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SUMMARY 

 

The cost of pretreatment of biomass for saccharification and dilute ethanol 

purification are significant components of the overall cost for fuel grade ethanol production 

through fermentation or other biological routes. This thesis addresses three main topics: 

first, the optimization of a novel hybrid pretreatment process for a dilute bioethanol 

purification process; second, experimental determination of reaction kinetic parameters for 

the concentrated acid hydrolysis of cellulose and hemicellulose; third, the development of 

a novel solid-phase reactive chromatographic separation system for biomass 

saccharification via acid hydrolysis. All of these use optimization approaches to seek the 

best process configurations, process operation, and for parameter estimation. 

For dilute ethanol purification, a reverse osmosis (RO) membrane process is 

introduced as a potential pretreatment for bioethanol purification in order to concentrate an 

ethanol-water mixture to an intermediate concentration. This is to reduce the distillation 

energy consumption and hence cost of dilute ethanol purification. It is confirmed that for 

dilute ethanol feeds, the steam used in the distillation reboiler dominates both the energy 

and the cost of the overall system. Installing the RO system reduces the steam usage at the 

expense of larger capital investment in membrane modules, which, given the cost equations 

used in this thesis, is found to be optimal for dilute feeds below 3 wt% ethanol. The optimal 

number of membrane stages and the feed location of individual RO modules change at 

different feed concentrations and ethanol recoveries.  

 For concentrated acid hydrolysis using sulfuric acid, the kinetics parameters are 

estimated for four main reaction paths including pure cellulose (Avicel), xylan hydrolysis 

 xviii 



as well as xylose and glucose decomposition from four sets of batch experiments at 

different temperature and acid concentration. These parameters can be used as part of 

models to predict the concentration of sugars from biomass saccharification via a 

concentrated acid hydrolysis process as well as to investigate reactor and reactive 

separation process performance. In addition, it is found that the initial crystallinity index 

of the cellulose has a significant effect on the rate of hydrolysis reaction, where the lower 

initial crystallinity index of the cellulose has a much higher rate of cellulose hydrolysis. 

 Finally, a new reactive separation process concept termed solid-phase reactive 

separation system (SPRSS) is proposed and applied for biomass saccharification via acid 

hydrolysis. This process integrates the progressing batch reactor and the simulated moving 

bed chromatography processes where both systems employ similar principles of the 

movement of the liquid feed to imitate the countercurrent movement of solid and liquid 

phases. It is found that the key advantage of the SPRSS process is its flexibility in varying 

the acid concentration and liquid flow rate within the reactor system without any dilution 

to hydrolyze different portions of the biomass which have different hydrolysis reaction 

rates. The continuous model as well as the dynamic model of the SPRSS are formulated. 

The benefits of the SPRSS design are explored for both the dilute and concentrated acid 

hydrolysis processes. It is found that there is a potential improvement of the sugar yield as 

well as less byproduct formation by changing the acid concentration using the SPRSS 

configuration design. 
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INTRODUCTION 

1.1 Lignocellulosic material - a source for bioethanol production 

 
 The world is dependent on fossil fuels such as petroleum, natural gas, and coal to 

fulfill energy demands. Global energy needs continue to grow driven by economic 

development and population growth especially in countries outside the Organization for 

Economic Co-operation and Development (non-OECD countries) as shown in Figure 1.11 

The burning of fossil fuels leads to the release of acid gases such as nitrous and sulphurous 

oxides and heavy metals and of most recent specific concern carbon dioxide. CO2 

emissions have been increasing over the last 150 years, causing a change in the atmospheric 

concentrations from 280 ppm to 365 ppm,2 and are predicted to increase by 28% by 2030.3   

 

 

 

Figure 1.1. OECD and non-OECD petroleum and other liquid fuels consumption in million 
barrels per day (taken from EIA, 20144) 
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More evidence has been reported on the change in global atmosphere caused by an increase 

in the amount of CO2 emission. Increased energy demand and concern about energy 

security as well as CO2 impacts on climate have driven interest in the development of 

alternative fuels based on renewable feed stocks. The world energy outlook shows 

substantial growth of renewable energy sources in the next 20 years driven both by markets 

for CO2 emission limitation and by government subsidy.1, 5 However, it is challenging to 

produce these renewable fuels cost effectively and with relatively low energy input.  

 Bioethanol has been considered as a promising and potentially sustainable fuel 

since it can be used as a gasoline oxygenate, both to increase the octane number and provide 

a cleaner combustion, as well as being produced from carbon fixed from the atmosphere 

over relatively short time periods.6 Over the lifecycle, the production and combustion of 

the bioethanol generally leads to a lower emission of fossil CO2, carbon monoxide (CO), 

and nitrogen oxides for a given quantity of energy.2 Large scale production of ethanol is 

based on first generation feedstocks such as sugarcane in Brazil or corn starch in USA. The 

production of sugarcane-based ethanol has increased in several countries mainly in tropical 

region. As for the bioethanol from corn starch, the production capacity cannot be increased 

significantly as this would compete with demand from the food industry.7 Bioethanol can 

be produced via the lignocellulosic material, a second generation feedstock, which can 

avoid impacts on the food market. A key advantage of lignocellulosic material feedstock 

is its availability from sources such as grasses, sawdust, sugarcane bagasse, and corn stover 

which are generally residues from agricultural industries, although harvesting these 

secondary sources cost effectively is still a challenge.  
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1.2 Biomass composition 

 

 Biomass contains cellulose, hemicellulose, lignin, and other small components 

where the compositions vary by source. The typical composition of biomass is illustrated 

in Figure 1.2. Cellulose is generally the most abundant portion in the biomass accounting 

for 32 – 54 wt% in the biomass. Cellulose is present mainly in crystalline phases and small 

fractions in an amorphous phase.8 Glucose is the hexose sugar that forms cellulose in a 

linear polymer structure where the degree of polymerization is typically around 2000 – 

27000 units. Hemicellulose, the second main component in biomass, accounting for 11-37 

wt% in biomass, is in a branched amorphous form which is easier to hydrolyze compared 

to the crystalline cellulose. The monosaccharides contained in hemicellulose include both 

hexoses and pentoses9 such as xylose, mannose, glucose, galactose, arabinose, etc. Lignin, 

the third main component, accounting for 17 – 32 wt % in the biomass, is a complex 

polymer of phenylpropane units linked in a three-dimensional structure.10 These 

components are extremely resistant to the hydrolysis reaction. There are some other small 

components in the biomass such as ash and extractives (e.g. fat, waxes, and inorganic 

compounds).11  

 

1.3 Overall bioethanol production process from acid hydrolysis 

  

Bioethanol production via hydrolysis of lignocellulosic materials can proceed 

through different pathways depending on the selection of pretreatment technology and the 

hydrolysis step. Two well-known hydrolysis technologies are the enzymatic and acid  
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Figure 1.2. Composition of lignocellulosic materials. 

 
 

hydrolysis.9 The high sugar yield can be achieved from the enzymatic hydrolysis but its 

main drawbacks are the high enzyme cost as well as the slow reaction rate. Acid hydrolysis 

process has faster reaction but could generate byproducts that inhibit the fermentation 

process. This research focuses on the hydrolysis via an acid catalyst where the simplified 

overall bioethanol production process from lignocellulosic material is illustrated in Figure 

1.3.11 The biomass is milled to reduce the particle sizes to allow the acid to penetrate and 

hydrolyze to get the sugar solution in the next step. Sulfuric acid is the most preferred acid 

catalyst based on its price, corrosivity, and toxicity. Cellulose and hemicellulose are mostly 

converted into sugars, while lignin remains as solid residual which can be burned to 

produce steam for the process due to its high energy value. Several byproducts could be 

generated during the acid hydrolysis which require detoxification step to achieve the 

fermentable sugars. Glucose and xylose are generally the main products from the 

Hemicellulose 
(11-37 %)

Cellulose 
(32-54 %)

Lignin 
(17-32%)

Ash (0-2%) Extractives 
(1-5%)
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hydrolysate, products from hydrolysis, which can be converted by separated fermentation 

or by a co-culture process using two microorganisms specific for each sugars.12 For 

example, the commonly used microorganisms are Saccharomyces cerevisiae and 

Zymomonas mobilis for glucose fermentation and Pichia stipites and Candida shehatae for 

xylose fermentation.13 Since the fermentation process for xylose is not as efficient as that 

for glucose, many recent researchers have endeavored to increase the xylose utilization for 

ethanol production via metabolic engineering.14-16 After the fermentation, the bioethanol 

product is purified to achieve a fuel-grade ethanol at the purity of greater than 99 wt%. 

 

 

Milling & size 
reduction

Milling & size 
reduction Acid hydrolysisAcid hydrolysis

DetoxificationDetoxification

FermentationFermentation PurificationPurification

Lignocellulosic 
material

Bioethanol

Sugar solutionsFermentable 
sugar

 

Figure 1.3. Overall process for bioethanol production from lignocellulosic material via 
acid hydrolysis.11 

 

1.3.1 Biomass saccharification via acid hydrolysis 

 Acid hydrolysis can be done in two ways using either dilute or concentrated acid. 

The advantage of acid hydrolysis is its ability to penetrate lignin without pretreatment and 

its faster reaction rate compared to enzyme hydrolysis. However, there are several primary 

problems of the acid saccharification process. For the dilute acid hydrolysis process, a high  
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Figure 1.4. Possible reaction pathways for biomass acid hydrolysis achieved from Girisuta 

et al. 17 

 

operating temperature is required to break down the structure of the material: 

approximately 200-240 °C for cellulose and 140-160 °C for hemicellulose. However, these 

severe conditions also cause sugar decomposition and generate side products such as 

furfural, hydroxymethylfurfural (HMF), formic acid, and levulinic acid where the possible 

reaction scheme of the biomass hydrolysis is illustrated in Figure 1.4.17 These generated 

byproducts strongly inhibit the fermentation process for bioethanol production process.11, 

18-20 The concentrations of furfural, the decomposed product from xylose, at 0.5, 1.0 and 

2.0 g/L can reduce Pichia stipites, a common fermentation yeast, growth by 25%, 47% and 
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99%, respectively. Likewise, the concentration of HMF, the decomposed product from 

glucose, at 0.5, 0.75, 1.5 g/L decrease the growth rate of Pichia stipites by 43%, 70%, and 

100%.21 These byproducts must be detoxified before going through the fermentation step 

such as removal via evaporation of the volatile component, and precipitation of heavier 

toxic compounds.22 The byproduct can also be removed via advanced separation 

technology such as chromatographic separation.18 The acid contained in the hydrolysate 

must also be neutralized leading to a substantial generation of solid byproduct salts. All of 

these detoxification processes result in additional cost for bioethanol production. 

 For the concentrated acid hydrolysis process, a lower operating temperature, lower 

pressure, and a smaller amount of sugar degradation and less byproduct formation are its 

advantages over the dilute acid hydrolysis. However, the main drawbacks are the expensive 

process equipment to prevent corrosion and a significant cost of acid recovery.11, 23 To 

reduce the cost of process acid, the acid must be separated and recycled which can be done 

via chromatography.24 The concentrated acid hydrolysis process from Arkenol is 

considered an economically viable method for biomass saccharification.25 This process 

contains two stages of hydrolysis where the biomass is treated at high acid concentration 

around 70 wt% in the first stage to decrystallize cellulose and hemicellulose followed by 

the hydrolysis reaction at acid concentration around 20 – 30 wt% at the temperature of 80 

– 100 °C at atmospheric pressure to produce sugars where the reaction takes generally two 

to six hours. The acid in the hydrolysate is separated using the cation-exchange resin and 

the acid can be concentrated and recycled. The separation technology could be further 

enhanced by using the simulated moving bed chromatography (SMB) to recover 

fermentable sugars as well as recycling the acid which has been investigated in several 
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papers.26-27 An improvement in separation process efficiency could potentially make 

concentrated acid hydrolysis process more economically viable. 

