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SUMMARY

The aircraft design process is characterized by increasing certainty and decreas-

ing design freedom over time. This means that some of the most important design

decisions are made at a time when little information is available to quantify the im-

pact of those decisions. The goal of most advanced design methods is to increase the

information available at the conceptual design stage to allow the designer to make

the best decision possible. However, by the nature of the problem, there will always

be some differences between the performance estimates computed during conceptual

design and the performance of the final product. These differences may result in per-

formance constraint violations, which can have severe financial impacts. As a result,

constraint violations may necessitate downstream design changes to bring the aircraft

back into compliance with requirements; these design changes will also have impacts

on both cost and schedule. The ability to estimate the likelihood of late-stage design

changes and the impact of said changes is key to mitigating the overall risk of a design

and ensuring the business success of a product.

Reliability methods already exist to account for design uncertainty, and they have

been applied to aircraft conceptual design studies. These techniques measure the

likelihood that a design will comply with constraints by assessing the aircraft’s per-

formance under simulated uncertainty. However, existing reliability methods are not

formulated to easily account for some important aspects of aircraft design. In fact,

such methods are unable to account for much of the complexity associated with the

sizing process commonly employed during conceptual design. Few methods account

for the staged nature of aircraft design, and those that do often ignore some aspects
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of the stages of design; specifically, reliability methods rarely deal with the concept

of the design freeze associated with the transition from aircraft conceptual design to

later design stages. Reliability methods also fail to account for the remedial nature

of design when a performance constraint is violated due to uncertainty.

These remedial elements mitigate undesirable performance outcomes resulting

from the development of uncertain design parameters throughout the design process.

These “mitigation actions” bring the design back into compliance with constraints

by adjusting design parameters external to the initial set of conceptual design pa-

rameters. By accounting for these mitigation actions, new reliability metrics can

be developed. In addition to capturing the probability of compliance of the design,

the designer can determine the probability of success after accounting for outcomes

which can be recovered through mitigation actions. This additional information helps

to determine the true likelihood that a design can successfully meet all of the require-

ments, giving the conceptual designer access to additional information which will

enable better design decision making.

This work describes the development of a method by which the gaps identified

within existing reliability methods can be filled. Hypotheses are developed in an at-

tempt to fill the gaps which exist between reliability methods found in literature and

the aircraft design process. Filling these gaps results in the development of a design

methodology referred to as Aircraft Recovery through Mitigation & Optimization

under Uncertainty for Reliability (ARMOUR). The ARMOUR method leverages tra-

ditional Reliability-Based Design Optimization and augments it to include concepts

specifically taken from aircraft design including aircraft sizing, uncertainty margins,

and mitigation actions. Within this thesis, a step-by-step formulation of the AR-

MOUR methodology is created which describes the necessary phases from initial

identification of the need for an aircraft though model development and execution of

the method. The step-by-step formulation is demonstrated on the conceptual design
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of a large civil transport aircraft. The ARMOUR method is then tested by comparing

the new capabilities it enables to previously existing aircraft uncertainty assessment

methods. As part of this process, the detriments of potential alternate implemen-

tations are demonstrated. Once tested and constructed, ARMOUR is exercised to

explore relationships which were obscured or unobservable without it.

The contribution to the field of probabilistic aircraft conceptual design is the con-

current quantification of three elements in one decision making environment: the

probability of compliance (from traditional reliability), the total probability of design

recovery after failure (by modeling mitigation actions), and traditional design criteria

such as vehicle weight or block fuel (from sizing). This new information affords the

decision maker the ability to query the trade space between a design’s overall proba-

bility of success1 and traditional design criteria, creating a novel way to quantify the

trade-off between risk and performance and to target a specific level of compromise

between the two. The ARMOUR methodology enables the selection of design vari-

ables and uncertainty margins which both meet reliability goals for the compliance

and success of the aircraft and also simultaneously optimize a traditional aircraft

design performance metric. In this way, a design that efficiently meets reliability

requirements can be found.

1Throughout this thesis, the overall probability of success means the design’s probability of
success after accounting for potential mitigation actions.
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CHAPTER I

INTRODUCTION

The commercial aircraft design process is characterized as a long and expensive en-

deavor that balances high risk with high rewards. The design of a new aircraft can

take many years from concept to entry into fleet and can cost billions of dollars [68].

The potential payout of a successful aircraft design can be significant. The guiding

motivation for this thesis is to improve civil aircraft conceptual design by bring-

ing information from preliminary design forward into the conceptual design stage.

Specifically, there is a desire to quantify the impact of design uncertainty on aircraft

performance as well as the total likelihood that a design will meet performance goals.

This information must be processed such that it will be useful to conceptual design-

ers, allowing them to select designs with some advanced knowledge of the potential

downstream impacts of their choices.

To accomplish this goal, the design process of a civil transport aircraft is examined

as it relates to the stages of design. How and why parameter uncertainty will vary for

progressive stages is examined. The impact of uncertainty on aircraft performance is

established. Also, a theory for how a design team could react to performance shortfalls

resulting from uncertainty realizations is developed and a template for constructing

representative actions is proposed. These effects are integrated into a methodology

which will allow for the assessment of multiple reliability metrics. One metric is

the probability of compliance: a reliability measure which is based on traditional

uncertainty assessment methods. The second metric is the probability of recovery, a

new metric that indicates the likelihood that a designed aircraft can be “recovered”

through actions available to design teams in later stages of aircraft development.
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The resulting overall methodology integrates this information to allow the designer

to select a design concept with more information than would otherwise be available

during conceptual design.

1.1 Aircraft Design Uncertainty

The decisions made during the conceptual design stage of the civil aircraft design

process are often the most impactful on the final performance and cost of a product.

Figure 1 illustrates this concept by demonstrating conceptually how changes occur

during the design process, focusing on the advantages of Integrated Product and

Process Development (IPPD) [82]. IPPD specifics are outside the scope of this thesis,

but the principles shown in the diagram are still useful. The stages of design are

illustrated as proceeding from left to right on the diagram. The number of changes

for a traditional ’Serial’ approach to design within each stage of the design process is

compared with the number of changes associated with IPPD. IPPD focuses on more

changes earlier on in the design process. The reason for this is illustrated by the third

line, “Cost of Change.” This curve is meant to show qualitatively that changes which

occur further along in a design process will become increasingly expensive. Just as

with IPPD, this thesis is intended to help designers make the best early decisions

possible, thus avoiding heavy costs down the line.

Motivated by the cost of changes later in design and emerging techniques, a

paradigm shift was predicted in Aerospace Engineering by the National Science

Foundation’s 1996 Strategic Planning Workshop [83]. Figure 2 illustrates what this

paradigm shift would look like conceptually. This diagram shows “Today’s Design

Process” compared to a theoretical “Future Design Process,” and attempts to show

the advantages therein. Again, the x-axis illustrates the stages of design, proceeding

from left to right. The primary goals of this paradigm shift are threefold. First is

to delay any commitment to the cost of a design until later, illustrated by the “Cost
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Figure 1: Cost of Change [82]

Committed” curve moving from left to right where most of the final costs are only

locked in at very late stages of design. This is accomplished in part by retaining design

freedom until later in the design process, shown in the “Freedom” curve which moves

from left to right. Both of these goals are dependent on the third set of “Knowledge”

curves moving from right to left. The idea is that freedom can be maintained in part

by bringing knowledge earlier in the design process to where the information will do

the most good.

This thesis is primarily focused on bringing knowledge of the effects of potential

actions taken during later design stages forward into conceptual design. This is

represented in Figure 2 by moving the knowledge curve to the left as depicted in

this image. The premise is that accomplishing this will afford the decision maker

more information when making the most important early design decisions.

As a more concrete example, assume an airframe manufacturer, Company Z, has

decided to bring a new civil transport aircraft to market. They have performed
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Figure 2: Paradigm Shift [83]

their due diligence in examining the marketplace and are confident of the necessary

requirements. Their research has shown that multiple performance requirements exist.

Key among these requirements are a design mission, which will require the vehicle

to meet a defined long range at a specific payload capacity. Other performance

requirements will exist on the aircraft, and Company Z knows it needs to meet these

constraints as well.

Initially, little is known about the still theoretical aircraft. As designs are devel-

oped, more information decisions are made to further define the details of the new

aircraft. To make these decisions, additional information is needed in the form of

more detailed analyses. A multitude of decisions must be made in order to com-

pletely define an aircraft with enough precision for it to be constructed. Trying to

make all of these decisions in a single step would be intractably complicated. Instead,

decisions are made first at a very high level and with increasing granularity as design

proceeds. These increasingly detailed decisions necessitate additional information,
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requiring more detailed models.

To implement this, commercial aircraft design is broken up into multiple stages

[75]. Typically, more information is known about the design at each progressive stage,

and more detailed decisions are made at each progressive stage. This requires more

detailed and longer analyses to be performed, as illustrated on the left of Figure 3.

As a result of this increasing need for information and increasing time requirements,

fewer or smaller scale design changes are generally considered during each progressive

stage. Particularly when leaving the conceptual design stage, many of the selected

parameters are considered “frozen” - that is to say that they will not be considered for

change during later design stages under normal circumstances, reducing the number

of dimensions available and reducing the number of designs to consider. This concept

is illustrated by the triangle on the right of Figure 3.

Figure 3: Increasing Time Requirements per Analysis Leads to Fewer Considered
Designs in Progressive Stages of Aircraft Development

The process of starting with a low level of fidelity and increasing the fidelity

over time has a notable consequence on the certainty of the aircraft’s performance.

When the gross design characteristics are being selected, the least is known about the
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aircraft performance. This design uncertainty can lead to the vehicle performance not

matching the performance predicted during early design stages. Unfortunately, this

is in conflict with the goal of performance guarantees established in early purchasing

contracts.

Because a later design stage uses more detailed tools, more people, and has a more

concrete design concept, the performance of the aircraft is better known. Rephrasing,

conceptual design is less certain than later design stages, meaning that performance

estimates will be different from what is realized later. Improperly planning for this

uncertainty can lead to a loss in performance relative to expected levels, meaning

that a design may no longer meet its performance goals. This performance drop can

result in a failure to meet requirements placed on the aircraft, threatening the ability

to bring the vehicle to market.

The concept of using uncertainty quantification to enhance aircraft design is not

in and of itself original. Zang et al. describes benefits to aerospace vehicles and the

barriers encountered when adopting uncertainty-based design methods [96]. They also

characterize the then-current state of the art and list avenues in which NASA can

advance the field. Zang’s work is not unique, as a plethora of efforts too numerous

to list exist which have applied uncertainty quantification to aircraft and aircraft

component designs [30, 84, 93].

The uncertain aspect of aircraft design has been well-known, and aircraft com-

panies do anticipate these errors. For deterministic design processes, engineers often

include uncertainty margins (e.g. a weight penalty over the predicted aircraft empty

weight) in their early analyses in an attempt to account for problems which will occur

downstream. The application of margins, however, is based on historical information

or engineering judgment. Additionally, these margins give no quantification of how

reliable the resulting system is - potentially leading to an over-designed product or

one with unacceptably low reliability.
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Company Z was not ignorant of the inherent uncertainty in aircraft design during

previous aircraft designs, but it did not have a method to quantitatively capture the

likelihood of meeting the resulting probabilistic constraints. Instead of any quantita-

tive assessment, Company Z imposed conservative margins on the uncertain variables

when performing deterministic design to “over size” the aircraft in the hope that this

conservatism would account for the uncertain performance. However, Company Z is

aware that they had no way to know exactly what level of conservatism would be

required.

1.2 Uncertainty Quantification and Management Tools

Engineering risk can be thought of as the probability of an adverse event occurring

combined with the consequence or impact of that event. Depending on the relative

severity of these metrics, different uncertainty quantification (UQ) techniques can be

employed. Formalized UQ techniques fall into two main categories: Robust Design

Optimization (RDO) and Reliability-Based Design Optimization (RBDO). In general

Robust Design Optimization is concerned with minimizing the sensitivity of perfor-

mance to outside factors when a degradation is likely but non-critical [87]. On the

other hand Reliability-Based Design Optimization is concerned with minimizing the

probability of failing to meet a target level of performance because such a failure

could be catastrophic [32].

The concept of robustness arises from Robust Design Optimization, a process

originally developed by Gen’ichi Taguchi [87]. Taguchi’s concept of robustness is

primarily concerned with minimizing the loss due to a product varying from its design

specification – a situation which will naturally occur during the manufacturing of a

large number of products [7]. These losses can be substantial, but are assumed to be

generally non-catastrophic to the usability of the product. A robust product is one

that is insensitive to variation. Figure 4 demonstrates this concept for an arbitrary
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objective function.

Figure 4: Robust Design Optimization

To enact robust Design Optimization, some form of the optimization algorithm

in Equation (1) is followed [95]. A design (𝑥) is solved for which minimizes some

function (𝐹 ()), which is a combination of both the mean (𝜇) and standard deviation

(𝜎). This combination of mean and standard deviation is usually a weighted sum,

but can be any form which takes both pieces of data into account.

Find: 𝑥

Minimize: 𝑓(𝑥, 𝑝) = 𝐹 (𝜇𝑓 (𝑥, 𝑝), 𝜎𝑓 (𝑥, 𝑝))

ST: 𝑔(𝑥, 𝑝) ≤ 0

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

(1)

Reliability is a related but distinct concept from robustness. The core premise of

reliability is the likelihood that an item will continue to function, often for a specified

period of time [32, 95]. This is often formulated as the ability of the product to meet

or exceed its design specifications, regardless of associated uncertainty. This concept

is illustrated in Figure 5.
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Figure 5: Reliability-Based Design Optimization

Reliability-Based Design Optimization is formulated mathematically in Equa-

tion (2). The optimizer searches for a design (𝑥) which minimizes the mean of a

metric of interest. The minimization is constrained to keep the likelihood that the

design will satisfy any or all constraints (𝑔()) above some specified value (𝑅).

Find: 𝑥

Minimize: 𝑓(𝑥, 𝑝) = 𝜇𝑓 (𝑥, 𝑝)

ST: 𝑃 (𝑔(𝑥, 𝑝) ≤ 0) ≥ 𝑅

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

(2)

Huyse differentiates the areas of applicability of these techniques in Figure 6 with

regards to probability (frequency) and consequence (impact) [40]. Some processes

align very obviously with one category or the other. For instance, component per-

formance is often more concerned with Robust Design, since the likelihood of an

adverse event is high, while its consequence is usually just a (relatively) minimal loss

in vehicle performance [40]. Any safety problem will invariably be suited towards an

RBDO-like formulation, based on the very high consequences associated with aircraft

failure and the desire to keep the likelihood of those failures to an absolute minimum.
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Indeed, Reliability-Based Design largely arose due to structural safety concerns, and

a vast number of articles have been published on the subject of RBDO as applied to

structural safety [27, 52, 89, 92], as well as spacecraft [84], transonic compressors [46],

and car doors [94], among others.

Figure 6: Uncertainty Classification [40]

Methods exist which combine Robust Design Optimization and Reliability-Based

Design Optimization into one, such as “R2BDO” [73]. Methods like these often

take the general structure of RBDO optimization in Equation (2) and augment the

objective function to more closely mimic the one found in Equation (1).

Vehicle design can fall into either category, RDO or RBDO, depending on the con-

cerns being addressed and the associated assumptions being made. If, in the current

environment of carbon emissions concerns and potential regulations, the designer is

uncertain as to whether the aircraft will be allowed to fly at its design Mach number

or whether it will be forced to fly at a lower one, then designing for robustness to the

operating speed of the aircraft would make perfect sense.

On the other hand, if the primary concern of the designer is meeting performance

targets such as takeoff or landing field lengths while designing with imperfect predic-

tion tools, then a reliability approach would be more logical. The catastrophe in this

case would be to the company’s bottom line upon designing an aircraft that cannot
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fly out of certain airports, rather than a safety concern as with the case of structural

design.

Put more generally, the latter set of assumptions looks at cases where redesigning

is expensive and missing certain performance targets is unacceptable. As a result,

it is desirable for violations of these performance constraints to be infrequent. This

thesis is concerned with this second set of assumptions, where performance losses are

very unlikely to happen by design, but are of great concern when they do happen.

So under this scenario Company Z is concerned about missing their performance

constraints. They may violate established contracts with their customers, potentially

resulting in heavy fines or a loss of sales. Such an event could be catastrophic to the

financial health of the company. Thus, they consider reliability-based methods to be

appropriate for their aircraft design problem. However, they feel that RBDO alone

does not account for the complete design process as it has been implemented in the

past, as it has can lead to over-sized aircraft with no ability to recover from missed

performance targets.

1.3 Missed Performance Targets

Increased reliability cannot be achieved without costs. To increase reliability, the

aircraft is designed such that it is more conservative, meaning that its performance

is further from the constraints. This conservatism will adversely affect other metrics

like gross weight and fuel burn. Increasing this reliability too far will lead to an “over-

designed” product, one whose performance has been degraded in excess of what is

reasonably required due to excessively high reliability goals.

In other words, there is an inherent tradeoff between the level of reliability and

design performance. Because of this tradeoff, it is not always desirable to drive a

design to 100% reliability - in fact, doing so could degrade the performance sufficiently

that the resulting product may not even be marketable! Thus, even with tools like
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RBDO, an aircraft may still fail to meet its performance constraints (i.e.𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 > 0).

Also, because designing to an extremely high reliability becomes more and more

expensive in terms of both actual cost and vehicle performance, increasing reliability

becomes a balancing act between spending the money up front when it may not

ever be required and spending the money down the line when costs are higher. This

balance will be chosen differently for different designers/companies, but will almost

never result in a 0% chance of failure.

If a design fails to meet one or more requirements, the aircraft may not be mar-

ketable, may fail to meet regulations, or it could be incompatible with airports. Most

of these outcomes would result in a loss in sales that could be catastrophic for the

company given the amount invested in a new aircraft design. It is undesirable to

redesign the aircraft at this later stage because analyses up to this point would need

to be discarded, representing a wasted investment. However, it would often be worse

to simply give up on the project development or to release an inferior product, both

of which could result in a loss of market share.

1.3.1 Mitigation Actions

If a design fails to meet performance constraints, some aspect of the aircraft must

change to bring the aircraft into compliance. These changes must affect the missed

targets directly, but should also have a minimal impact on prior design decisions.

These “mitigation actions” are changes taken to recover a design in the later design

stages which has failed to meet one or more requirements. Mitigation actions are

separate decisions from the original design choices, and are only taken in the event

that they are needed due to the extra cost required. These actions provide an oppor-

tunity to leave the original design parameters frozen, while using alternate degrees of

freedom to “tweak” the aircraft’s performance. However, their application requires

an experienced designer to make changes such that new problems are not introduced.
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For instance, the reaction to not meeting an approach speed requirement might be

to change the wing’s high-lift device. However, re-designing this device would make

the wing heavier, especially since the wing structure was not originally designed to

handle this load. One extreme real world example of this type of balance is presented

in Section 1.3.2.

Chief engineers are traditionally responsible for making these finessed late-stage

design changes. They possess the necessary experience and authority to take action

when the traditional design process has not yielded an aircraft that meets performance

requirements. However, the action that can be taken at this stage is necessarily limited

so as not to alter the aircraft too much or violate any additional constraints. The

particular actions that may be taken vary from company to company.

Raymer describes the possibility of mitigation actions in his traditional aircraft

design book. When discussing design “fixes” Raymer mentions that

“Some of these things, though, are fixes to aerodynamic problems discov-

ered later in design development or flight test. [. . . ] Later on it is too

difficult to change the overall geometry, and so if unexpected problems

are found, they must be fixed in some other way [75].”

This view of mitigation actions is limited in scope to aerodynamics, but it does de-

scribe the concept and motivation of these changes. Specifically, Raymer references

the uncertainty inherent in the design process and the temporal nature of reducing

that uncertainty. He mentions the discovery of a failure too late in the design process

to make gross changes to the design. Motivated by the need to fix this problem with-

out changing the geometric variables, other avenues of mitigation are implemented.

Implicit in this statement is the fact that the aircraft resulting from these changes is

less ideal than a different design which would have been selected if the problem had

been foreseen.

Finding good examples of mitigation actions in the literature is difficult. This
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is likely due to a number of considerations. If the performance of an aircraft is not

grossly outside of desired specification, mitigation actions will be small changes to

the vehicle. Additionally, mitigation actions as defined in this thesis are changes that

happen primarily during the internal development of an aircraft. These late stage

changes may not even be considered a form of mitigation by the design team execut-

ing them; they may simply be seen as an expected reaction to common, inevitable

problems. Finally, companies are understandably reluctant to publish any details of

their proprietary design processes, as the release of such information could potentially

aid a competitor by revealing the philosophies of the company.

1.3.2 The 747 and the “Sutter Twist”

While many examples of mitigation are considered proprietary information and diffi-

cult to find, there are a few well-publicized examples of late design mitigation actions

that had large impacts on the company. Such an example can shed light on the

hidden processes in action during preliminary and detailed design. Joe Sutter, the

lead designer of the 747, describes one such change in his autobiography, which he

attributes to having saved the 747 as a successful aircraft and potentially Boeing as

a company [86].

We had pretty much finished our 747 aerodynamics testing when a

crisis erupted over the 747’s wing. From an aerodynamic and performance

standpoint, we had a wing that worked, but our structures people began

getting lots of troubling data from wind-tunnel testing.

Analysis showed that the outboard wing was carrying too much load.

The pressure distribution wasn’t in the right place for this load to be

properly supported by the internal structure. Because of the accelerated

pace of development, this realization came quite late in the design process.

[. . . ]
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A new wing simply wasnt an option; we would have to fix what was

wrong with the current wing. [. . . ]

Hopes rose at the idea of leaving the inboard wing intact and starting

the twist only outboard of the outer engine nacelles. If it worked, it would

be one tenth as difficult and costly as twisting the entire wing. At my

instigation, Jim Hoy performed a rudimentary analysis to evaluate the

concept and found that twisting the outer wings would actually yield 80%

to 90% of the required benefit of twisting the entire wing. [. . . ]

My people redesigned the 747’s wing for an outboard twist, which

completely solved the loads problem. This expedient solution worked so

well that it got the attention of the press, which labeled it the Sutter

twist, a name it still has today. [86]

This example shows a major aircraft development program running into significant

“show-stopper” problems very late in the design process. Changing the design at

that stage is considered unacceptable, so a different solution must be found to the

problem. The solution -twisting the outboard wing- is one which could have been

designed into the vehicle initially, but was not considered. These types of changes

usually cause the structure of the vehicle to change and increase the weight of the

vehicle. Also, there is enormous reluctance to change much of the aircraft because

doing so would be “horrendously complex and expensive,” but some form of alteration

was necessary. Thus, the minimal change required was implemented to meet the

constraints, incurring the lowest penalty option available.

So in this use case Company Z wants to consider scenarios like this one when

designing their aircraft. While such changes to the design at a late stage are undesir-

able, they are significantly preferable to scenarios under which the design cannot be

recovered. The hope is that by including these “mitigation actions” in an uncertainty

process, a better design can be selected which will have the same overall reliability as
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an oversized design would, with knowledge of how frequently these mitigation actions

would be necessary.

1.4 Motivation

As has been described in this section, uncertainty in early design stages can poten-

tially contribute to a design not meeting necessary performance constraints in later

design stages. In the real world, should such a problem arise in later design stages,

the chief engineer will take necessary actions to bring the design into compliance, if

any such actions exist for the failure mode encountered. These mitigation actions are

preferred to be of minimal impact to the design choices that have already been made,

but are currently not included in early design stage planning. Knowledge of how these

mitigation actions could affect a design’s overall probability of success through recov-

ery could help distinguish designs with otherwise similar performance and compliance

characteristics from one another.

Since mitigation is a response to the presence of uncertainty, probabilistic methods

will be necessary to perform this analysis. In order for these design options to be

modeled in conceptual design, the following questions must be addressed as part of

the design process: How likely is it that Mitigation Actions will be needed? How likely

is it that Mitigation Actions will be successful? Can the answers to these questions

be additional criteria for choosing designs during conceptual design?

The anticipated outcome of this thesis is the acquisition of a set of knowledge about

mitigation actions that can be used to make conceptual design decisions. Among this

information is the probability of recovery, i.e. the probability that a non-compliant

design can be made compliant using mitigation as well as the expected value of the

block fuel, which is a measure of the penalty associated with the mitigation action.

With this additional information at hand, certain designs that seemed equivalent

before accounting for mitigation may be differentiated by the ability to mitigate
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them, and if a specific amount of risk is acceptable the design may target this risk

level to find the most efficient design at a given probability of success.

1.5 Dissertation Overview

This thesis presents a way to quantify the recoverability of design (the likelihood that

mitigation actions will be effective at recovering a design under detrimental uncer-

tainty scenarios) and a methodology for including this information in the conceptual

design decision making process. It does so by evaluating the uncertainty space for

each design. For points in the uncertainty space which are non-compliant, the mit-

igation space is investigated in an attempt to find a level of mitigation actions that

can make the design compliant. The additional points which become compliant once

mitigation is included are the recoverable space, and the probability of recovery is the

number of points which have become compliant divided by the number that failed

before implementing mitigation. Armed with this information for each design, as well

as the expected value of block fuel which was required to achieve the mitigation, the

designer would have the ability to trade the cost of mitigating against the additional

design performance achieved for that cost.

Chapter 2 contains necessary background information including an overview of

aircraft design, a description of uncertainty applied to design, example probabilis-

tic methods which have been used for aircraft, reliability calculation methods, the

compatibility between traditional RBDO and mitigation actions, Pareto optimality,

and surrogate models. Chapter 3 describes the methodology employed in solving the

problem, including relevant sets of research questions and hypotheses, as well as the

experiments needed to test the hypotheses. In Chapter 4, canonical problems are con-

structed to test the posed hypotheses. The results of the hypothesis testing will lead

to the formulation of a step-by-step methodology in Chapter 5, developing guidelines
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for implementation. Chapter 6 develops a specific implementation of the method-

ology on the conceptual design of a large civil passenger transport to demonstrate

the overall methodology. Chapter 7 contains the results of the example implemen-

tation, including final hypothesis testing, demonstration of the overall methodology,

and trade studies explored utilizing the ideas explored in this thesis. Chapter 8 de-

scribes the contributions provided by this work to the state of the art in the field of

aerospace engineering.
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CHAPTER II

BACKGROUND

This chapter reviews available literature related to the aircraft conceptual design

process under uncertainty. By examining the work present, the state of the art of

uncertain aircraft design is established. Existing methodologies are examined for

their appropriateness to the current problem. Where possible, these implementations

will be leveraged. Where no existing work exists within the realm of aircraft design,

an attempt will be made to cross-pollinate methods from other fields. If no existing

methods are sufficient, the best existing methods will be selected to move forward

with and augmented to fit the problem at hand.

First, aircraft design is reviewed, paying particular attention to the stages of

design and failure during later design stages due to uncertainty. The concepts of

uncertainty applied to aircraft design are examined. This is followed by an investi-

gation of uncertainty quantification methods which have previously been applied to

aircraft design under uncertainty. Traditional reliability calculation algorithms from

Reliability-Based Design Optimization are examined to determine their strengths

and weaknesses. The concepts of Pareto optimality and surrogate models are also

discussed, as they are leveraged to aid this work.

2.1 Aircraft Design Overview

The aircraft design process is traditionally performed through sequential analyses

which increase in fidelity as design decisions are made and design degrees of freedom

are locked down. This is necessary because of the scope of aircraft design, which inte-

grates together the disciplines of aerodynamics, propulsion, controls, and structures

among others; the decisions made in these different areas interact and are dependent
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upon one another making the entire problem impossible to solve at once. By breaking

the process into sequential steps through which more is known at each iteration, these

interactions can be reduced by assuming values that will be computed later in more

sophisticated analyses. Often these assumptions are based on historical data which

should theoretically provide a value somewhere near that which will be computed

later.

Aircraft companies regulate this process by scheduling design reviews at critical

points. These reviews examine the design choices made and provide buy-in from the

company’s ultimate decision makers. The approved design choices are then fixed as

the design moves forward.

2.1.1 Stages of Design

Sources describe the stages of aircraft design differently. Raymer describes a three

stage process of conceptual, preliminary, and detailed design, followed by Fabrication

as a separate process as illustrated in Figure 7 [75].

Every aircraft company goes through a conceptual design phase. During this

phase, many aspects of the vehicle will be in flux and little-to-nothing may be final-

ized. Wing geometry, weights, cabin layout, the engine, and many other aspects may

still be up in the air. However, some aspects are often predetermined. The vehicle’s

passenger load, payload requirements, design range, takeoff and landing lengths, and

many other aspects can be fixed based on federal guidelines or market studies. Dur-

ing design, some of these parameters can be treated as input variables, but many

cannot. Thus, the design is more than simply inputting the known parameters and

letting equations determine the vehicle’s characteristics; instead, the vehicle must be

iteratively analyzed using the fuel required to meet the range requirement and fuel

available based on the overall size of the aircraft. Once these two quantities match,

the aircraft is considered sized to the design mission.
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Figure 7: Stages of Design [75]
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Figure 8 shows a deterministic design space. In this design space, two design vari-

ables are shown, 𝑥1 and 𝑥2. Using aircraft analysis codes, the performance of designs

constructed with a particular combination of design variables can be assessed. These

performance characteristics can be compared to aircraft requirements or constraints

to determine whether the vehicle will be compliant with all constraints. For this

conceptual diagram, three constraints are shown via blue curves. The hash-marked

side of these lines indicate that further change of a design variable in this direction

will cause the constraint to be violated. These constraints restrict the available space

for design selection to the region on the non-hashed side of all of the constraint lines.

The remaining space is available for design selection. Assuming an objective function

were imposed on the design, an optimization could occur to select a design point.

This theoretical design point is shown by a blue dot.

Figure 8: Deterministic Design Space

Eventually a company will settle on a concept with which to move forward. The

design up to this point is considered “frozen” and the vast majority of decisions

made will no longer be considered for change. At this juncture, the design enters the

preliminary design stage. During this phase, engineers use more detailed tools and
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analyses to refine their assessments of the component designs. Keane and Nair point

out that the refined analyses and increased engineering team “severely restricts the

number of different configurations that can be considered during preliminary design

[44].” Thus, the gross geometry of the vehicle and its overall weights will remain fixed

while these more detailed analyses are implemented. During these refinements, the

estimates from conceptual design may prove to be incorrect. The vehicle drag may

be higher or lower than anticipated; component weight estimates may be incorrect;

the engine may perform better or worse than expected.

Aircraft companies do anticipate these errors and have a set of tools to address

them: uncertainty margins. Uncertainty margins are commonly used during con-

ceptual design to provide “wiggle room” in the decisions made. These margins are

often an attempt to account for uncertainty when the aircraft design process is only

executed deterministically [58]. Uncertainty margins can be implemented by making

more conservative assumptions about the uncertain design values during the concep-

tual design process. This conservative assumption will affect the performance of the

aircraft

The need for a uncertainty margin can be illustrated by a simple thought ex-

periment examining only a single performance constraint and a single uncertainty

variable. The design mission range of an aircraft – a possible performance constraint

– is highly dependent upon the aircraft drag, among many other things. If the drag

prediction capability of the conceptual design tool is not precise as illustrated in Fig-

ure 9, then the performance of the vehicle will vary. Since drag negatively impacts

aircraft range, an increase in drag from the design predicted value will degrade the

range of the created vehicle. If no capability is implemented to oversize the deter-

ministic vehicle (e.g. a uncertainty margin), the designer will have little-to-no ability

to influence the reliability of the aircraft.
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Figure 9: Uncertainty without Uncertainty Margins

An alternative kind of “margin” takes the form of a constant additive or multi-

plicative factors on certain constraints (as with structures [98]). This kind of “perfor-

mance target setting” or “probabilistic safety margin [18]” is shown conceptually in

Figure 10. This form of target setting has been implemented for aircraft conceptual

design under uncertainty [62].

Figure 10: Deterministic Design with Target Setting

Unlike performance target setting, uncertainty margins do not affect the perfor-

mance of the vehicle by a consistent push-off factor. When the physical implications

of this margin are processed through a performance assessment, the margin may cause
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a different level of impact on the performance depending upon the design condition

being investigated.

After conceptual design, uncertainty margins are often used during the aircraft

design process as a way to deal with problems which arise. For example, during

preliminary design the wing structures team may determine that the previously es-

timated structural weight of the wing has been exceeded now that more detailed

analyses have been performed. In such a case, the Chief Engineer may “allocate” a

portion of the empty weight uncertainty margin to the wing structures group as a

bookkeeping measure to keep the aircraft’s weight and performance on target.

Unfortunately, margins are generally determined by design experts or historical

values and are not compared to a quantitative calculation of the reliability which

results from the margin application [65]. A problem with this approach is that it is

difficult to anticipate how much margin will be needed for a given design. The mar-

gins necessary will depend on the selected design point, the performance constraints

imposed on the design, and the impact that any uncertainty has on these constraints.

No evidence has been found of an aircraft design study accounting for both design

uncertainty and uncertainty margins.

Quantitative selection of a uncertainty margin is important because if a margin

is not selected appropriately, there will be some cases a selected margin may be

more than sufficient, causing the vehicle to be considered “over designed” because a

more “sporty” vehicle could have been selected with smaller margins and still meet

requirements. The next section talks about the opposite circumstance, in which the

uncertainty margin is insufficient to account for the effects of uncertainty.

2.1.2 What Happens When a Design Fails?

Sometimes margins are insufficient to account for unforeseen inaccuracies. Keane and

Nair mention that because “the design freezes early on during the design process, [. . . ]
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even when the design team knows that the design suffers from some shortcomings, it is

often very difficult to go back and change it [44].” It is theoretically possible to return

back to conceptual design and start the design process over; however, it is unlikely

that a company would prefer to do so unless all other options have been exhausted.

The process of taking an aircraft through the design stages requires money, time,

and effort. It seems reasonable to assume that a company would not simply throw

away its investment unless it was convinced that the design was not salvageable.

Understandably, most companies attempt to have very few changes happen to the

aircraft later in the design process. As mentioned by Anderson, “If major changes

were demanded during this stage [preliminary design], the conceptual design process

would have been seriously flawed to begin with [2].”

Instead, it is in these cases that small late-stage changes, mitigation actions,

may need to be applied by the chief engineer to recover the design and associated

investment without exorbitant additional resources. This kind of situation is exactly

what Sutter described in the quote in Section 1.3.2 when talking about problems

encountered during the 747’s development. Stanley Kandebo also references similar

actions taken by Pratt & Whitney when they were developing the F135 engine for the

Joint Strike Fighter [43]. Quotes from the director of the F135 programs, William

Gostic, show how the product can continue to be adjusted even after system and

development demonstration engines have been tested.

With the [STOVL] version of the JSF battling weight issues, any ad-

ditional thrust that can be generated by the engine, as well as any chance

to save weight, will be closely scrutinized. “Thrust is a big issue and is

especially important for the [STOVL] powerplant” Gostic said.[. . . ]

“Right now we have a plan to get the [STOVL] engine to the target

weight, and have identified a number of things to actually get the engine

below the target,” Gostic said.
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It is apparent that these mitigation actions exist in the real design process of an

aircraft; however, they are very rarely modeled in the conceptual design process. The

goal of this thesis is to model them within this process with a probabilistic approach.

Further, it will be shown that knowing the impact of these mitigation actions during

conceptual design can help designers select a better, more flexible aircraft.

The presence of uncertainty in the design process requires a shift in how the design

process is modeled from the method used for deterministic outcomes. Since a model

must emulate a process in the real world, this process dictates how uncertainty should

be integrated into the design model. However, different types of design follow different

processes. The first one examined experiences uncertainty around the assumptions

made when designing the aircraft. The second experiences uncertainty around certain

design parameters which cannot be computed in the early stages of design. The two

types of studies are similar in their components, but they operate in a different order.

To describe them adequately, a clarified description of deterministic aircraft design

modeling is needed.

2.1.3 How Deterministic Design is Modeled

Aircraft design can be modeled using two processes that are often used together

to evaluate a particular design. These two steps are usually performed in tandem

during aircraft design studies. Sizing occurs first to define the final design of the

vehicle. Afterwards, this vehicle is input into a performance analysis tool to evaluate

any additional off-design conditions.

Eventually, design will progress into more detailed analysis. It is too expensive to

leave the design completely open beyond that point because a company would spend

vast amounts of resources using detailed methods to analyze designs which would not

be used. Thus, a company will freeze the design and then apply high-fidelity tools to

analyze it further. During this later phase, the overall aircraft design (especially the
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gross geometry) will likely no longer change, but more information about the aircraft

will become known. Thus, the uncertainty about the performance of the vehicle will

decrease, but the design parameters will remain the same.

2.1.3.1 Sizing

Sizing is the act of designing a vehicle to meet a set of performance constraints, usually

based on a design mission. Sizing can be accomplished by iteratively adjusting sizing

variables (usually the vehicle’s weights) and evaluating the resulting aircraft with a

performance analysis. This means that a sizing tool can be created by combining a

performance analysis with an internal optimizer. Aircraft design tools use this form

of iterative application of a performance analysis to size a design to a particular set

of conditions [59].

Sizing takes the input of a goal parameter, commonly aircraft design range, and

seeks the appropriate fuel weight to accomplish that mission. This is often referred

to as a “fuel balance [78].” During this process, a sizing tool will select a guess of

the aircraft’s overall weight and dimensions. That aircraft will be used to deter-

mine its fuel capacity or 𝑓𝑢𝑒𝑙𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒. The vehicle is then flown through the required

mission analysis to determine how much fuel was needed to complete the mission,

𝑓𝑢𝑒𝑙𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑. With this information, an updated takeoff gross weight (TOGW) will

be calculated, and the process repeated until the fuel volume meets the needs of the

mission (𝑓𝑢𝑒𝑙𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑓𝑢𝑒𝑙𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑).

A decrease in the weight of fuel required will lead to a reduced empty weight of

the vehicle, further reducing the fuel required. This “snowball effect” will allow the

vehicle to find the minimum size capable of accomplishing the mission while meeting

all other design inputs. The process described above amounts to a performance

analysis of the aircraft at each step of the iteration - essentially, each step in a sizing

analysis is in effect a different aircraft, where only the final aircraft is selected because
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the rest violate the laws of physics or are oversized to the design mission.

Changing the assessment condition will result in a different vehicle because the

optimizer will react to the new condition and size the vehicle differently. Obviously,

this would be the expected behavior if the design variables are altered, as the “design”

would be different. Changing the sizing mission range or payload will also have an

important effect. It is worth noting that other assumed parameters can have a strong

impact on the final vehicle size. Changes to the vehicle’s drag polar, component

weight factors, cruise conditions, and many others will have an impact on the final

size of the vehicle.

The process of sizing is not exclusive to aircraft design. For example, after thermo-

dynamics have been assessed, turbofan engines go through an almost identical process

in which components are scaled photographically to meet a thrust target while keep-

ing the thermodynamics constant [91]. For the purpose of this thesis, sizing will be

defined as any process during which many design parameters are scaled through a

common variable to meet a specific (performance) requirement while maintaining the

other design variables in a non-dimensionalized format.

2.1.3.2 Performance Analysis

Performance analysis is a step in which a previously sized aircraft is analyzed for a

prescribed mission, usually a mission of secondary importance to the sizing mission.

During this performance analysis, the aircraft itself does not change and is considered

fixed, meaning the design parameters, component weights, drag polars, and other

characteristics do not change. In many cases, performance analysis uses the vehicle’s

fuel weight as an input and outputs the aircraft’s resulting range.

Unlike with a sizing analysis, performance analyses need not always specify a

particular mission. Instead, an analysis can be performed to assess the vehicle’s per-

formance for individual flight condition. For example, an aircraft’s final approach
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speed to an airport is dependent on only the vehicle’s geometry, aerodynamic charac-

teristics, and its landing weight. Thus, an entire mission does not need to be specified

to measure this condition.

A key distinction between performance analysis and the sizing iteration discussed

in Section 2.1.3.1 is that during performance analysis the vehicle’s overall size remains

fixed. Neither vehicle geometry nor maximum gross weight will not adjust to meet

any constraints imposed upon the aircraft, and the aircraft will remain as the user

specified. This distinction will be important when considering the question of how to

model the separate stages of design under uncertainty.

2.1.3.3 Deterministic Constraints

For deterministic design, sizing codes may already have constraint analysis available as

settings with an internal optimizer [59]. To be consistent with optimization literature,

individual constraints (𝑔𝑖(𝑥)) will be constructed with the form seen in Equation (3).

𝑔𝑖(𝑥) ≥ 0 := (𝑦𝑖(𝑥)− 𝑦 𝑟𝑒𝑞𝑖) ≥ 0 (3)

Where 𝑦𝑖(𝑥) is a performance metric evaluated for a specific design, 𝑥, an un-

certainty scenario, and 𝑦 𝑟𝑒𝑞𝑖 is the performance limit associated with performance

metric 𝑦𝑖. This form can be handled by a plethora of available optimizers. Obviously,

these constraints will impact the selection of design settings. However, this determin-

istic formulation only ensures that constraints will be met for a real design if the final

vehicle performance is equal to or better than what is predicted during conceptual

design or if the margins, which were not set via any reliability analysis, happen to be

sufficient.

2.2 Uncertainty in Aircraft Design

A discussion of uncertainty would be incomplete without a discussion of the kinds

of uncertainty that may be faced. The risk community breaks uncertainty into two
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categories: aleatory and epistemic uncertainty [35, 69]. Aleatory uncertainty is re-

lated to events which are inherently random; as a result it cannot be reduced, only

(sometimes) predicted. Epistemic uncertainty, on the other hand, is related to a

lack of knowledge about the process being observed. This description is exactly like

the uncertainty that has already been discussed for aircraft design. Since this thesis

focuses on values which will become known at a later point in time but must be as-

sumed in the early stages of aircraft design, its purpose is to account for the epistemic

uncertainty surrounding these design decisions.

Considering the modeling described in Section 2.1.3, it will be illustrative to con-

sider how different forms of uncertainty would be modeled using these different pro-

cesses. Explicitly, at what location in the process of sizing and analysis should cer-

tain types of uncertainty be modeled to achieve a desired effect? This thought is

expounded upon in Research Question 1, located in Section 3.1.

Figure 11 shows conceptually the goals of uncertainty quantification. Namely, the

ability to select a design point with confidence based on the possible outcomes of the

performance of the vehicle.

Figure 11: Design Space with Confidence
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Daskilewicz et al. point out three possible sources for the kind of uncertainty

being modeled here [24]:

� Analysis approaches that employ simplified physics and empiricism in concep-

tual design;

� higher abstraction and incomplete definition of the intended air vehicle geometry

in conceptual design; and

� variability or addition of features in the preliminary design, detailed design, and

production phases that were unmodeled in conceptual design.

2.2.1 Performance Constraints

Figure 8 illustrates the idea of constraint analysis as it is traditionally used in con-

ceptual design. The goal is to choose the most efficient (usually the lightest) design

that meets all requirements. However, Figure 11 is a more realistic depiction of the

design process, in which the exact values of design parameters which will meet con-

straints may not be known. For a deterministic design, the best design is clearly one

that meets the constraints while minimizing the objective function. However, design

uncertainty may cause the selected vehicle to miss its performance constraints when

analyzed in detail in later design stages. Thus, for the design process including un-

certainty, the best design point is not as clear as for deterministic design since each

point inside the “fuzzy” constraint region will have a different chance of satisfying

constraints and a different performance; these two metrics are usually in opposition

to one another.

Obviously, if the design is selected well, there will be scenarios –in this formulation,

outcomes of the uncertainty variables– in which no constraints are violated. These

scenarios are useful information for the designer, but this falls squarely in the well-

researched realm of Reliability-Based Design Optimization as described in Section 2.4.
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Aspects of this method, will be borrowed and augmented for the current work, but

more interesting to the current problem is analyzing what happens when a design

fails.

Figure 12 shows the constraints in the design space for a single uncertainty out-

come, dubbed Scenario A. On the left (Figure 12(a)) the design space is illustrated

with a deterministically designed aircraft at an assumed value of the uncertain param-

eters. The right side (Figure 12(b)) shows this uncertain parameter assumption. An

uncertainty scenario other than the design condition, scenario A, is then considered.

This new uncertainty scenario changes the performance of the vehicle. The impact

of this performance change is seen in Figure 12(a) as a shift in the constraints within

the design space.

(a) Scenario A Design Space (b) Scenario A Uncertainty Space

Figure 12: Uncertainty Scenario A

The aircraft design was selected at a particular assumption of the uncertainty

values and fixed at the end of conceptual design. Later, in the preliminary design

stage, it is observed that empty weight of the vehicle is much higher than anticipated.

This would have an effect on the performance of the vehicle, moving the constraints

in the design space. It is expected that some constraints would be affected more than

others. The vehicle may now be violating constraints, depending on how different the

33



outcome was from the assumed design conditions.

Figure 13 shows the constraints in the design space for a different uncertainty

outcome, Scenario B. Once again, the left chart (Figure 13(a)) illustrates the design

space while Figure 13(b) on the right demonstrates the uncertainty space. Whereas

Scenario A resulted in a higher empty weight than was estimated in conceptual design,

Scenario B results in a higher cruise drag value than was predicted. In this case

a different constraint may be affected than was affected in Scenario A, causing a

different constraint violation than in the previous scenario.

(a) Scenario B Design Space (b) Scenario B Uncertainty Space

Figure 13: Uncertainty Scenario B

Where Scenario A resulted in a higher empty weight than was estimated in con-

ceptual design, Scenario B results in a higher cruise drag value than was predicted.

In this case a different constraint would be affected than was affected in Scenario A.

At minimum, it is reasonable to assume that they would violate the constraints by

different amounts. If the design must be brought to the same minimum level of per-

formance with respect to the constraints, then different mitigation actions, described

further in Section 2.2.2 would be taken in the preliminary design stage to remedy

these two different scenarios, even though both started with the same design point.

Uncertainty quantification tools attempt to look at all possible scenarios. This
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can be done via brute force methods like Monte Carlo Simulation or a variety of more

sophisticated tools like those described in Section 2.4. However it is accomplished,

these methods and others like them aid the decision maker in selecting an appropriate

push off from the deterministic constraints to allow for an acceptable level of relia-

bility. This concept is illustrated in Figure 14. Figure 14(a) shows a representative

aircraft design space with the deterministic design requirements illustrated by the

blue hashed lines. The resulting design point is shown by the blue dot. Figure 14(b)

on the right shows the space of uncertainty variables. A correlated distribution has

been imposed on these variables, indicated by the distributions on the axes and the

concentric, angled contour lines in the chart itself. For each different scenario in the

uncertainty space, the constraints in the design space will move. By assessing this

entire distribution of uncertainty variables, probabilistic locations of the constraints

in the design space can be located. In the design space, this is conceptually shown

by the distributions on each of the design constraints. The green constraint lines

correspond to a best-case scenario of where the constraint lines could end up, while

the red constraint lines represent a worst-case or a bad but unlikely scenario. If one

were to design with reliability as the primary goal, a conservative design point like

the one shown by the red dot might be selected.

2.2.2 Mitigation Actions

When the design fails to meet one or more constraints due to changes in the pre-

dicted capabilities of the aircraft, the chief engineer will step in. As mentioned in

Section 1.3.1, mitigation actions are designed to respond to these performance short-

falls. Figure 15 shows how this could work conceptually for a scenario which violates

a constraint. Figure 15(a) on the left show the design space with a constraint vio-

lation caused by some uncertainty scenario, just like the one observed in Figures 12

and 13. Figure 15(b) show the available mitigation space when the constraint is
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(a) Design Space with Confidence (b) Uncertainty Space for Confidence

Figure 14: Design with Confidence Bounds

violated. Just like with the design space, the mitigation space is impacted by the

constraint violation, reducing the available space. The origin in the mitigation space

represents the behavior of the design under the selected uncertainty condition when

no mitigation action has been imposed. The fact that this portion of the mitigation

space violates the constraint simply implies that the design will not be compliant

with the constraints when no mitigation action is used. The open white space in the

mitigation contour plots show the available mitigation actions which would bring the

design back into compliance.

Moving to this available level of mitigation is equivalent to applying a mitigation

action during preliminary design will bring the design back into compliance with the

violated constraints. The reaction to this applied mitigation action will be seen in the

design space as the constraints moving with respect to the design point. Since the sce-

nario is now compliant with the constraints, this scenario is considered “recoverable”

through the available mitigation actions.

It is possible that the mitigation action will not have enough effect to alleviate

the constraint violation. In this case, the scenario will be unrecoverable.

If the mitigation action were only to affect the intended response with no other
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(a) Deterministic Design with Constraint Viola-
tion

(b) Mitigation Space for Constraint Violation

Figure 15: Constraint Violation

consequences, then this would be wonderful. However, the example from Sutter

cited in Section 1.3.2 implies that this is not the case. Indeed, it is assumed that

most actions will incur some form of engineering penalty. If there were no penalty

or negative consequences to mitigation actions whatsoever, then the action would

likely have already been implemented before preliminary design, regardless of any

uncertainty considerations. At minimum, mitigation actions will likely increase the

empty weight of the vehicle, either directly or through the need for a reinforced

structure due to the changing design.

These penalties will have a direct impact on the mitigation space. Consider a

constraint which is highly dependent on the empty weight of the vehicle. If the

mitigation action employed (𝑚1) in Figure 15(b) were to have a large empty weight

penalty associated with it, application of this mitigation action may cause another

constraint to be violated. Figure 16 shows how the mitigation space could change

with mitigation penalties imposed.

It is easy to imagine a scenario where a design is already very close to a (non-

violated) constraint for a particular scenario. In such a case, mitigating may cause

that design to violate the other constraint before enough mitigation is applied to fix
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(a) Deterministic Space (b) Mitigation Space

Figure 16: Constraint Violation with Mitigation Penalties

the constraint originally violated. In such cases, it is very possible that no viable level

of mitigation action will exist which could fix the design, even though the original

violated constraint may be alleviated. In this case, the scenario is also unrecoverable.

The cost of potential mitigation actions would be helpful in determining the us-

ability of mitigation actions. Unsurprisingly, no information is available in the liter-

ature to quantify the cost of potential mitigation actions. This information may be

available to an aircraft manufacturer behind closed doors. Instead, the engineering

penalty discussed above will be used in place of a financial cost. Practical applica-

tions of the methodology proposed in this thesis would do well to incorporate this

cost information.

2.2.3 How to Address Uncertainty: Margin vs. Mitigation Actions

It will be helpful to clearly delineate margins and mitigation actions, as while they

are very different actions taken by the design team, they are intended to serve similar

purposes.

Margin variables (ℎ) can indeed be thought of similarly to design variables - they

are set when the aircraft is designed/sized. Mitigation variables (𝑚) are reactions

to performance shortfalls, and are used only when necessary. Both of these variable
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types are intended to address uncertainty, but in very different ways. The financial

analogy would be that margins are like saving money ahead of time just in case, while

mitigation actions would be equivalent to taking out a loan when things go awry.

Assume that the designer does not trust his code’s empty weight prediction be-

cause it’s a conceptual-level tool and/or the vehicle is very new. He may believe

that resulting aircraft might weigh more (which is bad) than the code or less (good)

than the code’s prediction. To compensate for the possibility that the vehicle may be

heavy, he can add an empty weight margin, increasing the weight predicted by the

code. Because the aircraft is still being sized, the design will compensate (e.g. the

aircraft will get bigger to carry enough fuel to meet the design range). If the designer

has set the margin well, he can be reasonably sure that my aircraft will meet its

performance requirements. Hopefully, through an uncertainty quantification method,

he can then quantify the likelihood. For the sake of this discussion, assume that the

designer set the margin and design well, and the resulting design has a probability of

compliance of 90 percent.

Now what if, despite the uncertainty margin being in place, an uncertain scenario

is encountered which puts the design performance in that ten percent region where the

design fails a performance requirement? This scenarios is where mitigation actions

will come into effect. A design team would try every trick at their disposal to fix the

vehicle and bring it into compliance with the constraint. Mitigation actions are a set

of these fixes that are considered acceptable, to some extent or another.

A nuance of this whole setup is that the idea of knowing “how much mitigation

action to apply?” for a given design is very complicated, and may not actually be

sensical. Mitigation actions are only relevant to the design AND the uncertainty

scenario in question, and statistics of the results might lend themselves to very easily

incorrect interpretations. Mitigation levels may make some sense if evaluated using

conditional probability with respect to the uncertainty scenario being investigated.
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This concept is beyond the scope of this study. However, it may be a beneficial area

to explore for future work.

2.3 Probabilistic Methods Applied to Aircraft Design

This section examines a subset of probabilistic methods which have been previously

applied to aircraft conceptual design. These are examined both to assess how prior

analyses have been performed and to determine whether any methods can be directly

appropriated for use in this thesis.

