
OPTIMIZATION AND SEPARATION FOR STRUCTURED
SUBMODULAR FUNCTIONS WITH CONSTRAINTS

A Thesis
Presented to

The Academic Faculty

by

Jiajin Yu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Algorithms, Combinatorics, and Optimization

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Jiajin Yu

OPTIMIZATION AND SEPARATION FOR STRUCTURED
SUBMODULAR FUNCTIONS WITH CONSTRAINTS

Approved by:

Shabbir Ahmed, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Sebastian Pokutta
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Santanu S. Dey
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Richard J. Lipton
School of Computer Science
Georgia Institute of Technology

Date Approved: December 1st, 2014

To my parents.

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor Professor Shabbir Ahmed, for his

guidance and support throughout my years at Georgia Tech. His insightful ideas always

enlighten me along the journey of research; his high standard for research sets an example

for me. Our weekly discussion have always been fun and joyful. I really appreciate him

allowing me to pursue research topics of my own interest freely. My Ph.D. experience is

stimulating and exciting because of him.

I also want to thank the ACO program director, Professor Robin Thomas for offering me

the opportunity to study in Georgia Tech and his great effort in running the ACO program

with outstanding quality. I am also grateful to all the professors in the ACO program for

their inspiring teaching in classes and sharing insightful ideas with me during talks and

day-to-day discussions.

I cannot complete my research in Georgia Tech without the help of my colleagues:

Abhishek Banerjee, Cristóbal Guzman, Qie He, Chun-Hung Liu, Lei Wang, Qianyi Wang,

Linji Yang, and many more I am failing to mention here. Discussions with you have always

been source of my inspiration in research. The jokes and laughs drive away the frustration

during the research.

My life in Atlanta will not be so colorful without my friends: Chong Han, Fan Shi,

Liangyi Sun, Peng Tang, Yi Wang, Yi Xiao, Biancun Xie, and Ke Zhou. Thank you all for

bringing happiness during my stay in Atlanta. I will always cherish the memory with you

guys and keep your kindness in my heart.

Special thanks to my girlfriend Minglu Lin, for her love and support when I needed

most.

Finally I offer my gratitude to my family, especially to my parents. Their wholehearted

love and encouragement make everything possible.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

1.1 Notations and preliminaries . 2

1.2 Contributions . 8

II MAXIMIZING EXPECTED UTILITY OVER A KNAPSACK CON-
STRAINT: APPROXIMATION ALGORITHMS 12

2.1 Introduction . 12

2.2 Sample average approximation . 15

2.3 Increasing submodular maximization over a knapsack 17

2.3.1 Proof of Theorem 6 . 19

2.3.2 Combining SAA and Algorithm 3 23

2.4 Power utility functions . 24

2.4.1 Sample average approximation . 24

2.4.2 Fixed number of scenarios . 30

2.5 Conclusion . 33

III MAXIMIZING EXPECTED UTILITY OVER A KNAPSACK CON-
STRAINT: POLYHEDRAL RESULTS . 35

3.1 Introduction . 35

3.2 Valid inequalties by lifting . 37

3.2.1 Uplifting . 38

3.2.2 Subadditive approximation . 44

3.2.3 Computing the subadditive lifting function 45

3.2.4 Downlifting . 52

3.3 Computational experiments . 52

v

3.3.1 Problem and its data generation . 52

3.3.2 Experiments . 54

3.4 Conclusion . 56

IV MINIMIZING A CLASS OF SUBMODULAR FUNCTIONS OVER A
CARDINALITY CONSTRAINT: POLYHEDRAL RESULTS 58

4.1 Introduction . 58

4.2 Valid inequalities for conv(P) . 62

4.2.1 Unweighted case: identical components 64

4.2.2 Weighted case: nonindentical components 72

4.3 Computational results . 76

4.4 Conclusion . 80

REFERENCES . 82

vi

LIST OF TABLES

1 Summary of results . 11

2 Comparing lifted inequalities . 56

3 Performance comparison for weighted case 80

4 Performance comparison for unweighted case 81

vii

LIST OF FIGURES

1 Comparison of outer approximation and convex hull of f(x) over x ∈ {0, 1} 2

2 Diminishing marginal returns of g(x) = f(a′x) 9

3 Illustration of F (S∗∪St)−F (S)
F (S∗)−F (St) ≥ α . 22

4 Solutions of (30) for different δ . 42

5 Comparison of lifting functions for δ < A(1 : l)−A(l − k + 1 : l) 46

6 An example of searching optimal λ in Algorithm 5 when n = 4, k = 3 51

7 Performance profile for subadditive lifting function 57

8 Comparison of Q and P. 61

9 An illustration of an solution of (48), Si ⊆ {i0 + 1, . . . , n} , |Si| = k − i0 . . 67

10 Performance profiles . 79

viii

SUMMARY

Various kinds of optimization problems involve nonlinear functions of binary vari-

ables that exhibit a property of diminishing marginal returns. Such a property is known as

submodularity. Vast amount of work has been devoted to the problem of submodular opti-

mization. On the algorithmic side, researchers have developed polynomial time algorithms

that find an (approximately) optimal solution in the presence of simple constraints under

the assumption of an oracle model of the function. On the integer programming side, where

the goal is to find an optimal solution, existing approaches tackle the nonlinearity usually

by solving a continuous convex relaxation of the nonlinear function of binary variables, and

use a branch-and-bound procedure to force integrality constraints. The oracle model ignores

available structural information of the function and the continuous relaxation of a nonlin-

ear function of binary variables in an explicit form is usually quite loose. In this thesis,

we exploit structural information for several classes of submodular optimization problems.

We strive for polynomial time algorithms with improved approximation ratio and strong

mixed-integer linear formulations of mixed-integer non-linear programs where the epigraph

and hypograph of submodular functions of a specific form appear as a substructure together

with other side constraints. Our contributions are as follows.

First, we develop approximation algorithms for the expected utility knapsack problem.

We use the sample average approximation framework to approximate the stochastic problem

as a deterministic knapsack-constrained submodular maximization problem, and then use an

approximation algorithm to solve the deterministic counterpart. We show that a polynomial

number of samples is enough for a deterministic approximation that is close in relative

error. Then, exploiting the strict monotonicity of typical utility functions, we present an

algorithm that maximizes an increasing submodular function over a knapsack constraint

with approximation ratio better than the classical (1− 1/e) ratio.

Next, we present polyhedral results for the expected utility knapsack problem. We study

ix

the mixed-integer nonlinear set: P = {(w, x) ∈ R× {0, 1}n | w ≤ f(a′x+ d), b′x ≤ B} where

f : R 7→ R is a concave function, a, b ∈ Rn are nonnegative vectors, d is a real number and

B is a positive real number. We propose a family of inequalities for the convex hull of P by

exploiting both the structure of the submodular function f(a′x+ d) and the knapsack con-

straint. Effectiveness of the proposed inequalities is shown by computational experiments

on expected utility maximization problem with budget constraint using a branch-and-cut

framework.

Finally, we study the mixed-integer nonlinear set: Q = {(w, x) ∈ R × {0, 1}n : w ≥

f(a′x), e′x ≤ k} where f : R 7→ R is a concave function, a ∈ Rn is a nonnegative vector, e

is a vector of ones, and k is a positive integer. The set Q arises as a substructure in various

constrained submodular minimization problems. We develop a strong linear formulation of

the convex hull of Q by exploiting both the submodularity of f(a′x) and the cardinality

constraint e′x ≤ k. We provide a full description of the convex hull of Q when the vector a

has identical components. We also develop a family of facet-defining inequalities when the

vector a has nonidentical components. We demonstrate the effectiveness of the proposed

inequalities by solving mean-risk knapsack problems using a branch-and-cut framework.

x

CHAPTER I

INTRODUCTION

Various optimization problems, such as capital budgeting, mean-risk optimization, revenue

maximization, involve nonlinear functions of binary variables that exhibit a property of

diminishing marginal returns. Such property is known as submodularity and often arises

from the concavity of risk aversion. Vast amount of work has been devoted to the problem of

submodular optimization. On the algorithmic side, researchers have developed polynomial

time algorithms that find an optimal solution, or a solution whose value is approximately

close to the optimal if the problem is NP-hard. These works typically assume that only

values of the function can be queried through an oracle and nothing else of the function

is known. On the integer programming side, where the goal is to find an exact optimal

solution, existing approaches tackle the nonlinearity usually by solving a continuous convex

relaxation or an outer approximation of the nonlinear functions, and use branch-and-bound

to force integrality constraints. Both approaches have their respective drawbacks. First,

the available structural information of the function is often much richer than the one of an

oracle model. Second, given an explicit form of a nonlinear function of binary variables,

a continuous relaxation at the beginning of the branch-and-bound procedure can give a

very loose bound that otherwise could be tightened if submodularity is exploited directly

in the space of binary variables. In Figure 1 we illustrate this for a concave function

f(x) over {0, 1}. In Figure 1a, the shaded region represents the relaxation obtained by

building an outer approximation of the nonlinear function f(x) by two gradient inequalities

at the points x = 0 and x = 1. In Figure 1b, the actual convex hull of the hypograph

of f(x) over {0, 1} is shown. In this case, the convex hull can be obtained by studying

how f behaves over {0, 1}, that is by the submodularity of f(x). In this thesis, we exploit

structural information for several classes of submodular optimization problems. We strive

for polynomial time algorithms with improved approximation ratio and strong mixed-integer

1

x

f(x)

0 1

w

(a) An outer approximation of f(x)

x

f(x)

0 1

w

(b) The convex hull of f(x)

Figure 1: Comparison of outer approximation and convex hull of f(x) over x ∈ {0, 1}

linear formulations of mixed-integer non-linear programs where the epigraph and hypograph

of submodular functions of an explicit form appear as a substructure together with other

side constraints.

In the remainder of this chapter, we will first define some notations and review some

basic concepts of submodular optimization and mixed-integer programming. Then we will

briefly describe the contributions of this thesis.

1.1 Notations and preliminaries

Submodular functions play a significant role in discrete optimization. Various basic func-

tions in optimization, such as utility functions, cut functions and coverage functions, are

submodular (cf. [49] for a comprehensive treatment). Let the index set N = {1, . . . , n}. A

function of binary variables f : {0, 1}N → R is submodular if for any two n-dimensional

binary vectors x, y with x ≤ y (component-wise) and a unit vector ei with yi = 0, we have

f(x+ ei)− f(x) ≥ f(y + ei)− f(y).

Sometimes it is convenient to discuss submodular function using the notation of set func-

tions. A set function f : 2N → R is submodular if for all S, T ⊆ N with S ⊆ T , and

2

i ∈ N\T ,

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T).

From the definition above, we see similarity between submodular functions and concave

functions as they both exhibit diminishing marginal returns.

From a different perspective, one might argue that submodularity is analogous to con-

vexity. Specifically, the continuous extension of a submodular set function is a convex

function and if the continuous extension of a set function is convex, then it is submodu-

lar [32]. This connection implies that submodular minimization can be done in polynomial

time by the Ellipsoid method [20]. Later, combinatorial algorithms have been developed

that minimize a submodular function in strongly polynomial time [27, 42].

Except for minimization without constraint, most problems in submodular optimization

of general functions are NP-hard. For specific submodular functions arising in combinatorial

optimization such as rank of an independent set in a matroid, the size of a cut of a graph,

maximization without constraint or minimization with constraints are usually as hard as

general submodular functions [13, 17, 28]. In recent years, there have been vast amount of

elegant works on polynomial time approximation algorithms for submodular optimization

(cf. [12, 17, 28, 30, 51]). Most of these assume a “value oracle” model where nothing except

function values of different sets can be queried. For maximizing an increasing general

submodular function with a cardinality constraint, the classic greedy algorithm in [36] (see

Algorithm 1) finds an approximate optimal solution. Starting from an empty set, each time

the algorithm selects an item in the ground set that has the largest marginal returns on

the set of current selected items until k items (i.e., the cardinality constraint) have been

selected. The value of the resulting set is at least (1 − 1/e) factor of the optimal value.

Later, Sviridenko [46] generalizes the algorithm to work with a knapsack constraint. The

value oracle assumption is reasonable in some scenarios, but we lose the opportunity of

improvement by not exploiting the structure of a function when it is available at hand.

In many applications, an exact optimal, not approximately optimal, solution is needed.

In addition to that, optimization problems may have various kinds of side constraints, not

3

Algorithm 1: Greedy algorithm for an increasing general submodular function

Data: The set of elements N = {e1, . . . , en}
Result: A set S of size k

S ← ∅;
for i← 1 to k do

e← argmaxe′∈N (f(S ∪ {e′})− f(S));
S ← S ∪ {e};
N ← N\ {e};

end

only simple constraints like knapsack or matroid constraints. Therefore existing approxi-

mation algorithms, which usually can only deal with one kind of simple constraint, are not

applicable. In these situations, a general approach to solve the problem is to build a mixed-

integer linear program that models the optimization problem, and use the available solvers

to find an optimal solution of the mixed-integer linear program. Below we first briefly review

concepts of mixed-integer linear program, then we demonstrate two existing techniques of

linearizing submodular constraints which can be used in building a mixed-integer linear

programming formulation.

A mixed-integer linear program (MILP) is of the form:

min c′x

such that Ax ≤ b

l ≤ x ≤ u

xi ∈ Z, ∀i ∈ I,

(1)

where c, l, u are n-dimensional vectors, x is an n-dimensional vector of variables among

which a subset I ⊆ {1, . . . , n} must be integers. The constraints on x are specified by A,

an m× n matrix and b, an m-dimensional vector. We assume here all vectors and matrices

are rational. Let P be the set of all feasible solutions of the MILP (1) and conv(P) be the

convex hull of the set P . By a fundamental theorem proved by Meyer [34], there exists a

rational matrix Ã and rational vector b̃ such that
{
x | Ãx ≤ b̃

}
defines the convex hull of

P .

The exact convex hull of P is usually difficult to get. Often we turn to a relaxation that

4

is a superset of the convex hull. Consider a relaxation P 1 ⊃ conv(P) which is represented

only by linear constraints and no integrality constraints as P 1 =
{
x | A1x ≤ b1

}
. Let x1

be an optimal solution of the linear program min
{
c′x | A1x ≤ b1

}
. If there exists a point

x0 ∈ P available to us and the objective c′x0 equals to c′x1, then we know that x0 is an

optimal solution of min {c′x | x ∈ P}. On the other hand, if x1 /∈ P , then we can attempt

to separate the point x1 ∈ P 1\P from P by a cutting plane αx ≤ β. In particular, a cutting

plane αx ≤ β is valid for conv(P) when every point in conv(P) satisfies the inequality, and

the cutting plane separates a point x1 /∈ conv(P) if αx1 > β. If for any point x1 /∈ conv(P),

we can find a valid cutting plane for conv(P) that separates x1 from conv(P) in polynomial

time, then we say we have a polynomial time separation algorithm for conv(P). By the

Ellipsoid method, through a polynomial time separation algorithm, an optimal solution of

min {c′x | x ∈ P} can be found in polynomial time [20].

We often use lifting to generate valid inequalities in this thesis. The lifting procedure

constructs a valid inequality for a high dimensional polyhedron from a given valid inequality

for a lower dimensional polyhedron. We give a brief review of the idea of lifting in the

following. For a comprehensive treatment, we refer readers to [35]. Consider a mixed

integer set P =
{

(w, x) ∈ R× {0, 1}N | ∑i∈N aixi + w ≤ b
}

. For a set S ⊆ N , let

P 0 = {(w, x) ∈ P | xi = 0, ∀i ∈ N\S}

be a restriction of P . Let N\S = {i1, . . . , im} and denote Sl = S ∪ {i1, . . . , il}, P l =

{
(w, x) ∈ P | xi = 0,∀i ∈ N\Sl

}
for l = 1, . . . ,m. Denote S0 = S. For l = 1, . . . ,m, given

an inequality
∑

i∈Sl−1 πixi + πn+1w ≤ π0 valid for conv(P l−1), let

γl = max

∑

i∈Sl−1

πixi + πn+1w |
∑

i∈Sl−1

aixi + ail + w ≤ b, (w, x) ∈ R× {0, 1}n

 .

Then for any πil ≤ π0 − γl,
∑

i∈Sl−1 πixi + πilxil + πn+1w ≤ π0 is a valid inequality for

conv(P l). This process is called uplifting since we have variable xil = 0 in Pl−1 and it is

free in Pl. We can construct coefficients πil from l = 1 to m and have a valid inequality

for conv(P). This process is called sequential lifting. If we lift variables in different orders,

5

then we get different coefficients. Define a lifting function Φ : R→ R as

Φ(α) = π0 −max

{∑

i∈S
πixi + πn+1w |

∑

i∈S
aixi + α+ w ≤ b, (w, x) ∈ R× {0, 1}n

}
.

If the function is superadditive (i.e., Φ(α1) + Φ(α2) ≤ Φ(α1 + α2)), then we can lift all

variables in one pass and get a valid inequality of conv(P) as

∑

i∈S
πixi +

∑

i∈N\S

Φ(ai)xi + πn+1w ≤ π0.

This is called sequence independent lifting since the order of variables to be lifted does not

matter. We can also restrict binary variables to be one and solve corresponding optimization

problems, which is similar to uplifting. This process is called downlifting.

Solvers of mixed-integer linear programs, such as CPLEX and Gurobi, have become

quite efficient in recent years. In most cases, solvers do not need the complete description

of the convex hull to find an optimal solution. Instead they use a branch-and-cut framework.

On one hand, solvers exhaustively search for feasible solutions by branching; on the other

hand, they derive valid cutting planes that produce tighter and tighter relaxations along

the process. Eventually, solvers find a feasible solution whose objective value is the same as

the optimal value of the relaxation. Since mixed-integer linear programs are quite general,

formulating a given problem as MILP and using standard solvers to obtain an optimal

solution can bypass the need for developing specialized algorithms for different problems. In

this thesis, we develop general methods to transform mixed-integer non-linear formulations

of some classes of submodular optimization problems to mixed-integer linear programs so

that optimization applications involving submodularity can also benefit from the generality

and efficiency of MILP solvers.

Below we review two important approaches to obtain mixed-integer linear formulations

of the epigraph and hypograph of a submodular function, respectively. These two ap-

proaches will be the cornerstones of techniques we develop in this thesis for linearizing

models involving structured submodular functions.

First, for the epigraph of a submodular function Ef = {(w, x) ∈ R× {0, 1}n | w ≥ f(x)},

Edmonds [11] gives a complete description of conv(Ef) = {(w, x) | π0 + πx ≤ w, (π0, π) ∈ Π},

6

Algorithm 2: Edmonds’ algorithm

Data: A n-dimensional vector x ∈ [0, 1]n

Result: The optimal primal solution pS and its dual solution π ∈ Rn+1

Sort components of x so that x1 ≥ x2 ≥ · · · ≥ xn;
Add auxiliary x0 = 1, xn+1 = 0;
S0 = ∅, pS0 = x0 − x1, π0 = f(∅);
for i← 1 to n do

Si ← {1, . . . , i};
pSi ← xi − xi+1;
πi = f(Si)− f(Si−1);

end

where

Π =

{
(π0, π) ∈ Rn+1 | π0 +

∑

i∈S
πi ≤ f(1S)− f(0),∀S ⊆ N

}
,

and 1S is the characteristic vector of S ⊆ N . Although the number of inequalities for

a complete description of conv(Ef) is exponential, we have a polynomial time separation

algorithm for conv(Ef). The separation algorithm basically verifies whether a point (w, x)

is a convex combination of points in Ef . In particular, for any point (w, x) ∈ R× [0, 1]n, we

define the continuous extension of a submodular function f as Lf (x), whose value at point

x is the optimal value of the following linear program

Lf (x) := min
∑

S⊆N
pSf(S)

such that
∑

S:i∈S,S⊆N
pS = xi, ∀i

∑

S⊆N
pS = 1

pS ≥ 0, ∀S, S ⊆ N.

A point (w, x) belongs to conv(Ef) if and only if Lf (x) ≤ w. Algorithm 2 developed by

Edmonds [11] solves the above linear program in polynomial time and gives a valid inequality

π0 +
∑

i πixi ≤ w for conv(Ef).

For the hypograph of general submodular functionHf = {(w, x) ∈ R× {0, 1}n | w ≤ f(x)},

we do not know a polynomial time separation algorithm of its convex hull. Nevertheless, a

mixed-integer linear formulation is known [35]. We use the set notation in the following and

7

let ρi(S) = f(S∪{i})−f(S). For a submodular function f , the submodular inequalities [35]

are defined as follows

w ≤ f(S)−
∑

i∈S
ρi(N\ {i})(1− xi) +

∑

i∈N\S

ρi(S)xi, ∀S ⊆ N (2)

w ≤ f(S)−
∑

i∈S
ρi(S\ {i})(1− xi) +

∑

i∈N\S

ρi(∅)xi, ∀S ⊆ N. (3)

Thus a MILP formulation of the hypograph Hf = {(w, x) ∈ R× {0, 1}n | (2) or (3)}.

1.2 Contributions

For applications in capital budgeting, mean-risk optimization, or utility maximization, sub-

modularity often arises in a different form from the ones in combinatorial optimization (cf

[4, 5, 29, 33, 37, 53]). Below we introduce a class of submodular functions which is applicable

in these settings. The function is a univariate concave function applied to a linear function

of binary variables. Let a be an n-dimensional nonnegative rational vector, f : R → R be

a concave function, and a′x be the dot product of two vectors of same dimension. Then

the function of n-dimensional binary variables g(x) := f(a′x) is submodular. To verify this,

we check that for any x, y ∈ {0, 1}n , x ≤ y and a unit vector ei with yi = 0, we have

g(x+ ei)− g(x) ≥ g(y + ei)− g(y) because f is concave and every component of a is non-

negative. See Figure 2 for an example. If a ∈ Rn−, function g(x) is also submodular. In this

thesis, we exploit the structure of g(x) to develop algorithms with better approximation

ratio than the ones of general submodular functions and strong mixed-integer linear for-

mulations of mixed-integer non-linear programs where the epigraph and hypograph of g(x)

appear as a substructure together with other side constraints. In Table 1, we summarize

the results in this thesis.