 

1.3.2 Ethanol purification process 

 The purification of the bioethanol is generally an energy-intensive process. Fuel-

grade bioethanol requires the separation of the ethanol-water mixture across the azeotropic 

point at around 95.6 wt%. Therefore, the separation is usually divided into two steps where 

the first step performs the main ethanol separation by ordinary distillation to achieve the 

purity close to the azeotropic point while the second step is to dehydrate the bioethanol 

across the azeotropic point to produce fuel-graded bioethanol.6 There are several 

technologies used in the second step of separation. For example, azeotropic or extractive 

distillation alters the separation factor in the distillation system by adding a third 

component such as liquid solvent, dissolved salt, or ionic liquid. Adsorption is another 

technique which can be done in a vapor phase such as molecular sieves28 and silica gel29, 

and liquid phase such as starch-based adsorbents.30  

The technique that has been recently considered the most effective and energy 

efficient is the membrane separation process. This includes membrane pervaporation 

systems31-32 where the component with high permeability in the liquid feed is permeated 

through the membrane and evaporated into the vapor phase, and gas permeation where the 

system is all in the gas phase.33  

 Several papers describe the overall ethanol-water separation process using the 

hybrid distillation membrane approach to further reduce the energy consumption such as 

hybrid distillation-membrane-pervaporation34 and steam-stripping-gas-permeation35 
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which are illustrated in Figure 1.5. It has been shown that different ethanol feed 

concentration may change the optimal choices of the separation process.36 

 

chilled 
water

1

N

cw

lps

lps

99.4 % 
ethanol

Water

Feed

cw

CW

cw

lps
99.4 % 
ethanolWater

Feed

lps

(a) (b)  

Figure 1.5. Hybrid distillation-membrane separation system (a) pervaporation (b) gas 

permeation. 

  

1.4 Economics of the bioethanol production from lignocellulosic material 

 

 The US market price of ethanol has been fluctuating between $1.30 USD/gal and 

$3.40 USD/gal over the past 5 years, and the price in February 2015 was approximately 

1.45 USD/gal.37 In designing a bioethanol production process, the minimum ethanol selling 

price (MESP) must be lower than the market price in order to make the process 

economically attractive. The economic analysis of bioethanol production from 

lignocellulosic biomass has been investigated in several past studies.38-40 The relatively 

high capital cost and the feedstock as well as logistic costs of the biomass resources are the 

main barrier for the commercial implementation of this process. The pretreatment step of 
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the biomass saccharification is one of the critical components that could significantly 

change the economics of the bioethanol production. A study from Tao et al. 41 found that 

MESP varies from $2.74 to $4.09 per gallon due to different biomass pretreatment process 

implementations. The ethanol yield is found to be the most important factor in determining 

the MESP, which is largely based on the sugar yield achieved in the pretreatment step and 

ensuring that inhibitory by-products are minimized.  

 Distillation is an energy-intensive process where the cost could increase 

significantly when the ethanol feed concentration from the fermentation decreases.35 This 

also depends on the sugar concentration generated from the pretreatment and the hydrolysis 

steps. Thus, there is a tradeoff between the cost of the pretreatment technology and that of 

the purification process. For instance, two-stage dilute acid pretreatment may offer an 

economic advantage over the enzymatic path due to the expensive cost of the enzyme.40 

However, the yield from such an acid pretreatment technique is lower, resulting in a lower 

concentration of fermentable sugars, as well as bioethanol which ultimately increases the 

purification cost.  

 It is essential to develop an economic and efficient technology to convert second 

generation biomass feedstocks to produce fermentable sugars as well as an energy-effective 

separation technology for bioethanol production especially when the feed concentration is 

low. These are the main motivation for, and the objective of, this thesis. 
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SCOPE OF THESIS 

 

 The overarching goal of this work is to reduce the cost of bioethanol production 

from biomass by developing novel pretreatment processes based on available mathematical 

modeling and optimization methods. Two processes including the bioethanol separation 

and the acid hydrolysis are the main focuses of this work as illustrated in Figure 2.1. 

Experimental work is also conducted in this work to provide essential information for the 

mathematical modeling. There are three main objectives in this work. 

 
1. To identify the optimal separation process configuration with feed pretreatment via 

reverse osmosis for dilute bioethanol purification processes. 

2. To model the kinetics of concentrated acid hydrolysis reactions of cellulose and 

hemicellulose. 

3. To conceptualize and design a novel optimal solid phase reactive chromatographic 

separation system for biomass saccharification using a rigorous optimization 

strategy. 

 The first objective is the topic of Chapter 3 which synthesizes a bioethanol 

purification process for a dilute (1-5 wt%) feed. The reverse osmosis membrane system is 

introduced to pretreat the feed where the overall separation process configuration is 

modeled and optimized using the superstructure formulation to seek the best configuration 

and operating scheme. The comparisons of the cost and energy consumption of the 

separation process between the ones with and without reverse osmosis membrane 

pretreatment are illustrated. The optimal configurations of the overall separation process 

are presented at different feed concentrations. 
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Figure 2.1. Scope of thesis 

 

 The second objective is the topic of Chapter 4 which shows the experimental work 

and the parameter estimation on the reaction kinetics of concentrated acid hydrolysis of 

cellulose and hemicellulose, as represented by Avicel and Xylan from Sigma Aldrich. In 

this chapter, the effect of the initial crystallinity index on the kinetics of the cellulose 

hydrolysis is illustrated. Furthermore, the kinetic parameters of the four main reaction paths 

of cellulose hydrolysis, xylan hydrolysis, glucose decomposition, and xylose 

decomposition are estimated using the method of least square minimization from four sets 

of batch experiments at different reaction temperatures and sulfuric acid concentrations.  

 The final objective is the topic of Chapter 5, Chapter 6, and Chapter 7 which 

illustrates a novel solid-phase reactive separation system (SPRSS). The new process is 

proposed and applied for the system involving the solid reactants like biomass which is 

aimed to increase the sugar yield and minimize byproduct formation from the acid 

hydrolysis reaction. The progressing batch reactor and simulated-moving bed 

chromatographic separation are combined where both systems have similar principles 
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which imitate the solid phase movement by switching the liquid inlet and outlet ports in 

the direction of the liquid flow. The advantages of SPRSS are investigated using the 

optimization strategy with the simplified continuous models of countercurrent reactor and 

true-moving-bed chromatography. The SPRSS with the kinetic parameters from the dilute 

acid region and from the concentrated acid hydrolysis achieved in Chapter 4 are explored 

in Chapter 5 and Chapter 6, respectively. Chapter 7 presents the dynamic model of SPRSS 

and specifically focuses on the progressing batch reactor where the simulation results are 

compared with the countercurrent reactor. 

 Altogether this thesis develops new pretreatment processes for bioethanol 

production from biomass and searches for the best process designs using optimization 

techniques based on superstructures that capture many possible configurations. The 

benefits of the new process designs could partially reduce the overall cost of the bioethanol 

production from biomass. Furthermore, the proposed reactive separation process may find 

other applications beyond bioethanol production.  
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NEW PROCESS DESIGNS FOR DILUTE BIOETHANOL 

PURIFURCATION 

3.1 Motivation 

  

Bioethanol is a well-established alternative fuel produced from various biomass 

sources.  The primary production route is via fermentation of sugars from corn and 

sugarcane that leads to an ethanol in water solution whose concentration is limited by the 

initial concentration of the sugars and the toxicity of ethanol and other feed constituents to 

the fermentation organism.  These first generation feed stocks are being supplemented by 

other second and third generation sources of ethanol derived from lignocellulosic material 

and from algae process.42-44 These sources lead to ethanol concentrations of significantly 

lower than those from sugars. Fuel grade bioethanol has purity above 99 wt% and requires 

ethanol purification across the ethanol-water azeotropic point around 95 wt%. Several 

technologies have been used for ethanol dehydration such as membrane pervaporation, 

adsorption, extractive distillation, or the hybrid distillation-membrane separation.6, 45 The 

choice of optimal separation technology may change depending on the feed concentration 

and throughput.36, 46  

 The ethanol concentration derived from the lignocellulosic material and algae 

process can be very low. The conversion using simultaneous saccharification and 

fermentation from lignocellulosic material can produce bioethanol of a concentration less 

than 5 wt%.42, 47 Likewise, the processes based on growing algae can generate bioethanol 

at a very low concentration. One alternative route, for example, is a cyanobacteria (blue-
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green algae) based process uses photosynthesis to produce ethanol which is then collected 

from closed photobioreactors by evaporation and condensation driven by the diurnal 

thermal cycle.43-44, 48 However, ethanol production from this route can be very dilute, 

ranging from 0.5–5 wt%, and would require high energy consumption using conventional 

purification technology.35, 48 Figure 3.1 depicts the energy consumption for ethanol 

purification to fuel grade at 99.4 wt% for different ethanol feed concentration using the 

optimal design of hybrid distillation-membrane-pervaporation (D-PV) system derived 

from previous work.36 The value includes the sensible heat to preheat the stream at different 

feed temperatures and the ethanol purity of the stream leaving from the bottom of the 

distillation column must be less than 0.02 wt% to constrain on ethanol recovery. It can be 

seen that the energy requirement for ethanol purification to fuel grade increases rapidly 

with decreasing ethanol inlet concentration and exceeds the ethanol high heating value 

(HHV) which is around 30 MJ/kg-ethanol35 when the ethanol feed purity is in the 1–2 wt% 

range. This implies that generating the fuel requires more energy than can be released from 

its combustion. Thus, this hybrid separation process, with current membrane material 

properties, is inadequate for dilute ethanol purification, and further reduction in energy 

consumption must be pursued. This motivates introducing a pretreatment process 

specifically suited to produce ethanol at an intermediate purity before feeding to the main 

separation to reduce significantly the separation cost and energy consumption for dilute 

ethanol purification. 

 In this work, we will focus on the optimal design of dilute ethanol purification with 

reverse osmosis (RO) membrane pretreatment technology from feeds that purify the  
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Figure 3.1. Energy consumption in MJ/kg-ethanol for D-PV for ethanol dehydration at 
different feed temperatures. 

 

very dilute concentrations of ethanol. The superstructures of the hybrid distillation-

membrane pervaporation with pretreatment are modeled as Mixed-Integer Nonlinear 

Programming (MINLP) problems to find the optimal process configurations by minimizing 

the total separation cost, subjected to a recovery constraint on the ethanol. 

 This chapter is organized as follow: section 3.2 describes the superstructure of the 

overall separation technologies including the hybrid D-PV and RO membrane 

pretreatment. The effect of ethanol recovery on RO membrane, the separation partition 

between RO membrane and  D-PV, and the cost and energy savings from the RO membrane 

pretreatment are discussed in section 3.3. 
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Figure 3.2. Superstructure of ethanol purification process. 