2.3.1 Robust Design Simulation

Mavris et al. introduced the idea of applying reliability analysis to aircraft systems

design with the development of Robust Design Simulation (RDS) [56]. The core of

RDS is described in Equation (4). Since all random variables 𝑌 are purely economic

variables and have no impact on the performance of the vehicle, the performance of

the aircraft can be modeled deterministically. The output of RDS is a design (𝑋)

which maximizes the probability of meeting a single economic design objective while

deterministically meeting all performance constraints.

Maximize: 𝑃 [𝑍(𝑋, 𝑌 ) ≤ 𝑧0]

Subject to: deterministic performance constraints

(4)

where 𝑍 is the overall economic objective, 𝑋 is a vector of deterministic design

variables, 𝑌 is a vector of random economic variables, and 𝑧0 is the target of the

objective function.

In order to accomplish this, surrogate models of the responses are generated using

a design code. These surrogate models are then used via Monte Carlo Simulation

(MCS) to generate a second set of surrogate models, this time of the Cumulative

Distribution Function (CDF) of reliability as a function of the design variables. The

optimizer in Equation (4) then uses these CDF surrogates in conjunction with the

response surrogates to find the design with the highest probability of success.
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Figure 17: Robust Design Simulation

Mavris and DeLaurentis extended this concept to combined economic and tech-

nology uncertainties [57]. However, in this extension, the technology assessment and

Robust Design Simulation are performed in separate, sequential steps. Additionally,

the assessment method for technology studies is formulated differently than reliability

studies, as will be explained in Sections 3.1.1 and 3.1.2.

While its implementation is cumbersome, specifically the surrogate models of sur-

rogate models, the inclusion of reliability as a response to be optimized rather than

just as a constraint is novel. This optimization has the potential to counter a pitfall

of RBDO noted by Bordley and Pollock in 2009, namely the rejection of a design

with much higher probability of satisfying constraints in favor of one with a slightly

better value in the traditional objective function [11]. This idea of maximizing the

probability of success will be explored again with another tool, Pareto Optimality, in

Section 2.5.

2.3.2 JPDM

Obviously, the limitation of RDS of only allowing for a single probabilistic constraint

is a significant restriction. Thus, one of the developers of Robust Design Simulation,
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Bandte, improves upon the work started in RDS by introducing Joint Probability

Decision Making (JPDM) [4]. JPDM introduces the probability of success of meeting

constraints on multiple criteria simultaneously. This method is used for analyzing

aircraft at a system level through one of five different analysis schemes, based on

either MCS or Fast Probability Integration (FPI). This reliability measure was used

to optimize the design of aircraft.

Both RDS and JPDM use the probability of meeting the specified goal(s) as their

only metric for optimization. Additionally, both methods were conceived with the

idea of performance constraints being met deterministically, and changing the design

to meet probabilistic economic constraints. Their implementations still serve as useful

examples of RBDO methods applied to aircraft design.

2.3.3 Stochastic Programming with Recourse

Stochastic Programming is another method of uncertainty quantification which is

distinct from RBDO and RDO, but with many conceptual similarities [8, 53, 79].

Particularly of interest to the current problem, Dantzig and Beale first developed

a formulation for treating stochastic programming with fixed recourse - a concept

extracted from Stochastic Programming - which is considered as a way to fix problems

arising from the uncertainty present in conceptual design during later design stages.

[23, 6]. Choi examined the concept of Stochastic Programming with Recourse as a

way to handle aircraft design uncertainty [20].

Notable differences exist between reliability-based implementations and Stochastic

Programming with Recourse. One of the founding principles of Stochastic Program-

ming with Recourse methodology is the assumption that there will always be an

available recourse to any unexpected scenario. While any engineer worth his salt will

endeavor to find an available solution should a problem occur, it seems unreason-

able to assume this will always be the case. The changes to the design may simply
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be too drastic. Additionally, recourse actions are found in a space identical to the

original design variables. While the method proposed in this work does not prohibit

such changes to the design, the operating assumption is that the design will not be

altered except in those limited ways explicitly considered by the philosophies of the

individual(s) executing the method.

Stochastic Programming with Recourse assumes that, aside from the imposed

penalty function, the “best” design can be reached after the uncertainty has been

resolved. In other words, the designer will re-examine the original conceptual space

to determine the best design now that the resulting values of the uncertainty variables

are known. The existing design will then be altered to match as closely as possible to

this new design selection. The penalty function is imposed to illustrate that, unless

the design process is truly reinitialized, this resulting design will retain information

from the failing design and thus will be an imperfect representation of the best design

for the encountered scenario. This assumption may be acceptable for small changes

to the design parameters, but it runs counter to the founding assumptions of this

thesis – specifically that the design parameters will generally not be altered after

the conceptual design stage is completed. Additionally, the penalty from recourse is

not processed through the assessment tool, thus ignoring any secondary effects of the

imposed penalty on the aircraft’s performance. Thus, Stochastic Programming with

Recourse will be used only as motivation in the current work.

2.3.4 Multi-Stage Reliability-Based Design Optimization

Nam et al. applied Multi-Stage Reliability Based Design Optimization (MSRBDO)

to aircraft design as a way to deal with the staged nature of the design process

[63, 64]. The concept of MSRBDO is based off of traditional Reliability Based De-

sign Optimization with some significant augmentations. Like all reliability methods,
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MSRBDO attempt to address the issue of making design decisions under the pres-

ence of uncertainty. Traditional Reliability-Based Design Optimization assumes that

all decisions are made very early in the design process, long before the uncertainty

is reduced. Multi-Stage RBDO alters this assumption based on the principle that a

longer developmental time will allow the designer to delay some decisions until a later

point in time. At this later point, some but not all of the uncertainty will be reduced

through additional analyses. At this point more design decisions must be finalized,

with a reduced amount of uncertainty. This concept is illustrated in Figure 18.

Figure 18: MSRBDO Simulation of a Complex System Design Problem [63]

MSRBDO assumes that this ability to delay design decisions is a natural process

of the staged nature of long development time designs like new aircraft. Indeed, many

decisions about the specifics of an aircraft are left until later design stages, including

after the design freeze. Some such decisions remain because the limitations of con-

ceptual stage design tools do now allow for the finalization of all detailed decisions.

MSRBDO assumes that no penalties are incurred by making these decisions at a

later stage. These decisions were delayed because they did not need to be finalized

at the conceptual design stage. Instead, additional analyses are performed. These

analyses will likely be assessing more fine changes to the aircraft configuration. In

this case, more detailed analysis tools will be required. These tools require more

time, energy, and more information than conceptual design tools. MSRBDO requires
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these advanced stage analysis capabilities. If one were to implement full MSRBDO,

analyses would need to be performed at all levels for each instance of a design decision,

leading to an explosion of assessments while using highly sophisticated tools. In the

time required to perform such an assessment, multiple aircraft could be designed in

detail.

MSRBDO is founded on three key assumptions [63]:

1. Reducible Uncertainty: Designers have accumulated some knowl-

edge, which also means cumulative reduction in uncertainty has been

achieved from the previous work.

2. Retained Design Space: Designers hold a certain degree of design

freedom that can be exploited to correct the decisions made at pre-

vious stages with increased knowledge.

3. Decision for Feasibility: Designers determine the present stage vari-

ables such that the committed design combined with anticipated de-

cisions at ensuing stages guarantees a target feasibility of the present

stage.

The example problem discussed in Chapter 1 maintains the first assumption:

uncertainty will be reduced at some later point in time during the design process.

However, the second assumption does not hold for this problem. In the motivating

problem, it is assumed that most or all of the uncertainty will not be reduced until

after the design has proceeded into later stages when more detailed analyses will be

employed. Since the design is assumed to be “frozen” at the end of the conceptual

design stage, none of the conceptual level design parameters should be changed at

this later stage. The only time any changes should be implemented late on would be

when performance has fallen outside acceptable constraints. The design should only
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be remedied by a small subset of mitigation actions to recover the performance. Ad-

ditionally, the third assumption is somewhat true and somewhat false. the designer

will still select the best design at the current stage that will still meet requirements

later down the line; however, the later design decisions are not intended to occur

unless absolutely necessary.

The aircraft example problem used by Nam to demonstrate two-stage MSRBDO

(TSRBDO) on an aircraft design process illustrates some of the practical limitations

of this method [64]. The design problem does not incorporate any sophisticated pre-

existing sizing analysis into the method. Further, though MSRBDO is motivated

by the concept of later design decisions being made after more detailed analyses

have reduced the uncertainty surrounding the design, no such detailed analyses are

included. Nam cites his reasoning for

Nam states that one of the potential flaws of MSRBDO is the need for detailed

analyses. These detailed analyses are generally considered inappropriate for concep-

tual design because they take significant time to analyze a proposed design during a

time in which many tradeoffs are occurring. the “design and analysis tools that are

commonly used during the conceptual design phase do not support high resolution

of designs required to capture the impacts of hypothetical design changes that would

take place in the detail design phase [63].”

”In addition, computational practicability must also be considered in designing an

MSRBDO problem. The computational effort required to solve MSRBDO increases

exponentially with the number of stages, therefore becomes prohibitive very quickly

[63].”

MSRBDO assumes access to detailed analysis tools and the ability to run those

tools in a very quick manner. Further, MSRBDO assumes that there will be enough

knowledge known about the theoretical design to utilize those tools. The analysis

tools used during later design stages not only take more time and manpower to
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execute, they also require more detailed information about the design itself. This

level of information is beyond the level of information that typically exists during the

conceptual design stage of aircraft development.

For example, Company Z has a wing structural analysis tool that it typically

uses during preliminary stage of design. The tool can optimize the wing’s internal

configuration for minimum weight based on an input aerodynamic load distribution.

Typically, this information is given to the structural engineers by the aerodynamics

engineering group based on their own assessment of the configuration of the wing.

Both of these assessments take significant time. Further, neither of these assessments

can even begin to take place until the aircraft’s overall configuration is known.

Assessing either of these disciplinary analyses will take significant effort both in

terms of time required to perform the analysis and time required to even setup the

analysis in the first place. Company Z simply does not perform this level of more

detailed analyses during conceptual design. The company will be especially reluctant

to perform these analyses for hundreds or thousands of designs.

2.4 Reliability Calculation Methods

Determining the reliability of a design is an important part of assessing the uncertainty

of aircraft conceptual design. In order to accomplish this, some method must be

employed to assess under what scenarios the aircraft will successfully comply with

requirements and under what scenarios it will fail. The field of Reliability-Based

Design Optimization is filled with many methods to accomplish this task. Some of the

available methods are reviewed below in an effort to determine which is appropriate

for the problem at hand.

Reliability methods are often established to measure the likelihood that a design
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will comply with an individual reliability constraint. It is also possible to deter-

mine the reliability of achieving compliance with multiple separate constraints si-

multaneously (aka joint probability), depending on the reliability calculation method

employed. Further, it is even possible to formulate a methodology which employs

different reliability goals on individual constraints as discussed in [60].

2.4.1 Sampling Methods

Sampling methods include Monte Carlo simulation, importance sampling, and adap-

tive sampling. Monte Carlo Simulation (MCS) is a sampling method frequently used

for reliability analysis [48, 54, 72]. It is also commonly used in Aerospace Engineering

[12, 29, 47].

MCS first draws a set of 𝑛 random samples (𝑈 = (𝑢1, 𝑢2, . . . , 𝑢𝑛)) from predefined

distributions [36]. For each of these samples, a deterministic simulation is employed

to analyze the function’s response to these input distributions (𝑦1, 𝑦2, . . . , 𝑦𝑛). For

MCS to approximate a function such as the expected value of the input distribution, a

simple summation and normalization of the points is executed, as seen in Equation (5)

𝐸(𝑦) ≈ 1

𝑛

∑︁
𝑖 = 1𝑛𝑦𝑖 (5)

A key advantage of Monte Carlo Simulation is that it that the accuracy of the

results can be specified by the number of simulation runs used [95]. Regardless of the

number of dimensions being assessed, it can be shown that the error of probabilistic

estimations made using Monte Carlo simulation will reduce approximately with the

square root of the number of assessment points. Thus, it is commonly used as a point

of comparison for new methods within the reliability community. Even for tested

methods, MCS is often used to check the final result of many RBDO studies.

Sampling methods, and specifically Monte Carlo simulation have a long history of

association with reliability analyses either through direct application or error checking

[39, 32, 31, 71].
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Another advantage of Monte Carlo simulation is the ease with which it can sim-

ulate different distribution types. By default, computer random number generators

create uniformly distributed variables; however, through transformations, almost any

distribution type can be simulated. Additionally, Monte Carlo simulation can also

generate correlated random distributions through a Cholesky decomposition [34].

2.4.2 Constraint Approximation Methods

For probabilistic methods which do not employ sampling methods, the integral of the

constraints over the uncertainty space must be calculated directly or approximated

in another manner [25]. Since the Limit State Function (LSF) – the boundary with

active constraints – can be arbitrarily complex, an approximation is usually preferred.

The following reliability analysis methods all employ some form of approximation.

Because the distribution of the performance is not known, it is often easier to simply

the integrand of the uncertainty space. This is accomplished by transforming the

original random variables by a Rosenblatt transformation [77]. In the literature,

these spaces are called the 𝑋-space and the 𝑈 -space, respectively.

In actuality, a transformation is needed to translate 𝑋-space to a 𝑈 -space for

easy integration and then an inverse transformation used on the 𝑈 -space to acquire

the 𝑋-space for function evaluations (𝑓 and 𝑔). In practice, the transformation from

𝑋 to 𝑈 is largely irrelevant. For methods like the First-Order Reliability Method

(FORM), the 𝑈 -space will always look the same aside from the number of variables:

standard normal distributions. Thus, only transformations for 𝑈 to 𝑋 are required,

and this can be done outside of the main FORM method (between method and

function evaluation). This makes integration easy because the iso-contours are all

circular. By design, the probability density function (PDF) of this space is known to

be

Φ𝑈 (𝑢) =
𝑛∏︁

𝑖=1

1√
2𝜋

exp

(︂
−1

2
𝑢2
𝑖

)︂
(6)
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The probability of being in an area is now straight-forward to calculate once the

integration boundary is known.

𝑝𝑓 =

∫︁
. . .

∫︁
𝑔(𝑢1,𝑢2,...,𝑢𝑛)<0

𝑛∏︁
𝑖=1

1√
2𝜋

exp

(︂
−1

2
𝑢2
𝑖

)︂
𝑑𝑢1𝑑𝑢2 . . . 𝑑𝑢𝑛 (7)

It is desirable for the integration boundary approximation to be the most accurate

at the point where it will have the highest contribution to the integral. Because

all uncertainty variables now have uncorrelated standard normal probability density

functions, the point where 𝑔(𝑢) = 0 comes closest to the origin will be the the location

of the largest contribution to the aforementioned integral. This point is dubbed the

Most Probable Point (MPP) of failure [19]. Since the MPP is the point which will have

the largest contribution to the probability of failure, it is where the most accuracy is

demanded, and boundary approximations will be centered about this point. Figure 19

demonstrates the concept of the MPP pictorially.

Figure 19: Most Probable Point (MPP) of Failure

Methods to search for the Most Probable Point (MPP) of failure are described in

Section 2.4.2. Finding this most probable point constitutes a second ‘loop’ for any

optimization process [3]. This occurs because the act of finding the Most Probable
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Point requires its own optimization, separate from the optimization of the design

itself. Once the MPP has been obtained, the reliability index 𝛽 is calculated. This

reliability index is equal to the magnitude of the distance between the MPP and the

origin in the U-space or 𝛽 = ||𝑢||. How the reliability index and the MPP are used

differ depending on the method used to calculate the reliability of the system.

The First Order Reliability Method (FORM) is an algorithm approximate the

bounds of a Limit State Function (LSF) (i.e. constraint) by first locating the closest

approach of the constraint to the center of the uncertainty space [97]. Since this

point will contribute the most to an integral over the failure region, the boundary of

the constraint is approximated linearly around this MPP. Because FORM assumes

the constraint to be linear, it will by definition be tangent to a sphere at distance 𝛽,

where 𝛽 is the magnitude of the vector |𝑢|, the vector which defines the location of

the MPP. Since the entirety of the uncertainty space is assumed to be uncorrelated

standard normal distributions, the reliability can be measured using the CDF of a

standard normal distribution as in Equation (8).

𝑅 = Φ(−𝛽) = 1− Φ(𝛽) (8)

Where Φ() is the CDF of a standard normal distribution.

Obviously, the linearity assumption will be less accurate the more curved the

actual constraint is. Also, the method is only designed to handle one constraint at

a time. Despite these limitations, FORM is widely used in RBDO literature due to

its ease of implementation and relatively few number of function calls compared to

higher order methods.

Hasofer and Lind proposed this kind of formulation in 1974 in order to en-

sure invariance of the calculated reliability with respect to the Limit State Func-

tion [33]. Rackwitz and Fiessler furthered this method in 1978 to be applicable to

non-normal distributions by incorporating ‘equivalent-normal’ distributions, approxi-

mated around the MPP [74]. Hohenbichler and Rackwitz expanded this algorithm in
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1981 to be usable for non-normal, correlated random variables in the Advanced First

Order Reliability Method (AFORM) by employing the Rosenblatt transformations

[76]. The combination of these methods is shown in Equation (9) and is commonly

referred to as the Reliability Index Analysis (RIA) [51], the Hasofer-Lind Rackwitz-

Fiessler (HL-RF) algorithm [32], or the first-order reliability analysis [90].

Minimize: ||𝑢||

Subject to: 𝐺(𝑢) = 0

(9)

RIA with HL-RF can be difficult to solve if the LSF (i.e. 𝐺(𝑢)) is complex and an

implicit function, and it does not converge for some problems [49]. Tu et al. introduces

an alternate way to locate the Most Probable Point, dubbed the Performance Measure

Approach (PMA) or the first-order inverse reliability analysis [90]. This method is

formulated as in Equation (10).

Minimize: 𝐺(𝑢)

Subject to: ||𝑢|| = 𝛽𝑎

(10)

The Performance Measure Approach has many potential benefits over the Reli-

ability Index Approach, especially in terms of the stability of the optimizer due to

the spherical constraint of the search area, as opposed to the arbitrarily-shaped con-

straint of 𝐺(𝑢) = 0 in RIA. It has the ability to be much more efficient at finding

the MPP than RIA, but this is dependent on the constraint in question, thus hybrid

approaches are sometimes used instead.

The Second Order Reliability Method (SORM) is very similar to FORM [32, 97].

The method still finds the Most Probable Point of failure and expands the reliability

analysis about that point. However, once the MPP has been found, SORM uses

a second order Taylor-series expansion around the MPP to find the boundary of

integration for the reliability calculation which can be seen in Figure 20.

The second-order approximation more accurately approximates the boundary of

integration; however, this does not come without a cost. Because it needs second order
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Figure 20: First (FORM) and Second Order Reliability Methods(SORM)

information, SORM calculates a Hessian matrix around the MPP. This calculation

is obviously far more involved than the simple 𝑅 = Φ(−𝛽) = 1 − Φ(𝛽) employed by

the First Order Reliability Method, requiring many more function calls. Because of

the computational cost to calculate the Hessian matrix, especially for costly objective

functions, and the relative simplicity of FORM, the Second Order Reliability Method

is infrequently preferred.

All methods described up to this point have been so called “Double-Loop Single-

Vector” approaches to reliability analysis. In other words, a design decision is made,

then a set of analyses are performed at a single design condition to determine the

reliability of that design, then the other loop of design decision making is returned

to, and so on. There are entire classes of reliability methods which employ a single

loop, designing and estimating reliability simultaneously [100, 38, 60, 26]. For reasons

which will be covered later, these methods are not considered for the current work.

Depending on the results of experiments to be performed, they may be recommended

for future work.

Alternatively formulations to probability theory exist including Evidence theory,
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possibility theory, and interval analysis. These alternatives are ignored for the current

work because bounds-based methods like interval analysis and possibility theory (and

to a lesser extent, Dempster-Shafer theory) are often bypassed by engineers because

they tend to generate more conservative designs relative to probability theory methods

[40, 95]. Additionally, Huyse points out that the bounds of engineering uncertainty

often cannot be accurately identified [40]. Indeed, sometimes all that can be said with

any confidence for an early engineering prediction is that it is 1) probably inaccurate

and 2) that the prediction is more likely to be close to the final answer than extremely

far off.

A significant problem exists with constraint approximation methods which may

limit their applicability to aircraft design problems. Generally, these constraint ap-

proximations methods assume that each constraint can be treated independently or

that only the most active constraint is relevant to the problem at hand. They, gen-

erally, do not consider joint probability distributions [62]. This can be significantly

problematic for aircraft design because the selected designs frequently have multiple

active constraints, meaning that some form of joint probability is crucial to determin-

ing the actual likelihood that a design will be successful under uncertainty.

2.4.3 Probabilistic Methods and Mitigation Actions

Reliability Based Design Optimization is indeed well-suited to ensuring reliability

in a design under uncertainty. However, there is no framework established by the

literature to include possible mitigation actions taken by the Chief Engineer in an

RBDO framework. Choi and Nam demonstrated the closest concept to a mitigation

action-equipped framework in the forms of Stochastic Programming with Recourse

and Multi-Stage Reliability-Based Design Optimization, respectively. However, both

methods have aspects which limit their usefulness for the current problem.
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Stochastic Programming with Recourse has limited applicability because the abil-

ity to apply infinite recourse to match any other design condition is incongruent with

the assumptions at the start of this work - specifically, that mitigation actions are

small changes and limited in scope. Additionally, the implication of effectively re-

turn to the conceptual design decision during recourse is in direct conflict with the

pre-established phases of aircraft design. MSRBDO uses more detailed analyses, re-

quiring more time and additional assumptions on information yet to be obtained.

Further, each ’stage’ requires both an uncertainty assessment and an optimization

loop; this will increase computational requirements exponentially with the number of

stages considered. Both Stochastic Programming with Recourse and MSRBDO both

fail to account for the fact that the aircraft size and outer mold line will remain fixed

after the conceptual design stage.

All existing Reliability-Based Design Optimization methodologies have additional

aspects limiting its implementation in practical aircraft designs. RBDO methodolo-

gies do not explicitly account for the sophisticated sizing processes typical of aircraft

design. RBDO does not account for uncertainty margins of the type typically used

in the conceptual design stage of aircraft development.

Again, this work is not intended to change the design process as it stands. The goal

is merely to bring information about later stages earlier to allow for better decision

making during the conceptual design stage. Thus, it is determined that there exists

no directly usable framework for aircraft design including mitigation actions.

The motivation for this thesis remains the same. Thus, it would still be enlighten-

ing to consider the possible mitigation strategies that a company’s design philosophies

would allow. Restructuring an RBDO-like framework to integrate these actions would

allow a conceptual design study to mimic more realistic design processes. By examin-

ing the impact of the uncertainty space, a probability of compliance can be assessed.

Further, by assessing the mitigation space for failed uncertainty scenarios, the process
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could represent a surrogate of a Chief Engineer’s attempts to recover a failed design

in the later stages of design.

2.4.3.1 Measuring Mitigation Success

To actually measure the successfulness of mitigation, the process must be examined

further. For each outcome of the uncertainty variables, the vehicle performance will be

different. Obviously mitigation will not be required if, given an outcome, the vehicle

naturally complies with all constraints. Thus, to accurately measure the amount of

mitigation required for a vehicle, the method must ensure that for compliant outcomes

(𝑔(𝑥, ℎ, 𝑢) ≥ 0) the level of mitigation is zero (𝑚 = 0).

For non-compliant outcomes the amount of mitigation required will vary depend-

ing on which constraints have been violated and by how much. For example, if a design

were found to have too high a drag during cruise, it may require some additional fuel,

more efficient engines, and/or alterations to the aerodynamics. Conversely, if that

same design were instead found to perform adequately in cruise but instead had an

excessively long takeoff field length, it would make far more sense to up rate the

engine thrust, potentially sacrificing some engine life to meet the takeoff field length

performance constraint. Furthermore, the magnitude of each of these problems will

dictate the amount of mitigation required in each scenario. This implies that selecting

an appropriate level of mitigation for each outcome of the uncertainty variables will

not be uniform for all scenarios of a given design. This will incur a “third loop” to

the calculation process, where the first two loops are the set of design points and the

set of uncertainty points.

2.5 Pareto Optimality

Designing for reliability and performance is a multi-objective optimization with com-

peting objectives. Increasing the probability of success will also tend to increase the

weight and fuel requirements of the vehicle. In such a case, a standard optimization
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routine may be insufficient. While an overall evaluation criterion (OEC) may be used,

this formulation requires the decision maker to prescribe preferences between objec-

tives a priori. This may be acceptable in some cases, but the exact tradeoff between

these objectives is not yet known. Additionally, a set of designs can be found that are

Pareto optimal means that no other design exists which is equivalent or better in all

metrics of interest. These designs form what is known as the Pareto Frontier, a set of

designs in which to improve in one metric, another must be worsened [28, 80]. Any

designs which are not on the Pareto Frontier have at least one other design which

is categorically better than it is, meaning it is at least equivalent in all dimensions

and is better than it in at least one metric. Thus, only designs lying on the Pareto

Frontier will be of interest to a decision maker. Figure 21 shows a example Pareto

frontier in two dimensions. By only considering designs lying on the Pareto Frontier,

the decision maker can dramatically decrease the number of designs to consider.

Figure 21: Example Pareto Frontier

The application of Pareto Optimality to RBDO concepts is not without precedent.

Zou and Mahadevan used three different approaches to calculate the Pareto Frontier

for bi-objective RBDO problem dealing with a car door [99].

If specific probability of compliance and success goals are known during conceptual
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design, then a single objective, constrained optimization technique will be appropri-

ate. However, should a preference not be specified, it may be prudent to explore

Pareto Frontier-finding algorithms.

2.6 Surrogate Models

Surrogate models are a tool for performing analyses more rapidly, rather than a

direct method of analyzing design uncertainty. Surrogate models use the principles

of regression to create a mathematical model of a more complex code. This model

runs much faster than the original, ideally with minimal loss of fidelity. The model

is constructed by first establishing a design of experiments, which determines which

values to assess using the original tool in order to build the surrogate model [13]. It is

important that the range of values used in the design of experiments be large enough

to encompass values which may be input into the surrogate model, since the model’s

predictive power decreases rapidly outside the original data range.

Because of the sheer number of points that must be evaluated in the exploration

of mitigation assessments for different uncertainty scenarios across a design space,

surrogate modeling will likely be a necessary step of implementing the methodology

proposed in this thesis. Of specific value is the reduction of time to run a single loop

of the performance analysis. Since the methodology will require running multiple

repetitions of the performance tool for different uncertainty and mitigation levels,

this reduction will have a great impact on the ability to evaluate the probability of

recovery. This will be especially important as the method is tested over the course of

its development.

For reliability analyses employing a Most Probable Point of failure, a surrogate

model need only be accurate in the region near the MPP, since that it where the

reliability is calculated [50]. Allaix and Carbone propose a method to improve the

ability of Response Surface Equations (RSE) to accurately predict the Limit State
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Function (LSF) [1, 16, 50]. Their method iteratively solves for the Most Probable

Point (MPP) of the LSF using the First Order Reliability Method (FORM) on a

second order RSE. At the MPP predicted by the RSE, an appropriate rotation of

the coordinate system is found for determining new Design of Experiments for the

creation of another more accurate RSE. This iterative method shows an improved

approximation of the probability of failure. It is unclear whether this method would

be amenable to multiple failure modes and thus will not be explored further in this

thesis.

Multiple methods exist for implementing surrogate models. Two common ones

are explored below due to their popularity, Response Surface Methodology (RSM)

[45] and Artificial Neural Networks (ANN) [17].

2.6.1 Response Surface Methodology

Response surfaces are a general class of surrogate models designed to emulate the

results of a more detailed analysis code for a smaller subset of problems [61]. They

generally take the form of an equation relating the output responses to the set of input

variables through a polynomial equation. The generalized equation for a second-order

response surface equation is shown in Equation (11) [37].

𝑦 = 𝛽0 +
𝑘∑︁

𝑖=1

𝛽𝑖𝑥𝑖 +
𝑘∑︁

𝑖=1

𝛽𝑖𝑖𝑥
2
𝑖 +

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝛽𝑖,𝑗𝑥𝑖𝑥𝑗 (11)

Once the model has been created it is tested for accuracy against both the original

values and a set of test cases which are independent from the cases to which the

model was fit. The metrics used to test accuracy look at how much of the variability

of the model is accounted for by the response surface; the distribution of the error in

the model to make sure there are no patterns in the errors; the quantiles of the error

between the fit cases and the testing cases, as well as the predicted values as compared

to the actual input values. If the results of these tests are sufficient the model may
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be used in lieu of the original analysis code with confidence that the results will be

similar.

Due to their polynomial function, Response surface equations are generally less

effective with irregularly-shaped response spaces. The next surrogate model imple-

mentation examined is one which intends to address this shortfall of RSEs.

2.6.2 Neural Networks

Neural networks, or Artificial Neural Networks (ANN), are a form of surrogate model

that work well when the results of an analysis are likely to be non-linear [9, 21, 81].

The principles behind ANNs are modeled on networks of neurons in animal brains,

drawing on these systems’ ability to recognize patterns and make predictions based

on that learning. ANNs are typically constructed with layers of nodes which connect

input values to output values. The connections between the nodes and the weights of

the connections are updated as the system ‘learns’ and this process over time results

in a surrogate model that is capable of predicting highly nonlinear behavior. The

ability to build these models is a common analytical software feature and is therefore

widely available.

2.7 Chapter Summary

In this chapter, necessary background information was derived from a review of avail-

able literature. The staged aircraft design process was examined. The impacts of

uncertainty on this process were illustrated. Previous methods implemented to quan-

tify aircraft design uncertainty were examined for their strengths and weaknesses.

Reliability calculation methods employed by RBDO implementations were explored.

Pareto optimality for competing objectives was established. A discussion of the use

and potential shortcomings of surrogate models was also reviewed.

Research Objective: Quantify uncertainty during the design process
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for a new aircraft, including a sophisticated sizing analysis, uncertainty

margins, and mitigation actions.

Based on this review, gaps still exist within the available literature. There exists

no explicit discussion of the treatment of uncertainty when considering both sizing

and performance analysis and the dangers of incorrect implementation. Methods exist

which treat variables like uncertainty margins, but none exist which tread uncertainty

margins directly. There is no existing method which has any implementation miti-

gation actions. Choi’s Stochastic Programming with Recourse constitutes the most

closely-related implementation but even that has significant foundational differences

with the concept presented in Chapter 1.

These gaps are expounded upon in Chapter 3. The Research Objective is divided

into specific research questions. Possible answers to these questions are formulated

as hypotheses. These hypotheses are tested in Chapter 4. Based on these results, a

step-by-step methodology is proposed in Chapter 5, and the final implementation of

this formulation is demonstrated Chapter 6.
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CHAPTER III

RESEARCH QUESTIONS AND HYPOTHESES

In this chapter, the information from Chapter 2 is synthesized. This leads to research

questions which must be answered in order to formulate the implementation of the

methodology. Potential answers are constructed in the form of hypotheses - educated

guesses based on the literature and/or preliminary experiments. Once these hypothe-

ses have been developed, experiments can be developed to test the validity of these

theories. These experiments are further expounded upon and exercised in Chapter 4.

As stated earlier, the motivation of this thesis is to improve the civil aircraft

conceptual design process by integrating information from preliminary design. This

indicates that the main goal of this thesis should be to assess the probability of com-

pliance and the probability of recovery for an aircraft design process by incorporating

mitigation actions within Reliability-Based Design Optimization frameworks. To this

end, a reliability calculation method will be borrowed from RBDO practices. The

motivation behind Stochastic Programming with Recourse will be modified to fit the

problem formulation at hand. From this, mitigation actions will be incorporated into

the reliability framework to find the probability of recovery from accounting for the

actions of the chief engineer.

3.1 Implementation of Reliability Analysis

As discussed in Section 2.2, there is inherent uncertainty in a new aircraft design.

Modeling this design uncertainty along with its effects is a critical element of this

thesis. The effects of this uncertainty will be realized during preliminary design or

later in the design process. However, many aspects of the aircraft geometry and

design characteristics are frozen at the end of the conceptual design stage. Just as
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with two-stage stochastic programming, the initial decision variables (𝑥) should not

be directly influenced by the uncertainty variables (𝑢) [5]. These frozen characteristics

are unable to be altered in later stages of design. Thus, the design selection, geometry,

and overall gross weight of the vehicle are fixed before the effects of uncertainty are

realized during preliminary design. Instead, other changes - mitigation actions - will

be made to the vehicle to try to recover the aircraft in scenarios where it fails to meet

one or more performance constraints.

Aircraft sizing tools are not inherently designed to emulate this exact process,

specifically with regards to uncertainty and mitigation actions. However, the building

blocks necessary to emulate this process do exist. The main building blocks –vehicle

sizing and performance analysis– can be employed to create a model of this process.

Care must be used with regards to where in the modeling process to apply the uncer-

tainty so that the true design process is emulated accurately. This observation leads

to the first research question, below.

Research Question 1 How should aircraft design with uncertainty be

modeled for reliability analysis, accounting for the stages of design?

The process of modeling aircraft design consists of two steps: vehicle sizing and

performance analysis. Because the vehicle will be sized during conceptual design, the

vehicle sizing analysis must be used to emulate that stage. Performance analysis will

be used to emulate the preliminary design stage because the aircraft geometry and

overall weights remain unaltered during both this stage of the design process and

this modeling technique. These two stages have a logical order, since the stages of

design happen in a chronological sequence. The conceptual design stage occurs before

the preliminary design stage; thus, vehicle sizing must occur before the performance

analysis.
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Fortunately, this structure limits the set of options for where design uncertainty

can be modeled. In effect, there are only two competing options: model the uncer-

tainty during the later performance analysis stage or model the uncertainty during

the sizing loop. These options are examined in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 Modeling Uncertainty during Analysis

Modeling design uncertainty during the performance analysis means that the uncer-

tainty impacts will be observed only after the vehicle sizing is completed. Thus, the

uncertainty scenario(s) will have no impact on the vehicle size or geometry. Restating,

a particular design point will be sized identically, regardless of uncertainty realization

– the same vehicle will always proceed from the sizing step. This vehicle will still

perform differently due to the influence of the uncertainty variables, as expected of

an uncertain design. Logically, modeling this process for a single design would entail

the steps depicted in Figure 22 and described below.

Figure 22: Modeling Uncertainty during Analysis

First, values for design parameters (𝑥) are selected. The design selection may

come directly from the designer or via an optimization algorithm. Next the aircraft is

sized using those design parameters and a design mission. Additionally, values must

be assumed for the uncertainty variables in order to complete the sizing process. The

full implications of these assumed values are discussed in Section 3.2. The values
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of uncertainty variables are introduced after the aircraft sizing is complete. This

will change the performance of the vehicle; however, the vehicle’s design will not

change because sizing has already occurred and design parameters remain unaltered.

Finally, the vehicle’s performance is analyzed under this new scenario. In response

to the changing uncertainty variables, the vehicle’s performance (e.g. range, TOFL,

etc.) will change.

In other words, this process experiences uncertainty around specific aspects of the

design itself. Uncertainty during design stems from the design process mentioned in

Section 2.1.1. In conceptual design, rapid tradeoffs are desired so that more designs

can be considered and compared quickly. Thus, the models and design tools used in

the conceptual phase are faster than those of later phases. In these later phases, higher

fidelity tools are used to further refine what is known about the design, reducing the

uncertainty in the aircraft’s characteristics and performance. However, because these

tools are more refined and take more time to run, the overall design is frozen after

conceptual design and does not undergo major changes in the later phases.

3.1.2 Modeling Uncertainty during Sizing

Modeling uncertainty in the sizing step of aircraft design is equivalent to changing the

design assumption of a vehicle, and creates a different vehicle each time the uncertain

value is reassessed. This occurs because the optimizer is allowed to adjust the final

design to the specific circumstances associated with the uncertain outcome. For a

particular design, this type of process follows these basic steps. First, for each value in

a distribution of possible a-priori known uncertainty values different combinations of

aircraft parameters are chosen. The aircraft is then sized to those aircraft parameters

and uncertainty values. Finally the performance is analyzed at these same values.

This process is summarized graphically in Figure 23.

This process experiences uncertainty around the assumptions made during design.
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Figure 23: Modeling Uncertainty during Sizing

This type of modeling is most commonly represented by technology studies which exist

to assess the usefulness of a suite of technologies on potential future aircraft and to

determine which to fund for further development. The end result of this type of study

is that a particular suite of technologies will be funded; the aircraft is then designed

with these technologies in mind. Assuming the technology development occurs before

the actual conceptual design of the aircraft, the technology component impacts (k-

factors) will be known at the time of design selection. This means the aircraft sizing

step is performed with the uncertain result in mind.

Technology studies are numerous in aircraft design, and many techniques exist

to perform this kind of study [14, 45, 70, 85]. Thus, it would be beneficial to use a

similar formulation, if possible. To assess the possibility of using this formulation, a

comparison must be made to ensure that this method yields similar results to a more

directly constructed design uncertainty study.

3.1.3 Uncertainty Implementation Methodology

The act of freezing the design after conceptual design means the aircraft must be sized

before the results of uncertain values are determined in preliminary design. Hence it

is inappropriate to allow the aircraft sizing process knowledge of the results of the

uncertain values. Instead, the sizing should be performed with assumed values of
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the uncertainty variables, and the uncertainty incorporated during the performance

assessment step to determine the effect of the uncertainty on the already sized aircraft.

The process described in Section 3.1.2 does not follow this flow of information.

The aircraft sizing process will instead be able to respond to the values of uncer-

tainty variables. This means aircraft will alter to adapt to anticipated values of the

uncertainty variables. Furthermore, these guesses will constitute perfect information

about the results of these uncertainty variables – information which would not exist

during conceptual design. Resizing aircraft based on the uncertainty variables mean

that each “design” will produce multiple different aircraft. In other words, while the

design vector (𝑥) will be the same, the aircraft will be sized to different weights and

therefore will have many differences between each other (e.g. wing areas, thrusts,

tail sizes, weights). This is in direct contrast to the problem formulation in which

only a single vehicle proceeds into the preliminary design phase. Futher, the problem

formulation stated that uncertainty is only assessed once the vehicle configuration

has been frozen and has entered the preliminary design phase. Thus, the problem

forumlation conflicts with this implementation in two possible ways.

As mentioned, many methods exist which model uncertainty in the sizing analysis.

Specifically, technology studies exhibit this behavior frequently [45]. It would be

beneficial to make use of these methods now or in the future, if possible. However,

the differences in these two formulations also imply that the resulting aircraft may

not match. These differences could mean that a reliability analysis performed with

the uncertainty resulved during sizing will not give representative answers. This leads

to Hypothesis 1.

Hypothesis 1 To emulate the aircraft conceptual and preliminary design

process, uncertainty must be implemented after the sizing of the aircraft

is complete. Modeling uncertainty during sizing will yield incorrect results

for aircraft conceptual design under uncertainty.
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Logically, implementing uncertainty after the sizing analysis will produce a model

which gives the desired result of emulating the conceptual and preliminary design

processes as described in Section 2.1.1. Due to the potential benefits of using uncer-

tainty implementation before sizing, it will be beneficial to quantify any discrepancies

between the two formulations. To this end, Experiment 1 in Section 4.1 will be con-

structed to test the similarities or differences between these two uncertainty modeling

processes.

To represent this process mathematically, Equation (3) from Section 2.1.3.3 is

reformulated as Equation (12) to account for probabilistic uncertainty.

𝑔𝑖 (𝑥, ℎ, 𝑢,𝑚) ≥ 0 := (𝑦𝑖 (𝑥, ℎ, 𝑢, 0)− 𝑦𝑟𝑒𝑞𝑖) ≥ 0 (12)

Where 𝑦𝑖(𝑥, ℎ, 𝑢, 0) is a performance metric evaluated for a specific design, 𝑥, an

uncertainty scenario, 𝑢, and no mitigation. 𝑦𝑟𝑒𝑞𝑖 is the performance limit associated

with performance metric 𝑦𝑖, as seen earlier. The terms 𝑦𝑖 and 𝑦𝑟𝑒𝑞𝑖 inside the paren-

theses will reverse for any constraints which limit the upper bound of a performance

metric (e.g. takeoff field length).

In this part of the discussion, mitigation actions are not yet considered. However,

as will be seen in Section 3.3.2, Equation (12) is just a specific form of the more

generalized Equation (13) with the level of mitigation set to zero (𝑚 = 0).

An outcome of a design is compliant if it satisfies all performance constraints

(when no mitigation action is applied), as shown in Equation (13).

(𝑔𝑖 (𝑥, ℎ, 𝑢, 0) ≥ 0)∀𝑖 ∈ 𝐺 (13)

Where 𝐺 is the set of performance metrics and their requirements, (𝑔1, 𝑔2, . . . , 𝑔𝑛).

The set of outcomes in which a vehicle is found to be compliant with all perfor-

mance constraints (𝐴) is defined in Equation (14).

(𝑥, ℎ, 𝑢) ∈ 𝐴 := (𝑔𝑖 (𝑥, ℎ, 𝑢, 0) ≥ 0)∀𝑖 ∈ 𝐺 (14)
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Conversely, the set of outcomes in which a vehicle is not compliant with one or

more performance constraints (𝐴) is defined as all combinations of 𝑥 and 𝑢 which do

not fall in 𝐴, specifically show in Equation (15).

(𝑥, ℎ, 𝑢) ∈ 𝐴 := (𝑥, ℎ, 𝑢) /∈ 𝐴 (15)

An indicator function (1𝐴 (𝑥, ℎ, 𝑢)) can be defined as in Equation (16) which in-

dicates whether a specific combination of settings of design variables and uncertainty

variables is included in A, the set of compliant cases

1𝐴 (𝑥, ℎ, 𝑢) :=

⎧⎪⎨⎪⎩ 1 if (𝑥, ℎ, 𝑢) ∈ 𝐴

0 if (𝑥, ℎ, 𝑢) /∈ 𝐴
(16)

The probability that a specific design, 𝑥, will be compliant with all performance

constraints without the need for mitigation actions (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) can be

found by using Equation (17). For a design, the integral of the indicator function

from Equation (16) is taken over the combinations of uncertainty variables. This

result is divided by the total combinations of uncertainty variables.

𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ) =
∫︀
𝑢∈𝑈 1𝐴 (𝑥, ℎ, 𝑢) 𝑑𝑢∫︀

𝑢∈𝑈 1𝑑𝑢
(17)

Now, a mathematical formulation has been proposed which will allow a designer

to determine the probability of compliance for a given design. Next, the method will

be extended to allow for the selection of uncertainty margins to enable finer control

over the reliability of the design.

3.2 Modeling Uncertainty Margins

The concept of uncertainty margins was introduced in Section 2.1.1 as a method by

which the deterministic design process attempted to account for uncertainty. These

uncertainty margins affect the overall performance of the aircraft by forcing the ve-

hicle to size to a different condition. In this manner, uncertainty margins will still
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be required within a reliability framework because, due to the nature of the sequence

of design stages discussed in Section 3.1, the vehicle sizing analysis itself is still de-

terministic in nature. Section 2.1.1 pointed out that these margins are traditionally

determined through some form of heuristic method, be it design experts or previous

historically successful values. It would be preferable to instead quantitatively select

an uncertainty margin based on a desired probability of compliance. This leads to

Research Question 2.

Research Question 2 Is it possible to select a desired probability of com-

pliance and then quantitatively determine a level of margin which will yield

that probability of compliance?

The concept of including a margin in a reliability-based analysis seems counter-

intuitive. One of the primary complaints about the deterministic treatment of uncer-

tainty through margins is that said margins will be either optimistic and insufficient

for scenarios which could arise. Alternatively, deterministic marings may be overly

pessimistic, which will contribute to a more costly design than necessary to ensure the

desired level of reliability. However, a margin of some nature may be necessary just

to meet basic reliability goals. For example, if the uncertainty requirement was set at

90 percent, then 90 percent of the simulations from sampling the random combina-

tions of uncertainty variables have to be feasible or satisfy all the constraints. Since

the nominal values of the uncertainty variables are set at the center of the input

distribution, there is a 50-50 chance of either an improvement or degradation from

the random variable being selected; thus, achieving the 90 percent feasibility would

be virtually impossible. Therefore, a uncertainty margin needs to be introduced as a

control variable to remedy this situation. Essentially this uncertainty margin sizes the

aircraft for weight which translates to a larger size to account for uncertainty effects.

Because uncertainty margins have a large impact on most aircraft design objective
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function candidates, an optimizer will seek to minimize these variables while main-

taining the desired level of reliability. In other words, an optimization routine can

be used to determine the appropriate margin for a given design, under the assumed

uncertainty distributions.

In theory, if uncertainty margins behave similarly to other design variables, such an

implementation should be feasible. To lend evidence toward this assumption, similar

implementations were examined further. The concept of using an uncertainty quan-

tification method to set some kind of margin is not without precedent. In 1992 Zhu

used reliability methods to determine safety factors for composite aircraft structures

and compared them to the traditional 1.5 structural factor of safety [98]. Bristow

also combined uncertainty quantification methods with safety target setting [15].

Nam successfully implemented performance target setting in an aircraft design

under uncertainty [62]. This performance target setting is conceptually very similar

to the idea of uncertainty margins, aside from one key distinction. For performance

target setting a constant “push-off” factor is implemented on the performance con-

straint imposed on the vehicle. This push-off can take the form of an additive or

multiplicative factor on the performance constraint of the vehicle, but it will remain

a constant level throughout the design space. This idea was shown conceptually

in Figure 10 of Section 2.1.1. Motivated by the successful implementation of tar-

get setting on an uncertain aircraft design process, it seems reasonable to infer that

uncertainty margins can be treated in a similar way.

Uncertainty margins are used to size an aircraft during conceptual design in order

for it to be responsive to uncertain conditions. Further, these margins are not forgot-

ten after the aircraft is sized and then frozen; they are treated as actual tools within

later design stages. During preliminary design, the Chief Engineer will “allocate” this

margin to deal with undesirable changes in the aircraft which arise when previously
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unknown or uncertain information is refined by more detailed analysis. Thus, the ef-

fect of the margin will remain as a part of the aircraft while the excess “dead weight”

implied by the margin is removed.

Empty weight margin can serve as a conceptually-direct example. If an empty

weight margin of 2,000 pounds has been applied to the aircraft during conceptual

design, the aircraft will be slightly oversized with respect to the empty weight. The

Chief Engineer knows that the empty weight estimate, his design target, contains

this “extra” 2,000 pounds above what the conceptual design tools predicted. During

these later stages of design, more detailed analyses are performed. After performing

detailed structural analyses, each of the individual components of the aircraft could

come in at, under, or over their target weight. If the wing is over its target weight,

the Chief Engineer knows that there is a repository of weight already baked into the

design for just such an occasion. The Chief Engineer can then allocate a portion of

this empty weight margin to the wing structures group to keep the entire aircraft at

its target weight, despite a component being overweight.

The direct use of uncertainty margins in this manner is straight-forward when

considering a single margin and a directly-related uncertainty variable. The concept is

demonstrated visually in Figure 24. In this chart, a theoretical (exaggerated) weight

breakdown of an aircraft is shown. The y-axis shows the build-up of these weight

categories as a percentage of the overall design maximum takeoff weight. Building

from the bottom is payload weight in blue, the aircraft empty weight in red, an empty

weight uncertainty margin in purple, and the remaining weight available in green. The

black line corresponds to the resulting change in design mission range and is related

to the secondary y-axis on the right.

The first column in Figure 24 corresponds to the sizing condition of the aircraft.

A large margin (exaggerated to ten percent of MTOW) is included in the weight

breakdown because the conceptual design codes are assumed to be very imprecise.
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Figure 24: Uncertainty Margin Adapting to Uncertainty Scenarios

The second column shows a “Perfect Margin” scenario in which the final empty weight

during preliminary design perfectly matches the predicted empty weight plus the

uncertainty margin imposed. This scenario is ideal from a design perspective as

the performance of the vehicle will exactly match the anticipated performance. The

third column shows the “Accurate Code” scenario in which the conceptual design

tool made an accurate prediction of the final empty weight. In this case, all margin

from the conceptual sizing remains available for use. Based on the description above,

this margin may be maintained throughout all stages of design for other unforeseen

circumstances, but it was unnecessary to do so because the weight never increased.

The fourth column shows a “Light” scenario under which the final aircraft was actually

lighter than predicted by the analysis code. In this scenario, the preliminary design

team would actually have extra margin available to respond to future problems which

never arise. The final column shows a “Heavy” scenario in which the code prediction

plus the uncertainty margin were insufficient to account for the amazingly high weight

seen in the later stages of design. Under this scenario the empty weight margin would

be unable to keep up with the growth of the vehicle, and the aircraft’s design mission

range would suffer.
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This pound-for-pound offset implementation does not hold when considering mul-

tiple margin variables and uncertainty variables simultaneously. Under the imple-

mentation as it is described, the aircraft will react to uncertain scenarios to maintain

constraint compliance only if the vehicle as designed has remaining uncertainty margin

which corresponds to the particular uncertainty variable which was under predicted.

This behavior implies that a design team would not use a particular uncertainty

margin (e.g. drag margin) to maintain the aircraft’s compliance with a performance

constraint (e.g. design range) if the aircraft were significantly over its target weight.

That kind of overly particular decision making would likely get the engineer in charge

fired.

It is far more reasonable to assume that all uncertainty margins will be used to

their full effect to maintain performance constraint compliance under all uncertainty

scenarios. Devising a scheme by which the design team would respond to each un-

certainty scenario to maintain aircraft performance would be very cumbersome; a

combinatorial examination of uncertainty scenarios for each uncertainty variable and

each possible combination of those scenarios and variables would need to be performed

to determine the reaction of each uncertainty margin. This exhaustive examination

would need to be performed separately for any different combination of uncertainty

margin settings. In the end, this process would be incredibly tedious at best and may

contain numerous errors at worst.

A far simpler assumption can be made to model uncertainty margins being used

to maximum effect to maintain compliance. Instead of a complicated if-then deter-

mination of margin responses, uncertainty margins will instead be removed in their

entirety when assessing an uncertainty scenario. The concept is demonstrated visually

in Figure 25.

In this chart, a theoretical (exaggerated) weight breakdown of an aircraft is shown.

The y-axis shows the build-up of these weight categories as a percentage of the overall
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Figure 25: Uncertainty Margin Removed when Assessing Uncertainty Scenarios

design maximum takeoff weight. Building from the bottom is payload weight in blue,

the aircraft empty weight in red, an empty weight uncertainty margin in purple, and

the remaining weight available for fuel in green. The black line corresponds to the

resulting change in design mission range and is related to the secondary y-axis on the

right.

Just as with Figure 24, the first column in Figure 25 corresponds to the sizing

condition of the aircraft. A large margin (exaggerated to ten percent of MTOW) is

included in the weight breakdown because the conceptual design codes are assumed

to be very imprecise. The second column shows a “Perfect Margin” scenario in which

the final empty weight during preliminary design perfectly matches the predicted

empty weight plus the uncertainty margin imposed. This scenario is ideal from a

design perspective as the performance of the vehicle will exactly match the anticipated

performance. The behavior of Figures 24 and 25 begin to differ at this stage.

The third column shows the “Accurate Code” scenario in which the conceptual

design tool made an accurate prediction of the final empty weight. Since the uncer-

tainty margin was removed during the assessment of the uncertainty scenario, there is

excess weight available of which the design team can take advantage. Should the fuel
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tanks contain sufficient capacity, this remaining weight can be filled with additional

fuel to maintain the maximum takeoff weight of the aircraft. This additional fuel

increases the design mission range of the aircraft. Further, it would allow the un-

needed empty weight margin to be used instead to account for detrimental conditions

in other uncertainty variables like a very fuel inefficient engine.

The fourth column shows a “Light” scenario under which the final aircraft was

actually lighter than predicted by the analysis code. In this scenario, the remaining

available weight is filled in with fuel up to the point where the aircraft has no remain-

ing space available in the fuel tanks. The design mission range is increased by the

addition of fuel to the aircraft and by the forced reduction in weight. This resulting

vehicle could also react to detrimental conditions in other uncertainty variables.

The final column shows a “Heavy” scenario in which the code prediction plus the

uncertainty margin were insufficient to account for the exceptionally high weight seen

in the later stages of design. Just as with Figure 24, under this scenario the empty

weight margin would be unable to keep up with the growth of the vehicle, and the

aircraft’s design mission range would suffer. However, since other uncertainty margins

would be treated similarly to this empty weight margin (i.e. they are removed during

uncertainty scenario assessment), these other uncertainty margins may be sufficient

to recover the range shortfall.

