
DEGREE PROJECT, IN , SECOND LEVELCOMPUTER SCIENCE
STOCKHOLM, SWEDEN 2015

A Domain-Specific Language for
Normalization of Financial Derivatives
Data

LUDVIG JONSSON

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION (CSC)

A Domain-Specific Language for Normalization of
Financial Derivatives Data

Ett domänspecifikt språk för normalisering av finansiella derivat-data

LUDVIG JONSSON
ludjon@kth.se

Master’s Thesis in Computer Science
School of Computer Science and Communication (CSC)

Royal Institute of Technology, Stockholm
Supervisor: Olov Engwall

Examiner: Olle Bälter
Project commissioned by: Tobias Widén at TriOptima AB

Abstract

A Domain-Specific Language (DSL) is a language tailored
for a specific problem domain with the purpose of improving
developer productivity and communication with domain ex-
perts. In this thesis we investigate how a DSL for normal-
ization of financial derivatives data can be designed and
implemented.

The thesis includes research on the general subject of
DSL engineering and previously established approaches and
guidelines for DSL development.

We describe a development process that consists of three
phases: domain analysis, language design and implementa-
tion. The proposed solution was evaluated according to a
set of predefined quality criteria.

The report concludes with a discussion about data nor-
malization as a DSL domain as well as what impact de-
cisions made during the development process had on the
proposed solution.

The thesis fulfills its purpose of being an exploratory
study of DSL development and the conclusions listed in the
final chapter should apply to all data normalization DSLs.

Referat

Ett domänspecifikt språk (eng. Domain-Specific Language,
DSL) är ett språk som är skräddarsytt för ett specifikt pro-
blemområde med syftet att förbättra utvecklares produk-
tivitet och kommunikation med domänexperter. I den här
uppsatsen undersöker vi hur ett domänspecifikt språk för
normalisering av data som beskriver finansiella derivata�ä-
rer kan utformas och implementeras.

Uppsatsen omfattar utforskning av det generella ämnet
domänspecifika språk och tidigare etablerade tillvägagångs-
sätt och riktlinjer för utveckling av sådana språk.

Vi beskriver en utvecklingsproess som består av tre
faser: domänanalys, språkutformning och implementation.
Den föreslagna lösningen utvärderades enligt en mängd för-
definierade kvalitetskriterier.

Rapporten avslutas med en diskussion om datanorma-
lisering som domän för ett domänspecifikt språk och en
analys av vilken inverkan beslut som togs under utveck-
lingsprocessen hade på det slutgiltiga resultatet.

Arbetet uppfyller sitt syfte att vara en utforskande stu-
die i DSL-utveckling och slutsatserna som listas i det av-
slutande kapitlet bör gälla alla domänspecifika språk för
normalisering av data.

Preface
This degree project marks the end of my studies at the Master’s programme in Com-
puter Science at the Royal Institute of Technology (KTH). I would like to thank
every one who has helped and supported me throughout this project. In particular,
I would like to thank my supervisors, Tobias Widén at TriOptima and Olov Engwall
at the School of Computer Science and Communication (CSC), for their invaluable
support and guidance.

Stockholm
2015-02-18
Ludvig Jonsson

Contents

1 Introduction 1

1.1 Background . 1
1.1.1 TriOptima and triCalculate 1
1.1.2 Financial Derivatives . 1

1.2 Problem Statement . 2
1.2.1 Purpose . 2
1.2.2 Intended Audience . 3
1.2.3 Delimitation . 4

2 Theory 5

2.1 Domain-Specific Languages . 5
2.1.1 Definition . 5
2.1.2 Why Use a DSL? . 5
2.1.3 The Phases of the DSL Development Process 6

2.2 Internal and External DSLs . 6
2.2.1 An example . 6
2.2.2 Advantages and Disadvantages 7

2.3 Domain Analysis . 8
2.4 Designing a DSL . 9

2.4.1 Approaches . 9
2.4.2 Guidelines . 9

2.5 Implementing a DSL . 10
2.5.1 Semantic Modelling . 10
2.5.2 Parsing . 11
2.5.3 Interpretation . 12
2.5.4 Code Generation . 13

2.6 Evaluating a DSL . 14
2.7 Related Work . 14
2.8 Synthesis . 15

3 Method 17

3.1 Domain Analysis . 17
3.2 Language Design . 17

3.3 Implementation . 17
3.4 Evaluation . 18

4 Domain Analysis 19

4.1 Sources . 19
4.2 Domain Description . 19

4.2.1 Client Submitted Data in triCalculate 19
4.2.2 Data Normalization . 20
4.2.3 Data Verification . 21

4.3 Requirements . 21

5 Language Design 24

5.1 Design Process . 24
5.2 Language Elements . 25

6 Implementation 28

6.1 Programming Environment . 28
6.1.1 Python . 28
6.1.2 ANTLR . 28

6.2 Implementation Process . 29
6.2.1 Formalizing the Grammar . 31
6.2.2 Configuring the Generated Parser 32
6.2.3 Implementing the Semantic Model 32
6.2.4 Error Handling . 33

7 Results 35

7.1 Example Use of the Proposed Solution 35
7.2 Findings of Focus Group Interview 1 35

7.2.1 Comprehensibility . 35
7.2.2 Expected Elements . 36
7.2.3 Comparison with Previous Solutions 36
7.2.4 Proposed Improvements . 36

7.3 Findings of Focus Group Interview 2 37
7.3.1 Functional Suitability . 37
7.3.2 Defining the Problem Domain 37
7.3.3 Proposed Improvements . 38

7.4 Summary of the Analysis of the Remaining Quality Characteristics . 38
7.4.1 Expressivity . 38
7.4.2 Extensibility . 39

8 Discussion 40

8.1 The Proposed Solution . 40
8.2 The Development Process . 41
8.3 Data Normalization as a DSL Domain 42

9 Conclusions 43

9.1 Summary . 43
9.2 Future Work . 44

Bibliography 45

Appendices 46

A Sample Data 47

A.1 Input data sample . 47
A.2 Normalized data sample . 48

B Focus Group Interview Questions 49

B.1 Questions from the first focus group interview 49
B.2 Questions from the second focus group interview 49

C Sample DSL Specification 50

Chapter 1

Introduction

The aim of this degree project was to explore how a domain-specific language (DSL)
for normalization of financial derivatives data could be designed and implemented.
A larger goal of the project was to contribute to a more scientifically established
methodology for DSL development by providing an experience report from the de-
velopment of a DSL for an industrial problem domain.

1.1 Background
1.1.1 TriOptima and triCalculate
TriOptima is a provider of post trade infrastructure and risk management services
for the OTC (Over-the-counter) derivatives market.

During 2015 TriOptima aims to release a new service called triCalculate. The
purpose of this service is to provide portfolio risk analysis powered by numerical
solution techniques.

triCalculate is a Software as a Service (SaaS) where clients (which are mainly
banks) upload their portfolios and market data. The data is then being normalized
to the format expected by the rest of the system. Based on the normalized data
TriOptima performs a risk analysis of the trade portfolio and the results from the
analysis are then fed back to the clients via a web interface.

1.1.2 Financial Derivatives
A financial derivative is a financial instrument. A financial instrument is a contract
that gives financial rights and/or responsibilities to the parties involved. Durbin
describes financial derivatives as price guarantees [1], since a derivative agreement
specifies a price at which some asset can or must be bought at (or before) a specified
date. It is called a derivative because its value is derived from the expected future
price movements of the underlying asset to be bought or sold.

An example of this could be an agreement where the buyer is granted the right
(but not the obligation) to make an exchange between two given currencies at a

1

CHAPTER 1. INTRODUCTION

specified exchange rate at a specified future date. This is called a foreign-exchange
option and is just one of many instrument types that can be categorized as financial
derivatives.

The foreign-exchange option is simple in the sense that it consists of only one
payment. Most financial derivatives trades consists of legs of cash flows (which are
streams of payments) going back and forth between the counter-parties.

Financial derivatives can be used for either risk management (e.g to protect
yourself from future movements of the exchange rate between two currencies) or
speculation (to make an agreement with the expectation of a favorable price move-
ment of the asset to be bought or sold).

The data handled in this thesis describes derivative trades and consists of a
number of di�erent properties depending on the instrument type.

1.2 Problem Statement
The format of the client submitted data in triCalculate may di�er slightly depending
on the client’s IT infrastructure and needs. This means that depending on the client
the data has to be normalized in a number of di�erent ways and thus the component
handling the normalization needs to be customized for each client. In this thesis,
data normalization refers to the process of having data in a number of di�erent
input formats and transforming the data into the same output format.

One way to facilitate the development and maintenance of the client adapta-
tions would be to design and implement a domain-specific language (DSL) for the
problem. A DSL is a high-level programming language that is specifically designed
to allow the developer to describe solutions in the terminology and at the level of
abstraction of a particular problem domain.

The purpose of this DSL would be to allow users to describe di�erent input
formats in specifications that are used to configure a file parser that normalizes the
input data to the format that triCalculate expects.

1.2.1 Purpose
The purpose of this thesis was to explore how a DSL for normalization of financial
derivatives data could be designed and implemented. The proposed solution was
analyzed according to a set of quality criteria and it was discussed what impact
decisions made during the development process had on the final result.