 

3.2 Superstructure of separation technologies 

  

A design methodology and process operation for the hybrid distillation-membrane 

system has been widely studied.49-51 A distillation column can be combined with gas 

permeation or pervaporation membrane, each of which each has its own advantages. A 

comparison of the performance of gas permeation and pervaporation has been addressed 

based on the same basis.52 Lipnizki et al.53 and Koczka et al.54 reviewed several 

configurations and arrangement of D-PV for ethanol dehydration. Huang et al.55-56 and 

Vane et al.57 developed a new hybrid distillation-gas-permeation with vapor compression 

for ethanol purification which enables heat integration within the system. Our previous 

work shows that the hybrid D-PV membrane is favored over the gas-permeation system at 
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a low ethanol feed concentration.36 Therefore, the D-PV system is chosen as the main 

separation for bioethanol dehydration in this work. Superstructures for the D-PV have been 

proposed as a rigorous MINLP model to minimize the total annual cost of separation.34, 58-

60 In this study, the pervaporation membrane is placed at the top of the distillation column 

to purify the mixture across the azeotropic point and the RO pretreatment is added before 

the main separation unit after the ethanol production process to produce a stream with 

intermediate ethanol concentration. Figure 3.2 shows the superstructure of the hybrid 

separation technology to purify dilute ethanol to fuel grade ethanol. 

 Water removed from both the pretreatment step and the main distillation column is 

recycled to the ethanol production process which can be any types. A constraint is placed 

on the recycled ethanol concentration to be lower than 0.02 wt% to constrain on the ethanol 

recovery. The optimizer will decide how much ethanol should be removed or recovered 

from each subsystem. Thus, the ethanol recovery is one of the main decision variables for 

the optimization of overall separation process. 

3.2.1 Hybrid distillation-membrane pervaporation 

 The main distillation column is modeled as a MINLP proposed by Viswanathan 

and Grossmann61-62 where the non-random two-liquid (NRTL) phase equilibrium model 

for ethanol-water mixture is used at atmospheric pressure. The column model variables are 

the number of column stages, feed stage, the distillate flow rate, and the top column purity. 

The top distillate passes through the pump and the heat exchanger respectively to increase 

the pressure to maintain the flow in a liquid phase and increase the temperature before 

feeding to the membrane system. 
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Figure 3.3. Hollow fiber pervaporation membrane modeling each stage. 
 

 Previous studies have addressed the design and operation of pervaporation 

membrane for ethanol dehydration.31, 63 Ethanol is concentrated to fuel grade at 99.4 wt% 

while the water permeates are combined and cooled by chilled water before feeding back 

to the distillation column at the appropriate stage decided by the optimizer. The membrane 

model can vary the membrane area, the ethanol outlet concentration for each membrane 

stage, the feed temperature, and the permeate pressure which is controlled by the 

temperature of the chilled water.  

The hollow fiber pervaporation membrane model is counter-current flow (see 

Figure 3.3) with mass and energy balance around each membrane stage. We define a set 

NPS = {1, 2, …, KP} to denote the number of pervaporation membrane stage and another 

set NC = {e, w} to denote the ethanol and water component. The standard solution-

diffusion mass transfer model is used to calculated the permeate flux of each stage where 

the pressure driving force mainly depends on the vapor pressure of the feed and the 

permeate64-66 

 

 ( ), , , , ,  ,p p sat p
j k k j k j k j k k j k k ky F Q x p y p A j NC k NPSγ= − ∈ ∈   (2.1) 
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where ,
p
j ky  is the species molar composition in the permeate, p

kF  is the total vapor molar 

permeate flow, and kA  is the membrane area of each stage. A polyvinyl alcohol membrane 

material is used where the species permeance ( ,j kQ ) is expressed as a function of ethanol 

concentration.66-67 The remaining term is the pressure driving force which is evaluated by 

using the log-mean average vapor pressure difference between the feed and the permeate 

side at both inlet and outlet of the membrane.66 

 

( ) ( ), , , , , ,
, , ,

, , ,

, , ,

ln

,

f f sat p p r r sat rp p
j k j k k j k k j k j k k j k ksat p

j k j k k j k k f f sat p p
j k j k k j k k
r r sat rp p
j k j k k j k k

x p y p x p y p
x p y p

x p y p
x p y p

j NC k NPS

γ γ
γ

γ
γ

− − −
− =

 −
  − 

∈ ∈

 (2.2) 

 

 The evaluation of logarithm terms may cause numerical problems in an 

optimization model. Therefore, the Chen approximation is implemented to approximate 

the log-mean pressure driving force.66, 68 
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1 2
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∆ −∆  ∆ + ∆  ≈ ∆ ∆    ∆   
 ∆ 

 (2.3) 

 The vapor pressure driving force depends on the temperature of the feed, which is 

reduced along the module by the latent heat of evaporation of the permeate flow.  

Intermediate heating of the retentate between membrane stages is therefore required to 

increase the driving force.31, 63 The total number of stages KP was varied and cost was a 

monotonically decreasing function of KP with increasingly small changes as KP was 

increased. Therefore, the number of stage was chosen by manually increasing KP until no 

significant improvement on the objective function was observed. Four membrane stages 

with four interstage heaters were found sufficient and fixed as the number of stages for the 
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rest of the study (KP=4). The heaters increase the membrane feed temperature of each stage 

up to 90°C, assumed to be below the maximum operating temperature of the pervaporation 

membrane.56 

3.2.2 RO membrane pretreatment 

 RO membranes have been widely used in waste water treatment and desalination 

as they offer several benefits such as low energy consumption, moderate cost, and 

operation at ambient temperature.69-70 Several past studies considered ethanol purification 

using RO membranes.71-72 Optimal configurations and the superstructures of RO 

membrane system have been previously addressed.73-75 El-Halwagi76 proposed a state-

space approach including RO units, pumps, energy-recovery devices, and stream 

distribution which has been used and modified by several authors.77-79 Our system which 

contains a binary mixture is required to achieve both a certain ethanol purity and ethanol 

recovery. We consider a membrane system adapted from a countercurrent cascade which 

contains enriching and stripping section similar to a distillation column.80-82 The 

superstructure of RO membrane is shown in Figure 3.4. 

 The superstructure allows the number of RO membrane to vary. In this 

superstructure, we limit the system to a maximum of three membrane stages in order to 

reduce the computation time and avoid some redundant local solutions which will be 

described in the results. RO systems normally operate at a high pressure to increase the 

driving force which is assumed to have a maximum value of 83 bar. The feed is pressurized 

and its location chosen to be between any of the three membrane stages. The model allows 

the permeate to be pressurized and recycled back to any of the previous stages for ethanol 

recovery, or it can be removed from the membrane system at any stage. The model can 
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choose to have an interstage pump to increase retentate pressure before feeding to the next 

stage. The stream with intermediate ethanol purity from the final membrane stage passes 

through to an energy recovery device83 to reduce it to atmospheric pressure and it is fed to 

the main dehydration step, while the water removed from the membrane system is returned 

to the ethanol production process and water recovery. 
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Figure 3.4. Superstructure of RO membrane. 
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Figure 3.5. Spiral wound cross flow model with finite elements for RO membranes. 
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 The area of the RO membrane is relatively large up to approximately 150 times of 

the pervaporation membrane area in dehydration step. Each membrane stage is therefore 

discretized equally into 30 finite elements to increase the accuracy of optimization results 

(see Figure 3.5). Let NE = {1,2,…,N} be a set of the number of finite element and NRS = 

{1,2,…,KR} be a set of RO membrane stage where N = 30 and KR = 3. The mole and 

component balance equations of a mixing of feed streams for each membrane stage are73 

 1,1
1

1

KR
f in re

l
l

F F F
=

= +∑  (2.4) 

 ,1 ,1 1,
1

1 1

KR
f f in re re
j j l
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j
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l k
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 , , 1 1 , , , {1}
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f f in r r re re
j k k j k j k k j k k l

l k

ROx F x F x F x j NC k NRSF− −
=
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where f
kF is the total molar feed rate at each stage, in

kF is the feed entering stage k, and r
kF

is the retentate outlet from stage k. ,
e

k l
rF  is the recycle stream from the permeate stage l to 

stage k which is allowed to enter only the current stage and all previous stages (k ≤ l), and 

jx  is the species liquid mole fraction of the corresponding stream. The mole and component 

balances of each membrane element are 

 ,2 ,1
f p

k k k
fF Fe Fe k NRS= + ∈  (2.8) 

 , , ,2 ,2 , ,1 ,1 ,ff f p p
j k k j k k j k k

fx F xe Fe x j NC Ne SFe k R= ∈+ ∈  (2.9) 
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k k n

f
n n k k NFe RS nFe Fe NE N+ ∈ ∈ −= +  (2.10) 
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f f p p
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j NC k NRS n NE N
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 , ,
f p

k N k k N
rFe F Fe k NRS= + ∈  (2.12) 

 , , , , , , ,f f p p
j k k N j k k j k N k

r r
Nx Fe x F xe j NC k NFe RS= + ∈ ∈  (2.13) 
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j k n j k n

j NC j NC
xe x k NRS n NEe

∈ ∈

= ∈− ∈∑ ∑  (2.14) 

 

where ,
f

k nFe , ,
p
k nFe , are molar flow rates of the feed and permeate stream of each membrane 

element at stage k respectively, jxe is the corresponding species mole fraction. The 

permeate of each membrane stage is the sum of permeate from all membrane elements. 
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p p
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F Fe k NRS
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= ∈∑  (2.15) 
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 The permeate of each membrane stage is allowed to recycle to the previous stage 

or to be removed from the membrane system, which is a decision represented by logic 

constraints as follows. 
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 po
kF is the permeate removed from stage k and p

kδ is the binary variable indicating 

the permeate recycle. The logic constraints for the feed location are 
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where ROF  is the total feed flow rate and 
f

kδ is the binary variable for choosing the feed 

location. The existence of membrane stage is determined by the binary variable.  

 k k
k
A

k
A

kL A U k NRSδ δ≤ ≤ ∈  (2.23) 
 1 {1}k k

k k
A A k NRSδ δ −≤ ∈ −   (2.24) 

 kAf
k k k NRSδ δ≤ ∈  (2.25) 

 

 L and U are lower and upper bounds of the membrane area and k
k
Aδ is the binary 

variable representing the existence of a membrane stage. We restrict membrane stages after 

the first stage to be added consecutively by including the logic constraint, Eq. (3.24). The 

feed is restricted to be located only at an existing membrane stage (Eq. (3.25)). These logic 

constraints are added to avoid non-unique solutions.  

 The RO membrane module is modeled as a spiral wound cross flow model where 

the permeate side is assumed well mixed. A mass transfer solution-diffusion model is 

chosen where the water driving forces depend on the liquid pressure and the osmotic 

pressure of both feed and permeate side. The ethanol permeate flow is relatively small 

compared to water permeate flow and is modeled using a concentration gradient66, 80 rather 

than a pressure driving force. The permeate flow and the driving force of each component 

are given as follows. 