In Chapter 2, we develop an approximation algorithm for the expected utility knapsack

problem. The problem is to pick a set of items whose values are described by random

variables to maximize the expected utility of the total value of the items picked while

satisfying a constraint on the total weight of items picked. We consider the following

solution approach for this problem: (i) use the sample average approximation framework

to approximate the stochastic problem as a deterministic knapsack-constrained submodular

8

5 10 15 20 25 30 35

1

2

3

4

5

6

{0, 0} {1, 0} {0, 1} {1, 1}

Figure 2: Diminishing marginal returns of g(x) = f(a′x)
An example of a submodular function g(x) = f(a′x) when n = 2, a = (9, 16) and the
concave function f(t) =

√
t. The black bold line indicates the increase g(1, 0)− g(0, 0);

the gray bold line indicates the increase g(1, 1)− g(0, 1).

maximization problem, and then (ii) use an approximation algorithm on the deterministic

counterpart. We show that a polynomial number of samples is enough for a deterministic

approximation that is close in relative error. Then, exploiting the strict monotonicity of

typical utility functions, we present an algorithm that maximizes an increasing submodular

function over a knapsack constraint with approximation ratio better than the (1 − 1/e)

ratio by Sviridenko [46]. For power utility functions we provide explicit approximation

ratios leading to a polynomial time approximation algorithm. Assuming that the random

values are completely described by a fixed and finite set of realizations, we also give a fully

polynomial approximation scheme (FPTAS) for the expected utility knapsack problem with

power utilities. The work in this chapter appears in the manuscript [57].

In Chapter 3, we present polyhedral results for the expected utility knapsack problem.

For the mixed-integer nonlinear set: P = {(w, x) ∈ R× {0, 1}n | w ≤ f(a′x+ d), b′x ≤ B}

where f : R 7→ R is a concave function, n is a positive integer, B is a positive real number,

a, b ∈ Rn are nonnegative vectors, and x′y denotes the scalar product of vectors x and y of

same dimension, we propose a family of valid inequalities based on the MILP formulation

9

defined by (3) for the hypograph of f . We exploit both the structure of the submodular

function and the knapsack constraint. Effectiveness of the proposed inequalities is shown

by computational experiments on the expected utility maximization problem with budget

constraint using a branch-and-cut framework. The work in this chapter appears in the

manuscript [56].

In Chapter 4, motivated by concave cost combinatorial optimization problems, we study

the mixed integer nonlinear set: P = {(w, x) ∈ R × {0, 1}n : w ≥ f(a′x), e′x ≤ k} where

f : R 7→ R is a concave function, n and k are positive integers, a ∈ Rn is a nonnegative

vector, e ∈ Rn is a vector of ones, and x′y denotes the scalar product of vectors x and

y of same dimension. A standard linearization approach for P is to exploit the fact that

f(a′x) is submodular with respect to the binary vector x and use the linearization due to

Edmonds [11] discussed before. We extend this approach to take the cardinality constraint

e′x ≤ k into account and provide a full description of the convex hull of P when the

vector a has identical components. We also develop a family of facet-defining inequalities

when the vector a has nonidentical components. Computational results using the proposed

inequalities in a branch-and-cut framework to solve mean-risk knapsack problems show

significant decrease in both time and the number of nodes over standard methods. The

work in this chapter appears in the manuscript [58].

10

Table 1: Summary of results

Algorithm Polyhedral results

max f(a′x), e′x ≤ k NP-hard, (1− 1/e) approximation algorithm [36]
better than (1− 1/e) approximation ratio, [9, 52]

Valid inequalities for unconstrained case, i.e., k = n [1]
Chapter 3: valid inequalities for k < n

max f(a′x), b′x ≤ B (1 − 1/e) approximation ratio for general increasing
submodular function, [46]
Chapter 2: better than (1− 1/e) approximation
ratio

Chapter 3: valid inequalities by deriving e′x ≤ k
from b′x ≤ B

min f(a′x), e′x ≤ k Polynomial time solvable [38, 5] Polynomial time separable for unconstrained case, i.e.,
k = n, [20]
Chapter. 4:
identical components in a: complete convex hull
description, which is polynomial time separable
nonidentical components in a: valid inequalities

min f(a′x), b′x ≤ B NP-hard Chapter 4: valid inequalities by deriving e′x ≤ k
from b′x ≤ B

11

CHAPTER II

MAXIMIZING EXPECTED UTILITY OVER A KNAPSACK

CONSTRAINT: APPROXIMATION ALGORITHMS

2.1 Introduction

This chapter develops approximation algorithms for the expected utility knapsack problem.

Given a ground set of n items U = {1, . . . , n}; a random non-negative vector of values ã for

the items; a positive integer vector b of weights for the items; a positive integer capacity of

B; and a utility function f : R+ 7→ R+; the expected utility knapsack problem is to pick a

subset S of items so to

max
S⊆U
{F (S) := E [f(ã(S))] | b(S) ≤ B} , (4)

where x(S) :=
∑

i∈S xi. Note that the expectation above is with respect to the distribution

of ã. Throughout this chapter, we assume f(0) = 0 and f(a(S)) ≥ 1 for any a ∼ ã and

S 6= ∅. Therefore F (∅) = 0 and F (S) ≥ 1 for S 6= ∅. We use poly to denote a polynomial

in all its parameters.

Expected utility theory is a well-known framework for choice under uncertain payoffs [50,

41]. Choice A is better than choice B if the expected utility of the payoff of A is larger

than that of B. Risk attitudes may be different across different decision makers, and utility

functions serve to model their risk preferences. In this chapter we assume that the utility

function f is strictly increasing and concave which correspond to risk-averse preferences.

Commonly used utility functions such as log-utility f(t) = log t, exponential utility f(t) =

1− e−αt for α > 0, and power utility f(t) = tp for 0 < p < 1, all satisfy this assumption.

Concavity of f along with the non-negativity of ã imply that the expected utility F is a

submodular function of the selected set S. Accordingly, (4) is a submodular maximization

problem with a knapsack constraint. It is well-known that in general the approximation

ratio for such problems is bounded by 1 − 1/e [13]. Moreover a variant of the greedy

algorithm achieves this bound [46]. However these results assume a value oracle model

12

where the underlying submodular function is general and can be evaluated exactly.

In (4) evaluation of F requires evaluating a multidimensional integral over the distribu-

tion of ã. Moreover, the distribution of ã may not be explicitly available, but only available

through a sampling oracle. In such a setting, exact evaluation of F is impossible. In this

chapter we adopt the sample average approximation (SAA) framework [43] towards ap-

proximately evaluating F . In SAA the original distribution of the uncertain parameters is

replaced by an empirical distribution by sampling a certain number of scenarios.

The sample average approximation of (4) is

max
S⊆U

{
FN (S) =

1

N

N∑

i=1

f(ai(S)) | b(S) ≤ B
}
, (5)

where {a1, . . . , aN} is an i.i.d sample of ã. Note that FN is a submodular function and (5)

is a deterministic knapsack constrained submodular maximization problem. It follows from

classical SAA theory [43] that by solving (5) corresponding to a sufficient number of samples

N using an approximation algorithm of a given absolute error δ, with high probability, we

can obtain a solution to the original problem (4) whose absolute error is not too large

compared to δ. Moreover the required sample size N is polynomial with respect to problem

dimension.

If (5) is solved using a relative error approximation algorithm (such as those in the sub-

modular optimization literature) we need to adapt the SAA theory to recover a correspond-

ing relative error for the true problem (4). We make this adaptation. Further we develop

an approximation algorithm for solving (5) based on maximizing increasing submodular

functions over a knapsack constraint. As an aside, we also develop a fully polynomial-time

approximation scheme (FPTAS) for (4) when the underlying distribution is finite and the

utility function is positively homogenous. Specifically, the contribution of this chapter is

three-fold:

SAA analysis under relative error: We prove that with high probability only poly-

nomial number of samples is enough for an approximation algorithm that solves the SAA

problem with relative error to give an approximate solution to the true stochastic problem

13

of similar relative error. The works by Shmoys and Swamy [48], and Charikar et al. [8] are

most relevant to our work as they both considered approximation algorithms with relative

error for 2-stage stochastic optimization, rather than the absolute error usually considered

in stochastic programming. However the polynomial sample size in their results depends

on ratio between the cost of the first stage and the cost of the second stage, which is not

applicable to our single stage setting.

Increasing submodular maximization over a knapsack: The increasing and concav-

ity properties of common utility functions imply that (5) involves maximizing an increasing

submodular function over a knapsack constraint. Sviridenko [46] recently developed a greedy

algorithm to maximize an increasing submodular function over a knapsack constraint with

approximation ratio 1− 1/e. We adapt this algorithm and its analysis exploiting the strict

monotonicity of the utility function and show an approximation ratio better than the 1−1/e

bound. For power utility functions, we explicitly characterize the approximation ratio as a

function of the budget B and the exponent of the power function. Some other works that

have improved on the 1− 1/e bound are by Conforti and Cornuéjols [9], and Vondràk [52].

However these consider cardinality constraints and matroid constraints, respectively, and

are not applicable in our knapsack setting.

An FPTAS for finite distribution: When the distribution is finite and utility function

is positively homogenous, we give an FPTAS for the problem. Our algorithm largely follows

the work of Ibarra and Kim [25] who give an FPTAS for the standard knapsack problem.

We close this section with a brief discussion of some additional related literature. Li and

Deshpande [31] study the problem of maximizing expected utility for various combinatorial

optimization problems. They assume that the random coefficients are independent to sim-

plify the expectation operation and use an approximation of the utility function. We allow

more general distribution but are restricted to the knapsack setting. Klastorin [29] study

a similar problem but he assumes exact evaluation of the expectation objective and gives

14

an algorithm that solves a continuous relaxation of the problem and then uses that in a

branch-and-bound algorithm. Asadpour et.al. [3] study maximizing a stochastic submodular

function under matroid constraints. They assume exact evaluation of the expectation objec-

tive and do not consider increasing submodular functions. Mehrez and Sinuany-Stern [33]

study a variation of the problem arising in resource allocation applications, but in their

model the utility of items are separable which is different from our setting.

2.2 Sample average approximation

In this section, we adapt the classical SAA theory (cf. [44]) which corresponds to an absolute

error setting to our required setting of relative error. We consider a generalization of (4):

max
S⊆U
{F (S) = E [f(ã, S)] | S ∈ X} , (6)

where X is the constraint set (e.g. knapsack constraint) and f : 2U 7→ R+, parameterized

by a, is a nonnegative set function. The sample average approximation of (6) is

max
S⊆U

{
FN (S) =

1

N

N∑

i=1

f(ai, S) | S ∈ X
}
, (7)

where {a1, . . . , aN} is an i.i.d sample of ã. Then (4) is a special case of (6) and (5) is a

special case of (7). Let S∗ be an optimal solution of (6). We make the following assumption

on f(a, S) and E [f(ã, S)].

Assumption 1. For any a ∼ ã, S ∈ X, and S 6= ∅, we assume f(a, S) ≥ 1. Therefore

FN (S) ≥ 1 and F (S) ≥ 1. For any S ∈ X, we also assume E [f(ã, S)] is well-defined and

finite, and E
[
etf(ã,S)

]
is finite in a neighborhood of t = 0.

Using the above assumption and standard Large Deviation analysis (cf. [43]), we can

show that if N is large enough, for every S ∈ X, FN (S) is close to F (S) in a relative sense.

Lemma 2. Given γ > 0, let σ2 = max {Var [f(ã, S)] | S ∈ X} and S∗ be an optimal

solution of the problem. If N ≥ 2σ2

ε2
log |X|γ , then

Pr

{ ⋂

S∈X

∣∣F (S)− FN (S)
∣∣ ≤ εF (S∗)

}
≥ 1− 2γ. (8)

15

Proof. Let {a1, . . . , aN} be the i.i.d sample defining FN (S). Let A1 be the event that there

exists a set S such that F (S)− FN (S) > εF (S∗), and let A2 be the event that there exists

a set S such that FN (S)− F (S) > εF (S∗). Let σ2
S = Var [f(ã, S)], then σ2 = maxS∈X σ

2
S .

If we can show that when N ≥ 2σ2

ε2
log |X|γ we have Pr {A1} ≤ γ and Pr {A2} ≤ γ then we

have the desired inequality (8).

Let us prove that Pr {A1} ≤ γ.

Pr

{ ⋃

S∈X
F (S)− FN (S) > εF (S∗)

}

≤
∑

S∈X
Pr
{
F (S)− FN (S) > εF (S)

}
(since F (S∗) ≥ F (S))

=
∑

S∈X
Pr
{
FN (S) < (1− ε)F (S)

}

By Assumption 1, we know that F (S) is finite for every S and E
[
etf(ã,S)

]
is finite in a

neighborhood of t = 0. So if ε is sufficiently small, by Large Deviation Theory (cf. [44, Sec

7.2.8]), we have

Pr
{
FN (S) < (1− ε)F (S)

}
≤ exp

(
−N(εF (S))2

2σ2
S

)
.

Thus

∑

S∈X
Pr
{
FN (S) < (1− ε)F (S)

}
≤
∑

S∈X
exp

(
−N(εF (S))2

2σ2
S

)

≤ |X| exp

(
−Nε

2

2σ2

)
(by Assumption 1)

≤γ (by the chosen value of N),

which proves Pr {A1} ≤ γ. The proof for Pr {A2} ≤ γ is identical, which we omit here.

Equipped with the lemma above, we are ready to show that we can use any algorithm

that solves (7) approximately to solve (6) without losing too much.

Theorem 3. Given an algorithm that solves (7) with approximation ratio β, with probability

at least 1 − 2γ, we can use the same algorithm to solve the stochastic problem (6) with

approximation ratio β(1− ε)− ε by sampling ã at least 2σ2

ε2
log |X|γ times.

16

Proof. If we sample N ≥ 2σ2

ε2
log |X|γ times of ã, by Lemma 2, we know that for any S

′ ∈ X,

we have
∣∣∣F (S

′
)− FN (S

′
)
∣∣∣ ≤ εF (S∗) with probability at least 1 − 2γ. Assume the event

happens. Let S∗ be an optimal solution of (6). Let S be a β-approximation solution of (7).

Then FN (S) ≥ βFN (S∗). We have

F (S) ≥ FN (S)− εF (S∗) (by Lemma 2)

≥ βFN (S∗)− εF (S∗) (by Approximation ratio associated with S)

≥ β(F (S∗)− εF (S∗))− εF (S∗) (by Lemma 2)

= (β(1− ε)− ε)F (S∗).

Remark 4. Note that σ2 is a problem specific parameter. We can bound σ2 under additional

assumptions (see Theorem 11 in Section 2.3.2.)

2.3 Increasing submodular maximization over a knapsack

In this section, we will give an algorithm for maximizing a nonnegative increasing submod-

ular function over a knapsack constraint. Recall the universe is U = {1, . . . , n} and the

weight of element i is bi ∈ N+. Let F : 2U 7→ R+ be a nonnegative increasing function. It

is a submodular function if and only if

F (S ∪ {i})− F (S) ≥ F (T ∪ {i})− F (T),∀S ⊆ T, i /∈ T.

Another property of an increasing submodular function is the following:

F (T) ≤ F (S) +
∑

i∈T\S

(F (S ∪ {i})− F (S)),∀S, T ⊆ U . (9)

The problem we are interested in is of the following general form:

max
S⊆U
{F (S) | b(S) ≤ B} . (10)

Following Sviridenko [46], we propose Algorithm 4 to solve (10) approximately. The

algorithm first picks the best set S1 among all sets of size less than a prescribed constant

K. In the second step, for each set of size K, the algorithm greedily packs items into the

set. Let the best set in this step be S2. Finally, the algorithm outputs the better one of

17

Algorithm 3: Greedy

Let K be a constant ;
S1 = argmaxS {F (S) | |S| < K};
initialize S2 = ∅;
forall the S ⊆ U , |S| = K do

U = U , S = S ;
while U\S 6= ∅ do

i = argmaxi∈U\S
F (S∪{i})−F (S)

bi
, break tie arbitrary ;

if b(S) + bi ≤ B then
S ← S ∪ {i};

else
U ← U\ {i};

end

end
if F (S) > F (S2) then

S2 ← S;
end

end
Result: max {F (S1), F (S2)} and its corresponding set

S1 and S2. The main departure from the algorithm in [46] is that here we enumerate and

extend all sets of size K, instead of sets of size 3 as in [46].

The constant K used in Algorithm 3 is based on the following measure of monotonicity

of the increasing function F (S):

Definition 5. Given an instance of (10), let S∗ be an optimal solution of (10). We define

α = max
i/∈S∗

F (S∗ ∪ {i})− F ({i})
F (S∗)− F ({i}) . (11)

Note that since F is increasing, α > 1. We now present the theorem showing that Algorithm

3 gives better approximation ratio than the one given by Sviridenko in [46] when the function

is strictly increasing.

Theorem 6. Given a nondecreasing submodular function F with α, by setting K =
⌈
eα
′
⌉

for any α′ ≥ 1, Algorithm 3 solves the problem with an approximation ratio of at least

1− e−min(α,α′).

Remark 7. Note that since F is increasing, even if we do not know the exact value of α

as defined in (11), by setting K =
⌈
eα
′
⌉

with α′ > 1, Algorithm 3 is a polynomial time

18

algorithm with approximation ratio strictly better than the (1− 1/e) ratio of the algorithm

proposed in [46].

2.3.1 Proof of Theorem 6

Without loss of generality, we assume that any optimal solution of (10) is of size at least

K, because otherwise we would find an optimal solution as S1. Let S∗ be an optimal set

of size at least K. Before going further, we define a subset of S∗ of size K. We order the

items in S∗ such that

jt ∈ argmax
i∈S∗\{j1,...,jt−1}

(F ({j1, . . . , jt−1} ∪ {i})− F ({j1, . . . , jt−1})) , 1 ≤ t ≤ |S∗| ,

and let Y = {j1, . . . , jK} be the set of the first K items in S∗. Let S be the set the algorithm

extends from the set Y . It suffices to prove the desired approximation result for S since the

greedy algorithm enumerates all sets of size K.

We may assume S 6= S∗. Let S0 ⊂ S be the last set that the algorithm considers while

extending Y such that S0 ⊂ S∗. Note that Y ⊆ S0. From the assumption S 6= S∗, we know

that S0 6= S because otherwise the greedy algorithm should not stop at S, and S0 6= S∗

because otherwise S is strictly better than S∗. Following the set S0, let the items added into

the solution by the greedy algorithm be i1, . . . , iT . Let iT+1 ∈ S∗ be the first one excluded

by the greedy algorithm because of the budget overflow. It is without loss of generality since

if some item is neither in S∗ nor in the greedy solution, then we may remove it from the

universe without affecting the analysis. Item iT+1 must exist because S 6= S∗. Otherwise

since every item is considered at some time during the greedy algorithm, it must be the

case that S∗ ⊂ S. Then F (S) > F (S∗), which is a contradiction.

Let St = S0∪{i1, . . . it}. We call these sets partial solutions of the greedy algorithm. Let

ct = (F (St)−F (St−1))/bit . Define g(St) = F (St)−F (S0), and let g(S∗) = F (S∗)−F (S0).

Denote B̄ = B − b(S0). Note that the greedy solution S may be strictly larger than ST .

But we will show F (ST) is large enough to give us the approximation ratio we need.

We will first show that when α′ = α, the partial solution ST obtained by extending Y

as defined earlier, achieves the desired approximation ratio 1−e−α. In the end we will show

the case when α′ 6= α.

19

To prove the approximation ratio, we decompose F (ST) = F (S0) + g(ST) and replace

g(ST) by two terms g(ST) − g(ST+1) and g(ST+1). We then lower bound each term as a

constant fraction of the optimal value separately.

First we lower bound the value of g(ST)−g(ST+1). The lower bound needs the following

lemma which is a generalization of an inequality in [46].

Lemma 8. For an item j ∈ U\Y , and set Z ⊆ U\ {j1, . . . , jK , j}, the difference between

F (Y ∪ Z ∪ {j}) and F (Y ∪ Z) can be upperbounded as

F (Y ∪ Z ∪ {j})− F (Y ∪ Z) ≤ 1

K
F (Y). (12)

Proof. To see this, recall we order S∗ =
{
j1, . . . , j|S∗|

}
by the following rule:

jt ∈ argmax
i∈S∗\{j1,...,jt−1}

(F ({j1, . . . , jt−1} ∪ {i})− F ({j1, . . . , jt−1})) , 1 ≤ t ≤ |S∗| ,

and Y is the set of the first K items among S∗. Notice that the following inequalities hold

for any 0 ≤ t ≤ K − 1.

F (Y ∪ Z ∪ {j})− F (Y ∪ Z)

≤F ({j1, . . . , jt} ∪ {j})− F ({j1, . . . , jt}) (Submodularity)

≤F ({j1, . . . , jt, jt+1})− F ({j1, . . . , jt}) (ordering of the set S∗)

Summing up all inequalities of form

F (Y ∪ Z ∪ {j})− F (Y ∪ Z) ≤ F ({j1, . . . , jt, jt+1})− F ({j1, . . . , jt}), 0 ≤ t ≤ K − 1

we have

K (F (Y ∪ Z ∪ {j})− F (Y ∪ Z)) ≤ F (Y).