Including uncertainty margins during the vehicle sizing should be feasible based

on previous studies with similar variables. By including these margins during sizing,

the designer will have more control over the performance of the aircraft and, there-

fore, the probability of compliance of the aircraft under uncertainty. Removing the

margin before uncertainty assessment offers the distinct advantage that all margins

can be used to treat all performance shortfalls, regardless of the offending uncertainty

variables, and it does so in a conceptually straight-forward way. The integration of

these concepts is formalized in Hypothesis 2.
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Hypothesis 2 By including an uncertainty margin during the sizing pro-

cess and removing it (but not its effect) before the uncertainty analysis,

the impact of margin on the probability of compliance can be seen. Using

an optimizer, it will be straight-forward to determine an appropriate level

of margin to achieve a desired probability of compliance.

As a corollary to Hypothesis 2, it should be very possible to extend this method to

include multiple designs. Additionally, there is no restriction imposed that would limit

other design variables from being introduced into an optimizer solving for margin(s).

Thus, an optimization should be feasible which will allow for simultaneous setting

of both design variables and uncertainty margins to match a performance goal or a

target level of probability of compliance.

It should be noted that this treatment of margins is specific to the uncertainty

margins used in this problem. Should other margin types (e.g. performance tar-

gets) be used, then this formulation of removing the margin post-sizing may not be

the appropriate formulation. Care should be exercised when further developing this

methodology or any other methodologies to treat other types of design margins in a

reliability analysis.

The mathematical formulation for determining the probability of compliance has

been extended to include not only traditional design variables but also uncertainty

margins. This will allow for additional control over the probability of compliance for

an individual design or the ability to select the best margin for a particular design

setting. Next, the designer needs information about the probability of recovery of the

failed uncertainty scenarios for that design. This will necessitate the application of

mitigation actions to the failed scenarios.
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3.3 Modeling Mitigation Actions

From the title of the thesis and many sections before now, it is evident that the formu-

lation of mitigation actions and their implementation will be key to the methodology.

Without them, the quantification of design recovery is not attainable. Mitigation

plans are currently implemented reactively. As discussed by Sutter, the concept of

twisting the wing to alleviate the loads on the 747 was conceived only after a struc-

tural problem was discovered [86]. As a concept, this does not aid the goal of bringing

knowledge forward into the conceptual design process. However, this does not mean

that a manufacturer has never considered possible mitigation actions before. It is

likely that a manufacturer has previously established “acceptable” mitigation actions

- actions which the manufacturer would prefer not to take but would to recover a

design when necessary.

Further, engineers could theorize possible design problems and develop mitigation

actions which could be used to address the corresponding performance shortfalls. Just

as with reactive recovery during a traditional design process, mitigation actions are

formulated to fix specific missed constraints. In order to accomplish this, a process

akin to Safety Analysis may be employed. At the most basic level, engineers perform-

ing a Safety Analysis will assess different possible accidents that could occur. These

accidents are examined to help determine the manners in which such accidents could

occur. For each of these different possible problems which could cause an accident,

the engineers will determine different possible ways to prevent these specific accidents.

Engineers can develop mitigation actions in a similar manner to Safety Analysis.

In order to do so, different possible constraint violations are examined. These vio-

lations will be based off the performance constraints imposed on the aircraft design

and may be based on regulations (e.g. minimum rate of climb at altitude), access to

airports (e.g. maximum wing span), or based on the economics of the aircraft (e.g.
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maximum range at a specified payload). Once these possible violations are deter-

mined, mitigation actions must be formulated to address these shortfalls. To do so,

engineers enumerate the remaining available degrees of freedom in the preliminary

design stage. These degrees of freedom are examined to determine which of them can

fix the possible performance constraint violations. This step is very important to the

overall process herein because without knowledge of the possible mitigation actions

which could be taken it is impossible to predict what any unknown actions would

do. In order to determine the probability of recovery, a designer needs to define and

model possible mitigation actions.

Once these possible mitigation actions are defined, they will need to be assessed.

The methodology will need to apply mitigation actions only when they are required.

When they are necessary, an assessment will need to be made as to which mitigation

actions to employ and by how much to mitigate. Once these mitigation actions are

used, their effects on the vehicle needs to be determined.

Research Question 3 How should mitigation be represented in a prob-

abilistic conceptual design model?

3.3.1 Defining Mitigation Actions

In order to determine the probability of recovery, engineers need to define and model

possible mitigation actions. The outcomes of uncertainty variables are discovered

after design freeze. Mitigation actions are only implemented in response to perfor-

mance constraint violations which arise after the outcomes of uncertainty variables

are determined. Thus, mitigation actions are only imposed after the design has been

frozen. Because of the stage of design in which mitigation actions are implemented,

they cannot be large configuration changes. Instead, they must be small changes to

fix small constraint violations which can be implemented after a configuration freeze.
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Additionally, the late-stage nature of these changes will likely cause detrimental ef-

fects which will adversely impact other performance constraints.

Mitigation actions are inherently non-standard design actions. Their application

is not codified in a traditional design textbook or course material, nor is it easily found

in literature. What can be found is a set of choice examples that clearly illustrate

the concepts of mitigation.

Mitigation actions which would be limited to the early phases of design are of

little interest here. Since the formulation of the problem specifies that the results of

uncertainty are only discovered after the freeze of the aircraft design, any changes

which are typically early, large scale decisions like changing the wing planform area

will not be considered. Only actions which can be implemented late in the design

process after the “design freeze” are of interest.

Mitigation actions are only of interest if they are capable of fixing a problem which

could be encountered during preliminary design. Arbitrary changes to the aircraft

which do not affect the constraints are not relevant. For instance, since this thesis

is focusing on performance constraints, actions which change other metrics like the

internal layout of the vehicle or the handling characteristics will not be considered as

they do not affect constraints which are being measured.

These mitigation actions are often changes which are non-ideal options. Indeed,

their effects could have been executed more efficiently during conceptual design had

their need been anticipated. For example, an engine throttle push is, generally, less

effective than an engine which was designed to meet the desired thrust condition.

Likewise, an aircraft whose wing and pylons were built to handle a specific thrust

engine will need to be “beefed up” to handle a higher thrust engine. Mitigation

actions will have some form of detrimental penalty on the aircraft, shown conceptually

in Figure 26. In this conceptual diagram, a mitigation action is shown on the x-axis

which has a direct impact on the overall load of the aircraft (i.e. the maximum takeoff
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weight). The structural weight of the aircraft is shown on the y-axis. The green dot

shows the original design condition to which the vehicle was sized. The red line shows

the change in the aircraft as a response to this mitigation action being imposed. Small

changes to the maximum takeoff weight are not expected to have a large impact on

the structural weight of the vehicle because the aircraft was likely designed with

some conservatism. Larger changes to the maximum takeoff weight are expected to

increasingly impact the structural weight as more and more reinforcement is required.

Eventually, the structural weight penalty will grow so large that the aircraft cannot

sustain the changes as indicated by the light blue Recovery Limit line. As a point of

comparison, the purple line shows the structural weight of the aircraft if the vehicle

were brought back into conceptual design and resized instead of applying mitigation

actions.

Figure 26: Penalty Associated with a Mitigation Action

The mitigation action will have some direct impact on one or more parameters

defining the vehicle with the intent of improving the vehicle performance. In addi-

tion to this direct benefit to the vehicle, there is expected to be other detrimental
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impacts from the application of mitigation actions. These detrimental impacts will

be dependent on the changes being made to the vehicle to bring the aircraft back into

compliance with performance constraints and may be different for each mitigation

action. In the case where multiple mitigation actions are applied, it is expected that

all detriments from each mitigation action will be felt on the aircraft.

For the purpose of this work, if the mitigation penalties affect different aspects

of the vehicle, both will be applied. However, if the mitigation penalties affect the

same parameter, it will be assumed that their impacts are additive. This is shown

conceptually in Figure 27. Two different mitigation actions are shown on the x- and

y-axes. In addition to their benefit to the vehicle’s performance, these mitigation

actions enact the same penalty on the aircraft and are conceptually similar to the

penalty shown in Figure 26. The penalty associated with any level of mitigation

action as well as any combination of the two is shown by the black contour lines.

When the contour lines grow closer together, the function value is changing more

rapidly.

Figure 27: Mitigation Action Penalties are Additive
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Mitigation actions should be formulated from a manufacturer’s design philoso-

phies, expert judgment from seasoned designers, and basic aerospace engineering

concepts. These actions should be constructed in such a way that they are late

stage changes. Each action should be designed to remedy an encountered problem.

Finally, the implementation of these mitigation actions should capture any realistic

detrimental effects on the aircraft.

3.3.2 Representing Mitigation in a Conceptual Model

After the list of possible mitigation actions is developed, the mitigation actions need

to be used to quantitatively evaluate the recoverability of the design. Reformulating

the constraints from Equation (3) for probabilistic problems and including mitigation

actions yields the form seen in Equation (18).

𝑔𝑖 (𝑥, ℎ, 𝑢,𝑚) ≥ 0 := (𝑦𝑖 (𝑥, ℎ, 𝑢,𝑚)− 𝑦𝑟𝑒𝑞𝑖) ≥ 0 (18)

Where 𝑦𝑖(𝑥, ℎ, 𝑢,𝑚) is a performance metric evaluated for a specific design, 𝑥, an

uncertainty scenario, 𝑢, and a mitigation level, 𝑚. 𝑦𝑟𝑒𝑞𝑖 is still the performance limit

associated with performance metric 𝑦𝑖, as seen earlier.

In the sequence of events being modeled, a mitigation action is only implemented

to fix a particular uncertainty condition. Since mitigation actions are an attempt to

recover the design’s performance rather than face potentially dire consequences due

to missing design targets, any acceptable mitigation action would be implemented

in that scenario if it would recover the design’s shortfall and not violate any other

constraints. Thus, an outcome of a design can be recovered through mitigation if

there exists any mitigation action in the available set of mitigation actions (𝑚 ∈ 𝑀)

such that all constraints are met simultaneously, satisfying Equation (19).

∃𝑚 ∈ 𝑀 : (𝑔𝑖 (𝑥, ℎ, 𝑢,𝑚) ≥ 0)∀𝑖 ∈ 𝐺 (19)
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The set of outcomes in which a vehicle can be made compliant with all perfor-

mance constraints through the application of mitigation actions (𝐴𝑀) is defined as

in Equation (20).

(𝑥, ℎ, 𝑢) ∈ 𝐴𝑀 := ∃𝑚 ∈ 𝑀 : (𝑔𝑖 (𝑥, ℎ, 𝑢,𝑚) ≥ 0)∀𝑖 ∈ 𝐺 (20)

The set of outcomes (𝐴𝑀) in which a vehicle will not be compliant with one or

more performance constraints regardless of the mitigation action selected (𝐴𝑀) is

defined in Equation (21).

(𝑥, ℎ, 𝑢) ∈ 𝐴𝑀 := @𝑚 ∈ 𝑀 : (𝑥, ℎ, 𝑢,𝑚) ∈ 𝐴𝑀 (21)

An indicator function (1𝐴𝑀
(𝑥, ℎ, 𝑢)) which designates whether a design and uncer-

tainty scenario can be recovered is defined in Equation (22). This indicator determines

whether a specific combination of settings of design variables and uncertainty vari-

ables has any level of mitigation (𝑚 ∈ 𝑀) which places it within 𝐴𝑀 , the set of cases

which are compliant through mitigation.

1𝐴𝑀
(𝑥, ℎ, 𝑢) :=

⎧⎪⎨⎪⎩ 1 if (𝑥, ℎ, 𝑢) ∈ 𝐴𝑀

0 if (𝑥, ℎ, 𝑢) /∈ 𝐴𝑀

(22)

The Probability of Recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) is defined in Equation (23) as

the probability that a specific design, 𝑥, can be made to be compliant with all per-

formance metrics through mitigation actions given that uncertainty scenarios are

encountered under which the design is non-compliant with one or more performance

metrics.

𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) =
∫︀
𝑢∈𝐴 1𝐴𝑀

(𝑥, ℎ, 𝑢) 𝑑𝑢∫︀
𝑢∈𝐴 (1) 𝑑𝑢

(23)

Even for a given design, different outcomes from the uncertainty space will ne-

cessitate different levels of mitigation actions. To accurately assess how much of the

uncertainty space can be mitigated for a given design, each failed point in the uncer-

tainty space must be assessed to find the appropriate level of mitigation actions to
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address any missed performance constraints. This process emulates the behavior of

the chief engineer in that he or she will fix the outcome that is encountered.

Both the probability of compliance and the probability of recovery through mit-

igation actions must be considered to determine the overall probability of success

of a given design. Some scenarios are compliant without further actions by the

preliminary design team. These scenarios were represented by the calculation of

𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ) in Equation (17). Some of the non-compliant scenarios may be

brought back into compliance with the constraints through the application of mitiga-

tion actions, represented by 𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) from Equation (23). Therefore, the

overall probability of success, 𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ), is calculated as in Equation (24).

𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ) =𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)

+ 𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) (1− 𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ))
(24)

The expected value of the design objective (E[𝑓(𝑥, ℎ)]) is calculated by summing

the design objective values for all compliant scenarios with the design objective of

all recovered scenarios and divided by the total number of successful scenarios as in

Equation (25). Non-recoverable scenarios are not considered in this analysis because

their performance is undefined. The design will be penalized for non-recoverable

scenarios through the metric of the overall probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)).

E[𝑓(𝑥)] =
∫︀
𝑢∈𝐴 𝑓 (𝑥, ℎ, 𝑢, 0) 𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

𝑓 (𝑥, ℎ, 𝑢,𝑚) 𝑑𝑢∫︀
𝑢∈𝐴(1)𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

(1)𝑑𝑢
(25)

Since in a real process only one uncertainty scenario would be encountered, the

ability for mitigation actions to be applied to each uncertainty scenario indepen-

dently must be considered. When a scenario causes the aircraft to fail to meet one

performance constraint, an appropriate mitigation action will be selected, assuming

one exists to fix the violations caused by that scenario. Under a different scenario,

a different set of constraint violations may occur. In this case, a completely sepa-

rate mitigation action may be needed. Between multiple constraints and mitigation
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actions, it seems reasonable that there may be no overlap between the available miti-

gation spaces for all uncertainty scenarios. This concept is demonstrated theoretically

in Figures 28 and 29.

The left side of Figure 28 shows an uncertainty space constructed using two in-

dependent uncertainty variables, 𝑢1 and 𝑢2. Multiple performance constraints are

Figure 28: Uncertainty and Mitigation Spaces - Scenario 1

imposed on the aircraft and assessed independently for each uncertainty condition.

Whenever all constraints are met, the uncertainty scenario is colored in blue. When-

ever the design would fail to meet one or more constraints under that uncertainty

scenario, the scenario is colored in red to indicate that it is not compliant. The green

and dark blue lines crossing the uncertainty space are the boundary where each of

the two constraints becomes active. Within the set of uncertainty scenarios a par-

ticular scenario has been selected for further investigation, indicated by the targeted

dot on the left. As can be seen, this scenario is violating both the green and blue

constraints. The right side of Figure 28 shows the available mitigation space for the

design under this uncertainty condition. On this side of the plot, two possible mit-

igation actions are considered, 𝑚1 and 𝑚2, each with a range of applicability. The

dot at origin in the lower left corner of this chart indicates that no mitigation action

has yet been applied to the vehicle. Colored regions in this space indicate that the

aircraft cannot be made compliant by an applied mitigation action with this level of
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mitigation due to one or more constraints. Just like the uncertainty space, when no

mitigation is applied the dot is in both the blue and green colored regions, indicating

that the aircraft is violating both of these constraints. A third, orange constraint

can be seen; this will limit the range of mitigation actions which can be applied. An

available region within the mitigation space is shown in by the white region where no

constraint will be violated. According to Equation (20), only one feasible mitigation

action which makes the scenario compliant is required to recover a design. Thus, this

available space indicates that a possible mitigation action setting exists to recover

this uncertainty scenario.

The left side of Figure 29 shows the same uncertainty space as with Figure 28.

In this figure, a different uncertainty scenario is selected for further investigation,

Figure 29: Uncertainty and Mitigation Spaces - Scenario 2

indicated by the red target. For this scenario, only the green constraint has been

violated at this time, though the blue constraint is very close to being active. On

the right side of the figure, the mitigation space formed between 𝑚1 and 𝑚2 is once

again explored. The constraints affect this mitigation space differently than in the

previous figure, even though the values which would violate the constraints have not

changed. This change occurs because the uncertainty scenario under consideration is

different, namely 𝑢1 has decreased while 𝑢2 has increased, changing the performance

of the aircraft. Investigating the mitigation space on the right of Figure 29, it can
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be seen that at the origin on the lower left, only the green constraint is active while

the blue constraint is not quite activated. This matches with the observed behavior

of the constraints in the uncertainty space on the left. Under this different scenario,

a small white region is still available within the uncertainty space, indicating that a

set of mitigation actions exist which will bring the design into compliance.

Examining Figures 28 and 29 further can yield some additional insights. The

available mitigation region in Figure 29 is very small. This potentially indicates

that under more stringent scenarios, the design team may not be able to recover the

performance violations through mitigation actions. Thus, the design being consid-

ered is likely not infinitely recoverable with only this set of mitigation actions (i.e.

𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) < 1).

Additionally, the mitigation actions necessary to recover Scenario 1 and Scenario

2 clearly have no overlap when comparing Figures 28 and 29. This indicates that

there will be no mitigation setting which will recover both scenarios simultaneously.

This is acceptable in a real world situation because both scenarios could not be

encountered simultaneously for the same design; thus, only one mitigation action

setting would need to be applied. However, the realization could complicate the

analyses of uncertainty scenarios and mitigation actions. Indeed, if this condition were

tested to be true in a representative example, it would indicate that investigating the

mitigation space would need to be handled independently for each failed uncertainty

scenario.

An alternate possibility would be to attempt to select a single “overall best” level

of possible mitigation actions for a given design under all failed uncertainty scenarios.

This setting would be the level of mitigation which brings the largest portion of the

uncertainty space into compliance. It is theorized that this level of mitigation would

yield a lesser probability of success than optimizing mitigation for each uncertainty

scenario separately; however, it may reasonably provide a lower bound on the “true”
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probability of success. Additionally, this restructuring of the problem would remove

the need for a MCS approach to assess the reliability, allowing for more sophisticated

and faster reliability measures to be employed.

It should be noted that restructuring the problem this way may not buy any time

savings unless constraint boundary approximation methods are employed. Approx-

imately the same number of function calls would be needed to optimize the overall

best mitigation option because a full MCS reliability measure would be needed at

each optimization step. In the original formulation, an optimization would be per-

formed on each MCS instead, leading to the same number of constraint analyses. The

exception to this rule would be a surrogate model executed through a code similar

to MATLAB, which has the capability to conduct an entire array of analyses much

more efficiently than evaluating scenarios individually.

If there were no penalties to the mitigation actions, and all mitigation actions

only improved the design, then the maximum level of mitigation could be applied and

analyzed. Under these conditions, this maximum level of mitigation would succeed for

all uncertainty scenarios which have any possibility of recovery. Unfortunately, both

of these conditions are unreasonable. Just like with design variables, some mitigation

actions will invariably be opposed to some constraints. As an example, consider the

case of a mitigation action to improve the aircraft range. One possible way to recover

if this range is violated would be to add additional fuel to the aircraft. Even ignoring

any design penalty associated from this extra load, the takeoff weight of the aircraft

would need to increase by the amount of fuel added. This increase in weight would

cause the aircraft to need a longer field length for takeoff, potentially violating this

other constraint as the mitigation action was applied.

Additionally, the need for a penalty function associated with some or all mitiga-

tion actions cannot be ignored. The concept is based on the logic that in a real world

design process late-stage changes to the design would be imperfect solutions when
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compared to the alternative of originally setting up the design appropriately. Even if

constraints are not in direct opposition to the mitigation action itself, the incorpora-

tion of penalties associated with mitigation actions (e.g. additional structural weight

for increased loads) means that application of mitigation actions could cause another

constraint to become active. Further, the penalty may restrict the application of the

mitigation action by itself because the penalty associated with applying increasing

mitigation may be more detrimental to the aircraft performance than the mitigation

action could offset.

Based on the thought experiments presented here, Hypothesis 3 can be theorized.

Hypothesis 3 It will be necessary to perform a mitigation assessment

for each failed uncertainty outcome to get an accurate determination of

the probability of recovery.

The experiment in Section 4.2 will examine the differences between optimizing for

each failed uncertainty outcome individually and optimization of the single “overall

best” level of mitigation. The experiment will compare the probability of recovery

(𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) of the resulting aircraft for different design conditions.

3.4 Selection of a Reliability Method

Reliability-Based Design Optimization literature contains a wide variety of methods

to calculate reliability of a system, detailed in Section 2.4. Since this methodology

is dependent on the reliability of a design as well as characterizing its failure region,

one of these reliability frameworks will be employed unless a new one is needed. This

thought is summarized in the following research question.

Research Question 4 What reliability assessment method should be

used to model the aircraft Conceptual and preliminary design process with

mitigation actions?
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If Hypothesis 3 is supported in the experiments, then the ability to assess mitiga-

tion actions, not standard probability of compliance assessment, will be the driving

factor in selecting a reliability method. As stated in Section 3.3.2, mitigation will

need to be implemented differently for each possible uncertainty outcome. Thus, a

method must be selected which will allow for the querying of the uncertainty space,

rather than a simple likelihood of meeting all constraints. Of the reliability calculation

methods reviewed, only Monte Carlo Simulation fits this description.

It is important to note that if Hypothesis 3 is found to be false, it may be possible

to use a more efficient method. However, to test this, the related experiment(s)

must be established in such a way as to allow for an exact measurement of the

recoverability of a design. This setup can then be used as a comparison point or a

“truth model.” Once this is established, the results of more sophisticated methods

can be emulated by establishing constraints on the MCS model to give results similar

to the desired method. This can be compared to the truth model to evaluate the

amount of information that would be lost by employing such a method. Thus a MCS

model must be employed regardless of the results of Experiment 2; it will either be

used as a comparison point or as a integral part of the required overall methodology.

3.5 Modeling the Design Process

Methods for handling uncertainty assessment, uncertainty margin selection, and re-

covery through mitigation actions have been defined. By integrating all of the for-

mulations discussed to this point, a method can be developed by which mitigation

actions are incorporated into the uncertain aircraft conceptual design process. This

new method will be called Aircraft Recovery through Mitigation & Optimization

under Uncertainty for Reliability (ARMOUR) and will be described step-by-step in

Chapter 5. ARMOUR will allow for quantification of the effectiveness of mitigation

actions and supply that information to a decision maker. The designer will be able
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to make better decisions about which designs to select, considering both vehicle per-

formance and two reliability measures: the probability of compliance and the overall

probability of success.

The core uncertainty quantification and management algorithm of ARMOUR is

shown pictorially in Figure 30. The algorithm takes in some setting of the design

variables (𝑥) and uncertainty margins (ℎ). This is fed into a Vehicle Sizing algorithm

along with a desired design range. After the vehicle is sized, this vehicle is fixed and

proceeds on to a Reliability Analysis. The Reliability Analysis takes in the fixed vehi-

cle, distributions on the uncertainty variables (𝑢), and performance constraints (𝑔𝑟𝑒𝑞)

to assess the reliability of the system. Outputs from the Reliability Analysis include

the expected performance of the vehicle (e.g. expected economic range block fuel),

the probability that the design will be compliant with all constraints simultaneously

(𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)), and the set of uncertainty conditions for which the design

fails one or more performance constraints (𝑈𝐹𝑎𝑖𝑙𝑒𝑑). The failed uncertainty conditions

for that design are fed into the Mitigation Analysis, along with the performance con-

straints and the available mitigation actions (𝑚). From this Mitigation Analysis, a

probability of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) will be estimated for that design – the

probability that a design can be made compliant through mitigation actions if it fails

to meet one or more performance constraints. These probabilities are added together

to determine the overall probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) for the design. All

this information is given to a decision-making algorithm –ostensibly, an optimizer–

which can adjust the design variables and uncertainty margins to select a preferred

aircraft based off of expected performance characteristics and reliability goals. Once

the optimum has been found, the design settings and statistical performance of the

selected design are recorded.

Once a design (𝑥) has been selected, the design is fed into a deterministic aircraft

sizing tool, designated as “Vehicle Sizing.” Design assumptions and a design range
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Figure 30: Approach for Conceptual Design under Uncertainty with Mitigation

requirement are also input into the sizing tool. The sizing tool will take this design

information and perform a sizing iteration to balance the fuel requirements of the

aircraft for that design range with the available fuel. After iterating, the analysis will

return a sized vehicle, complemented by detailed aircraft geometry and weights.

The sized vehicle is then “frozen” in terms of the “outer mold line” and overall

size, meaning that the Maximum Takeoff Gross Weight (𝑀𝑇𝑂𝑊 ) and the major

geometric parameters such as areas, spans, etc. will not change. This fixed vehicle

is input into the Reliability Assessment. During this analysis, the uncertainty vari-

ables are sampled for different possible scenarios via some sampling method. For

each uncertainty scenario, the performance analysis code is executed to evaluate the

vehicle’s performance metrics. The performance metrics are compared to any ap-

plicable constraints, and the vehicle is determined to be either compliant with all

constraints or non-compliant. The compliance of the design under this uncertainty

scenario is recorded for each sample, and totaled (𝑢 ∈ 𝐴). Once sampling is complete,

the number of compliant cases is divided by the total number of uncertainty scenarios

considered to determine the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) before

mitigation actions are applied. For each compliant case, appropriate design objective

metric(s) will be returned to the top level optimizer.
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𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ) =
∫︀
𝑢∈𝑈 1𝐴 (𝑥, ℎ, 𝑢) 𝑑𝑢∫︀

𝑢∈𝑈 1𝑑𝑢
(17)

The failed uncertainty scenarios (𝑢 /∈ 𝐴) are then fed into the mitigation analysis.

An optimizer is used to find any available settings of mitigation actions which can

bring a failed scenario back into compliance with all constraints. If a feasible space

is found, the scenario is added to the set of cases which are recoverable (𝑢 ∈ 𝐴𝑀),

then a minimum acceptable level of mitigation actions is located. At this minimum

level of mitigation for the scenario, the design objective metric is recorded for each

successfully recovered scenario for use in the expected design objective calculation. If

no level of mitigation can be found which brings the scenario into compliance with

all constraints, then the scenario is counted as a failure and will not be included in

the recoverable designs (𝑢 /∈ 𝐴𝑀).

The probability that a specific design, 𝑥, can be made recovered to be compliant

with all performance metrics through mitigation actions given that the design is non-

compliant with one or more performance metrics (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) is calculated

via Equation (23).

𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) =
∫︀
𝑢∈𝐴 1𝐴𝑀

(𝑥, ℎ, 𝑢) 𝑑𝑢∫︀
𝑢∈𝐴 (1) 𝑑𝑢

(23)

For every uncertainty scenario where the vehicle is found to be non-compliant,

an internal mitigation assessment will determine whether a level of mitigation ex-

ists, 𝑚𝑚𝑖𝑛, which will bring the vehicle back into compliance with all performance

constraints. If such a level of mitigation can be found, then the scenario is consid-

ered recoverable. Also, if E[𝑚𝑚𝑖𝑛] is not accounted for during the global optimization,

Δ𝐸𝑊 need not necessarily be minimized; thus, the “optimizer” merely needs to make

the case compliant.

The overall probability that a design will be successful considering the possibility of

mitigation (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) is shown in Equation (24) to be equal to the probability
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that the design was compliant without mitigation actions plus the probability that

the design can be recovered through mitigation actions given that the design was

non-compliant multiplied by the probability that the design was non-compliant.

𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ) =𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)

+ 𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) (1− 𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ))
(24)

The expected value of the design objective (E[𝑓(𝑥)]) is calculated by summing

the design objective values for all compliant scenarios with the design objective of

all recovered scenarios and divided by the total number of successful scenarios as in

Equation (25). Non-recoverable scenarios are not considered in this analysis because

their performance is undefined. The design will be penalized for non-recoverable

scenarios through the metric of the overall probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)).

E[𝑓(𝑥)] =
∫︀
𝑢∈𝐴 𝑓 (𝑥, ℎ, 𝑢, 0) 𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

𝑓 (𝑥, ℎ, 𝑢,𝑚) 𝑑𝑢∫︀
𝑢∈𝐴(1)𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

(1)𝑑𝑢
(25)

The probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) along with expected value of the

design objective (E[𝑓 ]) is then provided to the designer and his or her optimization

algorithm for each design (𝑥). An optimizer can then continue to select a new design

vector until it has found a design that yields the best value of the objective function

for a required level of probability of compliance and probability of success.

The inclusion of mitigation actions in the modeling of the conceptual and prelim-

inary design process under uncertainty enables the calculation the overall probability

of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) of a vehicle. This probability of success includes tra-

ditional reliability –the likelihood that a design will be compliant on its own– and

the probability that a design can be recovered through late stage aircraft alterations

dubbed “mitigation actions.” This information is incorporated into a design assess-

ment along with a traditional Reliability-Based Design Optimization objective and

set of constraints. Through an optimizer of the designer’s choosing, a trade-off can

be quantified which allows the decision maker the ability to compare the cost (in
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terms of traditional design objectives) of increasing overall probability of success of a

design.

3.6 Chapter Summary

The beginnings of a methodology have been proposed with the intent of modeling

the reliability of an aircraft design process while accounting for uncertainty which

is reduced after the conceptual design freeze, the impact of uncertainty margins on

this uncertainty, and mitigation actions to recover the design under failed uncer-

tainty scenarios. The sequence of modeling design uncertainty has been established

as modeling the uncertainty variables during performance analysis after vehicle sizing

is completed. A method for including uncertainty margins in the modeling setup

has been proposed with the goal of allowing uncertainty margins to be set in order

to control the probability of compliance of a design. Mitigation actions have been

incorporated into the methodology to allow for the assessment of the recoverability

of failed uncertainty scenarios and to calculate the overall probability of recovery and

probability of success of a given design. A sampling method will be used for reliability

estimation to allow for the querying of individual uncertainty scenarios in order to

accurately determine the probability of recovery. These individual methods are tested

in Chapter 4. Based on the conclusions from that chapter, a step-by-step method-

ology is formulated in Chapter 5 which integrates all of these steps into an overall

methodology and incorporates an optimizer. This formulation will allow a designer to

select aircraft design points during the conceptual design stage with knowledge of the

likelihood that a design will be compliant with all constraints as well as the likelihood

that a design will be recoverable should it fail to meet any performance constraints.
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CHAPTER IV

HYPOTHESES TESTING

In this chapter, two canonical problems are constructed. The canonical problems are

exercised in order to test Hypothesis 1 and 3. Because the two hypotheses address

different parts of the overall methodology, the two canonical problems are developed

independently.

These experiments were formulated to address the hypotheses devised in Chap-

ter 3. Each experiment is intended to address a hypothesis, which will be repeated

during the appropriate section. By evaluating the results of these experiments, the

validity of the hypotheses can be tested. The experiments are designed to test the im-

plementation of uncertainty for reliability assessment, the implementation of margins

as design variables, and recovery through mitigation actions.

Where possible, a canonical problem will be constructed using design equations

available in the collegiate-level literature [2, 75, 78]. Many equations will be necessary

to model all the parts of aircraft sizing, uncertainty quantification, and mitigation

which are needed for the formulation established in Chapter 3. Instead of a single,

large canonical testing apparatus, smaller formulations will be employed to test in-

dividual portions of the thesis. The variables used in the experiment will be listed,

including applicable ranges and how they will be varied in the experiment. These

are designed to allow for maximum transparency into the workings of the proposed

method. Since all equations and their arrangement will be described in detail, recon-

struction and enhancement of this model by future researchers should be straight-

forward.

First, a canonical problem to test Hypothesis 1 is demonstrated. This hypothesis
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deals with the modeling of uncertainty variables in order to emulate conceptual design

uncertainty. To test Hypothesis 1 a sizing algorithm is needed which includes equa-

tions for Operating Empty Weight (OEW) as a function of Maximum Takeoff Weight

(MTOW), mission fuel use equations, and fuel balance equations. Both conceptual

design sizing equations and preliminary design performance analysis equations must

be implemented in order to emulate the process at hand. Additionally, at least one

uncertainty variable is needed, accompanied by affected performance metrics. The

resulting canonical problem is exercised to provide the data required to make a de-

termination of the validity of Hypothesis 1.

A second canonical problem is constructed to test Hypothesis 3. This hypothesis

focuses on the different mitigation actions necessary to account for different uncertain

scenarios. To evaluate the validity of of this hypothesis, performance assessment

equations are necessary for each metric of interest. These equations are inherently

independent of the sizing algorithm. They must take into account any uncertainty

variables as well as any mitigation variables with their associated penalties. Thus,

equations are required which account for at least two responses and a mitigation

action. Based on the equations selected, two uncertainty variables are used. After

accounting for the impact of all variables on the responses, the derived canonical

problem is exercised. The resulting data is used to conclude whether Hypothesis 3 is

accurate.

These simple test beds will inherently be less inclusive than the final implemen-

tation. Their advantage will be in their simplicity and therefore transparency. By

using them to test the formulation proposed in Section 3.5, the mechanics of the for-

mulation can be seen directly and will be easy to track for anyone versed in aircraft

design.

This information is used to determine the correct implementation of the method-

ology described in Chapter 5. The precise method arising from the conclusions from
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these tests is discussed later in Chapter 6.

4.1 Uncertainty Implementation Testing

The examination of the stages of design in Section 2.1.1, the tools used by aircraft

designers in Section 2.1.3, and the types of uncertainty experience in aircraft design

Section 2.2 led to Research Question 1.

Research Question 1 How should aircraft design with uncertainty be

modeled for reliability analysis, accounting for the stages of design?

After Research Question 1 was posed, a thought experiment was discussed in Sec-

tion 3.1. Within that section, the impact of modeling design uncertainty in different

ways was discussed. The implications were considered for modeling under either com-

peting options: sizing uncertainty and performance uncertainty. The logical argument

led to the conclusion that uncertainty needed to be modeled during the performance

analysis stage (after sizing), as indicated in Hypothesis 1.

Hypothesis 1 To emulate the aircraft conceptual and preliminary design

process, uncertainty must be implemented after the sizing of the aircraft

is complete. Modeling uncertainty during sizing will yield incorrect results

for aircraft conceptual design under uncertainty.

However, since many methods already exist which model uncertainty during sizing,

a comparison should be made to the processes used by these existing methods to see

if their application to this problem would yield incorrect results and to quantify any

error.

An experiment is designed to test if the trends of the responses in relation to the

uncertainty variables are the same for both methods of uncertainty implementation.

Uncertainty variables are varied in a controlled way so that the trends between dif-

ferent implementations can be compared directly. The amount to which they differ
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will be quantified. If the trends do not compare favorably, the results between the

two versions will not be consistent, and the extensively researched implementation of

uncertainty during the sizing analysis cannot be used. However, Hypothesis 1 will

be refuted if both of the following conditions are met: the two uncertainty imple-

mentation methods produce similar trends with respect to the constraints, and the

probability of compliance between them is found to be comparable.

4.1.1 Process to be Modeled

To answer the question of how design uncertainty should be modeled, one needs to

examine the aircraft design process, paying particular attention to when decisions

are made and when knowledge is acquired. The aircraft design process described

in Section 2.1 breaks the aircraft design into different stages, specifically conceptual

design, preliminary design, and detailed design. Conceptual design is when the overall

gross parameters of the aircraft are decided. Many parameters are being changed

and by relatively large amounts, so the analysis tools used in this stage need to be

fast and widely-applicable. Because of these constraints on the design tools, they

often have relatively low accuracy, implying high uncertainty. By the end of the

conceptual design stage, gross aircraft parameters like wing geometry, engine thrust,

and maximum takeoff weight have been selected. In later design stages these settings

are frozen and are used as inputs into more detailed tools.

During preliminary design, refinements to the aircraft are made without changing

the gross geometric parameters. Additionally, more detailed analyses are used during

this stage. Quantities which were unknown or approximated can now be refined

through detailed analyses, and their values can be discovered. Thus, the performance

of the vehicle will be better understood.

By acquiring this additional information, it may become apparent that the vehicle

will fail to meet one or more of the performance requirements. If none are failed, the
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design will proceed to later stages and manufacturing. However, if a performance

requirement is not met, the chief engineer will attempt to address the shortfall and

recover performance through any available mitigation actions.

In order to assess the implementation necessary, it will be helpful to examine the

process which is being modeled. A graphic of the process to be modeled is shown

conceptually in Figure 31. The process sequentially proceeds through conceptual de-

sign and preliminary design before transitioning to later stages. In the conceptual

design stage, a design point is selected and a sizing analysis performed. Following this

stage of design, the design is “frozen,” meaning that overall geometric parameters and

maximum loads are expected to remain the same, barring extreme difficulties. The

vehicle then progresses into preliminary design. In this stage, more detailed analyses

are used and more information obtained about the aircraft, leading to refined infor-

mation. This refined information improves the predictive capabilities of performance

assessments. These performance assessments will help the design team learn whether

the vehicle is still in compliance with all necessary performance constraints. If the

design is not compliant, the design team will attempt to mitigate the design to bring

it back into compliance. Following this, the aircraft development will then proceed

to later stages of design.

Figure 31: Process to be Modeled

This process has some important characteristics. Conceptual design occurs first.

Because conceptual design occurs so early in the design process and simplified tools are

often used to make quick decisions, the final quantities of some variables is unknown

at this stage. The uncertainty surrounding these quantities will eventually be reduced

but at a later date. While this uncertainty is still in effect, the aircraft design must be
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selected. Once selected, the aircraft will be sized to its final gross weight and physical

dimensions. Following this, many of the aircraft parameters will be frozen by the end

of the conceptual design stage.

During preliminary design, refinements to the aircraft are made without changing

the gross geometric parameters that were previously frozen. More detailed analyses

are used during this stage. Quantities which were unknown or approximated are now

refined through detailed analyses and their values can now be better determined. As

these values change, the performance of the vehicle will be better understood and will

likely change to some extent.

It is possible that at this stage the changes in previously uncertain parameters

will cause the vehicle performance to fall out of compliance with the performance

constraints. If this is the case, the chief engineer will notice any performance shortfalls

and react to them using all available tools at his or her disposal. Mitigation actions

are an attempt to quantify some of these tools to be able to assess their effectiveness

a priori.

4.1.2 Simplified Implementation

Hypothesis 1 can be tested using a canonical problem constructed with aircraft siz-

ing equations from undergraduate aerospace literature. Since this process will occur

identically for each design, only a single aircraft design will be considered for obser-

vational simplicity. Additionally, only aircraft weights will be evaluated. Thus, only

one uncertain parameter will be examined: empty weight uncertainty (𝑢𝐸𝑊 ). These

simplifications will allow for the process to be evaluated both numerically and sym-

bolically, allowing the reasons for any differences to be investigated more thoroughly.

At the most basic level, the process of sizing an aircraft involves the following

steps [78]. First a maximum takeoff weight (MTOW or 𝑊0) of the vehicle is guessed.

Next, a calculation is performed to estimate the empty weight (𝑊𝐸) or empty weight
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ratio (𝑊𝐸

𝑊0
) of the vehicle based on the class of vehicle, the design variables (𝑥), and

the maximum takeoff weight. This empty weight is used along with other vehicle

weights to determine the resulting vehicle MTOW. These other weights often include

the weight of the crew (𝑊𝐶), the payload including passengers (𝑊𝑃𝐿), and the fuel

(𝑊𝐹 ). The maximum takeoff weight guess is updated based on this new estimate,

usually using some relaxation factor (0 < 𝛼 < 1). An iteration is performed until the

input and output maximum takeoff weights are the same. Once the final MTOW is

determined, the empty weight ratio can be used to calculate the final empty weight

of the resulting vehicle. Rewriting this description as a step-by-step set of directions

yields the process below.

1. Guess a takeoff weight (𝑊𝑔𝑢𝑒𝑠𝑠)

2. Calculate the empty weight ratio (𝑊𝐸/𝑊0)

𝑊𝐸

𝑊0

= 𝑓 (𝑥) (26)

3. Calculate a new takeoff weight (𝑊0)

𝑊0 =
𝑊𝐶 +𝑊𝑃𝐿

1− 𝑊𝐹

𝑊0
− 𝑊𝐸

𝑊0

(27)

4. Update the takeoff weight guess (𝑊𝑔𝑢𝑒𝑠𝑠)

𝑊𝑔𝑢𝑒𝑠𝑠 = 𝛼 *𝑊0 + (1− 𝛼) *𝑊𝑔𝑢𝑒𝑠𝑠 (28)

5. Iterate steps 2-4 until converged

6. Once converged, calculate the vehicle empty weight (𝑊𝐸)

𝑊𝐸 =
𝑊𝐸

𝑊0

*𝑊0 (29)

To proceed with an assessment, an assumed equation will be necessary in place

of Equation (26) for step 2 of the process. A representative empty weight equation

was pulled from Raymer’s undergraduate Aircraft Design book [75]. This equation
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requires some assumed aircraft parameters. The necessary parameters are shown with

their assumed values for a large twin-aisle passenger jet in Table 1. Crew weight is

assumed to be negligible for this quick study.

Table 1: Large Twin-Aisle Aircraft Assumptions

Parameter Variable Value
Aspect Ratio AR 8.81
Thrust-to-Weight T/W 0.3017
Wing Loading W/S 130.6
Maximum Mach Number 𝑀𝑚𝑎𝑥 0.90
Payload Weight (lbs) 𝑊𝑃𝑎𝑦𝑙𝑜𝑎𝑑 63,210
Fuel Weight Ratio 𝑊𝐹𝑢𝑒𝑙/𝑊0 0.4372

Using these assumed values, Equation (26) from Step two can be updated. The

resulting equation for the empty weight ratio can now be calculated as Equation (30).

2. Calculate the empty weight ratio (𝑊𝐸/𝑊0)

𝑊𝐸

𝑊0

=
(︀
0.32 + 0.92 *𝑊−0.13

0

)︀
[75] (30)

The process described above is obviously a greatly simplified version of the air-

craft sizing process. However, it has sufficient granularity to demonstrate the impact

of deciding when to implement uncertain parameters in the design process. The fol-

lowing sections will employ this process to implement uncertainty either before or

after the aircraft has been sized. These results will be compared to each other and

logically compared to the assumed process to be modeled in order to demonstrate

when uncertainty should be modeled for this work.

4.1.2.1 Uncertainty Implemented as Sizing Uncertainty

If the results of aircraft uncertainty can be known before sizing, the aircraft can be

sized with this information. This process is demonstrated visually in Figure 32. The

process shown is constructed based off of Figure 31; however, the uncertainty infor-

mation is applied during the Sizing analysis in conceptual design. This means that
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the aircraft dimensions and overall weights will respond to the uncertainty scenario

encountered. This assumption is frequently used for future technology funding studies

where the aircraft will not enter conceptual design for quite some time.

Figure 32: Uncertainty Implemented as Sizing Uncertainty

This would be equivalent to implementing the uncertainty scenarios into the sizing

mode of a traditional aircraft design tool. To model this in the simplified process

above, the equation for step two, Equation (26), will be modified by including the

uncertainty factor, as shown in Equation (31).

2. Calculate the empty weight ratio (𝑊𝐸/𝑊0)

𝑊𝐸

𝑊0

=
(︀
0.32 + 0.92 *𝑊−0.13

0

)︀
* (1 + 𝑢𝐸𝑊 ) (31)

This will result in the aircraft size being affected by the uncertainty parameters.

Additionally, it should be noted that this is the implied method being used to model

uncertainty if the uncertainty parameters are input directly into a standard aircraft

sizing tool. By incorporating the uncertainty factor before the vehicle is sized, the

maximum takeoff weight (MTOW or 𝑊0) and all resulting parameters (including fuel

weight, thrust, and wing area) will adjust to this new value. This means that an

increase in empty weight will have effects on most other parts of the aircraft rather

than only a direct effect on empty weight. Additionally, the impact of the empty

weight factor will be amplified in the iteration loop, leading to further increases in

empty weight beyond the specified error.
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4.1.2.2 Uncertainty Implemented as Performance Uncertainty

If the values of uncertain parameters are not discovered until after sizing is com-

pleted, sizing is not impacted by the uncertainty scenario. This process is illustrated

in Figure 33. Again, this process is based off the one shown in Figure 31; however,

uncertainty is implemented into the process during the Refined Information stage

of preliminary design. Because sizing has been finished before the uncertainty is

assessed, this process follows a goal of the design process to be modeled in this the-

sis: only one design moves forward from conceptual design, regardless of uncertainty

condition.

Figure 33: Uncertainty Implemented after Aircraft is Sized

Judging based on Figure 33, the process in Section 4.1.2 will need to be modified

by including an uncertainty factor during step 6. This will modify the process above

as shown in Equation (32).

6. Once converged, calculated the vehicle empty weight (𝑊𝐸)

𝑊𝐸 =
𝑊𝐸

𝑊0

*𝑊0* (1 + 𝑢𝐸𝑊 ) (32)

By incorporating the uncertainty factor after the vehicle has been sized, only the

empty weight changes, while the rest of the vehicle remains fixed. This is consistent

with the assumptions of the process to be modeled in Section 2.1. Specifically, the

sizing of the aircraft will be completed and the design frozen before uncertainty is

implemented.
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4.1.3 Uncertainty Implementation Results

Assessing both sets of equations allows from the previous sections allows for a com-

parison between sizing uncertainty and performance uncertainty. Again, it was de-

termined via logical argument in Section 3.1.3 that performance uncertainty will

accurately imitate the design process at the core of this thesis. Since many methods

exist which implement sizing uncertainty, it is hoped (but not expected) that this

process will yield similar results to allow pre-existing methods to be used.

Figure 34 shows that when uncertainty is implemented after sizing, the Maximum

Takeoff Weight of the aircraft does not change. This is consistent with the earlier

assumption that the design will be frozen prior to uncertainty being implemented.

In other words, the uncertain parameters should not have any impact on MTOW.

However, when uncertainty is implemented before the sizing iteration is completed,

the uncertain parameter has a large impact on the MTOW of the vehicle, violating

prior assumptions. This unwanted effect on the gross weight of the vehicle will be felt

in the other assessments. In fact by changing MTOW, the process of implementing

uncertainty before sizing is complete has resulted in different aircraft. Because the

goal of this study is to assess how an individual aircraft, progressing through the

stages of the design process, is affected by the inherent uncertainty in the early stages

of design, this result of different vehicles is completely contradictory to the posed

problem statement.

For this example, the aircraft design assumption was set at the centroid of the

uncertainty space. When implementing sizing uncertainty, the vehicle is sized for the

design range in response to the uncertainty condition. Thus, the vehicle will always

be compliant with range, regardless of the uncertainty scenario. However, when using

performance uncertainty, the vehicle is only compliant with the range requirement 50

percent of the time. It is important to remember that the performance uncertainty

is logically correct, as justified leading up to Hypothesis 1. The fact that sizing
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Figure 34: Change in Maximum Takeoff Weight vs. Empty Weight Factor

uncertainty already differs in behavior from performance uncertainty likely means

that sizing uncertainty cannot be used for the type of design uncertainty this thesis

intends to model.

Figure 35 shows the impact on the Empty Weight of the vehicle by implementing

an empty weight factor either before sizing or after sizing. It is very clear to see that

the two resulting trends are markedly different. By implementing the empty weight

factor before the vehicle is sized, the resulting feedback loop has a dramatic impact

on the size of the vehicle. This is due to the sizing loop creating a completely different

aircraft than the baseline vehicle. Again, this is inconsistent with the assumption from

Section 3.1 that the design will be frozen before the uncertain scenario is realized.

To make a quick estimate of the impact that this difference could have on the

vehicle performance, consider the case of landing approach speed. This parameter is

proportional to the square root of the landing weight of the vehicle. As the landing

weight increases, so does the approach speed. Given that the empty weight is a

significant portion of the landing weight of a vehicle, it can be assumed that this

change in empty weight will have a large effect on the approach speed. For the sake

of a quick analysis, assume that the empty weight accounts for eighty percent of

108



Figure 35: Change in Empty Weight vs. Empty Weight Factor

landing weight and that the other twenty percent will remain constant, regardless of

uncertainty condition. The variability of the sizing uncertainty will cause between a

9.4 percent decrease in approach speed and a 12.5 percent increase. If wing loading

were instead used as a design variable, then the wing area would adjust based on the

maximum takeoff weight seen in Figure 34. This would actually invert the trend of

approach speed with respect to empty weight factor, i.e. lower empty weight factors

would actually increase the approach speed of the aircraft, albeit by a tiny amount

( 0.7%). On the other hand, performance uncertainty would have a small variation

on the approach speed of +/-2 percent. Because performance uncertainty is only

implemented after sizing, this behavior will be the same regardless of whether wing

area or wing loading were used as a design variable.

Once again, the trends of fuel available with respect to the empty weight factor

are very different depending on when uncertainty is implemented in Figure 36. When

the uncertainty is implemented before sizing, the fuel capacity grows alongside the

unintended growth in MTOW. This occurs because the aircraft it being sized to meet

a given range. Thus, no matter what empty weight factor is implemented, the aircraft

will continue to meet its design range. Conversely, if the uncertainty is implemented
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after sizing is complete, the additional empty weight from the uncertainty factor will

eat into the available fuel. This will cause the aircraft to fail to meet range as the

empty weight factor increases.

Figure 36: Change in Fuel Available vs. Empty Weight Factor

This established model allows for more that just trend comparison. If an assumed

distribution on the empty weight factor is input into the model, the variability of the

responses under the two different scenarios can be evaluated. Figure 37 shows the

resulting empty weight distributions based off a normally distributed empty weight

factor. This figure is the same as Figure 35 except for the addition of the uncertainty

distributions. The green distribution along the x-axis shows the input empty weight

factor, indicating the frequency under which each of these weights is assumed to occur.

Along the y-axis are two additional distributions corresponding to the resulting output

distributions of the vehicle empty weight as a percentage of the baseline vehicle empty

weight.

It can be seen from the blue distribution in Figure 37 that including the empty

weight factor during the sizing loop causes a run-away effect on the resulting empty

weight of the vehicle. This is due to the feedback loop inherent in the sizing analysis,

and will cause the resulting aircraft to be resized to ensure it meets range. However,
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Figure 37: Distributions of Empty Weight Change vs. Empty Weight Factor

this is a false benefit! As discussed in the example of Company Z, the empty weight

factor cannot be known at the stage where these decisions are being made. In fact,

the true final empty weight of the vehicle is unknown until well after the design is

frozen at the end of conceptual design and more detailed analyses can take place.

Effectively, placing the empty weight at this stage allows the aircraft to have the

exact amount of weight margin required, even though such information would not

exist. Thus, the resulting blue uncertainty distribution is demonstrably wrong, and

using it will give the designer a false sense of security.

The red distribution, which corresponds to implementing the uncertainty during

performance, yields a empty weight which varies within about plus or minus five

percent of the baseline empty weight. This is consistent with the input empty weight

distribution. Other calculations based on this treatment can actually be trusted,

unlike the trends resulting from implementing the uncertainty distribution during

sizing.
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4.1.4 Conclusions Related to Hypothesis 1

The results derived from this canonical indicate that when modeling the uncertainty

inherent in a conceptual design, uncertainty must be implemented only after the

vehicle has left the sizing loop. This will result in a single, sized aircraft proceeding

through later stages of design. The changes in the aircraft due to uncertain factors are

appropriately scaled. Further, performance responses to the changes arising from the

uncertainty variables will be logically consistent with aircraft performance metrics.

If instead the uncertainty were to be implemented before sizing is complete, as with

sizing uncertainty, the resulting responses will be associated with different physical

designs. In addition to this logical inconsistency with the posed problem statement,

implementing uncertainty before sizing is complete may cause excessive penalties on

responses relating to the empty weight of the vehicle (e.g. approach speed). There will

also be large penalties on responses which are affected by the maximum takeoff weight

of the vehicle like takeoff field length and rate of climb. Additionally concerning is

that uncertainty factors would have no impact on the resulting range of the vehicle,

which would be very nonsensical.

An important caveat to consider is that this thesis is only making statements

about the implementation of the uncertainty during the design process itself. Other

types of studies (e.g. technology forecasting) will have different sources of uncertainty,

different stages in the design process during which uncertainty is reduced, and corre-

spondingly may have different needs with regards to the process needed to accurately

assess those uncertainties. No claims are being made about these other processes

aside from specifically conceptual design uncertainty, which is then reduced not only

after conceptual design freeze but also before metal is cut.
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4.2 Testing the Need for Multiple Mitigation Assessments

The background information within Sections 2.1.2 and 2.2.2 indicated that there was

a need to model mitigation actions within a probabilistic aircraft design process.

Reviewing Section 2.4.3 indicated that no such method exists within the current

literature, leading to Research Question 3.

Research Question 3 How should mitigation be represented in a prob-

abilistic conceptual design model?

The thought experiments in Section 3.3.2 led to Hypothesis 3

Hypothesis 3 It will be necessary to perform a mitigation assessment

for each failed uncertainty outcome to get an accurate determination of

the probability of recovery.