We defined the following criteria which were reflected upon in the evaluation of
the proposed solution:

• Comprehensibility: Is the DSL understandable for domain experts?

• Functional suitability: Is the DSL an appropriate abstraction of the problem
domain? Do the language abstractions allow the users to express solutions for
a su�cient share of the possible instances of the problem?

2

1.2. PROBLEM STATEMENT

Figure 1.1: Visualization of the purpose of the DSL

• Extensibility: Is it complicated to extend the DSL with further abstractions?
Does the implementation allow for users to add new features to the DSL?

• Expressivity: Do the language abstractions enable the user to express concise
solutions for the problem?

1.2.2 Intended Audience
The central topic of this thesis is DSL engineering and the results from this work
should be interesting to anyone interested in that subject and especially the ones
looking into designing and implementing a DSL for the purpose of data normaliza-
tion.

The readers do not need to have any previous experience or knowledge of DSL
engineering, since chapter 2 provides a thorough description and explanation of the
basic concepts of the subject.

The readers are expected to have a basic understanding of programming lan-
guages and system development in general.

3

CHAPTER 1. INTRODUCTION

1.2.3 Delimitation
One part of the delimitation was that the prototype of the DSL would only cover a
subset of the functionality of the existing solution in triCalculate. This subset was
selected in consultation with TriOptima. The point of the prototype language was
that it would be su�cient to fulfill the purpose of this thesis. It was not meant to
be a complete solution that could replace the current solution in triCalculate.

Another part of the delimitation was that the evaluation would only consider
quality characteristics that are possible to draw fair conclusions about without per-
forming a full-scale user study or deploying and using the proposed solution over a
longer period of time.

4

Chapter 2

Theory

The purpose of this chapter is to give the reader an introduction to the general
subject of DSL engineering, the di�erent phases of the DSL development process
and a summary of related work.

2.1 Domain-Specific Languages

2.1.1 Definition

A domain-specific language (DSL) is a programming language tailored to a particu-
lar problem domain [2, 3, 4]. Compared to general-purpose programming languages,
DSLs o�er substantial gains in expressiveness by allowing users to describe solutions
in the terminology and at the level of abstraction of the respective problem domain
(as exemplified in subsection 2.2.1) [2, 4].

Examples of commonly used DSLs are HTML (a markup language used to create
web pages [5]) and Make (a language for building executable programs [6]).

2.1.2 Why Use a DSL?

DSLs are popular for two main reasons: they improve developer productivity and
they improve communication with domain experts [3].

The improvement in productivity is due to the DSL providing an expressive and
understandable way of manipulating the underlying model that is the abstraction
of the problem domain. The expressiveness of the DSL is limited to its problem
domain and thus the possibilities of manipulating the model in erroneous ways and
causing unexpected behaviour is also limited [3].

The improvement in the communication with domain experts is due to the solu-
tions being expressed in a terminology and at a level of abstraction that the domain
experts are familiar with.

5

CHAPTER 2. THEORY

2.1.3 The Phases of the DSL Development Process
Mernik et al. [4] divides the DSL development process into five phases: decision,
analysis, design, implementation and deployment.

In the decision phase it is decided whether or not the eventual benefits of the
DSL will be worth the time that needs to be invested in the development of it.

A decision to start the development of a new DSL is followed by an analysis
phase. In this phase, the domain of the DSL is defined and some kind of domain
description is produced. The analysis phase is described more thoroughly in sec-
tion 2.3.

The goal of the design phase is to capture the important concepts of the domain
in a set of language constructs. These language constructs are gathered in a design
description which describes the syntax and semantics of the DSL. Common DSL
design approaches and guidelines are described in section 2.4.

In the implementation phase the language constructs are implemented. The
main approaches for implementing DSLs are described in section 2.5.

In the deployment phase, the DSL is deployed and used. Visser [7] adds main-
tenance as the last phase, where the DSL is altered and evolved.

Mernik et al. [4] state that even though this appears to be a sequential process,
that is often not the case in practice [4]. It is explained that the reason for this is
that the phases often influence each other. For example, the design of the language
is often influenced by implementation considerations.

2.2 Internal and External DSLs
2.2.1 An example
DSLs are generally divided into two categories: internal DSLs and external DSLs [3].
The di�erence between the two is best explained with an example. The example
will show three ways in which a simple graph model can be populated: using a
general-purpose language, using an external DSL and using an internal DSL.

The following code shows how the graph model can be populated using the
general-purpose language Java:

1 Graph graph = new Graph();
2 graph.addEdge("A", "B", 10);
3 graph.addEdge("B", "C", 20);
4 graph.addEdge("D", "E", 30);

An external DSL has a custom syntax and the language itself is separated from
the language of the application it is intended to work with [3]. Programs written
in the external DSL are parsed into data that the host language can understand.
The following code shows how the graph model can be populated using an external
DSL:

6

2.2. INTERNAL AND EXTERNAL DSLS

1 Graph {
2 A -> B (10)
3 B -> C (20)
4 D -> E (30)
5 }

An internal DSL is just a particular way of using a general-purpose language
[3]. It has the feel of being a custom language, but its syntax is valid syntax in
the host language and can thereby be executed as any other code written in that
language. Compared to traditional APIs (sometimes referred to as command-query
APIs) consisting of a set of methods that can be understood individually, an external
DSL is a more fluent interface where the individual method names only make sense
when the method calls are chained together into expressions reminiscent of natural
language sentences [8].

The following code shows how the graph model can be populated using an
internal DSL implemented in Java using method chaining:

1 graph()
2 .edge()
3 .from("A").to("B").weight(10)
4 .edge()
5 .from("B").to("C").weight(20)
6 .edge()
7 .from("D").to("E").weight(30);

The main di�erence between internal and external DSLs lies in the parsing of the
languages [3]. External DSLs are parsed by external parsers and internal DSLs are
parsed when executing the DSLs within their respective host language environment.

2.2.2 Advantages and Disadvantages
Internal and external DSLs both have advantages and disadvantages that should
be taken into consideration when choosing one of the two techniques. The degree
to which these advantages and disadvantages are present depends on the problem
domain and the target audience [3].

Internal DSLs

Learning Curve For a developer that does not have any prior experience of DSL
development or language development in general, the development of an internal
DSL may be more approachable since it does not involve having to learn about
things like parsers and grammars [3]. There is no need to implement a parser since
the parsing is done by the execution environment of the host language.

7

CHAPTER 2. THEORY

There is however a need to implement an expression builder [3] that allows the
user to build the fluent expressions of the internal DSL. This often involves the use of
rather obscure language techniques like method chaining and other unconventional
uses of the host language [3]. This means that the development of an internal DSL
can be tricky even for someone who has a lot of experience of the host language.

Tools Since the internal DSL code is valid code in the host language, tools like
integrated development environments (IDEs) (with features like code completion
and syntax highlighting) available for the host language can be used for the internal
DSL as well. It is also possible to mix the DSL code with regular code written in
the host language. This can be a big advantage in some situations, but it can also
be confusing to users that are not familiar with the host language [3].

External DSLs

Syntactic Flexibility The main strength of external DSLs lies in the syntactic
flexibility [3]. When developing external DSLs, the developer has full control over
the language syntax. Internal DSLs will always have at least some amount of syn-
tactic noise (like semicolons) and constraints regarding how things can be expressed.
The degree of the syntactic noise and constraints will of course di�er between lan-
guages; some languages are better suited for being internal DSL host languages.
This will not matter if the people in the target audience are familiar with the host
language, but if they are not it can be a factor that hinders the process of learning
how to use the DSL [3].

The Need for a Parser Developing an external DSL either means having to
implement a parser for the language or generating one using a parser generator [3].
If a parser generator is used, the grammar of the language must be defined using a
formal notation technique for grammars such as the commonly used Backus-Naur
Form (BNF).

There is a lot to learn just to get started with external DSL development, in
contrast to internal DSL development where the developer can start o� simple and
learn new techniques during the development of the DSL [3].

2.3 Domain Analysis
When the decision has been made to develop a new DSL, the first step is to gather
domain knowledge and identify the problem domain [4]. During the domain analysis,
the basic properties and requirements of the domain are analyzed [7].

The domain analysis is often done in an informal manner by consulting domain
experts and analyzing sources such as technical documentation and eventual existing
general-purpose language code [4]. The output from an informal domain analysis
consists of a compilation of domain terminology and semantics.

8

2.4. DESIGNING A DSL

The domain analysis can also be done using a formal domain analysis method
such as Feature-Oriented Domain Analysis (FODA).

The di�erence between the formal and informal approaches is that the output
from the formal analysis consists of a more substantial and specific domain model
[4].

2.4 Designing a DSL
2.4.1 Approaches
Mernik et al. [4] state that DSL design approaches are categorized by their relation
to existing languages and the formal nature of the design description.

Relation to Existing Languages

A DSL can be designed either by language exploitation (basing the DSL on an
existing language) or by language invention (developing a new DSL from scratch)
[4]. Basing the DSL on an existing language may lead to an easier implementation
and result in a DSL familiar to the users [4, 9] if the users have previous experience
of the existing language [4]. For obvious reasons, developing a new DSL from scratch
o�ers a greater flexibility when designing the language syntax.