Now let Y ∪ Z = ST and j = iT+1. Apply Lemma 8, and we have

g(ST+1)− g(ST) ≤ 1

K
F (Y). (13)

To bound g(ST+1), we will show that it is a constant fraction of g(S∗). First we use the

definition of α and the property of the increasing submodular function (9) to upper bound

g(S∗) as follows.

20

Lemma 9.

g(S∗) ≤ min
1≤t≤T

{
g(St) +

1

α
B̄ct+1

}
. (14)

Proof. First we show for any St, 1 ≤ t ≤ T , F (S∗ ∪ St) − F (St) ≥ α(F (S∗) − F (St)). Let

i∗ be an item that attains the maximum in (11). Since we enumerate all sets of size K,

there must be a set including the i∗ defined in (11). Let S1 be the first partial solution that

includes i∗. Therefore we have F (St) ≥ F (i∗), F (St) < F (S∗) and F (St∪S∗) ≥ F ({i∗}∪S∗)

by the monotonicity of F . Also F is nonnegative everywhere. Then

F (S∗ ∪ St)− F (S)

F (S∗)− F (St)
≥ F (S∗ ∪ St)− F ({i∗})

F (S∗)− F ({i∗})

≥ F (S∗ ∪ {i∗})− F ({i∗})
F (S∗)− F ({i∗})

= α

We illustrate the deduction of inequality above in Figure 3. Starting from inequality

F (S∗) ≤ F (St) + 1
α

(
F (S∗ ∪ St)− F (St)

)
, we apply (9) and get

F (S∗) ≤ F (St) +
1

α

∑

i∈S∗\St

(
F (St ∪ {i})− F (St)

)
.

Replace F by g, and we have

g(S∗) ≤ g(St) +
1

α

∑

i∈S∗\St

(
g(St ∪ {i})− g(St)

)

≤ g(St) +
1

α

∑

i∈S∗\St
bict+1 (By Algorithm 3)

≤ g(St) +
1

α

∑

i∈S∗\S0

bict+1

= g(St) +
1

α
(b(S∗)− b(S0))ct+1

≤ g(St) +
1

α
(B − b(S0))ct+1.

We break down the right side of (14) into a summation of smaller increments. This

is achievable because g(St+1) − g(St) = F (St+1) − F (St) = ctbit and bit is an integer. In

particular, let B̄t = b(St) − b(S0), 1 ≤ t ≤ T + 1, and B̄0 = 0. Also recall B̄ = B − b(S0).

Define ρl, 1 ≤ l ≤ B̄T+1 as follows: ρl = ct if B̄t−1 + 1 ≤ l ≤ B̄t. Therefore we have

21

B
D A

C

S∗ ∪ StS∗ ∪ {i∗}S∗
St{i∗}

F (S) =
√

a(S)

C
D ≥ A

B = α

a(S)

Figure 3: Illustration of F (S∗∪St)−F (S)
F (S∗)−F (St) ≥ α

Let i∗ be an item that attains the maximum in (11). For each segment, A = F (S∗ ∪
{i∗})− F ({i∗}), B = F (S∗)− F (i∗), C = F (S∗ ∪ St)− F (St) and D = F (S∗)− F (St).
By Definition 5, α = A/B. In Figure 3, we see C/D ≥ A/B.

g(St) =
∑B̄t

l=1 ρl. Notice that ρ1, . . . , ρB̄T+1
is a nonincreasing sequence. Then the right side

of (14) can be written in the following way.

Lemma 10.

min
1≤t≤T

{
g(St) +

B̄

α
ct+1

}
= min

1≤s≤BT+1

s−1∑

j=1

ρj +
B̄

α
ρs

 . (15)

Proof. We can rewrite the left side of (15) in the following way.

min
1≤t≤T

{
g(St) +

B̄

α
ct+1

}
= min

1≤t≤T

{
Bt∑

l=1

ρl +
B̄

α
ρBt+1

}
.

Then we claim that

min
1≤t≤T

{
Bt∑

l=1

ρl +
B̄

α
ρBt+1

}
= min

1≤s≤BT+1

s−1∑

j=1

ρj +
B̄

α
ρs

 .

Assume that min1≤s≤B̄T+1

{∑s−1
l=1 ρl + B̄

α ρs

}
does not attain minimum at an s = B̄t + 1 for

some t. Let B̄t+1 < s ≤ B̄t+1 for some t. Then
∑B̄t

l=1 ρl+
B̄
α ρB̄t+1 <

∑s−1
l=1 ρl+

B̄
α ρs because

B̄t < s− 1 and ρB̄t+1 ≤ ρs. This leads to a contradiction.

22

To bound the right side of (15), we need the following inequality. For a positive integer

P , D > 0, ρl ≥ 0 for 1 ≤ l ≤ P , and ρ1 > 0, then

∑P
l=1 ρl

mint=1,...,P (
∑t−1

l=1 ρl +Dρt)
≥ 1− (1− 1

D
)P ≥ 1− e− PD . (16)

The above inequality is analogous to one in [55]. The only difference is that D is a positive

integer in [55], but the fact that D is an integer is not required in its proof. Notice g(ST+1) =

∑B̄T+1

l=1 ρl. Combine (14) and (15), and apply (16) by setting P = B̄T+1, D = B̄/α, we have

g(ST+1)

g(S∗)
≥

∑B̄T+1

l=1 ρl

min1≤s≤B̄T+1
(
∑s−1

j=1 ρj + B̄
α ρs)

≥ 1− e−αB̄T+1/B̄.

Since adding item iT+1 makes the budget overflow, we have b(ST)+bT+1 > B. Therefore

B̄T+1 = b(ST) + bT+1 − b(S0) ≥ B − b(S0) = B̄, and

g(ST+1) ≥
(

1− e−αB̄T+1/B̄
)
g(S∗) ≥

(
1− e−α

)
g(S∗) (17)

Note that we have used the fact BT+1 ≥ B, where the inequality is actually strict. This is

the same as in the proof of 1− 1/e in [46].

Now we combine (13) and (17), and get the desired approximation ratio of Theorem 6.

F (S) ≥ F (ST) = F (S0) + g(ST)− g(ST+1) + g(ST+1)

≥ F (S0)− 1

K
F (Y) + (1− e−α)g(S∗)

= F (S0)− F (Y) + F (Y)− 1

K
F (Y) + (1− e−α)g(S∗) (18)

≥ (1− e−α)(F (S0)− F (Y)) + (1− e−α)F (Y) + (1− e−α)g(S∗) (K ≥ eα)

= (1− e−α)(F (S0) + (g(S∗)) = (1− e−α)F (S∗).

Now notice for α′ < α, as long as K =
⌈
eα
′
⌉
, (18) can be lower bounded by (1 −

e−α
′
)F (S∗). For α′ > α, since we enumerate more subsets (K > eα), the approximation

ratio 1− e−α can also be achieved.

2.3.2 Combining SAA and Algorithm 3

Since (4) and (5) are special cases of (7) and (6), and we know that (5) is a submodular

maximization problem, we have the following corollary.

23

Theorem 11. Assume that maxi Var [ãi] can be bounded by a constant. Given γ > 0 and

α′ ≥ 1, with probability at least 1 − 2γ, Algorithm 3 solves the stochastic problem (4) with

approximation ratio (1− e−min(α,α′))(1− ε)− ε in time poly
(

2e
α′
, n, 1

ε , log 1
γ

)
.

Proof. Recall that σ2 = maxS⊆U {Var [f(ã(S))] | b(S) ≤ B}. By Theorem 3, we need

2σ2

ε2
log |X|γ i.i.d. samples of ã to ensure that the sample average approximation is close to

the expected value with probability at least 1−2γ. Take the upper bound of |X| as 2n then

N = 2σ2

ε2
(n+log 1

γ) in (5). Since f is a concave function, we have f(a(S)) ≤ f(0)+f ′(0)·a(U)

for every S and every sample a. Therefore Var [f(ã(S))] ≤ (f ′(0))2 · Var [ã(U)] ≤ (f ′(0))2 ·

(nmaxi Var [ãi] + n2 maxi,j Cov [ãi, ãj]). Notice that Cov [ãi, ãj] ≤
√

Var [ãi]
√

Var [ãj],

therefore σ2 = O(n2) by our assumption that maxi Var [ãi] is upper bounded by a con-

stant. We enumerate all sets of size K ≥ eα
′

in Algorithm 3, and for each set of size K,

extending it greedily needs time polynomial in n and N . Therefore the total running time

is poly
(

2e
α′
, n, 1

ε , log 1
γ

)
. Combining Theorem 6 and Theorem 3, the approximation ratio

follows.

2.4 Power utility functions

In this section, we consider a particular class of concave utility function: power utility

function. Let the concave utility function in (4) be f(t) = tp, 0 < p < 1. It is also called

isoelastic function for utility or constant relative risk aversion (CRRA) utility function in

the economics literature. We show that we can calculate an approximation ratio that only

depends on the exponent p and the budget B.

2.4.1 Sample average approximation

For power utility function f = tp, the following problem is a special case of (7).

max
S⊆U

{
F (S) =

N∑

r=1

f(ar(S)) | b(S) ≤ B
}
, (19)

where ar = (ar1, . . . , arn) ∈ Rn+. Let S∗ be an optimal solution in the following.

We aim to show the following theorem, where the approximation ratio no longer de-

pending on the optimal solution.

24

Theorem 12. For the power utility function f(t) = tp where p is a constant, given γ > 0,

with probability at least 1− 2γ, Algorithm 3 runs in time poly
(
n, 1

ε , log 1
γ

)
and solves the

stochastic problem (4) with approximation ratio
(
1− e−α(B,p)

)
(1− ε)− ε.

First we give a brief overview of the proof of Theorem 12 before proceeding to the

technique details. Recall that set S1 is the first partial solution constructed by the greedy

algorithm that is not contained in S∗, ie., S1\S∗ 6= ∅. We first give a lower bound of the

ratio between F (S∗ ∪S1)−F (S1) and F (S∗)−F (S1) in terms of p and B. Then for power

utility functions, we can write the approximation ratio of the greedy algorithm as a function

of p and B. Then we upper bound K, which is the size of enumeration in Algorithm 3, by

a function only depending on p so that Algorithm 3 runs in polynomial time when p is a

constant. We assume that B > 1 since all data is integral and B = 1 is trivial.

To bound the ratio between F (S∗ ∪ S1)− F (S1) and F (S∗)− F (S1) in terms of p and

B, we first need the following simple lemma.

Lemma 13. Let S0 be the partial solution just before S1. We have

F (S1)− F (S0) ≥ 1

B
(F (S∗)− F (S0)). (20)

Proof. Let c1 = F (S1)−F (S0)
bi1

. By (9), we have

F (S∗)− F (S0) ≤
∑

j∈S∗\S0

F (S0 ∪ {j})− F (S0) =
∑

j∈S∗\S0

bj
F (S0 ∪ {j})− F (S0)

bj
.

By the greedy algorithm,

c1 ≥ max

{
F (S0 ∪ {j})− F (S0)

bj
| j ∈ S∗\S0

}
,

therefore

F (S∗)− F (S0) ≤ c1

∑

j∈S∗\S0

bj ≤ c1B.

Replace c1 by (F (S1)− F (S0))/bi1 , we have

F (S1)− F (S0) ≥ bi1
B

(F (S∗)− F (S0)) ≥ 1

B
(F (S∗)− F (S0)),

where the last inequality comes from the fact that bi ∈ N+.

25

Second, we need the following function to be increasing.

Proposition 14.

f(x) =

(
1 +

(
1
B + B−1

B x
)1/p − x1/p

)p
− 1

B − B−1
B x

1− 1
B − B−1

B x
,

where B ≥ 1, 0 < p < 1, 0 ≤ x < 1 is increasing in x.

Proof. To prove f(x) is increasing, we will show its derivative f ′(x) ≥ 0 for 0 ≤ x < 1.

First let us simplify the notation and define

f1(x) = 1 +

(
x+

1

B
(1− x)

)1/p

− x1/p

f2(x) = 1− x− 1

B
(1− x).

Then

f(x) =
f1(x)p − 1

f2(x)
+ 1,

and its derivative

f ′(x) =
f1(x)p−1f3(x)f2(x) + f1(x)p B−1

B − B−1
B

f2
2 (x)

,

where

f3(x) = pf ′1(x) =
B − 1

B

(
1

B
+
B − 1

B
x

)1/p−1

− x1/p−1.

To show f ′(x) ≥ 0, we will show min0≤x<1 f
′(x) ≥ 0. First notice f ′(0) > 0. Now we

prove this is also true for 0 < x < 1. Consider the function

f4(x) = f1(x)p−1f3(x)f2(x) + f1(x)p
B − 1

B
, 0 < x < 1.

First consider the case where p ≥ 1/2. It suffices to show that f ′4(x) < 0. Indeed, since

f4(x) is continuous and limx→1 f4(x) = (B − 1)/B, we know f4(x) > (B − 1)/B and hence

f ′(x) > 0.

Now let us prove f ′4(x) < 0. The derivative of f4(x) is

f ′4(x) = −(B − 1)(1− p)(1− x)f1(x)p−2g(x)

Bpx2(1 + (B − 1)x)2
,

26

where

g(x) = x1/p(1 + (B − 1)x)2 +

(
x+

1

B
(1− x)

)1/p (
x1/p − x2(B − 1)2

)
.

Notice that all the terms except g(x) is positive, so the sign of f ′4(x) is the same as the sign

of −g(x). First multiply g(x) by B1/p.

B1/pg(x) = (Bx)1/p(1 + (B − 1)x)2 + (Bx+ 1− x)1/p
(
x1/p − x2(B − 1)2

)
.

Dividing it by x1/p(Bx+ 1− x)1/p will not change the sign when 0 < x < 1. We now have

a new function

g1(x) = B1/p(Bx+ 1− x)2−1/p − x2−1/p(B − 1)2 + 1

= B2

(
Bx+ 1− x

B

)2−1/p

− (B − 1)2x2−1/p + 1

Since 2 − 1/p ≥ 0,
(
Bx+1−x

B

)2−1/p ≥ x2−1/p and B2 > (B − 1)2, we have g1(x) > 0 and

f ′4(x) < 0.

Now consider the case 0 < p < 1/2. First we show g′′1(x) < 0.

g′′1(x) = B1/p(Bx− x+ 1)−1/p(B − 1)2(2− 1/p)(1− 1/p)

− x−1/p(B − 1)2(2− 1/p)(1− 1/p)

Now g′′1(x) < 0 if and only if B1/p(Bx − x + 1)−1/p − x−1/p < 0, which is true since

(Bx− x+ 1)/B > x. Then consider

g′1(x) = (B − 1)B1/p(2− 1/p)(1− x+Bx)1−1/p − (B − 1)2(2− 1/p)x1−1/p.

It is continuous, decreasing, and g′1(0) > 0 and g′1(1) < 0 Therefore g1(x) is first increasing

when 0 < x ≤ x0 for some 0 < x0 < 1, then increasing for x0 < x < 1, and g1(0) < 0, g1(1) >

0, we have f ′4(x) > 0, 0 < x ≤ x0 and f ′4(x) < 0, x0 < x < 1. Therefore f4(x) is greater

than min {limx→0 f4(0), limx→1 f4(1)} = (B − 1)/B and therefore again f ′(x) > 0.

Now we are ready to bound the ratio between F (S∗ ∪ S1)− F (S1) and F (S∗)− F (S1).

27

Lemma 15. Given a problem (19) with utility function f(t) = tp and a knapsack constraint

B, F (S∗∪S1)−F (S1) ≥ α(B, p)(F (S∗)−F (S1)), where the function α(B, p):= (B1/p+1)p−1
B−1 .

Proof. We first define a quantity that is a lower bound of the ratio. For 1 ≤ r ≤ N , let

xr = ar(S
1\S∗), yr = ar(S

1∩S∗) = ar(S
0) and Ar = ar(S

∗) so that (Ar +xr)
p = f(ar(S

∗∪

S1), (xr + yr)
p = f(ar(S1)), Apr = f(ar(S

∗)). Let x = (x1, . . . , xN), y = (y1, . . . , yN). Define

h(x, y) =

∑N
r=1(Ar + xr)

p −∑N
r=1(xr + yr)

p

∑N
r=1A

p
r −

∑N
r=1(xr + yr)p

, (x, y) ∈ X

where

X =

{
(x, y) |

N∑

r=1

(xr + yr)
p −

N∑

r=1

ypr ≥
1

B

(
N∑

r=1

Apr −
N∑

r=1

ypr

)}
. (21)

By (20), we know that the ratio is at least min {h(x, y) | (x, y) ∈ X}. Now we calculate

min {h(x, y) | (x, y) ∈ X} to show

min {h(x, y) | (x, y) ∈ X} = α(B, p) =
(B1/p + 1)p − 1

B − 1
.

Since
∑

r A
p
r = F (S∗) and S0 ⊂ S∗, we may assume the minimum of h(x, y) reaches

when
∑

r y
p
r = λ

∑
r A

p
r for 0 ≤ λ < 1 because otherwise S0 would be a better solution than

S∗. By (21), we have

∑

r

(xr + yr)
p ≥ 1

B

∑

r

Apr +
B − 1

B
λ
∑

r

Apr .

We first argue that the minimum must be attained at equality. Assume not. Let (x, y)

be a minimum solution such that
∑

r(xr + yr)
p > 1

B

∑
r A

p
r + B−1

B λ
∑

r A
p
r . It then must

be the case that there exist some xr′ > 0. Otherwise
∑

r(xr + yr)
p =

∑
r y

p
r >

1
B

∑
r A

p
r +

B−1
B λ

∑
r A

p
r > λ

∑
r A

p
r =

∑
r y

p
r , where the last inequality comes from that fact that

λ < 1. Now decrease xr′ (maybe for multiple r′s) until we have a solution (x̃, y) that reaches

equality. First notice that
∑

r(x̃r +yr)
p <

∑
r(xi+yi)

p and
∑

r(Ar + x̃r)
p <

∑
r(Ar +xr)

p.

Therefore

h(x̃, y) =

∑N
r=1(Ar + x̃r)

p −∑N
r=1(x̃r + yr)

p

∑N
r=1A

p
r −

∑N
r=1(x̃r + yr)p

<

∑N
r=1(Ar + xr)

p −∑N
r=1(x̃r + yr)

p

∑N
r=1A

p
r −

∑N
r=1(x̃r + yr)p

<

∑N
r=1(Ar + xr)

p −∑N
r=1(xr + yr)

p

∑N
r=1A

p
r −

∑N
r=1(xr + yr)p

,

28

which contradicts the assumption h(x, y) is the minimum.

Now given that
∑

r y
p
r = λ

∑
r A

p
r and

∑
r(xr + yr)

p = 1
B

∑
r A

p
r + B−1

B λ
∑

r A
p
r , mini-

mizing h(x, y) is the same as minimizing
∑

r(Ar + xr)
p. We use the method of Lagrange

multipliers to minimize
∑

r(Ar + xr)
p. In particular, we minimize the following function

Λ(x, y, µ1, µ2) =
∑

r

(Ar + xr)
p − µ1

(∑

r

(xr + yr)
p − 1

B

∑

r

Apr −
B − 1

B
λ
∑

r

Apr

)

− µ2

(∑

r

ypr − λ
∑

r

Apr

)

Take the partial derivative for each xr and yr. We have the following condition for the

minimum solution.

p(Ar + xr)
p−1 − µ1p(xr + yr)

p−1 = 0

−µ1p(xr + yr)
p−1 − µ2py

p−1
r = 0

So

xr + yr
Ar + xr

= (µ1)p−1,
yi

xr + yr
=

(
−µ1

µ2

)p−1

,

from which we may conclude that the ratios xr/Ar are the same for every r, and it is also

true for every yr/Ar. Let λ1 = xr/Ar and λ2 = yr/Ar. From the equation
∑

r y
p
r = λ

∑
r A

p
r ,

we solve λ2 = λ1/p. Then by the equation
∑

r(xr+yr)
p = 1

B

∑
r A

p
r + B−1

B λ
∑

r A
p
r , we solve

λ1 =

(
1

B
+
B − 1

B
λ

)1/p

− λ1/p.

Now we have

∑

r

(Ar + xr)
p =

∑

r

(
1 +

(
1

B
+
B − 1

B
λ

)1/p

− λ1/p

)p
Apr ,

and

minh(x, y) =

(
1 +

(
1
B + B−1

B λ
)1/p − λ1/p

)p
− 1

B − B−1
B λ

1− 1
B − B−1

B λ
.

By Proposition 14, we know that the above reaches minimum when λ = 0. By setting

λ = 0, we have

F (S∗ ∪ S1)− F (S1)

F (S∗)− F (S1)
≥ (B1/p + 1)p − 1

B − 1
.

Finally we need the following property to prove the theorem of this section.

29

Lemma 16. The function α(B, p) is decreasing in B when B > 1

Proof. The derivative

f ′(B) =
B −

(
1 +B1/p

)p−1 (
B +B1/p

)

B(B − 1)2
.

So f ′(B) < 0 if and only if

B −
(

1 +B1/p
)p−1 (

B +B1/p
)
< 0.

Divide it by B
(
1 +B1/p

)p−1
, and we have

g(B) =
(

1 +B1/p
)1−p

−
(

1 +B1/p−1
)
.

Take the derivative of g(B), we have

g′(B) = B1/p−2(1− 1/p)− (1− 1/p)B1/p−1
(

1 +B1/p
)−p

= (1− 1/p)B−1+1/p

(
1

B
− 1(

1 +B1/p
)p
)
< 0

where the last inequality comes from the facts B <
(
1 +B1/p

)p
and 1− 1/p < 0. Therefore

g(B) is decreasing and g(B) ≤ g(1) = 21−p − 2 < 0. So f ′(B) < 0 when B ≥ 1.