To test this Hypothesis 3, a simplified example problem will be constructed. This

simplified problem must be able to assess the performance of a single aircraft under

multiple uncertainty conditions. In order to do this, the problem must take into ac-

count some performance constraints, and these constraints must be functions of the

selected uncertainty variables. Furthermore, it must be possible to see the perfor-

mance impact on the aircraft due to applying one or more mitigation actions.

In this example, two performance metrics will be considered: the aircraft range

at a design payload and the landing approach speed (𝑉𝐴𝑝𝑝). Range will be assessed

using the Breguet range equation [75]. The approach speed will be estimated using the

aircraft stall speed and appropriate scalar. These equations will form the backbone

of the current analysis.

Two uncertainty variables will be implemented: an empty weight factor (𝑈𝑊 ) and

a cruise drag factor (𝑈𝐷). These should allow for sufficient variation while keeping

the problem simple. The empty weight factor is expected to affect both range and

approach speed performance equations. The drag factor is expected to only impact
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the Breguet range equation. Any possible impacts from the drag factor on the low

speed aerodynamics of the aircraft (and therefore on approach speed) are expected

to be negligible.

Only a single mitigation action will be considered: a post-sizing fuel increase with

an associated penalty. This mitigation action is intended to improve the aircraft range

in the case where this constraint is violated. The addition of extra fuel to the aircraft

will directly affect the aircraft’s maximum takeoff weight (MTOW) beyond the initial

size to which the vehicle was designed. An associated penalty will be imposed on

the vehicle empty weight to account for the added structure necessary to carry the

extra load. This penalty is expected to increase faster as the additional fuel weight

increases; eventually the penalty will restrict the mitigation action’s effectiveness at

recovering range. Further, this it is expected that the penalty on this mitigation

action will have an adverse effect on the aircraft’s approach speed performance.

4.2.1 Constraints Imposed

The two performance metrics used in this example problem are the final approach

speed of the vehicle during landing (𝑉𝐴𝑝𝑝) and the aircraft’s range for a flight at a

fixed payload condition (𝑅𝑎𝑛𝑔𝑒).

For the purposes of regulation, the approach speed (𝑉𝐴𝑝𝑝) of a vehicle, the speed

just before landing, is calculated as 1.3 times the stall speed of the airplane [75]. The

stall speed can be calculated as show in Equation (33).

𝑉𝑠𝑡𝑎𝑙𝑙 =

√︃
2

𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔

𝑆

1

𝐶𝐿𝑚𝑎𝑥

[75] (33)

Using this Equation (33) for the stall speed, the approach speed of the aircraft

can be calculated using Equation (33).

𝑉𝐴𝑝𝑝 = 1.3 * 𝑉𝑠𝑡𝑎𝑙𝑙 = 1.3

√︃
2

𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔

𝑆

1

𝐶𝐿𝑚𝑎𝑥

(34)
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This equation shows that stall speed is a function of the landing weight of the

vehicle, its wing area, the local air density, and maximum lift coefficient of the vehicle.

For the purposes of this example, it is assumed that the local air density (𝜌) is

constant. Additionally, the wing area (𝑆) and maximum lift coefficient (𝐶𝐿𝑚𝑎𝑥) will

have been set during conceptual design and thus will not change in this example.

Only the landing weight (𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔) will be affected during this experiment.

The Breguet range equation demonstrated in Equation (35) calculates the distance

an aircraft can fly during its cruise segment.

𝑅 =
𝑉

𝐶𝑡

(︂
𝐿

𝐷

)︂
ln

(︂
𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︂
[75] (35)

The equation assumes that the aircraft will fly at a fixed speed (𝑉 ) and lift-to-

drag ratio
(︀
𝐿
𝐷

)︀
, optimizing altitude as the weight of the vehicle changes. The fuel

consumption (𝐶𝑡) of the engine is assumed to be constant throughout the cruise

segment. The equation is also dependent on the ratio of the initial cruise weight to

the final cruise weight
(︁

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁
, indicating how much fuel is consumed during flight.

The mathematics used to generate the following charts distract from the purpose

of the discussion and have been omitted. Instead, the discussion here will focus on

the main effects and the logic behind the expected behavior. If a detailed exam-

ination of the underlying mathematics is desired, the detailed equations employed

(Equation (54) through Equation (127)) are located in Appendix A. Two uncertainty

variables will be considered in this example: empty weight uncertainty (𝑈𝐸𝑊 ) and

drag uncertainty (𝑈𝐷𝑟𝑎𝑔). While the mathematical details are not discussed here, it

will be necessary to at least consider the impacts that these uncertainty variables will

have on the considered performance metrics.

An uncertainty scenario with high empty weight will result in a decrease in the

amount of the vehicle which can be used for fuel. This reduced fuel load at takeoff

will reduce the fuel fraction available to be used during cruise. As can be seen in

Equation (35), reducing the fuel fraction in cruise will result in a decrease in the
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vehicle range, degrading its performance. A high empty weight will also increase the

landing weight of the vehicle. This increase in landing weight will have a direct impact

on Equation (34) and will increase the approach speed of the aircraft, degrading its

performance.

Constraints are imposed on both range and the approach speed of the vehicle.

These constraints will need to be active for this demonstration because without active

constraints all uncertainty scenarios will be considered compliant and will not need

any mitigation actions. Since the constraints must be set such that each will be active

for at least some part of the uncertainty space, the required levels of performance will

be very close to the performance of the aircraft at the centroid of the uncertainty space

(𝑈𝐸𝑊 = 0, 𝑈𝐷𝑟𝑎𝑔 = 0). For this demonstration, the centroid will also be considered

to be the design condition of the aircraft. Correspondingly, this vehicle will have a

somewhat low probability of compliance, yielding more space to explore for potential

mitigation actions. This would be undesirable in a real world scenario, but it is ideal

for this test.

All performance characteristics will be normalized about the performance at this

centroid. Thus, constraint values close to unity will be selected. Based off some

initial testing of the behavior of these equations, constraints were derived. A range

constraint of not less than 90 percent of the design range will be imposed on the

uncertainty space. Additionally, approach speed will not be allowed to exceed 104

percent of the design approach speed. One mitigation action will be available to

recover the aircraft if it should fail to meet the range constraint: a post-sizing fuel

addition.

The mitigation action will be a post-sizing fuel addition. This additional fuel will

be intended to increase the fuel weight fraction during cruise seen in Equation (35) to

increase the resulting range of the vehicle and hopefully bring it back into compliance

with the range requirement. This additional fuel will have a detrimental effect on
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the aircraft. The extra fuel will increase the maximum takeoff weight beyond the

weight for which the aircraft was designed, and additional structural weight may be

necessary to account for this added load. Thus, an empty weight penalty will be

imposed on this mitigation action. This additional empty weight will have a direct

impact on the landing weight of the vehicle, degrading the approach speed while the

mitigation action attempts to improve range.

Figure 38 shows the uncertainty space associated with these equations, represent-

ing a single design. The x-axis shows the empty weight uncertainty variable (𝑈𝑊 )

versus the drag uncertainty variable (𝑈𝐷) on the y-axis. Constraints were imposed

on aircraft design range (%𝑅𝑎𝑛𝑔𝑒) and approach speed (%𝑉 𝑎𝑝𝑝). The vehicle will

violate the range constraint within the blue region. The vehicle will violate the ap-

proach speed constraint whenever the uncertainty condition is within the red region.

In the purple region, both constraints are violated.

Figure 38: Uncertainty Space for Hypothesis 3 Test

At this stage, no mitigation actions have been imposed. Thus, Figure 38 shows

the probability of compliance of the aircraft and as of yet says nothing about the

ability to recover the vehicle if it should fail any constraint(s).
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4.2.2 Mitigation Assessment Results

Figure 39 shows both the uncertainty and mitigation spaces of the design. On the

left, two uncertainty variables –weight and drag– are plotted against each other. The

range constraint is violated by any uncertainty scenario on the blue region while the

approach speed constraint is violated in the red region. For this set of charts, a specific

uncertainty scenario is evaluated at high drag, shown by the circle. The right chart

shows the mitigation space available for the design under this uncertain scenario. The

mitigation action imposed on the aircraft increases along the y-axis (with the x-axis

being a dummy variable). No mitigation action has yet been imposed.

(a) Uncertainty Space (b) Mitigation Space

Figure 39: Uncertainty and Mitigation Spaces

Looking at the mitigation space on the right of Figure 39, it is apparent that low

values of mitigation action will cause the design range constraint to be violated. This

fits with the knowledge that the same constraint is violated in the uncertainty space

on the left. The position of the constraints within the mitigation space shows that

any increase 𝑀𝑓𝑢𝑒𝑙 over about 30 percent of what is available will be sufficient to

recover the vehicle and allow it to meet all constraints. Next, the impact of selecting

that level of mitigation action is investigated.

Figure 40 shows the implementation of a level of mitigation action determined

from Figure 39. Implementing this level of mitigation action in the mitigation space
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on the right shows that the vehicle should now be compliant with all constraints under

the previously selected uncertainty condition. Indeed, after imposing the mitigation

action, shown by the circle on the right, an investigation of the uncertainty space

on the left demonstrates that both constraints have moved due to the impact of

the imposed level of mitigation. The range constraint in blue has been alleviated,

allowing for the uncertainty scenario in question to be brought back into compliance.

The approach speed constraint in red now covers additional uncertainty scenarios, but

since the selected uncertainty scenario was not affected, this condition is considered

recoverable through the available mitigation actions.

(a) Uncertainty Space (b) Mitigation Space

Figure 40: Uncertainty and Mitigation Spaces with Mitigation Applied

It should be noted from Figure 40 that the mitigation action applied also raised

the approach speed of the vehicle, degrading the performance with respect to the

𝑉𝑎𝑝𝑝 constraint. This is demonstrated by the 𝑉𝑎𝑝𝑝 constraint line moving to encom-

pass more of the uncertainty space. This negative effect was expected based on the

equations in Appendix A and the earlier discussion. Since the constraint has not be-

come active for this uncertainty scenario, it is of little direct consequence at this time.

However, the behavior should be noted because it will be a concern when considering

the mitigation action to apply in other uncertainty scenarios.

This example has shown that the individual uncertainty scenario considered can

be recovered through mitigation actions. However, this is insufficient to determine the
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overall probability of recovery for the entire design. Indeed, each of the uncertainty

scenarios which fails to the constraints must be examined to evaluate the probability

of recovery. To build up to that, it will be helpful to show the resulting mitigation

space when considering a few other uncertainty scenarios.

A different uncertainty scenario is selected for Figure 41. In this case, it can be

seen on the left side of the chart that the empty weight (𝑈𝐸𝑊 ) has increased from

the design condition but the drag (𝑈𝐷𝑟𝑎𝑔) remains at the design condition. This time

range is slightly activated about as much as in the original uncertainty scenario. The

approach speed constraint is also very close to be activated. On the right side of

the chart, the mitigation space can be observed. Once again, range is violated but

a small amount of mitigation will recover the design, corresponding to about the

same amount of mitigation as in the original scenario. However, unlike the original

scenario, the approach speed constraint will become active if too much mitigation

is applied, meaning that the scenario will not be recovered. Selecting the specific

mitigation action necessary will recover the design and move the constraints in the

uncertainty space, but this behavior is not shown for brevity.

(a) Scenario 2 Uncertainty Space (b) Scenario 2 Mitigation Space

Figure 41: Uncertainty and Mitigation Spaces for Scenario 2

Yet another uncertainty scenario is selected for Figure 42. In this scenario an

empty weight (𝑈𝐸𝑊 ) and drag condition (𝑈𝐷𝑟𝑎𝑔) were selected in between the previous

scenarios. For this condition, the range constraint is once again violated, this time
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by a large amount. The approach speed constraint is close to being activated, but

not so much so as in Scenario 2. Examining the mitigation space on the right side

of the chart reveals that a high level of mitigation is required to recover performance

for this uncertainty scenario. Further, the approach speed constraint will activate if

too much mitigation is applied, so care must be taken to apply the correct level of

mitigation. Selecting this level of mitigation will recover the design and move the

constraints in the uncertainty space.

(a) Scenario 3 Uncertainty Space (b) Scenario 3 Mitigation Space

Figure 42: Uncertainty and Mitigation Spaces for Scenario 3

From the three different scenarios in Figures 40 to 42, distinct behaviors can be

seen which are relevant to this work. Even for the same design, different minimum

levels of a single mitigation action may need to be applied to recover the vehicle’s

performance, depending on the uncertainty scenario. Furthermore, a maximum level

of mitigation action can be imposed. This prevents the trivial optimization of simply

applying the maximum accepted range of the mitigation action to test for recovery.

As mentioned before, to accurately determine the probabilities of recovery and

overall success, all the uncertainty conditions must investigated. Doing so allows for

the creation of Figure 43, which illustrates whether scenarios were compliant, recov-

ered, or completely failed. The points shown in blue are those which are compliant

with all constraints without any need for mitigation action. These uncertainty scenar-

ios contribute to the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) of the design.
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For all the other uncertainty conditions, the mitigation space was investigated inde-

pendently for each uncertainty scenario to determine if a mitigation action existed

which would bring the vehicle back into compliance with the imposed constraints. If

a mitigation action could be found which improved the vehicle performance enough

to meet all constraints, the uncertainty scenario was then colored green. These green

uncertainty scenarios contribute to the probability of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) of

the design. If, while investigating an uncertainty scenario, a mitigation action could

not be found which could bring the vehicle’s performance into compliance with all

of the constraints simultaneously, then this scenario is considered to be failed and is

colored in red. These failed conditions indicate an uncertainty scenario in which not

only does the vehicle fall out of compliance due to the lack of knowledge present in

conceptual design but also that the full set of possible mitigation actions considered

to fix a vehicle during preliminary design were insufficient to recover that design’s

performance to an acceptable level.

Figure 43: Uncertainty Space Showing Failed, Recovered, and Compliant Scenarios
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This simplified problem already shows the necessity for multiple mitigation action

settings to determine the probability of recovery. This observation lends weight to

Hypothesis 3. Potential interactions like the ones observed here will only increase

with the addition of more uncertainty variables, performance constraints, mitigation

actions, and penalties on the mitigation actions. Therefore, a method will be needed

which appropriately selects a level of mitigation action based not only on the design

variables but also on the uncertainty scenario under which constraints were violated.

As a corollary the support for Hypothesis 3 indicates that when considering re-

covery through mitigation action, some reliability assessment method must be used

which allows for querying of the specific scenarios within the uncertainty space. This

directly answers Research Question 4 for the proper implementation of this method-

ology.

4.3 Chapter Summary

In this chapter, two canonical problems were constructed in order to test Hypothesis 1

and 3. Each problem was developed to meet the needs of the individual hypothesis

being tested. It was then exercised in order to construct the data required to test

the hypothesis. The results of the canonical problems posed in this chapter lend evi-

dence to support Hypothesis 1 and 3. Thus, the implementation of the methodology

described in Chapter 5 can be finalized. The details of the resulting implementation

is discussed in Chapter 6.
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CHAPTER V

FORMULATION

In this chapter, a step-by-step methodology is developed to implement the uncertainty

quantification and management algorithm established in Chapter 3. This method-

ology will bring together uncertainty, reliability requirements, and optimization as

commonly found in Reliability-Based Design Optimization (RBDO) methodologies.

The methodology will also include the ability to recover design with mitigation ac-

tions, and the ability to set appropriate margins to achieve reliability targets will

be integrated. Finally, the method will include appropriate treatment of the stages

of aircraft design, specifically ensuring that minimal information and analyses are

required from later design stages. The method which integrates all of these steps is

dubbed the Aircraft Recovery through Mitigation & Optimization under Uncertainty

for Reliability (ARMOUR).

Rather than formulating a completely new process, the ARMOUR methodology

will build on a commonly accepted aircraft design decision making process shown

in the center column of Figure 44, which forms the core of Integrated Product and

Process Design (IPPD). This design decision support process can then be augmented

to fit the particular needs of the example problem. Its steps assume very little about

the design, meaning the process is flexible. This makes it an ideal formulation on

which to build the ARMOUR methodology.

The ARMOUR methodology will be broken down into ten steps, as illustrated

in Figure 45. Each of these steps corresponds to a particular step of the IPPD

decision support process. First, the design team must establish the need for the

design as well as the need for the ARMOUR methodology. Next, the team defines
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Figure 44: IPPD Methodology at Georgia Tech [55]

Figure 45: Method Steps Mapped to IPPD Decision Process
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the requirements placed on the aircraft, including appropriate performance metrics.

Uncertainty information applicable to this design must then be elicited, and potential

mitigation actions must next be defined. Next, the team must select performance

and reliability objectives, after which an appropriate design space for the aircraft

needs to be established. An aircraft model may need to be created, or an existing

one may require modification to include all necessary variables. Surrogate models

are then constructed from these physics-based models. An uncertainty quantification

and management environment is constructed based on the discussion from Chapter 3.

Finally, this environment is executed to give information to the designers and help

to select an appropriate design. The specific processes for of each of these steps are

described in the following sections of this chapter.

5.1 Step 1: Establish the Need

It is assumed that management has decided that a new design or at least a design

study is required. A significant process including market research, financial assess-

ments, company design capability assessments, and other factors is often involved in

making this portion of the decision; this process is beyond the scope of this thesis.

Instead, the need that must be established at this juncture is whether or not the

ARMOUR method is required to assess the conceptual design of the new aircraft.

Figure 46 shows a flowchart of the questions which must be evaluated in order to

determine whether ARMOUR is appropriate.

First, for any reliability-based method to add value, some uncertainty must be

present in the design tools. If these tools are perfectly accurate, then any uncertainty

assessment method will be unnecessary and a deterministic assessment should instead

be used. It is likely that any design team which believes its conceptual design tools

to be significantly accurate is naively optimistic.

For ARMOUR to be appropriate, the design process should also be one which will
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Figure 46: Establishing the Need Flowchart

take significant development time. Specifically, there must be time in the develop-

ment schedule for some form of corrective action to occur if a performance constraint

violation occurs during later design. If instead the design is under a very short de-

velopment cycle (e.g. component design processes), or if the uncertain results remain

unknown until after the design is completely fixed, ARMOUR is not required. In

that case, a traditional Reliability-Based Design Optimization method discussed in

Section 2.4 would be sufficient.

Some part of the design is expected to be fixed or “frozen” before the uncertainty

is fully reduced. This means that the design team will not be able to readjust the full

set of design variables during the period in which uncertain results are realized. If a

full redesign is possible, even some penalty is associated with doing so, then Stochastic

Programming with Recourse discussed in Section 2.3.3 is a more appropriate method.

Finally, it is assumed that later detailed design decisions are too expensive to be

sufficiently assessed during the aircraft’s conceptual design. These detailed analyses
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are often relegated to later stages of the aircraft design process because of the amount

of time and personnel required to implement them. Instead, if the required tools are

relatively simple to execute and sufficient time exists to run these tools for a large set

of design points, then Multi-Stage Reliability-Based Design Optimization discussed

in Section 2.3.4 would be a better choice.

If all of these conditions are met, then Aircraft Recovery through Mitigation &

Optimization under Uncertainty for Reliability (ARMOUR) is recommended.

5.2 Step 2: Aircraft Requirements Definition

A design architecture should be selected for the aircraft. Additionally, a design mis-

sion must be selected for the conceptual aircraft sizing tools. Any additional perfor-

mance requirements should also be specified along with any constraints which will be

imposed on the vehicle. These constraints may take the form of federal guidelines,

airport compliance requirements, or point performance objectives. Alternately, these

may be internal constraints or desires relayed by potential customers.

5.3 Step 3: Elicit Uncertainty Information

One key aspect at this stage is to determine what uncertainty exists within the current

available models and what variables can be used to represent those uncertainties.

Since ARMOUR’s purpose is to design based on the effects of uncertainty, appropriate

variables must be selected to represent uncertain parameters in order to emulate

uncertainty in the aircraft design process. Aircraft design principles are examined to

determine which variables to use. It is expected that a new design will be subject to

a great deal of uncertainty.

Many sources of uncertainty exist during the conceptual design of a new aircraft.

It is possible that component weights will be misjudged during conceptual design be-

cause insufficient structural analyses are performed that cannot accurately determine

the final weights. The assumed vehicle drag characteristics may be inaccurate until
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the final wing, body, and tail have been developed and all extrusions are accounted

for. If the engine is still in development, the aircraft design company may not be

fully confident in the engine’s performance because the system will be provided by a

separate company which they have no direct control over.

These sources of uncertainty can be emulated through many different variables and

in different ways within an aircraft model. Obvious candidates to emulate uncertainty

include common model tuning parameters like aircraft component weights, vehicle

drag polars, engine fuel flow, and low speed lift capabilities.

Additionally, the amount of uncertainty will eventually need to be determined to

construct distributions around these variables. This information may not be easy

to obtain. In fact, there are entire fields devoted to this subject; one in particular

is Structured Expert Judgement. Early on it is most important to determine which

variables will be used to model the uncertainty. It is not strictly necessary to obtain

the true distributions. The ranges of the uncertainty variables are not required until

Step 8: Create Surrogate Models, and the distributions themselves are not needed

until the creation of the Uncertainty Quantification & Management Environment in

Step 8.

It is also important to consider whether the physics of the problem indicate that

the responses selected during Step 2 will be affected by the sources of uncertainty

designated herein. If it is determined that the source of uncertainty does not affect

any of the responses, then further assessment is warranted. Either an implied response

of interest was missed during Step 2 or the source of uncertainty is not relevant to

the current problem and should be excluded.

5.4 Step 4: Define Potential Mitigation Actions

Mitigation actions must be constructed such that they can be modeled and analyzed.

Acceptable mitigation actions which can be implemented during later design stages
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should be selected; if this is not the case, these actions will violate the requirement

that design is frozen. These mitigation actions should be designed to address possible

constraint violations in some manner. The constraints which may be violated can be

anticipated based on the aircraft performance responses and the uncertainty effects

being modeled.

It is important to remember that the mitigation actions modeled should repre-

sent actions which the company’s design philosophy will allow. These mitigation

actions will likely represent design changes which are not desirable except as a recov-

ery capability to maintain compliance with constraints. Appropriate limits must be

determined for the mitigation actions. These limits can be in the form of physical or

performance limits on the aircraft or ideological limits imposed by the design team

or company.

Secondary effects of the mitigation actions must also be considered at this stage.

It is reasonable to assume that any imposed mitigation actions will have some form

of detrimental effect on the aircraft. For example, any mitigation action which would

impose additional loads on the aircraft would likely increase the stresses on the struc-

ture. It would be reasonable to expect that an increase in stresses would require some

additional structure, increasing the weight and negatively impacting vehicle perfor-

mance. It is important to consider such secondary effects or penalties as they may

limit the range of applicability of the mitigation action and/or cause other constraints

to be violated, a condition which would be very detrimental if missed.

5.5 Step 5: Select Performance and Reliability Objectives

At this point the optimization objective should be determined. This parameter will

be dependent on the philosophies and desires of the company or designer making

the vehicle selection. Generally speaking, a company will want to maximize the

expected potential return on investment of the aircraft or, barring that, to minimize
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the expected operating cost of the aircraft and make the vehicle more competitive.

Many possible objective functions exist within the literature.

Reliability requirements should also be selected at this point. A minimum thresh-

old on the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) of the design should be

specified, as this measure indicates the likelihood that the design will meet all perfor-

mance constraints without any mitigation and is also functionally equivalent to the re-

liability measure from RBDO. A goal for the probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ))

should also be defined to indicate the total likelihood that a selected design will meet

all performance constraints when accounting for both uncertainty effects and possible

mitigation actions.

Additionally, reliability requirements can be imposed for individual constraints as

discussed in [60]. Implementing these individual reliabilities is straightforward for the

compliance stage of the analysis. If individual constraint reliability goals are desired

for the mitigation stage, then the mitigation action implementation may need to be

modified. This is discussed at a conceptual level in Section 3.5 but is not implemented

in this work.

5.6 Step 6: Establish Design Space

To emulate the many aspects of the problem established in Chapter 3, it is necessary to

model a wide variety of variables. Aircraft conceptual design variables are necessary to

select a design, since these are the only variables which will be available to a designer.

Included in these design variables are uncertainty margins: additional controls to

which a designer also has access. Ranges must be established for each of the design

variables listed in Step 2.

In order to simulate a new conceptual design of an aircraft, appropriate high-

level variables must be selected to change the vehicle’s configuration. These variables

should have enough influence on the performance of the design that their effects

131



are not completely dominated by the effects of the uncertainty variables. Clearly, if

the uncertainty variables are dominant, the design process will be largely irrelevant

because it is unlikely that a design will exist which can meet a desired level of relia-

bility. Thus representative variables with a large impact on the design’s performance

are required.

5.7 Step 7: Create Aircraft Model

As described in Section 6.2, the physics-based aircraft assessment model has specific

needs that must be met to properly assess design uncertainty and recovery through

mitigation actions. These models are assumed to be aircraft analysis codes appro-

priate for the conceptual design stage of aircraft development and may have been

selected prior to identification of the ARMOUR method for use in this design. The

selected toolset must have the ability to model aircraft sizing and aircraft performance

as separate conditions. Furthermore, the selection of engine design parameters indi-

cates that an engine analysis tool is necessary. The detailed description of the engine

throttle push mitigation action in Section 6.4.3 also indicates a need for an engine

assessment capability beyond basic engine design.

As mentioned previously the aircraft analysis code must be capable of both sizing

the vehicle and conducting the performance analysis stages described in Section 2.1.3.

These stages must be executed in the order described in Hypothesis 1 for this assess-

ment to accurately model the process of aircraft design under uncertainty. The toolset

needs to model all desired design variables, accounting for at least gross aircraft-level

design variables, some engine-related design variables, some wing-related design vari-

ables, and some uncertainty margins during sizing. During performance analysis, the

tool must be capable of accepting a frozen aircraft and assessing the performance of

that aircraft without resizing while under the effect of different uncertainty variables.

Based on the response to Research Question 4 in Section 4.2.2, the tool must also be
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capable of assessing uncertain scenarios individually. The selected analysis tools need

to account for all variables selected in Step 2, 3, 4, and 5. They must also be capable

of modeling the sequence of analyses described by Figure 48. The performance analy-

sis must also be capable of including the mitigation actions defined in Section 6.4. Of

course whatever model is developed needs to return the performance responses from

Section 6.2, so that the impact of all the design, uncertain, and mitigation variables

on the performance of the vehicle can be measured.

The toolset needs to model all desired design variables, accounting for at least gross

aircraft-level design variables, some engine-related design variables, some wing-related

design variables, and some uncertainty margins during sizing. During performance

analysis, the tool must be capable of accepting a frozen aircraft and assessing the

performance of that aircraft while under the effect of different uncertainty variables.

Based on the response to Research Question 4 in Section 4.2.2 the tool must also be

capable of assessing uncertain scenarios individually.

Figure 47 illustrates the process which needs to be modeled to generate data

useful to the ARMOUR method. First, the model takes in a Design Point: a specific

setting of design variables (𝑥) and uncertainty margins (ℎ) around which the aircraft

will be sized. The sizing process must compute an aircraft design that matches those

parameters and for which the various weight components of the aircraft balance. This

defined aircraft, known as a Fixed Vehicle, will now have its performance computed

and be input into later analyses.

The fixed vehicle output from the sizing module is frozen, meaning that its di-

mensions and overall maximum weights can no longer be intentionally changed by

the designer or conceptual design code. At this point the uncertainty margins (ℎ)

implemented during sizing are removed from the vehicle. The rationalization behind

this step is discussed in detail in Section 3.2.

Once the margins have been removed from the fixed vehicle, a specific uncertainty
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Figure 47: Model Performance Logic

scenario (𝑢) will be assessed. This uncertainty assessment means that the physical

dimensions of the frozen vehicle remain fixed, but the non-fixed performance results

change according to the specific values associated with the uncertainty scenario. 1 The

performance responses from the aircraft analysis are then recorded. These responses

will be functions of the design variables (𝑥), the margins (ℎ), and the uncertainty

scenario investigated (𝑢).

Next, the Design of Experiments provides a level for each of the mitigation actions

(𝑚). These mitigation action settings are implemented on the fixed vehicle model. A

fixed aircraft performance analysis is executed to evaluate the response behavior after

the mitigation actions have been implemented. Finally, the mitigated performance

responses are recorded. These responses are functions of all input parameters to the

model, including the mitigation actions and penalties.

1Recall that the reason for assessing the uncertainty scenario for the fixed vehicle is that this
process simulates a true design process. In the real world, at the point in time when the uncertain
design parameters become known, the company has already committed to the physical dimensions
of the aircraft.
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5.8 Step 8: Create Surrogate Models

The uncertainty quantification & management environment described in Step 9 re-

quires a large number of function calls to assess the probabilities of compliance and

success of an individual design. The reliability analysis alone requires so many func-

tion calls that multiple methods have been explored to reduce this number at the

expense of some accuracy, as discussed in Section 2.4. The addition of the Mitigation

Analysis step to assess the probability of recovery of a design will necessitate even

more function calls. Even with a fast aircraft analysis code which could evaluate a

design in one second, the compliance assessment of an individual design alone could

easily take over an hour, making optimization prohibitive. Adding in the mitigation

analysis will cause the number of evaluations to grow even larger because multiple

assessments will need to be made for each failed uncertainty scenario to determine

if mitigation actions can bring the aircraft back into compliance. At one second per

function call, the total analysis time to assess the compliance and recovery of a single

design could feasibly take over ten hours, eliminating the possibility of any reasonable

design optimization.

Due to the large number of function calls needed, using design codes directly will

be too time-consuming to obtain useful information for this proof of concept study.

Instead, surrogate models of these design tools will be developed. These surrogate

models will be input into the uncertainty quantification algorithm developed in Step

9 in place of the sizing and performance analyses. This will alleviate issues related

to the speed of the aircraft assessment capability. Surrogates will be created from

the data generated by executing the aircraft sizing and analysis tool. The surrogates

will emulate performance responses seen in the aircraft design tool as functions of the

full set of design, uncertainty, and mitigation variables over a very limited range of

application.
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In order to create the data needed for the surrogate models, a Design of Experi-

ments (DoE) must be constructed. This will be input into the deterministic aircraft

sizing and analysis code described in Step 7. For each case in the Design of Experi-

ments, the deterministic model must be executed and the aircraft performance must

be recorded. This performance data along with the DoE will be used as the dataset

to generate the surrogate models.

The type of DoE constructed will depend on the type of surrogate models gener-

ated. It is recommended that the reader consult Section 2.6 and relevant surrogate

modeling methods to determine an appropriate Design of Experiments for his or her

problem [9, 17, 21, 37, 45, 61, 81]. Furthermore, each type of surrogate model will

potentially necessitate different model generation techniques. It is suggested that the

reader investigate the literature on the particular surrogate modeling method desired

to determine how to generate that type of model.

5.9 Step 9: Create Uncertainty Quantification & Manage-
ment Environment

The uncertainty quantification and management environment created here is the crux

of the ARMOUR method, so this step is broken into multiple sections. This UQ&M

environment assembles the full set of data at the top level. It defines variable ranges,

constraints, and mitigation penalties. Probability of compliance and probability of

success goals may be defined by the user at this time. After the basics are established,

a global optimizer is executed to find an ideal design point, given the defined prob-

ability goals and the objective function. For each design assessed by the optimizer,

sub processes execute to assess the statistical metrics of probability of compliance,

probability of success, and the expected value of the objective function.

The overall algorithm will follow the flow of Figure 48. Before the main uncer-

tainty quantification and management algorithm from Figure 30 is implemented, a
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set of initial setup steps must be performed. First, all design variables (𝑥), uncer-

tainty margins (ℎ), uncertainty variables (𝑢), and mitigation variables (𝑚) must be

defined. The ranges for all of these variables are also defined at this stage, as de-

scribed in Section 6.6. Additionally, the target design range (𝑅𝐷𝑒𝑠) of the aircraft

is specified. All of these variables, excluding the design range, are structured into

a series of cases called a Design of Experiments (DoE) in Section 6.8. The Design

of Experiments will contain values for each of the different variables established in

the previous step for each case in the design. These values will inform the aircraft

and engine design analyses through the design variables, the uncertainty margins, an

uncertainty scenario, and a level of mitigation action to apply. A detailed aircraft

and engine code capable of both sizing and performance will execute the DoE cases

and determine the resulting aircraft’s performance in Section 6.7. Surrogate models

of these performance metrics were generated in Step 8 which creates a set of functions

relating the performance of the metric to the values of each of the different variables.

Figure 48: ARMOUR Methodology
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Once this initial setup is complete, the algorithm takes in a starting aircraft design

(Shown as ‘Initial 𝑥, ℎ’ in Figure 48). This initial design will contain settings for all

design variables (𝑥) and uncertainty margins (ℎ) established in Section 6.6. This

design point will be input into the aircraft Vehicle Sizing algorithm described in

Section 5.9.2. Using the design range (𝑅𝑑𝑒𝑠) as the sizing condition, the Vehicle Sizing

algorithm will create and output a sized Fixed Vehicle corresponding to the input

design variable and uncertainty margin settings. Aside from explicitly designated

changes due to uncertainty or mitigation variables, this vehicle’s design variables must

be frozen as-is within later analyses. This requirement has multiple consequences, and

they are discussed in Section 5.7.

The now Fixed Vehicle is input into the Reliability Analysis which will assess the

overall probability of compliance of the vehicle as detailed in Section 5.9.3. The Reli-

ability Analysis takes in the vehicle performance constraints (𝑔𝑟𝑒𝑞) and distributions

on the uncertainty variables (𝑢). The aircraft performance will then be evaluated for

each point in a set of uncertainty scenarios; the uncertainty scenarios will be generated

by using a sampling method to draw from the input distributions of the uncertainty

variables. The performance of the Fixed Vehicle under each uncertainty scenario is

then compared to the performance constraints; under each scenario the Fixed Vehicle

will either meet all constraints or fail to meet one or more constraints. This dataset

is then used to assess the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) of the

vehicle as well as the expected value of the objective function (E[𝑓(𝑥, ℎ)]). This data

will later be processed by the optimizer. The uncertainty scenarios which cause the

Fixed Vehicle to fail to meet one or more performance constraints are stored as failed

uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑) to be input into the Mitigation Analysis.

The Mitigation Analysis described in Section 5.9.4 determines the probability of

recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) of the Fixed Vehicle. The failed uncertainty scenarios

(𝑈𝐹𝑎𝑖𝑙𝑒𝑑) from the Reliability Analysis are input into the Mitigation Analysis along
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with the performance constraints (𝑔𝑟𝑒𝑞) and the possible mitigation actions (𝑚). This

Mitigation Analysis will assess the recovery of the Fixed Vehicle under each of the

failed uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑) by attempting to find any combination of mit-

igation actions which will bring the design back into compliance for that scenario,

indicated by Equation (19). By assessing all failed uncertainty scenarios, the proba-

bility of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) of the Fixed Vehicle can be calculated and is

output from the Mitigation Analysis.

The outputs of the Reliability Analysis and the Mitigation Analysis are brought

together to calculate the overall probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) of the de-

sign. This metric represents the likelihood that the aircraft design (𝑥 and ℎ) will

be compliant with all performance constraints (𝑔𝑟𝑒𝑞) given the distributions of the

uncertainty variables (𝑢) and the available mitigation actions (𝑚) that are available

should the unmitigated design fail to meet one or more constraints.

Finally, the probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) and the expected value

of the objective function (E[𝑓(𝑥, ℎ)]) are input into an optimizer described in Sec-

tion 5.9.5. This optimizer will attempt to select a design (𝑥, ℎ) in order to minimize

the expected value of the objective function such that the probability of success does

not fall below a specified threshold (𝐺𝑜𝑎𝑙). Until an optimum is found each new

setting of design variables (𝑥) and uncertainty margins (ℎ) will be input into the Ve-

hicle Sizing to iterate through the UQ&M algorithm. Upon finding an optimum, the

design point (𝑥, ℎ) is recorded along with any relevant outputs from the algorithm.

5.9.1 Uncertainty Quantification Algorithm

This section provides more detail about the uncertainty quantification algorithm de-

scribed in Section 5.9. In order to select the optimum design, the overall algorithm

must contain component algorithms capable of calculating the expected value of the

objective function as well as the probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)). The

139



algorithm used to size the vehicle to the design conditions (𝑥, ℎ) is described in Sec-

tion 5.9.2. Later analyses evaluate the performance of this sized vehicle under differ-

ent conditions. The reliability analysis in Section 5.9.3 takes the fixed sized vehicle

and applies different uncertainty scenarios to it in order to calculate a probability

of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) respect to the performance constraints as well

as the expected value of the objective function (E[𝑓(𝑥, ℎ)]). The reliability analysis

also collects the failed uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑) for later recovery tests. The

mitigation analysis evaluates the individual failed uncertainty scenarios (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙𝑒𝑑)

further and attempts to find a combination of mitigation actions (𝑚) which will bring

the design back into compliance with the performance constraints for that failed un-

certainty scenario. The aggregate of these recovery attempts yields the probability of

recovery of the design (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)). The information is collected and given

to an optimizer which will try to find the best combination of design variables (𝑥)

and uncertainty margins (ℎ) to minimize the expected value of the objective function

subject to a minimum level of probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)).

5.9.2 Vehicle Sizing Algorithm

This section provides more detail about the vehicle sizing algorithm described in

Section 5.9. To assess a new design point, the vehicle must first be sized. The vehicle

sizing logic flow is shown in Figure 49. First a design point consisting of design

variable settings (𝑥) and uncertainty margins (ℎ) is given to the sizing analysis from

the optimizer. The range requirement for the design mission (𝑅𝐷𝑒𝑠) is also input into

the analysis so the vehicle can be designed and sized for later analysis.

The engine is first designed based on the design variable input vector (𝑥). This

engine is given to the aircraft design algorithm. Once the initial parameters are set,

a sizing mission is executed to evaluate the vehicle’s performance. In this analysis

the range requirement (𝑅𝐷𝑒𝑠) dictates the size of the vehicle, given the design point
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Figure 49: Vehicle Sizing Logic Flow
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specified by the DoE. Once the mission has been evaluated, the resulting fuel required

to complete the mission (𝐹𝑢𝑒𝑙𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑) is compared to the fuel capacity of the aircraft

(𝐹𝑢𝑒𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒). If there is insufficient fuel available, the vehicle will be scaled up.

Should there be too much fuel, the vehicle is downsized. This rescaled vehicle is

reanalyzed by the aircraft mission analysis and the required and available fuel amounts

are compared once again.

Once the fuel requirements match, the engine is scaled to meet the aircraft re-

quirements. Should the engine need to be scaled by more than a small amount, the

model will return to the engine design to create a new engine with the new required

thrust targets. Once the engine thrust output from the mission analysis matches the

thrust from the engine sizing, the vehicle is considered sized. The configuration is

frozen, and the output fixed vehicle is given to the performance analysis.

5.9.3 Reliability Analysis Algorithm

This section provides more detail about the reliability analysis algorithm described

in Section 5.9. After the vehicle has been sized, a reliability analysis is performed to

determine the probability of compliance of the aircraft as designed. The logic flow

of the reliability analysis is shown in Figure 50. The fixed vehicle which was output

from the vehicle sizing algorithm is input into the analysis. The distributions of the

uncertainty variables are brought into the analysis as a set of uncertainty scenarios

(𝑈). Performance constraint targets (𝑔𝑟𝑒𝑞) are also input into the analysis in order to

assess the aircraft’s ability to meet these targets.

As mentioned in Section 5.9, a sample uncertainty scenario (𝑢) is first drawn from

the set of all uncertainty scenarios (𝑈). The fixed aircraft’s performance is evaluated

under this uncertainty condition. If the aircraft’s performance under this uncertainty

scenario satisfies Equation (13) (i.e. it meets all constraints simultaneously), then the

aircraft is considered compliant under that scenario (𝑢).
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Figure 50: Reliability Analysis Logic Flow
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(𝑔𝑖 (𝑥, ℎ, 𝑢, 0) ≥ 0)∀𝑖 ∈ 𝐺 (13)

If, however, the aircraft performance does not meet the constraints, the vehicle

is considered non-compliant under that uncertainty condition, and the uncertainty

condition is added to the set of failed uncertainty scenarios (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙𝑒𝑑). After this

determination has been made on the compliance of the vehicle under a particular set

of uncertainty conditions, the algorithm checks to see if all uncertainty scenarios (𝑈)

have been exhausted. If sampling is not complete, a new sample scenario (𝑢 ∈ 𝑈) is

drawn and the process is repeated.

Once all samples have been drawn, the expected value of the objective function

(E[𝑓(𝑥, ℎ)]) is evaluated via Equation (25). This value will be given to the optimizer.

E[𝑓(𝑥)] =
∫︀
𝑢∈𝐴 𝑓 (𝑥, ℎ, 𝑢, 0) 𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

𝑓 (𝑥, ℎ, 𝑢,𝑚) 𝑑𝑢∫︀
𝑢∈𝐴(1)𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

(1)𝑑𝑢
(36)

The probability of compliance of the design (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) is calculated

using Equation (17). The probability of compliance will be used in the probability of

success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) calculation later.

𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ) =
∫︀
𝑢∈𝑈 1𝐴 (𝑥, ℎ, 𝑢) 𝑑𝑢∫︀

𝑢∈𝑈 1𝑑𝑢
(17)

Finally, the failed uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑) are passed to the mitigation

analysis. These scenarios will be assessed using the available mitigation actions to

determine whether or not the design’s performance can be recovered under each sce-

nario (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙𝑒𝑑).

5.9.4 Mitigation Analysis Algorithm

This section provides more detail about the mitigation analysis algorithm described in

Section 5.9. Once the Reliability Analysis is complete, the Mitigation Analysis shown

in Figure 51 assesses the probability of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) of the vehicle

through a set of potential mitigation actions (𝑀). The assessment takes as inputs a
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Fixed Vehicle, a set of failed uncertainty scenarios, a set of mitigation actions, and

the required performance constraints imposed on the aircraft. The Fixed Vehicle is an

output from the Sizing Analysis which was based on only the design variables (𝑥) and

associated uncertainty margins (ℎ). The set of failed uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑)

comes from the Reliability Assessment and only includes uncertainty scenarios un-

der which the proposed aircraft design would fail to meet one or more performance

constraints. The performance constraints (𝑔𝑟𝑒𝑞) are the same constraints imposed on

the aircraft during the Reliability Assessment. An allowable set of mitigation actions

(𝑀) are input to allow the Mitigation Analysis to try to recover the aircraft for failed

uncertainty scenarios.

After establishing all of the input values, a single scenario is drawn from the set of

failed uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑). For this particular uncertainty scenario, one or

more performance constraints was violated during the Reliability Assessment. A set

of samples2 are selected from the mitigation space to assess the possibility of recover-

ing performance and bringing the aircraft back into compliance with all constraints,

and a single sample is drawn from the mitigation space. For this sample, the perfor-

mance of the Fixed Vehicle is assessed under the previously sampled failed uncertainty

scenario. This assessment yields performance information which is compared to the

performance constraints on the aircraft. If the aircraft under the failed uncertainty

scenario now meets all constraints simultaneously once the sampled mitigation action

is applied, the scenario is considered recovered. If, however, the aircraft still fails to

meet one or more of the performance constraints, the uncertainty scenario is not yet

recovered. Should remaining samples exist from the mitigation space, the algorithm

will return to the mitigation sampling stage. Should no further mitigation action

samples exist, it is assumed that the sampled uncertainty scenario is not recoverable

through mitigation actions and is considered failed.

2Multiple alternative methods of sampling are discussed in Section 3.5.
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Figure 51: Mitigation Analysis Logic Flow
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Once the recoverability of the particular sampled uncertainty scenario is estab-

lished through either finding a set of mitigation actions that recover the design or

exhausting the mitigation action samples, the algorithm checks to see if additional

uncertainty scenarios exist. Should more failed uncertainty scenarios (𝑈𝐹𝑎𝑖𝑙𝑒𝑑) exist,

the algorithm will return to the loop that samples from these uncertainty scenarios to

assess the recoverability of another uncertainty scenario. Once all failed uncertainty

scenarios have been assessed, the probability of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) of the

selected design is calculated. The Mitigation Assessment’s probability of recovery is

then provided to the optimization algorithm.

5.9.5 Final Calculations and Optimizer

This section provides more detail about the optimizer described in Section 5.9. The

outputs of the Reliability Analysis and the Mitigation Analysis are brought together

to calculate the final probabilistic performance of the vehicle. The overall probabil-

ity of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) of the design is calculated via Equation (24) by

combining the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) from the reliability

analysis with the probability of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)) from the mitigation

analysis. The resulting probability of success metric represents the likelihood that

the given aircraft design (𝑥 and ℎ) selected by the optimizer will be compliant with

all performance constraints (𝑔𝑟𝑒𝑞) given the distributions of the uncertainty variables

(𝑢) and the available mitigation actions (𝑚) that can be used should the unmitigated

design fail to meet one or more constraints.

𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ) =𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)

+ 𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ) (1− 𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ))
(24)

The probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) metric is then input into the opti-

mizer. This metric will be used as a constraint within the global optimizer. Designs

which fall below a specified threshold (indicated as 𝐺𝑜𝑎𝑙 in Figure 48 will not comply
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with the optimization objective.

As stated in Section 5.9, this optimizer will attempt to select a design (𝑥, ℎ)

in order to minimize the expected value of the objective function defined in Step

5. Again, the probability of success constraint will ensure that the probabilistic

performance does not fall below the specified threshold. The optimizer will input

new settings of design variables (𝑥) and uncertainty margins (ℎ) into the vehicle

sizing algorithm to attempt to minimize the expected value of the objective function

while maintaining a required level of success. Once the optimum is found, the design

point (𝑥, ℎ) is recorded.

5.10 Step 10: Execute UQ&M Environment

The output of executing the Uncertainty Quantification and Management environ-

ment created in Step 9 is an optimal design based on the designer’s preferences.

Should only one specific set of goals be desired, this design should be sufficient. How-

ever, it is likely that a designer or company will not yet know exactly what goals

to specify when setting up the problem. Thus, the UQ&M environment may need

to be executed multiple times under different reliability goals or objective function

weightings to yield a set of designs from which to select. If this is the case, many

multi-attribute decision making (MADM) techniques exist within the existing litera-

ture to make such a selection.

5.11 Chapter Summary

In this chapter, a specific step-by-step formulation of the methodology proposed in

Chapter 3 was developed. The details of the implementation were informed by the

results of the hypothesis testing from Chapter 4. Details about how to decide whether

the ARMOUR methodology is appropriate for the design problem under considera-

tion were discussed. Directions were given on how to define aircraft requirements,

uncertainty information, and mitigation actions. Suggestions were given on how to
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set appropriate objective metrics. Requirements on the designs space were given.

Guidelines on modifying existing aircraft models were given along with directions on

how to use these models to generate the necessary surrogate models. The uncertainty

quantification and management environment central to the ARMOUR method was

discussed in enough detail to allow an aircraft designer to implement the method

independently. Finally, the text describes how to use this environment to select an

appropriate design with which to move forward from conceptual design. In Chapter 6

this step-by-step version of the ARMOUR methodology will be implemented for a

specific aircraft design problem.
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CHAPTER VI

IMPLEMENTATION

This chapter describes the specific way in which the methodology developed in Chap-

ter 5 was implemented. First, the overall needs of the methodology are described.

These include the top-level optimizer, physics-based modeling, uncertainty analy-

sis, input variables (design, uncertainty margins, uncertainty, mitigation), mitigation

penalties, responses and constraints, and probability measures. The implementation

in this chapter is designed to be more directly analogous to the kind of implementa-

tion ARMOUR would see in practical applications. It will make use of a monolithic

aircraft design and analysis tool. Specific care will be taken to ensure that uncertainty

and mitigation are implemented as required by the hypotheses and experiment results.

Due to the multi-loop nature of this problem, surrogate models will be employed to

vastly increase the speed of this otherwise cumbersome analysis. An optimizer can

be used to explore the resulting trade space between the new metric, probability of

success, and traditional design objectives.

6.1 Step 1: Establish the Need

Company Z has decided to manufacture a new aircraft. Specifically, they are looking

at developing a large civil transport aircraft in the class of the A340-300 and the 777-

200ER. They have determined that significant enough uncertainty exists within their

conceptual level design tools that they are not confident enough to simply perform

a deterministic design analysis. They are more confident in their preliminary design

tools and expect that much of the uncertainty surrounding the design will be reduced

long before the design moves to pre-production; while changes will not be desirable

at that stage, they are possible if the need arises. However, the design will be frozen
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long before any of these preliminary design analyses take place. Furthermore, these

preliminary design analyses take a long time to execute and require significant design

specification before they can be performed, which prevents the conceptual design team

from employing these analyses before the design freeze. Thus, Company Z decides

that the Aircraft Recovery through Mitigation & Optimization under Uncertainty

for Reliability (ARMOUR) method is an appropriate method to help them make

decisions during conceptual design.

6.2 Step 2: Aircraft Requirements Definition

Company Z’s market research indicates that a specific design mission is required for

their new aircraft. The design mission selected is to transport three hundred and five

(305) passengers a distance of 7,530 nautical miles. This mission should account for

all Federal Aviation Administration (FAA) requirements. Additionally, it is desired

that the vehicle meet other performance constraints to allow the aircraft to operate

out of a large number of airports.

In order to measure the reliability and recoverability of a design, performance

constraints need to be established. These performance constraints will be measured

with respect to a response from the aircraft model, so appropriate responses must

be selected. These responses should be indicative of performance constraints which

would be relevant to conceptual aircraft design. Furthermore, at least some of the

responses need to be dependent on the uncertainty variables modeled in Section 6.3.

If none of the responses of interest are affected by the uncertainty variables, then the

reliability assessment will be unnecessary; a deterministic performance assessment

would achieve the same answer.

To track fuel consumption, the block fuel required for an economic range mission

(𝐵𝐹𝐸𝑐𝑜𝑛) will be considered. This metric will represent the fuel efficiency of the

resulting aircraft. Economic range block fuel will serve as a proxy for the operating
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cost of the aircraft - an important metric to consider when selling an aircraft. It is

desired to minimize this response. As such, no specific goal will be established for

the economic range block fuel.

The aircraft will be sized to meet the specified range (𝑅𝐴𝑁𝐺𝐸) of the design

mission. However, once an uncertainty scenario is considered, the vehicle may no

longer be capable of meeting the range requirement when carrying the design payload.

Thus, the range of the vehicle at the design payload must be enforced. This constraint

will be the same as the sizing requirement, so range for the design mission shall not

be less than 7,530 nautical miles.

The approach speed (𝑉𝐴𝑝𝑝) of the aircraft will be important from an airport access

perspective. This will dictate at which airports the aircraft can land, potentially

restricting the desired city pairs for prospective buyers. As such, a maximum approach

speed should be specified by the designer. For this problem, a constraint shall be

imposed on the aircraft such that the approach speed may not exceed 145 knots.

Takeoff field length (𝑇𝑂𝐹𝐿) also dictates whether an aircraft can operate from

a given airport. Obviously, the takeoff field length must be less than the available

field length present at any desired departure airports. For this study the takeoff field

length of the vehicle shall not exceed 11,000 feet.

Wing span (𝑆𝑝𝑎𝑛) will also dictate the airports at which the vehicle can operate.

The span will limit access to gates and may even prevent the aircraft from using

the runway at all. This limit will counter the aerodynamically desirable tendency to

increase the aspect ratio. For this study the wing span shall not be allowed to exceed

215 feet.

The rate of climb, a.k.a. the excess power, dictates the aircraft’s ability to change

altitude. There must be sufficient available climb rate at the design altitude to enable

the aircraft to maneuver in order for it to operate in this region effectively. A con-

straint is imposed such that the climb rate shall not be less than 300 feet per minute
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at an altitude of 35,000 feet.

The ARMOURmethod, like all reliability-based methods, specifies a required min-

imum level of probability to meet constraints. For this problem, probability of com-

pliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) and probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) with

respect to all constraints listed in Table 2 will simultaneously be imposed. The levels

of reliability desired will be specified in Step 5.

Table 2: Performance Constraints and Traditional Objective

Metric Symbol Target Units
Approach Speed 𝑉𝐴𝑝𝑝 ≤ 145 knots
Takeoff Field Length 𝑇𝑂𝐹𝐿 ≤ 11,000 feet
Rate of Climb at 35,000 ft 𝑅𝑜𝐶 ≥ 300 feet per minute
Design Mission Range 𝑅𝑎𝑛𝑔𝑒 ≥ 7,530 nautical miles
Wing Span 𝑆𝑝𝑎𝑛 ≤ 215 feet
Economic Mission Fuel (4000 nm) 𝐵𝐹𝐸𝑐𝑜𝑛 minimize pounds

These metrics are standard aircraft performance measures. Approach speed is

a common measure of the landing capability of an aircraft and is regulated by the

FAA. As mentioned, takeoff field length will dictate the airports where the aircraft

can operate and the rate of climb is another regulation requirement. The range for

the design payload is a prime indicator of the markets for which the aircraft can be

sold. Economic mission fuel is not constrained as this will be the “traditional design

metric” used in the Pareto Frontier, along with the probability of success.