Formal Nature of the Design Description

An informal design description is expressed in natural language, often accompanied
by a set of example programs written in the DSL [4]. A formal design description
consists of a specification of the syntax and semantics written in formal notations [4]
like BNF grammars for the syntax and Abstract State Machines for the semantics.
As with the domain analysis, the informal approach is likely to be su�cient in most
cases [4] but the formal approach can help bring forward problems with the design
before the actual implementation of the DSL [4].

2.4.2 Guidelines
According to Fowler [3] the overall goal for a DSL is clarity for the reader. The
readers of the DSL (programmers and domain experts) should be able to understand
code written in the DSL as quickly as possible. Designing a new domain-specific
language is a complex, error-prone and often time consuming task [3, 4, 9]. Previous
studies have established a set of design guidelines to aid this task.

Iterative Design Process

Fowler [3] and Visser [7] recommend an iterative design process and to try out ideas
on the target audience along the way. Finding the right path to a good language
design involves providing multiple alternatives for each design decision and choose

9

CHAPTER 2. THEORY

what seems to be the most appropriate alternative in consultation with the target
audience [9, 3].

Sticking to Conventions

Even if the DSL is not directly based on an existing language, it is still a good idea
to stick to common language conventions and reuse previous language definitions
when designing the new DSL [9, 3]. This will allow some of the users to identify
familiar notations in the DSL [9] and quickly get an understanding of the language.

Simplicity

Simplicity is one of the main targets when designing languages in general, since
it enhances the comprehensibility of the language [9]. If a language is simple, it
is easier to understand. When a language is easy to understand, it lowers the
barrier of introducing it in a working environment [9]. Unnecessary complexity also
counteracts the purposed benefits of a DSL [9, 3].

A key part of achieving this simplicity is to avoid unnecessary generality [9, 3, 4].
For example, generalizing the design for future extension is generally a bad idea since
it will make the current design more complex than it needs to be [9].

The number of language elements should be kept to a minimum, since a language
with a large number of elements will be more di�cult to understand [9].

Consistency

As stated in the definition of a DSL, it is a language that o�ers expressive power
in a specific problem domain. Each feature of the DSL should either contribute to
this purpose or be omitted [9].

When designing the language elements, the same style should be used every-
where to allow the users to obtain an intuitive understanding of the DSL [9].

2.5 Implementing a DSL
2.5.1 Semantic Modelling
Programming languages in general are often discussed in terms of syntax and se-
mantics [3]. The syntax is the valid expressions of a language and the semantics
are what the expressions mean and what happens when they are executed. When
designing a DSL, the semantics are often implemented in an underlying semantic
model (which can be an object model or simply a pure data structure with the
behavior in separate functions) and the DSL itself is just a readable way of popu-
lating that model [3]. Programs written in the DSL will then just be descriptions
of di�erent configurations of the semantic model.

Although a separate semantic model is not necessary (the semantics could for
example be defined directly in a parser instead), Fowler states that a separate

10

2.5. IMPLEMENTING A DSL

semantic model is a vital part of any well-designed DSL [3]. The reason for this is
that a semantic model provides a clear separation of concerns between the parsing
of a language and the implementation of its semantics. This separation enhances
the testability of the DSL, since it allows the semantic model and the DSL to be
tested independently [3].

It also allows the semantic model and the DSL to be evolved independently,
adding features to the semantic model before figuring out how to represent them in
the DSL [3].

A semantic model is not bound to a specific DSL, it is possible to build multiple
DSLs on top of the same semantic model. For example, it is possible to have both
an internal and an external DSL for populating the same semantic model.

2.5.2 Parsing

As mentioned earlier, the parsing of internal DSLs is done by the host language
during the execution. Since an external DSL uses a custom syntax and the DSL
itself is separated from the language of the application it is intended to work with,
a parser is a natural part of any external DSL.

The parsing of a DSL can be divided into two steps [3, 8]: lexical analysis and
generation of a parse tree. The DSL code is first fed into a lexical analyzer that
tokenizes the input stream and categorizes each token as one of a set of predefined
language elements. Based on a set of grammar rules (which defines the valid com-
binations of the language elements), the parser processes the tokens and generates
a parse tree [8].

The following is an example of a grammar expressed in Extended Backus-Naur
Form (EBNF) that could be applied to the previous external DSL example:

1 GraphBlock ::= ’Graph {’ Edge+ ’}’
2 Edge ::= Vertice ’->’ Vertice ’(’ Weight ’)’
3 Vertice ::= [a-zA-Z]+
4 Weight ::= [0-9]+

The parser tree is often reduced to an Abstract Syntax Tree (AST) [3]. The AST
is a simplification of the parse tree where all unnecessary nodes are omitted, see
figure 2.2 and 2.3. It is abstract in the sense that not all elements of the language
syntax are represented in it. For example, grouping parentheses and brackets are
implicit in the tree structure so their presence in it serves no purpose.

A parse tree is a convenient way of grouping language elements related to each
other. This grouping makes it easier to collect the information needed to populate
the semantic model.

When developing a parser manually, the grammar rules are implicitly defined
by the code base. This may not be a problem for trivial parsers, but for nontrivial
parsers this means that any changes to the grammar require significant changes in

11

CHAPTER 2. THEORY

Figure 2.1: The DSL parsing process

the parser code [8]. Developing a parser manually also involves writing the code
that walks the syntax tree and processes the information in it.

As mentioned earlier, an alternative to writing a parser manually is to use a
parser generator that generates a parser based on a set of given grammar rules and
actions to execute on recognition of these grammar rules. An example of such a
parser generator is ANTLR [10] which is a Java-based parser generator that is able
to generate parsers in a number of di�erent target languages.

2.5.3 Interpretation
Just like any other programming language, a DSL can either be interpreted or com-
piled [3]. When a DSL is interpreted, the DSL script is processed to populate a
semantic model and then the semantic model itself is executed to provide the pur-
posed behavior. The parsing and the execution is done in a single process, like with
any other interpreted programming language. The advantages of the interpreta-
tion approach compared to the compilation approach are greater simplicity, greater

12

2.5. IMPLEMENTING A DSL

Figure 2.2: Parse tree for the external DSL example in subsection 2.2.1

Figure 2.3: Abstract Syntax Tree (AST) for the external DSL example in subsec-
tion 2.2.1

control over the execution environment and easier extension [4].

2.5.4 Code Generation
The compilation approach is often referred to as code generation [3]. Code gen-
eration means that the populated semantic model is translated to base language
constructs and library calls [4]. This code is then separately compiled and run.
This approach can be useful when the target platform on which the semantic model

13

CHAPTER 2. THEORY

is supposed to run has a limited set of language choices [3].

2.6 Evaluating a DSL
A number of studies have been done on the subject of DSL evaluation. Kahraman et
al. [11] gathers the quality characteristics established in these studies and propose
a framework called FQAD (A Framework for Qualitative Assessment of DSLs).
FQAD consists of 10 quality characteristics and 26 sub-characteristics. An example
of a quality characteristic is functional suitability, which has the sub-characteristics
completeness and appropriateness.

A DSL can be qualitatively assessed by comparing the characteristics of the DSL
to the established quality characteristics. The first step in FQAD is to select what
quality characteristics are relevant for the goal of the DSL. FQAD then provides
a questionnaire where the evaluator can give feedback on the support levels of the
sub-characteristics. The meanings of the di�erent quality characteristics are defined
in the same questionnaire.

The assessment result is based on the support levels of the sub-characteristics
of the characteristics that were selected as important.

Comprehensibility, functional suitability, extensibility and expressivity were the
characteristics that were considered to be within the delimitation described in sub-
section 1.2.3. FQAD describes these characteristics as follows [12]:

• Comprehensibility: The concepts and symbols of the language are learnable
and rememberable (e.g., ease of learning DSL language elements, ease of learn-
ing to develop a program, e�ective DSL documentation)

• Functional suitability: Functional suitability of a DSL refers to the degree to
which a DSL supports developing solutions to meet stated needs of the appli-
cation domain.

• Extensibility: DSL has general mechanisms for users to add new features
(adding new features without changing the original language)

• Expressivity: The degree to which a problem solving strategy can be mapped
into a program naturally.

As mentioned, FQAD provides a set of sub-characteristics to facilitate the eval-
uation of these characteristics. This does not apply to comprehensibility, since it
itself is a sub-characteristic of usability.

2.7 Related Work
When exploring previous work in the area of DSL engineering, it was obvious that
the most central work in the area deals with general guidelines and approaches

14

2.8. SYNTHESIS

for the design and implementation of DSLs. Voelter [13] states that since DSLs
by definition are domain-specific, published case studies on the subject of DSL
engineering might not be very helpful when deciding whether or not (and how) to
develop a new DSL for a given problem domain. This may explain the low number of
such case studies and other studies describing the development of individual DSLs.

During the exploration of previous work, the work that was found to be the
most closely related to this thesis was a case study by Hautus [14] that describes
the development of a DSL for normalization of financial data sets. Hautus states
that using a custom syntax rather than basing the DSL on an existing language (in
this case XML) is worth the e�ort and that a DSL needs to be periodically refined
as more domain knowledge is gathered.