Proof of Theorem 12. By Lemma 16, we know that for B > 1 and integral, α(B, p) is

at most α(2, p). Set K =
⌈
eα(2,p)

⌉
and the algorithm runs in time poly

(
n, 1

ε , log 1
γ

)
by

Corollary 11. By a close examination of the proof of inequality (14), we know that α can

be replaced by the ratio F (S∗∪S1)−F (S1)
F (S∗)−F (S1)

. By Lemma 15, the ratio can be lower bounded by

α(B, p). Thus the approximation ratio of Algorithm 3 on (19) is 1 − e−α(B,p) by Theorem

6. The approximation of the stochastic problem (4) then follows from Corollary 11.

2.4.2 Fixed number of scenarios

In this section, we consider the case where there is only fixed number of scenarios, and

each scenario happens with a known probability. In particular, we focus on the following

problem:

max
S⊆U

{
F (S) = E [f(ã(S))] =

k∑

i=1

qif(ai(S)) | b(S) ≤ B
}
. (22)

30

Here we have k realizations of ã, k is a constant, and each realization ai happens with

probability qi. We assume that ai ∈ Nn+, 1 ≤ i ≤ k. The following problem is a slight

generalization of (22):

max
S⊆U

{
F (S) =

k∑

i=1

gi(ai(S)) | b(S) ≤ B
}
, (23)

where each gi is positively homogeneous with degree p. That is, gi(Rt) = Rpgi(t). No-

tice that qif(t) is positive homogeneous with degree p when f(t) = tp. Denote wi =

maxj {ai1, . . . , aij , . . . , ain} and let w be the least common multiple of w1, . . . , wn. By pos-

itive homogeneity,

gi(ai(S)) = gi

(
wi
w

w

wi
ai(S)

)
=
(wi
w

)p
gi

(
w

wi
ai(S)

)
,

we convert each ai to w
wi
ai and use (wiw)pgi(·) as the new gi. Now the largest component in

vector w
wi
ai is w for every i and w

wi
ai ∈ Nn+. Therefore we will only discuss the case where

every ai has the same largest component in the following.

We first describe a pseudo-polynomial time algorithm using dynamic programming.

Later we will use the usual rounding technique to convert it into a polynomial time algo-

rithm. The idea largely follows the FPTAS that solves the classic knapsack problem. Let

M be the state table in our dynamic program. For a state (m,x1, . . . , xk) in the table,

we want to find a set S ⊆ {1, . . . ,m} ,m ≤ n such that ai(S) = xi, 1 ≤ i ≤ k and the

weight b(S) is minimized. Let the value of this state M(m,x1, . . . , xk) be b(S). We set

M(m,x1, . . . , xk) = ∞ if there is no feasible subset of {1, . . . ,m} to attain ai(S) = xi for

every i. For a given state M(m+ 1, x1, . . . , xk), we can either find a subset S ⊆ {1, . . . ,m}

so that ai(S) = xi, 1 ≤ i ≤ k, or we use item m + 1 and a subset S′ ⊆ {1, . . . ,m} so that

ai(S
′ ∪ {m+ 1}) = xi, 1 ≤ i ≤ k. Initially every entry is marked as ∞. Formally, we use

31

the following recursion to calculate M(m+ 1, x1, . . . , xk).

M(m+ 1, x1, . . . , xk) =

min {M(m,x1, . . . , xk), bm+1 +M(m,x1 − a1m+1, . . . , xk − akm+1)}

if aim+1 ≤ xi, 1 ≤ i ≤ k.

M(m,x1, . . . , xk) otherwise.

By induction, we can see that for each achievable state, the dynamic programming above

will find a subset of U .

Since each xi, 1 ≤ i ≤ k is upper bounded by nw and ai ∈ Nn+, 1 ≤ i ≤ k, we have at

most O(nk+1wk) entries of M(m,x1, . . . , xk), where each entry maps to a value of F (S).

After the whole state table has been calculated, for each entry M(n, x1, . . . , xk), if it is not

marked as infinity, we calculate its corresponding F (S). The entry with the largest F (S)

is an optimal solution of the problem. The time complexity of the algorithm is O(nk+1wk).

Notice that w can be very large and the algorithm above is not polynomial-time. We

claim that by ignoring some insignificant bits in each ai through scaling, the optimal solution

we find by the dynamic programming above in the scaled version is very close to the optimal

solution of the original problem. In particular, let ε′ be a constant to be determined later,

R = ε′w
n , and a′ij =

⌊aij
R

⌋
, ∀i, j. We run the algorithm described above on the scaled version.

That is, we run the dynamic programming above on the following problem.

max
S⊆U

{
F ′(S) =

∑

i

gi(a
′
i(S)) | a′ij =

⌊aij
R

⌋
, b(S) ≤ B

}
.

Let S be the optimal solution of this new problem found by the dynamic programming and

S∗ be an optimal solution of the original problem. The following theorem shows that for

any given ε > 0, we can set ε′ accordingly and find a solution that is close enough to S∗.

Theorem 17. Given an ε > 0, by setting ε′ =
(
ε
k

)1/p
, we have an algorithm with running

time O
(
n2k+1

εk

)
that produces a solution S such that F (S) ≥ (1− ε)F (S∗).

Proof. Let S be the solution found by the algorithm and S∗ be an optimal solution of the

32

problem.

F (S) = g1(a1(S)) + · · ·+ gk(ak(S))

≥ g1(Ra′1(S)) + · · ·+ gk(Ra
′
k(S)) (rounding down, gi is nondecreasing)

= Rp
(
g1(a′1(S)) + · · · gk(a′k(S))

)
(Positive homogeneity)

≥ Rp
(
g1(a′1(S∗)) + · · ·+ gk(a

′
k(S
∗))
)

(Optimality of S)

= g1(Ra′1(S∗)) + · · ·+ gk(Ra
′
k(S
∗)) (Positive homogeneity)

≥ g1(a1(S∗)− nR) + · · ·+ gk(ak(S
∗)− nR) (each coordinate loses at most R)

≥ g1(a1(S∗))− g1(nR) + · · ·+ gk(ak(S
∗))− gk(nR) (subadditivity)

= F (S∗)−
∑

i

gi(nR)

= F (S∗)−
∑

i

gi(ε
′w) (nR = ε′w)

= F (S∗)−
∑

i

ε′pgi(w) (Positive homogeneity)

Let ε be the approximation ratio we want to achieve. Since ε′ =
(
ε
k

)1/p
, the term

∑
i ε
′pgi(w)

equals to 1
k ε
∑

i gi(w), which is no greater than εF (S∗), as
∑

i gi(w) ≤ F (S∗).

The running time of the algorithm is

O

(
nk+1

⌊w
R

⌋k)
= O

(
nk+1

⌊n
ε

⌋k)
= O

(
n2k+1

εk

)
.

2.5 Conclusion

In this chapter, we present an algorithm that solves a special class of submodular function

with knapsack constraint. The approximation ratio of the algorithm is better than the

classic (1 − 1/e) ratio by exploiting the strictly increasing property of the function and a

careful analysis of the algorithm. We apply the approximation algorithm and sample aver-

age approximation technique to solve the expected utility knapsack problem with constant

relative error. We also give a fully polynomial time approximation scheme (FPTAS) when

the number of scenarios in the expectation is fixed.

The works by Conforti and Cornuéjols [9], and Vondràk [52] are similar to ours. The

differences are that they consider only cardinality and matroid constraint and they measure

33

how fast a submodular function increases by the curvature of the function. The curvature

and the corresponding approximation ratio achieved in [9, 52] are not directly comparable

with α defined in (11) and the approximation ratio of our algorithm. We leave it as an open

question whether Algorithm 3 (or any its variation) can achieve the same approximation as

the one in [9, 52].

34

CHAPTER III

MAXIMIZING EXPECTED UTILITY OVER A KNAPSACK

CONSTRAINT: POLYHEDRAL RESULTS

3.1 Introduction

In expected utility theory [41, 50], utility function serves to model the risk preferences of

decision makers. Concave utility functions model risk-averse preferences where certainty of

the outcome is valued higher. Contrary to the continuous setting in previous works [41, 50],

we focus on decision sets that are discrete choices such as decisions of investing in bond,

stock, and mutual fund. Let vi ∈ RN be the value vector for the investments under scenario

i with probability πi, i = 1 . . . ,m. Maximizing expected utility for a risk-averse investor

can be formulated as

max

{
m∑

i=1

πif(v′ix) | x ∈ X ⊆ {0, 1}N
}
, (24)

where f is a concave, increasing utility function and X is the set of feasible solutions. A

canonical example of utility function is f(t) = 1− exp(−t/λ) where λ > 0 is the parameter

of risk tolerance, with smaller λ representing greater risk aversion.

In this chapter, we tackle Problem (24) by developing a mixed integer linear program-

ming (MILP) based approach. We consider the following reformulation of (24):

max

{
m∑

i=1

πiwi | x ∈ X ⊆ {0, 1}n , (wi, x) ∈ conv(Qi), ∀i = 1, . . . ,m

}
,

where each set Qi for i = 1, . . . ,m is of the form

Q =
{
x ∈ {0, 1}N , w ∈ R | w ≤ f(a′x+ d))

}

where a ∈ RN and d ∈ R. Since Q is the union of a finite set of half lines with a common

recession direction, its convex hull conv(Q) is a polyhedron. If the vector a is nonnegative or

nonpositive, the function g(x) := f(a′x) is submodular over {0, 1}N . Recall that a function

of binary variables g : {0, 1}N → R is submodular if and only if for all x, y ∈ {0, 1}n with

35

x ≤ y and for some i ∈ N with xi = yi = 0, we have g(x + ei) − g(x) ≥ g(y + ei) −

g(y), where ei is the i-th unit vector. Nemhauser and Wolsey [35] show the mixed-integer

nonlinear programming formulation of Q can be written as a mixed-integer linear program.

In [1], Ahmed and Atamtürk give strong valid inequalities of conv(Q) by lifting inequalities

developed by Nemhauser and Wolsey in [35] . In this chapter we improve such a formulation

by incorporating information from the constraint x ∈ X. In particular, we consider the case

when X is a knapsack constraint and study the following mixed-integer set

P =
{
x ∈ {0, 1}N , w ∈ R | w ≤ f(a′x+ d), b′x ≤ B

}
, (25)

where f is a strictly concave, increasing, differentiable function, a, b ∈ RN+ , b ∈ RN+ and

d ∈ R.

The contributions of this chapter are as follows. We give a family of valid inequalities

for conv(P). Specifically, starting from a valid inequality for a restriction of P , we obtain

a lifting function that can be solved in polynomial time. The lifting function is then ap-

proximated by a subadditive one by dropping the integrality constraint on the solution and

replacing the knapsack constraint with a cardinality constraint. We give a polynomial time

algorithm to compute this subadditive lifting function. As a by-product, we give a par-

tial characterization of the optimal solution of a continuous concave optimization problem,

which we believe is interesting in its own right. We demonstrate the effectiveness of the

proposed inequalities in a branch-and-cut framework to solve the expected utility problem.

We develop several techniques to reduce redundant computation during cut generation.

Compared with the cuts developed in [1], our proposed cuts significantly reduces CPU time

of optimization and also reduces the number of nodes explored and the number of cuts

added in the branch-and-cut process.

Submodular maximization has been extensively studied in recent years since its applica-

tion in online auction. Because it is NP-hard in general case, many works [36, 46, 12, 51, 30]

have been devoted to develop various kinds of algorithms to find good approximation so-

lutions in polynomial time. This chapter tackles the problem through a mathematical

programming perspective. We build effective valid inequalities of conv(P) so that an exact

36

optimal solution can be found fast by a MIP solver through a branch-and-cut framework.

Our work is a direct extension of the work by Ahmed and Atamtürk [1], where they give

valid inequalities of conv(Q). Atamtürk and Narayanan [5] study the submodular knapsack

problem which extends the classic linear knapsack constraint to a submodular one. They ex-

tend the cover inequalities for knapsack problem and investigate the lifting problem. While

they study a similar problem through the mathematical programming perspective, the set-

ting is fundamentally different from ours as they have a fixed budget in the submodular

constraint while we have it as a variable.

The rest of the chapter is organized as follows. In Section 3.2, we first discuss the

submodular inequalities in [35] and derive a family of valid inequalities by lifting. We

present a lifting problem which is a submodular maximization problem with a cardinality

constraint. This extends the lifting problem in [1] and we show there is a simple polynomial

time algorithm to solve the lifting problem. Then we give a polynomial time algorithm to

solve the continuous relaxation of the lifting problem, which leads to the desired subadditive

lifting inequalities. In Section 3.3, we present results of computational experiments showing

the effectives of our new lifted inequalities.

3.2 Valid inequalties by lifting

In this section, we study the valid inequalities of the convex hull of the set (25):

P =
{
x ∈ {0, 1}N , w ∈ R | w ≤ f(a′x+ d), b′x ≤ B

}
,

where f is a strict concave, increasing, differentiable function, a, b ∈ RN+ , d ∈ R and B is a

positive real number. The following notation will be used throughout. Let N = {1, . . . , n}.

For a vector v ∈ RN , let v(S) =
∑

i∈S vi. Let ρi(S) = f(a(S) + ai)− f(a(S)).

The unconstrained version of P is set

Q =
{
x ∈ {0, 1}N , w ∈ R | w ≤ f(a′x+ d)

}
.

Since f(a′x + d) is submodular over {0, 1}n, it has been shown in [35, p. 710] that the

37

following two exponential families of inequalities

w ≤ f(a(S))−
∑

i∈S
ρi(N\i)(1− xi) +

∑

i∈N\S

ρi(S)xi, ∀S ⊆ N (26)

w ≤ f(a(S))−
∑

i∈S
ρi(S\i)(1− xi) +

∑

i∈N\S

ρi(∅)xi, ∀S ⊆ N (27)

can be used as a mixed-integer linear formulation of Q. That is

Q =
{
x ∈ {0, 1}N , w ∈ R | (26) or (27)

}
.

Ahmed and Atamtürk already show in [1] that such a formulation is rather ineffective and

they develop strong lifted inequalities for conv(Q). Inspired by their work, we consider

inequalities for the constrained set conv(P) in this chapter.

3.2.1 Uplifting

Given a set S ⊆ N , consider the restriction of P by setting xi = 0 for all i ∈ N\S:

P (N\S, ∅) =

{
x ∈ {0, 1}S , w ∈ R | f(

∑

i∈S
aixi) ≥ w,

∑

i∈S
bixi ≤ B

}
.

It follows from (27) that the following inequality

w ≤ f(a(S))−
∑

i∈S
ρi(S\i)(1− xi) (28)

is valid for P (N\S, ∅). Furthermore it is facet-defining for conv(P (N\S, ∅)) if b(S) ≤ B.

To lift variable xi, i ∈ N\S into (28), consider the following lifting function

ζ1(δ, β) := max w +
∑

i∈S
ρi(S\i)(1− xi)− f(a(S))

s.t. f(
∑

i∈S
aixi + δ) ≥ w

∑

i∈S
bixi + β ≤ B

xi ∈ {0, 1} , ∀i ∈ S.

(29)

Problem (29) is hard because of the knapsack constraint, therefore we solve a relaxation

with a cardinality constraint that is derived from the knapsack constraint. Toward this end,

we define cardinality

k(β, S) = max

{
|T | |

∑

i∈T
bi + β ≤ B, T ⊆ S

}
.

38

To calculate k(β, S), we first sort bi so that b1 ≤ · · · ≤ b|S|, then k(β, S) is the largest index

i such that b1 + . . .+ bi ≤ B − β.

Given

k = max {k(bi, S) | i ∈ N\S} ,

then a relaxation of (29) is

ζ2(δ, k) := max w +
∑

i∈S
ρi(S\i)(1− xi)− f(a(S))

s.t. f(
∑

i

aixi + δ) ≥ w

∑

i∈S
xi ≤ k

xi ∈ {0, 1} ,∀i ∈ S.

(30)

We now discuss some properties of the solutions of (30). We use the following notation

throughout the discussion. For any two integers i1, i2, denote A(i1 : i2) =
∑i2

i=i1
ai. Let

l = |S|, and we sort ai for i ∈ S so that a1 ≥ · · · ≥ al. The support of a solution x of

Problem (30) is the set {i | xi = 1}. Some properties may have been implicitly shown in

[1], nevertheless we give the proof here for the sake of completeness.

Lemma 18. For any nonempty set T ⊆ S, consider an item i1 ∈ T and an item i2 ∈ S\T .

If they satisfy either one of the following conditions:

1. ai1 ≤ ai2 and a(T) + δ ≤ a(S)− ai2,

2. ai1 ≥ ai2 and a(T) + δ ≥ a(S)− ai2,

then the objective value of the solution with support T\ {i1} ∪ {i2} is no worse than that of

the one with T .

Proof. For case 1, we have difference of objective values as

f(a(T) + ai2 − ai1 + δ)− ρi2(S\i2)− f(a(T) + δ) + ρi1(S\i1)

=f(a(T) + ai2 − ai1 + δ)− f(a(T) + δ)− (f(a(S)− ai1)− f(a(S)− ai2))

39

Consider a(T) + δ and a(S) − ai2 . If both terms increase by amount ai2 − ai1 , which is

nonnegative, then the smaller one of these two terms will have a larger increase of function

value by the concavity of f . Since a(T) + δ ≤ a(S)− ai2 , we have

f(a(T) + ai2 − ai1 + δ)− f(a(T) + δ)− (f(a(S)− ai1)− f(a(S)− ai2)) ≥ 0.

For case 2, we have difference of objective values as

f(a(T) + δ + ai2 − ai1)− ρi2(S\i2)− f(a(T) + δ) + ρi1(S\i1)

=f(a(T) + δ − ai1 + ai2)− f(a(T) + δ)− (f(a(S)− ai1)− f(a(S)− ai2)) ≥ 0,

since ai2 ≤ ai1 , a(T) + δ ≥ a(S)− ai2 , and f is concave.

Lemma 19. If there is no cardinality constraint in Problem (30) (i.e. k ≥ |S|), then we

have the following properties:

• If δ ≥ A(1 : l) − A(j : l), then there exists a solution with support of size l − j no

worse than any solution with support of larger size.

• If δ < A(1 : l)−A(j + 1 : l), then there exists a solution with support of size l − j no

worse than any solution with support of smaller size.

• If A(1 : l)−A(j : l) ≤ δ < A(1 : l)−A(j+ 1 : l), then there exists an optimal solution

with support {j + 1, . . . , l}.

Proof. When δ ≥ A(1 : l)−A(j : l), for any solution T of size larger than l− j, if we remove

an item i from T , the objective function will not be worse. In particular, the difference of

the objective function is

f(a(T) + δ − ai) + ρi(S\i)− f(a(T) + δ)

=f(a(S))− f(a(S − ai))− (f(a(T) + δ)− f(a(T) + δ − ai)) ≥ 0,

since ai ≥ 0, a(S)− ai ≤ A(j : l) + δ − ai ≤ a(T) + δ − ai, and f is concave. This process

can continue until T is of size l − j.

40

When δ < A(1 : l)−A(j + 1 : l), for any solution T of size smaller than l− j, there are

two cases to consider. (1) If δ+ a(T) ≤ A(1 : l)− ai for some i /∈ T , adding the item i to T

will not worsen the solution, because the difference of the objective function is

f(a(T) + ai + δ)− ρi(S\i)− f(a(T) + δ)

=f(a(T) + ai + δ)− f(a(T) + δ)− (f(a(S))− f(a(S − ai)) ≥ 0,

since ai ≥ 0, a(T) + δ ≤ a(S) − ai and f is concave. (2) δ + a(T) > A(1 : l) − ai for

all i /∈ T . Then we say there must exist i1 ∈ T\ {j + 1, . . . , l} , i2 ∈ {j + 1 . . . , l} \T such

that ai1 ≥ ai2 . Otherwise since size of T is smaller than l − j, T ⊂ {j + 1, . . . , l}, and

then a(T) + ai2 ≤ A(j + 1 : l). In addition, since δ < A(1 : l) − A(j + 1 : l), we have

δ < A(1 : l)−a(T)−ai2 , which is a contradiction to the assumption. Then we say the value

of the solution T\ {i1} ∪ {i2} will not be worse because of case 2 of Lemma 18. Such swap

can continue until T contains the smallest |T | items among {a1, . . . , al}. Then there exists

i ∈ {j + 1, . . . , n} such that a(T) + ai ≤ A(j + 1 : l). Therefore δ+ a(T) ≤ a(S)− ai by the

assumption δ < A(1 : l)−A(j + 1 : l). Then we go to case 1 until T reaches size of l − j.

When A(1 : l) − A(j : l) ≤ δ < A(1 : l) − A(j : l), we already prove that a set of size

l − j is optimal. Now consider a solution T of size l − j but it is not {j + 1, . . . , l}. Let

i1 ∈ T\ {j + 1, . . . , l} , i2 ∈ {j + 1, . . . , l} \T . Solution T\ {i1} ∪ {i2} will not be worse by

case 2 of Lemma 18.

Lemma 20. If δ < A(1 : l)−A(l − k + 1 : l), then let

j = argmax
{
A(1 : l)−A(j′ : j′ + k) | δ ≥ A(1 : l)−A(j′ : j + k), 1 ≤ j′ ≤ l − k

}
.

If such a j exists, then a solution with support {j + 1, . . . , j + k} is optimal for (30). Oth-

erwise δ < A(1 : l) − A(1 : k + 1), then a solution with support {1, . . . , k} is optimal for

(30).