Water permeate flow and driving force: 

 ( ){ }, , , ,
  M ,p p f k

e ew k n k n w k n

Ax F p k NRS n NE
N

π= ∆ −∆ ∈ ∈  (2.26) 

 ( ) ( ) ( ), ,,
,f f p p

k k n k nk n
p p p k NRS n NEπ π π∆ −∆ = − − − ∈ ∈  (2.27) 
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Ethanol permeate flow and driving force: 

 ( ){ }, , , ,
  M ,p p p ke ee k n k n e e e k n

Ax F C C k NRS n NE
N

= − ∈ ∈  (2.28) 

 ( ) ( ), , , ,,
,p p

e e e k n e k nk n
C C C C k NRS n NE− = − ∈ ∈  (2.29) 

 

where kA  is the total membrane area of each stage, and N is the total number of finite 

elements. Thus, each stage has 30 equivalent elements where the area of each element for 

each stage depends on the optimal total membrane area kA . MW  and Me  are the permeate 

flux of water and ethanol, which are functions of its driving force. ΔP and Δπ are the 

pressure and osmotic pressure difference of the feed and the permeate, respectively. Pk is 

the feed pressure of each membrane stage, p is the atmospheric permeate pressure, and eC  

is the molar ethanol concentration (kmol.m-3). The osmotic pressure and the ethanol 

concentration of the permeate side is constant under the well-mixed assumption while those 

of feed side denoted π  and eC  are approximated between the feed inlet and retentate outlet 

using the log-mean average with the Chen approximation. The correlation to estimate the 

osmotic pressure used in the model assuming the ideal solution is82 

 eiC ΓTπ =  (2.30) 
 

where i is the Van’t Hoff factor which is equal to one for an ethanol-water mixture, Г is 

the gas constant and T is the temperature which is assumed at 303 K. We assume a 

polyacrylamide membrane where the mass transfer across the membrane is fitted to 

experimental data84 and express the permeate flux as a linear function for a specified range 

(see Figure 3.6). 
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Figure 3.6. Molar flux of water (a) and ethanol (b) through polyacrylamide. 
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 The effect of concentration polarization is assumed negligible.  In addition, we 

define the ethanol recovery of RO system, D-PV, and total separation as 

 
int int
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RO RO
e
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=  (2.33) 
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− =  (2.34) 

 1
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T RO D PV e e
RO RO RO RO
e e

x E x RRec Rec Rec
x F x F

−= = = −  (2.35) 

 

where int
ex  and intF  are the ethanol composition and molar flow of the intermediate stream 

feeding to D-PV unit, RO
ex  and 

ROF are those of RO feed, and E  is the ethanol product 

stream with corresponding E
ex  (see Figure 3.2). The total recovery in Eq. (3.35) can be 

expressed from the mole balance in terms of the composition and the flow of the recycle 
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stream to ethanol production process denoted by REP
ex and REPR , respectively. The details of 

the model assumptions are shown in Table 3.1. 

 The optimization model is solved to minimize the ethanol separation cost per unit 

fuel ethanol throughput.  This consists of the total annualized capital cost (TCC) and the 

total operating cost (TOC) for different ethanol feed concentrations and throughputs.  

 
TCC+TOCmin  z = EtOH Cost

E
=  (2.36) 

 
 The weight purity of ethanol product stream is set as an equality constraint at fuel 

grade. 

 0.994E
ew =  (2.37) 

 
 There is additional constraint for recovery which will be discussed in the results. 

All equipment costs and sizing are modeled using the correlations from Sieder et al.85 while 

the RO membrane cost is from Baker and Lokhandwala.86 A process life cycle is assumed 

to be 15 years for all equipment except for a 5-year-life of both pervaporation and RO 

membranes and a discount rate of 8%. A summary of all equipment and utilities used in 

optimization model is shown in Table 3.2. 

 The model is non-convex with many possible local solutions; therefore, different 

initial guesses have been investigated to get the best optimal solution, but global optimality 

is not guaranteed. All of the model decisions are listed in Table 3.3. 
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Table 3.1. Model assumptions of hybrid D-PV with RO membrane pretreatment for dilute 
ethanol purification  

Model parameter Assumption 
Ethanol production process  
Maximum ethanol concentration of recycle 
stream35 

0.02 wt% 

Ethanol feed temperature 30 °C  
Distillation column  
Phase equilibrium model NRTL 
Tray efficiency 75% 
Operating pressure 1.01 bar with no pressure drop 
Column limitation diameter85 7.3 meters (24 feet) 
Pervaporation membrane  
Membrane type Polyvinyl alcohol – hollow fiber 
Mass transfer model and flow type64-66 Solution-diffusion; counter-current with 

Chen approximation for log-mean driving 
force 

Membrane interstages 4 stages 
Maximum membrane operating 
temperature56 

90 °C 

Water permeance66 0.3740.314 ex−  (kmol h-1m-2bar-1) 
Selectivity water/ethanol66 2.83890 ex  
Membrane cost in module85 409 $/m2   (38 $/ft2) 
Membrane cost in module and skida 1,292 $/m2   (120 $/ft2) 
Life cycle 5 years 
RO membrane pretreatment  
Maximum membrane interstages 3 stages 
Membrane type84 Polyacrylamide – spiral wound 
Mass transfer model and flow type64-66 Solution-diffusion; cross flow with Chen 

approximation for log-mean driving force 
Maximum operating pressure 83 bar 
Membrane area upperbound (Eq. (3.23)) 7×106 m2 
Membrane area lowerbound (Eq. (3.23)) 100 m2 
Water flux84 Linear function expressed in Eq. (3.31) 
Ethanol flux84 Linear function expressed in Eq. (3.32) 
Membrane cost in module86 15 $/m2 
Membrane cost in module and skid86 50 $/m2 
Life cycle 5 years 
Other equipment  
Heat transfer coefficient of reboilerb 2.27  kW m-2 °C-1  (400 Btu h-1 ft-2 °F-1) 
Heat transfer coefficient of condenserc 0.57  kW m-2 °C-1  (100 Btu h-1 ft-2 °F-1) 
Efficiency of RO energy recovery deviced 97 % 
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Table 3.1 (continued). Model assumptions of hybrid D-PV with RO membrane 
pretreatment for dilute ethanol purification  

Model parameter Assumption 
Utilities85  
Cooling water temperature 30 °C 
Cooling water cost 2 × 10-5 $/kg 
Chilled water temperature 4 °C 
Chilled water cost 4 × 10-6 $/kJ 
Steam temperature 120 °C 
Steam cost 6.6 × 10-3 $/kg 
Electricity cost 0.06 $/(kW.h) 
Economic assessment  
Discount rate 8 % 
Separation plant life cycle 15 years 
Operating days per year 330 days 
 aThe membrane in module and skid is approximated by multiplying the bare module 

factor which is assumed equivalent to that of shell-and-tube heat exchangers at 3.1785 The 
cost with skid is for the capital cost while the cost without skid is for the maintenance 
operating cost. 

bBased on steam condensing–water85 
cBased on alcohol vapor–water85 
dIsobaric positive displacement mechanism is used for energy recovery devices83 where 

the reciprocating pump cost model is used to estimate the cost.85 
 

Table 3.2. Summary of process equipment and utilities used in optimization model 

Separation Unit Process Equipment Utilities 
Distillation column Column Cooling water for condenser 
 Condenser Steam for reboiler 
 Reflux drum  
 Reboiler  
 Recycle pumps  
Pervaporation Feed pump Steam for interstage heaters 
 Pervaporation membrane Chilled water from vacuum 

condenser 
 Interstage heaters Electricity for all pumps 
 Vacuum condenser  
 Vacuum drum  
 Recycle pump  
RO membrane RO membrane Electricity for all pumps 
 Feed pumps and interstage pumps  
 Energy recovery device  
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Table 3.3. List of model decisions 

Distillation column Pervaporation RO membrane 
Number of stages Membrane area Number of stages 
Feed stage Feed temperature of each stage Feed stage 
Recycle stage Permeate pressure RO membrane area 
Reflux ratio Vacuum condenser area Recycle stage 
Distillate flow rate  Feed pressure of each stage 
Condenser area  Existence of power recovery unit 
Reboiler area   

 

 

3.3 Results and discussions 

  

All of the MINLP models of the superstructure of separation technologies are 

formulated and solved in GAMS 23.7.3 using SBB/CONOPT 3.15A solver, and the 

optimizations are run on six-Core 2.4 GHz AMD Opteron(tm) Processor with 8GB of 

RAM. Several equipment cost models were extrapolated beyond their stated ranges 

especially at a high throughput. For instance, the areas of a reboiler, a condenser, the 

volumetric flow rate, and a head of several pumps exceed the valid range of the equipment 

cost equations.85  Multistage heat exchangers and pumps may be necessary in practice, but 

would add unnecessary complexity to the MINLP because the costs of these units account 

for a small fraction of the total separation cost, and therefore have negligible impact on the 

optimal solutions. The extrapolated results are also compared with other different cost 

models87 and very small differences in the optimal solutions were found. The accuracy of 

Chen approximation for the driving force of the mass transfer model was investigated 

separately. We found negligible difference of the estimated membrane area and the 

separation cost compared between an exact and the approximate model. 
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3.3.1 Effect of ethanol recovery on optimal configuration of RO system 

 The ethanol recovery is one of the main decision variables for the overall separation 

process. We first solved a sub-problem of the RO system to study the impact of ethanol 

recovery on the optimal configuration of the RO system. In this case study, the RO is used 

to purify dilute ethanol from 0.8 wt% ( RO
ew = 38.0 10−× ) to an intermediate concentration 

of 7.0 wt% ( RO
ew = 0.07) at 426 Mgal/yr (volumetric flow corresponding to intF ) which is 

approximately equivalent to a throughput of fuel ethanol (99.4 wt%) at 30 Mgal/yr. In 

addition, the model includes additional constraint on ethanol recovery of RO. 

 RO minRec Rec≥   (2.38) 
 

where minRec  is the minimum RO recovery which is set at different values ranging from 

80% to 100%. The optimal results from our superstructure reveal that the RO 

configurations are reducible into three stages or less for our investigated ranges of feed 

purity and throughput. Figure 3.7a shows the ethanol unit cost for each corresponding 

optimal membrane configuration in Figure 3.7b at different ethanol recoveries. At minRec

= 82–85%, only one optimal stage is sufficient to achieve the recovery (see Figure 3.7b-I). 

Some amount of ethanol is therefore allowed to exit with the permeate and no further 

recovery is required. In Figure 3.7b-II, the number of membrane stages increases to three 

when increasing the minRec  to 87–95%. This configuration has two enriching stages and 

one stripping stage, which indicates a higher emphasis on ethanol purification than ethanol 

recovery. The dilute ethanol is mixed with the retentate of the same purity from the 

stripping stage and fed to the first enriching stage where a significant amount of water is 

removed before further separation at the next enriching stage. The second enriching stage 

purifies the stream to achieve the final concentration and to allow the permeate to recycle 

 32 



to the stripping stage for ethanol recovery. At minRec = 98 %, the optimizer reduces the total 

number of stage to two, comprising  one enriching and stripping stage as shown in Figure 

3.7b-III. This shows that the separation task for ethanol purification and ethanol recovery 

is approximately equivalent. When increasing the ethanol concentration to almost full 

recovery at minRec = 99%, the optimizer adds another stripping stage to a total of two while 

remaining enriching section at one stage as can be seen in Figure 3.7b-IV. The optimizer 

partitions the separation task for ethanol recovery in the stripping section more than that 

for ethanol purification in enriching stage. In this configuration, the dilute ethanol is fed to 

the enriching stage to achieve final concentration and the permeate is recycled to the first 

stripping stage to remove significant amount of water. The second stripping stage purifies 

ethanol to mix with the dilute feed with similar purity and recycle ethanol in the permeate 

to the first stripping stage. From Figure 3.7a, the separation cost for the RO membrane 

increase rapidly especially at almost full ethanol recovery. Even though the optimizer has 

already changed the optimal configuration, the membrane area still increases significantly 

at high recoveries making the separation cost relatively expensive. 

 

3.3.2 Optimal partition of separation work on recovery between RO and D-PV 

 Here, we consider the overall separation process where the RO system is included 

before the D-PV for the pretreatment of ethanol purification. The overall process model 

has an additional constraint on the weight purity of the recycle stream, which consists of 

the stream removed from the RO and from the bottom of the distillation column as 

previously described (see Figure 3.2). 