Most examples of previously developed DSLs for the purpose of transforming
data are visual DSLs allowing the user to interactively specify di�erent kinds of
data transformations in a graphical user interface (GUI). An example of this is
Wrangler [15], a DSL for interactive visual specification of data transformation
scripts introduced by Kandle et al.

Visser [7] describes the development of WebDSL, a DSL for building web appli-
cations. This study is not related to data transformation, but it is a case study on
the subject of DSL engineering with the purpose of investigating when and how to
develop a DSL. Visser concludes that you must obtain a good understanding of the
application domain and that there should exist a considerable code base for systems
in the domain before starting the development of a DSL. These conclusions concern
when to develop a DSL, but Visser also provides a number of guidelines on how to
develop a DSL. Visser also provides a list of DSL evaluation criteria which largely
corresponds the list provided by Kahraman et al.

2.8 Synthesis

This section contains a compilation of the main lessons learned from the theory
review and a description of their impact on the continued work with this thesis.

Based on the comparison of internal and external DSLs, it was decided that
the DSL designed and implemented in this thesis would be an external one. The
main reason for this was the greater syntactic flexibility o�ered by external DSLs,
something that was considered to be a great advantage when designing a DSL to
be as concise and expressive as possible.

Another learning from the theory review was that the DSL development process
should always start with a thorough domain analysis, since it is hard to design a
language for a domain you do not understand. It was decided that an informal
analysis method would su�ce for this project, mostly because the domain in ques-
tion is small. If a formal domain analysis method would be used, more time would
probably be spent on formalities than on the actual analysis.

The design guidelines listed in subsection 2.4.2 does contain some concrete advice
on how to achieve a concise and expressive language design. It was decided to let

15

CHAPTER 2. THEORY

this list guide the language design process. Even though one of the guidelines was to
involve the intended users of the DSL in an iterative design process, it was decided
that there was not enough time and resources allocated for this degree project to
be able to do that.

To avoid spending a too big part of the time allocated for this project on imple-
menting a parser from scratch, it was decided to use a parser generator. It was also
decided that the implementation would follow the advice of separating the parsing
of the DSL from its semantic model, since this kind of modular system design gives
a separation of concerns that enhances the testability and allows for the system
components to be evolved independently.

Since it was decided to implement the external DSL using a parser generator, it
was known that the grammar of the language would eventually have to be expressed
using a formal notation such as BNF.

Regarding the evaluation of the DSL, it was concluded that doing a full assess-
ment using FQAD (described in section 2.6) was outside the scope of this thesis. It
was also concluded that that FQAD could still be a useful as a basis for the evalua-
tion, since it contains a a comprehensive description of DSL quality characteristics.

16

Chapter 3

Method

This chapter describes the phases of the method used for this thesis. These are
presented in a chronological order. These phases were largely inspired by the de-
scription of the DSL development process provided by Mernik et al. [4] (described
in subsection 2.1.3). The first three phases (domain analysis, language design and
implementation) are described more thoroughly in chapter 4, chapter 5 and chap-
ter 6.

3.1 Domain Analysis
During the domain analysis phase the problem domain was defined. This was done
by consulting domain experts and analyzing the current solution at TriOptima
and resulted in a compilation of domain terminology and domain concepts. This
compilation was used to form a specification of the functionality that the language
would have to cover.

3.2 Language Design
The goal of the design phase was to design a language to be as concise as possible
without losing the technical flexibility required by the problem domain. This re-
sulted in a description of the syntax (the valid expressions of the language) and the
semantics (what the expressions mean and what happens when they are executed).
The design description consisted of a set of example specifications expressed in the
DSL.

3.3 Implementation
The implementation phase involved formalizing the design description produced in
the language design process, generating a parser for it using an appropriate parser
generator, configuring that parser to fit our purposes and implementing the semantic
model to be configured by the DSL.

17

CHAPTER 3. METHOD

This was an iterative process starting o� with the most basic functionality and
then continually adding and improving functionality until the previously mentioned
specification was met.

When the implementation of the prototype language was completed a number
of example solutions covering common use cases were implemented using the DSL.

3.4 Evaluation
The evaluation phase was based on the DSL quality characteristics listed in sub-
section 1.2.1. These quality characteristics were based on the list of DSL quality
characteristics provided by Kahraman et al. [11] and the list of DSL evaluation
criteria provided by Visser [7].

The evaluation process was divided into two parts, where the first part consisted
of two focus group interviews and the second part was an objective analysis of
the proposed solution. The reason for conducting the focus groups interviews was
that it would not be possible to objectively evaluate the comprehensibility and the
functional suitability of the proposed solution without feedback from non-biased
external parties.

In consultation with the supervisor at TriOptima, two groups of interviewees
were selected. The first group was selected from the business side of the company,
and consisted of a group of five people who all had great experience of di�erent client
data normalization solutions from existing projects within the company. These
people were considered to be a good representation of the hypothetical users of
the proposed DSL. The purpose of this focus group interview was to evaluate the
comprehensibility of the proposed solution.

The second group was selected from the technology side of the company and
also consisted of five people. This selected group of people were all software engi-
neers with a good understanding of the technical side of the problem domain. The
purpose of this focus group interview was to evaluate the functional suitability of
the proposed solution.

Both interview sessions began with a presentation of the DSL. The presentation
from the second interview session was a bit more substantial with an added tech-
nical description of the proposed solution. These presentations were followed by
an open discussions guided by two sets of questions, one for each interview session.
The questions from the focus group interviews can be found in Appendix B. The
interview sessions lasted for one hour each and were video recorded to allow for
later review.

The quality characteristics not covered by the interview sessions, expressivity
and extensibility, were evaluated separately by comparing the proposed solution to
the relevant quality characteristics and sub-characteristics described in FQAD.

18

Chapter 4

Domain Analysis

In this chapter we describe the domain analysis phase of this project. It starts with
a description of the sources used during the analysis, continues with a description
of the domain and concludes with a summary of the domain concepts that needed
to be captured by the DSL.

4.1 Sources
During the domain analysis, the following sources were used:

• The existing general-purpose language solution (which is a rule-based file
parser written in Python)

• Documentation specifying the expected format of the client submitted data

• Sample portfolio data and the respective output when processed by the exist-
ing file parser

4.2 Domain Description
4.2.1 Client Submitted Data in triCalculate
For the portfolio risk analysis in triCalculate to be possible to perform, the clients
must submit their trade data to the service. This data is submitted as CSV (comma-
separated values) files which follow a given specification of the expected data fields
and their respective header names.

Even though the submitted data follow the same specification, the data format
may still di�er slightly depending on the client (as mentioned in section 1.2). Ex-
amples of things that may di�er do not only include the format of the CSV file
(header names, column order, delimiter character and such) but also the format of
the actual values. An example of this is the format of date values, which can follow
a number of di�erent standards.

19

CHAPTER 4. DOMAIN ANALYSIS

Following the submission of the portfolio data, the data must be normalized and
verified in a number of di�erent ways described in the following two sections.

4.2.2 Data Normalization

The normalization process can be divided into two parts: transformation of the
data format from CSV to JSON (JavaScript Object Notation) and transformation
of the individual field values.

Figure 4.1: The normalization and verification process

The first part applies to all cases, since the portfolio data is submitted as CSV
files and the rest of the triCalculate system expects the normalized data to be in
a hierarchical JSON format. In the existing solution, this transformation is done
by populating an in-memory object model with the trade data from the CSV file.
The internal object model is then being serialized into a JSON file. For this to be
possible, the fields in the CSV file must somehow be mapped to the corresponding
fields in the internal object model.

Since CSV is a flat format, it must somehow be specified how to group the CSV
data in the hierarchical structure of the JSON format. As described in subsec-
tion 1.1.2, a financial derivative trade often consists of a set of legs that consists of
a set of cash flows. This hierarchical structure is represented in the internal trade
model. Each row in the CSV file describes a cash flow, but does also contain infor-
mation about the leg and the trade the cash flow belongs to. This information can
be used to create the hierarchical structure of the JSON format. A very simplified
example of the transformation from the flat CSV format to the hierarchical JSON
format is shown in listings 1 and 2.

The second part of the normalization process applies to all cases where the
formats of the field values di�er from the given specification. These transformations
are done per field, since it can be assumed that all values of a certain field are in
the same format.

20

4.3. REQUIREMENTS

trade_party, trade_counterparty, trade_id, leg_currency, cashflow_
payment_date, cashflow_nominal

A,B,1,EUR,2015-02-11,100
A,B,1,EUR,2015-02-12,200
A,B,1,USD,2015-02-13,300
A,B,1,USD,2015-02-14,400

Listing 1: The flat CSV format

4.2.3 Data Verification

Other than being normalized, the data must also be verified before being allowed
into the rest of the triCalculate system. Just like the normalization process, the
verification process can be divided into two parts.

The first part is to verify that all required fields are present in the submitted
data. What fields are required depends on the instrument type of the trade to be
extracted.

The second part is to verify that the data in those fields is valid. For example,
for a field that specifies the trade currency it must be verified that the field value
is one of a set of predefined currency codes.