Proof. First by Lemma 19, for A(1 : l) − A(l − k : l) ≤ δ < A(1 : l) − A(l − k + 1 : l), the

support {l − k + 1, . . . , l} is optimal.

Also by Lemma 19, we know that for any δ < A(1 : l)−A(l− k+ 1 : l), there exist a set

T of size k that is better than any set of size less than k. In the following, we show that for

41

· · · · · ·

...

...

1 2 3 l − k + 1 l − 3 l − 2 l − 1 l

∅ A(1 : l)−A(l : l) < δ

A(1 : l)−A(l − 1 : l) ≤ δ < A(1 : l)−A(l : l)

A(1 : l)−A(l − 2 : l) ≤ δ < A(1 : l)−A(l − 1 : l)

A(1 : l)−A(l − 3 : l) ≤ δ < A(1 : l)−A(l − 2 : l)

A(1 : l)−A(l − k : l) ≤ δ < A(1 : l)−A(l − k + 1 : l)

δ < A(1 : l)−A(1 : k + 1)

A(1 : l)−A(l − k − 1 : l − 1) ≤ δ < A(1 : l)−A(l − k : l)

Figure 4: Solutions of (30) for different δ

δ < A(1 : l)−A(l− k : l), if we start from set T of size k not as desired, we may transform

it to the desired one without decreasing the objective value.

If δ < A(1 : l)−A(1 : k+1) and T 6= {1, . . . , k}. Then there must exist an i1 ∈ T, i1 > k

and i2 /∈ T, i2 ≤ k such that ai2 ≥ ai1 and δ < A(1 : l) − a(T) − ai1 . We claim that

T\ {i1} ∪ {i2} is no worse than T by case 1 of Lemma 18. Such swap can go on until

T = {1, . . . , k} as desired.

If A(1 : l)−A(j : j+ k) ≤ δ < A(1 : l)−A(j+ 1 : j+ k+ 1) and T 6= {j + 1, . . . , j + k},

we have several cases to consider.

1. a1, . . . , aj /∈ T , then again we can always find i1 ∈ T, i1 > j + k and i2 /∈ T, i2 ∈

{j + 1, . . . , j + k}. To see that a(T) + δ ≥ a(S) − ai2 , we notice that a(T) + ai2 ≤

A(j + 1 : j + k + 1) since a1, . . . , aj /∈ T and A(1 : l) − A(j + 1 : j + k + 1) > δ.

Therefore we know that T\ {i1}∪{i2} is no worse than T by case 1 of Lemma 18 and

such swap can continue until T = {j + 1, . . . , j + k}.

2. There exists at least one i1 ≤ j, i1 ∈ T . Pick an i2 /∈ T, i2 ∈ {j + 1, . . . , j + k}. There

are two cases to consider.

(a) δ ≥ A(1 : l) − a(T) − ai2 . Then we replace i1 by i2. Such swap will not worsen

the solution by case 2 of Lemma 18. After replacing all i1 ≤ j, i1 ∈ T , if the

42

solution still does not equal to {j + 1, . . . , j + k}, we are in case 1.

(b) δ < A(1 : l)−a(T)−ai2 . Then we claim that there exists i3 ∈ {j + k + 1, . . . , l}∩

T . Otherwise a(T) + ai2 ≥ A(j : j + k) and then since δ < A(1 : l)− a(T)− ai2
we may conclude δ < A(1 : l)− A(j : j + k) which is a contradiction. Therefore

we may replace i3 by i2 and not worsen the solution because of case 1 of Lemma

18. Such swap cannot go on forever and eventually we will reach case 2a.

Lemma 19 and Lemma 20 imply Algorithm 4. Given the input δ, the algorithm searches

an interval that δ belongs to. If δ > A(1 : l) − A(l − k : l), the result set T comes from

a chain of sets. Otherwise, T consists k consecutive items of {1, . . . , l}. We illustrate the

solutions of (30) for different δ in Figure 4.

Algorithm 4: Greedy Algorithm for solving (30)

Result: A set T ⊆ S so that xi = 1,∀i ∈ T and xi = 0 otherwise.
l← |S|;
k ← k(S, β);
Sort ai so that a1 ≥ · · · ≥ al;
T = {l − k + 1, . . . , l};
j ← l − k + 1;
if δ ≥ a(S)−A(l − k + 1 : l) then

while j ≤ l and a(S)− a(T) < δ do
T ← T\ {j};
j ← j + 1;

end

else
while j > 1 and a(S)− a(T)− aj−1 > δ do

T ← T\ {j + l − 1} ∪ {j − 1};
j ← j − 1;

end

end

Proposition 21. Algorithm 4 solves Problem (30) in O(|S|) time.

Proof. By Lemma 19 and Lemma 20, there are |S|+ 1 possible solutions of Problem (30).

Each solution corresponds to an interval that δ may belong to. These |S|+ 1 intervals are

disjoint and can be ordered linearly. Algorithm 4 searches the intervals in this linear order

to determine where δ belongs to. For each interval, the algorithm takes constant number

of operations. Thus Algorithm 4 solves Problem (30) in O(|S|) time.

43

3.2.2 Subadditive approximation

In order to have sequence independent lifting, we need a subadditive lifting function [54, 21].

To achieve that, we consider the continuous relaxation of Problem (30). Define

γ(δ, k) := max w +
∑

i∈S
ρi(S\i)(1− xi)− f(a(S))

s.t. f(
∑

i∈S
aixi + δ) ≥ w

∑

i∈S
xi ≤ k

0 ≤ xi ≤ 1,∀i ∈ S,

(31)

and we will have a subadditive lifting function by choosing k in the following way.

Lemma 22. Let k1 = max {k(bi, S) | i ∈ N\S}, k2 = min {k | γ(0, k) ≥ 0}, and k0 =

max {k1, k2}. Then γ(δ, k0) is a subadditive lifting function.

Proof. We first show γ(δ, k0) is a valid lifting function for all i ∈ N\S by proving that

γ(δ, k0) is larger than ζ1(δ, bi) for all i ∈ N\S. To see this, notice γ(δ, k0) ≥ γ(δ, k1)

and γ(δ, k1) is a continuous relaxation of the lifting function ζ2(δ, k1). Therefore we have

γ(δ, k0) ≥ ζ1(δ, bi) for every i ∈ N\S.

Now we show γ(δ, k0) is a subadditive function in δ. First γ(δ, k0) is concave in δ,

because for each δ, it is the maximum of a concave function of δ over a convex set

{
x | ∑i∈S xi ≤ k0, 0 ≤ xi ≤ 1

}
. Then since γ(0, k2) ≥ 0 and k0 ≥ k2, we know that

γ(0, k0) ≥ 0. Then by [24, p. 239], we know that a concave function γ : R+ → R is

subadditive if and only if γ(0) ≥ 0. Therefore γ(δ, k0) is a subadditive function in δ.

Since γ(δ, k0) is subadditive in δ, now we lift variables in N\S in a sequence independent

order [54, 21] and have a family of valid inequalities.

Theorem 23. For any set S ⊆ N , the following inequality

w ≤ f(a(S))−
∑

i∈S
ρi(S\i)(1− xi) +

∑

i∈N\S

γ(ai, k0)xi (32)

is valid for P .

44

Example 24. We give an example comparing inequality (32) and the lifted inequality in [1].

Consider the model P = {(w, x) ∈ R× {0, 1}n | w ≤ − exp(−a′x), b′x ≤ B}. Let n = 6,

B = 1 and S = {1, 2, 3, 4}. Let

a = (0.3008, 0.3621, 0.4233, 0.6395, 0.1164, 0.0448),

and

b = (0.3023, 0.1892, 0.3884, 0.1047, 0.5938, 6699)

be two vectors where each component is generated from a uniform random distribution

[0, 1]. We calculate k0 = 3 in (32). The lifted inequality in [1], which is the same as (32)

except k0 = |S| = 4, is

w ≤ −0.5714 + 0.06251x1 + 0.0777x2 + 0.0938x3 + 0.1594x4 + 0.0417x5 + 0.0238x6;

Inequality (32), which is tighter than the above at coefficients of x5, x6, is

w ≤ −0.5714 + 0.06251x1 + 0.0777x2 + 0.0938x3 + 0.1594x4 + 0.0374x5 + 0.0169x6.

3.2.3 Computing the subadditive lifting function

To compute the lifting function γ(δ, k0) fast, we need to solve problem (31) in polynomial

time. To achieve this, we first focus on the following more general problem

max f(a′x+ d)− c′x, ex ≤ k, x ∈ [0, 1]N , (33)

where a ∈ RN+ , c ∈ RN , e is the all-one vector, and f : R → R is strictly concave. We will

show that we may find an optimal solution of (33) if it is fractional (at least one component

is in (0, 1)) and together with Proposition 21, we may compute γ(δ, k0) in polynomial time.

Remark. We do not assume that ai/ci, i ∈ N are distinct, which is the assumption made

in [1], because the reduction used to transform from non-distinct case to distinct case may

break the cardinality constraint we impose here.

45

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0.00

0.02

0.04

0.06

0.08

0.10

ζ2(δ, k0)

γ(δ, k0)

γ(δ, l)

Figure 5: Comparison of lifting functions for δ < A(1 : l)−A(l − k + 1 : l)

Figure 5 is an example of differences among ζ2(δ, k0), γ(δ, k0) and γ(δ, l) when l = 5, k =
3. Notice that since the number of variables in (31) is l, thus γ(δ, l) means that there
is no cardinality constraint. Therefore γ(δ, l) is the subadditive lifting function used in
[1]. For δ ≥ A(1 : l) − A(l − k0 + 1 : l), Problem (30) without cardinality constraint
has an optimal solution of size no greater than k0. This means that there is almost no
difference between γ(δ, l) and γ(δ, k). Thus in Figure 5, we plot the functions in the
range δ < A(1 : l)−A(l − k0 + 1 : l).

First we write out the KKT conditions for (33).

aif
′(a′x+ d)− ci = λ+ αi − βi (34)

λ(
∑

i∈N
xi − k) = 0 (35)

αi(xi − 1) = 0 (36)

βixi = 0 (37)

λ, αi, βi ≥ 0

∑

i∈N
xi ≤ k

0 ≤ xi ≤ 1.

46

We rewrite (34) as the following

f ′(a′x+ d) =
ci + λ

ai
+
αi − βi
ai

. (38)

Since f is strictly concave and increasing, the inverse function of f ′ exists. The above can

also be written as

a′x+ d = (f ′)−1

(
ci + λ

ai
+
αi − βi
ai

)
.

To simplify the notation, we define

hi(λ) =
ci + λ

ai
.

From the KKT conditions, we have the following properties of the optimal solution.

Lemma 25. For a component xi with αi = βi = 0, if hj(λ) < hi(λ), then xj = 1; if

hj(λ) > hi(λ), then xj = 0.

Proof. For any other index j 6= i, by (38) we have

hi(λ) = hj(λ) +
αj − βj
aj

.

Therefore if hj(λ) < hi(λ),
αj−βj
aj

= hi(λ)− hj(λ) > 0. Since aj > 0, we must have αj > 0

and xj = 1 by condition (36). Similarly, if hj(λ) > hi(λ),
αj−βj
aj

= hi(λ)− hj(λ) < 0. Since

aj > 0, we must have βj > 0 and xj = 0 by condition (37).

Lemma 26. For a fractional optimal solution, if its dual variable λ > 0, then there must

exist at least two different indices i, j such that hi(λ) = hj(λ).

Proof. Consider a fractional component xi and suppose that there is no index j such that

hi(λ) = hj(λ). By condition (36) and (37), αi = βi = 0. By Lemma 25, for any j with

hj(λ) < hi(λ), xj = 1; for any j with hj(λ) > hi(λ), xj = 0. Thus xi is the only fractional

component and so
∑

i xi < k. If λ > 0, it then violates condition (35).

Before proceeding to the algorithm for solving Problem (33), we need the following

lemmas for solving two linear systems.

47

Lemma 27. For a1 ≥ a2 ≥ · · · ≥ an, h ≥ 0, and an integer k ≤ n, the linear system

a1x1 + · · ·+ anxn = h

x1 + · · ·+ xn ≤ k

0 ≤ xi ≤ 1, ∀i ∈ {1, . . . , n}

has a solution if and only if a1 + · · · ak ≥ h. Moreover,

xi =
h

a1 + · · ·+ ak
,∀i ≤ k; xi = 0, ∀i > k,

is a solution.

Proof. If a1 + · · · + ak ≥ h, then xi = h
a1+···+ak ∈ [0, 1] for i ≤ k and

∑
i≤k xi ≤ k. So the

solution is feasible.

If a1 + · · ·+ ak < h, then for any x = (x1, . . . , xn) ∈ [0, 1]n with
∑

i xi ≤ k, we have

a1x1 + a2x2 + · · ·+ anxn ≤ a1 + · · ·+ ak < h.

That is, no solution can satisfy the condition a1x1 + · · ·+ anxn = h.

Lemma 28. For a1 ≥ a2 ≥ · · · ≥ an, h ≥ 0, and an integer k ≤ n, the linear system

a1x1 + · · ·+ anxn = h

x1 + · · ·+ xn = k

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , n}

has a solution if and only if a1 + · · · ak ≥ h and an−k+1 + · · ·+an ≤ h. Moreover, a solution

can be computed in linear time.

Proof. If a1 + · · · ak ≥ h and an−k+1 + · · ·+an ≤ h, we first solve the following linear system:

(a1 + · · ·+ ak)t1 + (an−k+1 + · · ·+ an)t2 = h

t1 + t2 = 1.

After getting the solution t1, t2 ∈ [0, 1], we set

xi =

t1 i ∈ {1, . . . , k} \ {n− k + 1, n}

t1 + t2 = 1 i ∈ {1, . . . , k} ∩ {n− k + 1, n}

t2 i ∈ {n− k + 1, n} \ {1, . . . , k}

0 otherwise.

48

To verify x1 + · · ·+ xn = k, we check

x1 + · · ·+ xn

=
∑

i∈{1,...,k}\{n−k+1,n}

t1 +
∑

i∈{1,...,k}∩{n−k+1,n}

(t1 + t2) +
∑

i∈{n−k+1,n}\{1,...,k}

t2

=kt1 + kt2 = k.

To verify a1x1 + · · ·+ anxn = h, we check

a1x1 + · · ·+ anxn

=
∑

i∈{1,...,k}\{n−k+1,n}

ait1 +
∑

i∈{1,...,k}∩{n−k+1,n}

ai(t1 + t2) +
∑

i∈{n−k+1,n}\{1,...,k}

ait2

=(a1 + · · · ak)t1 + (an−k+1 + · · ·+ an)t2 = h.

We now prove the other direction. When
∑

i xi = k, notice that

a1 + · · ·+ ak ≥ a1x1 + · · · anxn ≥ an−k+1 + · · ·+ an.

Therefore if either a1 + · · ·+ ak < h or an−k+1 + · · · an > h, we cannot satisfy the condition

a1x1 + · · · anxn = h.

To find a fractional optimal solution of Problem (33), We define

Λ =

{
λ ≥ 0 | λ =

ajci − aicj
ai − aj

,∀i, j ∈ N
}
∪ {0}

as the set of λs that can be part of an optimal dual solution. Then for each λ ∈ Λ, let

(λ, h, I) be a tuple such that I ⊆ N and for any index i ∈ I, hi(λ) = h. Notice here for a λ

there might exist multiple corresponding tuples. By Lemma 26, if λ > 0, then |I| ≥ 2. Let

C be the collection of these tuples. In Algorithm 5, for each tuple (λ, h, I), we assume that

all the fractional components are among the indices set I, then we use Lemma 25 to fix

values of variables whose indices not in I. We then solve a linear system using Lemma 27

or Lemma 28 to see if there exists a solution to satisfy condition (38). If the linear system

has a solution, then we find a fractional optimal solution.

Proposition 29. If Problem (33) has a fractional optimal solution, Algorithm 5 finds it in

polynomial time.

49

Algorithm 5: Find a fractional optimal solution of Problem (33)

Compute the tuple collection C = {(λ, h,H)};
for (λ, h, I) ∈ C do

T ← {j | hj(λ) < h} , xj = 1,∀j ∈ T ;
T ′ ← {j | hj(λ) > h} , xj = 0,∀j ∈ T ′;
if λ = 0 then

Solve
∑

i∈I aixi + a(T) + d) = (f ′)−1(h),
∑

i∈I xi ≤ k − |T | , xi ∈ [0, 1];
else

Solve
∑

i∈I aixi + a(T) + d) = (f ′)−1(h),
∑

i∈I xi = k − |T | , xi ∈ [0, 1];
end
If the linear system has a solution, return x;

end
// Problem (33) has no fractional optimal solution.

Proof. First the set Λ includes all possible λs by Lemma 26. Now consider a tuple (λ, h, I)

that the algorithm chooses to construct a fractional solution. First by Lemma 27 and Lemma

28, we know that if the linear system to solve has a solution, we will find it correctly. Then

we show that we can construct a dual solution so that the primal and dual solutions satisfy

the KKT conditions. For i ∈ I, we set αi = βi = 0, therefore we satisfy conditions (38),

(36), and (37). For any i /∈ I, the value of its primal and dual variables are determined by

Lemma 25. Finally if λ > 0, we use the constraint
∑

i∈I xi = k − |T | in the linear system;

otherwise we use the one with
∑

i∈I xi ≤ k− |T | so condition (35) always is met. Therefore

the primal solution found by Algorithm 5 is optimal.

For the time complexity, computing the tuple collection C takes O(n2) time since the

size of Λ is O(n2). For each tuple, solving the linear system takes O(n) time by Lemma 27

and Lemma 28. Therefore the total time of Algorithm 5 is polynomial.

Corollary 30. Problem (31) can be solved in polynomial time.

Proof. First we use Algorithm 5 to search for a fractional optimal solution. If it fails to

find a λ that satisfies the KKT condition, then the optimal solution of Problem (31) must

be an integral one. Therefore we use Algorithm 4 to obtain to solve the problem. The time

complexity easily follows from Proposition 21 and Proposition 29.

Corollary 31. For a set S, the lifted inequality (32) can be computed in polynomial time.

50

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.6

0.8

1.0

h3

h1

h4

h2

hi(λ)

λ

(a) Infeasible solution

If x3 is a fractional component, then by Lemma 25, x1 = x2 = x4 = 1.
Then the constraint

∑
i xi ≤ k is not satisfied.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.6

0.8

1.0

h3

h1

h4

h2

hi(λ)

λ

(b) Optimal solution

If x2 is a fractional component, then by Lemma 25, x3 = x1 = x2 = 0.
We check that f ′(ax + d) = h2(λ) = 0.25 and every other KKT
conditions are met. So this is an optimal solution.

Figure 6: An example of searching optimal λ in Algorithm 5 when n = 4, k = 3

The function f(a′x) = − exp(−a′x + d), n = 4, k = 3, and d = 1. The vector a =
(3, 4, 5, 6), c = (2, 1, 4, 3). We start from the tuple (0, h3(0), {3}) in Algorithm 5, and we
find an optimal solution at tuple (0, h2(λ), {2}).

51

Proof. To compute the lifting function γ(δ, k0) in (32), first we need to find k0 in Lemma

22 to ensure the subadditivity of lifting function γ(δ, k0) as a function of δ. By Lemma

22, k0 = max(k1, k2). k1 is easy to calculate and we now discuss how to reduce time of

calculating k2. To find k2, a simple approach would be to evaluate γ(0, k) starting from k = 1

until γ(0, k) ≥ 0. Notice here γ(0, k) ≤ γ(0, k′) if k < k′. Therefore we use binary search

for k over {1, . . . , |S|} and reduce the times to evaluate γ(0, k) from O(|S|) to O(log(|S|)).

Each evaluation will take polynomial time by Corollary 30. Then we we need to evaluate

γ(aj , k0) for every i ∈ N\S. For each of them, we need to solve an instance of Problem

(31). Notice that for all γ(ai, k0), the only thing changed in Problem (31) is the value δ.

Therefore given a seed inequality, we first compute the collection C in Algorithm 5, then

for each ai, i ∈ N\S, we just look up the precomputed collection C instead of computing it

every time. The total time to compute γ(ai, k0) again is polynomial by Corollary 30.

3.2.4 Downlifting

The subadditive lifting inequality for downlifting in [1] is

w ≤ f(a(S)) +
∑

i∈S
ω(−ai)(1− xi) +

∑

i∈N\S

ρi(S)xi, (39)

where ω(·) is a subadditive lifting function. Notice if we add cardinality constraint on x as a

constraint of the lifting function ω, it would decrease the value of ω(−ai) and thus increases

the value of coefficient of variable xi. This defeats the purpose of tightening inequalities

to have a better relaxation. Thus we do not consider downlifting with constraints in this

chapter.

3.3 Computational experiments

3.3.1 Problem and its data generation

In this section, we evaluate the effectiveness of our inequalities (32) by solving a problem of

expected utility maximization with capital budgeting, which is the benchmark used in [1].

The problem can be stated as following:

max

{
m∑

i=1

πi

(
1− exp

(
−v
′
ix

λ

))
| a′x ≤ 1, x ∈ {0, 1}N

}
.

52

Here for a set N of investment options, aj , j ∈ N are the capital requirements and we

normalize the available budget to be 1. Each scenario i, 1 ≤ i ≤ m happens with probability

πi, and the value of investments in the future under scenario i is denoted as vi ∈ RN+ . The

utility function is modeled as an exponential function f(t) = 1−exp(t/λ) with risk tolerance

parameter λ. We reformulate the problem into a MILP setting by introducing a wi for each

scenario and rewrite the problem as following:

1 + max

{
π′w | a′x ≤ 1, wi ≤ − exp

(
−−v

′
ix

λ

)
, 1 ≤ i ≤ m,x ∈ {0, 1}N

}
. (40)

Then for each scenario i, the set
{

(wi, x) ∈ R× {0, 1}n | a′x ≤ 1, wi ≤ − exp(−−v
′
ix
λ)
}

is

the form of (25).