6.3 Step 3: Elicit Uncertainty Information

Uncertainty variables are necessary to emulate the true uncertainty inherent in the

design process. These variables are implemented only after design is complete; they

represent the aircraft drifting from its assumed performance condition during later de-

sign stages. Emulating a specific type of uncertainty can be accomplished in different

ways. For example, the component weight uncertainty can be modeled by imple-

menting a distribution about the weight of each component individually (e.g. wing
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weight, fuselage weight, empennage weight, landing gear weight, engine weight, etc.).

These component weights may each have their own associated uncertainty distribu-

tion, owing to the individual level of detail contained in their individual calculation

methods during conceptual design. These component weights may also be correlated

with each other if there exists a logical or historical reason that the error in one pre-

diction typically correlates with another error. Alternately, an assumed distribution

on the overall empty weight of the vehicle can be implemented which accounts for

the distribution of all individual errors and their correlations.

For the implementation within this body of work, only a handful of uncertainty

variables were selected. It is desired that these variables represent a large enough im-

pact on the performance of the vehicle to test this method. Thus, factors important

to the overall performance of the aircraft like the empty weight, cruise drag, engine

fuel flow, and Mach number at drag divergence were considered. As discussed, these

factors may be resolved into individual component uncertainties with separate and

potentially correlated distributions, or they may be characterized by a gross overall

distribution which emulates the combined effect of multiple components simultane-

ously. Table 3 contains the uncertainty variables used in these analyses.

Table 3: Uncertainty Variables

Variable Description Symbol Minimum Maximum
Empty Weight Error 𝑢𝐸𝑊 -1% 6%
Cruise Drag Error 𝑢𝐷𝑟𝑎𝑔 -1% 6%
Fuel Flow Error 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 -1% 6%
Mach Drag Divergence Error 𝑢𝑀𝐷𝐷 -5% 5%

The generation of a sampled set of uncertainty scenarios (𝑈) can be performed

outside of the uncertainty quantification algorithm described in Section 6.9. Using

Monte Carlo simulation (MCS) as a sampling method, an assumed distribution may

be modeled by generating an appropriate set of samples; as the full set of samples

grows larger, the desired distribution is approximated as discussed in Section 2.4.1.
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These samples are created using a pseudo random number generator available in al-

most any modern computer code. Since pseudo random number generators by default

create independent uniform distributions ranging from zero to one, a transformation

is necessary to modify the generated distributions into the desired ones. If correla-

tion between the distributions is desired, a Cholesky decomposition may be used to

modify the distributions appropriately.

Without an existing team of expert engineers or a set of separate conceptual and

preliminary design tools to compare, assumptions need to be made about the distri-

butions of uncertainty variables. For this work, all uncertainty variables were given

uniform distributions between their respective minimum and maximum values. This

was implemented because some uncertainty distribution must be assumed to per-

form the reliability analyses. If uncertainty quantification analysis were performed to

yield a better assumed distribution form, then those distributions could be employed

using appropriate transformations. Since the assumed random variables in this im-

plementation are all independent and uniformly distributed, only a simple scaling of

the computer-generated uniform distributions (𝑢𝑗𝑟𝑛𝑔) in Equation (37) is necessary to

create distributions which match the desired interval (𝑢𝑗). Once the set of scenarios

is established, it will be used by the fixed aircraft analysis as-is and need not be

regenerated.

𝑢𝑗 = 𝑢𝑗𝑟𝑛𝑔 *
(︀
𝑢𝑗𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡

− 𝑢𝑗𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡

)︀
+ 𝑢𝑗𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡

(37)

It is important to consider how the uncertainty variables will affect the responses.

From Equation (34) it is apparent that final approach speed of the aircraft before

landing (𝑉𝐴𝑝𝑝) is dependent on the landing weight of the aircraft, the vehicle’s wing

area, the maximum lift coefficient of the aircraft, and the local air density. The local

air density is assumed to be a constant value based on the sea-level conditions of the

ICAO Standard Atmosphere and will not vary in this implementation. Wing area

is set by the sizing analysis and is expected to be frozen during later design stages,
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where uncertain values will be realized. The maximum lift coefficient may be modified

by adjusting the high-lift devices installed on the vehicle, but these devices are not

explicitly affected by any uncertainty variables. The landing weight of the vehicle is

primarily composed of the payload weight, crew weight, remaining fuel at landing, and

the operating empty weight of the vehicle. The payload and crew are fixed weights

for a commercial transport mission. The effect of any selected uncertainty variable on

the remaining fuel in the vehicle will be small. However, the operating empty weight

of the vehicle is directly affected by the empty weight uncertainty (𝑢𝐸𝑊 ) selected

in Section 6.3. Thus, as represented by Equation (38), approach speed (𝑉𝐴𝑝𝑝) is a

function of the design variables (𝑥), uncertainty margins (ℎ), and the empty weight

uncertainty.

𝑉𝐴𝑝𝑝 = 𝑓 (𝑥, ℎ, 𝑢𝐸𝑊 ) (38)

The takeoff field length (TOFL) of a vehicle is primarily determined by the takeoff

gross weight (TOGW), engine thrust, and the low speed aerodynamics of the vehicle.

Currently, the takeoff gross weight for all evaluation conditions is set by the maximum

takeoff weight (MTOW) established by the design mission during sizing. Under this

construct, TOGW will be a function of only design variables (x) and margins (h);

uncertainty variables (u) will have no impact on the TOGW of the vehicle. The thrust

performance of the engine is determined during design. All degradations possible

due to uncertainty in the current setup of the analysis impact only the fuel flow

characteristics of the engine. Thus, thrust is not affected by uncertainty. The low

speed aerodynamics also are not affected by uncertainty in the current problem.

Thus, TOFL is only a function of the sizing conditions of the aircraft, namely design

variables and margins, as shown in Equation (39).

𝑇𝑂𝐹𝐿 = 𝑓 (𝑥, ℎ) (39)

Equation (40) shows the expected functional relationship between the rate of climb
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(𝑅𝑜𝐶) and the input variables. The drag uncertainty variable (𝑢𝐷𝑟𝑎𝑔) is expected to

impact the rate of climb both directly and through the change in fuel consumed to

arrive at the top of climb condition. The Mach drag divergence variable (𝑢𝑀𝐷𝐷)

will have a similar impact to the drag changes. The fuel flow uncertainty variable

(𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤) will change the rate of climb only through the impact to the fuel consumed

to arrive at top of climb.

𝑅𝑜𝐶 = 𝑓 (𝑥, ℎ, 𝑢𝐷𝑟𝑎𝑔, 𝑢𝑀𝐷𝐷, 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤) (40)

The vehicle wing span (𝑆𝑝𝑎𝑛) is not expected to be impacted by any of the

uncertainty variables. Thus, the wing span will only be a function of the design

variables (𝑥) and the uncertainty margins (ℎ), as shown in Equation (41). This

means that a constraint imposed upon wing span will be deterministic.

𝑆𝑝𝑎𝑛 = 𝑓 (𝑥, ℎ) (41)

The range of the vehicle for a design mission (𝑅𝐴𝑁𝐺𝐸) is expected to be impacted

by all of the uncertainty variables. Empty weight uncertainty (𝑢𝐸𝑊 ) will increase or

decrease the fuel available to fly the mission. Drag uncertainty (𝑢𝐷𝑟𝑎𝑔) will increase

or decrease the thrust required to maintain speed, which will change the fuel required

to maintain speed. The uncertainty on Mach drag divergence (𝑢𝑀𝐷𝐷) will also affect

the thrust requirements. The fuel flow uncertainty (𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤) will change the fuel

consumed per unit of thrust required; this will change the fuel economy of the vehi-

cle, reducing the range capability. Equation (42) shows the functional relationship

between design mission range (𝑅𝐴𝑁𝐺𝐸) and these variables.

𝑅𝑎𝑛𝑔𝑒 = 𝑓 (𝑥, ℎ, 𝑢𝐸𝑊 , 𝑢𝐷𝑟𝑎𝑔, 𝑢𝑀𝐷𝐷, 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤) (42)

The block fuel for an economic range mission (𝐵𝐹𝐸𝑐𝑜𝑛) will be impacted by all

uncertainty variables. Empty weight uncertainty (𝑢𝐸𝑊 ) will change the weight of

the aircraft during the mission. Drag uncertainty (𝑢𝐷𝑟𝑎𝑔) will increase or decrease
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the thrust required to maintain speed; this will change the fuel required to maintain

speed, changing the fuel consumption. The uncertainty on Mach drag divergence

(𝑢𝑀𝐷𝐷) will also affect the thrust requirements. The fuel flow uncertainty (𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤)

will change the fuel consumed per unit of thrust required, changing the fuel economy

of the vehicle. Equation (43) shows the functional relationship between the block fuel

for an economic range mission (𝐵𝐹𝐸𝑐𝑜𝑛) and these variables.

𝐵𝐹𝐸𝑐𝑜𝑛 = 𝑓 (𝑥, ℎ, 𝑢𝐸𝑊 , 𝑢𝐷𝑟𝑎𝑔, 𝑢𝑀𝐷𝐷, 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤) (43)

6.4 Step 4: Define Potential Mitigation Actions

For this thesis, there is no direct access to an aircraft manufacturer’s design philoso-

phies, so basic aerospace engineering concepts will be used to construct a list of mit-

igation actions. The goal is to show how mitigation actions would be implemented,

rather than to provide guidance on the specific mitigation actions that should be used.

To accomplish this, it is not necessary to figure out exactly which mitigation actions

would be used by any specific company; rather, as long as representative mitigation

actions have been selected with the rules set forth in Section 3.3.2 in mind, they will

be able to demonstrate the process. Were an aircraft company to implement the ideas

of this thesis it would be more appropriate to employ their own design philosophy

and engineers to inform them which mitigation actions to investigate and how best

to model their benefits and possible penalties.

Mitigation actions are established under the assumption that they will be non-

ideal, late stage changes to a design. Sections 2.2.2 and 3.3.1 have discussed the

reasoning and need for penalties on possible mitigation actions to accurately portray

the negative side-effects of these actions.

6.4.1 Post-Sizing Fuel Addition

The first mitigation action modeled in this thesis is a post-sizing fuel addition in which

a “topping off” of the fuel tanks is considered to fix range constraint violations. Fuel
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will be added to the vehicle after the sizing loop is completed. This additional fuel

will cause the aircraft’s maximum takeoff weight (MTOW) to increase beyond the

design condition, adversely affecting the performance of the vehicle. This extra fuel

will, of course, allow the aircraft to fly further than it could at the design MTOW. The

fuel capacity will be increased by up to at most ten percent of the baseline vehicle’s

mission fuel weight – 28,000 lbs. The extra MTOW is expected to have an adverse

effect on any takeoff and climb constraints. This behavior should be captured by any

physics-based model.

This fuel increase will of course be limited by the capacity of the fuel tanks. In

other words the aircraft may not be able to be mitigated up to the full amount,

depending on the design of the vehicle – specifically the size of the fuel tanks. This

is expected to have an effect on the probability of recovery, since the fuel tank size

will dictate the maximum effectiveness of this mitigation action. This limit will

be imposed by allowing the aircraft performance assessment tool to calculate the

available fuel tank size of the vehicle, which scales with the wing geometry.

The increase in the maximum takeoff weight of the vehicle associated with adding

fuel will have adverse effects on the structure of the vehicle. Since the aircraft was

only designed to handle at most the design MTOW, it is expected that this increase in

load will force the structural weight of the vehicle to increase. This structural weight

increase will be enforced via an Operating Empty Weight (OEW) penalty. This

empty weight penalty (𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦) will be proportional to the change in maximum

takeoff weight requested for mitigation as shown in Equation (44). This new MTOW

will include both the additional fuel and the corresponding empty weight addition.

Equation (44)

𝑚𝑀𝑇𝑂𝑊 = 𝑀𝑇𝑂𝑊𝑛𝑒𝑤 −𝑀𝑇𝑂𝑊𝐷𝐸𝑆 (44)

A relationship was assumed between this additional maximum takeoff weight dur-

ing preliminary design and the empty weight penalty. This penalty function should
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behave in such a way that minimal penalty would be incurred for small changes to the

aircraft. After this initial burn-in period, the penalty should monotonically increase

as the aircraft deviates from its design condition. Furthermore, the rate of penalty

is expected to increase as the aircraft grows excessively. Thus, a quadratic equation

was settled upon, as shown in Equation (45).

𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑚𝑀𝑇𝑂𝑊 ) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚
(︀
0, 0.0002608 *𝑚2

𝑀𝑇𝑂𝑊 − 0.0063233 *𝑚𝑀𝑇𝑂𝑊

)︀
(45)

The empty weight penalty function in Equation (45) is plotted in blue against

the change in maximum takeoff weight in Figure 52. This blue line shows the empty

weight increasing at a greater and greater rate as the aircraft deviates from its design

weight. It is also possible to determine the actual fuel associated with an increase in

𝑀𝑇𝑂𝑊𝑀𝐴. To do so the empty weight penalty can simply be subtracted from the

change in maximum takeoff weight (𝑀𝑇𝑂𝑊𝑀𝐴 −𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦), yielding the remainder

as the change in fuel weight. By doing so, it is possible to determine the empty weight

penalty per pound of fuel added to the aircraft. This fuel weight increase is shown in

red.

Figure 52: Empty Weight Penalty per Pound of Maximum Takeoff Weight
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Because the empty weight penalty increases in intensity as MTOW grows larger,

the effectiveness of the mitigation action (the amount of fuel being added) decreases.

This relationship is shown in Figure 53. Here, the empty weight penalty 𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦

from Equation (45) is plotted on the y-axis. The x-axis is the actual fuel added to

the aircraft – the difference between the additional maximum takeoff weight and the

empty weight penalty. It is clear from this chart that the penalty imposed makes

adding more than about 900 pounds of fuel to the aircraft increasingly ineffective.

Figure 53: Derived Empty Weight Penalty per Pound of Fuel

6.4.2 Augmented High-Lift Device

The second mitigation action modeled in this thesis is to add a representative ad-

vanced high-lift device to the aircraft to counter approach speed constraint violations.

This high lift device is expected to increase the maximum lift coefficient of the vehicle

during landing. Based on Equation (34) from Section 4.2.1, this increase in the 𝐶𝐿𝑚𝑎𝑥

of the vehicle during landing will reduce the required approach speed.

This increase in lift will not come without a cost. The additional lift on the wing

constitutes an additional load during landing. The wing, the landing gear, and other

structural components may need to be reinforced to accommodate the impact of this
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mitigation action. Thus, the additional lift coefficient is expected to incur an empty

weight penalty. Again, the penalty will be based on the change in lift coefficient from

the design value as in Equation (46).

𝑚𝐶𝐿
= 𝐶𝐿𝑚𝑎𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑛𝑒𝑤

− 𝐶𝐿𝑚𝑎𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔
(46)

A penalty was assumed for this study as shown in Equation (47).

𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑚𝐶𝐿
) =

85000

7
* 𝐶2

𝐿𝑀𝐴
+

3250

7
* 𝐶𝐿𝑀𝐴

− 3

7
(47)

The impact of Equation (46) on the aircraft is shown via Figure 54. In this

diagram the final landing lift coefficient is shown on the x-axis versus the change in

empty weight on the y-axis.

Figure 54: Landing Lift Augmentation Penalty

6.4.3 Engine Throttle Push

The final mitigation action modeled in this thesis is an engine throttle push to counter

potential Takeoff Field Length (𝑇𝑂𝐹𝐿) and Rate of Climb (𝑅𝑜𝐶) violations. An

engine throttle push is accomplished by uprating the engine thrust without changing

the size or general design of the engine, making it a good candidate for a mitigation
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action. This is accomplished by changing the engine controls such that the engine

is allowed to run at a hotter temperature. This higher temperature is the result of

adding additional fuel to the engine at maximum thrust. This increase in temperature

will have a detrimental impact on the engine life span which is not modeled in this

work.

As justification for the range of throttle push allowed for mitigation, engines in

service were examined. The Pratt & Whitney 4098 engine is a throttle push variant

of the PW4000 series [67]. This engine is of the same class as engines currently

in use on the 777 series of vehicles [41]. To determine the intensity of the throttle

push employed, the thrusts of the engine were compared to others in its family. The

PW4098 is capable of 99,040 pounds of thrust when the stationary engine is measured

at full power and sea-level conditions [22]. Since the next highest thrust of 91,790

pounds was achieved with the PW4090 variant, it is assumed that a throttle push of

roughly eight percent was achieved. Considering the high level of throttle push seen

with this engine, which is of the same class as those on the theoretical aircraft being

implemented, a throttle push of five percent seems reasonable.

Because the takeoff field length will not be affected by the uncertain parameters,

the constraint on TOFL is effectively deterministic. All designs (x and h) will either be

one hundred percent or zero percent in compliance with the TOFL constraint. Designs

which are zero percent compliant will be undesirable according to either a real design

team or to any optimizer taking the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ))

into account. Thus, the throttle push mitigation action is of little use in its normally

expected role.

The throttle push mitigation action will still recover scenarios where the vehicle

fails to meet rate of climb (𝑅𝑜𝐶). It can also combine with the fuel capacity mitigation

action to maintain compliance with TOFL under scenarios in which the aircraft needs

additional fuel to meet range.
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6.4.4 Mitigation Action Summary

Table 4 shows a summary of the mitigation actions to be used in the remainder of this

work. Each of the three mitigation actions discussed above are shown. The constraint

each mitigation action addresses, its primary impact on the aircraft model, and the

applicable limit are also included.

Table 4: Mitigation Actions

Mitigation Action Metric Addressed Parameter Limit
Fuel Increase Design Mission Range MTOW 28,000 lbs
Advanced High Lift Device Approach Speed 𝐶𝐿𝑚𝑎𝑥 0.1
Throttle Push Takeoff Field Length Thrust 5%

It should be noted that the maximum takeoff weight is assessed significantly past

the boundary suggested by Figure 52. This boundary is based on the assumed Equa-

tion (45). In Section 7.5 this assumed equation will be changed, dictating a new

boundary. This will necessitate the additional variability needed in the MTOW vari-

able.

The functional relationship between approach speed (𝑉𝐴𝑝𝑝) and input variables

from Equation (38) is reformulated to account for mitigation actions in Equation (48).

The augmented high lift device mitigation action is designed to directly improve the

approach speed. Additionally, the logic behind the mpty weight variation impacting

the approach speed holds true whether in regards to uncertainty (i.e. 𝑢𝐸𝑊 ) or due to

a penalty on the mitigation actions (𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦).

𝑉𝐴𝑝𝑝 = 𝑓 (𝑥, ℎ, 𝑢𝐸𝑊 ,𝑚𝐶𝐿
, 𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦) (48)

The functional relationship between the takeoff field length (𝑇𝑂𝐹𝐿) and the in-

put variables from Equation (39) is reformulated to account for mitigation actions in

Equation (49). The additional maximum takeoff weight from the added fuel mitiga-

tion action (𝑚𝑀𝑇𝑂𝑊 ) will degrade the resulting takeoff field length. This means that

the mitigation action could cause constraint violations when used to recover range.
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The throttle push mitigation action (𝑚𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒) will have a direct beneficial effect on

the takeoff field length and may be used to recover scenarios when additional fuel is

required but the takeoff field length is close to its performance constraint.

𝑇𝑂𝐹𝐿 = 𝑓 (𝑥, ℎ,𝑚𝑀𝑇𝑂𝑊 ,𝑚𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒) (49)

The functional relationship between the rate of climb (𝑅𝑜𝐶) and the input vari-

ables from Equation (40) is reformulated to account for mitigation actions in Equa-

tion (50). The throttle push mitigation action will have a direct impact on the thrust

available at the top of climb condition, impacting the excess power available and,

therefore, the rate of climb achievable by the vehicle.

𝑅𝑜𝐶 = 𝑓 (𝑥, ℎ, 𝑢𝐷𝑟𝑎𝑔, 𝑢𝑀𝐷𝐷, 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤,𝑚𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒) (50)

The range of the vehicle for a design mission (𝑅𝐴𝑁𝐺𝐸) from Equation (42) is

updated in Equation (51) to include the impacts of mitigation variables. The addition

of post-sizing fuel (𝑚𝑀𝑇𝑂𝑊 ) is intended to increase the vehicle’s range simply by

adding more fuel. Any empty weight penalty (𝐸𝑊𝑃𝑒𝑛𝑎𝑙𝑡𝑦) on the aircraft will degrade

the vehicle’s range by requiring the aircraft to carry more weight throughout the

mission, leaving less usable fuel weight.

𝑅𝑎𝑛𝑔𝑒 = 𝑓 (𝑥, ℎ, 𝑢𝐸𝑊 , 𝑢𝐷𝑟𝑎𝑔, 𝑢𝑀𝐷𝐷, 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤,𝑚𝑀𝑇𝑂𝑊 , 𝐸𝑊𝑃𝑒𝑛𝑎𝑙𝑡𝑦) (51)

None of the mitigation actions themselves are expected to impact economic range

block fuel (𝐵𝐹𝐸𝑐𝑜𝑛) significantly. However, the empty weight penalty (𝐸𝑊𝑃𝑒𝑛𝑎𝑙𝑡𝑦)

imposed by these mitigation actions will cause the aircraft to carry more weight

throughout the mission, increasing the lift required to maintain altitude. The in-

crease in lift will increase the drag on the vehicle, increasing the required thrust.

This increase in thrust will require more fuel to be burned. This will alter the func-

tional relationship of economic range block fuel seen in Equation (43) to that seen in
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Equation (52).

𝐵𝐹𝐸𝑐𝑜𝑛 = 𝑓 (𝑥, ℎ, 𝑢𝐸𝑊 , 𝑢𝐷𝑟𝑎𝑔, 𝑢𝑀𝐷𝐷, 𝑢𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤, 𝐸𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦) (52)

6.5 Step 5: Select Performance and Reliability Objectives

For this implementation, only performance objectives are used. However, since the

cost to operate the aircraft is a significant factor in the marketability of the vehicle,

a proxy for operating cost will be used - specifically, the block fuel needed for an

“economic range” mission of 4,000 nautical miles.

In an effort to explore different scenarios in this work, multiple settings will be

used for both the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) and probability

of success (≻) to generate different results. In general, the probability of compliance

requirement will range between greater than or equal to 75 percent and up to 100

percent. An enforced probably of compliance requirement will never be less than 70

percent in this study. The probability of success requirement will also vary between

greater than or equal to 75 percent and up to 100 percent for studies within this

work. The probability of success requirement will never be set below the probability

of compliance requirement, as this would be meaningless. No reliability requirements

for individual constraints have been imposed for this study.

6.6 Step 6: Establish Design Space

To emulate a reasonable design process, variables which affect different aspects of the

resulting aircraft are needed. In general, it would be beneficial to have some gross

aircraft-level design variables, some engine-related design variables, some wing-related

design variables, and some uncertainty margins. Table 5 lists the conceptual design

variables which have been selected for this study.

The implementation of many of these variables is straightforward. Most aircraft

design tools already have the ability to directly input variables like thrust-to-weight,
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Table 5: Conceptual Design Variables and Impacts

Variable Description Symbol Related Aspect(s)
Design SLS Thrust-to-Weight 𝑇/𝑊 Design, Engine
Design Wing Loading 𝑊/𝑆 Design, Wing
Wing Aspect Ratio 𝐴𝑅 Design, Wing
Engine Lapse Rate LapseRate Design, Engine
Engine Fan Pressure Ratio FPR Engine
Engine Overall Pressure Ratio OPR Engine
Empty Weight Margin ℎ𝐸𝑊 Margin
Drag Margin ℎ𝐷𝑟𝑎𝑔 Margin, Wing
Fuel Flow Margin ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 Margin, Engine

wing loading, and aspect ratio into either a sizing or performance analysis. An engine

design tool should have the ability to receive thrusts, pressure ratios and lapse rates

either directly or through trivial variable transformations. By linking the two codes

together in a sizing loop, the engine and aircraft can be matched.

The uncertainty margins need to be implemented directly into the aircraft sizing

code. However, care must be taken with these variables. Depending on the analysis

mode, the same variables can behave as either uncertainty margins or as uncertainty

variables, as theorized in Section 3.1. This concept will be further tested in Sec-

tion 4.1. Based on the discussion from Hypothesis 2, these margins must be applied

to the aircraft during the sizing analysis, and their values removed before the perfor-

mance analysis. To successfully implement the uncertainty margins, the aircraft must

be sized with these margins in place. Thus, they will need to be set and input into

the aircraft analysis code during sizing. However, these variables must not impact

the uncertainty variables directly. This concept is further explained in Section 6.7.2.

Ranges were derived relative to the baseline aircraft. Wing loading and lapse

rate were varied by roughly plus or minus five percent of the baseline value. All

other non-margin variables were given a variation of about ten percent of the baseline

value. All ranges were rounded to only a few significant figures. The uncertainty

margin variables were allowed to vary between no margin (0%) up to six-percent
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(6%). Table 6 contains all design variables, their baseline values, and their associated

ranges.

Table 6: Conceptual Design Variables and Ranges

Variable Description Symbol Baseline Minimum Maximum
Design SLS Thrust-to-Weight 𝑇/𝑊 0.296 0.26 0.34
Design Wing Loading 𝑊/𝑆 133.34 126.0 140.0
Wing Aspect Ratio 𝐴𝑅 10 9.0 11.0
Engine Lapse Rate LapseRate 0.2014 0.18 0.22
Engine Fan Pressure Ratio FPR 1.50 1.425 1.575
Engine Overall Pressure Ratio OPR 42.58 38.32 46.84
Empty Weight Margin ℎ𝐸𝑊 3% 0% 6%
Drag Margin ℎ𝐷𝑟𝑎𝑔 3% 0% 6%
Fuel Flow Margin ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 3% 0% 6%

6.7 Step 7: Create Aircraft Model

A tool or set of tools to model conceptual aircraft design must be selected in order to

demonstrate the ARMOUR methodology. Ideally, this tool should represent the kind

of capabilities that are present in industry-style tools to show ease of implementation

of this methodology as well as any potential challenges.

The ARMOUR method for aircraft conceptual design begins with a modeling

and simulation (M&S) environment for vehicle sizing and performance analysis. It

is assumed that aircraft companies will have their own set of legacy aircraft analy-

sis tools which they will use during conceptual design. Since these tools will vary

between companies and are unavailable for the current research, a tool with similar

constraints will instead be employed. The Flight Optimization System (FLOPS) is

a deterministic computer program created at the NASA Langley Research Center

designed for conceptual and preliminary design of aircraft. [59]

FLOPS can be executed in sizing mode to predict the aircraft size and fuel burn for

a prescribed design mission. In analysis mode, FLOPS will take in a fixed aircraft and

predict response metrics such as approach speed (𝑉𝐴𝑝𝑝), takeoff field length (𝑇𝑂𝐹𝐿),
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and range at design payload (𝑅𝑎𝑛𝑔𝑒). These modes are consistent with the modeling

tools described in Section 2.1.3. As such, they can be arranged and utilized in either

way described in Section 3.1.3, and thus will be sufficient for the needs of this thesis.

An engine model was constructed in NASA’s Numerical Propulsion System Sim-

ulation (NPSS) tool [66]. This tool was selected because it can both design and

evaluate the performance of a turbofan engine. An engine model was first calibrated

to a GE90-94B engine model [22]. This engine is commonly used on the Boeing 777

[41]. The engine model was altered to show improvements representative of modern

engine advancements (i.e. slightly higher overall pressure ratio, slightly increased

component efficiencies) to generate the new engine baseline. NPSS only calculates

engine thermodynamics; thus, to calculate the physical dimensions and weight of

the engine, another analysis tool was required. Weight Analysis for Turbine Engines

(WATE) is one such engine turbomachinery calculation code [88]. It is heavily in-

tegrated with NPSS, allowing the outputs from NPSS to be directly read as inputs.

WATE is used to calculate the weights and dimensions of the engine. The resulting

engine performance, dimensions, and weight can be input into an aircraft sizing and

analysis tool like FLOPS.

6.7.1 Baseline Aircraft Model

The selection of a baseline vehicle will help to establish appropriate input variable

ranges, responses, and performance constraints for evaluation. For this implemen-

tation, a civil transport aircraft has been selected. The implementation herein will

model a 305 passenger civil transport similar to a Boeing 777-200ER [10, 41]. The

general behavior of this aircraft is well-established in the literature. This class of

vehicle is considered relevant because of its prevalence in the national airspace. Fur-

thermore, future environmental regulations and constant economic pressure will likely

cause a redesign of this vehicle in the future.
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However, this thesis is motivated by the concept of designing a new vehicle and the

associated uncertainty. Calibration to a known vehicle is insufficient because there

is little uncertainty associated with its performance. Instead, the baseline vehicle

concept is modified to emulate a new design baseline. This new design point will be

used as the baseline for all data generation from the physics-based model. Table 7

shows the baseline vehicle information which is used to calibrate the models compared

to a 777-200ER. The calibrated model is used as the reference or baseline point for

generating surrogate models.

Table 7: 300 Passenger Aircraft Baseline Compared to 777-200ER Model[10]

Metric Baseline 777-200ER Units
Capacity 301 301 Passengers
Maximum Take-Off Weight (MTOW) 561,697 656,000 pounds
Operating Weight Empty (OWE) 276,875 302,200 pounds
Maximum Zero Fuel Weight 340,085 430,000 pounds
Maximum Fuel Capacity 33,608 45,200 gallons (U.S.)
Maximum Fuel Capacity 224,754 302,270 pounds
Maximum Structural Payload 125,550 125,550 pounds
Design Mission Range 7,530 7,530 nautical miles
Payload (Passengers + Baggage) 63,210 63,210 pounds
Wing Span 196.3 199.9 feet
Sea Level Static Thrust per Engine 83,300 93,700 pounds of force
Cruise Mach 0.84 0.84 N/A

6.7.2 Detailed Modeling Changes

In order to determine the aircraft performance, the vehicle must first be sized. The

model sizing analysis is shown in Figure 55. First the model must take in a design

point from the Design of Experiments. This design point will contain a specific setting

of design variables (𝑥) and uncertainty margins (ℎ). Along with the range requirement

(𝑅𝐷𝑒𝑠), this information is all that will be needed to size the vehicle so that a fixed

vehicle can be input into later analyses.

The engine thermodynamic sizing step takes in this design point and designs

the engine using the Numerical Propulsion System Simulation (NPSS) code. Once
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Figure 55: Model Sizing Logic
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the thermodynamics of the engine have been determined, a structural analysis of

the engine is performed by the Weight Analysis of Turbine Engines (WATE). A

convergence check is performed to ensure that the two code outputs describe the

same engine and that assumptions made during the thermodynamic analysis were

supported by the turbomachinery analysis.

After a converged engine solution has been created, the aircraft mission analysis

can be performed by the FLight OPtimization System (FLOPS). In this analysis

the range requirement (𝑅𝐷𝑒𝑠) dictates the size of the vehicle, given the design point

specified by the DoE. The aircraft mission analysis will attempt to match the fuel

required for the design mission to the fuel available within the aircraft geometry. If

these two values do not match, the aircraft code will continue to resize the gross

weight and geometry of the vehicle until they are consistent.

After the aircraft converges to a given size, the engine is scaled to match. Since

the thrust-to-weight ratio (𝑇/𝑊 ) is specified as a design input, the engine thrust will

be scaled to a fixed ratio with respect to the final sized maximum takeoff gross weight

(𝑀𝑇𝑂𝑊 ). Should the engine be scaled more than a small amount, the model will

return to the engine thermodynamic analysis to reassess the new engine. If the engine

thrust output from the mission analysis matches the thrust from the engine sizing,

the vehicle is considered sized. This vehicle configuration is “fixed” in place from this

point forward. The fixed vehicle is then output to the performance analysis.

The performance analysis within the model is used to generate the responses

necessary to generate surrogate models. The process used to evaluate the vehicle

performance is shown in Figure 56. The vehicle output from the sizing module is

fixed, meaning that its dimensions and overall maximum weights no longer change.

Next, the margins (ℎ) implemented during sizing are removed from the vehicle. The

rationalization behind this step is discussed in detail in Section 3.2.

Once the margins have been removed from the fixed vehicle, a specific uncertainty
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Figure 56: Model Performance Logic
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scenario (𝑢) is brought in from the DoE. This uncertainty scenario is implemented,

altering the performance of the fixed vehicle from what was initially sized. A fixed

engine analysis is then performed using NPSS and WATE. Once the new engine

performance is determined, this information is given to the fixed aircraft analysis

FLOPS model and the performance responses from the aircraft analysis are recorded.

These responses will be functions of the design variables (𝑥), the uncertainty margins

(ℎ), and the uncertainty scenario investigated (𝑢).

Next, a level for each of the mitigation actions (𝑚) is read from the Design of

Experiments. This mitigation action setting is implemented in the fixed vehicle model.

A level of mitigation penalty (𝑝) also comes from the DoE, and this value is input

into the vehicle model. The engine is run again in an off-design mode to calculate

any changes in thrust and fuel flow performance that result. A fixed aircraft analysis

is then executed to evaluate the response behavior after the mitigation actions have

been implemented. Finally, the performance responses are recorded. These responses

are functions of all input parameters to the model, including the mitigation actions

and penalties.

6.8 Step 8: Create Surrogate Models

It was known a priori that at least one of the responses from the aircraft analysis

code could not be fit sufficiently using a response surface equation. Thus, an Artificial

Neural Network (ANN) described in Section 2.6.2 was selected as the surrogate model

type to represent the behavior of the responses. This type of surrogate model is good

at emulating responses which are non-linear with respect to the input variables. The

neural networks were generated using the Basic Regression Analysis for Integrated

Neural Networks (BRAINN) [42]. As such, a large space-filling design of experiments

was needed. A normalized Design of Experiments was constructed using the variables

and ranges defined in Sections 6.2 to 6.4. MATLAB’s lhsdesign function was used
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to generate a Latin Hypercube design with 20,000 cases for the 17 variables. 5,0000

random cases were generated to allow for goodness of fit testing of the surrogate

models. The normalized Design of Experiments was converted to the appropriate

ranges for each of the design, uncertainty, and mitigation variables in a Microsoft

Excel spreadsheet. This resulting DoE was fed into the deterministic aircraft analysis

code described in Step 7.

Surrogate models were then generated using this data. These surrogate models

are substituted into Figures 49 to 51 to replace all aircraft performance analyses with

the resulting equations. Goodness of fit metrics were generated for each surrogate

model and are included in Appendix B.

6.9 Step 9: Create Uncertainty Quantification & Manage-
ment Environment

The uncertainty quantification and management environment described in Section 5.9

has been developed and implemented in a MATLAB coding environment. The actual

code employed in these studies is included in Appendix C. As this environment con-

stitutes the core of the ARMOUR methodology, it synthesizes information from all

of the previous steps. The range of variability for the design variables and margins

were established as indicated by Table 5.

Uncertainty variables were initialized and their ranges limited as indicated by

Table 3. The uncertainty distributions elicited during Step 3 were then input into

the environment. Samples were drawn from these distributions for analysis. For this

study, a 4-by-10000 array of pseudo random numbers was generated in MATLAB.

Since the uncertainty distributions used in this study were independent uniform dis-

tributions, this array was scaled to fit the upper and lower bounds of the uncertainty

variables listed in Table 3. Other uncertainty distribution types including triangular,

truncated normal, and correlated uniform were implemented but not used in any of

the final analyses.
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The range of mitigation actions was established based on Table 4. Additionally,

a weight penalty function was constructed which penalized the aircraft for both the

post-sizing fuel addition mitigation action and the augmented high-lift device mitiga-

tion action. The individual penalties for each mitigation action from Equations (45)

and (47) were both assessed and added together to achieve the final penalty imposed

on the design.

Once these basics had been established, a global optimizer was initialized which

operated on the design variables and margins. For this study, a genetic algorithm

intrinsic to MATLAB (ga(x)) was be used as the global optimizer. It attempted to

find a design point which minimizes the expected block fuel for economic range as

specified during Step 5. Also, the global optimizer was be constrained to meet or

exceed all reliability objective established during step 5.

The aircraft performance was then evaluated via the surrogate models to assess

the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) of the fixed vehicle as well as

the expected block fuel needs for an economic range mission (E[𝐵𝐹𝐸𝑐𝑜𝑛]). The sur-

rogate models developed in Step 8 were used in place of direct calls to the aircraft

analysis code to speed up the analysis. The design and margin settings selected by the

optimizer, along with the uncertainty distributions generated earlier, were then input

into the surrogate models. MATLAB’s element-wise math was used to evaluate all of

the uncertainty scenarios simultaneously for the given design point. The results from

the surrogate models were then compared to the performance constraints in Table 2

which were established in Step 2. Using Equation (17), a probability of compliance

was calculated for the given design. The set of uncertainty scenarios which constitute

the failed set (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙) were selected via Equation (15). This set of uncertainty

scenarios were then given to the mitigation analysis.

The mitigation analysis took in the failed uncertainty scenarios (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙) and

evaluated these scenarios for possible recovery through mitigation actions. A selected
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set of mitigation actions were created for evaluation. Multiple options were considered

for this mitigation evaluation, as detailed in Section 7.4. For most of the results in

Chapter 7, the “Hybrid (1D and Random)1” set of mitigation scenarios was employed.

With the set of mitigation scenarios defined, a for loop was established to evaluate

each mitigation scenario in turn. For each mitigation scenario, the performance re-

sponses were evaluated simultaneously for all failed uncertainty scenarios (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙)

using MATLAB’s element-wise math. All performance metrics were compared to

their respective constraints for each uncertainty scenario. Whenever a mitigation

action caused an uncertainty scenario to comply with all constraints simultaneously,

this scenario was considered recovered as defined by Equation (19).

Whenever a scenario was recovered, the economic range mission block fuel for that

scenario was recorded. If no other mitigation action had yet recovered that scenario,

this block fuel would be preserved for use in the final objective constraint calculation

from Equation (25). This calculation has been modified into Equation (53) to consider

the specific needs of this implementation. If another set of mitigation actions were

successful in recovering the failed uncertainty scenario (𝑢 ∈ 𝑈𝐹𝑎𝑖𝑙), then the resulting

block fuel from these two scenarios was compared and the lower of the two values was

kept for use in the objective constraint calculation.

Once all samples were drawn, the overall probability of success was calculated us-

ing Equation (24). Also, the expected block fuel for the economic mission (E[𝐵𝐹 (𝑥)])

was evaluated via Equation (53). These values were then returned to the optimizer.

E[𝐵𝐹 (𝑥)] =

∫︀
𝑢∈𝐴 𝐵𝐹 (𝑥, ℎ, 𝑢, 0) 𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

𝐵𝐹 (𝑥, ℎ, 𝑢,𝑚) 𝑑𝑢∫︀
𝑢∈𝐴(1)𝑑𝑢+

∫︀
𝑢∈𝐴𝑀

(1)𝑑𝑢
(53)

The expected block fuel required for the economic range mission (E[𝐵𝐹𝐸𝑐𝑜𝑛]) was

used as the objective function of the optimizer. This optimizer attempted to select

a design (𝑥, ℎ) in order to minimize the expected block fuel. Again, the probability

1Defined in Section 7.4.3.
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of success constraint ensured that the probabilistic performance did not fall below

the specified threshold. The optimizer input new settings of design variables (𝑥) and

uncertainty margins (ℎ) into the vehicle sizing algorithm to attempt to minimize the

expected block fuel while maintaining a level of success. Once the optimum was

found, the design point (𝑥, ℎ) was recorded and reported back to the user along with

the final objective value and the full set of reliability measures.

6.10 Step 10: Execute UQ&M Environment

Executing the Uncertainty Quantification and Management environment is as simple

as running a MATLAB script and waiting for the code to finish. The resulting

design(s) will meet or exceed the reliability targets specified in Step 5, within a

tolerance established in the optimizer created during Step 9. For the studies located

in Section 7.7, the UQ&M environment was modified to take in an array of reliability

targets and return a set of designs which met each target in sequence. This allowed

for the construction of a set of designs, each with different reliability targets and

expected block fuels, from which a designer could select the aircraft deemed most

appropriate for further development.

6.11 Chapter Summary

In this chapter, an implementation of the step-by-step ARMOUR methodology de-

scribed in Chapter 5 was adapted to fit the specific needs of the design of a large

civil transport aircraft. Variables, constraints, and mitigation actions were discussed

along with applicable ranges. The design objectives were selected to constrain the

resulting optimized solution. Existing physics-based design tools formed the founda-

tion of this analysis. An uncertainty quantification and management environment was

constructed in MATLAB using surrogates of the aircraft sizing and performance anal-

yses. This environment will be exercised in Chapter 7 to glean additional information

about the behavior of the aircraft design process under uncertainty.
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CHAPTER VII

RESULTS

Now that the methodology developed in Chapter 5 has been instantiated using the

specific implementation from Chapter 6, a number of studies can be performed to

glean insight into an aircraft design process which considers design uncertainty with

recovery through mitigation actions. The first two studies in Sections 7.2 and 7.3

investigate the impact of uncertainty margins on the two of the reliability measures

used in this work, probability of compliance and probability of recovery. Section 7.5

explores the impact of penalties imposed on mitigation actions on the probability of

recovery for designs. The design and margin space is explored in Section 7.6. The

results of the design space exploration are compared to a set of optimized Pareto

frontiers in Section 7.7.

7.1 Margin Implementation Testing

Section 3.2 discussed a desire to quantitatively set margins to achieve a probability

of compliance in Research Question 2.

Research Question 2 Is it possible to select a desired probability of com-

pliance and then quantitatively determine a level of margin which will yield

that probability of compliance?

Previous uncertainty quantification methods have implemented performance tar-

get setting, which is conceptually similar to uncertainty margins. Thus, it was as-

sumed that uncertainty margins could be implemented in a probabilistic framework.

This implementation would determine the probability of compliance based on a set-

ting of uncertainty margins. Further, this framework should allow for the selection of
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uncertainty margins based on a particular desired level of probability of compliance.

This concept was formalized in Hypothesis 2.

Hypothesis 2 By including an uncertainty margin during the sizing pro-

cess and removing it (but not its effect) before the uncertainty analysis,

the impact of margin on the probability of compliance can be seen. Using

an optimizer, it will be straight-forward to determine an appropriate level

of margin to achieve a desired probability of compliance.

A partial form of the final implementation established in Chapter 6 is used to

test the impact of assessing uncertainty margins in an uncertainty quantification

environment. Using this partial implementation, a baseline vehicle was assessed to

determine its expected performance and probability of compliance. This baseline

vector and its performance is tabulated in Table 8.

Table 8: Margin Optimization Baseline

Parameter Baseline
TWR 0.2962
WSR 133.34
AR 10.0
LapseRate 0.2014
FPR 1.50
OPR 42.58
ℎ𝐸𝑊 0.030
ℎ𝐷𝑟𝑎𝑔 1.030
ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 1.030
Compliance 71.5%
𝐵𝐹𝐷𝑒𝑡 227,834
𝐸[𝐵𝐹𝐷𝑒𝑠] 223,478
𝐸[𝐵𝐹𝐸𝑐𝑜𝑛] 115,526

Once the baseline performance is established, the levels of margins were adjusted,

leaving all other design variables constant. Uncertainty margins input sweeping from

no margin up to seven percent margin over the code-predicted values. All three mar-

gins were kept at equal levels, as they were changed. Figure 57 shows the probability
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of compliance for the baseline design at different settings of uncertainty margins.

Along the x-axis is the margin value assigned to all three uncertainty margins. The

blue line corresponds to the resulting probability of compliance on the y-axis, resulting

from the reliability assessment.

Figure 57: Baseline Compliance versus Margin

Using an optimizer to adjust all three uncertainty margins simultaneously indi-

cates that to achieve an 80 percent probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ))

with equal margin values, uncertainty margins should be set at 3.336 percent. This

will result in roughly 550 lbs increase in the expected economic range block fuel

(𝐸[𝐵𝐹𝐸𝑐𝑜𝑛]).

This conclusion already meets the minimum goals necessary to support Hypoth-

esis 2. However, much more can be accomplished by including margins in the uncer-

tainty quantification environment.

Using the established margin, an optimizer was used to select the best determin-

istic design, as might be done in a standard conceptual design study. The optimizer

was allowed to select any combination of design variables with the goal of achieving

a minimum deterministic economic range block fuel for that design. Analyzing this
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new design through the uncertainty quantification environment showed that the new

deterministic design had improved the expected economic range block fuel by 8,360

lbs, but the probability of compliance had dropped to 48.4 percent.

Using this new deterministic design, the optimizer was again used, allowing un-

certainty margins only to change. This optimizer was given access to the reliability

analysis and asked to minimize expected block fuel while achieving a probability of

compliance of 80 percent. This new “Opt Margin” design based on the deterministic

optimization design was able to meet the probability of compliance goal by increasing

uncertainty margins, but it increased the expected economic block fuel by 2,200 lbs.

As a final point of comparison, the optimizer was allowed to vary both design vari-

ables and uncertainty margins. The optimizer attempted to find the lowest expected

block fuel while still being restricted to a resulting design with 80 percent probability

of compliance. This final “Full Optimization” design achieved the lowest expected

block fuel while still meeting the probability of compliance goal. A summary of these

results and the corresponding design vectors is contained within Table 9.

Table 9: Margin Optimization Test Results

Parameter Baseline Deterministic Opt Margin Full Optimization
TWR 0.2962 0.2686 0.2686 0.2638
WSR 133.34 137.71 137.71 135.09
AR 10.0 10.79 10.79 11.00
LapseRate 0.2014 0.206 0.206 0.2089
FPR 1.50 1.5198 1.5198 1.5625
OPR 42.58 46.635 46.635 46.838
ℎ𝐸𝑊 0.030 0.034 0.0446 0.0225
ℎ𝐷𝑟𝑎𝑔 1.030 1.034 1.0427 1.0447
ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 1.030 1.034 1.0457 1.0428
Compliance 71.5% 48.4% 80.0% 81.3%
𝐵𝐹𝐷𝑒𝑡 227,834 214,892 223,527 215,870
𝐸[𝐵𝐹𝐷𝑒𝑠] 223,478 207,704 210,212 205,714
𝐸[𝐵𝐹𝐸𝑐𝑜𝑛] 115,526 107,721 109,389 106,727
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7.2 Relationship between Margin and Compliance

It would be easy to assume that, in general, increasing uncertainty margins would lead

to an increased chance that the resulting design would be compliant with all imposed

constraints. Using the methodology as implemented in Chapter 6, this idea can be

investigated to test how true it may be. To test this concept, margins will be varied

for individual designs to investigate the impact on the probability of compliance.

Further, a design space exploration will be performed to investigate whether overall

trends exist for the entire design space.

7.2.1 Investigating Individual Designs

Table 10 demonstrates the individual designs investigated in Figures 58 and 59. These

designs differ from each other, greatly for some design variables, but they demonstrate

similar levels of performance when viewed from a high level. Of particular note is

that the designs have very different levels of uncertainty margin for all three variables

(ℎ𝐸𝑊 , ℎ𝐷𝑟𝑎𝑔, and ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤). Despite these differences, the designs have a similar

probabilities of compliance and expected block fuel performance.

Table 10: Designs to Investigate Margin vs. Compliance

Parameter Design 1 Design 2
TWR 0.3232 0.2949
WSR 139.23 128.58
AR 9.515 9.555
LapseRate 0.1903 0.1951
FPR 1.471 1.495
OPR 46.65 42.58
ℎ𝐸𝑊 1.001 1.033
ℎ𝐷𝑟𝑎𝑔 1.051 1.030
ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 1.069 1.064
Compliance 81.7% 83.7%
E[𝐵𝐹𝐷𝑒𝑠] 229,954 230,426
E[𝐵𝐹𝐸𝑐𝑜𝑛] 118,524 118,807

The trend of probability of compliance with respect to individual margin changes
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were investigated for each design individually. Each design investigated was based

off either Design 1 or Design 2 from Table 10. A sweep of each uncertainty margin

(ℎ𝐸𝑊 , ℎ𝐷𝑟𝑎𝑔, and ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤) was constructed, varying each margin from as low as

no change from the deterministic code prediction up to a 10% increase over the

deterministic prediction. These resulting designs were input into the the aircraft

assessment implementation developed in Chapter 6 without any optimization in order

to evaluate the performance of each individual design. The probability of compliance

for each resulting design was recorded.

Figure 58 shows the impact of changing individual margins for Design 1. Using

this design as a baseline, only one margin variable is changed at a time while all

other variables are left at the setting from Table 10. Each assessment performs a

sizing analysis to determine the new dimensions of the resulting aircraft. Following

this, the frozen aircraft is assessed for a large number of uncertainty scenarios to

accurately determine the probability of success. The three different lines all represent

a set of designs, each with a different margin being changed. These margins are

swept from no margin (1.0) to ten percent margin (1.1) on the x-axis. The y-axis

shows the corresponding probability of compliance for the resulting aircraft. For

each line, the baseline setting of the margin for Design 1 are shown by the symbol

corresponding symbol. It should be apparent that all three symbols correspond to the

same probability of compliance as Design 1 in Table 10. The empty weight margin

(ℎ𝐸𝑊 ) is shown in blue. Increasing values of this margin cause the probability of

compliance to monotonically increase from 81.7 percent compliance to full compliance

with all constraints. The red line shows the impact of varying the drag margin (ℎ𝐷𝑟𝑎𝑔).

Again, increasing values of this margin cause a monotonic increase in the probability

of compliance, this time from about 35 percent to 99 percent. The green line shows

similar trends for the engine fuel flow margin (ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤). Increasing values of this

margin also show a monotonic increase from a very low 13 percent up to 95 percent.
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Figure 58: Probability of Compliance vs. Margin for Design 1

For Design 1, increasing margins lead to an overall increase in the probability of

compliance. The primary active constraint for this design was range, so the result

that increasing margin will improve the probability of compliance would be expected.

Figure 59 shows the behavior of varying uncertainty margins for Design 2 from

Table 10. Just as in Figure 58, a sweep was performed for each margin separately,

varying values from no margin to ten percent margin along the x-axis. The corre-

sponding probability of compliance for each design is shown on the y-axis. The three

margins, empty weight margin (ℎ𝐸𝑊 ), drag margin (ℎ𝐷𝑟𝑎𝑔), and engine fuel flow mar-

gin (ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤), are shown in blue, red, and green, respectively. Their baseline values

from Design 2 are indicated by their respective symbol, and also all correspond to De-

sign 2’s probability of compliance of 83.7 percent. For low values of margins, it once

again appears that increasing margin leads to increased probability of compliance;

however, this trend does not continue indefinitely. For both empty weight margin

and drag margin, a point is reached at which the probability of compliance no longer

improves. Instead, the probability of compliance drops instantaneously to zero. For

empty weight margin (ℎ𝐸𝑊 ) this occurs at about seven percent margin. For drag
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(ℎ𝐷𝑟𝑎𝑔) this precipitous drop occurs at nine percent margin.

Figure 59: Probability of Compliance vs. Margin for Design 2

Looking at detailed results of the analysis, it can be seen that a wing span con-

straint is becoming active. The reason that compliance drops instantaneously rather

than being a smooth slope as with the rise of compliance for lower margin values is

that span is fixed after the sizing loop. Because span is fixed before any knowledge

is gained about the uncertainty variables, it cannot be affected by changes in their

values. Thus, there is no uncertainty associated with the aircraft’s compliance with

that constraint. The probability of compliance simply drops to zero after the aircraft

reaches a certain size. Because the aircraft is sized with these margins imposed, as the

margins increase so does the maximum takeoff weight and size of the vehicle. Since

the wing loading (WSR) is being held constant for a design, the wing area increases

as margins increase. This increased wing area leads to an increased in wing span.

A conclusion which could be drawn already from these two examples is that higher

levels of margin do not always equate to a higher probability of compliance with per-

formance constraints. In this manner the relationship between margins and perfor-

mance metrics mimics that of any other design variable.
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7.2.2 Design Space Exploration

Rather than continuing to look at many individual designs separately, it will be more

helpful to try to examine a large portion of the design space. To enable this visual-

ization, an exploration of all design variables and uncertainty margins was performed

via Monte Carlo Simulation, generating 50,000 different designs. For each resulting

design, the process described in Chapter 6 was executed to determine the probability

of compliance for the design.

Examining the data from this large exploration of designs simultaneously proved

difficult. Instead, designs were binned based on their three margin values. The designs

were separated into a total of 125 bins – 5 for each independent margin dimension

(ℎ𝐸𝑊 , ℎ𝐷𝑟𝑎𝑔, and ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤). With the bins established and the designs sorted, an

average was taken of the probabilities of compliance seen across the designs within

each bin. This average compliance was then plotted against each of the uncertainty

margins.