4.3 Requirements
As a summary of the domain analysis, this section will describe the domain concepts
that need to be captured by the DSL designed and implemented for this thesis.

Input Configuration

The DSL must o�er a way of specifying the input configuration for the normalization
and verification process. Examples of configuration that is needed for the input is
the path to the client submitted trade file, the delimiter of the CSV format and the
instrument type of the trades that should be extracted. The input configuration
must also allow the user to specify how to group the data from the flat input format
in the hierarchical structure of the internal trade model.

Field Mapping

To make the transformation from the flat CSV format to the hierarchical JSON
format possible, the DSL must o�er a way of mapping the fields of the CSV file to
the corresponding fields of an internal object model. Since the CSV files may or
may not have a header row containing the column names, it has to be possible to
map a field either by its column name or by its column index.

21

CHAPTER 4. DOMAIN ANALYSIS

Field Transformations
The DSL must o�er a set of field-specific transformations and a way of specifying
what transformations should be applied to which fields.

22

4.3. REQUIREMENTS

1 [
2 {
3 "trade_id": 1,
4 "trade_party": "A",
5 "trade_counterparty": "B",
6 "legs": [
7 {
8 "currency": "EUR",
9 "cashflows": [

10 {
11 "payment_date": "2015-02-11",
12 "nominal": 100
13 },
14 {
15 "payment_date": "2015-02-12",
16 "nominal": 200
17 }
18]
19 },
20 {
21 "currency": "USD",
22 "cashflows": [
23 {
24 "payment_date": "2015-02-13",
25 "nominal": 300
26 },
27 {
28 "payment_date": "2015-02-14",
29 "nominal": 400
30 }
31]
32 }
33]
34 }
35]

Listing 2: The hierarchical JSON format

23

Chapter 5

Language Design

In this chapter we describe the language design phase, where the domain concepts
gathered from the domain analysis (described in chapter 4) were captured in a set
of language constructs. It begins with a brief description of the design process and
ends with a description of the resulting language design.

5.1 Design Process
As mentioned in chapter 2, DSL design approaches are categorized by their relation
to existing languages and the formal nature of the design description.

When designing the DSL for this thesis, the strategy was to stay as close to the
Python syntax as possible. The reason for this was mainly because Python is the
main language used at TriOptima and partly because Python has a simple syntax
that emphasizes readability [16].

The development of the design description was guided by the design guidelines
described in chapter 2.

This design description (which consisted of a set of example specifications writ-
ten in the DSL) was developed in iterations beginning with an abstract sketch of
the language elements and then continually making the description more concrete.
This was done in consultation with the supervisor at TriOptima.

When designing the individual language elements, the goal was to keep the syn-
tax as simple as possible without losing the flexibility needed to meet the require-
ments described in section 4.3. The main design guideline learned from studying
the relevant theory was to design only what is necessary and to be careful not to
over-generalize the language. This was something that guided the whole design
process with the hope that it would result in a language as concise as possible.

The last guideline described in the theory chapter was that the language should
be consistent in the sense that all language elements should either contribute to the
purpose of increasing the expressive power of the language or be omitted. The only
language element that may not contribute to this purpose is the comment element,
but it was decided to keep this feature anyway because it simplifies communication

24

5.2. LANGUAGE ELEMENTS

and collaboration between developers [9].

5.2 Language Elements

This section describes the syntax and semantics of the set of language elements that
were produced during the design process. The set of language elements correspond
to the set of requirements gathered from the domain analysis, with the exception
of the comment element.

Input Configuration

The input configuration is a set of configuration values describing the input file.
The input configuration consists of a description of the CSV format of the input
file and also information about the type of trade data it contains, how to filter out
the rows that contain the data to be extracted and how the trade data should be
grouped in the internal trade model.

1 input:
2 delimiter = ","
3 has_header = True
4 instrument_type = IRSWAP
5 row_filter_column = "trade_instrument_type"
6 row_filter_value = "IRSWAP"
7 trade_group_column = "trade_id"
8 leg_group_column = "leg_float_rate_index"

Listing 3: The syntax of the input configuration

Field Mapping

The main element of the language is the mapping of the fields of the input file to
the corresponding fields of the internal trade model. As described in the previous
chapter, this must be possible to do in two di�erent ways: either by column name
or by column index (since it can not be assumed that all input files contain a header
row).

A third option is to map a field in the trade model to a default value that will
be used instead of extracting a value from a column in the input file. An example of
a situation where this could be useful is when some column is missing in the input
file and it is preferred to set the corresponding field in the trade model to a static
value instead of leaving it empty.

25

CHAPTER 5. LANGUAGE DESIGN

1 trade_counterparty -> column_name("counterparty")
2 trade_instrument_type -> column_index(5)
3 trade_party -> default_value("Party1")

Listing 4: Field mapping by column name, by column index and to a default value

Field Transformations
The last requirement gathered from the domain analysis was that the DSL must
o�er a set of transformations and a way of specifying which transformations should
be applied to which fields. When a value is extracted from the trade file, it is first
transformed using the specified transformations (if any) before it is stored in the
internal trade model.

Below is an example of a transformation section written in the DSL. It contains
three di�erent transformations. The first transformation adds a prefix to the value.
The second splits the value by a given delimiter and returns the element at a given
index of the resulting list. The third and last one sets the value to "FLOAT" if
the extracted value is not empty and sets the value to "FIXED" if it is. This is an
example of a rather specific transformation that in some cases needs to be done.
It is also an example that shows the importance of easily being able to extend the
language with new transformations.

1 transformation:
2 trade_id -> add_prefix("IRSWAP-")
3 leg_float_rate_period -> split("_", -1)
4 cashflow_type -> if_present("FLOAT", "FIXED")

Listing 5: Example transformations

Comments
The last element of the language is the comment element. This element was not
part of the requirements gathered from the domain analysis, but it was decided later
on that it should be added since it improves the documentation of the specifications
and possibly also the communication between users of the language. Comments in
the DSL work exactly like single-line comments in Python, starting with a number
sign and ending with a new line.

26

5.2. LANGUAGE ELEMENTS

1 # This is a comment

Listing 6: Example comment

27

Chapter 6

Implementation

In this chapter we describe the implementation process, where the objective was
to implement a file parser that could be configured using the DSL described in
chapter 5. This chapter consists of descriptions of the programming environment,
the implementation process and the resulting implementation.

6.1 Programming Environment
This section describes the main parts of the programming environment used in the
implementation process.

6.1.1 Python
The only programming language used for this project was Python, which is an in-
terpreted, object-oriented, high-level programming language that emphasizes read-
ability and provides increased productivity [16].

The main reason for choosing Python was that it (at the time of writing this
thesis) was the main language used at TriOptima. This meant that previous file
parsing solutions at the company could be used as references when implementing
this one. The promised increase in productivity also contributed to this decision,
since it seemed possible that it would help to keep up with the schedule of this
degree project.

The only drawback of this decision seemed to be that programs written in
Python are known to run slower than equivalent programs written in other lan-
guages like Java or C++ [17]. This was not considered to be an issue, since the
running time of the prototype would not a�ect the outcome of this thesis.

6.1.2 ANTLR
ANTLR (abbreviation for "Another Tool For Language Recognition") is a parser
generator that takes a grammar expressed in EBNF and generates the source code

28

6.2. IMPLEMENTATION PROCESS

for a parser for the language specified by that grammar. ANTLR itself is im-
plemented in Java, but has the ability to generate parsers in a number of target
languages.

The reasons for choosing ANTLR as the parser generator for the implementation
of the DSL were that it is a widely used and recognized tool, that it was easy to
set up and get started with and that its functionality was undoubtedly su�cient for
this project.

In its initial state, the parser generated by ANTLR does nothing but to read
an input file and return an error message if the file does not conform to the syntax
specified by the given grammar.

The parser can be made useful by specifying actions to execute on recognition of
the di�erent grammar rules. These actions are written in the same language as the
parser is generated in and gathered in something that ANTLR calls a listener. The
listener is then hooked up to something called a walker (which is also generated by
ANTLR). The walker traverses the parse tree and notifies the listener as it passes
the di�erent elements of the language.

ANTLR 4, the latest version at the time of writing this thesis, supports gener-
ating parser code in Java, C# and Python. The Python support was added in the
summer of 2014, just a couple of months before starting this thesis. This meant
that there was no o�cial documentation available at the time, so it was impossible
to know what the generated Python code would look like before generating it.

6.2 Implementation Process
The objective of this process was to implement a file parser that converts a CSV
file to a JSON file given a specification written in the DSL designed for this the-
sis. Just like the process of designing the DSL, the implementation process began
with a rough sketch of the system components which was then improved as the
implementation process progressed.

Figure 6.1 gives an overview of the final set of system components and the
relationships between them.

The following subsections describe the di�erent parts of the implementation
process.

29

CHAPTER 6. IMPLEMENTATION

Figure 6.1: System overview

30

6.2. IMPLEMENTATION PROCESS

6.2.1 Formalizing the Grammar
ANTLR needs a grammar expressed in EBNF to be able to generate a parser.
For the implementation process, this meant that the informal syntax description
described in the previous chapter had to be translated into EBNF.