 42 10REP
ew −≤ ×  (2.39) 
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Figure 3.7. Optimal RO membrane system for different RO ethanol recovery: (a) ethanol 
unit cost of optimal configurations (b) different optimal configurations. 

 
 

 From previous investigation, three RO membrane stages have been set as a 

maximum in order to reduce the size of the model and avoid some local solutions. The 

model of the superstructure of the overall separation technology consists of 2000 variables 
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with approximately 120 integer variables, and the computation times are between 1–5 

minutes. Optimization results show that the RO membrane pretreatment has advantages for 

ethanol purification at a very dilute ethanol feed. Table 3.4 illustrates the optimal ethanol 

recovery between the RO membrane and the D-PV unit for different ethanol feed purities 

at the ethanol throughput of 30 Mgal/yr.  It can be seen that the total ethanol recovery rises 

with an increase in the feed concentration. At the optimal solutions, the constraint in Eq. 

(3.39) is always active at all feed condition as it reduces the total recovery of the separation 

system to achieve a lower separation cost. Furthermore, the ratio of R over ROF is almost 

constant since both are changed concomitantly with increased feed purity. Thus, from Eq. 

(3.35), increasing the feed purity directly reduces the ethanol recovery of the overall 

separation system.  

 From Table 3.4, the optimizer partitions the recovery task between RO and D-PV 

where RORec  increases from 96 to 99 % while D PVRec −  is almost constant around 100% 

at RO
ew = 0.5–2.0 wt%. Since the cost of RO membrane increases rapidly at high recoveries, 

the optimizer therefore minimizes the ethanol recovery from the RO membrane and 

recovers more ethanol at the D-PV unit to minimize the total separation cost. When RO
ew  

is increased to greater than 2.0 wt%, the ethanol recovery of RO increases to achieve the 

overall recovery until having RO membrane is not optimal. Thus, introducing RO 

pretreatment will be of benefit when the feed concentration is very low. 

Table 3.4. Optimal ethanol recovery of each separation unit for different feed purity  

( RO
ew ) at ethanol throughput of 30 Mgal/yr 

Unit 0.5 wt% 0.8 wt% 1.0 wt% 2.0 wt% 3.0 wt% 5.0 wt% 
RORec  96 97.5 98 99 - - 
D PVRec −  ~ 100 ~ 100 ~ 100 ~ 100 99.3 99.5 
TRec  96 97.5 98 99 99.3 99.5 
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Figure 3.8. Ethanol unit cost, ¢/gal, of optimal configurations of overall ethanol separation 
for different feed purities ( ) and throughputs. 

 

3.3.3 Cost and energy savings by RO pretreatment 

 Figure 3.8 demonstrates the separation cost savings when adding the RO membrane 

pretreatment. At the throughput of 30 Mgal/yr, the ethanol unit cost is reduced from 61 

¢/gal to 42 ¢/gal at RO
ew = 0.5 wt% and from 34 ¢/gal to 28 ¢/gal at RO

ew =1.0 wt%. The 

cost is almost equal at RO
ew = 2.0 wt% and the RO will be eliminated when RO

ew  is greater 

than 3.0 wt%. The results also reveal that the volumetric throughput has an effect on the 

optimal technology. We believe this is because of the different equipment usage at different 

scales. In addition, there is a limitation of a scale for a single hybrid separation process due 

to a distillation column size where the diameter cannot exceed the maximum of 7.3 

meters.85  The figure shows that the single hybrid separation unit has a limited capacity at 

around 30 Mgal/yr for RO
ew = 0.5 wt% and 60 Mgal/yr for RO

ew =1.0 wt%. It requires a 

higher feed flow rate ROF  to achieve a similar ethanol production of 99.4 wt% at a low 

RO
ew
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feed ethanol concentration. The RO pretreatment allows the significant amount of water to 

be removed before feeding to the distillation column. The pretreatment is consequently 

necessary for a large plant capacity. The detailed of annualized capital and operating costs 

of each component at throughput of 30 Mgal/yr are summarized in Table 3.5.  

 From Table 3.5, the total separation cost of D-PV is sensitive to the operating cost 

since it accounts for the highest portion at 76–85%. An increase in feed concentration 

directly decreases the energy consumption and operating cost of the distillation column 

and therefore substantially reduces the separation cost due to its high contribution to the 

overall cost. The table also shows a negligible change in the cost fraction of annualized 

capital cost of distillation while both the annualized capital cost and operating cost fraction 

of pervaporation moderately increases. This is because the separation partition more 

separation work to the pervaporation membrane as the feed concentration increases which 

has been described in our previous work.36 

 It can be seen from Table 3.5 that introducing the RO membrane significantly 

reduces the operating cost portion of the distillation column from 76–85 % to 19–32 %, 

and the total cost of RO system now is the largest contributor to overall cost. This indicates 

the main advantage of introducing RO membranes at very dilute feeds is the reduction in 

energy consumption of the distillation. Figure 3.9 shows the comparison of energy 

consumption between a single D-PV and that with RO pretreatment where the number is 

based on the ethanol purification of dilute feed with a temperature of 30°C from ethanol 

production process to produce fuel grade ethanol at throughput of 30 Mgal/yr. The energy 

consumption in the hybrid unit consists of the heat used in the reboiler, interstage heaters, 

and the electricity used for pumps and a chilled water unit while the RO membrane 
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Table 3.5. Annualized cost of separation process equipment and utilities at ethanol 
throughput of 30 Mgal/yr 

Annualized cost (%) 

RO
ew  = 0.5 wt% RO

ew  = 1.0 wt% RO
ew  = 2.0 wt% 

D-PV RO + 
D-PV D-PV RO + 

D-PV D-PV RO + 
D-PV 

Distillation       
Tower 4.0 2.5 5.0 3.0 6.0 4.0 
Condenser and reflux drum 0.5 0.5 1.0 1.0 1.5 1.0 
Reboiler 5.5 1.0 5.0 1.5 4.0 2.0 
All utilities 85.0 19.5 82.0 24.5 76.0 32.0 
TAC of distillation 11.0 4.0 11.0 5.5 11.5 7.0 
TOC of distillation 85.0 19.5 82.0 24.5 76.0 32.0 
Pervaporation       
Membrane 2.5 4.0 4.5 6.0 7.5 8.5 
Vacuum condenser and drum < 0.5 < 0.5 < 0.5 0.5 1.0 1.0 
Vacuum system < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 
Interstage heaters and pumps < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 
Membrane maintenance 1.0 1.5 1.5 2.0 2.5 3.0 
All utilities < 0.5 < 0.5 < 1 0.5 0.5 1.0 
TAC of pervaporation 3.0 4.5 5.0 6.5 9.5 10.0 
TOC of pervaporation 1.0 1.5 2.0 2.5 3.0 4.0 
RO membrane 

- 

 

- 

 

- 

 
RO membrane 20.5 18.5 12.0 
High pressure pumps 2.5 4.0 6.0 
Energy recovery device 0.5 0.5 1.0 
Membrane maintenance 7.0 6.0 4.0 
All utilities 40.0 32.0 24.0 
TAC of RO membrane - 23.5 - 23.0 - 19.0 
TOC of RO membrane 47.0 38.0 28.0 
Ethanol Unit cost (¢/gal) 61.0 42.0 34.0 28.0 22.0 19.5 
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Figure 3.9. Energy consumption, MJ/kg-ethanol, of optimal configurations for ethanol 

purification for different ethanol feed concentrations at ethanol throughput of 30 Mgal/yr. 

 

consumes electrical energy from the pumps inside the membrane system. The energy is 

shown as fuel equivalents where reboiler heat duty is assumed having 90% efficiency, 3.0 

MJ-fuel can produce 1.0 MJ electrical energy, and 4.0 °C chilled water requires 0.53 MJ-

fuel per MJ heat removed.35 It can be seen that RO membrane highly reduces the energy 

consumption to below the HHV of ethanol when RO
ew  is lower than 3.0 wt% — around 10-

20 MJ/kg-ethanol. In Figure 3.9, no energy saving occurs when RO
ew  is higher than 3.0 

wt% at 30 Mgal/yr, the RO system becomes expensive and outweighs the cost savings from 

the reduction of energy consumption. Table 3.6 shows the breakdown of energy 

consumption of all main units for different feed concentration at throughput of 30 Mgal/yr. 

It can be seen that the largest energy consumption of the separation comes from the reboiler 

of the distillation column where the energy usage increase rapidly when reducing RO
ew  

from 2.0% to 0.5%. After introducing the RO membrane for dilute feed pretreatment, the  
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Table 3.6. Details of energy consumption at ethanol throughput of 30 Mgal/yr for different 
feed concentrations 

Energy 
Consumption 
[MJ/kg] 

RO
ew  = 0.5 wt% RO

ew  = 1.0 wt% RO
ew  = 2.0 wt% 

D-PV RO+D-
PV D-PV RO+D-

PV D-PV RO+D-
PV 

 
Reboiler 
 

63.84 9.88 34.10 8.30 18.77 7.48 

Interstage 
Pervaporation 
heater 
 

0.19 0.20 0.18 0.20 0.18 0.21 

Chilled Water 
 0.09 0.09 0.08 0.10 0.08 0.10 

Electrical 
energy of 
Pumps in RO 
membrane 
system 

- 10.49 - 5.62 - 2.91 

Total 64.12 20.66 34.36 14.22 19.03 10.70 
 

energy consumption of the reboiler declines in exchange for a smaller increase in that from 

electricity demand for powering the pumps in the RO membrane system. The optimizer 

also decides to have the energy recovery device for further decreasing energy usage as the 

membrane system is always chosen to operate at a very high pressure. The reduction in 

energy consumption explains the reduction of operating cost of distillation. Accordingly, 

adding RO membrane pretreatment can be considered as a more energy efficient way for 

dilute ethanol purification compared to a single D-PV hybrid separation.  
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3.4 CONCLUSIONS 

  

Optimal process configurations of dilute bioethanol purification using D-PV 

including RO membrane pretreatment were investigated. The effect of ethanol recovery on 

the optimal configurations of an individual RO system was analyzed where the cost of RO 

membranes was found to be very sensitive to the ethanol recovery, especially at almost full 

recovery, due to the high membrane area required. The optimal solution shows a change in 

the number of membrane enriching and stripping stages with increased ethanol recovery. 

Increasing the feed purity increases the overall ethanol recovery while maintaining the 

constraint of ethanol purity on the recycle to the ethanol production process. The optimal 

overall bioethanol separation process allows more ethanol to leave from the RO units to 

the recycle stream than from the D-PV process due to the expensive cost of RO system at 

a high recovery. RO pretreatment saves costs for dilute ethanol feeds and high throughputs 

where the pretreatment enables the constraint on the size of a distillation column to be met. 