Figure 60 shows the results for one of these uncertainty margin bins. This chart

plots the average probability of compliance on the y-axis versus the empty weight

margin (ℎ𝐸𝑊 ) on the x-axis, varying between no margin and ten percent margin.

The chart only shows roughly 2,000 of the 50,000 designs – the ones which have both

a drag margin between zero and two percent as well as a fuel flow margin between

zero and two percent. Each dot represents a bin of roughly 400 different designs

which all have about the same values individually for each of the three uncertainty

margins. For each bin, the probability of compliance was averaged across all designs.

This average probability of compliance for each bin is plotted as a dot on the chart,

located horizontally at its empty weight margin bin. A curve is fit through these data

points to aid the viewer’s eye in seeing trends. The result is an ability to see the

average behavior of probability of compliance versus the empty weight margin for a

particular bin of drag and fuel flow margins.

187



Figure 60: Average Compliance vs. Empty Weight Margin

Examining each combination of these plots individually would take significant time

and energy. In an attempt to look at the entire space simultaneously, individual plots

like Figure 60 are shown as a large grid of plots in Figure 61. This resulting plot gives

the ability to examine the average compliance versus all three margins simultaneously.

Just as with the Figure 60, each subplot of Figure 61 represents a subset of about

2,000 of the 50,000 designs which correspond to a combination of drag margin (ℎ𝐸𝑊 )

and fuel flow margin (ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤). The first plot in the top left only contains designs

which have both a drag margin between zero and two percent as well as a fuel flow

margin between zero and two percent, just like Figure 60. Moving to the right, each

plot shows a different 2,000 designs which have progressively two percent higher drag

than the one to its left. The designs in subplot all the way to the right on the top

has a drag margin between eight and ten percent and a fuel flow margin between zero

and two percent. Going down, each progressive subplot has 2,000 different designs

with about two percent more drag margin than the plot above it. Thus, the subplot

on the bottom right has a fuel flow margin between eight percent and ten percent as

well as a drag margin between eight percent and ten percent. Each individual plot
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is identical in implementation to Figure 60. In it, each dot represents the average

behavior of about 400 designs, each of which have the same empty weight margin,

drag margin, and fuel flow margin. The empty weight margin is plotted on the x-axis

versus the average probability of compliance for this set of designs on the y-axis.

Figure 61: Average Compliance vs. Uncertainty Margins

Examining Figure 61 leads to the following generalizations. When all margins are

small, increasing any margin tends to improve the average probability of compliance

of the design space. However, there appears to be a limit to this behavior which causes

margins to lose effectiveness. Indeed, when any margin or combination of margins

are at a high value, further increasing margin tends to degrade the probability of

compliance of the design space. Neither of these statements are surprising considering

the contrast in single design examples shown in Section 7.2.1. However, the knowledge

that those trends would generally hold for the design space could not be deduced from

merely two designs.
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7.3 Relationship between Margin and Recovery

It will also be beneficial to examine whether there exists a relationship between the

probability of recovery and uncertainty margins. As with the probability of compli-

ance, it will be helpful to examine the design space. Since the requirements were

similar, the same 50,000 point Monte Carlo simulation of designs was used to con-

struct this evaluation. The probability of recovery was estimated using 250 random

search mitigation actions for each design.

The designs were once again binned based on their margins. The designs were

separated into a total of 125 bins – 5 for each independent margin dimension (ℎ𝐸𝑊 ,

ℎ𝐷𝑟𝑎𝑔, and ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤), corresponding to two percent increments. With the bins estab-

lished and the designs sorted, an average was taken of the probabilities of recovery

seen across the designs within each bin. This average recovery is plotted against each

of the uncertainty margins.

To examine the average probability of recovery versus all three uncertainty margins

for the entire design space, Figure 62 was created. This resulting plot gives the ability

to examine the average recovery versus all three margins simultaneously. Just as with

the Figure 61, each subplot of Figure 62 represents a subset of about 2,000 of the

50,000 designs which correspond to a combination of drag margin (ℎ𝐸𝑊 ) and fuel flow

margin (ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤). The first plot in the top left only contains designs which have both

a drag margin between zero and two percent as well as a fuel flow margin between

zero and two percent. Moving to the right, each plot shows a different 2,000 designs

which have progressively two percent higher drag than the one to its left. The designs

in subplot all the way to the right on the top has a drag margin between eight percent

and ten percent and a fuel flow margin between zero and two percent. Going down,

each progressive subplot has 2,000 different designs with about two percent more drag

margin than the plot above it. Thus, the subplot on the bottom right has a fuel flow

margin between eight percent and ten percent as well as a drag margin between eight
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percent and ten percent. Each individual plot is identical in implementation. In a

plot, each dot represents the average probability of recovery behavior of about 400

designs, each of which have the same empty weight margin, drag margin, and fuel

flow margin. The empty weight margin is plotted on the x-axis versus the average

probability of recovery for this set of designs on the y-axis.

Figure 62: Average Recovery vs. Uncertainty Margins

Examining Figure 62 reveals similar trends to those shown when investigating the

average probability of compliance. It appears the increasing margins improve the

probability of recovery when margins are low, and that they degrade the probability

of recovery when margins are high. However, it is possible that this effect is at least

in part due to the effect of these trends existing in the compliance space.

To determine how much of the effects seen in Figure 62 are a result of the proba-

bility of compliance, all designs with a probability compliance of less than 50 percent

were removed. This left about 11,000 designs remaining of the original 50,000. This

data was binned like before and is plotted in Figure 63. Each data point is still

the result of the designs which fit into a bin corresponding to a combination of drag

margin (ℎ𝐸𝑊 ) and fuel flow margin (ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤). The first plot in the top left only
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contains designs which have both a drag fuel flow margins between zero and two

percent. Moving to the right, each plot shows a different set of designs which have

progressively two percent higher drag than the one to its left. Going down, each pro-

gressive subplot contains different designs with about two percent more drag margin

than the plot above it. In addition to the dimensions present before, a “hot body”

color scale has been included which indicates the number of cases which occur in each

bin going from yellow to red to black. The darker the data point, the more designs

which exist in that margin bin which met the 50 percent probability of compliance

limit. Each dot represents as few as 1 design in yellow and as many as 200 different

designs in black. Each dot still represents the average probability of recovery of the

remaining designs, each of which have the same empty weight margin, drag margin,

and fuel flow margin as well as a probability of compliance greater than 50 percent.

The empty weight margin is plotted on the x-axis versus the average probability of

recovery for this set of designs on the y-axis.

Figure 63: Average Recovery vs. Uncertainty Margins > 50% 𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)
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Figure 63 illustrates that, in general, increasing margins remain effective at im-

proving the probability of recovery at higher values of margin than before. This

indicates that IF the increase in a margin does not cause the design to decrease in

compliance due to a constraint becoming active, the average probability of recovery

will increase with increasing margin.

There still appears to be a drop off to this trend at very high margins. How-

ever, the trends become volatile due to the lack of observable designs which met the

probability of compliance limit in those regions. The lack of data makes it difficult

to make concrete conclusions about the trend of probability of recovery with respect

to uncertainty margins for extremely high values of those uncertainty margins. This

may not be of particular concern, since the results Section 7.2.1 indicated that the

probability of compliance is generally low in this region. Coupled with the fact that

excessive margins lead to larger, higher-weight aircraft, this implies that this region

is likely not of particular interest to a designer, anyways.

7.4 Method for Mitigation Space Exploration

Now that Hypothesis 3 has been supported, it will be helpful to investigate what

method should be used to determine the appropriate level of mitigation for each

failed uncertainty scenario. This assessment will need to accurately determine the

probability of recovery for a given design by investigating the mitigation options for

different uncertainty scenarios.

Recall that this part of the analysis occurs very late within the methodology.

Because this entire analysis will need to be called separately for each uncertainty sce-

nario, the number of function calls to the constraint evaluations at this level has a very

large impact on the total number of function calls required. Thus, even an efficient

optimizer implemented here could balloon the required analysis time to a prohibitive
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level, rendering the entire methodology impractical. Rather than simply implement-

ing an optimizer to find a solution separately for each uncertainty scenario, it would

be beneficial to examine the requirements of the mitigation space and determine if

an optimizer is even required.

The primary concern at this level is to determine the probability of recovery. Thus,

it may not be necessary to minimize the level of mitigation applied. Indeed, all that

is required is a determination of whether a combination of mitigation actions exists

that can bring a failed uncertain scenario back into compliance.

It is unhelpful and somewhat nonsensical to try to define a “level of mitigation

action” at the design level. Each successful recovery through mitigation actions may

have a specific “level” associated with it; however, this is specific to not only the design

but also to the specific uncertainty scenario under investigation. Since a breadth of

uncertainty scenarios are assessed for each design, there will also be a breadth of

mitigation levels associated with the given design. For some designs it may even be

possible to have multiple active constraints, changing with the uncertainty scenarios,

which will lead to completely different mitigation actions being used to recover the

vehicle. Additionally, the mitigation actions are only used after a design has failed

due to a specific uncertainty scenario.

Some information which is helpful to a designer is the likelihood of whether a

given design can be recovered if it does fail. During the Conceptual Design phase, the

aircraft gross design parameters are being selected. The mitigation actions will be

used if and only if the inherent uncertainty in the design process causes the aircraft

to fail to meet its goals. Whether the mitigation action will even be needed will not

be known until the scenario specific to this aircraft is known, which will occur well

after the Conceptual Design phase is completed.

Instead, by examining all possible scenarios, some insight can be gained into the

probabilities of events occurring for each design. This information of this broad
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behavior across the uncertainty space will be helpful in deciding which design to

select. The results of any specific scenario are less useful at this stage when compared

to this more general information.

Planning for specific failures is less useful than knowing how likely it is that a

design will comply with all performance constraints and how likely it is that the

design can be recovered through the available mitigation actions.

Additionally, detailed knowledge of the “mitigation level” may be dangerous in

the wrong hands. The concept of a mitigation action is to fix a design if and only

if it is going to fail. Mitigation actions are by their very nature less desirable than

simply changing the selected design point. Indeed, if they were more efficient than a

design variable, they should be used as such.

Having this knowledge before it is necessary and without appropriate context may

lead to an attempt to pre-mitigate a design, which is not intended. Implementing

a mitigation action during Conceptual Design would simply be another way of re-

designing the vehicle. Since mitigation actions are expected to be less efficient than

selecting a new design point, this would degrade the design, potentially unnecessarily.

This may also have some unintended consequences, since it is not the process which

the proposed method models.

Instead, this information is intended to inform the design team. While this method

is bringing probabilistic information forward from the Preliminary Design stage, it

cannot change the fact that the decisions being made are during Conceptual Design.

Indeed, the team need not make Preliminary Design decisions at this stage. Instead,

whether or not to mitigate can wait until more information is known later on in the

design process.

Additionally, the minimum amount of mitigation action will always be very near

zero. For any design which has some non-zero and non-unity probability of com-

pliance, there will be some uncertain scenarios under which the design will fail to
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meet some constraints and some other scenarios under which the design does meet

all constraints. At the boundary between these regions, scenarios will exist where

the design just barely fails to meet a design constraint. In this situation, the design

will be so near to meeting the constraints that the amount of mitigation action will

be trivial. Thus, quantifying a minimum amount of mitigation would be trivial and

unhelpful information for the designer.

To determine the actual recovery of a design, a “truth model” was established. In

this mode, 10,000 random search mitigation points were used to acquire a very accu-

rate estimate of the design’s probability of recovery. All other recovery estimates will

be compared to this “truth model” in order to determine their accuracy at estimating

the probability of recovery.

7.4.1 Recovery via Random Search

Another viable method to find the probability for investigating the mitigation space

would be to use a random search. This method has already been shown to be signifi-

cantly faster and about as accurate as employing an optimizer. If a random search is

to be used for selecting mitigation actions, a number of search cases must be selected.

To decrease the required run time, a minimum number of search points will be de-

sired. Conversely, a large number of points may be necessary in order to correctly

estimate the probability of recovery. In order to determine the appropriate number of

cases which balance these two competing goals, a series of tests will be formulated to

evaluate both the accuracy of the recovery estimate and the execution time required.

A large number of uncertainty scenarios will be used to ensure that the uncertainty

space was fully explored. To ensure that the different number of mitigation search

points can be compared fairly, the same uncertainty scenarios will be used for each

design. This is accomplished by giving MATLAB’s random number generator the

same seed immediately before the uncertainty scenarios are generated. Following the
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generation of all scenarios, the random number generator is reset to a seed based on

the computer’s internal clock.

The impact of the number of random mitigation search points on the probability

of recovery estimate was first investigated using individual designs. Designs were

randomly selected after screening for those which had both some non-zero probability

of compliance and some non-zero probability of recovery. Table 11 shows two example

designs which will be initially evaluated to help determine an appropriate number of

random search mitigation cases.

Table 11: Designs to Assess Mitigation Accuracy

Parameter Design 1 Design 2
TWR 0.3355 0.2798
WSR 138.33 138.51
AR 10.44 10.33
ℎ𝐸𝑊 1.032 1.002
ℎ𝐷𝑟𝑎𝑔 1.058 1.092
ℎ𝐹𝑢𝑒𝑙𝐹 𝑙𝑜𝑤 1.006 1.021
LapseRate 0.182 0.206
FPR 1.486 1.447
OPR 44.65 46.72
𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒) 64.59% 50.29%
𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠) 72.81% 75.86%
𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦) 8.22% 25.56%

To evaluate how many random search points are necessary to accurately estimate

the probability of recovery, the methodology was executed independently multiple

times. Each evaluation would be executed with a different number of random search

cases. These evaluations would be compared against each other to determine the

best combination of accuracy and speed. Since the number of random search cases

required was unknown, a large range was established between as few as five (5) and as

many as one thousand (1,000) random search cases. Since a random search operates

on the same principle as a Monte Carlo simulation described in Section 2.4.1, the

amount of error in the recovery estimate was expected to decrease with the square
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root of the number of cases. Thus, running numbers of cases in linear increments

seemed inappropriate. To cover the gambit of cases, a hand-made log-like scale was

implemented. The number of random cases executed for the following run of the

methodology would either double (e.g. from 5 to 10) or multiply by two-and-a-half

(e.g. from 100 to 250) from the number of cases random search mitigation cases

previously executed.

Table 12: Number of Random Search Mitigation Cases to Execute

Mitigation Search Method Run 1 2 3 4 5 6 7 8
Random Cases 5 10 25 50 100 250 500 1000

Using this set of runs, the methodology was executed to determine the estimated

probability of recovery under each set of mitigation search cases. Figure 64 shows

the rate of convergence of the recovery estimate towards the probability of recovery

predicted by the truth model for Design 1 from Table 11. On the y-axis is the

predicted probability of recovery for a particular execution. On the x-axis is the

number of random mitigation search cases used to acquire the estimate. The blue

line shows the trend of the recovery estimate compared to the red dotted line which

was the recovery found in the truth model. This figure shows that the probability of

recovery converges to within half a percent of the actual value by 50 random search

mitigation cases.

Figure 65 shows the results of this set of random mitigation search executions on

Design 2. The number of random mitigation search cases from Table 12 is shown on

the x-axis versus the resulting probability of recovery estimate on the y-axis. The blue

line represents the recovery estimate for Design 2 while the red dotted line shows the

recovery seen in the truth model. This figure shows that the probability of recovery

converges to within half a percent of the actual value by 100 random search mitigation

cases.
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Figure 64: Recovery Estimate vs. Number of Mitigation Search Cases - Design 1

Figure 65: Recovery Estimate vs. Number of Mitigation Search Cases - Design 2
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Examining the rate of convergence of the probability of recovery estimate for in-

dividual designs will quickly become tedious. Instead, it would be helpful to examine

the design space. Statistics can be generated based on the number of random search

cases to determine an appropriate number of mitigation cases to use for further anal-

yses. A common way of graphically displaying statistical data about distributions is

a box-and-whisker plot or box plot. The left side of Figure 66 shows multiple box

plots. These box plots give an idea of the overall statistics of the distribution in a

quickly readible manner.

In order to compare the different mitigation space exploration techniques, later

charts contrast multiple sets of box plots. Large numbers of box plots on a single chart

quickly become challenging to interpret; thus, the traditional box plots are simplified

in order to compare across these sets. This simplification is shown in Figure 66. The

left and right sides of the diagram contain the exact same informaiton about the set

of five distributions. The left side shows five standard box plots. A line connects their

median values of these five distributions. On the right, the boxes indicating the high

quantile, median, and low quantile have been removed. Instead, a marker is used to

indicate the location of the median. The whiskers remain, which allows the reader to

determine the location of the quantiles along with the ends of the distribution. To

visually connect the dataset, a lightly-colored region is used which connects the ends

of the different distributions.

A large number of designs were generated using randomly-selected values of all

design variables and design margins. Of these cases, a set of designs were selected

by filtering out all cases which had a zero probability of recovery. Of the remaining

cases, a set of one thousand designs were randomly selected to be used in this analysis.

These designs were assessed using a random search throughout the mitigation space to

determine their probability of recovery. Each design was run at each of the conditions

described in Table 12. For each run, the estimated probability of recovery for a
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Figure 66: Simplified Box Plots Explanation

design was compared to the probability of recovery seen in the truth model. The

differences between the recovery from the truth model and the recovery estimate

for each design was calculated and designated the “Recovery Estimate Error.” To

determine an aggregate measure of the number of random search mitigation cases

required, statistical measures of this recovery estimate error were generated based

on the entire set of designs. Figure 67 plots the results of this set of runs. The x-

axis shows the number of random search mitigation points plotted on a logarithmic

scale. For each run, a distribution was created and plotted using a simplified box plot

described in Figure 66. The blue diamonds represent the median of each distribution.

A line is drawn connecting these median values to show the trend of the estimate error

with increasing number of cases. The blue vertical lines connect the inner quantiles of

the distribution and the edges of each distribution, excluding outliers. A blue region

higlights the change in the width of the distributions. The red line shows the run time

required to evaluate 1,000 designs, with the time plotted (in hours) on the secondary

y-axis.

Examination of this data shows that increasing the number of random search cases

continuously decreases the recovery estimate error. However, this decrease in error

comes at a cost of increasing run time required. The ARMOUR method needs an
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Figure 67: Recovery Estimate Error vs. Number of Random Mitigation Search Cases

accurate estimate of the probability of recovery in order to help the designer select

the best aircraft. However, the ARMOUR method uses an optimization algorithm to

determine the best design; thus, it is safe to assume that many designs will need to be

examined. Thus, an undesirable tradeoff exists between the accuracy of the recovery

estimate and the time required to perform this assessment. With the performance

of this method in mind, other possible techniques will be examined to explore the

mitigaiton space in the hopes of finding a more suitiable tradeoff between accuracy

and execution time.

7.4.2 Recovery via Single Mitigation Actions

It is conceivable that a company constructing an aircraft would be prefer to limit the

design team to implementing only one mitigation action during preliminary design.

It is feasible to evaluate how the design space would be effected by such a decision.

This is, of course, a completely valid assessment method. The difference between this

and allowing the MA setting to be any combination of options will largely come down

to corporate policy.

In this case, the mitigation space will restricted to a series of one-dimensional
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searches. As such, fewer points should be necessary to estimate the probability of

recovery. Additionally, since the mitigation space is restricted, it is expected that the

recovery probability will be reduced for at least some of the design space.

A set of one dimensional sweeps will be executed to estimate the probability of

recovery. Each one dimensional sweep will evaluate one dimension of the possible

mitigation actions. As in Section 7.4.1, a series of tests will be executed, evaluating

the resolution necessary to accurately estimate the probability of recovery. Table 13

shows the number of one-dimensional search cases used for each run of the method.

The total number of cases executed is also included for comparison to the number of

cases used in the random search implementation.

Table 13: Number of 1D Search Mitigation Cases to Execute

Mitigation Search Method Run 1 2 3 4 5 6 7 8
Random Cases 5 10 25 50 100 250 500 1000

1D Search
Per Dimension 2 5 10 20 50 100
Total Cases 9 18 33 63 153 303

Figure 68 shows the recovery estimate error this one-dimensional search in red

compared to the previous random search algorithm in blue. The x-axis shows the

number of mitigation cases executed on a logarithmic scale. The data points show the

median recovery estimate error for that number of mitigation cases for each method.

For each run, a distribution was created and plotted using a simplified box plot

described in Figure 66. The symbols represent the median of each distribution and are

connected to show the trend of the median error. The vertical lines connect the inner

quantiles of the distribution and the edges of each distribution, excluding outliers.

The blue region higlights the distributions from the random search exploration. The

red region designates the distribtions from the one-dimensional search method.

From Figure 68 it is evident that the recovery estimate of the one-dimensional mit-

igation assessment is much more accurate than a random search for similar numbers of

cases when the number of mitigation cases is low. Further, the one-dimensional search
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Figure 68: Recovery Estimate Error vs. Number of 1D Mitigation Cases

performs better for all percentiles except the extreme top end of the distributions.

This is likely due to the fact that the single dimension mitigation search is guaran-

teed to explore its very constrained mitigation space evenly, while the random search

method may not explore all regions equally. It is expected that the one-dimensional

search method should perform worse when investigating designs which have multiple

active constraints, which will be explored shortly.

Comparing the run time associated with the one-dimensional search to the random

search data yields somewhat unsurprising results. Figure 69 compares these execution

times on the y-axis versus the number of mitigation cases on the x-axis. The random

search implementation is shown in blue while the one-dimensional search is shown

in red. As the two lines lie on top of one another, the execution time depends

primarily upon the number of mitigation cases, and is roughly the same for both

implementations. The slight difference seen in execution time is believed to be a

result of the user’s actions in other programs at the time of execution.

From this data alone, an assumption could be made at this point that running

a series of one-dimensional sweep of single mitigation actions may be more efficient

and/or more accurate than running a random search throughout the mitigation space.
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Figure 69: Run Time vs. Number of 1D Mitigation Cases

The evidence shows that this is generally true; however, assuming that this will always

be true may be a significant misstep. Specifically, this method is expected to do

poorly in any regions of the design space where multiple recoverable constraints are

violated. In aircraft conceptual design, multiple constraints are frequently active or

nearly active for the selected vehicle, so this multiple-constraint region is an area

which is expected to be useful to a design study.

To examine this possibility, a subset of the previously executed cases were exam-

ined. The selected cases had a non-zero probability of compliance. Additionally, these

cases had non-unity probabilities of compliance for the two most easily recoverable

constraints: approach speed and rate of climb. Examining this small set of cases in

the same manner as before yields Figure 70. The recovery estimates are compared to

the recoveries seen in the “truth model” established earlier. This recovery estimate

error is plotted on the y-axis versus the number of mitigation cases executed on the

x-axis. Again, random search is plotted in blue while the one-dimensional mitigation

search is plotted in red. The median recovery error for this set of cases is shown by

the symbol at the middle of the vertical lines. The vertical lines themselves represent
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the distribution of this error when viewed across the design space.

Figure 70: Recovery Estimate Error for Cases with Multiple Constraint Violations

As expected, it is clear from this figure that the random search algorithm has

more trouble than in the rest of the design space, as evidenced by the magnitude of

the y-axis; however, it does converge steadily with more cases. Conversely, the one-

dimensional mitigation search method shows significant probability of recovery error.

Furthermore, the estimate does not improve significantly with increased numbers of

cases.

It appears that a one-dimensional mitigation search is both more efficient than a

random search and yields similar results for the majority of the design space. Unfor-

tunately, the method does fail to account for actual recoverable space when multiple

constraints are active. Again, a one-dimensional search may be insightful in situations

where the design team is uncomfortable implementing multiple mitigation actions si-

multaneously. In such a case, this option would be especially beneficial for both speed

and pragmatic reasons.

It is also possible that a method could be devised which switches between one-

dimensional and random searches as required by the design space. This concept is

appealing for time-saving reasons and could be worth future consideration.
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7.4.3 Recovery via Hybrid Mitigation Method

The random search appears very good at recovering difficult designs. Conversely, 1D

search appears to be very quick and performs more consistently with fewer numbers

of mitigation cases. Unfortunately, the one-dimensional search algorithm is very bad

at recovering difficult designs. In hope of obtaining the advantages of both methods

simultaneously, a hybrid method was posed. This method uses the one-dimensional

search algorithm augmented by a scattering of random search points. Table 14 shows

the number of cases executed for each run of the hybrid methodology, including a

breakdown of the number of one-dimensional search cases and the number of random

search cases for each run.

Table 14: Number of Hybrid Search Mitigation Cases to Execute

Mitigation Search Method Run 1 2 3 4 5 6 7 8
Random Cases 5 10 25 50 100 250 500 1000

1D Search
Per Dimension 2 5 10 20 50 100
Total Cases 9 18 33 63 153 303

Hybrid
Per Dimension 2 5 10 20
Random Cases 20 50 100 200
Total Cases 26 65 130 260

Figure 71 shows how the hybrid methodology performs against the other mitiga-

tion implementations for the “difficult” cases discussed in Section 7.4.2. Again, the

number of mitigation cases is plotted on the x-axis on a logarithmic scale. The recov-

ery estimate error is shown on the y-axis. The random search and one-dimensional

search results from Figure 68 are shown in blue and red, respectively. The green points

and lines show the result of the new hybrid implementation. The symbols once again

show the median error. The vertical lines show the distribution from quantile to ex-

treme. Each set of distributions is contained within a region of corresponding color.

In general, the hybrid method shows the same expected recovery estimate error

as the one-dimensional method. This is a good sign that the hybrid method shows
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Figure 71: Recovery Estimate Error vs. Number of Hybrid (1D and Random) Miti-
gation Cases

some promise. The run time of the hybrid methodology should be explored. Further,

it is necessary to investigate the Achilles’ heel of the one-dimensional mitigation

implementation: cases with multiple active constraints.

The time requirements for each of the non-optimization methods is plotted in

Figure 72. The x-axis shows the total number of mitigation points assessed for a given

method. The y-axis shows the required time needed to execute the set of designs in

hours. The three lines show variation in the amount of time needed to assess the same

number of mitigation cases; however, it is believed that this variability is due to the

use of different machines to perform the calculations and not any inherent advantage

of one method over the other.

Figure 73 shows how the hybrid methodology performs against the other mitiga-

tion implementations for the “difficult” cases discussed in Section 7.4.2. Again, the

number of mitigation cases is plotted on the x-axis on a logarithmic scale. The recov-

ery estimate error is shown on the y-axis. The random search and one-dimensional

search results from Figure 70 are shown in blue and red, respectively. Green shows the

result of the new hybrid implementation. The symbols once again show the median
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Figure 72: Run Time vs. Number of Hybrid (1D and Random) Mitigation Cases

error. The vertical lines illustrate the shape of each distribution and are contained in

a colored region.

This hybridized method combining one-dimensional mitigation searches and a

random search through the mitigation space appears to be superior to both methods.

The hybrid method is at least as accurate as either of the other competing methods

at estimating the probability of recovery for the general design space. Further, the

hybrid method appears to perform better than either of the other methods when

considering designs which violate multiple constraints. Finally, it accomplishes this

level of performance without any notable penalty on the run time required to execute

the analysis.

Further examination of the implementation is unhelpful at this stage. The example

problem employed has a number of limitations: vastly different recovery capabilities

for different constraint violations; few uncertain constraints; lack of industry data.

Due to these limitations, any additional insight would likely be too problem-specific

to be generalizable to other problems. Instead, this investigation has shown the
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Figure 73: Recovery Estimate Error for Cases with Multiple Constraint Violations

promise of such a hybrid implementation (speed, accuracy, ability to deal with difficult

portions of the design space). It is recommended that any future implementation of

this methodology investigate the best hybrid approach for its own specific problem.

This hybrid one-dimensional and random search implementation will be used in

the implementation developed in Chapter 6. This strategy affords the advantage that

the recovery assessment (i.e. mitigation action analyses) will take a known, fixed

amount of time.

7.5 Impact of Mitigation Penalty

The penalties imposed in Section 6.4 are assumed values. Thus, it would be beneficial

to examine the extent of their impact on the probability of recovery seen by designs.

To investigate this, the same design space exploration used in Section 7.4 was explored

again.

A test of reducing the penalty associated with additional fuel was executed. The

penalty imposed in Section 6.4.1 was reduced by a factor of four. This reduction

lowered the amount of empty weight added to the aircraft for the same amount of fuel

weight. Furthermore, it allowed the mitigation action further range of applicability
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before the additional weight on the aircraft was no longer fuel weight.

This mitigation action is intended to fix the range constraint violation. Thus, it is

expected that reducing the associated penalty and increasing the range of applicability

will increase the probability of recovery for any designs where range was an active

constraint. The design space exploration from Section 7.4 was executed with this

reduced penalty. After the data was generated, designs were grouped based on their

most stringent compliance constraint – the constraint with which the design was least

compliant compared to the other constraints.

The probability of recovery for a given design with the reduced penalty mentioned

above was compared to the probability of recovery measure when the full mitigation

penalty was imposed. By subtracting the new probability of recovery from the old

and dividing by the old recovery, a multiplicative factor was constructed which shows

how much more recovery was seen by reducing the mitigation penalty. The designs

were then grouped based on whether or not range was the most stringent compliance

constraint.

Figure 74 shows the results of this study. The two columns correspond to whether

or not range was the most stringent active constraint for that design. The y-axis plots

the additional recovery is seen by reducing the penalty applied to the fuel addition

mitigation action. The bar chart shows the additional recovery, averaged over all

designs and normalized by the design’s recovery under normal penalty conditions. The

error bars indicate the variability of this recovery when examining different designs

by showing plus or minus one standard deviation.

It is clear that a reduction in mitigation penalty can have a very large impact

on the probability of recovery. Reduction of the penalty does not change the basic

behavior of the mitigation action. The post-sizing fuel mitigation action still recovers

the same performance shortfall as with the normal penalty. Instead, it simply makes

the mitigation action more effective by giving it a further range of applicability and
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Figure 74: Change in Recovery Estimate with Reduced Mitigation Penalty

causing fewer conflicts between competing performance constraints.
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7.6 Design Space Exploration

A large design space exploration will be performed to explore the trade space between

expected block fuel, probability of compliance, and probability of recovery. To per-

form this exploration, a Monte Carlo simulation of the design space is constructed.

Each of these resulting design points is executed through the framework discussed in

Chapter 6. The reliability of each point will be assessed through a different Monte

Carlo Simulation on the uncertainty space. The failed uncertainty scenarios are eval-

uated through the mitigation space exploration to see how many can be recovered.

This information is compiled as discussed in Section 3.5 to calculate the expected

economic block fuel and the probability of success. It is expected that multiple de-

signs which have similar probabilities of compliance and expected block fuel will have

different probabilities of recovery. This will occur when the designs have different

active constraints.

Figure 75 shows the results of an exploration of the design space including all

design and mitigation variables. These designs are assessed through the entire pro-

cess described in Chapter 6. The resulting expected block fuel and reliabilities are

plotted on this chart. The x-axis shows the expected economic range block fuel for

a given design when measured across all uncertainty scenarios. On the y-axis multi-

ple probabilities are displayed simultaneously. The probability of compliance for the

design, the probability that the design will meet all constraints without any mitiga-

tion actions, is displayed as a blue diamond. For the same design, a vertical green

line indicates the additional probability of recovery possible through the considered

mitigation actions, which must by definition be strictly positive. The triangle at the

top of this green line represents the total probability of success of the design, i.e. the

probability that the design can meet all constraints either without or through the

application of mitigation actions. Designs with less than 75 percent probability of

compliance or with greater than an expected 114,000 pounds of economic range block
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fuel were excluded from the plot.

Figure 75: Design Space Exploration with Recovery

Figure 76 shows the same diagram with the details annotated. A specific design

is highlighted. The probability of compliance is pointed out at the bottom of the

design. The probability of success shown at the top. The length of the line between

these data points corresponds to the probability of recovery for that same design.

Now that the design space has been viewed in mass, other details can be investi-

gated. It was expected that the probability of recovery of a design through mitigation

actions would not necessarily correlate with the expected performance of that design

or its probability of compliance. To examine whether or not a trend exists, it will be

helpful to examine designs with similar probabilities of compliance. Figure 77 shows

the same design space exploration as Figure 75; however, only designs with a similar

level of compliance are included. Specifically, any designs with less than 75 percent

probability of compliance or greater than 77 percent compliance were removed from

the chart. The remaining designs still show their probability of compliance via a blue

diamond. The green line extending from the design shows its probability of recovery.

The green triangle at the top of the line shows the resulting probability of success for
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Figure 76: Design Space Exploration with Recovery - Annotated

that given design.

From Figure 77, it is possible to examine designs which will appear almost iden-

tical in a traditional reliability study and observe hidden differences between them.

Examining the the left most two designs – the ones with the lowest expected economic

block fuel – it appears that the designs would be almost indistinguishable via tradi-

tional RBDO. Indeed, the two designs differ by 110 lbs of expected block fuel and less

than eight tenths of a percent probability of compliance. However, one design has

less than one (1) percent probability of recovery through mitigation actions while the

other has over 13 percent probability of recovery via those same mitigation actions.

In the end, selecting one of these two “very similar” designs would yield an aircraft

with either an 88 percent total probability of success including mitigation actions

or one with on 77 percent probability of success. Again, this level of information is

completely new for a conceptual design study and could be very useful when deciding

which design to move forward with for development.
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Figure 77: Design Space Exploration - 75% to 77% Compliance

7.7 Pareto Frontiers

It is evident from Figure 75 that a trade-off exists between reliability goals and the

expected block fuel for this design space. Such behavior is expected and implies that

a single objective optimization in one of these dimensions will increasingly penalize

the other objective. This concept is reminiscent of the Pareto Frontier discussed in

Section 2.5. Thus, it may be beneficial for a designer to investigate in some sort of

Pareto Frontier finding algorithm to find the “best” designs from which to select a

final concept.

Ideally, the designer would have the ability to select any probability of compliance,

probability of success, and expected block fuel that he or she wanted. Anyone familiar

with aircraft design, or any kind of design for that matter, knows that this is an

unreasonable expectation. Instead, it is expected that there will necessarily be a

trade-off between competing objectives and that some hard decisions will need to

be made. To make this decision, the trade-off between these competing objectives

must be quantified in some manner. This trade-off is the same trade-off as the one

discussed in Section 2.5 – a Pareto Frontier.
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To find a Pareto Frontier for the process in question, an optimizer was attached

to the implementation described in Chapter 6 to find an optimal set of designs. This

optimizer employed a genetic algorithm to examine the design space to find the best

possible set of designs given an objective function and constraints on the result. The

optimizer was given access to both design variables and margin, allowing it full control

over the design selected. For any selected design, the implementation returned the

expected economic range block fuel along with probabilities of compliance and success.

In order to construct a Pareto Frontier, a sweep through the objective space

was performed. A single objective was selected: expected block fuel. Each time

the optimizer was called, it would try to minimize this objective. To perform the

sweep and create a Pareto Frontier, a constraint was imposed on one of the reliability

measures. Each time the optimizer was called, a different minimum level of reliability

was required, constraining the design space available to the optimizer.

The Pareto Frontier shown in Figure 78 was constructed using an optimizer looking

for the minimum expected block fuel (E[𝐵𝐹𝐸𝑐𝑜𝑛(𝑥, ℎ)]), shown on the x-axis. For each

call to the optimizer, a minimum level of probability of compliance was imposed. This

minimum level of compliance was different for each optimization and ranged from

75 percent compliance up to 100 percent compliance, in increments of one percent.

It was not mandated that the optimizer meet this minimum level of compliance;

the optimizer merely needed to exceed it. The resulting reliabilities for the final

selected designs is shown on the y-axis. Additionally, the probabilities of recovery

and success were determined for each resulting design. For a given design, the lower

point corresponds to the probability of compliance, while the higher point corresponds

to the probability of success. The line connecting these two points is the probability of

recovery for that design. The results of the design space exploration from Section 7.6

are also shown on this chart for reference. They are colored entirely in green, but still

show the probabilities of compliance, recovery, and success for each design.
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Figure 78: Probability of Compliance vs. Expected Block Fuel Trade Space

Using the capabilities enabled by the proposed methodology, a Pareto frontier

was constructed between the expected block fuel objective function and the overall

probability of success, accounting for mitigation actions. To construct this frontier

an optimizer operated on the design and margin variables, searching for the lowest

expected block fuel while maintaining at least a minimum level of probability of

success and probability of compliance. For all optimizer runs, the optimizer was

constrained by a minimum of 70 percent probability of compliance. Each optimization

was given a different minimum level of probability of success, ranging from 75 percent

up to 100 percent in one percent increments.

This new Pareto frontier between expected block fuel and probability of compli-

ance is shown in Figure 79 in red. The reliabilities for a design are once again shown

on the y-axis versus the expected block fuel for the design on the x-axis. For each

individual design the probability of compliance is shown as the lower red block, the

probability of success is shown as the higher red block, and the probability of recovery

is the red line connecting the two points. The Pareto frontier established for Figure 78

and the design space exploration from Section 7.6 are shown for comparison.
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Figure 79: Probability of Success vs. Expected Block Fuel Trade Space

7.8 Chapter Summary

This chapter containts a demonstration of some of the capabilities enabled by the

ARMOUR methodology. Exercising the formulation from Chapter 5 for a specific ex-

ample of the conceptual design of a large civil transport aircraft developed in Chap-

ter 6 allows for multiple trade studies and assessments which could not have been

performed previously. By including uncertainty margin in an uncertainty quantifica-

tion framework, the impact of uncertainty margins on the probability of compliance

could be investigated. The addition of mitigation actions allowed for the assessment

of the impact that uncertainty margins have on the probability of recovery across the

design space. The importance of accurately estimating appropriate penalty functions

on these mitigation actions was shown by studying the impact of changing a miti-

gation penalty. The design space was explored using the new methodology, allowing

for previously indistinguishable designs to be separated by the new metric of their

probability of recovery. This new methodology was used to select designs optimized

using the new metrics, which allows for the visualization of a trade space which has

always existed but has never been seen before now.
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CHAPTER VIII

CONCLUSIONS

This chapter examines the contributions of this thesis to the state of the art in

aircraft design. The research questions and hypotheses developed in Chapter 3 are

reviewed and the evidence presented in Chapter 4 to support or refute each of them

is recalled. Finally, future opportunities arising from the concepts explored in this

work are discussed.

8.1 Review of Research Questions and Hypotheses

The motivating problem for this work was defined in Section 1.4. In brief, it states

that uncertainty during the aircraft design process can lead to the selection of a

vehicle which will to fail to meet its performance constraints when analyzed in detail

during later design stages, even with preventative measures like uncertainty margins

in place. This occurs because the conceptual design is typically executed with faster,

less detailed, and deterministic design tools. Chapter 2 illustrated that uncertainty

quantification methods like RBDO have the potential to address some of this design

uncertainty.

However, existing methods do not explicitly take into account some of the reali-

ties of aircraft design. A sophisticated sizing process, frequently a central tenant of

conceptual design is not accounted for by the processes. There is limited treatment

existing of uncertainty margins and traditional methods which do treat these margins

do not allow for the quantitative assessment of the resulting reliability. Most existing

RBDO methods do not allow for the assessment of the impact of mitigation actions;

those methods that do account for late stage design changes do so either at the ex-

pense of either abolishing the design freeze present in the stages of aircraft design
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or with significant additional costs in terms of detailed analyses which are difficult

to perform during conceptual design. Thus, in Section 2.7 the following Research

Objective was developed.

Research Objective: Quantify uncertainty during the design process

for a new aircraft, including a sophisticated sizing analysis, uncertainty

margins, and mitigation actions.

In order to develop a methodology to achieve this objective, the problem was

broken down into smaller components. Specific focus was given to design uncertainty

given the stages of aircraft design, the treatment of uncertainty margins in a proba-

bilistic framework, and the concept of mitigation actions – late stage-design, non-ideal

changes to a design made to bring the aircraft back into compliance with constraints.

8.1.1 Treatment of Design Uncertainty with Aircraft Sizing

Upon comparing the stages of aircraft design to the available uncertainty quantifi-

cation literature, it became clear that simply modeling the uncertainty in a rigorous

way while paying heed to the requirements of the design process was in itself a non-

trivial problem, and that this concept would need to be formalized as in Research

Question 1.

Research Question 1 How should aircraft design with uncertainty be

modeled for reliability analysis, accounting for the stages of design?

Detailed examination of the stages of aircraft design and the implied outcomes

of modeling uncertainty during processes representing various phases was discussed.

The implications of applying an uncertainty variable to either sizing or performance

analysis were explored and, ultimately, the concept of uncertainty during the stages

of aircraft design aligned with sizing the vehicle, freezing its configuration and design

parameters, and only then doing a performance analysis as stated in Hypothesis 1.
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Hypothesis 1 To emulate the aircraft conceptual and preliminary design

process, uncertainty must be implemented after the sizing of the aircraft

is complete. Modeling uncertainty during sizing will yield incorrect results

for aircraft conceptual design under uncertainty.

The experiment in Section 4.1 tested this hypothesis. A simple weight-based

canonical sizing problem was developed based on equations from aircraft design liter-

ature. The problem was augmented with two different uncertainty implementations:

modeling uncertainty during sizing and during performance analysis. These two im-

plementations were compared, and the results showed that the two implementations

differed greatly in their effect on resulting aircraft weights. Further, by addressing

the implications of these weights on different performance parameters, the difference

in vehicle performance between these two implementations was clarified. In the end,

modeling during sizing was determined to have significant deficiencies, leading to

the result that uncertainty quantification must be measured by implementing uncer-

tainty scenarios during the performance analysis, after sizing is completed, justifying

Hypothesis 1.

8.1.2 Margins as Design Variables in a Probabilistic Formulation

The traditional use of uncertainty margins in a deterministic design process as a

method to account for uncertainty was examined. Further, it was determined that

uncertainty margins had uses during later design stages and, thus, it would be bene-

ficial to include these margins during a reliability analysis. It was hoped, as inquired

in Research Question 2, that this margin could be integrated into a reliability study

and that such a study could actually be used to set uncertainty margins.

Research Question 2 Is it possible to select a desired probability of com-

pliance and then quantitatively determine a level of margin which will yield

that probability of compliance?
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To answer Research Question 2, uncertainty quantification studies were examined

which explored concepts similar to uncertainty margins (in the form of safety factors)

by assessing overall reliability. It was therefore theorized in Hypothesis 2 that margins

can be treated similarly and that reliability goals could be used to set uncertainty

margins.

Hypothesis 2 By including an uncertainty margin during the sizing pro-

cess and removing it (but not its effect) before the uncertainty analysis,

the impact of margin on the probability of compliance can be seen. Using

an optimizer, it will be straight-forward to determine an appropriate level

of margin to achieve a desired probability of compliance.

Experiment 2 was designed to test the validity of Hypothesis 2. A partially con-

structed version of the implementation from Chapter 6 was used to test the ability

to use the established reliability framework to set uncertainty margins. It was found

that if a level of margin exists which can satisfy a probability of compliance goal,

an optimizer is easily able to find that level of margin. Further, by allowing the op-

timizer to adjust both design variables and uncertainty margins simultaneously, the

optimizer will produce even better designs with higher reliability, better performance,

or both.

8.1.3 Quantification of Probability of Recovery

This work was motivated by the concept of mitigation actions. An important overall

goal was to introduce these mitigation actions into a probabilistic aircraft conceptual

design process. Very few studies with similar goals could be located, and they did

not account for actions after a design freeze. Since no suitable framework existed, a

new one must be developed, motivating Research Question 3.

Research Question 3 How should mitigation be represented in a prob-

abilistic conceptual design model?
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Based on the thought experiment in Section 3.3.2, Hypothesis 3 was developed.

Hypothesis 3 It will be necessary to perform a mitigation assessment

for each failed uncertainty outcome to get an accurate determination of

the probability of recovery.

This hypothesis was tested in Section 4.2. A canonical problem was developed

using equations from aircraft design texts. This canonical problem was intended to

assess the uncertainty space and resulting mitigation spaces of a single design. Us-

ing these spaces, different uncertainty scenarios were implemented and their resulting

mitigation space investigated. It was shown that even with only one mitigation ac-

tion, the required level of mitigation action needed would be different depending on

the uncertainty scenario investigated. This was further evaluated to show that the

maximum recovery for an “overall best” mitigation action setting would provide lower

recovery than investigating mitigation actions separately for all designs, supporting

Hypothesis 3.

Finally, Research Question 4 was asked to inform the needs of the specific imple-

mentation of a reliability analysis that includes mitigation actions.

Research Question 4 What reliability assessment method should be

used to model the aircraft Conceptual and preliminary design process with

mitigation actions?

The support for Hypothesis 3 meant that the reliability assessment method must

allow for the sampling of individual uncertainty scenarios. Thus, a sampling method

must be implemented to assess the reliability of a design, and other methods like

boundary approximation methods did not appear to be feasible for this method. Of

the sampling methods, Monte Carlo simulation was selected due to its relative ease

of implementation and the ability to emulate any desired distribution on uncertainty

variables.
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Based on the results of Hypothesis 1 to 3, a new methodology was developed to fix

the identified gaps. This new Aircraft Recovery through Mitigation & Optimization

under Uncertainty for Reliability (ARMOUR) method incorporated aircraft sizing,

uncertainty margins, and mitigation actions into a reliability framework. This new

method gives the decision maker more information than could previously be gleaned

from preliminary design. Reliability methods are an initial and integral step to under-

standing the results of the uncertainty experienced in the conceptual design process;

however, they do not account for actions taken by engineers during later stages of

the process which could remedy encountered problems – mitigation actions. These

actions, which have not been included in reliability analyses previously, allow for the

calculation of a probability of recovery from encountered failures. This probability

of recovery can be combined with the probability of compliance through traditional

RBDO to determine the overall probability of success for an aircraft design.

With this new information, a decision maker gains information about how likely a

design is to be successful in complying with all performance requirements, including

preliminary design mitigation actions, as well as how likely it is that a design would

be compliant with performance requirements without these reactions. These proba-

bilities can be traded with traditional aircraft design objective functions to allow the

designer to select the combination of performance and reliability which which s/he is

most comfortable. In the end, the decision maker can select designs which perform

better against traditional metrics, designs which have a lower probability of failure,

or some combination of the two.

The ARMOUR method was implemented for the concpetual design of a large

civil transport aircraft. Design variables, margins, uncertainty variables, mitigation

actions, and mitigation penalties were established. Performance responses, a design

objective, and reliability requirements were established for the aircraft. A physics-

based aircraft model was developed which used a set of aircraft and engine design
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tools to emulate the design process. The resulting data were regressed against the set

of inputs to generate surrogate models to improve the speed of the analyses. These

surrogates were integrated into a newly constructed uncertainty quantification and

management framework which allowed for the calculation of the performance and

reliability of any design as well as the optimization of the designs selected.

Substantiating Hypothesis 1 to 3 and extracting new, useful information from the

resulting implementation demonstrates that this work has successfully addressed the

stated research objective. The impacts of mitigation actions are assessed probabilisti-

cally in a conceptual design study by using a reliability framework. The inclusion of a

mitigation exploration emulates the process by which a design team would attempt to

recover aircraft which fail to meet their requirements. By evaluating these situations

which could occur in preliminary design and bringing their impacts into conceptual

design, the decision maker can now account for the probability of recovery in addi-

tion to expected performance and probability of compliance when selecting an initial

design to develop. The inclusion of mitigation actions in a reliability framework will

allow the decision maker to know with confidence whether a design can be fixed with

the selected mitigation actions. This new information, which can be made available

during conceptual design, brings knowledge forward in the design process and fulfils

the underlying motivation of this thesis.

8.2 Contributions to the State of the Art

The Aircraft Recovery through Mitigation & Optimization under Uncertainty for

Reliability (ARMOUR) method has been developed to assess the reliability of an

aircraft under uncertainty during conceptual design. The ARMOURmethod accounts

for the use of a sophisticated aircraft sizing process. The method indicates the order

in which design variables and uncertainty variables must be applied with regards

to sizing and performance analysis. The potential error associated with incorrectly
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implementing these steps is quantified.

ARMOUR incorporates the ability to set uncertainty margins into the aircraft reli-

ability analysis. An implementation of uncertainty margins in the stages of reliability

analysis is established which allows margins to treat all uncertainty variables rather

than directly treating only uncertainty variables which affect the same direct param-

eters as the margin. This allows for uncertainty margins to be set to specify a desired

probability of compliance of a given design. By integrating this information into an

optimizer, design variables can be varied simultaneously with uncertainty margins to

select designs which have the best combination of performance and reliability.

By comparing real aircraft and engine design processes to reliability analyses in the

literature, it was identified that existing methods have no tools which can account for

actions taken by the preliminary design team to recover failed designs. These actions

were dubbed “mitigation actions” and a method was proposed to incorporate these

mitigation actions into an uncertain aircraft design process. The ARMOUR method

allows for the calculation of a probability of recovery through these mitigation actions.

The construction of the ARMOUR methodology lead to a new reliability metric:

the probability of recovery (𝑃 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 | 𝑥, ℎ)). This metric indicates the likelihood

that mitigation actions will be bring the design back into compliance with perfor-

mance constraints when the inherent uncertainty in the design process has cause the

aircraft to violate one or more of these constraints. Combining this new information

with the probability of compliance (𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) generated through stan-

dard reliability methods allows for the calculation of the total probability of success

(𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) of a given design. The probability of success indicates the likeli-

hood that an aircraft will meet all performance constraints. This metric accounts for

both design uncertainty and the ability of a preliminary design team to recover the

performance of the design should a constraint be violated.

The ARMOURmethodology is formulated to allow for the optimization of a design
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with respect to traditional design metrics. Reliability goals in the form of probability

of compliance and probability of success are enforced. This will enable the designer

to limit the amount of risk to an acceptable level.

The ARMOUR methodology has been implemented for a large (300 passenger

class) civil transport design. The methodology allows for the selection of design

variables and uncertainty margins which meet reliability goals on both the compli-

ance and success of the aircraft and simultaneously optimize a traditional aircraft

design performance metric. This implementation of the ARMOUR methodology was

used to explore and quantify the relationships between probability of compliance

(𝑃 (𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 | 𝑥, ℎ)) and uncertainty margins. Attempts were also made to quan-

tify the relationship between the probability of success (𝑃 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑥, ℎ)) and these

margins.

8.3 Future Work

This study has opened multiple avenues for future work. Possibilities which seem par-

ticularly fruitful include the examination of recovery estimation while using boundary

approximation methods and the application of the current methodology to later stages

of design.

It may prove useful to examine the quantitative change in accuracy of the prob-

ability of recovery estimate when using boundary approximation methods. If the

use of boundary approximation methods can be shown not to adversely affect the

probability of recovery estimation, then these methods may allow for the relaxation

of some assumed restrictions which led to the selected implementation in this thesis.

By using these boundary approximation methods, it may be possible to avoid the

use of sampling methods to estimate the reliability of a design; this could decrease

the required number of function calls to a large degree. This reduction in function

calls may even allow aircraft design tools to be called directly without the need for
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surrogate models. Such an implementation may require significant changes to the

assumed forms of Equations (19) to (23)

The ARMOUR method may be adaptable to handle other design problems. En-

gine design is an area which is particularly of interest. Engine design has many of the

same problems associated with aircraft design. The design of an engine takes place

under the presence of uncertainty due to the use of lower fidelity modeling during the

initial conceptual phase. Engine design often goes through a sizing process, though

engines are sized to match thrust targets rather than a mission range. Higher fidelity

tools are very expensive to operate and require extensive data about the engine be-

fore being operated, preventing designers from using these tools during conceptual

design. Further, an engine design problem in which mitigation actions were employed

was found as a clear example in the literature [43]. Thus, many of the same benefits

would exist for using ARMOUR on the conceptual design of an engine.

The methodology established here may have further applications during later de-

sign stages. If this method were used for conceptual design, an easy-to-update imple-

mentation would exist. During later design stages when more information is known

about a previously uncertainty variable, the assumed distributions of uncertainty

variables could be updated. With these updated distributions, the method could be

executed again to update the probability of compliance and probability of recovery

estimations for that design. This update could help a design team to know which

constraints will be problematic as the design changes. Further, knowledge of the

likelihood of these constraint violations could help the design team prepare potential

mitigation actions as it becomes more and more apparent that a particular action may

be needed. This concept is particularly appealing because in later design stages, the

aircraft will be frozen. Thus, only a single design needs to be investigated. This will

remove the outside loop optimization, allowing for the analysis to take place much
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more quickly. Because of the resulting decrease in the number of function calls re-

quired to analyze the probabilities of compliance and success, more detailed analyses

may be used to further refine the extracted information.
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APPENDIX A

HYPOTHESIS 3 TEST EQUATIONS

To test this hypothesis, a simplified example problem will be constructed. Two un-

certain variables will be implemented: an empty weight factor (𝑈𝑊 ) and a drag factor

(𝑈𝐷). These should to allow for sufficient variation while keeping the problem sim-

ple. The empty weight factor is expected to affect both range and approach speed

equations. The drag factor is expected to only impact the Breguet range equation.