The first version of the EBNF grammar was very specific and did not only cover
the structure of the language but also validation of things like field and transfor-
mation references. This meant that instead of just specifying the format of the
references, the grammar specified a list of valid field and transformation names. As
the implementation progressed, these validation parts were moved to the listener
actions. The reasoning behind this was that it made more sense to let the grammar
specify the general syntax of the language and only return syntax errors when the
the input does not conform to this syntax. This resulted in a cleaner and more
readable EBNF grammar. Handling the checking of field references and such later
in the parsing process also allowed for more specific error messages.

1 grammar DSL;
2

3 specification: inputConfig fieldMap transformation EOF;
4

5 inputConfig: ’input:’ configStatement+;
6

7 fieldMap: ’field_map:’ mapStatement+;
8 mapStatement: ID ’->’ mapType ’(’ (STRING | NUM) ’)’;
9 mapType: ID;

10

11 transformation: ’transformation:’ transformationStatement+;
12 transformationStatement: ID ’->’ transformationType ’(’
13 argument? (’,’ argument)* ’)’;
14 transformationType: ID;
15

16 configStatement: ID ’=’ configValue;
17 configValue: ID | BOOLEAN | STRING | NUM;
18 argument: BOOLEAN | STRING | NUM;
19

20 NUM: (’-’)?[0-9]+;
21 BOOLEAN: ’True’ | ’False’;
22 ID : [a-zA-Z] [a-zA-Z0-9_]*;
23 STRING: ’"’ ~(’\n’|’\r’|’"’)* ’"’;
24 COMMENT: (’#’ ~[\r\n]* ’\r’? ’\n’) -> skip;
25 WS: [\t\r\n]+ -> skip;

Listing 7: The formalized grammar

31

CHAPTER 6. IMPLEMENTATION

6.2.2 Configuring the Generated Parser
For the generated parser to be useful, actions to execute on recognition of the
di�erent grammar rules must be specified in a listener (as mentioned in the ANTLR
section). This part is best explained with an example.
The grammar rule for map statements looks like this:

1 mapStatement: ID ’->’ mapType ’(’ (STRING | NUM) ’)’;

An example of a line that conforms to this syntax is the following:

1 trade_counterparty -> column_name("counterparty")

The parser will recognize this line as a map statement and the corresponding node
in the parse tree will be tagged as a map statement and contain the field identifier,
the map type and the map argument.
When the walker passes this node in the parse tree it will notify the listener which
executes the action specified for map statements. Since it was decided to sepa-
rate the parsing of the DSL from the implementation of its semantics, no actual
semantics were implemented in the DSL parser itself. Instead, all semantics were im-
plemented in a set of separate components (which are the CSV reader, the internal
data model and the JSON writer in figure 6.1). The DSL is only used to configure
these components, which can be seen as the semantic model of this implementation.

6.2.3 Implementing the Semantic Model
As mentioned in the previous section, the semantic model of this implementation
consists of three components: a CSV reader, an internal data model and a JSON
writer.
A traditional CSV reader would allow the user to extract the values from the CSV
file either by column index or by column header name. The CSV reader component
in this implementation is an extension of this. When the CSV reader has been
configured with field mappings and transformations, values from the input file can
be extracted by the name of the corresponding field in the internal data model.
If a transformation has been specified for the field, the value will also be transformed
before being stored in the data model. How this was implemented is explained in
the following example.
This line expressed in the DSL adds a prefix transformation to the field named
"trade_id":

1 trade_id -> add_prefix("IRSWAP-")

All transformations available in the DSL are implemented as configurable trans-
formation classes. The transformation classes all have the same structure, with a

32

6.2. IMPLEMENTATION PROCESS

single method named transform that simply takes a value, transforms it according
to the configured transformation and returns it. The CSV reader component keeps
a map where the fields are mapped to their respective transformations.

1 class PrefixTransformation(Transformation):
2

3 def __init__(self, prefix):
4 self.prefix = prefix
5

6 def transform(self, value):
7 if not value:
8 return None
9 return self.prefix + value

Listing 8: A transformation class

This means that when a value for a trade ID is extracted from the trade file, it is
run through this transform method which adds the prefix "IRSWAP-" to the value
before storing it in the internal trade model.
What the internal data model looks like depends on the derivative type of the trades
being extracted, since di�erent types of derivative trades have di�erent structures.
However, the way of populating the data model does not di�er between the di�erent
types.
As mentioned in subsection 1.1.2, derivative trades typically consists of legs of cash
flows (which are streams of payments). In the input CSV data, each row describes
one of these cash flows. The rows also contain information about the leg that the
cash flow belongs to and the trade that the leg belongs to. By specifying in the
input configuration which columns distinguish di�erent trades and di�erent legs it
is possible to group cash flows by leg and legs by trade in the hierarchical data
model. In this case, the model will contain a list of trade objects which contain a
set of leg objects. The leg objects will in turn contain a set of cash flow objects.
When the data model is populated it is validated that it contains all required fields
(the set of required fields also di�ers between derivative instrument types) and that
the data in those fields is valid. For example, it is validated that a field specifying
the currency of a leg contains one of a predefined set of currency codes.
If no errors are found during the validation of the data model, the model is serialized
to JSON and written to an output file.

6.2.4 Error Handling
Other than the validation of the internal data model before serializing it to JSON,
the error checking of the system consists of a thorough checking of the input format
specification.

33

CHAPTER 6. IMPLEMENTATION

If the specification does not conform to the grammar of the DSL, the system will
exit with a syntax error message specifying the row at which the error occurred.
If the specification contains unknown configuration keys, non-existing field names
or non-existing transformation types, the system will exit with an error message
describing the element it did not recognize.
The purpose of this error checking is to make sure that the system does not produce
invalid or incomplete output data. The system will not produce any output data
at all if any errors are found in the input format specification.

34

Chapter 7

Results

In this chapter the results from the evaluation of the proposed solution are presented.
To give the reader a better understanding of the solution, the chapter begins with
a description of an example use of it.

7.1 Example Use of the Proposed Solution
A sample input format specification written in the DSL can be found in Appendix C.
Using this specification and the data found in section A.1 as input to the file parser
would produce the normalized data found in section A.2.

7.2 Findings of Focus Group Interview 1
This section gives a summary of the findings of the first interview session, where
the comprehensibility of the proposed solution was the main subject of discussion.
The group of interviewees consisted of five people from the business side of TriOp-
tima, who all had great experience of di�erent client data normalization solutions
from existing projects within the company.

7.2.1 Comprehensibility
The interviewees agreed that the general concept of the proposed solution is easy
to understand, but that some of the language elements were harder to understand
than others.
The language elements that were considered to be the easiest to understand were
the field mappings and the input configuration statements strictly related to the
input format (delimiter character, "has header" and the row filter configuration).
It was explained by the interviewees that the concept of the field transformations
was considered to be understandable, but that it was hard to understand what some
of the transformations did just by looking at the use of them in the DSL. It was
stated that the transformation specifications were very similar to general purpose

35

CHAPTER 7. RESULTS

language code, and that the use of the transformations would require documentation
of the available transformations and the expected parameters.
It was stated that it was clear that the data in the input file needs to be grouped
somehow to be able to output the JSON format (as explained in section 4.3), but
that it was not obvious how a user could decide which columns to specify as grouping
columns in the input configuration.

7.2.2 Expected Elements
When asked about which language elements were expected and which were not, the
interviewees answered that all language elements were expected and corresponded
to elements of previous solutions at the company. It was stated that the proposed
solution is simpler and more understandable than previous solutions, but that it
was also considered to be less flexible.
During the interview session, it was mentioned that comments are an important
element of the DSL since it allows for users to explain choices made when writing
specifications and thus help other users to understand them.

7.2.3 Comparison with Previous Solutions
As mentioned in subsection 7.2.1, the proposed solution was considered to be less
flexible than previous solutions for the problem. The DSL was in particular com-
pared to a previous solution where adaptions for di�erent client data formats were
specified in plugins written in Python. The interviewees agreed that o�ering such a
high level of flexibility to non-programmers has proven to lead to a system that is
di�cult to maintain. It was explained that the reason for this is that the flexibility
of the general-purpose language Python often was often used in unconventional ways
and that the development of a new adaption for a client data format often began
with copying and modifying an existing solution that the user does not completely
understand.
It was concluded that not letting the users of the DSL write their own general
purpose language code is a good thing, and that letting regular system developers
extend the set of available transformations of the DSL on request by its users is a
good way of solving this.

7.2.4 Proposed Improvements
It was discussed that many of the client-specific specifications written in the DSL
would overlap to some degree. It was proposed that the possibility to inherit prop-
erties from some kind of default specification may be a way to facilitate the main-
tenance of these specifications.
It was also stated that the development of new specifications would begin with
copying and modifying an existing specification and that it would be less time
consuming to allow the users to specify the mappings and transformations in a GUI
that generates the DSL specifications.

36

7.3. FINDINGS OF FOCUS GROUP INTERVIEW 2

7.3 Findings of Focus Group Interview 2

This section gives a summary of the second interview session, where the functional
suitability of the proposed solution was the main subject of discussion.
The group of interviewees consisted of five people from the technology side of the
TriOptima, who were all software engineers with a good understanding of the tech-
nical side of the problem domain.