An analysis of cost fraction of separation cost shows the largest portion of the operating 

cost is distillation. Including the RO pretreatment significantly reduces the portion of the 

operating cost of distillation. The RO pretreatment reduces the energy consumption of the 

reboiler when the ethanol feed purity is very low. Improving the RO membrane 

technologies for a lower membrane cost may improve the RO pretreatment to be more 

attractive in a wider range of feed concentrations. 
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REACTION KINETICS OF THE CONCENTRATED-ACID 

HYDROLYSIS FOR CELLULOSE AND HEMICELLULOSE AND 

EFFECT OF CRYSTALLINITY 

4.1 Motivation 

  

The concentrated acid hydrolysis process has been reported to have several 

advantages such as a lower operating temperature and pressure, a higher sugar yield, and 

less byproduct formation compared to the dilute acid hydrolysis, which is favorable for the 

fermentation for bioethanol production. However, it requires a specialized material to 

prevent the corrosion as well as an acid recovery process which can significantly increase 

the cost of saccharification and this has reduced its economic viability.11 Despite these 

disadvantages, the concentrated acid hydrolysis process has continued to be of interest due 

to improvement in sugar-acid recovery technology such as simulated-moving-bed 

chromatographic separation.24, 26 Commercially, the concentrated acid hydrolysis is being 

developed by Blue Fire Renewable using chromatographic separation technology which 

can efficiently recover the sugar without the dilution.88 

 The complex structure of the biomass and its variability in composition make it 

difficult to predict the kinetics of the hydrolysis reaction. In enzymatic hydrolysis pathway, 

for instance, the lignin and hemicellulose content can reduce the catalyst accessibility and 

reduce hydrolysis rates.89 Furthermore, biomass with different crystallinity index (CrI) can 

significantly change the kinetics of the hydrolysis reaction. Previous work has illustrated a 
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strong correlation between the initial rates of the enzymatic hydrolysis reaction of the 

cellulose and the initial CrI where the more amorphous sample is hydrolyzed much faster 

than a higher crystalline cellulose.90 In the case of acid hydrolysis, the kinetic parameters 

of the reactions varies significantly depending on several factors such as different sources 

of biomass and the different reaction conditions including temperature and acid 

concentration.91-93 Owing to these uncertain factors, the modeling of the kinetics of the 

biomass hydrolysis reactions is still a challenge. 

 The concentrated acid hydrolysis process of biomass has been addressed in only a 

few studies.23, 94-95 The biomass in these studies contains various compositions of cellulose, 

hemicellulose, lignin, and has a different CrI which could interfere the hydrolysis rate of 

each composition leading to different reported values of the kinetic parameters.  Camacho 

et al. 96 have reported the kinetic parameters of the concentrated acid hydrolysis of pure 

cellulose (Merck 2330) and glucose decomposition reactions in the low temperature range 

of 25 – 40 °C and 30 – 70 %w/v H2SO4 acid. However, this does not include experimental 

work on the kinetics of the C5 reaction paths. Furthermore, the concentrated acid 

hydrolysis process is usually performed at a higher temperature range of 80 – 100 °C,97 

and the kinetics in this temperature range should be investigated more carefully.  

 The purpose of this chapter is to present the experimental data and a model of the 

kinetics of the hydrolysis of cellulose and hemicellulose as well as the glucose and xylose 

decomposition reactions via concentrated sulfuric acid. Pure microcrystalline cellulose 

(Avicel) and xylan, the major component in hemicellulose, are used in the experiment to 

investigate the kinetics of the C5 and C6 reaction paths separately. Complex substrates 

were not used to avoid confounding the kinetics and to limit the influence of mass transfer. 
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The hydrolysates components including the sugars and several main decomposed 

byproducts from the batch experiments are characterized at different temperature between 

80 – 100 °C and at different acid concentration between 10 – 50 wt% (10 – 70 %w/v). In 

addition, the effect of the initial CrI of the cellulose on the rate of the hydrolysis reaction 

is explored where Avicel samples with different crystallinities are generated by exposure 

to phosphoric acid solutions at different concentrations, which is referred as 

“decrystallization”. 

 This chapter is organized as follow: section 4.2 discussed the material and analytical 

methods used in this work including the concentrated acid hydrolysis, the analysis using 

high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and the 

pretreatment method using phosphoric acid at different concentrations. The kinetic model 

used to fit the reactions is also discussed. The experimental results from the concentrated 

acid hydrolysis from different samples as well as the fitting of the kinetic parameters are 

shown in section 4.3. Additionally, the effect of the pretreatment of the cellulose on the 

rate of the concentrated acid hydrolysis is discussed in this section. 

 

4.2 Materials and methods 

 

4.2.1 Chemicals 

 The xylan from beechwood (Catalog No. x-4252; Batch No. BCBM5311V), 

microcrystalline cellulose, Avicel PH-101 (Catalog No. 11365; Batch No. BCBJ8498V), 

xylose, furfural, HMF, levulinic acid, and phosphoric acid (85 wt%) were purchased from 

Sigma-Aldrich. Formic acid and glucose are purchased from Alfa Aesar, acetone was 
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purchased from BDH, and sulfuric acid (>95%) was purchased from MACRON. These 

chemicals were used for the hydrolysis reaction, cellulose decrystallization, and as 

standards for high-performance-liquid-chromatography (HPLC) analysis.  

4.2.2 Concentrated acid hydrolysis 

 The batch experiments for the concentrated acid hydrolysis of biomass are carried 

out to estimate the kinetic parameters of four main reaction paths including the generation 

and decomposition of the C5 and C6 sugars. Four sets of batch experiments of the 

concentrated acid hydrolysis reactions are employed for four different samples including 

xylan, xylose, Avicel, and glucose. Each set of experiment contains six batch experiments 

at various temperature and H2SO4 concentration where five of these are used to estimate 

the parameters and the remaining one is used to validate the kinetic model which is 

discussed in detail in section 4.3.3. Table 4.1 summarizes the set of batch experiments with 

the sample preparation and the reaction conditions performed in this work.  

 All solid samples and the acid are preheated separately before starting the reaction 

to avoid the temperature drop after mixing. The total reaction times for all batch hydrolysis 

experiments were seven hours where the mixture is stirred constantly using a mechanically 

or magnetic stirrer at the speed around 360 rpm, and the reactor flasks are constantly heated 

using a temperature controlled heat bath or heating mantle. All samples were taken at 

various reaction times and filtered into the HPLC vials using the polyethersulfone (PES) 

membrane syringe filter with the pore size of 0.45 µm from VWR (Catalog No. 28145-

505). The HPLC vials were immediately stored in the ice bath to quench subsequent 

reaction before HPLC analysis. 
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Table 4.1. Batch experiments for concentrated acid hydrolysis 

Batch experiment Set 1 Set 2 Set 3 Set 4 
Reactions Xylan 

hydrolysis 
Xylose 

decomposition 
Avicel 

(cellulose) 
hydrolysis 

Glucose 
decomposition 

Initial Concentration 
(g/L) 40 30 100 30 

Batch size 
Reactant (grams) 4.0 3.0 15.0 4.5 
H2SO4 (mL) 100 100 150 150 
Batch reaction conditions (H(acid wt%)-T(°C)) 
For parameter fitting 

1 H20-T80 H20-T100 H20-T100 H20-T100 
2 H40-T80 H30-T100 H30-T100 H30-T100 
3 H10-T80 H50-T100 H50-T100 H50-T100 
4 H10-T90 H40-T80 H40-T80 H40-T80 
5 H10-T100 H40-T90 H40-T90 H40-T90 

For model validation 
6 H30-T80 H40-T100 H40-T100 H40-T100 

 

4.2.3 Phosphoric acid pretreatment for cellulose 

 The effect of initial CrI of Avicel on the kinetic of hydrolysis reaction was also 

investigated. This work uses phosphoric acid to pretreat the Avicel to generate the samples 

with different CrI to examine the effect on the hydrolysis reaction. Phosphoric acid solvent 

has been popularly used for cellulose decrystallization due to its nontoxic, non-corrosive 

and safe compared other inorganic acids.98 It has also been shown that the ice-cold 

phosphoric pretreatment has insignificant impact on the degree of polymerization.99 

 The phosphoric acid pretreatment procedure was modified and scaled up from Hall 

et al. 90 In this study, 3 mL of deionized water was added to 10 grams of Avicel to make a 

slightly moistened substrate. The Avicel was then mixed with 150 mL of ice-cold 

phosphoric acid (77 – 85 wt%, 0 °C) and held for 60 minutes in an ice bath with manually 

constant stirring. After the pretreatment, 200 mL of ice-cold Acetone (0 °C) was added to 

the mixture in order to regenerate cellulose. The mixture was then vacuum-filtered using 
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coarse fritted filtered- funnel, and washed three times with 200 mL of ice-cold acetone (0 

°C) and four times with 1 L of deionized water until the pH of the filtrate is around 2.6 – 

3.0. The pretreated cellulose was lyophilized for two days until the weight of the cellulose 

changed by less than 0.5 grams. The weight of the samples was slightly over the initial dry 

weight (10 grams) which is assumed to be due to residue water. The cellulose was sampled 

for X-ray diffraction measurement and the remaining was proceeded for the concentrated 

sulfuric acid hydrolysis. The pretreated Avicel samples of approximately 10 grams were 

preheated to 50 °C and hydrolyzed with 150 ml of 40 wt% sulfuric acid at 80 °C. 

 

4.2.4 Degree of cellulose crystallinity using X-ray diffraction 

 The CrI measurement of all samples using XRD follows the procedure described 

by Kang et al. 100 XRD patterns of lyophilized samples were recorded with an X’pert PRO 

X-ray diffractometer (PANanalytical BV, Almelo, the Netherlands) using Cu=Kα1 

irradiation (1.54 A˚) at 45 kV and 40 mA. The scattering angle (2θ) ranged from 10˚ to 40˚ 

with a scan speed of 0.021425 s-1 and step size of 0.0167˚. 

 

4.2.5 HPLC Chemical analyses 

 The sugar and byproduct components from the hydrolysate from the reaction 

samples were analyzed by HPLC from Shimadzu. A Bio-Rad Aminex HPX-87H column 

was used where the analysis was conducted at 50 °C using the eluent of 0.005 mol/L H2SO4 

at 0.6 mL/min. The injection volumes are 20 μL for all the samples and 3 μL for the samples 

from hydrolysis of pretreated Avicel using the corresponding calibration curves. All the 

samples were stored at 5 °C in the autosampler SIL-20AC during the analysis to stop 
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possible decomposition reactions. The sugars including glucose and xylose are detected 

using Refractive index RID-10A while the byproducts including formic acid, levulinic 

acid, HMF, furfural are detected by UV-Photodiode Array SPD-M20A at the wavelength 

of 207 nm, 207 nm, 270 nm, and 310 nm, respectively 

4.2.6 Kinetic model 

 In the present study, the kinetic expression proposed by Saeman 101 was used to fit 

the kinetic of concentrated acid hydrolysis for all reaction paths where two homogeneous 

consecutive first-order reactions were assumed in both cellulose and hemicellulose 

hydrolysis (see Figure 4.1). The kinetic models for sugar concentration from each set of 

experiment are shown as follows.  

Biomass hydrolysis reaction (experiment set 1 and set 3): 

 1 {xylan, Avicel}
j

jdB k B j
dt

= − ∈   (3.1) 

 { }1 2 ( , ) (xylan, xylose), (Avicel, glucose)
k

j kdC k B k C j k
dt

= − ∈   (3.2) 

  

 B and C is the concentration of biomass and sugar, respectively, and the analytical 

solution for the sugar concentration is  

 

 ( )2 1

,0
1 ( ) ( )

1 2

{xylose, glucose}
k
eq k t k tk C k

C e e k
k k

− −= − ∈
−

  (3.3) 

 
where 
 

 sugar0

anhydrous sugar

MWinitial mass of biomass
volume of solution MW

s
eq

fC ×
= ×   (3.4) 
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 Eq. (4.4) shows the expression for initial equivalent sugar concentration ( 0
eqC ) 

where sf  is the fraction of sugar consisting in the biomass.   