We use exactly the same setting of [1] to generate problem instances. For capital re-

quirements ai, they are uniformly generated from [0, 0.2]. For investment valuation, we use

the lognormal return distribution. In particular, the value of investment j under scenario i

is

vij = rijaj ,

where

ln rij = αj + βj ln fi + εij , j ∈ N, i ∈ {1, . . . ,m} .

Here αj is from uniform distribution [0.05, 0.1], βj is from uniform distribution [0, 1], ln fi is

from normal distribution N(0.05, 0.0025) and εij is from normal distribution N(0, 0.0025).

Finally the scenarios are equally likely to occur with πi = 1/m for i ∈ {1, . . . ,m}.

We implement the computation, written in Python, using the MILP solver of Gurobi

5.6.3 on a 2.3 GHz x86 Linux workstation with 7GB memory restriction. Gurobi’s internal

cut parameters are in default setting. We disable multithreading, heuristics, and the con-

current MIP solver; and set the relative MIP optimality gap as 0.01% and the time limit of

the computation to 30 minutes.

Since f is an exponential function, there is no algorithm in Gurobi that can solve the

continuous relaxation of (25) directly. Nevertheless we build a mixed-integer linear program

as a relaxation of (25) and let it be the initial model for Gurobi to solve. In particular, we

53

approximate f(a′x) by its gradient at zero and add constraint wi ≤ f(0) + f ′(0)(a′x − 0)

for each i = 1, . . . ,m to the model.

During the branch-and-cut process, we need a seed inequality (28) to compute a lifted

inequality (32) during the branch-and-cut process. Recall the seed inequality for uplifting

is

w ≤ f(a(S))−
∑

i∈S
ρi(S\i)(1− xi).

To compute the seed inequality, we need a set S. Given a point x, if it is integral, we use

the support of x as the set S; otherwise, we use a heuristic approach to find a set S. Toward

this, we approximate ρi(S\i) by ρi(∅), which follows [1], solve the following problem

min

{
f(az)−

∑

i∈N
ρi(∅)(1− xi)zi | z ∈ {0, 1}N ,

∑

i∈N
zi ≤ k(N, 0)

}
,

and use the support of the solution as the set S. To make the above problem solvable, here

we replace the original knapsack constraint by a cardinality constraint where k(N, 0) =

max
{
|T | | ∑i∈T bi ≤ B

}
. We use a parametric linear optimization algorithm proposed in

[5] and find an optimal solution in O(n3) time. Now after knowing the seeding inequality,

we apply Corollary 31 to calculate inequality (32).

For downlifting, the seed inequality for inequality (39) is

w ≤ h(S) +
∑

i∈N\S

ρi(S)xi.

For an integral x, the approach is again to find the support of the solution as S. For a

fractional one, similar to uplifting, we solve the following problem

min

{
f(az) +

∑

i∈N
ρi(∅)xi(1− zi) | z ∈ {0, 1}N , bz ≤ k(N, 0)

}
,

to find the desired S, which also takes O(n3) time. After knowing the seed inequality, we

use the same approach as in [1] to compute an inequality by downlifting.

3.3.2 Experiments

We choose number of variables (n), scenarios (m) and risk tolerance factor λ as the pa-

rameters of our experiments, which is the same as the setting in [1]. Here we increase the

54

difficulty of the problems by increasing n,m or decreasing λ since most of the values of

n,m, λ used in [1] are too easy for the current solver. We use our new uplifted inequality

(32) and old downlifted inequality (39) from [1] to compare against the lifted inequalities

developed in [1]. We do not consider the simplest inequalities (26) and (27) since they are

too weak and do not result in termination of the branch-and-cut procedure in the desired

period of time in most cases.

We present a summary of results in Table 2. For different n,m and λ, we report the

CPU time spent in optimization in seconds (time), the number of branch-and-cut nodes

explored (nodes), and the number of cuts added (cuts). Each row of the table presents

average over twenty instances.

First, we observe from Table 2 that the number of variables n, scenarios m, and the risk

tolerance factor λ all contribute to the overall performance. There is no single parameter

dominating others. This is different from the observations made in [1] where λ dominates

the other two factors. Second, we observe that by using our new uplifted inequalities the

time spent in optimization decreases most, compared with the number of nodes and cuts.

In particular, the average CPU time is 118 seconds when using inequalities developed in

[1], while it is 80 seconds with our new uplifted inequality. The average number of nodes

and cuts are 522, and 1173 for inequalities in [1], respectively; and they are 502, and 1136

for the new inequality. So the reduction in average CPU time is 32% and the reductions

in the numbers of nodes and cuts are 4% and 6% respectively. Finally we remark that our

initial linear approximation of constraint w ≤ f(a′x), replacing f(a′x) with its gradient at

zero, is useful. Compared with experiments only using trivial upper bounds w ≤ 0 for (40)

at the start, we observe a 33% reduction in the number of nodes and cuts in the linear

approximation. Since it is not the main focus of this chapter, we do not report the details

of this comparison.

In Figure 7, we present a performance profile of CPU time in . Following Dolan and

Moré in [10], the performance profile is constructed as follows. We have a set S of two

solvers using inequality (32), (39) and the lifted inequalities in [1], respectively. We denote

the set of problem instances as P. For a solver s ∈ S and a problem instance p ∈ P, we

55

Table 2: Comparing lifted inequalities

n m λ Lifted inequalities in [1] Inequality (32) and (39)

Time Node Cuts Time Node Cuts

100

50
2 15 115 274 12 114 267
1 27 218 512 21 215 515

0.8 29 266 558 23 264 576

100
2 27 109 539 23 115 603
1 53 257 1044 37 245 1020

0.8 67 352 1361 46 332 1257

150

50
2 39 219 385 29 204 344
1 103 576 908 61 548 837

0.8 132 793 1268 86 749 1151

100
2 48 137 541 89 135 531
1 197 362 1593 85 336 1428

0.8 215 532 1852 124 489 1784

200

50
2 73 375 465 54 368 465
1 147 936 1149 100 879 1023

0.8 182 1416 1601 143 1382 1638

100
2 146 293 874 57 296 894
1 254 907 2396 187 878 2308

0.8 365 1528 3797 273 1489 3808

calculate its performance ratio rp,s =
tp,s

min{tp,s | s∈S} where tp,s is the time required by solver s

on instance p. Figure 7 plots the cumulative distribution function of the performance ratio

defined as gs(τ) = 1
|P| |{p ∈ P | rp,s ≤ τ}|. We see the performance of inequalities (32) and

(39) is significantly better than the two set of lifted inequalities in [1].

3.4 Conclusion

In this chapter, we build a mixed-integer linear formulation of the mixed-integer non-linear

program P = {(w, x) ∈ R× {0, 1}n | w ≥ f(a′x), b′x ≤ B}. More specifically, we develop

subadditive sequence independent lifting inequalities for conv(P). The subadditive lifting

function is computed by a greedy algorithm when the optimal solution is integral, and is

computed by searching the Lagrange dual solution when the optimal is fractional. The

latter is done by a partial characterization of the optimal solution of a continuous concave

maximization problem. Computational experiments show that the proposed inequalities

are better than these proposed in [1] where the knapsack constraint is not considered.

56

1.0 1.5 2.0 2.5 3.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ineq (32), (39)

Ineq in [2]

Figure 7: Performance profile for subadditive lifting function

It is an open question whether the subadditive lifting function (33) we proposed is

the concave envelope of the original lifting function. Moreover, it would be interesting if

another family of valid inequalities not relying on submodular inequalities (27) or (26) could

be developed, even though we do not hope to get a polynomial time separation algorithm

since a linear optimization problem over P is NP-hard [1].

57

CHAPTER IV

MINIMIZING A CLASS OF SUBMODULAR FUNCTIONS OVER A

CARDINALITY CONSTRAINT: POLYHEDRAL RESULTS

4.1 Introduction

Optimization problems in various applications involving economies of scale or risk averse

behavior can be formulated as concave cost combinatorial optimization problems of the

form

(CCO) : min

{
L∑

`=1

f`(a
′
`x) : x ∈ X ⊆ {0, 1}n

}
,

where f` : R 7→ R is concave and a` ∈ Rn for ` = 1, . . . , L. The set X denotes combinatorial

constraints, for example, those modeling feasible paths, assignments or knapsack solutions.

Some specific examples of (CCO) are mentioned next.

Concave cost facility location: The concave cost facility location problem is an extension

of the usual facility location problem to model economies of scale that can be achieved by

connecting multiple customers to the same facility. With m customers and n facilities, the

problem can be formulated as

min

m∑

i=1

n∑

j=1

cijxij +

n∑

j=1

fj(

m∑

i=1

dixij) :

n∑

j=1

xij = 1 ∀ i, xij ∈ {0, 1} ∀ i, j

 ,

where cij is the cost of assigning customer i to facility j, di is the demand of customer i,

and fj is a nondecreasing concave cost function modeling the economies of scale of serving

demand from facility j. This (CCO) problem generalizes the well-known fixed-charge facil-

ity location problem and has been studied in [14, 22, 40, 45].

Mean-risk combinatorial optimization: Consider a stochastic combinatorial optimization

problem min{c̃′x : x ∈ X ⊆ {0, 1}n} where the cost vector has independently distributed

components c̃i with mean µi and variance νi for i = 1, . . . , n. A typical deterministic

58

equivalent formulation is to optimize a weighted combination of the mean and standard

deviation of the cost, i.e.

min
{
µ′x+ λ

√
ν ′x : x ∈ X ⊆ {0, 1}n

}
,

where λ is a nonnegative weight. Such mean-risk combinatorial optimization problems in

various settings have been studied in [4, 26, 37, 39].

Approximate submodular minimization: Various combinatorial optimization problems with

nondecreasing submodular cost functions of the form

min {F (x) : x ∈ X ⊆ {0, 1}n}

have been considered (cf. [6, 17, 19, 28]). Often the cost function F is only available through

a value oracle. It has been shown [18] that a general nondecreasing submodular function F

can be approximated up to a factor of
√
n log n by a function of the form f(x) =

√
c′x using

only a polynomial number of function value queries, i.e. f(x) ≤ F (x) ≤ O(
√
n log n)f(x)

for all x ∈ {0, 1}n. Thus we can write an explicit formulation for an approximate version

of the above submodular cost combinatorial optimization problem as the (CCO) problem:

min
{√

c′x : x ∈ X ⊆ {0, 1}n
}
.

With a view towards developing mixed integer linear programming (MILP) based ap-

proaches for (CCO) we consider the following reformulation

(CCO’) : min

{
L∑

`=1

w` : x ∈ X ⊆ {0, 1}n, (w`, x) ∈ conv(Q`)∀ ` = 1, . . . , L

}
,

where each set Q` for ` = 1, . . . , L is of the form

Q = {(w, x) ∈ R× {0, 1}n : w ≥ f(a′x)}, (41)

and f is a concave function. Note that since Q is the union of a finite set of half lines with

a common recession direction, its convex hull, denoted by conv(Q), is a polyhedron. When

the vector a is nonnegative (or nonpositive) , the function F (x) := f(a′x) is submodular

over the binary hypercube. A function of binary variables F : {0, 1}n → R is submodular

59

if for all x, y ∈ {0, 1}n with x ≤ y (component-wise) and for some i ∈ {1, . . . , n} with

xi = yi = 0, we have F (x + ei) − F (x) ≥ F (y + ei) − F (y), where ei ∈ Rn is the i-th unit

vector, i.e. the marginal values are diminishing [49]. By the classical results of Edmonds

[11] and Lovasz [32] on submodular functions, we know an explicit inequality description

of conv(Q). Thus (CCO’) provides a mixed integer linear programming formulation of the

mixed integer nonlinear program (CCO). In this chapter we improve such a formulation by

incorporating information from the constraints x ∈ X in the set Q. In particular we study

the following mixed-integer set

P = {(w, x) ∈ R× {0, 1}n : w ≥ f(a′x), e′x ≤ k}, (42)

where f is a concave function, a ∈ Rn+, k ∈ Z+ and e is a vector of ones, and the cardinality

constraint e′x ≤ k is assumed to be implied by the constraints x ∈ X. We give an illustration

of difference between Q and P in Figure 8.

The contributions of this chapter are as follows. First, we give a complete description

of conv(P) when the vector a in (42) has identical components. Similar to the classical

work in [11], we write a pair of primal-dual linear programs corresponding to the convex

lower envelope of f(a′x) and valid inequalities of conv(P) respectively. Then we construct

a pair of optimal primal and dual solutions that provide the explicit inequality description

of conv(P). Second, we give a family of facet-defining inequalities of conv(P) for general

nonnegative a. We obtain such inequalities through sequence dependent exact lifting and

present a polynomial time algorithm to find the lifting coefficients corresponding to any

given sequence. We give another family of approximately lifted inequalities that can be

weaker than the exactly lifted facet-defining inequalities but much faster to compute within

a branch-and-cut procedure. Finally, we demonstrate the effectiveness of using the proposed

inequalities in a branch-and-cut framework to solve mean-risk knapsack problems. Our

computational results show significant decrease in both time and the number of nodes over

standard methods.

We close this section by a brief discussion of related literature. As mentioned earlier, an

inequality description of the convex hull of the epigraph of a general submodular function

60

(0, 1)
(1, 1)

(1, 0)(0, 0)

x1

x2

w

(a) Q = {(w, x) | w ≥ f(x)}

(0, 1)
(1, 1)

(1, 0)(0, 0)

x1

x2

w

(b) P = {(w, x) | w ≥ f(x), x1 + x2 ≤ 1}

Figure 8: Comparison of Q and P.

Figure 8 gives an example of Q and P for n = 2. The two sets are denoted by black
lines with directions. The shadow area represents non-trivial supporting hyperplanes
of the convex hulls of two sets.

61

follows from the classical works [11, 32]. In the presence of constraints, submodular min-

imization is in general NP-hard and in most cases very hard to approximate [17, 28, 47].

Even for the cardinality constraint, the special case of size constrained minimum cut prob-

lem is NP-hard since it can be reduced to graph partitioning problem [15]. This suggest that

there is little hope of obtaining a tractable inequality description of the convex hull of the

epigraph of a submodular function under a cardinality constraint. However the submodular

function considered here is of the special form F (x) = f(a′x) where f is a concave function.

Hassin and Tamir [23] solve the problem min{c′x+f(a′x) : e′x ≤ k, x ∈ {0, 1}n} where f is

a concave function, in polynomial time by reducing it to a two-dimension parametric linear

programming problem. Onn and Rothblum [38] generalize the univariate concave function

to multivariate case. From the equivalence of separation and optimization this suggests

that for such a special submodular function a tractable description of the convex hull of the

epigraph under a cardinality constraint is possible. However, to the best of our knowledge

an explicit inequality description of such a set has not been presented before. Recently a

number of works have used valid inequalities exploiting the submodularity of underlying

functions within mixed integer linear programming approaches for various classes of mixed

integer nonlinear programs [4, 1, 2, 6]. In particular, the work of Atamtürk and Narayanan

[4] is most related to our work. They use the inequalities describing the convex hull of the

epigraph of a submodular function without constraints, i.e. the set conv(Q), to strengthen

a second order cone programming (SOCP) relaxation of a mean-risk optimization problem

in a branch-and-cut procedure and show that facet-defining inequalities of conv(Q) signif-

icantly improves the performance. Our work extends this approach to include information

from a cardinality constraint.

4.2 Valid inequalities for conv(P)

In this section, we study valid inequalities of the convex hull of the set (42):

P =
{

(w, x) ∈ R× {0, 1}n | w ≥ f(a′x), e′x ≤ k
}
,

where f is a concave function and a is a nonnegative vector. The following notation will

be used throughout. Let N = {1, . . . , n}. Denote a(S) :=
∑

i∈S ai for any S ⊆ N . Given a

62

permutation σ := ((1), . . . , (n)) of N , let A(i) =
∑i

j=1 a(j) for all (i) ∈ σ.

Recall the unconstrained version of P, i.e. the setQ = {(w, x) ∈ R× {0, 1}n | w ≥ f(a′x)}.

Using the fact that f(a′x) is submodular over {0, 1}n it is known [11, 32] that every facet

of conv(Q), except the trivial bounds on x, is of the form

f(0) +
∑

(i)∈σ

ρ(i)x(i) ≤ w. (43)

where

ρ(i) = f(A(i−1) + a(i))− f(A(i−1)) (44)

for i ≥ 1 and σ is some permutation of N . Thus a complete inequality description of

conv(Q) is given by the inequalities (43) corresponding to all permutations. Although there

is an exponential number of such inequalities, they can be separated in polynomial time.

Following [4] we refer to the inequalities (43) as extended polymatroid inequalities (EPI).

Clearly EP inequalities are valid for conv(P). Next we strengthen the EP inequalities using

the information from the cardinality constraint in P.

Given a (w, x) ∈ R×[0, 1]n with x(1) ≥ x(2) ≥ · · · ≥ x(n) we can check if (w, x) ∈ conv(P)

by solving the the following (dual) linear program:

max π0 +

n∑

i=1

π(i)x(i)

s.t. π0 +
∑

(i)∈S

π(i) ≤ f(a(S)) ∀S, |S| ≤ k.
(45)

It follows that, given any permutation σ = {(1), . . . , (n)}, an inequality π0 +
∑
π(i)x(i) ≤ w

is valid for conv(P) if and only if π0, π is a feasible solution of (45). Also notice that

coefficients of the EP inequality defined by (44) form a feasible solution of (45) since the

EP inequality is valid for conv(P).

Thus we can get an inequality description of conv(P) if we obtained all optimal solutions

to (45) corresponding to all vectors x. The construction is complicated by the fact that,

unlike the unconstrained case, an optimal solution to (45) depends on the specific value of

the vector x rather than just the permutation implied by its components. In the following

subsection we show that we can do this construction and obtain a description of conv(P)

63

when all components of a are identical which we refer to as the unweighted case. In Sec-

tion 4.2.2 we use a different approach, lifting, to derive valid inequalities for the weighted

case where the vector a has nonidentical components.

4.2.1 Unweighted case: identical components

In this section we consider the case where a1 = · · · = an = a. Without loss of generality,

unless otherwise specified, we consider the permutation (1, . . . , n). We simplify the notation

by denoting f(Ai) = f(a · i) as f(i) and write the coefficients (44) of the EP inequality as

ρi = f(i)− f(i− 1) for i ∈ N . We also denote f(a(S)) = f(|S|) for any S ⊆ N .

Given a vector x ∈ {x ∈ [0, 1]n : e′x ≤ k} such that x1 ≥ x2 · · · ≥ xn we will next

construct an optimal solution to (45). First we define a critical index i0 ∈ {0, 1, . . . , k − 1}

corresponding to x as follows. Let x0 := 1 and zi := (k−i)xi−
∑k−1

j=i+1 xj for i ∈ {0, 1, . . . , k}

so that zk = 0, zk−1 = xk−1, zk−2 = 2xk−2 − xk−1, . . . , z0 = k −∑k−1
j=1 xj . Let y :=

∑n
j=k xj

and

i0 := argmax {0 ≤ i ≤ k − 1 | zi+1 ≤ y ≤ zi} . (46)

Note that i0 is well defined since the range [zi+1, zi] is valid for any i ∈ {0, 1, . . . , k − 1} as

zi−zi+1 = (k− i)(xi−xi+1) ≥ 0, and y will be in some interval [zi+1, zi]. The latter follows

from the fact that y ≥ zk = 0 and y ≤ z0 since z0− y = k−∑n
i=1 xi ≥ 0 because x satisfies

e′x ≤ k. Given i0 ∈ {0, . . . , k − 1}, we construct the following solution to (45):

πj :=

f(0) j = 0

ρj j ≤ i0
f(k)− f(i0)

k − i0
j > i0.

(47)

We will first show that the solution constructed above corresponding to any i0 ∈

{0, . . . , k − 1} is feasible to (45) . Then we will show that if i0 is constructed as in (46) then

it is optimal. We will need the following result.

Lemma 32. Given a concave function f : R → R, for positive integers t1 > t2, t3 > t4,

t2 ≥ t4 and t1 − t2 ≥ t3 − t4, we have

f(t1)− f(t2)

t1 − t2
≤ f(t3)− f(t4)

t3 − t4
.

64

Proof. For any integer i, we define ρi = f(i)− f(i− 1). Then we have

f(t3)− f(t4)

t3 − t4
=

∑t3−1
j≥t4 ρj

t3 − t4

≥
∑t2+t3−t4−1

j=t2
ρj

t3 − t4

≥
∑t2+t3−t4−1

j=t2
ρj +

∑t1−1
j=t2+t3−t4 ρj

t3 − t4 + t1 − t2 − t3 + t4

=
f(t1)− f(t2)

t1 − t2
,

where the first inequality follows from the fact ρj ≥ ρj′ when j ≤ j′ (by concavity) and

t2 ≥ t4; and the second inequality follows from the same fact and t1 − t2 ≥ t3 − t4.

Proposition 33. The solution π in (47) corresponding to any i0 ∈ {0, . . . , k − 1} is feasible

for problem (45).

Proof. For an i0 ∈ {0, . . . , k − 1}, consider an arbitrary set S such that |S| ≤ k. Let

S1 = S ∩ {1, . . . , i0} and S2 = S\S1. Let i1 = |S1| , i2 = |S2|. Then from the construction

(47), π satisfies

π0 +
∑

i∈S
πi = π0 +

∑

i∈S1

πi +
∑

i∈S2

πi ≤ f(i1) +
∑

i∈S2

πi = f(i1) + i2 ·
f(k)− f(i0)

k − i0
.