7.3.1 Functional Suitability

The general opinion regarding the proposed solution was that it covers the problem
domain as defined by the delimitation of this thesis, but that the problem domain
is a greatly simplified version of the actual problem domain. In particular, it was
stated that the one-to-one mapping of columns in the input file to fields in the
internal data model would not su�ce for many real cases since the set of columns
in the client submitted data will di�er between clients. It was also stated that
the proposed solution covers the main concepts of the normalization process, but
that the assumptions made about the input formats exclude a large proportion of all
plausible formats. The interviewees agreed that there were no obvious obstacles that
would make it impossible to extend the proposed solution to reach a full coverage
of all plausible input formats.
It was discussed whether or not the output format (which is the structure of the
internal data model) should be a part of the DSL specifications. It was stated that
including the output format as a part of the specifications (instead of implicitly
specifying the output format by specifying the grouping configuration and the type
of trades to be extracted) would make the solution more general, but it was also
argued that it would create unnecessary complexity for the users.

7.3.2 Defining the Problem Domain

A recurring topic throughout the interview session was the di�culties in defining the
problem domain. It was discussed that one of the tricky parts of developing a DSL
is that a domain has to be chosen and defined, and that it in this case is di�cult to
determine which parts are included in the domain. A number of di�erent types of
files are being parsed at TriOptima, and it must be decided if the DSL should be a
part of a general file parsing solution or if there should be one focused DSL for each
of the types of files being parsed. When this has been decided, the problem domain
is still di�cult to define since it depends on what assumptions can be made about
the formats of the data that will be normalized. Since the requirements regarding
the formats of the client submitted data in triCalculate are loose, it is di�cult to
determine what functionality is needed in order to normalize all the client submitted
data.

37

CHAPTER 7. RESULTS

7.3.3 Proposed Improvements
As mentioned in subsection 7.3.1, the main weakness of the proposed solution was
considered to be the one-to-one mapping of columns in the input file to fields in
the internal data model. It was discussed that a complete solution for the problem
would have to allow the user to map and transform values from several columns in
the input file into the same field in the internal trade model. A proposed solution
for this was to let the mappings and the transformations be done in several steps
where the values are stored in intermediate fields before ending up in the final data
model. For example, it would be possible to transform values from two di�erent
columns in the input file into a single value that is stored in an intermediate field.
A second transformation could then be applied to the value in that intermediate
field before finally storing the value in the trade model.
The topic of using a GUI to generate the DSL specifications was also brought up
during the interview session. Just like in the first interview sessions it was stated
that a GUI where the users could specify mappings, and transformations would help
the development of new specifications. It was added that the possibility to preview
the results of the mappings and the transformations would help this process even
further.

7.4 Summary of the Analysis of the Remaining Quality
Characteristics

This section gives a summary of the analysis of the quality characteristics not
covered by the focus group interviews. Since the analysis was based on the sub-
characteristics presented in FQAD, the results are presented as comments regarding
the descriptions of these sub-characteristics.

7.4.1 Expressivity
• A problem solving strategy can be mapped into a program easily.

It was deemed that evaluation of this sub-characteristic would require a user
study and that it thereby is not within the delimitation of this thesis.

• The DSL provides one and only one good way to express every concept of
interest (unique).

Any input specification written in the DSL is defined by its set of input con-
figuration statements, field mappings and field transformations. There is only
one way of expressing a certain input configuration and if any part is added
or removed it will no longer represent the same input configuration.

• Each DSL construct is used to represent exactly one distinct concept in the
domain (orthogonal).

38

7.4. SUMMARY OF THE ANALYSIS OF THE REMAINING QUALITY
CHARACTERISTICS

Three of the four elements of the DSL (input configuration, field mapping and
field transformations) correspond to the three main concepts of the domain
(described in section 4.3). The fourth element, the comment element, does
not correspond to a domain concept but was decided to be included anyway
(for reasons described in section 5.2).

• The language constructs correspond to important domain concepts. The DSL
does not include domain concepts that are not important.
As mentioned regarding the previous sub-characteristic, all elements of the
DSL except the comments correspond to the most important parts of the
domain.

• The DSL does not contain conflicting elements.
The main elements of the language (input configuration, field mappings and
field transformations) all have di�erent purposes. The only part that can be
done in more than one way is the field mappings which can be done either by
column name or by column index.

• The DSL is at the right abstraction level such that it is not more complex or
detailed than necessary.
This sub-characteristic was discussed during the second focus group interview
(described in section 7.3).

7.4.2 Extensibility
• The DSL has general mechanisms for users to add new features (adding new

features without changing the original language).
The proposed solution does not o�er a way for users to add new features
(such as additional transformations and fields in the trade model) without
implementing them in the semantic model. Additional transformations and
fields in the internal trade model can however be added to the DSL without
modifying the grammar or the DSL parser.

39

Chapter 8

Discussion

In this chapter we discuss the results from the development and evaluation of the
proposed solution. The chapter is divided into three parts. In the first part, the
findings from the evaluation of the DSL are discussed. In the second part, we discuss
the impact of choices made during the development process. In the last part, we
discuss general lessons learned about data normalization as a DSL domain.

8.1 The Proposed Solution
The proposed solution meets the requirements listed in section 4.3, but it was clear
during the second focus group interview that the problem domain defined by the
delimitation of this thesis was considered to be a simplified version of the actual
problem domain. Since the intention of the thesis was to investigate how a DSL for
this purpose could be designed and implemented rather than providing a complete
solution for the data normalization problem, this was not considered to be a problem
that would a�ect the outcome of this thesis in a negative way.
The findings from the first focus group interview show that the proposed solution in
general is comprehensible for domain experts and that the language elements cor-
respond to elements of previous solutions at the company. The elements that were
considered to be the most understandable were the field mappings and the configu-
ration statements that were strictly related to the input format. The reason for this
was probably that the interviewees from the first interview all had extensive expe-
rience of working with client submitted CSV files and that the field mappings are
just a way of pointing out where in those files the expected data columns (according
to a trade data specification) can be found.
The remaining parts of the DSL, the transformations and the grouping configura-
tion, was considered to be less understandable but for di�erent reasons. The concept
of the transformations was considered to be easy to understand, but the use of the
transformations was deemed to require documentation of the available transforma-
tions. This probably applies to the solution as a whole, proper documentation would
be needed for it to be useful.

40

8.2. THE DEVELOPMENT PROCESS

Regarding the grouping configuration, the interviewees from the first interview
stated that it was not obvious how a user was supposed to decide which columns to
specify as grouping columns. This is an interesting point that may not be obvious
for someone who knows the structure of the underlying trade model. The need for
this grouping configuration is due to design choices made during the implementa-
tion of the semantic model and can thus be seen as a leak in the abstraction rather
than a natural part of the DSL. This is related to the discussion from the second
interview session about whether or not the output format should be a part of the
DSL specifications. Since the normalization process takes as input a flat format
and outputs a hierarchical format, the hierarchy must somehow be defined. Having
the whole output format as a part of the DSL specifications instead of just having
the grouping configuration would probably be a more suitable and understandable
abstraction of the problem domain.
Another interesting finding from the first interview session was that the restricted
flexibility of the proposed solution was considered to be a quality that would not only
enhance the readability but also the maintainability of the specifications. Allowing
users with little or no programming experience to extend the DSL by themselves or
even allowing them to mix the DSL specifications with GPL code was considered to
lead to a system that is hard to maintain due to code duplication and unconventional
use of the flexibility o�ered by a GPL. This indicates that the e�ects of having
general mechanisms for users to add new features, which is described as a quality
characteristic by FQAD, depend on the intended use of the DSL and the level of
programming experience of the users.
The proposed solution is expressive according to the sub-characteristics provided by
FQAD, but it could be argued that these sub-characteristics can be a bit misleading
when evaluating smaller DSLs. A DSL that consists of only a few elements will be
less likely to have conflicting elements and more likely to o�er just one way of
expressing a given solution. This means that it is di�cult to determine if the
DSL is expressive because the language elements are well-designed and have a clear
separation of concerns or simply because it is a small language.

8.2 The Development Process

The choice of developing an external DSL allowed for the design of a syntax that is
arguably concise and contains a minimal amount of syntactic noise. It is possible
that this concise syntax could be achieved with an internal DSL as well, but the
design of an internal DSL will always be limited by the syntax of the host language.
When developing an external DSL the syntax of the language can be designed
before thinking about how it should be implemented. This gives a clear separation
between the design and the implementation of the DSL, which will probably result
in a language design that is less influenced by implementation details.
The development of an external DSL also allowed for a complete control of the
execution environment and restriction of the ways in which the language could be

41

CHAPTER 8. DISCUSSION

used. The elements of the language and any interactions between those elements
must be designed and implemented by the developer of the language (if there are
no mechanisms for users to extend the set of language elements by themselves).
This enables the developer to clearly restrict the flexibility of the language. As
described in section 8.1, the interviewees believed that this restricted flexibility
enhances the maintainability of the system (especially if the intended users have
little or no programming experience).
Using a parser generator meant that an understanding of formal grammar notations
had to be acquired before starting the implementation process, but the amount of
time spent on this is not comparable to the time that would have been spent on
developing a parser from scratch. Using a parser generator also allowed for the
syntax of the DSL to be modified just by modifying the grammar specification,
which probably also reduced the amount of time spent on the implementation. In
general, the use of a parser generator made the expected steep learning curve of
developing an external DSL less evident.