Sugar decomposition reaction (experiment set 2 and set 4): 

 2 {xylose, glucose}
k

kdC k C k
dt

= − ∈   (3.5) 

 
The analytical solution of the above differential equation is given by: 
 
 
 2,0 {xylose, glucose}k tk kC C e k−= ∈   (3.6) 
 

 The Arrhenius expression was used to estimate the kinetic constant which depends 

on the temperature and the effect of acid concentration is included in the pre-exponential 

factor102 as follows. 

 ( )0 e {1,2}
j

j

Ea
n RTA

j jk k C j
 

−  
 = =   (3.7) 

Biomass Sugars Decomposed products
k1 k2

 
Figure 4.1. Reaction pathway for biomass hydrolysis 
 
 
 

4.3 Results and discussion 

 

 Experiments outlined in Table 1 are carried out to investigate the reaction kinetics. 

In all sets of experiments, the color of the mixture turns into yellow, and dark brown, 

respectively, where the dark insoluble humin particles keep forming owing to the sugars 

(xylose and glucose) decomposition reactions where the xylan hydrolysis samples are 
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shown in Figure 4.2 as an example. In addition, it is observed that the Avicel is much more 

difficult to solubilize into the liquid mixture compared to the xylan due to the more 

crystalline structure. 

 

Figure 4.2. Hydrolysate of xylan at different reaction time 

 

4.3.1 Xylan hydrolysis and xylose decomposition  

 Figure 4.3 depicts the xylose concentration of xylan hydrolysis over different 

reaction time from the experiments set 1. It can be seen that almost all reaction conditions, 

the xylose concentration rises rapidly to its maximum and then reduces due to the sugar 

decomposition reaction.  The effect of temperature can be seen Figure 4.3a where the 

H2SO4 concentration is constant at 10 wt%. In this figure, the xylose concentration 

increases slowly over seven hours of reaction at 80 °C. At a higher temperature in 90-100 

°C, it increases more rapidly within the first 60 minutes to reach the maximum around 28 

– 29 g/L, and then stay almost constant with a slight reduction which indicates a low xylose 

decomposition reaction. 

 The effect of acid concentration can be clearly seen in Figure 4.3b where increasing 

the concentration of H2SO4 increases the rate of xylose generation rapidly at a constant 

temperature of 80 °C. It can be seen that at 40 % H2SO4, the xylose concentration increases 
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significantly to the maximum in the first 15 minutes and began to decrease faster compared 

to other conditions which indicates a higher xylose decomposition rate.  

 The xylose yield C / 0
eqC can be calculated from Eq. (4.3) where sf  is obtained by 

solving the optimization problem which is discussed in section 4.3.3. It is found that a very 

high xylose yield can be achieved up to more than 95 % with an appropriate reaction time.  

 The rate of xylose decomposition is further investigated in the batch experiments 

set 2, a more severe reaction condition compared to the xylan hydrolysis and shown in 

Figure 4.4. The concentrations of byproducts including the furfural and formic acid are 

also shown in Figure 4.5 and Figure 4.6, respectively. In Figure 4.4a, increasing the 

temperature at 10 wt% H2SO4 significantly increase the decomposition rate of xylose which 

is completely consumed at around 300 minutes for 100 °C. Likewise, increasing the H2SO4 

concentration significantly increases the decomposition rate of xylose at 100 °C as shown 

in Figure 4.4b. At the severest condition (50 wt% H2SO4, 100 °C), the xylose concentration 

decreases significantly and completely decomposes at around 90 minutes.  

 The decomposition can be confirmed from the furfural concentration illustrated in 

Figure 4.5 where the concentration increases rapidly at high temperature (Figure 4.5a) and 

H2SO4 concentration (Figure 4.5b). From the figure, it can be seen that at most of the 

conditions, the concentration of furfural increases at a slower rate until the concentration 

reaches the maximum, and then reduces significantly due to the subsequent decomposition 

to form formic acid. There are also other byproduct such as humins and other unknown 

byproducts which are not quantified.  
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Figure 4.3. Xylose concentration as a function of hydrolysis reaction time from experiment 
set 1 (a) 80-100 °C at 10 wt% H2SO4 and (b) 10-40 wt% H2SO4 at 80 °C. 

 

Figure 4.4. Xylose concentration as a function of hydrolysis reaction time from experiment 
set 2 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C. 

 

Figure 4.5. Furfural concentration as a function of hydrolysis reaction time from 
experiment set 2 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C. 
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Figure 4.6. Formic acid concentration as a function of hydrolysis reaction time from 
experiment set 2 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C. 

 

4.3.2 Cellulose hydrolysis and glucose decomposition 

 The glucose concentration of the Avicel hydrolysis over different reaction time 

from set 3 experiments are illustrated in Figure 4.7. From the figure, a similar trend is 

observed for the glucose concentration to the xylose concentration from experiment set 1 

where the sugar concentration increases with reaction time for most reactions conditions. 

Figure 4.7a compares the glucose concentration at different temperature at 40 wt% H2SO4 

where the glucose concentration increases with temperature. 

 The effect of changing the H2SO4 concentration on the rate of Avicel hydrolysis 

can be directly seen in Figure 4.7b at the reaction temperature of 100 °C. The glucose 

concentration increases with acid concentration between 20 wt% and 40 wt%. However, at 

50 wt% H2SO4, the glucose concentration increases with reaction time and reaches its 

maximum of 29.0 g/L at around t = 120 minutes before reducing afterwards due to the 

relatively fast glucose decomposition reaction.   
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 It should be noted that the glucose yield C / 0
eqC  at these reaction conditions is 

around 10 – 26 % which is relatively low compared to the xylose yield from the xylan 

hydrolysis. This relatively low yield indicates a much slower reaction rate for the cellulose 

hydrolysis reaction due to the crystalline structure. 

 The glucose concentration in the glucose decomposition reaction as a function of 

reaction time from set 4 experiments are shown in Figure 4.8. It can be seen that the glucose 

concentration reduces when increase the temperature (see Figure 4.8a) at the constant acid 

concentration of 40 wt%, as well as when the acid concentration is increased (see Figure 

4.8b) at a temperature of 100 °C. By comparing the glucose concentration in Figure 4.8 

and xylose concentration in Figure 4.4, it can be seen that the glucose decomposes at a 

significantly slower rate than xylose does. The change in the rate of glucose 

decomposition from this set of experiment can be confirmed by the byproduct 

concentrations including the HMF, formic acid, and levulinic acid which are illustrated in 

Figure 4.9, Figure 4.10, and Figure 4.11, respectively. It can be seen from Figure 4.9 that 

the concentration of HMF is relatively low and tends to decrease faster at a high 

temperature and high acid concentration which indicates a low stability to the reaction 

conditions. In contrast, the concentration of formic acid and levulinic acid, which are the 

decomposed product from HMF, are more stable as can be seen from the higher 

concentrations in Figure 4.10 and Figure 4.11. It has been reported that HMF decomposes 

into formic and levulinic acid with the molar ratio of 1:1.103 However, it is found that the 

molar concentration of the formic acid is slightly higher than that of the levulinic acid up 

to 30% at the end of the experiment. This could be due to potential error in the HPLC 
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analysis where some unknown impurities overlapped the peak of formic acid, or unknown 

reaction paths. Further experiment should be performed to investigate this observation. 

 

 

 

Figure 4.7. Glucose concentration as a function of hydrolysis reaction time from 
experiment set 3 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C. 

 

 

Figure 4.8. Glucose concentration as a function of hydrolysis reaction time from 
experiment set 4 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C. 
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Figure 4.9. HMF concentration as a function of hydrolysis reaction time from experiment 
set 4 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C 

 

Figure 4.10. Formic acid concentration as a function of hydrolysis reaction time from 
experiment set 4 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C 

 

Figure 4.11. Levulinic concentration as a function of hydrolysis reaction time from 
experiment set 4 (a) 80-100 °C at 40 wt% H2SO4 and (b) 20-50 wt% H2SO4 at 100 °C 
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4.3.3 Kinetic model fitting for the concentrated acid hydrolysis 

 The kinetic parameters of the concentrated acid hydrolysis for both C5 and C6 can 

be estimated by least-square minimization. Two optimization problems are set up for the 

reaction paths of C5 and C6 where the objective function is given as follows.  
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In this objective function, the sum of the squared error of the sugar concentration 

is minimized where exp,iC is the concentration of sugar at the ith data point of each 

experiments jth and calC  is the sugar concentration found from the kinetic model in Eq. (4.3)

-(4.6). In this fitting, five batch experiments of the biomass hydrolysis (S1) and five batch 

experiments of sugar decomposition (S2) are used to fit k1 and k2 for C5 and C6 sugars (see 

Figure 4.1). The remaining one batch experiment from each set are excluded from the 

minimization to validate the kinetic parameters (see Table 4.1). 

 It should be noted that the fraction of xylose consisting in the biomass (fs  in Eq. 

(4.3)) in xylan is not measured; however, the composition analysis from Kumar et al. 104 

for the same product catalog from the same manufacturer shows that this beechwood xylan 

contain around 69.6% xylan. In this fitting, fs for xylan is estimated from the minimization 

and compared with this reference. The Avicel contains 100% of glucans so that sf = 1.  

 There are six kinetic parameters to be estimated including the pre-exponent factor 

(k0), the exponent of acid concentration (n), and the activation energy (Ea) from Eq. (4.7) 
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for two consecutive reactions in Figure 4.1 for C5 and C5. The concentration of H2SO4 in 

%w/v is used to fit the kinetic parameters (see Table 4.2). 

Table 4.2. Sulfuric acid concentration used to fit the kinetic model. 
%wt 10 20 30 40 50 

%w/v 10.7 22.8 36.6 52.4 70.0 

 

 In addition to the kinetic parameters, the initial concentrations of sugar 0C  in five 

batch experiments of set 2 (C5) and set 4 (C6) are allowed to vary and estimated from the 

minimization. This is because the measurement C0 was very difficult; the reaction vessel 

may not have been stirred sufficiently at the beginning of the experiments, and the reaction 

may have proceeded in the time between sampling and HPLC analysis. Additionally, we 

found that these parameters are sensitive to the fitting procedure. Nevertheless, the initial 

concentration cannot be significantly different from the nominal value of 30in
prepC =  g/L   

which was the intended initial concentration of experiments for both C5 and C6. To allow 

somewhat minor deviation from the nominal value, Tikhonov regularization is used in the 

objective function, Eq.(4.8), with a small parameter, ρ 105.  In this optimization problem, 

there are 12 degrees of freedom in the C5 fitting and 11 degrees of freedom in the C6 

fitting.  

 The optimization is carried out by the fminsearch function in MATLAB where the 

optimal values of the kinetic parameters as well as other estimated parameters found from 

the minimization are shown in Table 4.3. From the table, the value C0 of both C5 and C6 

deviates from the nominal value 30in
prepC =  g/L only slightly for all conditions, and the 

composition of xylan (fs) is consistent with the analysis from the reference.104  
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Table 4.3. Estimated kinetic parameters for each reaction path 

Parameter Optimal values 
C0 (g/L) of xylose in experiment set 
2 

  29.5, 30.2, 29.7, 28.8, 29.6, 28.1 

C0 (g/L) of glucose in experiment 
set 4 

29.1, 30.5, 30.1, 28.3, 29.3, 28.6 

fs for xylan 70.6% 
Reactions k0 (min-1(%w/v)-n) n Ea (kJ/mol) 
Xylan hydrolysis 1.42×1017 1.96 142.52 
Xylose decomposition 3.15×1014 2.88 151.30 
Avicel hydrolysis 2.96×1010 2.94 129.98 
Glucose decomposition 1.76×1010 3.00 127.32 
 

 From the estimated value of the kinetic parameters shown in Table 4.3, the 

activation energy (Ea) of the xylan and xylose is higher than that of Avicel and glucose 

which indicates that the rates of C5 reaction paths are more sensitive to the temperature. In 

terms of the acid concentration, the values of the exponent n for the Avicel hydrolysis and 

glucose decomposition are similar. However, the value of n for the xylan hydrolysis is 

lower than the xylose decomposition. This means that the rate of xylose decomposition is 

more sensitive to the acid concentration compared to the xylan hydrolysis. Therefore, a 

very high acid concentration may not be favorable for C5 reaction paths due to a higher 

rate of xylose decomposition.  