The first inequality in the above chain follows from the fact that for i ∈ S1, πis are co-

efficients of EPI and hence satisfies π0 +
∑

i∈S1
πi ≤ f(S1) = f(i1). The second equality

follows from the definition of the dual solution in (47). If i2 = 0, then we already know it

is feasible. Assume i2 > 0, we need to show

f(i1) + i2 ·
f(k)− f(i0)

k − i0
≤ f(i1 + i2),

which is equivalent to

f(k)− f(i0)

k − i0
≤ f(i1 + i2)− f(i1)

i2
. (*)

We consider two cases:

i2 ≤ k − i0: Inequality (*) follows from Lemma 32 by setting t1 = k, t2 = i0, t3 = i1 + i2

and t4 = i1. Note that t2 ≥ t4 since i0 ≥ i1 and t1 − t2 ≥ t3 − t4 since k − i0 ≥ i2.

65

i2 > k − i0: First by concavity, we know

i2(f(k)− f(i1 + i2)) ≤ i2(f(i)− f(i1 + i2 − (k − i0))).

We also have

(i2 + i0 − k)(f(i1 + i2)− f(i1)) ≤ i2(f(i1 + i2 − (k − i0))− f(i1))

from Lemma 32 by setting t1 = i1 + i2, t2 = i1, t3 = i1 + i2 − k + i0 and t4 = i1. To check

that the condition of Lemma 32 is satisfied, first note t3 = i1 +i2−(k−i0) ≥ 0, then t2 = t4,

and finally t1 − t2 = i2 ≥ t3 − t4 = i2 + i0 − k since i0 ≤ k. Add these two inequalities

together, and after rearrangement, we get inequality (*).

Next we show that when i0 is constructed as in (46) then π constructed as in (47) is an

optimal solution to problem (45). We proceed by constructing a complementary solution

to the following primal problem corresponding to (45):

min
∑

|S|≤k

P (S)f(|S|)

s.t.
∑

S:i∈S,|S|≤k

P (S) = xi ∀i ∈ N

∑

|S|≤k

P (S) = 1

P (S) ≥ 0, ∀S, |S| ≤ k.

(48)

We construct a solution to (48) as follows:

P (∅) = 1− x1; P ({1, . . . j}) = xj − xj+1 ∀j < i0; and P ({1, . . . , i0}) =
zi0 − y
k − i0

. (49)

Note that if i0 = 0, then

P (∅) =
z0 − y
k

.

Let S := {S | S ⊂ {i0 + 1, . . . , n} , |S| = k − i0}. For sets S ∈ S we set P (S) according to

Lemma 34 below. All remaining sets S ⊆ N with |S| ≤ k are assigned P (S) = 0. The sets

whose probabilities we are going to calculate are illustrated at Figure 9.

66

1 2 i0 i0 + 1 n

∅
{1}
{1, 2}

{1, . . . , i0}
{1, . . . , i0} ∪ S1

{1, . . . , i0} ∪ S2

...

...

.

S1

S2

Figure 9: An illustration of an solution of (48), Si ⊆ {i0 + 1, . . . , n} , |Si| = k − i0
A solution of (48) consists a chain of sets: ∅, {1} , . . . , {1, . . . , i0} and sets {1, . . . , i0}∪Si
where Si ⊆ i0 + 1, . . . , n are determined by Algorithm 6.

Lemma 34. Suppose i0 is constructed as in (46) then the following linear system in P (S)

for S ∈ S
∑

S:i∈S
P ({1, . . . , i0} ∪ S) = xi, i ∈ {i0 + 1, . . . , n}

has a nonnegative solution and

∑

S∈S
P ({1, . . . , i0} ∪ S) =

∑n
i=i0+1 xi

k − i0
.

Proof. To avoid confusion with the original notation, we change the notation as follows.

Set m = n − i0, l = k − i0, v1 = xi0+1, v2 = xi0+2, . . . , vm = xn. We will prove for

m, l ∈ Z+,m ≥ l + 1, v1 ≥ v2 ≥ · · · vm ≥ 0, and S = {S | S ⊂ {1, . . . ,m} , |S| = l}, the

following linear system in q(S), S ∈ S

∑

S:j∈S
q(S) = vj , j ∈ {1, . . . ,m} ,

has a nonnegative solution and
∑

S∈S q(S) =
∑m
j=1 vj
l .

We will use Algorithm 6 to construct a feasible solution. The main idea is for any set

S, the associated variable qt(S) will remain nondecreasing in the iteration count t. For

any j, vtj is the right-hand-side value that has not been satisfied yet, and it will remain

67

Algorithm 6: Recursive procedure to construct a feasible solution

t← 0,mt ← m;
vtj ← vj , 1 ≤ j ≤ mt qt(S)← 0, ∀S ∈ S;

while mt > l + 1 do

C1 if lvtl ≤
∑mt

j=1 v
t
j − lvtmt then

qt+1(
{

1, . . . , l − 1,mt
}

)← q(
{

1, . . . , l − 1,mt
}

) + vtmt ;

vt+1
j ← vtj − vtmt , j ∈ {1, . . . , l − 1};
mt+1 ← mt − 1;

else

C2 ∆ =
∑mt

j=1 v
t
j/l − vtl+1;

qt+1({1, . . . , l})← qt({1, . . . , l}) + ∆;

vt+1
j ← vtj −∆, j ∈ {1, . . . , l};
mt+1 ← mt

end
qt+1(S)← qt(S) for all the other S;

SRT sort vt+1
1 , . . . , vt+1

mt and index them so that vt+1
1 ≥ · · · vt+1

mt+1 ;

t← t+ 1;

end

qt({1, . . . , l + 1} \ {j})← qt({1, . . . , l + 1} \ {j}) +
∑l+1
τ=1 v

t
τ

l − vtj , j ∈ {1, . . . , l + 1}

nonincreasing in t. We will keep vt+1
j +

∑
S,j∈S,S∈S q

t+1(S) = vj along the way. At the end

of the procedure, every item j will have its vtj = 0 , and we will find the solution as desired.

We now exploit some properties of vtj and qt(S). Initially, we have

1. v0
j ≥ 0 for every j

2. q0(S) = 0 and v0
j +

∑
S,j∈S,S∈S q

0(S) = vj

3. Since y ≥ zi0+1, we have
∑n

j=k xj ≥ (k − i0 − 1)xi0+1 −
∑k−1

j=i0+2 xj . Then
∑m

j=1 vj =

∑n
j=i0+1 xj ≥ (k − i0)xi0+1 = lv1.

We will show that vls satisfy the following invariance after finishing line SRT.

1. vt+1
j ≥ 0 for j ∈

{
1, . . . ,mt+1

}
.

2. vt+1
j +

∑
S,j∈S,S∈S q

t+1(S) = vj .

3. lvt+1
1 ≤∑mt+1

j=1 vt+1
j .

68

First we prove vt+1
j ≥ 0. Case C1 is easy since vtj ≥ vtmt for all j. For Case C2 where

lvtl >
∑mt

j=1 v
t
j − lvtmt , the smallest vt+1

j among the ones updated is

vtl −∆ = vtl −
∑mt

j=1 v
t
j

l
+ vtl+1 ≥

∑mt

j=1 v
t
j

l
− vtmt −

∑mt

j=1 vj

l
+ vtl+1 = vtl+1 − vtmt ≥ 0.

Then we show vt+1
j +

∑
S,j∈S,S∈S q

t+1(S) = vj . Since in the loop each iteration we only

consider one set S, and for any item j ∈ S, vtj − vt+1
j = qt+1(S)− qt(S) , the claim is true.

Then we prove that lvt+1
1 ≤∑mt+1

j=1 vt+1
j after line SRT. In Case C1, vt+1

1 will be either

• vt1 − vtmt . Then
∑mt+1

j=1 vt+1
j =

∑mt

j=1 v
t
j − lvtmt ≥ lvt1 − lvtmt since the claim holds for

the previous iteration, or

• vtl . Then again
∑mt+1

j=1 vt+1
j =

∑mt

j=1 v
t
j − lvtmt ≥ lvtl because we are at Case C1.

In the second case C2, first notice that after line SRT, vt+1
1 = vtl+1 since the other choice

vt1 −∆ = vt1 −
∑mt

j=1 v
t
j

l
+ vtl+1 ≤ vtl+1 because lvt1 ≤

∑mt

j=1 v
t
j . Then

mt+1∑

j=1

vt+1
j =

mt∑

j=1

vtj − l∆ =
mt∑

j=1

vtj − l
(∑mt

j=1 v
t
j

l
− vtl+1

)
= lvtl+1.

If Algorithm 6 terminates, we say that qt(S),∀S ∈ S is the solution desired. We consider

two cases after the while loop. For any j > l + 1, we have vtj = 0 which is equivalent to

∑
S,j∈S,S∈S q

t(S) = vj . For any j ≤ l + 1, before the last line, we have
∑

S,j∈S,S∈S q
t(S) =

vj − vtj , and after last line, we have

∑

S,j∈S,S∈S
qt(S) = vj − vtj +

∑

j′ 6=j

(∑l+1
τ=1 v

t
τ

l
− vtj′

)
= vj − vtj +

l+1∑

τ=1

vtτ −
∑

j′ 6=j
vtj′ = vj .

If it does not terminate, we claim that q(S) = limt→∞ q
t(S) for all S ∈ S is the

solution desired. To prove that, we show that limt→∞ v
t
j = 0. If this is true, then

we get limt→∞
∑

S,j∈S,S∈S q
t(S) = vj . Notice that each time after we finish Case (C2),

∑mt+1

j=1 vt+1
j ≤ l

l+1

∑mt

j=1 v
t
j because

mt∑

j=1

vtj ≥
l+1∑

j=1

vtj ≥ (l + 1)vtl+1, and
mt+1∑

j=1

vt+1
j =

mt∑

j=1

vtj − l∆ = lvl+1.

69

Since the algorithm does not terminate, Case C2 happens infinitely many times. Notice

that initially
∑m0

j=1 vj ≤ m, the value

lim
t→∞

mt∑

j=1

vtj ≤ lim
t→∞

(
l

l + 1
)tm = 0.

Since vtj is always nonnegative, limt→∞
∑mt

j=1 v
t
j = 0 and limt→∞ v

t
j = 0.

Now we calculate the sum of all variables. Given that

∑

S:j∈S
q(S) = vj , j ∈ {1, . . . ,m} ,

we have
m∑

j=1

∑

S:j∈S
q(S) =

m∑

j=1

vj .

Since each q(S) appears on the left side exactly l times,

l
∑

S∈S
q(S) =

m∑

j=1

vj .

Lemma 35. Suppose i0 is constructed as in (46) then the solution P (S) defined by (49)

and Lemma 34 is a feasible solution to the primal problem (48).

Proof. First we check that
∑

S:i∈S,|S|≤k P (S) = xi for all i ∈ N . If i > i0, this holds by

Lemma 34. For i ≤ i0, apply (49), Lemma 34, and the definitions of zi0 and y. We have:

i0∑

j=i

P ({1, . . . , j}) +
∑

S∈S
P (S ∪ {1, . . . , i0})

=xi − xi0 +
zi0 − y
k − i0

+

∑n
j=i0+1 xj

k − i0

=xi − xi0 +
(k − i0)xi0 −

∑n
j=i0+1 xj

k − i0
+

∑n
j=i0+1 xj

k − i0
=xi.

Next we check that the P (S)’s sum up to one. For i0 > 0, we have the following by the

same steps as above for i = 1 and the construction of P (∅):

P (∅) +

i0∑

j=1

P ({1, . . . , j}) +
∑

S∈S
P (S ∪ {1, . . . , i0}) = 1− x1 + x1 = 1.

70

For i0 = 0, we have

P (∅) +
∑

S∈S
P (S) =

k −∑n
j=1 xj

k
+

∑n
j=1 xj

k
= 1.

Proposition 36. Suppose i0 is constructed as in (46) then the solution π constructed as

in (47) is an optimal solution for problem (45).

Proof. By Lemma 33 and Lemma 35, we already know we have a pair of primal and dual

feasible solutions. Now we verify that the objective value of the primal solution is the same

as the dual solution. For i0 > 0, we have

f(∅)P (∅) +

i0∑

l=1

P ({1, . . . , l})f(l) +
∑

S∈S
P (S ∪ {1, . . . , i0})f(k)

=f(0) +

i0∑

j=1

(f(j)− f(j − 1))xj +
n∑

j=i0+1

f(k)− f(i0)

k − i0
xj .

For i0 = 0, we have

f(∅)P (∅) +
∑

S∈S
P (S)f(k)

=
k −∑n

j=1 xj

k
f(0) +

∑n
j=1 xj

k
f(k)

=f(0) +
n∑

j=1

f(k)− f(0)

k
xj

Theorem 37. When a1 = · · · = an = a then conv(P) is defined by the trivial inequalities

x ∈ [0, 1]n, e′x ≤ k and the following inequalities

f(0) +

i0∑

j=1

(f(j)− f(j − 1))x(j) +

n∑

j=i0+1

f(k)− f(i0)

k − i0
x(j) ≤ w (50)

corresponding to every permutation σ = {(1), . . . , (n)} of N and i0 ∈ {0, 1, . . . , k−1}, where

f(j) = f(a · j) for j ∈ N . Moreover given a x ∈ [0, 1]n, we can decide whether x ∈ conv(P)

and find a violated inequality in O(n log n) time.

71

Proof. The first part follows from Propositions 33 and 36. Given x ∈ [0, 1]n we can first

check in O(n) if e′x ≤ k. If yes, then to compute the coefficients of (50), first we sort

the components of x, which takes O(n log n) time. Then finding the desired i0 takes O(n)

time. Once i0 is found, the coefficients can be computed according to (47) in O(n) time.

Therefore we can check for a violated inequality of the form (50) in O(n log n) time.

We refer to the inequalities (50) as separation inequalities (SI) since they can be exactly

separated.

Example 38. Consider an example of P =
{

(w, x) ∈ R× {0, 1}n | w ≥
√
e′x, e′x ≤ k

}
. Let

n = 6, k = 3. Let δ = (1, 2, 3, 4, 5, 6) be a permutation of {1, . . . , 6}. Its corresponding

extended polymatroid inequality (43) is

w ≥ x1 + 0.4142x2 + 0.3178x3 + 0.2679x4 + 0.2361x5 + 0.2134x6;

and its corresponding separation inequality (50) for i0 = 2 is

w ≥ x1 + 0.4142x2 + 0.3178x3 + 0.3178x4 + 0.3178x5 + 0.3178x6.

We see the latter is tighter than the former at coefficients of x4, x5 and x6.

4.2.2 Weighted case: nonindentical components

Now we consider the more general case where the components of the nonnegative vector a

are not necessarily identical. We derive a family of facet-defining inequalities of conv(P)

through lifting. Consider a set S ⊂ N such that |S| = k. Without loss of generality, we

consider the set S = {1, . . . , k}. The restriction of P by setting xi = 0 for all i ∈ N\S is

denoted by:

P0 =
{

(w, x) ∈ R× {0, 1}S | w ≥ f(a′x)
}
.

Since there is no constraint on x in P0, we know that the extend polymatroid inequality

(43) is facet-defining for P0:

f(0) +
k∑

i=1

ρixi ≤ w (51)

72

We then lift variables xk+1, . . . , xn sequentially in that order. The intermediate set of

feasible points are:

P i =
{

(w, x) ∈ R× {0, 1}{1,...,k,...,i} | w ≥ f(a′x), e′x ≤ k
}
∀ i = k + 1, . . . , n.

Given a facet-defining inequality

f(0) +

k∑

j=1

ρjxj +

i−1∑

j>k

ζjxj ≤ w

for conv(P i−1), the lifting problem associated with P i is:

ζi := min w − f(0)−
k∑

j=1

ρixj −
i−1∑

j>k

ζjxj

s.t. f

∑

j<i

ajxj + ai

 ≤ w

∑

j<i

xj ≤ k − 1, xj ∈ {0, 1} ∀ j = 1, . . . , i− 1

(52)

From [21], We have the following result.

Lemma 39. If the lifting coefficients ζj for j = k + 1, . . . , i are computed as in (52) then

the inequality

f(0) +
k∑

j=1

ρjxj +
i∑

j>k

ζjxj ≤ w

is facet-defining for conv(P i).

Lemma 40. The lifting coefficient ζi in (52) can be computed in O(i3) time.

Proof. The optimization problem (52) is equivalent to the following problem of minimizing

concave function over cardinality constraint

min

f

∑

j<i

ajxj + ai

−

k∑

j=1

ρjxj −
i−1∑

j>k

ζjxj ,
∑

j<i

xj ≤ k − 1, xj ∈ {0, 1}, ∀j = 1, . . . , i− 1

 .

This problem can be reduced to a two-dimension parametric linear programming problem

and solved by enumerating all its O(i2) extreme points. Atamtürk and Narayanan give such

an algorithm in [5] that finds an optimal solution in O(i3).

The following theorem directly follows from Lemma 39 and Lemma 40.

73

Theorem 41. For a permutation ((1), . . . , (n)), the inequality

f(0) +
∑

i≤k
ρ(i)x(i) +

∑

i>k

ζ(i)x(i) ≤ w (53)

is facet-defining for conv(P), and can be computed in time O(n4).

Next we relate the above inequality to the separation inequalities (50) when a has

identical components.

Proposition 42. If the components of a are identical, then ζi = f(k)− f(k− 1) for i > k.

Moreover for all i > k, the lifted coefficient ζi = πi, where πi is given by (47) corresponding

to i0 = k − 1.

Proof. Denote f(
∑

i aixi) as f(
∑

i xi) and f(a · i) as f(i). We have

ζi = min
x∈{0,1}i

f

∑

j<i

xj + 1

− f(0)−

k∑

j=1

ρjxj −
i−1∑

j>k

ζjxj |
∑

j<i

xj ≤ k − 1

≥ min
x∈{0,1}i

f

∑

j<i

xj + 1

− f

∑

j<i

xj

 |

∑

j<i

xj ≤ k − 1

= f(k)− f(k − 1),

where the inequality comes from the validity of the coefficients ρj for 1 ≤ j ≤ k and ζj for

j > k, i.e., f(0) +
∑k

j=1 ρjxj +
∑i−1

j>k ζjxj ≤ f(
∑

j<i xj) and the equality comes from the

concavity of f . However ζi ≤ f(k)−f(k−1) since xj = 1 for j ∈ {1, . . . , k − 1} is a solution

of (52). Finally we observe that ζi = πi defined in (47) when i0 = k − 1 and i > k.

The O(n4) time complexity of the exact lifted inequality (53) make it computationally

ineffective in a branch-and-cut framework. Next, we derive another set of approximately

lifted valid inequalities that will be used in our computational experiments.

Proposition 43. For i > k, let T(i) = argmax {a(T) | T ⊆ {(1), . . . , (i− 1)} , |T | = k − 1},

and γ(i) = f(a(T(i)) + a(i))− f(a(T(i)). The inequality,

f(0) +
∑

i≤k
ρ(i)x(i) +

∑

i>k

γ(i)x(i) ≤ w (54)

is valid for conv(P) and can be computed in O(n log n) time.

74

Proof. Without loss of generality, we fix the sequence as (1, . . . , n) in the proof. Let T ∗i ⊆

{1, . . . , i− 1} denote the support of an optimal solution of (52), i.e. xj = 1 for j ∈ T ∗i is an

optimal solution. We prove the statement by showing that for every i > k, γi ≤ ζi:

γi = f(a(Ti) + ai)− f(a(Ti))

≤ f(a(T ∗i) + ai)− f(a(T ∗i))

≤ f(a(T ∗i) + ai)− f(0)−
∑

j∈T ∗i ,j≤k
ρj −

∑

j∈T ∗i ,j>k
ζj

= ζi.

Above the first inequality is by concavity of f and the fact that a(Ti) ≥ a(T ∗i). The second

inequality comes from the validity of the coefficients ρj for 1 ≤ j ≤ k and ζj for j > k, i.e.,

f(0) +
∑

j∈T ∗i ,j≤k
ρj +

∑
j∈T ∗i ,j>k

ζj ≤ f(a(T ∗i)). Finally the last equality is by definition of

ζi.

For time complexity, the ρis can be computed in time O(k). Then for γi, we maintain

a sorted list of a1, . . . , ai−1 and the sum of its k − 1 largest items. For a new ai, we insert

it into the sorted list and update the sum, which takes O(log n) time. Therefore the total

time will be O(n log n).

We refer to the approximately lifted inequality (54) as a lifted inequality (LI) in the remain-

der of the chapter.

Example 44. Consider an example of P =
{

(w, x) ∈ R× {0, 1}n | w ≥
√
a′x, e′x ≤ k

}
where

n = 6, k = 3, and

a = (0.7522, 0.0212, 0.8534, 0.4937, 0.8597, 0.3100)

whose components are generated from uniform distribution [0, 1]. Let δ = (1, 2, 3, 4, 5, 6) be

a permutation of {1, . . . , 6}. Its corresponding extended polymatroid inequality (43) is

w ≥ 0.8673x1 + 0.0121x2 + 0.3960x3 + 0.1807x4 + 0.2701x5 + 0.0876x6.

Its corresponding lifted inequality (54) is

w ≥ 0.8673x1 + 0.0121x2 + 0.3960x3 + 0.1818x4 + 0.3030x5 + 0.1135x6.

75

We see that the latter is tighter than the former at coefficients of x4, x5 and x6.

Remark 45. If the components of a are identical then γi = f(k) − f(k − 1), and therefore

γi = ζi in this case.