Impacts from the drag factor on approach speed are expected to be negligible.

Only a single mitigation action will be considered: a post-sizing fuel increase with

an associated penalty. The mitigation action is intended to improve range; however,

the penalty will eventually restrict its effectiveness. It is expected that mitigation will

degrade approach speed. The post-sizing fuel increase will directly affect the aircraft’s

maximum takeoff weight (MTOW). Also, an associated penalty will be imposed on

the vehicle empty weight to account for the added structure necessary to carry the

extra load. This penalty is expected to increase faster as the additional fuel weight

increases.

A.1 Constraints

In this example, two constraints will be considered: the aircraft range at a design

payload and the landing approach speed (Vapp). Range will be assessed using the

Breguet range equation [75]. The approach speed with be estimated using the aircraft

stall speed and appropriate scalar. These equations will form the backbone of the

current analysis.
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A.1.1 Approach speed

For the purposes of regulation, the approach speed (Vapp) of a vehicle, the speed just

before landing, is calculated as 1.3 times the stall speed of the airplane[75]. The stall

speed can be calculated as show in Equation (33).

𝑉 𝑎𝑝𝑝 = 1.3

√︃
2

𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔

𝑆

1

𝐶𝐿𝑚𝑎𝑥

(33)

Stall speed is a function of the landing weight of the vehicle, its wing area, the

local air density, and maximum lift coefficient of the vehicle. For this example, it is

assumed that the local air density (𝜌) is fixed. Additionally, the wing area (𝑆) and

maximum lift coefficient (𝐶𝐿𝑚𝑎𝑥) will have been set during conceptual design and thus

will not change in this example. Only the landing weight (𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔) will be affected

during this experiment.

A.1.2 Range

The Breguet range equation demonstrated in Equation (35) calculates the distance

an aircraft can fly during its cruise segment.

𝑅 =
𝑉

𝐶𝑡

(︂
𝐿

𝐷

)︂
ln

(︂
𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︂
(35)

The equation assumes that the aircraft will fly at a fixed speed (𝑉 ) and lift-to-

drag ratio
(︀
𝐿
𝐷

)︀
, optimizing altitude as the weight of the vehicle changes. The fuel

consumption (𝐶𝑡) of the engine is assumed to be constant throughout the cruise

segment. The equation is also dependent on the ratio of the initial cruise weight to

the final cruise weight
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁
, indicating how much fuel is consumed during flight.

A.2 Implementing Uncertainty and Mitigation

The maximum takeoff weight (𝑀𝑇𝑂𝑊 ) of a vehicle can be broken down into com-

ponents of empty vehicle weight (𝑊𝐸), payload weight (𝑊𝑃𝐿), crew weight (𝑊𝐶𝑟𝑒𝑤),
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and fuel weight (𝑊𝐹𝑢𝑒𝑙).

𝑊0 = 𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙 (54)

The payload weight will be set by the number of passengers, which is dictated by

market forces and is assumed to remain constant. The crew weight is derived based

on the number of crew required for the operation of the vehicle and flight attendants

to take care of the passengers. The uncertainty in the weight of the passengers or

crew will not be assessed in this study.

In order to assess the performance at different stages of the flight, fuel weight can

broken down by flight segment. Generally, this breakdown will depend on the data

available and the information to be derived.

𝑊𝐹𝑢𝑒𝑙 = 𝑊𝐹𝑢𝑒𝑙𝑇𝑎𝑥𝑖𝑂𝑢𝑡
+𝑊𝐹𝑢𝑒𝑙𝑇𝑎𝑘𝑒𝑜𝑓𝑓

+𝑊𝐹𝑢𝑒𝑙𝐶𝑙𝑖𝑚𝑏
+𝑊𝐹𝑢𝑒𝑙𝐶𝑟𝑢𝑖𝑠𝑒

+𝑊𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑐𝑒𝑛𝑡
+𝑊𝐹𝑢𝑒𝑙𝐿𝑎𝑛𝑑𝑖𝑛𝑔

+𝑊𝐹𝑢𝑒𝑙𝑇𝑎𝑥𝑖𝐼𝑛
+𝑊𝐹𝑢𝑒𝑙𝑅𝑒𝑠𝑒𝑟𝑣𝑒

(55)

For the purposes of this example, fuel will be broken down as show in Equation (56)

into fuel consumed before cruise, cruise fuel, descent fuel, and fuel after descent. Fuel

consumed before cruise includes taxi out, takeoff, and climb. Fuel consumed after

descent includes landing, taxi in, and reserves.

𝑊𝐹𝑢𝑒𝑙 = 𝑊𝐹𝑢𝑒𝑙𝐵𝑒𝑓𝑜𝑟𝑒𝐶𝑟𝑢𝑖𝑠𝑒
+𝑊𝐹𝑢𝑒𝑙𝐶𝑟𝑢𝑖𝑠𝑒

+𝑊𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑐𝑒𝑛𝑡
+𝑊𝐹𝑢𝑒𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑠𝑐𝑒𝑛𝑡

(56)

This equation contains all the different segments required to assess both the vehicle

range and approach speed.

The initial cruise weight can be found by subtracting the fuel used in pre-cruise

flight segments from the maximum takeoff weight of the vehicle.

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑊0 −𝑊𝐹𝑢𝑒𝑙𝐵𝑒𝑓𝑜𝑟𝑒𝐶𝑟𝑢𝑖𝑠𝑒
(57)

The weight of the vehicle at the end of cruise is equal to the initial cruise weight

minus the fuel used in cruise.

𝑊𝑓𝑖𝑛𝑎𝑙 = 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑊𝐹𝑢𝑒𝑙𝐶𝑟𝑢𝑖𝑠𝑒
(58)
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The landing weight is simply the final cruise weight minus fuel used in descent.

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 𝑊𝑓𝑖𝑛𝑎𝑙 −𝑊𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑐𝑒𝑛𝑡
(59)

Substituting from definitions of MTOW and fuel weight, landing weight can also

be found by summing the empty weight, payload, crew, and post-touchdown fuel

consumed, including unusable fuel.

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑠𝑐𝑒𝑛𝑡
(60)

The final cruise weight can be calculated as the sum the empty weight, payload, crew,

and fuel consumed after cruise as shown in Equation (61).

𝑊𝑓𝑖𝑛𝑎𝑙 = 𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑐𝑒𝑛𝑡
+𝑊𝐹𝑢𝑒𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑠𝑐𝑒𝑛𝑡

(61)

𝑊𝑓𝑖𝑛𝑎𝑙 = 𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 +𝑊𝐹𝐷𝑒𝑠𝑐𝑒𝑛𝑡
∝ 𝑊𝑍𝐹𝑊 (62)

The initial cruise weight is equal to the takeoff weight minus the fuel used before

cruise.

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑊0 −𝑊𝐹𝑢𝑒𝑙𝐵𝑒𝑓𝑜𝑟𝑒𝐶𝑟𝑢𝑖𝑠𝑒

= 𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙 −𝑊𝐹𝑢𝑒𝑙𝐵𝑒𝑓𝑜𝑟𝑒𝐶𝑟𝑢𝑖𝑠𝑒

(63)

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∝ 𝑊0 (64)

A.2.1 Weight

Uncertainty associated with the empty weight will, logically, directly affect the empty

weight of the vehicle. Taking 𝑈𝐸𝑊 to be the uncertain scenario associated with empty

weight, the change in empty weight can be expressed as Equation (65).

𝑊𝐸𝑁𝑒𝑤
= 𝑊𝐸 (1 + 𝑈𝐸𝑊 ) (65)

The maximum takeoff weight is fixed based in the initial sizing analysis which pre-

cedes and is therefore outside the scope of this study. Thus, MTOW it is expected to
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remain constant as the empty weight changes. As referenced in Appendix A.2 payload

and crew weights are expected to be fixed requirements. Since all other parameters

are fixed, an increase in empty weight via 𝑈𝐸𝑊 is expected to directly correspond to

a decrease of fuel available for the same mission, as show in Equations (66) and (67).

𝑊0 = 𝑊𝐸 (1 + 𝑈𝐸𝑊 ) +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙 (1− 𝑈𝐸𝑊 ) (66)

Δ𝑊0 = 𝑊𝐸 *Δ𝑈𝐸𝑊 −𝑊𝐹𝑢𝑒𝑙 *Δ𝑈𝐸𝑊 (67)

A.2.2 Treatment of fuel consumption changes

Based on force balance logic, fuel consumption for a given segment is expected to

scale with the weight of the vehicle in that segment. Thus, in order to determine

what the appropriate scaling factor for the fuel should be, the relationship between

the individual segment weight and the more macro weights like MTOW and empty

weight must be determined.

At the start of taxi out, the aircraft will be at its takeoff gross weight. For this

mission, that will be the maximum takeoff gross weight of the vehicle. Thus, taxi out

fuel will be scaled with any changes in 𝑊0.

Since the fuel consumed for most segments will be proportional to the weight of

the vehicle at that point, it would be convenient to have a functional form which

scaled the fuel based off weight. Weight fractions, used in conceptual sizing analyses,

are already conveniently in this format. Thus, it will be assumed for most segments

that the weight fraction will remain constant. By knowing either the initial or final

weight for the segment and the weight fraction from the deterministic sizing, the fuel

consumed during that segment can be calculated.

Taxi out, takeoff and climb fuel consumption will scale with changes in maximum

takeoff weight

𝑊𝐹𝑢𝑒𝑙𝐵𝑒𝑓𝑜𝑟𝑒𝐶𝑟𝑢𝑖𝑠𝑒
∝ 𝑊0 (68)
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Cruise fuel consumption will be calculated as a fallout of the initial and final cruise

weights.

𝑊𝐹𝑢𝑒𝑙𝐶𝑟𝑢𝑖𝑠𝑒
= 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 (69)

Descent fuel consumption will scale with the vehicle landing weight.

𝑊𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑐𝑒𝑛𝑡
∝ 𝑊𝑍𝐹𝑊 +𝑊𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑠𝑐𝑒𝑛𝑡 ∝ 𝑊𝑍𝐹𝑊 (70)

Landing fuel consumption will scale with vehicle landing weight. For the purpose

of this analysis, landing weight will be assumed to be equal to the empty weight plus

payload, reserves, taxi fuel, landing fuel, and crew.

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 𝑊𝐸𝑊 +𝑊𝑃𝐿 +𝑊𝐶 +𝑊𝐹𝑢𝑒𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑠𝑐𝑒𝑛𝑡
(71)

The zero-fuel weight ((𝑊𝑍𝐹𝑊 )) of the aircraft is the weight of the vehicle without

any remaining fuel. This is equivalent to the weight of the empty vehicle plus crew

and payload weights, as shown in Equation (72).

𝑊𝑍𝐹𝑊 = 𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 (72)

Substituting into Equation (72) into Equation (71) yields Equation (73).

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 𝑊𝑍𝐹𝑊 +𝑊𝐹𝑢𝑒𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑠𝑐𝑒𝑛𝑡
(73)

Thus, it can be assumed that landing weight is proportional to the aircraft zero-fuel

weight.

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 ∝ 𝑊𝑍𝐹𝑊 (74)

Reserve fuel is potentially complicated. Reserve fuel consumption will scale with

total fuel weight. For rudimentary sizing analyses, reserve fuel is often calculated

as a percent of the total fuel consumed during a sizing mission. In more detailed

analyses, a reserve mission profile is specified and the fuel required is assessed to

meet that mission. This mission is expected to be flown after descent, thus the fuel
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required for this mission will scale with the landing weight of the vehicle. The change

of reserve fuel during the more detailed analyses conveniently mimics the behavior of

other post-cruise fuel consumption. Thus, reserve fuel will be scaled with the empty

weight of the vehicle.

Trapped fuel is often combined into the reserve fuel calculation. Unlike all the

other post-cruise mission segments which change proportional to the empty weight

of the vehicle, trapped fuel scales with the size of the fuel tanks. However, since this

fuel will be on the order of 1% of the total fuel, this difference will be ignored for

traceability, and trapped fuel will instead be incorporated into and treated as part of

the reserve fuel calculation.

Later segments are proportional to zero fuel weight.

𝑊𝐹𝑢𝑒𝑙𝑡𝑎𝑥𝑖𝑖𝑛 ∝ 𝑊𝑍𝐹𝑊 (75)

𝑊𝐹𝑢𝑒𝑙𝑙𝑎𝑛𝑑𝑖𝑛𝑔
∝ (𝑊𝑍𝐹𝑊 +𝑊𝐹𝑢𝑒𝑙𝑡𝑎𝑥𝑖𝑖𝑛) ∝ 𝑊𝑍𝐹𝑊 (76)

𝑊𝐹𝑢𝑒𝑙𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 ∝
(︀
𝑊𝑍𝐹𝑊 +𝑊𝐹𝑢𝑒𝑙𝑡𝑎𝑥𝑖𝑖𝑛 +𝑊𝐹𝑢𝑒𝑙𝑙𝑎𝑛𝑑𝑖𝑛𝑔

)︀
∝ 𝑊𝑍𝐹𝑊 (77)

It has been assumed that non-cruise segments will not be significantly affected

by changes in the drag prediction. This assumption was made to maintain some

simplicity in the mathematics for the sake of the analysis; however, it is not strictly

true. Drag may affect amount of fuel used during climb, descent, and the reserve

mission. These effects will be much smaller than the effect on cruise and ignoring

their impact should not impact the trends of this analysis.

Since 𝑈𝐸𝑊 will not affect MTOW, it will is expected to have no direct impact on

fuel consumption during taxi out, takeoff, or climb mission segments.

Generally, all fuel consumed in pre-cruise segments will scale with maximum take-

off weight (𝑊0) while fuel consumption in post-cruise mission will scale with landing

weight.
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A.2.2.1 Fuel MA

Increasing the post-sizing fuel of the aircraft is expected to incur a penalty on the

empty weight of the vehicle. The amount of penalty per percent increase in fuel will be

aircraft specific; however, the general form of the impact is easy to address. Once the

penalty function has been determined and converted to a percent empty weight, the

additional weight will affect the vehicle’s empty weight in exactly the same manner

as the empty weight uncertainty parameter (𝑈𝐸𝑊 ). However, the penalty will not

degrade the aircraft’s fuel as 𝑈𝐸𝑊 did, instead increasing the takeoff weight of the

vehicle. Thus, the direct impact of . . . Both the additional fuel and the weight penalty

for that fuel will increase the MTOW of the aircraft.

𝑊0 = 𝑊𝐸 (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙 (1 +𝑀𝑓𝑢𝑒𝑙) (78)

Δ𝑊 0 = 𝑊𝐸 (𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) +𝑊𝐹𝑢𝑒𝑙 (𝑀𝑓𝑢𝑒𝑙) (79)

A.2.3 All impacts

A.2.3.1 Initial cruise weight

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑊0 −𝑊𝐹𝑢𝑒𝑙𝑡𝑎𝑥𝑖𝑜𝑢𝑡 −𝑊𝐹𝑢𝑒𝑙𝑡𝑎𝑘𝑒𝑜𝑓𝑓 −𝑊𝐹𝑢𝑒𝑙𝑐𝑙𝑖𝑚𝑏
(80)

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∝ 𝑊0 (81)

Since 𝑊0 is fixed with regards to changes in uncertain variables, the aircraft

fuel weight must adjust when the empty weight factor is non-zero. Rearranging

Equation (54), yields Equation (82).

𝑊𝐹𝑢𝑒𝑙 = 𝑊0 −𝑊𝐸 −𝑊𝑃𝐿 −𝑊𝐶𝑟𝑒𝑤 (82)

𝑊𝐹𝑢𝑒𝑙 (𝑈𝐸𝑊 ) = 𝑊0 −𝑊𝐸 * (1 + 𝑈𝐸𝑊 )−𝑊𝑃𝐿 −𝑊𝐶𝑟𝑒𝑤 (83)

Δ𝑊𝐹𝑢𝑒𝑙 (𝑈𝐸𝑊 ) = −𝑊𝐸 * 𝑈𝐸𝑊 (84)

The initial cruise weight is assumed to be proportional to MTOW. Thus, the new

initial cruise weight will change proportionally to the change in MTOW, as shown in
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Equation (85)

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑁𝑒𝑤
= 𝑊𝑖𝑛𝑖𝑡𝑎𝑙 *

𝑊0𝑁𝑒𝑤

𝑊0

(85)

It was assumed that the maximum takeoff weight is not dependent on the uncertain

variables. Thus, Equation (79) shows MTOW to be only dependent on the impact of

the fuel addition mitigation action.

Substituting Equation (79) into Equation (85), yields Equation (86) where the

initial cruise weight is dependent only upon the fuel addition mitigation action.

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑁𝑒𝑤
=𝑊𝑖𝑛𝑖𝑡𝑎𝑙

* 𝑊𝐸 (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 +𝑊𝐹𝑢𝑒𝑙 (1 +𝑀𝑓𝑢𝑒𝑙)

𝑊0

(86)

new initial cruise weight, simplified

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑁𝑒𝑤
= 𝑊𝑖𝑛𝑖𝑡𝑎𝑙 *

(︂
1 +

𝑊𝐸

𝑊0

* 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) +
𝑊𝐹𝑢𝑒𝑙

𝑊0

*𝑀𝑓𝑢𝑒𝑙

)︂
(87)

percent change in intitial cruise weight

%𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑊𝐸

𝑊0

* 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) +
𝑊𝐹𝑢𝑒𝑙

𝑊0

*𝑀𝑓𝑢𝑒𝑙 (88)

Landing weight

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 ∝ 𝑊𝑍𝐹𝑊 (89)

Zero-fuel weight

𝑊𝑍𝐹𝑊 = 𝑊𝐸 (1 + 𝑈𝐸𝑊 ) (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤 (90)

Percent change in zero-fuel weight

Δ𝑊𝑍𝐹𝑊 = 𝑊𝐸 * 𝑈𝐸𝑊 +𝑊𝐸 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) +𝑊𝐸 * 𝑈𝐸𝑊 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) (91)

Since 𝑈𝐸𝑊 and the weight penalty from the fuel addition mitigation action are ex-

pected to be small, their product will be considered negligible.

𝑈𝐸𝑊 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) ≈ 0 (92)
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Thus, the change in zero-fuel weight is

Δ𝑊𝑍𝐹𝑊 ≈ 𝑊𝐸 * 𝑈𝐸𝑊 +𝑊𝐸 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) (93)

and the percent change in zero-fuel weight is

%𝑊𝑍𝐹𝑊 ≈ 𝑊𝐸 * 𝑈𝐸𝑊 +𝑊𝐸 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)

𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤

(94)

Since landing weight it proportional to zero-fuel weight

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 ∝ 𝑊𝑍𝐹𝑊 (95)

%𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = %𝑊𝑍𝐹𝑊 ≈ 𝑊𝐸 * 𝑈𝐸𝑊 +𝑊𝐸 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)

𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤

(96)

%𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔 ≈
𝑊𝐸

𝑊𝑍𝐹𝑊

(𝑈𝐸𝑊 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) (97)

A.2.3.2 Final Cruise Weight

The logic for the determining the new final cruise weight is identical to that of the

landing weight. Thus, the details of the math will be omitted for brevity.

%𝑊𝑓𝑖𝑛𝑎𝑙 = %𝑊𝑍𝐹𝑊 ≈ 𝑊𝐸 * 𝑈𝐸𝑊 +𝑊𝐸 * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)

𝑊𝐸 +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤

(98)

%𝑊𝑓𝑖𝑛𝑎𝑙 ≈
𝑊𝐸 * (𝑈𝐸𝑊 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙))

𝑊𝑍𝐹𝑊

(99)

%𝑊𝑓𝑖𝑛𝑎𝑙 ≈
𝑊𝐸

𝑊𝑍𝐹𝑊

(𝑈𝐸𝑊 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) (100)

A.2.4 Weight Impact on L/D

Solve for L/D cruise in terms of CL and CD cruise(︂
𝐿

𝐷

)︂
𝐶𝑟𝑢𝑖𝑠𝑒

=

(︂
𝐶𝐿

𝐶𝐷

)︂
𝐶𝑟𝑢𝑖𝑠𝑒

=
𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

𝐶𝐷𝐶𝑟𝑢𝑖𝑠𝑒

(101)

𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒
=

𝑊𝐶𝑟𝑢𝑖𝑠𝑒

1
2
𝜌𝑉 2𝑆

(102)
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𝑊𝐶𝑟𝑢𝑖𝑠𝑒 =
𝑊𝑖𝑛𝑖𝑡𝑎𝑙 +𝑊𝑓𝑖𝑛𝑎𝑙

2
(103)

Recall Equation (87)

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑁𝑒𝑤
= 𝑊𝑖𝑛𝑖𝑡𝑎𝑙 *

(︂
1 +

𝑊𝐸

𝑊0

* 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) +
𝑊𝐹𝑢𝑒𝑙

𝑊0

*𝑀𝑓𝑢𝑒𝑙

)︂
(87)

𝑊𝑓𝑖𝑛𝑎𝑙𝑁𝑒𝑤
= 𝑊𝑓𝑖𝑛𝑎𝑙

𝑊𝐸 (1 + 𝑈𝐸𝑊 ) (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙)) +𝑊𝑃𝐿 +𝑊𝐶𝑟𝑒𝑤

𝑊𝑍𝐹𝑊

(104)

Since both 𝑈𝐸𝑊 and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) are small, it will be assume that their product

is negligible. This yields Equation (105).

𝑊𝑓𝑖𝑛𝑎𝑙𝑁𝑒𝑤
≈ 𝑊𝑓𝑖𝑛𝑎𝑙 *

(︂
1 +

𝑊𝐸

𝑊𝑍𝐹𝑊

* (𝑈𝐸𝑊 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙))

)︂
(105)

Substituting Equations (87) and (105) into Equation (103) yields the solution for

the new cruise weight shown in Equation (106).

𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤
≈𝑊𝑖𝑛𝑖𝑡𝑎𝑙

2
*
(︂
1 +

𝑊𝐸

𝑊0

* 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙) +
𝑊𝐹𝑢𝑒𝑙

𝑊0

*𝑀𝑓𝑢𝑒𝑙

)︂
+

𝑊𝑓𝑖𝑛𝑎𝑙

2
*
(︂
1 +

𝑊𝐸

𝑊𝑍𝐹𝑊

* (𝑈𝐸𝑊 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀𝑓𝑢𝑒𝑙))

)︂ (106)

Flight conditions and aircraft dimensions will remain constant for all analyses.

Thus,

𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤
=

𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

1
2
𝜌𝑉 2𝑆

= 𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒
* 𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

𝑊𝐶𝑟𝑢𝑖𝑠𝑒

(107)

𝐶𝐷𝐶𝑟𝑢𝑖𝑠𝑒
= 𝐶𝐷𝑚𝑖𝑛

+𝐾(𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒
− 𝐶𝐿𝑚𝑖𝑛

)2 (108)

𝐶𝐷𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤
= 𝐶𝐷𝑚𝑖𝑛

+𝐾

(︂
𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

* 𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

𝑊𝐶𝑟𝑢𝑖𝑠𝑒

− 𝐶𝐿𝑚𝑖𝑛

)︂2

(109)

(︂
𝐿

𝐷

)︂
=

𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

𝐶𝐷𝑚𝑖𝑛
+𝐾(𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

− 𝐶𝐿𝑚𝑖𝑛
)2

(110)

(︂
𝐿

𝐷

)︂
𝑤𝑡𝑁𝑒𝑤

=
𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

* 𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

𝑊𝐶𝑟𝑢𝑖𝑠𝑒

𝐶𝐷𝑚𝑖𝑛
+𝐾

(︁
𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

* 𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

𝑊𝐶𝑟𝑢𝑖𝑠𝑒
− 𝐶𝐿𝑚𝑖𝑛

)︁2 (111)
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A.2.5 Drag

Also recall that the other uncertainty parameter, drag uncertainty, will have a large

impact on cruise. The drag uncertainty will apply a direct scalar to the cruise drag.

This will alter the lift-to-drag ratio from Equation (111) by adding the drag factor as

in Equation (112). (︂
𝐿

𝐷

)︂
𝑁𝑒𝑤

=

(︂
𝐿

𝐷

)︂
𝑤𝑡𝑁𝑒𝑤

* 1

(1 + 𝑈𝐷)
(112)

Equation (113) shows the new lift-to-drag ratio(︂
𝐿

𝐷

)︂
𝑁𝑒𝑤

=
𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

* 𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

𝑊𝐶𝑟𝑢𝑖𝑠𝑒

(1 + 𝑈𝐷) *
(︂
𝐶𝐷𝑚𝑖𝑛

+𝐾
(︁
𝐶𝐿𝐶𝑟𝑢𝑖𝑠𝑒

* 𝑊𝐶𝑟𝑢𝑖𝑠𝑒𝑁𝑒𝑤

𝑊𝐶𝑟𝑢𝑖𝑠𝑒
− 𝐶𝐿𝑚𝑖𝑛

)︁2
)︂ 1

(1 + 𝑈𝐷)

(113)

A.3 Effect on Responses

A.3.1 Approach Speed

𝑉 𝑎𝑝𝑝𝑁𝑒𝑤

𝑉 𝑎𝑝𝑝𝐷𝑒𝑡

=
1.3

√︁
2
𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑁𝑒𝑤

𝑆
1

𝐶𝐿𝑚𝑎𝑥

1.3
√︁

2
𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔

𝑆
1

𝐶𝐿𝑚𝑎𝑥

(114)

Substituting

𝑉 𝑎𝑝𝑝𝑁𝑒𝑤

𝑉 𝑎𝑝𝑝𝐷𝑒𝑡

=
1.3

√︁
2
𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔(1+𝑈𝐸𝑊 )(1+𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑀))

𝑆
1

𝐶𝐿𝑚𝑎𝑥

1.3
√︁

2
𝜌

𝑊𝑙𝑎𝑛𝑑𝑖𝑛𝑔

𝑆
1

𝐶𝐿𝑚𝑎𝑥

(115)

Cancelling terms

𝑉 𝑎𝑝𝑝𝑁𝑒𝑤

𝑉 𝑎𝑝𝑝𝐷𝑒𝑡

=
√︀

(1 + 𝑈𝐸𝑊 ) (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀)) (116)

A.3.2 Range

𝑅𝑁𝑒𝑤

𝑅𝐷𝑒𝑡

=

𝑉
𝐶𝑡

(︀
𝐿
𝐷

)︀
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝑁𝑒𝑤

𝑊𝑓𝑖𝑛𝑎𝑙𝑁𝑒𝑤

)︁
𝑉
𝐶𝑡

(︀
𝐿
𝐷

)︀
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁ (117)

Substituting variables

𝑅𝑁𝑒𝑤

𝑅𝐷𝑒𝑡

=

𝑉
𝐶𝑡

(︀
𝐿
𝐷

)︀
1

(1+𝑈𝐷)
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙(1+𝑀)
𝑊𝑓𝑖𝑛𝑎𝑙*(1+𝑈𝐸𝑊 )(1+𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑀))

)︁
𝑉
𝐶𝑡

(︀
𝐿
𝐷

)︀
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁ (118)
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Cancelling terms

𝑅𝑁𝑒𝑤

𝑅𝐷𝑒𝑡

=
1

(1 + 𝑈𝐷)

ln
(︁(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁
(1+𝑀)

(1+𝑈𝐸𝑊 )(1+𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑀))

)︁
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁ (119)

𝑅𝑁𝑒𝑤

𝑅𝐷𝑒𝑡

=
1

(1 + 𝑈𝐷)

⎛⎝ ln
(︁

(1+𝑀)
(1+𝑈𝐸𝑊 )(1+𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑀))

)︁
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁ + 1

⎞⎠ (120)

Δ𝑅 =
𝑉

𝐶𝑡

(︂
𝐿

𝐷

)︂
𝑁𝑒𝑤

ln

(︂
𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝑁𝑒𝑤

𝑊𝑓𝑖𝑛𝑎𝑙𝑁𝑒𝑤

)︂
− 𝑉

𝐶𝑡

(︂
𝐿

𝐷

)︂
𝐷𝑒𝑡

ln

(︂
𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝐷𝑒𝑡

𝑊𝑓𝑖𝑛𝑎𝑙𝐷𝑒𝑡

)︂
(121)

%𝑅 =

𝑉
𝐶𝑡

(︁(︀
𝐿
𝐷

)︀
𝑁𝑒𝑤

ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝑁𝑒𝑤

𝑊𝑓𝑖𝑛𝑎𝑙𝑁𝑒𝑤

)︁
−
(︀
𝐿
𝐷

)︀
𝐷𝑒𝑡

ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝐷𝑒𝑡

𝑊𝑓𝑖𝑛𝑎𝑙𝐷𝑒𝑡

)︁ )︁
𝑉
𝐶𝑡

(︀
𝐿
𝐷

)︀
𝐷𝑒𝑡

ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝐷𝑒𝑡

𝑊𝑓𝑖𝑛𝑎𝑙𝐷𝑒𝑡

)︁ (122)

%𝑅 =

(︀
𝐿
𝐷

)︀
𝑁𝑒𝑤(︀

𝐿
𝐷

)︀
𝐷𝑒𝑡

*
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝑁𝑒𝑤

𝑊𝑓𝑖𝑛𝑎𝑙𝑁𝑒𝑤

)︁
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙𝐷𝑒𝑡

𝑊𝑓𝑖𝑛𝑎𝑙𝐷𝑒𝑡

)︁ − 1 (123)

A.4 Compliance

To test for compliance, M is set to 0 and the above equations are evaluated. This will

reduce the complexity of previous equations.

Adding a constraint on the maximum approach speed of the vehicle to Equa-

tion (116) yields Equation (124).

𝑉 𝑎𝑝𝑝𝑟𝑒𝑞
𝑉 𝑎𝑝𝑝𝐷𝑒𝑡

≥
√︀

(1 + 𝑈𝐸𝑊 ) (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑀)) (124)

Removing the effects of mitigation actions on approach speed in Equation (124)

yields Equation (125).

𝑉 𝑎𝑝𝑝𝑟𝑒𝑞
𝑉 𝑎𝑝𝑝𝐷𝑒𝑡

≥
√︀

(1 + 𝑈𝐸𝑊 ) (125)

Modifying Equation (120) to include a minimum range yields Equation (126).

𝑅𝑟𝑒𝑞

𝑅𝐷𝑒𝑡

≤ 1

(1 + 𝑈𝐷)

⎛⎝ ln
(︁

(1+𝑀)
(1+𝑈𝐸𝑊 )(1+𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑀))

)︁
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁ + 1

⎞⎠ (126)
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When measuring compliance without mitigation actions, the range equation can

be simplified to Equation (127)

𝑅𝑟𝑒𝑞

𝑅𝐷𝑒𝑡

≤ 1

(1 + 𝑈𝐷)

⎛⎝ ln
(︁

1
1+𝑈𝐸𝑊

)︁
ln
(︁

𝑊𝑖𝑛𝑖𝑡𝑎𝑙

𝑊𝑓𝑖𝑛𝑎𝑙

)︁ + 1

⎞⎠ (127)

The probability of compliance can be calculated by evaluating these equations

over the uncertainty space and determining how frequently the performance meets

the set constraints.
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APPENDIX B

GOODNESS OF FIT METRICS FOR NEURAL

NETWORKS

The following tables and figures contain the goodness of fit measures for the surrogate

models used in Chapter 6. The data used to create these responses are based off

the the model in Section 6.7. These surrogate models were generated using the

Basic Regression Analysis for Integrated Neural Networks (BRAINN) [42], which

also created these goodness of fit metrics.

Tables 15, 17, 19, 21, 23, 25, 27, 29, 31 and 33 show the basic statistical measures

of accuracy of each response. Tables 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34 contain

detailed percentiles of the error distributions associated with each response model.

Figures 80 to 89 show the distribution of the model fit error and model representation

error as well as both actual and residual by predicted plots of the surrogate model.

Table 15: Block Fuel for Design Range (𝐵𝑙𝑜𝑐𝑘𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑅𝑎𝑛𝑔𝑒) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.999375
R-square of Validation Set 0.999356
R-square of Test Set N/A
Model Fit Error (𝜇) 0.000408014
Model Fit Error (𝜎) 0.346837
Model Representation Error (𝜇) 0.00449382
Model Representation Error (𝜎) 0.3517
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Table 16: Block Fuel for Design Range (𝐵𝑙𝑜𝑐𝑘𝐹𝑢𝑒𝑙𝐷𝑒𝑠𝑅𝑎𝑛𝑔𝑒) Quantiles

Quantile Residual Pct Error
0 -6785.63 -3.62717
0.5 -1692.04 -0.904458
2.5 -1234.67 -0.659978
10 -786.074 -0.420185
25 -420.539 -0.224794
50 -22.2281 -0.0118817
75 401.546 0.214641
90 829.226 0.443252
97.5 1352.72 0.72308
99.5 1838.38 0.982681
100 2949.24 1.57648

Figure 80: Goodness of Fit: Block Fuel for Design Range
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Table 17: Block Fuel for Economic Mission Range (𝐵𝑙𝑜𝑐𝑘𝐹𝑢𝑒𝑙𝐸𝑐𝑜𝑛) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.995435
R-square of Validation Set 0.998758
R-square of Test Set N/A
Model Fit Error (𝜇) -0.000505608
Model Fit Error (𝜎) 0.548162
Model Representation Error (𝜇) -0.00657038
Model Representation Error (𝜎) 0.28511

Table 18: Block Fuel for Economic Mission Range (𝐵𝑙𝑜𝑐𝑘𝐹𝑢𝑒𝑙𝐸𝑐𝑜𝑛) Quantiles

Quantile Residual Pct Error
0 -115970 -76.2956
0.5 -1332.57 -0.876685
2.5 -947.641 -0.623443
10 -559.914 -0.368362
25 -253.298 -0.166642
50 37.1544 0.0244435
75 287.399 0.189077
90 511.023 0.336197
97.5 796.773 0.524189
99.5 1045.65 0.687922
100 1863.01 1.22565

Table 19: Maximum Fuel Capacity (MaxFuel) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.999026
R-square of Validation Set 0.998991
R-square of Test Set N/A
Model Fit Error (𝜇) -0.000452863
Model Fit Error (𝜎) 0.403246
Model Representation Error (𝜇) -0.000724607
Model Representation Error (𝜎) 0.409915
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Figure 81: Goodness of Fit: Block Fuel for Economic Mission Range

Table 20: Maximum Fuel Capacity (𝑀𝑎𝑥𝐹𝑢𝑒𝑙) Quantiles

Quantile Residual Pct Error
0 -12536.9 -4.18029
0.5 -3273.64 -1.09156
2.5 -2234.1 -0.744935
10 -1432.21 -0.477555
25 -800.026 -0.26676
50 -55.7486 -0.0185888
75 754.33 0.251523
90 1546.61 0.515699
97.5 2501.73 0.834175
99.5 3474.37 1.15849
100 5927.41 1.97643
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Figure 82: Goodness of Fit: Maximum Fuel Capacity

Table 21: Operating Empty Weight (𝑂𝐸𝑊𝑢) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.998432
R-square of Validation Set 0.998325
R-square of Test Set N/A
Model Fit Error (𝜇) -0.00219417
Model Fit Error (𝜎) 0.530251
Model Representation Error (𝜇) -0.0026155
Model Representation Error (𝜎) 0.536177
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Table 22: Operating Empty Weight (𝑂𝐸𝑊𝑢) Quantiles

Quantile Residual Pct Error
0 -9122.45 -4.38432
0.5 -3165.46 -1.52135
2.5 -2261.49 -1.08689
10 -1399.64 -0.672676
25 -726.581 -0.3492
50 14.5106 0.00697391
75 777.978 0.373902
90 1388.34 0.667246
97.5 2026.7 0.974047
99.5 2686.87 1.29133
100 4512.11 2.16855

Figure 83: Goodness of Fit: Operating Empty Weight
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Table 23: Ramp Weight (𝑅𝑎𝑚𝑝𝑊𝑡) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.998881
R-square of Validation Set 0.998797
R-square of Test Set N/A
Model Fit Error (𝜇) 0.000956923
Model Fit Error (𝜎) 0.43256
Model Representation Error (𝜇) -0.00435292
Model Representation Error (𝜎) 0.440997

Table 24: Ramp Weight (𝑅𝑎𝑚𝑝𝑊𝑡) Quantiles

Quantile Residual Pct Error
0 -14600.4 -3.67413
0.5 -4191.96 -1.05489
2.5 -3212.01 -0.80829
10 -2120.94 -0.533726
25 -1180.93 -0.297177
50 -68.3062 -0.017189
75 1118.54 0.281475
90 2252.72 0.566886
97.5 3521.51 0.886174
99.5 4786.37 1.20447
100 8350.02 2.10125

Table 25: Range at Design Payload (𝑅𝑎𝑛𝑔𝑒) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.999565
R-square of Validation Set 0.999549
R-square of Test Set N/A
Model Fit Error (𝜇) 0.000235218
Model Fit Error (𝜎) 0.300397
Model Representation Error (𝜇) -0.000797779
Model Representation Error (𝜎) 0.302675
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Figure 84: Goodness of Fit: Ramp Weight

Table 26: Range at Design Payload (𝑅𝑎𝑛𝑔𝑒) Quantiles

Quantile Residual Pct Error
0 -228.272 -2.75807
0.5 -83.5176 -1.00909
2.5 -56.5816 -0.683642
10 -32.4679 -0.39229
25 -13.6325 -0.164714
50 2.95887 0.0357502
75 16.5107 0.199489
90 27.5404 0.332754
97.5 41.9659 0.507049
99.5 60.6812 0.733175
100 154.964 1.87234
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Figure 85: Goodness of Fit: Range at Design Payload

Table 27: Rate of Climb (𝑅𝑎𝑡𝑒𝑜𝑓𝐶𝑙𝑖𝑚𝑏) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.99964
R-square of Validation Set 0.999686
R-square of Test Set N/A
Model Fit Error (𝜇) -0.000143708
Model Fit Error (𝜎) 0.29485
Model Representation Error (𝜇) -0.00334495
Model Representation Error (𝜎) 0.271658
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Table 28: Rate of Climb (𝑅𝑎𝑡𝑒𝑜𝑓𝐶𝑙𝑖𝑚𝑏) Quantiles

Quantile Residual Pct Error
0 -292.365 -14.3583
0.5 -7.66057 -0.376219
2.5 -5.86593 -0.288082
10 -4.12499 -0.202583
25 -2.53001 -0.124251
50 -0.53937 -0.026489
75 1.84893 0.0908029
90 4.47373 0.21971
97.5 8.29931 0.407588
99.5 12.7002 0.623721
100 230.95 11.3422

Figure 86: Goodness of Fit: Rate of Climb
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Table 29: Span (𝑆𝑝𝑎𝑛) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.999328
R-square of Validation Set 0.999266
R-square of Test Set N/A
Model Fit Error (𝜇) -0.00182156
Model Fit Error (𝜎) 0.343902
Model Representation Error (𝜇) -0.00303405
Model Representation Error (𝜎) 0.350375

Table 30: Span (𝑆𝑝𝑎𝑛) Quantiles

Quantile Residual Pct Error
0 -2.38835 -3.00165
0.5 -0.711365 -0.894034
2.5 -0.515933 -0.648418
10 -0.33591 -0.422167
25 -0.189394 -0.238028
50 -0.0128909 -0.0162012
75 0.179895 0.226089
90 0.35992 0.452343
97.5 0.554942 0.697443
99.5 0.739784 0.929751
100 1.16952 1.46984

Table 31: Takeoff Field Length (𝑇𝑂𝐹𝐿) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.95659
R-square of Validation Set 0.946081
R-square of Test Set N/A
Model Fit Error (𝜇) -1.31359E-05
Model Fit Error (𝜎) 1.96838
Model Representation Error (𝜇) 0.0215579
Model Representation Error (𝜎) 2.19783

255



Figure 87: Goodness of Fit: Span

Table 32: Takeoff Field Length (𝑇𝑂𝐹𝐿) Quantiles

Quantile Residual Pct Error
0 -11076.6 -67.9461
0.5 -951.132 -5.83445
2.5 -725.456 -4.45011
10 -312.303 -1.91574
25 -116.813 -0.716557
50 10.6423 0.0652824
75 119.767 0.734679
90 307.108 1.88387
97.5 701.776 4.30485
99.5 1019.95 6.25659
100 2542.44 15.5959
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Figure 88: Goodness of Fit: Takeoff Field Length

Table 33: Approach Speed (𝑉𝐴𝑝𝑝) Statistics

Statistic Value
Number of hidden nodes 5
R-square of Training Set 0.99975
R-square of Validation Set 0.999755
R-square of Test Set N/A
Model Fit Error (𝜇) -0.000575597
Model Fit Error (𝜎) 0.224677
Model Representation Error (𝜇) -0.00103335
Model Representation Error (𝜎) 0.223749
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Table 34: Approach Speed (𝑉𝐴𝑝𝑝) Quantiles

Quantile Residual Pct Error
0 -0.328544 -1.14078
0.5 -0.161621 -0.561183
2.5 -0.122281 -0.424587
10 -0.0800994 -0.278123
25 -0.0432939 -0.150326
50 -0.00247068 -0.00857874
75 0.0412205 0.143127
90 0.0823615 0.285977
97.5 0.133702 0.464244
99.5 0.184358 0.640133
100 0.368989 1.28121

Figure 89: Goodness of Fit: Approach Speed
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APPENDIX C

CODE FOR ARMOUR UNCERTAINTY

QUANTIFICATION & MANAGEMENT ENVIRONMENT

This appendix contains the logic behind the actual code implemented for the uncer-

tainty quantification and management environment behind the ARMOUR method-

ology. The method used to construct this environment is described in Section 5.9,

and the specific implementation used to generate results in Chapter 7 is described

in Section 6.9. This uncertainty Quantification and management environment was

constructed and tested in MATLAB 2014a.

1 % Run Opt UQM
2 clear
3 start time = datestr(now);
4 fprintf(1,'Start Time is %s∖n',start time);
5

6 % Disable parallel pools
7 ps = parallel.Settings;
8 ps.Pool.AutoCreate = false;
9

10 % General Settings
11 optimization method = 'GA'; % Options: GA, DIRect
12 distribution type = 'uniform'; % Options:tri-centered, ...

Rayleigh, normal, uniform, marg set distrib
13 Num Reliability Cases = 10000; % 5000;
14 Num Constr = 6;
15 GA PopulationSize = 100;
16 Mitigation Method = 'none'; %'optimize'; 'none', ...

'random search', 'sweep', '1D', 'hybrid1D'
17 default Mitigation Method = 'hybrid1D';
18 num MA levels = 5; % number of levels to divide a mitigation ...

action into for sweep
19 random search cases = 10 * num MA levels; % number of ...

randomly selected mitigation cases to use for random search
20

21 StartingPoint;
22
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23 Reliability Goal Array = [0.75; 0.76; 0.77; 0.78; 0.79; 0.8; ...
0.81; 0.82; 0.83; 0.84; 0.85; 0.86; 0.87; 0.88; 0.89; 0.9; ...
0.91; 0.92; 0.93; 0.94; 0.95; 0.96; 0.97; 0.98; 0.99; 1];

24 %Reliability Goal Array = [0.80];
25

26 Mitigation Wt Array = [0.0];
27

28 %Success Goal Array = [0.84; 0.86; 0.88; 0.94; 0.96; 0.98];
29 SSuccess Goal Array = [0.0];
30 %Success Goal Array = [0.75; 0.76; 0.77; 0.78; 0.79; 0.8; 0.81; ...

0.82; 0.83; 0.84; 0.85; 0.86; 0.87; 0.88; 0.89; 0.9; 0.91; ...
0.92; 0.93; 0.94; 0.95; 0.96; 0.97; 0.98; 0.99; 1];

31

32 % ------ File Name ------
33 file iteration = 1750;
34 sub type = [optimization method, num2str(GA PopulationSize)];
35 sub type = [sub type, ' C', num2str(Reliability Goal Array(1)), ...

'-', ...
num2str(Reliability Goal Array(size(Reliability Goal Array,1)))];

36 sub type = [sub type, ' S', num2str(Success Goal Array(1)), '-', ...
num2str(Success Goal Array(size(Success Goal Array,1)))];

37 if strcmp(Mitigation Method, 'none')
38 mitigation info = [sub type, ' def'];
39 useM = default Mitigation Method;
40 end
41 create out file;
42

43 %------------------------------
44 % GA Options
45 options GA = gaoptimset('Display', 'iter'); % iter
46 options GA = gaoptimset(options GA, 'PopulationSize', ...

GA PopulationSize);
47 %------------------------------
48 % fmincon Options
49 options = optimset('UseParallel', 'never');
50 options = optimset(options, 'Display', 'off');
51 options = optimset(options, 'Algorithm', 'sqp');
52 options = optimset(options, 'TolCon', 1e-5, 'TolFun', 1e-5);
53

54 % =====================================
55 % Setup
56 tic
57 total time = toc;
58

59 % bound for gradient-based optimization
60 Aeq = [];
61 beq = [];
62 A = [eye(size(X0,1));-1*eye(size(X0,1))];
63 b = [UB;LB];
64 bounds = [LB,UB];
65

66 % Declaring variables
67 Reliability goal sweep count = size(Reliability Goal Array,1);
68 Mitigation Sweep count = size(Mitigation Wt Array,1);
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69 Success goal sweep count = size(Success Goal Array,1);
70 runs to perform = Reliability goal sweep count * ...

Mitigation Sweep count * Success goal sweep count;
71 basic variable declaration;
72

73 fprintf(1, '∖n∖n');
74 fprintf(1, '==============================================∖n');
75 fprintf(1, '============ Running %i scenarios ============∖n', ...

runs to perform);
76 fprintf(1, 'Start Time is ∖t%s∖n', datestr(now));
77 fprintf(1, 'Saving to file %s.∖n', out file);
78

79 % Establish uncertainty cases
80 S Cases = Random Cases Setup(Num Reliability Cases, Num S Vars, ...

distribution type);
81 remember Mitigation Method = Mitigation Method;
82 WriteOutput setup;
83

84 % =====================================
85 % Main Loop
86 for j main = 1:Reliability goal sweep count
87 Reliability goal = Reliability Goal Array(j main);
88

89 for l main = 1:Success goal sweep count
90 Success goal = Success Goal Array(l main);
91

92 for k main = 1:Mitigation Sweep count
93 i main = (j main - 1)*Mitigation Sweep count * ...

Success goal sweep count + (l main - ...
1)*Mitigation Sweep count + k main;

94 if i main > 1
95 X0 = x;
96 end
97

98 Mitigation Weighting = Mitigation Wt Array(k main);
99

100 Mitigation Method = remember Mitigation Method;
101 if ((Mitigation Weighting > 0 | | Success goal > 0) && ...

strcmp(Mitigation Method, 'none'))
102 Mitigation Method = default Mitigation Method;
103 fprintf(1,'Activating Mitigation Method = %s∖n', ...

Mitigation Method);
104 end
105 temp remember Mitigation Method = Mitigation Method;
106

107 fprintf(1, '====================================∖n');
108 fprintf(1, 'Run %i of %i∖n', i main, runs to perform);
109 fprintf(1, 'Reliability goal = %5.3f, Success goal ...

= %5.3f, Mitigation Wt = %5.3f∖n', ...
Reliability goal, Success goal, Mitigation Weighting);

110 fprintf(1, 'Num Reliab Cases = %5i, Constraints = ...
%5i, Mitigation Method = %s∖n', ...
Num Reliability Cases, Num Constr, Mitigation Method);

111 if strcmp(optimization method, 'DIRect')
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112 fprintf(1, 'DIRect evals = %5i∖n', ...
DIRect maxevals);

113 elseif strcmp(optimization method, 'GA')
114 fprintf(1, 'GA PopulationSize = %5i∖n', ...

GA PopulationSize);
115 end
116 fprintf(1, '%s∖tStart Loop∖n',datestr(now));
117 StartingPoint
118

119 % Functions to optimize
120 fitness GA = @(x) fmincon interface EXS( ...

x, S Cases, Reliability goal, Num Constr, ...
Mitigation Weighting, Mitigation Method, ...
num MA levels, random search cases);

121 constraint GA = @(x) ...
fmincon interface EXS constraint(x, S Cases, ...
Reliability goal, Success goal, Num Constr, ...
Mitigation Weighting, Mitigation Method, ...
num MA levels, random search cases);

122

123 % Run global optimizer
124 fprintf(1, '%s∖tRunning %s∖n',datestr(now), ...

optimization method);
125 if strcmp(optimization method, 'DIRect')
126 [minval,xatmin] = ...

Direct(to optimize,bounds,DIRect opts,S Cases, ...
Reliability goal, Num Constr, ...
Mitigation Weighting, Mitigation Method);

127 elseif strcmp(optimization method, 'GA')
128 [xatmin, minval,EXITFLAG,OUTPUT] = ga(fitness GA, ...

size(X0,1), [], [], [], [], LB, UB, ...
constraint GA, options GA);

129 elseif strcmp(optimization method, 'skip')
130 xatmin = X0;
131 end
132 fprintf(1, '%s∖t%s Finished∖n',datestr(now), ...

optimization method);
133

134 % Calculate final values
135 if strcmp(Mitigation Method, 'none')
136 Mitigation Method = default Mitigation Method;
137 end
138 [AA final Block Fuel, AA final Reliability, ...

AA final Reliability MA, S fail, S fail MA, ...
Reliability Individual, Expected BlockFuel Des, ...
Expected BlockFuel DOC] = Evaluate X S(xatmin, ...
S Cases, Reliability goal, Mitigation Method, ...
Num Constr, num MA levels, random search cases,1);

139 Mitigation Method = temp remember Mitigation Method;
140

141 % Save global results
142 xatmin array(:,i main) = xatmin;
143 x = xatmin;
144 AA Global Reliability(i main) = AA final Reliability;
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145 AA Global Reliability MA(i main) = ...
AA final Reliability MA;

146 AA Global Reliability Individual(:,i main) = ...
Reliability Individual;

147 AA Global Block Fuel(i main) = AA final Block Fuel;
148 AA Global Expected BF Des(i main) = ...

Expected BlockFuel Des;
149 AA Global Expected BF DOC(i main) = ...

Expected BlockFuel DOC;
150 if strcmp(optimization method, 'GA')
151 function calls global array(i main) = ...

OUTPUT.funccount;
152 end
153

154 % Run gradient-based optimizer
155 fprintf(1, '%s∖tRunning fmincon∖n',datestr(now));
156 [x,FVAL,EXITFLAG,OUTPUT] = fmincon(fitness GA, x, A, ...

b, Aeq, beq, LB, UB, constraint GA, options);
157 fprintf(1, '%s∖tFinished fmincon∖n',datestr(now));
158

159 % Final Values
160 fprintf(1, '%s∖tCalculating Final ...

Values∖n',datestr(now));
161 if strcmp(Mitigation Method, 'none')
162 Mitigation Method = default Mitigation Method;
163 end
164 [AA final Block Fuel, AA final Reliability, ...

AA final Reliability MA, ~, ~, ...
Reliability Individual, Expected BlockFuel Des, ...
Expected BlockFuel DOC, Expected Range, ...
Expected TOFL, Expected VAPP, ...
Expected RateofClimb, Expected Span, ...
Expected RampWt, Expected MaxFuel, Expected OEW, ...
Expected Fuel Used] = Evaluate X S(x, S Cases, ...
Reliability goal, Mitigation Method, Num Constr, ...
num MA levels, random search cases,1);

165 Mitigation Method = temp remember Mitigation Method;
166

167 % Save results
168 fprintf(1, '%s∖tSaving Results∖n',datestr(now));
169 x array(:,i main) = x;
170 AA array Reliability(i main) = AA final Reliability;
171 AA array Reliability MA(i main) = ...

AA final Reliability MA;
172 AA array Reliability Individual(:,i main) = ...

Reliability Individual;
173 AA array Block Fuel(i main) = AA final Block Fuel;
174 AA array Expected BF Des(i main) = ...

Expected BlockFuel Des;
175 AA array Expected BF DOC(i main) = ...

Expected BlockFuel DOC;
176 EXITFLAG array(i main) = EXITFLAG;
177 iterations array(i main) = OUTPUT.iterations;
178 function calls array(i main) = OUTPUT.funcCount;
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179 Reliability goal out array(i main) = Reliability goal;
180 Success goal out array(i main) = Success goal;
181 Mitigation Weight out array(i main) = ...