8.3 Data Normalization as a DSL Domain
As stated in subsection 7.3.2, there are aspects of the data normalization problem in
triCalculate that make the problem domain di�cult to define. The aspect of decid-
ing whether or not the DSL should be a general solution for all data normalization
needs at the company is rather specific for the problem domain of this thesis, but
the aspect of what assumptions can be made about the input formats should apply
to all data normalization problems.
The overall goal of DSL design is to produce a language that is as simple as possible
without losing the flexibility needed to cover the problem domain. One of the main
guidelines (mentioned in subsection 2.4.2) for the DSL design process is to keep the
language simple by avoiding all unnecessary generality. When the problem domain
is data normalization (of some kind), this means that the level of flexibility of the
DSL should be decided by the set of possible input data formats. This set will
depend on what assumptions can be made about the input data formats. These
assumptions could be based either on actual requirements on the input data formats
or on an analysis of a representative data set. If there are no requirements on the
input formats and there is no representative data set available for analysis, not much
can be assumed about the formats of the input data and it will be very di�cult to
clearly define the problem domain and decide on an appropriate level of flexibility
for the DSL.

42

Chapter 9

Conclusions

In this concluding chapter we present a summary of this thesis and the conclusions
that could be drawn from it. We also suggest future work in the area.

9.1 Summary
The purpose of this thesis was to explore how a DSL for normalization of financial
derivatives data could be designed and implemented. The proposed solution is an
external DSL implemented in Python using the parser generator ANTLR.
The following list is a summary of the conclusions that could be drawn from the
evaluation of the proposed solution and from this degree project as a whole:

• The development of a DSL for normalization of data should only be initiated
when there are either clear requirements regarding the formats of the input
data or if there is a representative data set available for analysis.

• Even though the output format of the normalization process will be the same
regardless of input, including the output format as a part of the DSL spec-
ifications will probably result in a more understandable abstraction of the
problem domain.

• O�ering a high degree of flexibility and extensibility to users with little or
no previous programming experience may come at the high price of a system
that is di�cult to maintain.

• The development of an external DSL allows for a complete control of both the
language syntax and the flexibility in the use of the language.

• Using a parser generator when implementing an external DSL makes the steep
learning curve (which is often seen as the main disadvantage of external DSLs
compared to internal ones) less evident.

43

CHAPTER 9. CONCLUSIONS

Since the problem statement of the thesis was very open-ended, there was no con-
crete definition of done. This means that not much can be said about whether or
not the problem statement has been su�ciently answered. Given more time, the
delimitation of the problem domain could have been wider and the proposed solu-
tion more comparable to the existing solution in triCalculate. This would probably
have resulted in a more general solution that would have allowed for a deeper un-
derstanding of the suitability of data normalization as a DSL domain. Nonetheless,
the project fulfills its purpose of being an exploratory study of DSL development.
The conclusions listed above should apply to all data normalization DSLs and the
last three should apply to all cases of DSL development.

9.2 Future Work
During the interview sessions a number of improvements to the proposed solution
were suggested. One suggestion mentioned during both of the sessions were to
create a GUI that would be used to specify field mappings, apply transformations,
preview the results and generate the DSL specifications. It would be interesting to
investigate how such a GUI could be designed based on previous related work (e.g.
the work on Wrangler [15] by Kandle et al.).
In general, it would be interesting to see more studies where established approaches
and guidelines for DSL development are applied on industrial problem domains.

44

Bibliography

[1] Michael Durbin. All about derivatives. McGraw Hill Professional, 2006.

[2] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. Sigplan Notices, 35(6):26–36, 2000.

[3] Martin Fowler. Domain-Specific Languages. Pearson Education, 2010.

[4] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344,
2005.

[5] W3C website. http://www.w3.org/html/. Accessed October 20, 2014.

[6] Make website. http://www.gnu.org/software/make/. Accessed October 20,
2014.

[7] Eelco Visser. WebDSL: A case study in domain-specific language engineering.
In Generative and Transformational Techniques in Software Engineering II,
pages 291–373. Springer, 2008.

[8] Debasish Ghosh. DSLs in action. Manning Publications Co., 2010.

[9] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design guidelines for domain specific languages.
In The 9th OOPSLA workshop on domain-specific modeling, pages 7–13. Cite-
seer, 2009.

[10] ANTLR website. http://www.antlr.org. Accessed October 28, 2014.

[11] Gökhan Kahraman and Semih Bilgen. A framework for qualitative assessment
of domain-specific languages. Software & Systems Modeling, pages 1–22, 2013.

[12] FQAD assessment forms. http://www.metu.edu.tr/~e160061/. Accessed
January 15, 2014.

[13] Markus Voelter. Best practices for dsls and model-driven development. Journal
of Object Technology, 8(6):79–102, 2009.

45

BIBLIOGRAPHY

[14] E. Hautus. Case study: A DSL for normalization of financial data sets. Pre-
sented at the Software Development Automation Conference (SDA) in Ams-
terdam, 2014.

[15] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Je�rey Heer. Wrangler:
Interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages
3363–3372. ACM, 2011.

[16] "What is Python? Executive Summary". https://www.python.org/doc/
essays/blurb/. Accessed January 15, 2014.

[17] "Comparing Python to Other Languages". https://www.python.org/doc/
essays/comparisons/. Accessed December 9, 2014.

46

Appendix A

Sample Data

A.1 Input data sample
This is a sample describing the format of the input data. The sample data specifies
a foreign exchange swap trade.

trade_counterparty,trade_netting_set,trade_id,trade_instrument_type,
trade_date,trade_quantity,leg_currency,leg_business_center,leg_
business_day_conv,leg_notional,cashflow_payment_date,cashflow_
notional,trade_valuation_date,trade_valuation_currency,trade_pv

P1,P1,1,FXSWAP,2013-05-17,1,EUR,GBLO,FOLLOWING
,-69120000.0,2019-10-18,-69120000.0,2014-12-03,EUR,-922179.596276

P1,P1,1,FXSWAP,2013-05-17,1,USD,GBLO,FOLLOWING
,89833678.0,2019-10-18,89833678.0,2014-12-03,EUR,-922179.596276

47

APPENDIX A. SAMPLE DATA

A.2 Normalized data sample
This is a sample that describes the format of the normalized data. This data
corresponds to the sample input data in section A.1.

1 [
2 {
3 "pv": -922179.596276,
4 "trade_date": "2013-05-17",
5 "instrument": {
6 "instrument_type": "FXSWAP",
7 "legs": [
8 {
9 "currency": "EUR",

10 "nominal": -69120000.0,
11 "cash_flows": [
12 {
13 "payment_date": "2019-10-18",
14 "nominal": -69120000.0,
15 "type": "FIXED_AMOUNT"
16 }
17]
18 },
19 {
20 "currency": "USD",
21 "nominal": 89833678.0,
22 "cash_flows": [
23 {
24 "payment_date": "2019-10-18",
25 "nominal": 89833678.0,
26 "type": "FIXED_AMOUNT"
27 }
28]
29 }
30]
31 },
32 "trade_id": "FXSWAP-1",
33 "party": "ABC",
34 "counterparty": "P1",
35 "pv_currency": "EUR",
36 "quantity": 1
37 }
38]

48

Appendix B

Focus Group Interview Questions

B.1 Questions from the first focus group interview
• Which of the language elements do you find easy to understand?

• Which of the language elements do you find hard to understand?

• Which of the language elements were expected?

• Which of the language elements were not expected?

B.2 Questions from the second focus group interview
• Is the design of the language an appropriate abstraction of the problem do-

main?

• Which plausible input data formats can not be handled by the proposed so-
lution?

• Do you think that it would be possible to extend the proposed solution to
obtain a complete coverage?

49

Appendix C

Sample DSL Specification

1 # Default FXSWAP specification

2

3 input:
4 delimiter = ","
5 has_header = True
6 instrument_type = FXSWAP
7 trade_group_column = "trade_id"
8 leg_group_column = "leg_currency"
9 row_filter_column = "trade_instrument_type"

10 row_filter_value = "FXSWAP"
11

12 field_map:
13 trade_party -> default_value("ABC")
14 trade_counterparty -> column_name("trade_counterparty")
15 trade_id -> column_name("trade_id")
16 trade_date -> column_name("trade_date")
17 trade_quantity -> column_name("trade_quantity")
18 trade_pv -> column_name("trade_pv")
19 trade_pv_currency -> column_name("trade_valuation_currency")
20 trade_instrument_type -> column_name("trade_instrument_type")
21 leg_currency -> column_name("leg_currency")
22 leg_nominal -> column_name("leg_notional")
23 cashflow_type -> default_value("FIXED_AMOUNT")
24 cashflow_payment_date -> column_name("cashflow_payment_date")
25 cashflow_nominal -> column_name("cashflow_notional")
26

27 transformations:
28 trade_id -> add_prefix("FXSWAP-")

50

www.kth.se

