, thus improving accuracy over systems that can only
use triangulated features. Moreover, it supports more generic camera motions, such
as pure rotations without camera translation. This complete SLAM system was also
released as open source for the computer vision community to use as a development and
research framework.

Depth sensors and many reconstruction algorithms produce only semi-dense re-
constructions and oftentimes applications require dense depth maps. Because of this,
Chapter 4 examined the problem of image inpainting and presented three different
depth map inpainting algorithms. Each algorithm uses a different prior to solve the
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inpainting problem. The first used a second-order smoothness prior which is invariant
to changes in viewpoint. This eliminates the bias towards fronto-parallel planes of
first-order algorithms. The second inpainting method uses an MRF-based prior that is
learned from a database of natural images. The high-order nature of the prior makes the
algorithm very flexible, however, it is also slow because of its complexity. The third
approach assumes planar surfaces for missing areas and performs the inpainting by
looking at the boundary around the missing region to find candidate planes. These three
methods explore the compromise between prior representation power and complexity.
Although the MRF-based prior obtained the best quantitative results some applications
might require a faster approach.

The recent success of depth sensors for 3D reconstruction has brought new challenges
to the field. One of them is the amount of data generated by these sensors. At high
frame rates, a lot of the information is redundant because the sensor reconstructs the
same surfaces over and over again. Chapter 5 reviewed the problem of point cloud
simplification to address this issue. An algorithm was proposed that incrementally
merges incoming depth maps into a global point cloud, removing redundancy but
maintaining resolution. This algorithm is a promising way of reducing the amount
of data that is needed for storing or transmitting a reconstructed point cloud without
sacrificing quality.

The thesis also considered an application of 3D reconstruction in Chapter 6: free-
viewpoint rendering. In particular, the sources of transparency in a scene and the
artefacts it causes for free-viewpoint rendering were examined. From this, a novel
algorithm was proposed to estimate transparency from a multi-view dataset. The
algorithm successfully separated an image into a foreground and background layer with
color and transparency information, allowing for a rendering with less-visible artefacts.
The algorithm also showed that FVR is very susceptible to depth map and color image
misalignments, which reinforced the importance of the joint depth and color image
inpainting algorithms.

As is natural, the topics and contributions presented in this thesis suggest many
opportunities for future research in all the touched areas. For example, the calibration
algorithm presented is practical but still requires a printed checkerboard pattern. A
calibration method that can use any arbitrary pattern (also known as self-calibration)
would be even more practical. The SLAM system could benefit greatly from using
inertial measurements to cope with low texture scenes. The inpainting methods presented
are still far from being real-time and thus limit the possible applications. Moreover, as
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the recent developments in machine learning have shown, a more accurate and larger
training database may improve the quality of the learned priors. Finally, the suggested
method for transparency estimation considers reconstruction a separate problem. Since
transparency clearly affects the quality of reconstruction, it is to be expected that a joint
transparency and structure reconstruction method would achieve higher quality in both
areas.
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