We also have the following property that the (LI) inequality is at least as strong as the

(EP) inequality.

Proposition 46. γ(i) − ρ(i) ≥ 0, and is positive if f is strictly monotone.

Proof. Since

γ(i) − ρ(i) = f(a(T(i) + a(i))− f(a(T(i))−

f

∑

j<i

a(j) + a(i)

− f

∑

j<i

a(j)

 ,

and we know from the definition in (54) that a(T(i)) <
∑

j<i a(j) if i > k, therefore by

concavity γ(i) ≥ ρ(i). It is then positive if f is strictly monotone.

4.3 Computational results

In this section we demonstrate the effectiveness of the proposed separation inequalities

(50) and the lifted inequalities (54) for solving the following class of mean-risk knapsack

problems [4]:

min
{
−λ′x+ Ω(ε)

√
ν ′x : b′x ≤ B, x ∈ {0, 1}n

}
. (55)

As discussed in Section 4.1, problem (55) involves a weighted combination of the mean

and standard deviation of the total value of a knapsack, where individual item values are

independent stochastic with mean µi and variance νi for i = 1, . . . , n. Following[4, 16, 7] the

tradeoff between the mean and standard deviation of the objective is set as Ω(ε) =
√

1−ε
ε

where ε ∈ (0, 1) represents a risk aversion parameter. The vector of item weights and

knapsack capacity are denoted by b and B, respectively. Problem (55) can be formulated

as a mixed-integer second order cone program (SOCP):

min

−λ

′x+ Ω(ε)w : w ≥
√∑

i

νix2
i , b

′x ≤ B, x ∈ {0, 1}n

 . (56)

We incorporate the proposed inequalities in a branch-and-cut framework for the above

formulation. Note that inequalities derived in the previous section are for the cardinality

76

constraint e′x ≤ k, while the constraint in (56) is a knapsack. We derive a cardinality

constraint from the knapsack constraint as a simple cover inequality as follows. Sort bi such

that b1 ≤ · · · ≤ bn, and find an index k such that b1 + · · · bk ≤ B and b1 + . . .+ bk+1 > B.

Then the constraint e′x ≤ k is valid for b′x ≤ B.

The implementation, written in python, is based on the mixed integer second order cone

programming solver of Gurobi 5.6. The continuous relaxation of (56) at each node is solved

using the Barrier method. We restrict the number of submodular inequalities added to at

most five. Gurobi’s internal cut parameters are in default setting. We disable multithread-

ing, heuristics, and the concurrent MIP solver; and set the relative MIP optimality gap as

0.01% and the time limit of the computation to 30 minutes. All computations are on an

Intel Xeon server with 16 cores and 7GB memory restriction.

Our computational experiments use randomly generated instances of (56). Our param-

eters’ setting generally follow the ones in [4]. For the weighted case, each component of

λ and b is generated from a uniform distribution with range [0, 100]. The risk aversion

parameter ε is from {0.01, 0.02, 0.03}. It is varied to observe the relationship between the

weight on the nonlinear term in the objective and running time. For each component νi of

the variance vector, its square root is uniformly generated in the range [0, αλi] where α is

from {0.5, 0.75, 1}. Such generation ensure that
√
νi/λi ≤ α. Finally we set B = b∑i bi/rc

where r is also a varied parameter. For a fixed b1, . . . , bn, the larger r is, the smaller B

is, thus the smaller k is. Therefore the parameter r controls the right-hand-side of the

cardinality constraint. For the unweighted case, the uniform distribution of components in

λ is changed to [1, 5] and every component of νi is identical and equal to a number whose

square root is generated according to the uniform distribution with range [1, α ·mini {λi}].

The reasons for the changes are the following. First we need the upper bound mini {λi}

to ensure
√
νi ≤ αλi for every i. Second if we used a lower bound of 0 for λ, it sometimes

generates very small λi which then makes the non-linear part of the problem negligible.

Thirdly, if we used the original upper bound of 100 for λ, instances for the unweighted case

could be solved in less than one second making them too trivial.

The experiments are performed over all combinations of the parameters n, α, ε and

77

r; and for each combination we generate 20 instances. For each instance, we solve the

problem using three different approaches: the SOCP formulation, SOCP formulation with

the extended polymatroid inequalities (43) denoted by EPI, and the SOCP formulation

with lifted inequalities (54) denoted by LI (or separation inequalities (47) if unweighted,

denoted by SI).

Figure 10 presents the performance profiles of time for the weighted and unweighted

cases. Following Dolan and Moré in [10], the performance profiles are constructed as follows.

We have a set S of three solvers: SOCP, EPI, LI/SI, and a set of problem instances P.

For a solver s ∈ S and a problem instance p ∈ P, we calculate its performance ratio

rp,s =
tp,s

min{tp,s | s∈S} where tp,s is the time required by solver s on instance p. Figure 10

plots the cumulative distribution function of the performance ratio defined as gs(τ) =

1
|P| |{p ∈ P | rp,s ≤ τ}|. Observe that in both cases the proposed inequalities are uniformly

better than SOCP formulation and SOCP with EPI. The improvement in the unweighted

cases is very significant since in this case we have a complete description of the convex hull.

In Tables 3 and 4, we provide more details of the performance improvement. These tables

report, for both the weighted and unweighted cases, the node counts, the solution times, and

the corresponding percentage of improvements over EPI across various parameter settings.

We note that with LI or SI, performance is better in almost every parameter group. We

also observe that the weighted case takes much more time and nodes than the unweighted

case. When the parameter α , which controls the range of the variance νi, gets smaller, the

time and node needed decrease most significantly, compared with other parameters. This

is because when α is small, the non-linear part of the constraint is less import. For both

weighted and unweighted case, smaller α means that LI/SI cuts lead to better improvements.

For ε, a smaller value puts more weight on the difficult nonlinear part of the objective and

therefore the running time is longer. For the parameter r, we see that in the weighted case,

larger r results in better improvement in case of the LI cuts. This observation matches our

theoretical results since larger r indicates smaller k which implies that there will be more

different coefficients in the LI cuts compared with EPI cuts.

78

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

SOCP
EPI
SI

(a) Weighed case

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

SOCP
EPI
SI

(b) Unweighted case

Figure 10: Performance profiles

79

Table 3: Performance comparison for weighted case

SOCP EPI LI

Nodes Time Nodes Time Nodes Improvement Time Improvement

n = 50 4480 15.18 1416 8.17 1422 -0.46% 6.60 19.28%
n = 100 150638 662.04 26093 148.49 24209 7.22% 140.98 5.05%

α = 0.5 17678 78.07 2145 20.10 2018 5.92% 12.03 40.16%
α = 0.75 74241 335.07 12571 76.20 12412 1.27% 75.51 0.90%
α = 1 140758 602.69 26547 138.68 24018 9.53% 133.83 3.50%

ε = 0.03 39773 159.74 4041 23.84 3732 7.67% 19.01 20.27%
ε = 0.02 75951 307.15 12245 70.27 11754 4.01% 64.93 7.60%
ε = 0.01 116953 548.94 24977 140.88 22962 8.07% 137.44 2.44%

r = 7.5 64116 276.29 8004 55.48 8007 -0.03% 48.97 11.73%
r = 5 95961 420.91 12622 71.94 11194 11.31% 68.09 5.36%
r = 2 72599 318.63 20637 107.57 19247 6.74% 104.32 3.03%

4.4 Conclusion

In this chapter, we develop a mixed-integer linear formulation of the epigraph of submod-

ular function f(a′x) together with a cardinality constraint. For special cases when every

component of a is identical, we give a complete description of the convex hull and provide

a fast separation algorithm. For the general case, we develop a family of facet-defining in-

equalities through lifting and another family of valid inequalities that are easily computable

in a branch-and-cut framework. Computational experiments show significant improvement

over the standard formulation without considering the cardinality constraint.

The question remains whether for a general vector a the convex hull of the epigraph of

submodular function f(a′x) with cardinality constraint may have a simple polynomial time

separation algorithm similar to Algorithm 2 for the epigraph of submodular function without

constraints. Linear optimization over the epigraph of f(a′x) with cardinality constraint can

be solved by an algorithm in [5], but a separation algorithm similar to Algorithm 2 needs

much more structural information on the inequalities describing epigrah, which we do not

know yet.

80

Table 4: Performance comparison for unweighted case

SOCP EPI SI

Nodes Time Nodes Time Nodes Improvement Time Improvement

n = 50 3923 12.22 2962 8.92 2074 29.96% 7.85 12.02%
n = 100 21133 77.27 4248 22.10 3482 18.01% 16.27 26.41%

α = 0.5 1643 5.04 773 5.55 731 5.33% 2.56 53.91%
α = 0.75 6180 19.99 1600 5.95 1460 8.72% 5.51 7.47%
α = 1 29761 109.20 8442 35.03 6144 27.22% 28.10 19.77%

ε = 0.03 2287 7.78 905 3.43 838 7.35% 3.24 5.53%
ε = 0.02 4631 15.31 1331 6.86 1262 5.17% 4.76 30.65%
ε = 0.01 30666 111.13 8579 36.24 6235 27.32% 28.17 22.27%

r = 7.5 10300 35.35 4883 20.57 3153 35.43% 12.67 38.42%
r = 5 13785 52.23 4613 17.74 3871 16.09% 18.44 -3.96%
r = 2 13498 46.65 1319 8.22 1312 0.52% 5.06 38.47%

81

REFERENCES

[1] Ahmed, S. and Atamtürk, A., “Maximizing a class of submodular utility functions,”
Mathematical Programming, vol. 128, no. 1, pp. 149–169, 2011.

[2] Ahmed, S. and Papageorgiou, D. J., “Probabilistic set covering with correlations,”
Operations Research, vol. 61, no. 2, pp. 438–452, 2013.

[3] Asadpour, A., Nazerzadeh, H., and Saberi, A., “Stochastic submodular maxi-
mization,” in Proceedings of the 4th International Workshop on Internet and Network
Economics, WINE, pp. 477–489, 2008.

[4] Atamtürk, A. and Narayanan, V., “Polymatroids and mean-risk minimization in
discrete optimization,” Operations Research Letters, vol. 36, no. 5, pp. 618–622, 2008.

[5] Atamtürk, A. and Narayanan, V., “The submodular knapsack polytope,” Discrete
Optimization, vol. 6, no. 4, pp. 333 – 344, 2009.

[6] Baumann, F., Berckey, S., and Buchheim, C., “Exact algorithms for combinatorial
optimization problems with submodular objective functions,” in Facets of Combinato-
rial Optimization (Jünger, M. and Reinelt, G., eds.), pp. 271–294, Springer Berlin
Heidelberg, 2013.

[7] Bertsimas, D. and Popescu, I., “Optimal inequalities in probability theory: A
convex optimization approach,” SIAM Journal on Optimization, vol. 15, no. 3, pp. 780–
804, 2005.

[8] Charikar, M., Chekuri, C., and Pál, M., “Sampling bounds for stochastic opti-
mization,” in Proceedings of the 9th International Workshop on Randomization and
Computation, RANDOM, pp. 257–269, 2005.

[9] Conforti, M. and Cornuéjols, G., “Submodular set functions, matroids and the
greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-
Edmonds theorem,” Discrete Applied Mathematics, vol. 7, no. 3, pp. 251–274, 1984.

[10] Dolan, E. D. and Moré, J. J., “Benchmarking optimization software with perfor-
mance profiles,” Mathematical Programming, vol. 91, no. 2, pp. 201–213, 2002.

[11] Edmonds, J., “Submodular functions, matroids, and certain polyhedra,” in Combi-
natorial Structures and Their Applications, pp. 68–87, Gordon and Breach, 1971.

[12] Feige, U., Mirrokni, V., and Vondrak, J., “Maximizing non-monotone submod-
ular functions,” in Foundations of Computer Science, 2007. FOCS ’07. 48th Annual
IEEE Symposium on, pp. 461–471, Oct 2007.

[13] Feige, U., “A threshold of lnn for approximating set cover,” Journal of the ACM,
vol. 45, no. 4, pp. 634–652, 1998.

82

[14] Feldman, E., Lehrer, F., and Ray, T., “Warehouse location under continuous
economies of scale,” Management Science, vol. 12, pp. 670–684, 1966.

[15] Garey, M. R. and Johnson, D. S., Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[16] Ghaoui, L. E., Oks, M., and Oustry, F., “Worst-case value-at-risk and robust
portfolio optimization: A conic programming approach,” Operations Research, vol. 51,
no. 4, pp. 543–556, 2003.

[17] Goel, G., Karande, C., Tripathi, P., and Wang, L., “Approximability of combi-
natorial problems with multi-agent submodular cost functions,” in Proceedings of the
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 755–
764, IEEE, 2009.

[18] Goemans, M. X., Harvey, N. J. A., Iwata, S., and Mirrokni, V., “Approxi-
mating submodular functions everywhere,” in SODA ’09: Proceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, (Philadelphia, PA, USA),
pp. 535–544, Society for Industrial and Applied Mathematics, 2009.

[19] Goemans, M. X. and Soto, J. A., “Symmetric submodular function minimization
under hereditary family constraints,” CoRR, vol. abs/1007.2140, 2010.

[20] Grötschel, M., Lovász, L., and Schrijver, A., “The ellipsoid method and its
consequences in combinatorial optimization,” Combinatorica, vol. 1, no. 2, pp. 169–
197, 1981.

[21] Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W., “Sequence independent
lifting in mixed integer programming,” Journal of Combinatorial Optimization, vol. 4,
no. 1, pp. 109–129, 2000.

[22] Hajiaghayi, M., Mahdian, M., and Mirrokni, V., “The facility location problem
with general cost functions,” Networks, vol. 42, no. 1, pp. 42–47, 2003.

[23] Hassin, R. and Tamir, A., “Maximizing classes of two-parameter objectives over
matroids,” Mathematics of Operations Research, vol. 14, no. 2, pp. 362–375, 1989.

[24] Hille, E. and Phillips, R. S., Functional analysis and semi-groups, vol. 31. American
Mathematical Soc., 1957.

[25] Ibarra, O. H. and Kim, C. E., “Fast approximation algorithms for the knapsack and
sum of subset problems,” Journal of the ACM, vol. 22, no. 4, pp. 463–468, 1975.

[26] Ishii, H., Shiode, S., Nishida, T., and Namasuya, Y., “Stochastic spanning tree
problem,” Discrete Applied Mathematics, vol. 3, no. 4, pp. 263 – 273, 1981. Special
Copy.

[27] Iwata, S., Fleischer, L., and Fujishige, S., “A combinatorial strongly polynomial
algorithm for minimizing submodular functions,” Journal of the ACM, vol. 48, no. 4,
pp. 761–777, 2001.

[28] Iwata, S. and Nagano, K., “Submodular function minimization under covering con-
straints,” in Proceedings of the 50th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS, pp. 671–680, IEEE, 2009.

83

http://arxiv.org/abs/1007.2140

[29] Klastorin, T., “On a discrete nonlinear and nonseparable knapsack problem,” Op-
erations Research Letters, vol. 9, no. 4, pp. 233–237, 1990.

[30] Lee, J., Mirrokni, V. S., Nagarajan, V., and Sviridenko, M., “Non-monotone
submodular maximization under matroid and knapsack constraints,” in Proceedings of
the forty-first annual ACM symposium on Theory of computing, pp. 323–332, ACM,
2009.

[31] Li, J. and Deshpande, A., “Maximizing expected utility for stochastic combinato-
rial optimization problems,” in Proceedings of the 52nd Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pp. 797 –806, 2011.

[32] Lovász, L., “Submodular functions and convexity,” in Mathematical Programming
The State of the Art, pp. 235–257, Springer, 1983.

[33] Mehrez, A. and Sinuany-Stern, Z., “Resource allocation to interrelated risky
projects using a multiattribute utility function,” Management Science, vol. 29, no. 4,
pp. 430–439, 1983.

[34] Meyer, R. R., “On the existence of optimal solutions to integer and mixed-integer
programming problems,” Mathematical Programming, vol. 7, no. 1, pp. 223–235, 1974.

[35] Nemhauser, G. L. and Wolsey, L. A., Integer and combinatorial optimization,
vol. 18. Wiley New York, 1988.

[36] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L., “An analysis of approxima-
tions for maximizing submodular set functions,” Mathematical Programming, vol. 14,
no. 1, pp. 265–294, 1978.

[37] Nikolova, E., “Approximation algorithms for reliable stochastic combinatorial opti-
mization,” in Proceedings of the 13th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, APPROX, pp. 338–351, Springer,
2010.

[38] Onn, S. and Rothblum, U. G., “Convex combinatorial optimization,” Discrete &
Computational Geometry, vol. 32, no. 4, pp. 549–566, 2004.

[39] Ozsen, L., Coullard, C. R., and Daskin, M. S., “Capacitated warehouse location
model with risk pooling,” Naval Research Logistics (NRL), vol. 55, no. 4, pp. 295–312,
2008.

[40] Romeijn, H. E., Sharkey, T. C., Shen, Z.-J. M., and Zhang, J., “Integrating
facility location and production planning decisions,” Networks, vol. 55, no. 2, pp. 78–89,
2010.

[41] Schoemaker, P. J., “The expected utility model: Its variants, purposes, evidence
and limitations,” Journal of Economic Literature, vol. 20, no. 2, pp. 529–563, 1982.

[42] Schrijver, A., “A combinatorial algorithm minimizing submodular functions in
strongly polynomial time,” Journal of Combinatorial Theory, Series B, vol. 80, no. 2,
pp. 346–355, 2000.

84

[43] Shapiro, A., “Monte carlo sampling methods,” in Stochastic Programming
(Ruszczyński, A. and Shapiro, A., eds.), vol. 10 of Handbooks in Operations Re-
search and Management Science, pp. 353 – 425, Elsevier, 2003.

[44] Shapiro, A., Dentcheva, D., and Ruszczyński, A., Lectures on Stochastic Pro-
gramming: Modeling and Theory. Society for Industrial and Applied Mathematics,
2009.

[45] Stratila, D., Combinatorial Optimization Problems with Concave Costs. PhD thesis,
MIT, 2009.

[46] Sviridenko, M., “A note on maximizing a submodular set function subject to a
knapsack constraint,” Operations Research Letter, vol. 32, no. 1, pp. 41–43, 2004.

[47] Svitkina, Z. and Fleischer, L., “Submodular approximation: Sampling-based algo-
rithms and lower bounds,” SIAM Journal on Computing, vol. 40, no. 6, pp. 1715–1737,
2011.

[48] Swamy, C. and Shmoys, D. B., “Sampling-based approximation algorithms for multi-
stage stochastic,” in Proceedings of 46th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pp. 357–366, 2005.

[49] Topkis, D. M., Supermodularity and complementarity. Princeton University Press,
1998.

[50] Von Neumann, J. and Morgenstern, O., Theory of games and economic behavior.
Princeton University Press, 1944.

[51] Vondrák, J., “Optimal approximation for the submodular welfare problem in the
value oracle model,” in Proceedings of the 40th annual ACM symposium on Theory of
computing, STOC, pp. 67–74, ACM, 2008.

[52] Vondràk, J., “Submodularity and curvature: the optimal algorithm,” RIMS
Kokyuroku Bessatsu B23, Kyoto, pp. 253–266, 2010.

[53] Weingartner, H. M., “Capital budgeting of interrelated projects: survey and syn-
thesis,” Management Science, vol. 12, no. 7, pp. 485–516, 1966.

[54] Wolsey, L. A., “Valid inequalities and superadditivity for 0-1 integer programs,”
Mathematics of Operations Research, vol. 2, no. 1, pp. 66–77, 1977.

[55] Wolsey, L. A., “Maximising real-valued submodular functions: Primal and dual
heuristics for location problems,” Mathematics of Operations Research, vol. 7, no. 3,
pp. 410–425, 1982.

[56] Yu, J. and Ahmed, S., “Maximizing a class of submodular utility functions with con-
straints,” 2014. http://www.optimization-online.org/DB_HTML/2014/12/4712.

html.

[57] Yu, J. and Ahmed, S., “Maximizing expected utility over a knapsack constraint,”
2014. http://www.optimization-online.org/DB_HTML/2012/10/3648.html.

85

http://www.optimization-online.org/DB_HTML/2014/12/4712.html
http://www.optimization-online.org/DB_HTML/2014/12/4712.html
http://www.optimization-online.org/DB_HTML/2012/10/3648.html

[58] Yu, J. and Ahmed, S., “Polyhedral results for a class of cardinality constrained
submodular minimization problems,” 2014. http://www.optimization-online.org/
DB_HTML/2014/08/4522.html.

86

http://www.optimization-online.org/DB_HTML/2014/08/4522.html
http://www.optimization-online.org/DB_HTML/2014/08/4522.html

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Notations and preliminaries
	Contributions

	Chapter 2 — Maximizing expected utility over a knapsack constraint: approximation algorithms
	Introduction
	Sample average approximation
	Increasing submodular maximization over a knapsack
	Proof of Theorem 6
	Combining SAA and Algorithm 3

	Power utility functions
	Sample average approximation
	Fixed number of scenarios

	Conclusion

	Chapter 3 — Maximizing expected utility over a knapsack constraint: Polyhedral Results
	Introduction
	Valid inequalties by lifting
	Uplifting
	Subadditive approximation
	Computing the subadditive lifting function
	Downlifting

	Computational experiments
	Problem and its data generation
	Experiments

	Conclusion

	Chapter 4 — Minimizing a class of submodular functions over a cardinality constraint: polyhedral results
	Introduction
	Valid inequalities for `39`42`"613A``45`47`"603Aconv(P)
	Unweighted case: identical components
	Weighted case: nonindentical components

	Computational results
	Conclusion

	References