Mitigation Weighting;
182

183 % Time per call
184 total time = total time + toc;
185 time per function call = toc / OUTPUT.funcCount;
186 tic;
187

188 %PrintResults
189 PrintResults;
190 fprintf(1, '%s∖tWrite Outputs to file: %s∖n', ...

datestr(now), out file);
191 WriteOutput case;
192 end
193 end
194 end
195

196 fprintf(1, '====================================∖n');
197 PrintOverall;
198 fprintf(1,'Start Time was %s∖n',start time);
199 fprintf(1,'End Time is %s∖n',datestr(now));
200

201 fid = fopen(out file,'a+');
202 fprintf(fid,'∖nStart Time,%s∖nEnd Time,%s∖n', start time, ...

datestr(now));
203 fclose(fid);
204 fprintf(1, '==============================================∖n');

1 % Run MCS
2 clear
3 start time = datestr(now);
4 fprintf(1,'Start Time is %s∖n',start time);
5

6 % General Settings
7 x cases = 5000;
8 optimization method = 'MCS'; % Options: GA, DIRect
9 distribution type = 'uniform'; % Options:tri-centered, ...

Rayleigh, normal, uniform, marg set distrib
10 Num Reliability Cases = 5000; % 50000;
11 Num Constr = 6;
12 Mitigation Method = '1D'; %'optimize'; 'none', ...

'random search', 'sweep', '1D', 'hybrid1D'
13 num MA levels = 5; % number of levels to divide a mitigation ...

action into for sweep
14 random search cases = 10 * num MA levels; % number of ...

randomly selected mitigation cases to use for random search
15

16 StartingPoint;
17

18 % ------ File Name ------

264



19 file iteration = 2011;
20 sub type = ['x', int2str(x cases)];
21 create out file;
22

23 % =====================================
24 % Setup
25 tic
26 total time = toc;
27

28 % Declaring variables
29 runs to perform = x cases;
30 basic variable declaration;
31 x array = rand(size(X0,1), runs to perform);
32 Reliability goal = 0;
33 Mitigation Weighting = 0;
34

35 fprintf(1, '∖n∖n');
36 fprintf(1, '==============================================∖n');
37 fprintf(1, '============ Running %i scenarios ============∖n', ...

runs to perform);
38 fprintf(1,'Start Time is ∖t%s∖n',datestr(now));
39 fprintf(1,'Saving to file %s.∖n',out file);
40

41 % Establish uncertainty cases
42 rng(0);
43 S Cases = Random Cases Setup(Num Reliability Cases, Num S Vars, ...

distribution type);
44 Set S matrix;
45 rng('shuffle');
46

47 check after = ceil(x cases/100);
48 WriteOutput setup;
49

50 % =====================================
51 % Main Loop
52 for i main = 1:x cases
53 x = x array(:, i main);
54 if (rem(i main,check after) == 0)
55 fprintf(1,'%s ∖tRunning Case %i of %i∖n', datestr(now), ...

i main, x cases);
56 end
57

58 % Calculate performance
59 [AA final Block Fuel, AA final Reliability, ...

AA final Reliability MA, ~, ~, Reliability Individual, ...
Expected BlockFuel Des, Expected BlockFuel DOC, ...
Expected Range, Expected TOFL, Expected VAPP, ...
Expected RateofClimb, Expected Span, Expected RampWt, ...
Expected MaxFuel, Expected OEW, Expected Fuel Used] = ...

60 Evaluate X S(x, S Cases, 0.8, Mitigation Method, ...
Num Constr, num MA levels, random search cases);

61

62 % Save results
63 %x array(:,i main) = x;

265



64 AA array Reliability(i main) = AA final Reliability;
65 AA array Reliability MA(i main) = AA final Reliability MA;
66 AA array Reliability Individual(:,i main) = ...

Reliability Individual;
67 AA array Block Fuel(i main) = AA final Block Fuel;
68 AA array Expected BF Des(i main) = Expected BlockFuel Des;
69 AA array Expected BF DOC(i main) = Expected BlockFuel DOC;
70

71 %PrintResults
72 WriteOutput case;
73 end
74

75 PrintOverall;
76 fprintf(1, 'Start Time was %s∖n', start time);
77 fprintf(1, 'End Time is %s∖n', datestr(now));
78

79 fid = fopen(out file,'a+');
80 fprintf(fid, '∖nStart Time,%s∖nEnd Time,%s∖n', start time, ...

datestr(now));
81 fclose(fid);
82 fprintf(1, '==============================================∖n');

1 % Run DOE.m
2 clear
3 start time = datestr(now);
4 fprintf(1,'Start Time is %s∖n',start time);
5

6 % Read in design of experiments
7 doe filename = 'doe baseline opt.txt';
8 delimiterIn = '∖t';
9 headerlinesIn = 1;

10 DoeTable = importdata(doe filename,delimiterIn,headerlinesIn);
11 x cases = size(DoeTable.data,1);
12

13 first col = DoeTable.colheaders(1);
14 if strcmp (first col, 'Case') | | strcmp (first col, 'CASE')
15 has case col = 1;
16 elseif strcmp (first col, 'TWR')
17 has case col = 0;
18 else
19 fprintf(1,'First column name of %s is not ...

recognized∖n',first col);
20 break
21 end
22

23 % General Settings
24 optimization method = 'DoE'; % Options: GA, DIRect
25 distribution type = 'uniform';
26 Num Reliability Cases = 10000; %5000;
27 Num Constr = 6;
28 Mitigation Method = 'hybrid1D'; %random search, 'optimize', ...

'sweep', '1D', 'hybrid1D'
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29 num MA levels = 20; % number of levels to divide a mitigation ...
action into for sweep

30 random search cases = 40 * num MA levels; % number of ...
randomly selected mitigation cases to use for random search

31

32 StartingPoint;
33

34 % ------ File Name ------
35 file iteration = 3000;
36 sub type = doe filename;
37 create out file;
38

39 % =====================================
40 % Setup
41 tic
42 total time = toc;
43

44 % Declaring variables
45 runs to perform = x cases;
46 basic variable declaration;
47 Reliability goal = 0.0;
48 Mitigation Weighting = 0;
49

50 % Establish uncertainty cases
51 rng(0);
52 S Cases = Random Cases Setup(Num Reliability Cases, Num S Vars, ...

distribution type);
53 Set S matrix;
54 rng('shuffle');
55

56 check after = ceil(x cases/100);
57 WriteOutput setup;
58

59 % =====================================
60 % Main Loop
61 for i main = 1:x cases
62 if (rem(i main,check after) == 0)
63 fprintf(1,'%s ∖tRunning Case %i of %i∖n', datestr(now), ...

i main, x cases);
64 end
65

66 % Read design
67 i var = 0 + has case col;
68 TWR = DoeTable.data(i main,i var+1); i var=i var+1;
69 WSR = DoeTable.data(i main,i var+1); i var=i var+1;
70 AR = DoeTable.data(i main,i var+1); i var=i var+1;
71 EWMARG = DoeTable.data(i main,i var+1); i var=i var+1;
72 FCDSUB = DoeTable.data(i main,i var+1); i var=i var+1;
73 FACT = DoeTable.data(i main,i var+1); i var=i var+1;
74 LapseRate = DoeTable.data(i main,i var+1); i var=i var+1;
75 FPR = DoeTable.data(i main,i var+1); i var=i var+1;
76 OPR = DoeTable.data(i main,i var+1); i var=i var+1;
77

78 % Convert design to values from 0 to 1
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79 unscale x;
80

81 % Set values for records
82 for i var = 1:9
83 x scaled(i main,i var) = DoeTable.data(i main, i var + ...

has case col);
84 end
85

86 % Calculate performance
87 [AA final Block Fuel, AA final Reliability, ...

AA final Reliability MA, ~, ~, Reliability Individual, ...
Expected BlockFuel Des, Expected BlockFuel DOC, ...
Expected Range, Expected TOFL, Expected VAPP, ...
Expected RateofClimb, Expected Span, Expected RampWt, ...
Expected MaxFuel, Expected OEW, Expected Fuel Used] = ...

88 Evaluate X S(x, S Cases, Reliability goal, ...
Mitigation Method, Num Constr, num MA levels, ...
random search cases);

89

90 % Save results
91 x array(:,i main) = x;
92 AA array Reliability(i main) = AA final Reliability;
93 AA array Reliability MA(i main) = AA final Reliability MA;
94 AA array Reliability Individual(:,i main) = ...

Reliability Individual;
95 AA array Block Fuel(i main) = AA final Block Fuel;
96 AA array Expected BF Des(i main) = Expected BlockFuel Des;
97 AA array Expected BF DOC(i main) = Expected BlockFuel DOC;
98

99 %PrintResults
100 WriteOutput case;
101 end
102

103 PrintOverall;
104 fprintf(1,'Start Time was %s∖n',start time);
105 fprintf(1,'End Time is %s∖n',datestr(now));
106

107 fid = fopen(out file,'a+');
108 fprintf(fid,'∖nStart Time,%s∖nEnd ...

Time,%s∖n',start time,datestr(now));
109 fclose(fid);
110 fprintf(1, '==============================================∖n');

1 %basic variable declaration.m
2

3 xatmin array = zeros(size(X0, 1), ...
runs to perform);

4 AA Global Reliability = zeros(1, runs to perform);
5 AA Global Reliability MA = zeros(1, runs to perform);
6 AA Global Block Fuel = zeros(1, runs to perform);
7 AA Global Expected BF Des = zeros(1, runs to perform);
8 AA Global Expected BF DOC = zeros(1, runs to perform);
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9 AA Global Reliability Individual = zeros(Num Constr, ...
runs to perform);

10 Reliability goal out array = zeros(runs to perform, 1);
11 Mitigation Weight out array = zeros(runs to perform, 1);
12 Success goal out array = zeros(runs to perform, 1);
13

14 x array = zeros(size(X0,1), ...
runs to perform);

15 x scaled = zeros(size(X0,1), ...
runs to perform);

16 AA array Reliability = zeros(1, runs to perform);
17 AA array Reliability MA = zeros(1, runs to perform);
18 AA array Block Fuel = zeros(1, runs to perform);
19 AA array Expected BF Des = zeros(1, runs to perform);
20 AA array Expected BF DOC = zeros(1, runs to perform);
21 AA array Reliability Individual = zeros(Num Constr, ...

runs to perform);
22 EXITFLAG array = zeros(1, runs to perform);
23 iterations array = zeros(1, runs to perform);
24 function calls array = zeros(1, runs to perform);
25 function calls global array = zeros(1, runs to perform);

1 % calculate MA penalty.m
2

3 if MTOW MA > 0
4 OWE delta = 0.0002608 .* MTOW MA .ˆ2 - 0.0063233 .* MTOW MA;
5 else
6 OWE delta = 0;
7 end
8

9 OWE delta = OWE delta + 85000/7 .* (u CLLDM - u CLLDM base) .ˆ2 + ...
3250/7 .* (u CLLDM - u CLLDM base) - 3/7;

10

11 if OWE delta < 0
12 OWE delta = 0;
13 end

1 % constraints.m
2

3 constr Range = 7530; %6800; % 7530;
4 constr TOFL = 11000; %12000; % 11000;
5 constr VAPP = 145; % 140;
6 constr RateofClimb = 300; % 300;
7 constr Span = 215; %230; % 215;
8 constr Fuel = 0;
9

10 case constraints = zeros(Num Reliability Cases, Num Constr);
11

12 % Evaluate surrogates
13 surrogates 777 X 2014 08 19
14
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15 case constraints(:, 1) = (Range(:) - constr Range) /constr Range;
16 case constraints(:, 2) = (constr TOFL - TOFL(:)) /constr TOFL;
17 case constraints(:, 3) = (constr VAPP - VAPP(:)) /constr VAPP;
18 case constraints(:, 4) = (RateofClimb(:) - constr RateofClimb) ...

/constr RateofClimb;
19 case constraints(:, 5) = (constr Span - Span(:)) /constr Span;
20 case constraints(:, 6) = ((MaxFuel(:) - Fuel Used(:)) - ...

constr Fuel) ./ MaxFuel(:);
21 if MTOW MA <= 0
22 case constraints(:, 6) = 1;
23 end

1 %create out file.m
2 out folder = 'results∖';
3 run type = [optimization method, ' '];
4 rel info = ['R', int2str(Num Reliability Cases), ' '];
5

6 if ~exist('useM','var')
7 useM = Mitigation Method;
8 end
9 mitigation info = [' ', useM];

10

11 if (strcmp(useM,'1D'))
12 mitigation info = [mitigation info, ' ', int2str(num MA levels)];
13 elseif (strcmp(useM,'sweep'))
14 mitigation info = [mitigation info, ' ', int2str(num MA levels)];
15 elseif (strcmp(useM,'optimize'))
16 mitigation info = mitigation info;
17 elseif (strcmp(useM,'random search'))
18 mitigation info = [mitigation info, ' ', ...

int2str(random search cases)];
19 elseif (strcmp(useM,'hybrid1D'))
20 mitigation info = [mitigation info, ' ', ...

int2str(num MA levels), ' ', int2str(random search cases)];
21 else
22 mitigation info = mitigation info;
23 end
24

25 out file = [out folder, run type, rel info, sub type, ...
mitigation info, '-', int2str(file iteration), '.csv'];

26 while exist(out file)
27 file iteration = file iteration + 1;
28 out file = [out folder, run type, rel info, sub type, ...

mitigation info, '-', int2str(file iteration), '.csv'];
29 end
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1 function [met constraints, case constraints, BlockFuel Des, ...
Expected BlockFuel Des, Expected BlockFuel DOC, ...
Expected Range, Expected TOFL, Expected VAPP, ...
Expected RateofClimb, Expected Span, Expected RampWt, ...
Expected MaxFuel, Expected OEW, Expected Fuel Used] = ...
evaluate constraints(Num Constr, Num Reliability Cases, TWR, ...
WSR, AR, EWMARG, FCDSUB, FACT, LapseRate, FPR, OPR, u FCDSUB, ...
u EWMARG, u AITEK, u FACT, MTOW MA, OWE delta, u CLLDM, u Rating)

2

3 if (Num Reliability Cases ~= size(u FCDSUB,1))
4 fprintf(1,'Num Reliability Cases (%i) ~= size(u FCDSUB,1) ...

(%i)!!!∖n', Num Reliability Cases, size(u FCDSUB,1));
5 end
6

7 constraints
8

9 met constraints = min(min(case constraints));
10

11 Expected BlockFuel Des = mean(BlockFuel Des);
12 Expected BlockFuel DOC = mean(BlockFuel DOC);
13 Expected Range = mean(Range);
14 Expected TOFL = mean(TOFL);
15 Expected VAPP = mean(VAPP);
16 Expected RateofClimb = mean(RateofClimb);
17 Expected Span = mean(Span);
18 Expected RampWt = mean(RampWt);
19 Expected MaxFuel = mean(MaxFuel);
20 Expected OEW = mean(OEW);
21 Expected Fuel Used = mean(Fuel Used);

1 function [met constraints, case constraints, BlockFuel DOC] = ...
2 evaluate constraints MA(Num Constr, Num Reliability Cases, ...
3 TWR, WSR, AR, EWMARG, FCDSUB, FACT, LapseRate, FPR, OPR, ...
4 u FCDSUB, u EWMARG, u AITEK, u FACT, ...
5 MTOW MA, OWE delta, u CLLDM, u Rating, ...
6 to examine)
7

8 constraints
9

10 if to examine > 0
11 met constraints = zeros(Num Reliability Cases, 1);
12 for i = 1:Num Constr
13 met constraints = met constraints + ...

max(10.ˆ(-case constraints(:, i)), 1);
14 end
15 else
16 met constraints = transpose(min( transpose( case constraints)));
17 end

271



1 function [met constraints] = evaluate constraints MA opt(MA norm, ...
Num Constr, Num Reliability Cases, TWR, WSR, AR, EWMARG, ...
FCDSUB, FACT, LapseRate, FPR, OPR, u FCDSUB, u EWMARG, ...
u AITEK, u FACT, to examine)

2

3 NN Baselines 2014 08 19
4

5 MTOW MA = MA norm(1) * (MTOW MA max - MTOW MA min) + MTOW MA min;
6 u CLLDM = MA norm(2) * (u CLLDM max - u CLLDM min) + u CLLDM min;
7 u Rating = MA norm(3) * (u Rating max - u Rating min) + u Rating min;
8 calculate MA penalty;
9

10 constraints
11

12 if to examine > 0
13 met constraints = zeros(Num Reliability Cases, 1);
14 for i = 1:Num Constr
15 met constraints = met constraints + ...

max(10.ˆ(-case constraints(:, i)), .999);
16 end
17 if MA norm(1) < MTOW MA base
18 MA norm(1) = 0;
19 end
20 met constraints = met constraints + sum(MA norm)/1000;
21

22 elseif to examine == -100
23 met constraints = zeros(Num Reliability Cases, 1);
24

25 for i = 1:Num Constr
26 met constraints = met constraints + ...

max(10.ˆ(-case constraints(:, i)), .999);
27 end
28 if MA norm(1) < MTOW MA base
29 MA norm(1) = 0;
30 end
31 met constraints = met constraints + sum(MA norm)/1000;
32 else
33 case constraints
34 min(transpose(case constraints))
35 met constraints = max(min(transpose(case constraints)))
36 end

1 function [desBlockFuel, Reliability, Reliability MA, S fail, ...
S fail MA, Reliability Individual, Expected BlockFuel Des, ...
Expected BlockFuel DOC, Expected Range, Expected TOFL, ...
Expected VAPP, Expected RateofClimb, Expected Span, ...
Expected RampWt, Expected MaxFuel, Expected OEW, ...
Expected Fuel Used] = Evaluate X S(x, S Cases, ...
Reliability goal, Mitigation Method, Num Constr, ...
num MA levels, random search cases, Mitigation Weighting)

2

3 % Setup
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4 NN Baselines 2014 08 19
5 Num Reliability Cases = size(S Cases,1);
6

7 % Reset Variables
8 Reliability = 0;
9 Reliability MA = 0;

10 S fail = S Cases;
11 S fail MA = S Cases;
12 Expected BlockFuel Des = 0;
13 Expected BlockFuel DOC = 0;
14 Reliability Individual = zeros(Num Constr,1);
15

16 % Start
17 Set X;
18 MTOW MA = MTOW MA base;
19 OWE delta = OWE delta base;
20 u CLLDM = u CLLDM base;
21 u Rating = u Rating base;
22

23 [~, constraints out, desBlockFuel, Expected BlockFuel Des, ...
Expected BlockFuel DOC, Expected Range, Expected TOFL, ...
Expected VAPP, Expected RateofClimb, Expected Span, ...
Expected RampWt, Expected MaxFuel, Expected OEW, ...
Expected Fuel Used] = evaluate constraints(Num Constr, 1, TWR, ...
WSR, AR, EWMARG, FCDSUB, FACT, LapseRate, FPR, OPR, FCDSUB, ...
EWMARG, (u AITEK max - u AITEK min)/2, FACT, MTOW MA, ...
OWE delta, u CLLDM, u Rating);

24

25 if EWMARG > EWMARG max | | EWMARG < EWMARG min
26 Num Reliability Cases = 1;
27 constraints out(1,1) = -1;
28 Expected BlockFuel DOC = Expected BlockFuel DOC * 2;
29 elseif FCDSUB > FCDSUB max | | FCDSUB < FCDSUB min
30 Num Reliability Cases = 1;
31 constraints out(1,1) = -1;
32 Expected BlockFuel DOC = Expected BlockFuel DOC * 2;
33 elseif FACT > FACT max | | FACT < FACT min
34 Num Reliability Cases = 1;
35 constraints out(1,1) = -1;
36 Expected BlockFuel DOC = Expected BlockFuel DOC * 2;
37 end
38

39 if Num Reliability Cases > 1 && ~(Reliability goal == 0 && ...
strcmp(Mitigation Method,'none'))

40 Set S matrix;
41

42 [~, constraints out, ~, Expected BlockFuel Des, ...
Expected BlockFuel DOC, Expected Range, Expected TOFL, ...
Expected VAPP, Expected RateofClimb, Expected Span, ...
Expected RampWt, Expected MaxFuel, Expected OEW, ...
Expected Fuel Used] = evaluate constraints(Num Constr, ...
Num Reliability Cases, TWR, WSR, AR, EWMARG, FCDSUB, FACT, ...
LapseRate, FPR, OPR, u FCDSUB, u EWMARG, u AITEK, u FACT, ...
MTOW MA, OWE delta, u CLLDM, u Rating);
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43

44 constraints passed = transpose(sum( transpose( ...
constraints out>0)));

45 sum success = sum(constraints passed>=Num Constr);
46 mitigate = 1;
47

48 % Catch cases which fail TOFL or Span.
49 % - The impact of uncertain variables is incredibly small.
50 % - Any failures means that the design should fail.
51 min constraints = min(constraints out);
52 if (min constraints(1,2) < 0) | | (min constraints(1,5) < 0)
53 sum success = 0;
54 if (min constraints(1,5) < 0)
55 % span is unrecoverable. Tell the mitigation solver ...

not to bother
56 mitigate = 0;
57 end
58 end
59 Reliability = sum success/Num Reliability Cases;
60 if Reliability < Reliability goal * 0.9;
61 mitigate = 0;
62 end
63

64 if Mitigation Weighting == 0
65 mitigate = 0;
66 end
67

68 % initialize values
69 Num Mitigation Cases = 1;
70 sum recovery = 0;
71

72 if (Reliability > 1)
73 fprintf(1,'Reliability = %f; This should never ...

happen!∖n',Reliability);
74 elseif(mitigate == 0)
75 % something has told the algorithm not to mitigate
76 elseif (Reliability == 1)
77 %fprintf(1,'Full reliability∖n');
78 elseif (Reliability < 1)
79 S and results = [S Cases, constraints passed, ...

constraints out];
80 S and results sorted = sortrows(S and results, Num S Vars ...

+ 1);
81 S fail and results = ...

S and results sorted(1:(Num Reliability Cases - ...
sum success), :);

82 S fail and results(:, Num S Vars + 1) = rand(1, ...
Num Reliability Cases - sum success);

83 S fail and results = sortrows(S fail and results, ...
Num S Vars + 1);

84 S fail = S fail and results(1:(Num Reliability Cases - ...
sum success), 1:Num S Vars);

85 Num Mitigation Cases = size(S fail, 1);
86
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87 %clear S Cases
88 S Cases = S fail;
89 Set S matrix;
90

91 if strcmp(Mitigation Method,'none')
92

93 elseif strcmp(Mitigation Method,'sweep')
94 constraints passed MA = zeros(Num Mitigation Cases, 1);
95

96 if Num Mitigation Cases > 0
97 for i = 0:num MA levels
98 for j = 0:num MA levels
99 for k = 0:num MA levels

100 MA 0 = [i, j, k] / num MA levels;
101 MA 0(1) = MA 0(1);
102

103 MTOW MA = MA 0(1) * (MTOW MA max - ...
MTOW MA min) + MTOW MA min;

104 u CLLDM = MA 0(2) * (u CLLDM max - ...
u CLLDM min) + u CLLDM min;

105 u Rating = MA 0(3) * (u Rating max - ...
u Rating min) + u Rating min;

106 calculate MA penalty;
107 [~, constraints out MA, ~, ...

Expected BlockFuel Des, ...
Expected BlockFuel DOC] = ...
evaluate constraints(Num Constr, ...
Num Mitigation Cases, TWR, WSR, ...
AR, EWMARG, FCDSUB, FACT, ...
LapseRate, FPR, OPR, u FCDSUB, ...
u EWMARG, u AITEK, u FACT, ...
MTOW MA, OWE delta, u CLLDM, ...
u Rating);

108 constraints passed MA = ...
max(constraints passed MA, ...
transpose(sum( transpose( ...
constraints out MA > 0))));

109 sum recovery = sum( ...
constraints passed MA >= Num Constr);

110 end % k
111 end % j
112 end % i
113 end
114

115 elseif strcmp(Mitigation Method,'optimize')
116

117 % Don't waste time assessing low reliability cases
118 assess full R above = 0; %max(Reliability goal, 0.75);
119 minimum assess factor = 0.01;
120 if ((Reliability < assess full R above) && ...

strcmp(Mitigation Method, 'optimize'))
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121 Num Mitigation Cases = ...
ceil(((1-assess full R above - ...
minimum assess factor) / assess full R aboveˆ2 ...

* Reliabilityˆ2 + minimum assess factor) * ...
Num Reliability Cases);

122 else
123 Num Mitigation Cases = size(S fail, 1);
124 end
125 S fail MA = ...

S fail and results(1:Num Mitigation Cases, ...
1:Num S Vars);

126 case constraints all = ...
S fail and results(1:Num Mitigation Cases, ...
Num S Vars + 2:Num S Vars + 1 + Num Constr);

127 Num Mitigation Cases = size(S fail MA, 1);
128 clear S Cases
129 S Cases = S fail MA;
130 Set S matrix;
131

132

133 options = optimset('Display','off', 'Algorithm', 'sqp');
134 MA 0 = [(MTOW MA base - MTOW MA min) / (MTOW MA max ...

- MTOW MA min), (u CLLDM base - u CLLDM min) / ...
(u CLLDM max - u CLLDM min), (u Rating base - ...
u Rating min) / (u Rating max - u Rating min)];

135 MA LB = [0, 0, 0]; MA UB = [1, 1, 1];
136 MA reset = MA 0;
137 sqp function count = 0;
138 MA memory = zeros(Num Mitigation Cases, 3);
139

140 if case constraints all(1,5) > 0 % if Span fails, ...
it's unrecoverable. Don't waste time

141 BF DOC keep = zeros(Num Mitigation Cases,1);
142 for i = 1:Num Mitigation Cases
143 clear S Cases
144 S Cases = S fail MA(i,:);
145 Set S matrix;
146 [~, case constraints test] = ...

evaluate constraints MA(Num Constr, 1, ...
TWR, WSR, AR, EWMARG, FCDSUB, FACT, ...
LapseRate, FPR, OPR, u FCDSUB, u EWMARG, ...
u AITEK, u FACT, .00001, OWE delta base, ...
u CLLDM base, u Rating base, 0);

147

148 if (case constraints test(1,1) > 0) | | ...
(case constraints test(1,6) > 0)

149 to optimize = @(MA norm) ...
evaluate constraints MA opt(MA norm, ...
Num Constr, 1, TWR, WSR, AR, EWMARG, ...
FCDSUB, FACT, LapseRate, FPR, OPR, ...
u FCDSUB, u EWMARG, u AITEK, u FACT, i);

150 MA 0 = MA reset;
151

152 if case constraints all(i,1) < 0
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153 MA 0(1) = 0.9;
154 end
155 if case constraints all(i,2) < 0 | | ...

case constraints all(i,4) < 0
156 MA 0(3) = 0.5;
157 end
158 if case constraints all(i,3) < 0
159 MA 0(2) = 0.5;
160 end
161

162 [MA out, FVAL, EXITFLAG, OUTPUT] = ...
fmincon(to optimize, MA 0, [], [], [], ...
[], MA LB, MA UB, [], options);

163

164 MTOW MA = MA out(1) * (MTOW MA max - ...
MTOW MA min) + MTOW MA min;

165 u CLLDM = MA out(2) * (u CLLDM max - ...
u CLLDM min) + u CLLDM min;

166 u Rating = MA out(3) * (u Rating max - ...
u Rating min) + u Rating min;

167 calculate MA penalty;
168

169 [met constraints, ~, BlockFuel DOC i] = ...
evaluate constraints MA(Num Constr, 1, ...
TWR, WSR, AR, EWMARG, FCDSUB, FACT, ...
LapseRate, FPR, OPR, u FCDSUB, ...
u EWMARG, u AITEK, u FACT, MTOW MA, ...
OWE delta, u CLLDM, u Rating, 0);

170

171 BF DOC keep(i) = BlockFuel DOC i;
172 sqp function count = sqp function count + ...

OUTPUT.funcCount;
173

174 if met constraints >= 0
175 sum recovery = sum recovery + 1;
176 MA memory(i,:) = MA out;
177 else
178 %fprintf(1,'Failed∖n')
179 end
180 else
181 %fprintf(1,'Fuel Failed∖n');
182 end
183 end
184 else
185 %fprintf(1,'Span Failed∖n');
186 end
187 elseif strcmp(Mitigation Method,'random search') | | ...

strcmp(Mitigation Method,'1D') | | ...
strcmp(Mitigation Method,'hybrid1D')

188

189 M0 = [(MTOW MA base - MTOW MA min) / (MTOW MA max - ...
MTOW MA min), (u CLLDM base - u CLLDM min) / ...
(u CLLDM max - u CLLDM min), (u Rating base - ...
u Rating min) / (u Rating max - u Rating min)];

277



190 num MA = size(M0,2);
191 MA LB = zeros(1,num MA);
192 MA UB = ones(1,num MA);
193

194 recover test = -1*ones(Num Mitigation Cases,1);
195 M keep = ones(Num Mitigation Cases,1) * MA UB * 999;
196 M scalar = ones(Num Mitigation Cases,1) * 999;
197 BF DOC keep = zeros(Num Mitigation Cases,1);
198

199 rand Mitigation array = rand(random search cases,num MA);
200

201 oneD Mitigation array = ones((num MA levels) * 3, 1) ...

* M0;
202 for i = 1:num MA levels
203 for j = 1:size(M0,2)
204 if M0(j) == MA LB(j)
205 oneD Mitigation array(i + ...

(j-1)*num MA levels, j) = i / ...
num MA levels;

206 elseif M0(j) == MA UB(j)
207 oneD Mitigation array(i + ...

(j-1)*num MA levels, j) = (i-1) / ...
num MA levels;

208 else
209 if i/num MA levels < 0.5
210 oneD Mitigation array(i + (j-1) * ...

num MA levels, j) = (i-1) / ...
floor(num MA levels / 2) * (M0(j) ...
- MA LB(j)) + MA LB(j);

211 else
212 oneD Mitigation array(i + (j-1) * ...

num MA levels, j) = (i - ...
floor(num MA levels / 2)) / ...
ceil(num MA levels / 2) * ...
(MA UB(j) - M0(j)) + M0(j);

213 end
214 end
215 end
216 end
217

218 if (strcmp(Mitigation Method, 'random search'))
219 Mitigation array = rand Mitigation array;
220 elseif (strcmp(Mitigation Method, '1D'))
221 Mitigation array = oneD Mitigation array;
222 elseif (strcmp(Mitigation Method, 'hybrid1D'))
223 Mitigation array = [oneD Mitigation array; ...

rand Mitigation array];
224 end
225

226 for i = 1:size(Mitigation array,1)
227 mi = sumsqr(Mitigation array(i,:) - M0);
228

229 MTOW MA = Mitigation array(i,1) .* (MTOW MA max ...
- MTOW MA min) + MTOW MA min;
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230 u CLLDM = Mitigation array(i,2) .* (u CLLDM max ...
- u CLLDM min) + u CLLDM min;

231 u Rating = Mitigation array(i,3) .* (u Rating max ...
- u Rating min) + u Rating min;

232 calculate MA penalty;
233

234 [met constraints, ~, BlockFuel DOC] = ...
evaluate constraints MA(Num Constr, ...
Num Mitigation Cases, TWR, WSR, AR, EWMARG, ...
FCDSUB, FACT, LapseRate, FPR, OPR, u FCDSUB, ...
u EWMARG, u AITEK, u FACT, MTOW MA, OWE delta, ...
u CLLDM, u Rating, 0);

235

236 M scalar(met constraints >= 0) = ...
min(M scalar(met constraints >= 0),mi);

237 recover test = max(recover test,met constraints);
238

239 for j ma = 1:num MA
240 M keep(M scalar == mi, j ma) = ...

Mitigation array(i, j ma);
241 end
242 BF DOC keep(M scalar == mi) = ...

BlockFuel DOC(M scalar == mi);
243 end
244 sum recovery = sum(recover test >=0);
245 else
246 Mitigation Method = 'not recognized';
247 fprintf(1,'*** Unknown mitigation method specified! ...

***∖n')
248 end
249 end
250

251 Reliability MA = sum recovery / Num Mitigation Cases * (1 - ...
Reliability) + Reliability;

252 if exist('M keep','var')
253 M keep = sortrows(M keep);
254 M keep = M keep(1:sum(M keep(:,1)<999),:);
255 end
256 else
257 Reliability = 1;
258 if min(constraints out) < 0
259 Reliability = 0;
260 end
261 end
262

263 %Individual reliability
264 if exist('constraints out','var')
265 Reliability Individual = ...

transpose(sum(constraints out>0)/Num Reliability Cases);
266 else
267 Reliability Individual = zeros(Num Constr,1);
268 end
269

270 if exist('sum recovery','var') && sum recovery>0
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271 Recovered BF DOC = mean(BF DOC keep(BF DOC keep > 0));
272 oldExpected BlockFuel DOC = Expected BlockFuel DOC;
273 Expected BlockFuel DOC = (Expected BlockFuel DOC * ...

Reliability + Recovered BF DOC * sum recovery / ...
Num Mitigation Cases * (1 - Reliability)) / Reliability MA;

274 end

1 function [to return, desBlockFuel, Reliability MA, S fail, ...
S fail MA, Reliability] = fmincon interface EXS(x, S Cases, ...
Reliability goal, Num Constr, Mitigation Weighting, ...
Mitigation Method, num MA levels, random search cases)

2

3 [desBlockFuel, Reliability, Reliability MA, S fail, S fail MA, ~, ...
~, Expected BlockFuel DOC] = Evaluate X S(x, S Cases, ...
Reliability goal, Mitigation Method, Num Constr, ...
num MA levels, random search cases, Mitigation Weighting);

4 to return = (1 - Mitigation Weighting) * ...
Expected BlockFuel DOC/100000 - Mitigation Weighting * ...
Reliability MA;

1 function [to return, to return2]= ...
fmincon interface EXS constraint(x, S Cases, Reliability goal, ...
Success goal, Num Constr, Mitigation Weighting, ...
Mitigation Method, num MA levels, random search cases)

2

3 if (Success goal == 0)
4 Mitigation Weighting = 0;
5 Mitigation Method = 'none';
6 end
7

8 [~, ~, Reliability MA, ~, ~, Reliability] = ...
fmincon interface EXS(x, S Cases, Reliability goal, ...
Num Constr, 1, Mitigation Method, num MA levels, ...
random search cases);

9 to return = max(Reliability goal - Reliability, Success goal - ...
Reliability MA);

10 if Reliability goal == 0 && Success goal == 0
11 if Reliability == 0
12 to return = 1;
13 end
14 end
15 to return2 = 0;

1 % NN Baselines 2014 08 19.m
2

3 % ---- Design Variables ----
4 Num X Vars = 9;
5 % Baseline, min, and max values for NNs
6 TWR base = 0.296195; TWR min = 0.26; TWR max = 0.34;
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7 WSR base = 133.3391; WSR min = 126; WSR max = 140;
8 AR base = 10.0; AR min = 9.0; AR max = 11.0;
9 EWMARG base = 0.035; EWMARG min = 0.0; EWMARG max = 0.06;

10 FCDSUB base = 1.035; FCDSUB min = 1.0; FCDSUB max = 1.06;
11 FACT base = 1.035; FACT min = 1.0; FACT max = 1.06;
12 LapseRate base = 0.201439; LapseRate min = 0.18; LapseRate max = ...

0.22;
13 FPR base = 1.5; FPR min = 1.425; FPR max = 1.575;
14 OPR base = 42.58; OPR min = 38.322; OPR max = 46.838;
15

16

17 % ---- Uncertainty Variables ----
18 Num S Vars = 4;
19 u FCDSUB base = 1.0; u FCDSUB min = 0.99; u FCDSUB max = 1.06;
20 u EWMARG base = 0.0; u EWMARG min = -.01; u EWMARG max = 0.06;
21 u AITEK base = 1.95; u AITEK min = 1.9; u AITEK max = 2.0;
22 u FACT base = 1.0; u FACT min = 0.99; u FACT max = 1.06;
23

24

25 % ---- Mitigation Variables ----
26 Num M Vars = 3;
27 MTOW MA base = 0.0; MTOW MA min = -1000; MTOW MA max = 1900;
28 OWE delta base = 0.0; OWE delta min = 0.0; OWE delta max = 20000;
29 u CLLDM base = 2.413; u CLLDM min = 2.413; u CLLDM max = 2.53365;
30 u Rating base = 1.0; u Rating min = 1.0; u Rating max = 1.05;

1 % PrintResults.m
2

3 fprintf(1, '∖n---------------------------∖n');
4 fprintf(1, 'P(Compliance) = %5.3f, Goal = %5.3f∖n', ...

AA final Reliability, Reliability goal);
5 fprintf(1, 'P(Success) = %5.3f, Goal = %5.3f∖n', ...

AA final Reliability MA, Success goal);
6 fprintf(1, 'E[BF DOC] = %8.1f, Des = %8.1f∖n', ...

Expected BlockFuel DOC, Expected BlockFuel Des);
7 fprintf(1, 'Mitigation Weighting = %5.3f∖n', ...

Mitigation Weighting);
8 fprintf(1, '∖n');
9

10 transpose x = transpose(x);
11 Set X;
12 AA final Output Vector = transpose([TWR; WSR; AR; EWMARG; FCDSUB; ...

FACT; LapseRate; FPR; OPR]);

1 function [S Cases] = Random Cases Setup(Num Reliability Cases, ...
Num S Vars, distribution type)

2

3 % Generate random S settings
4 % Values will be from 0 to 1
5

6 if strcmp(distribution type, 'normal')
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7 % Distribution is truncated at +/- 3 standard deviations
8 std deviations = 3;
9 S Cases = Truncated Gaussian2(0, 1, Num Reliability Cases, ...

Num S Vars, -std deviations, std deviations);
10 S Cases = S Cases / (2*std deviations) + .5;
11 end
12

13 if strcmp(distribution type, 'Rayleigh')
14 % Distribution is truncated at +3
15 S Cases = wblrnd(1, 2, Num Reliability Cases, Num S Vars);
16 for i = 1:Num Reliability Cases
17 for j = 1:Num S Vars
18 if S Cases(i,j) > 3
19 iter check = 0;
20 while S Cases(i,j) > 3 & iter check < 5
21 S Cases(i,j) = wblrnd(1,2,1,1);
22 iter check = iter check + 1;
23 end
24 end
25 end
26 end
27 S Cases = S Cases / 3;
28 end
29

30 if strcmp(distribution type, 'tri-centered')
31 random1 = rand(Num Reliability Cases, Num S Vars);
32 random2 = rand(Num Reliability Cases, Num S Vars);
33 S Cases = (random1 + random2) / 2;
34 end
35

36 if strcmp(distribution type, 'uniform')
37 S Cases = rand(Num Reliability Cases,Num S Vars);
38 end
39

40 if strcmp(distribution type, 'marg set distrib')
41 if strcmp(version, '7.14.0.739 (R2012a)')
42 % Other versions of MATLAB before R2014a will probably fail.
43 fprintf(1, 'You set the distribution type as ''%s''. ...

∖nThat won''t work in this version of MATLAB∖n', ...
distribution type);

44 else
45 S Cases = zeros(Num Reliability Cases, Num S Vars);
46 b = [0.8396; 0.9303; 0.4812; 0.9206];
47 S1 dist = makedist('Triangular', 'a', 0, 'b', b(1), 'c', 1);
48 S2 dist = makedist('Triangular', 'a', 0, 'b', b(2), 'c', 1);
49 S3 dist = makedist('Triangular', 'a', 0, 'b', b(3), 'c', 1);
50 S4 dist = makedist('Triangular', 'a', 0, 'b', b(4), 'c', 1);
51 S Cases(:,1) = random(S1 dist, Num Reliability Cases, 1);
52 S Cases(:,2) = random(S2 dist, Num Reliability Cases, 1);
53 S Cases(:,3) = random(S3 dist, Num Reliability Cases, 1);
54 S Cases(:,4) = random(S4 dist, Num Reliability Cases, 1);
55 end
56 end
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1 %Set S matrix.m
2 % Set values for Uncertainty Variables based on standard normal ...

inputs
3

4 %Uncertainty Variables
5 u FCDSUB = S Cases(:, 1) .* (u FCDSUB max - u FCDSUB min) + ...

u FCDSUB min;
6 u EWMARG = S Cases(:, 2) .* (u EWMARG max - u EWMARG min) + ...

u EWMARG min;
7 u AITEK = S Cases(:, 3) .* (u AITEK max - u AITEK min) + u AITEK min;
8 u FACT = S Cases(:, 4) .* (u FACT max - u FACT min) + u FACT min;

1 %Set X.m
2 % Set Design Variable values
3

4 %Design Variables
5 TWR = x(1) * (TWR max - TWR min) + TWR min;
6 WSR = x(2) * (WSR max - WSR min) + WSR min;
7 AR = x(3) * (AR max - AR min) + AR min;
8 EWMARG = x(4) * (EWMARG max - EWMARG min) + EWMARG min;
9 FCDSUB = x(5) * (FCDSUB max - FCDSUB min) + FCDSUB min;

10 FACT = x(6) * (FACT max - FACT min) + FACT min;
11 LapseRate = x(i set) * (LapseRate max - LapseRate min) + ...

LapseRate min;
12 FPR = x(i set) * (FPR max - FPR min) + FPR min;
13 OPR = x(i set) * (OPR max - OPR min) + OPR min;

1 % StartingPoint.m
2 NN Baselines 2014 08 19;
3

4 % Design variables
5 TWR = TWR base;
6 WSR = WSR base;
7 AR = AR base;
8 LapseRate = LapseRate base;
9 FPR = FPR base;

10 OPR = OPR base;
11 % Margins
12 EWMARG = EWMARG base;
13 FCDSUB = FCDSUB base;
14 FACT = FACT base;
15

16 % Uncertain variables
17 u FCDSUB = u FCDSUB base;
18 u EWMARG = u EWMARG base;
19 u AITEK = u AITEK base;
20 u FACT = u FACT base;
21

22 % Mitigation variables
23 MTOW MA = MTOW MA base;
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24 OWE delta = OWE delta base;
25 u CLLDM = u CLLDM base;
26 u Rating = u Rating base;
27

28

29 X0 = [TWR base; WSR base; AR base; EWMARG base; FCDSUB base; ...
FACT base; LapseRate base; FPR base; OPR base];

30 LB scaled = [TWR min; WSR min; AR min; EWMARG min; FCDSUB min; ...
FACT min; LapseRate min; FPR min; OPR min];

31 UB scaled = [TWR max; WSR max; AR max; EWMARG max; FCDSUB max; ...
FACT max; LapseRate max; FPR max; OPR max];

32

33 X0 = (X0 - LB scaled) ./ (UB scaled - LB scaled);
34 LB = zeros(size(X0,1),1);
35 UB = ones(size(X0,1),1);

1 %unscale x.m
2 % Change scaled x values (from input DoE) to unscaled values for ...

optimizer
3

4 x(1) = (TWR - TWR min) / (TWR max - TWR min);
5 x(2) = (WSR - WSR min) / (WSR max - WSR min);
6 x(3) = (AR - AR min) / (AR max - AR min);
7 x(4) = (EWMARG - EWMARG min) / (EWMARG max - EWMARG min);
8 x(5) = (FCDSUB - FCDSUB min) / (FCDSUB max - FCDSUB min);
9 x(8) = (FACT - FACT min) / (FACT max - FACT min);

10 x(7) = (LapseRate - LapseRate min) / (LapseRate max - LapseRate min);
11 x(8) = (FPR - FPR min) / (FPR max - FPR min);
12 x(9) = (OPR - OPR min) / (OPR max - OPR min);

1 % WriteOutput case.m
2

3 fid = fopen(out file, 'a+');
4

5 % Results
6 for i out = 1:size(x array, 1)
7 fprintf(fid, '%f, ', x array(i out, i main));
8 end
9

10 % Scaled X values
11 fprintf(fid, '%f, ', x array(1, i main) * (TWR max - TWR min) + ...

TWR min);
12 fprintf(fid, '%f, ', x array(2, i main) * (WSR max - WSR min) + ...

WSR min);
13 fprintf(fid, '%f, ', x array(3, i main) * (AR max - AR min) + ...

AR min);
14 fprintf(fid, '%f, ', x array(4, i main) * (EWMARG max - ...

EWMARG min) + EWMARG min);
15 fprintf(fid, '%f, ', x array(5, i main) * (FCDSUB max - ...

FCDSUB min) + FCDSUB min);
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16 fprintf(fid, '%f, ', x array(6, i main) * (FACT max - FACT min) + ...
FACT min);

17 fprintf(fid, '%f, ', x array(7, i main) * (LapseRate max - ...
LapseRate min) + LapseRate min);

18 fprintf(fid, '%f, ', x array(8, i main) * (FPR max - FPR min) + ...
FPR min);

19 fprintf(fid, '%f, ', x array(9, i main) * (OPR max - OPR min) + ...
OPR min);

20

21 fprintf(fid, '%f, ', AA array Reliability(i main));
22 fprintf(fid, '%f, ', AA array Reliability MA(i main));
23 fprintf(fid, '%f, ', AA array Block Fuel(i main));
24 fprintf(fid, '%f, ', AA array Expected BF Des(i main));
25 fprintf(fid, '%f, ', AA array Expected BF DOC(i main));
26 fprintf(fid, '%f, ', AA array Reliability Individual(:, i main));
27 fprintf(fid, '%f, ', function calls array(i main));
28 fprintf(fid, '%f, ', Mitigation Weight out array(i main));
29 fprintf(fid, '%f, ', Reliability goal out array(i main));
30 fprintf(fid, '%f, ', Success goal out array(i main));
31

32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 %Global Optimizer Results
35 for i out = 1:size(xatmin array, 1)
36 fprintf(fid, '%f, ', xatmin array(i out, i main));
37 end
38

39 fprintf(fid, '%f, ', xatmin array(1, i main) * (TWR max - ...
TWR min) + TWR min);

40 fprintf(fid, '%f, ', xatmin array(2, i main) * (WSR max - ...
WSR min) + WSR min);

41 fprintf(fid, '%f, ', xatmin array(3, i main) * (AR max - AR min) ...
+ AR min);

42 fprintf(fid, '%f, ', xatmin array(4, i main) * (EWMARG max - ...
EWMARG min) + EWMARG min);

43 fprintf(fid, '%f, ', xatmin array(5, i main) * (FCDSUB max - ...
FCDSUB min) + FCDSUB min);

44 fprintf(fid, '%f, ', xatmin array(6, i main) * (FACT max - ...
FACT min) + FACT min);

45 fprintf(fid, '%f, ', xatmin array(7, i main) * (LapseRate max - ...
LapseRate min) + LapseRate min);

46 fprintf(fid, '%f, ', xatmin array(8, i main) * (FPR max - ...
FPR min) + FPR min);

47 fprintf(fid, '%f, ', xatmin array(9, i main) * (OPR max - ...
OPR min) + OPR min);

48

49 fprintf(fid, '%f, ', AA Global Reliability(i main));
50 fprintf(fid, '%f, ', AA Global Reliability MA(i main));
51 fprintf(fid, '%f, ', AA Global Block Fuel(i main));
52 fprintf(fid, '%f, ', AA Global Expected BF Des(i main));
53 fprintf(fid, '%f, ', AA Global Expected BF DOC(i main));
54 fprintf(fid, '%f, ', AA Global Reliability Individual(:, i main));
55 fprintf(fid, '%f, ', function calls global array(i main));
56
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57 if exist('Expected Range', 'var')
58 fprintf(fid, '%f, ', Expected Range);
59 fprintf(fid, '%f, ', Expected TOFL);
60 fprintf(fid, '%f, ', Expected VAPP);
61 fprintf(fid, '%f, ', Expected RateofClimb);
62 fprintf(fid, '%f, ', Expected Span);
63 fprintf(fid, '%f, ', Expected RampWt);
64 fprintf(fid, '%f, ', Expected MaxFuel);
65 fprintf(fid, '%f, ', Expected OEW);
66 fprintf(fid, '%f, ', Expected Fuel Used);
67 end
68

69 fprintf(fid, '∖n');
70 fclose(fid);

1 % WriteOutput setup.m
2

3 fprintf(1, 'Setting up output file: %s∖n', out file);
4 fid = fopen(out file,'w');
5

6 % Basic information
7 fprintf(fid, 'Settings∖n');
8 fprintf(fid, 'Num Reliability Cases,%i∖n', Num Reliability Cases);
9 fprintf(fid, 'optimization method,%s∖n', optimization method);

10 if strcmp(optimization method, 'DIRect')
11 fprintf(fid, 'DIRect maxevals,%i∖n', DIRect maxevals);
12 elseif strcmp(optimization method, 'GA')
13 fprintf(fid, 'GA PopulationSize,%i∖n', GA PopulationSize);
14 end
15 fprintf(fid, 'distribution type,%s∖n', distribution type);
16 fprintf(fid, 'Mitigation Method,%s∖n', Mitigation Method);
17 useM = Mitigation Method;
18 if strcmp(Mitigation Method, 'none')
19 useM = default Mitigation Method;
20 fprintf(fid, 'default Mitigation Method,%s∖n', ...

default Mitigation Method);
21 end
22

23 if (strcmp(useM,'1D'))
24 fprintf(fid, 'num MA levels,%i∖n',num MA levels);
25 elseif (strcmp(useM,'sweep'))
26 fprintf(fid, 'num MA levels,%i∖n',num MA levels);
27 elseif (strcmp(useM,'optimize'))
28

29 elseif (strcmp(useM,'random search'))
30 fprintf(fid, 'random search cases,%i∖n',random search cases);
31 elseif (strcmp(useM,'hybrid1D'))
32 fprintf(fid, 'num MA levels,%i∖n',num MA levels);
33 fprintf(fid, 'random search cases,%i∖n',random search cases);
34 else
35

36 end
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37

38 if strcmp(run type, 'DOE ')
39 fprintf(fid, 'doe filename,%s∖n', doe filename);
40 fprintf(fid, 'x cases,%i∖n', x cases);
41 elseif strcmp(run type, 'MCS ')
42 fprintf(fid, 'x cases,%i∖n', x cases);
43 elseif strcmp(run type, 'Opt ')
44 if size(Reliability Goal Array, 2) > 1
45 fprintf(fid, 'size(Reliability Goal Array,2),%i∖n', ...

size(Reliability Goal Array, 2));
46 else
47 fprintf(fid, 'Reliability Goal,%f∖n', ...

Reliability Goal Array(1));
48 end
49 if size(Success Goal Array,2) > 1
50 fprintf(fid, 'size(Success Goal Array,2),%i∖n', ...

size(Success Goal Array, 2));
51 else
52 fprintf(fid, 'Success Goal,%f∖n',S uccess Goal Array(1));
53 end
54 end
55 fprintf(fid, '∖n');
56

57 % Results
58 %fprintf(fid, 'Optimizer Reults∖n');
59 % X's
60 for i = 1:size(x array,1)
61 fprintf(fid, 'x%s,',int2str(i));
62 end
63

64 % Scaled X values
65 fprintf(fid, 'TWR, WSR, AR, h EW, h Drag, h FuelFlow, LapseRate, ...

FPR, OPR,');
66

67 % Responses
68 fprintf(fid, 'Compliance, Success, BF Det, E[BF Des], E[BF DOC],');
69 for i = 1:size(AA array Reliability Individual, 1)
70 if i == 1
71 fprintf(fid, 'Comp Range,');
72 elseif i == 2
73 fprintf(fid, 'Comp TOFL,');
74 elseif i == 3
75 fprintf(fid, 'Comp Vapp,');
76 elseif i == 4
77 fprintf(fid, 'Comp RoC,');
78 elseif i == 5
79 fprintf(fid, 'Comp Span,');
80 elseif i == 6
81 fprintf(fid, 'Comp Fuel,');
82 else
83 fprintf(fid, 'Compliance%s,', int2str(i));
84 end
85 end
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86 fprintf(fid, 'SQP Function Calls, Mitigation Wt, ...
Reliability goal, Success goal,');

87

88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 %Global Optimizer Results
90 for i = 1:size(xatmin array,1)
91 fprintf(fid, 'x global%s,', int2str(i));
92 end
93

94 fprintf(fid, 'TWR global, WSR global, AR global, h EW global, ...
h Drag global, h FuelFlow global, LapseRate global, ...
FPR global, OPR global, Global Compliance, Global Success, ...
Global BF DES Det, Global E[BF Des], Global E[BF DOC],');

95 for i = 1:size(AA Global Reliability Individual, 1)
96 if i == 1
97 fprintf(fid, 'G Comp Range,');
98 elseif i == 2
99 fprintf(fid, 'G Comp TOFL,');

100 elseif i == 3
101 fprintf(fid, 'G Comp Vapp,');
102 elseif i == 4
103 fprintf(fid, 'G Comp RoC,');
104 elseif i == 5
105 fprintf(fid, 'G Comp Span,');
106 elseif i == 6
107 fprintf(fid, 'G Comp Fuel,');
108 else
109 fprintf(fid, 'Global P(Comp) Ind %s,', int2str(i));
110 end
111 end
112 fprintf(fid, 'Global Function Calls,');
113

114 fprintf(fid, 'E[Range], E[TOFL], E[VAPP], E[RateofClimb], ...
E[Span], E[RampWt], E[MaxFuel], E[OEW], E[Fuel Used],');

115

116 fprintf(fid, '∖n');
117 fclose(fid);
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