 The fitting of the C5 paths is compared with the experimental results at each 

reaction condition (see Figure 4.3 and Figure 4.4), and a very good agreement between 

experimental data and model is observed for all reaction conditions. The parameters are 

validated by using the estimated valued to predict the kinetics of the xylan hydrolysis at 

H30-T80 in experiment set 1 as well as xylose decomposition at H40-T100 in experiment set 

2 where a good prediction is observed for both batch experiments. From these results, we 

can see the first-order kinetic model with two consecutive reaction mechanism is 
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sufficiently accurate to estimate the xylose concentration from the concentrated acid 

hydrolysis of xylan. 

 The comparison between the experiment results with the model fitting of C6 for 

Avicel hydrolysis and glucose decomposition reaction are illustrated in Figure 4.7 and 

Figure 4.8. It can be observed that the kinetic parameters gives a good fitting for both sets 

of experiment for most of the reaction conditions. In Figure 4.7b, the predicted glucose 

yield slightly under estimate the experimental results of the condition H20-T100. Therefore, 

caution should be exercised in using the model at low sulfuric acid concentrations. The 

kinetic parameters are validated in prediction of the glucose concentration from the Avicel 

hydrolysis and glucose decomposition at the reaction condition of H40-T100. It can be seen 

from Figure 4.7 that the model gives a good prediction for the glucose concentration 

compared with the experimental results. The prediction of the glucose concentration from 

glucose decomposition at H40-T100 shown in Figure 4.8 is slightly lower than that from the 

experiments. It can be concluded that the first-order two consecutive reaction mechanism 

shown in Figure 4.1 is sufficient to predict the kinetics of the concentrated acid hydrolysis 

for Avicel and glucose decomposition reaction.  

 The kinetic model used in the work for all reaction paths of C5 and C6 does not 

consider the effect of mass transfer resistance. A study from Brennan and Wyman 106 

showed that the mass transfer model could explain many features of the biomass hydrolysis 

for the continuous flowthrough system. Mass transfer is an important phenomenon in the 

processing of biomass particles, but it is good modeling practice to try to separate the 

intrinsic kinetics from mass transfer where possible. Additionally, the initial value of CrI 

of the Avicel is not included in this kinetic model which is discussed in the next section.  
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4.3.4 Cellulose crystallinity index and its effect on hydrolysis reaction 

 Figure 4.12 shows the CrI of the pretreated Avicel at different phosphoric acid 

concentration. It is confirmed that there is a strong correlation between the acid 

concentration and the CrI which decreases with acid concentration. The CrI of the non-

pretreated Avicel is around 56.7 % while there is a steep change in CrI over a very narrow 

range of phosphoric acid concentration between around 77 – 80 wt% but relatively small 

change when the acid concentration is greater than 80 wt%. A very similar trend is also 

observed in previous work.90   

 During the pretreatment experiment, we observed significant swelling of the Avicel 

samples. The swelling was most significant at the H3PO4 concentration of approximately 

80 wt%, while it was much less pronounced at a higher or lower concentration. 

 

Figure 4.12. Effect of phosphoric acid concentration on the crystallinity index. 

 

 The initial CrI of the Avicel strongly influences the rate of the hydrolysis reaction. 

Figure 4.13 illustrates the glucose yield from the concentrated sulfuric hydrolysis reaction 

over seven hours reaction length of the partial decrystallized Avicel with different initial 

CrI. From the figure, the final glucose yield (t = 420 mins) is around 8.4 % for the non-

pretreated sample where CrI = 56.7 %. The final yield increases to 22 % when the initial 
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CrI is around 37 %, and further increases to 35 % when initial CrI is around 12 %. When 

the initial CrI becomes smaller than 10 %, the samples becomes almost completely 

amorphous and more accessible, which enables the acid to penetrate and hydrolyze the 

cellulose where the final glucose yield increase to around 45 %. From these results, the 

initial CrI has a strong impact on the hydrolysis rate where the cellulose with the more 

amorphous forms increases the ability of acid to penetrate and extract glucose. A more 

complicated kinetic model for the cellulose hydrolysis which include the effect of CrI 

should be further investigated and validated in future work. 

 

Figure 4.13. Glucose yield as a function of hydrolysis reaction time for different initial 
crystallinity index. 

 

4.4 Conclusions 

  

Batch experiments for the concentrated acid hydrolysis of microcrystalline 

cellulose (Avicel) and xylan from beechwood as well as the decomposition of glucose and 

xylose are performed to investigate the reaction kinetics in the temperature range of 80 – 

100 °C and the sulfuric acid concentration of 10 – 50 wt%. The kinetic parameters are 

estimated to fit and predict the concentration of sugars using a reaction mechanism that 
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consists of two consecutive reactions where the good agreement between the experimental 

results and the kinetic model are found. The kinetic parameters estimated from the batch 

experiment in this chapter could be used to investigate the performance of the reactor 

system or the reactive separation process such as solid phase reactive separation system92 

for the biomass hydrolysis via concentrated acid hydrolysis which is discussed in the 

following chapter. 

 The effect of the initial CrI of the cellulose Avicel are investigated where the Avicel 

is pretreated with phosphoric acid at different concentration to generate samples with 

different CrI. It is observed that the initial CrI of the Avicel strongly affect the kinetic of 

the hydrolysis reaction. Further experiments should be performed to determine the reaction 

mechanisms and the reaction kinetics of the Avicel hydrolysis with a different portions of 

the crystalline and amorphous forms in future work. 
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SOLID PHASE REACTIVE CHROMATOGRAPHIC SEPARATION 

SYSTEM FOR SACCHARIFICATION FROM BIOMASS VIA ACID 

HYDROLYSIS 

5.1 Motivation 

  

The cost of producing sugars from cellulosic materials is a significant barrier to the 

widespread use of processing routes such as fermentation. The hydrolysis process using 

acid is one of the main well-known process which has been investigated by several past 

studies for both dilute107-108 and concentrated acid97, 109 where the main benefit of acid 

hydrolysis is a fast reaction rate.108  

 

 

Figure 5.1. Reactor systems (a) two-stage reverse flow with step change in reactor 
conditions, lower temperature is applied to the fresh biomass, and higher temperature to 
the treated biomass (b) progressing batch reactor (F = biomass filling, E = biomass 
emptying, C = cellulose hydrolysis, H = hemicellulose hydrolysis). 

 

Fresh 
biomass

1st stage 2nd stage

Make-up 
acidAcid

Hydrolysate

Treated 
biomassHigh T Low T

Bypass

C

Fresh acid

Hydrolysate

CHHFE

C

Fresh acid

Hydrolysate

CHHF E

C

Fresh Acid

Hydrolysate

CHH FE

C

Fresh Acid

Hydrolysate

CH HFE

Step I Step III

Step II Step IV

1 2
3 4 5 6

1

2 3 4 5
6

1 2 3 4
5 6

1 2 3

4 5

6

(a) (b)

64 



 The main drawback of the acid hydrolysis process is the byproduct formation such 

as furfural and hydroxymethylfurfural (HMF) which strongly inhibit the subsequent 

fermentation process for bioethanol production. Several reactor operation and 

configurations have been considered to improve the sugar yield from biomass hydrolysis. 

Torget et al110 investigated a step-change in reaction temperature and acid flow rate where 

the biomass was first treated with a lower temperature and then followed by a higher 

temperature step. An improvement of sugar yield is observed owing to the different optimal 

reaction condition to hydrolyze different extent of cellulose and hemicellulose as well as 

the biphasic behavior of hemicellulose hydrolysis. Furthermore, two-stage reverse flow 

percolation reactor shown in Figure 5.1a, which resembles a countercurrent flow between 

the biomass and the acid, is also developed where the sugar concentration and yield are 

better than those from the step-change operation.110 A similar idea has been previously 

proposed by Wright et al111 named the progressing batch reactor (PBR). The key operation 

of this reactor configuration is the movement of the feed location of the acid stream to a 

different percolation reactor112 arranged in series (see Figure 5.1b). This is to mimic the 

countercurrent movement between the biomass and the acid where a significant 

improvement of sugar yield was observed due to the shorter time of sugar 

decomposition.102, 113 In addition, it avoids the complexity of moving solids through the 

reactor. The main advantage of PBR is the realization of countercurrent flow scheme while 

maintaining its simplicity of percolation reactor operation. Kim et al114 proposed another 

reactor operation to improve the sugar yield from hydrolysis reaction using a step-change 

in acid concentration.  
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Figure 5.2. Simulated moving bed chromatography 

  

 There are several decisions from past studies that can be further optimized. From 

previous work,110, 114 temperature, acid concentration, and acid flow rate are three operating 

parameters that can be adjusted using a step-change operation to hydrolyze different 

composition of biomass, and the most efficient scheme is countercurrent which can achieve 

high sugar concentration. A temperature gradient can be applied to each of the percolation 

reactor independently in PBR; however, to create the gradient in acid concentration and 

the acid flow rate simultaneously while maintaining a high sugar concentration is not 

straightforward. From Figure 5.1a, to change the acid concentration in the second reactor, 

a make-up acid stream with different concentrations may be mixed in to the second reactor. 

However, this would dilute the concentration of sugar components, and the liquid flow rate 

passing through the second reactor cannot also be adjusted to the optimal value 

independently from the first reactor. These considerations motivate the creation of a new 

process configuration in order to adjust all reaction conditions to their optimal values for 

each percolation reactor and to enable more flexible and robust operation. 
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 After the hydrolysis has been performed by a reactor, the acid must be separated 

from the sugar hydrolysates. Several acid recovery technologies11, 115 such as simulated 

moving-bed (SMB) chromatographic separation for sugar and acid separation24, 26 have 

been considered. The concentrated acid hydrolysis with chromatographic separation 

technology from Arkenol5,116 has been developed and successfully scaled up for bench-

scale117, and commercial implementation is being performed by BlueFire Renewables.88, 97 

The underlying principle of SMB is that the fluid is in contact with the solid phase where 

the feed and outlet streams switch to simulate the movement of solid phase to achieve a 

countercurrent flow.118-120 In the applications of SMB chromatography to sugar-acid 

separation, multiple chromatographic columns, which are packed with ion exchange resin, 

are connected to column train, as shown in Figure 5.2. A mixture of acid and hydrolysates 

is supplied continuously to the recycle loop as the feed stream. To elute the component 

from the resin, water is supplied as desorbent. If cation exchange resin, such as in H+ form, 

is employed as the packing material, then acid has lower affinity to the resin and is 

recovered as the raffinate stream, while purified sugar solution is recovered as the extract 

stream. The two feeding locations and two product withdrawal locations are switched 

periodically, which mimics the counter-current operation between the adsorbent phase and 

liquid phase. This pseudo counter-current operation can be approximated to a true counter-

current process, true-moving bed chromatography, as discussed in the next section.  

 This work proposes a new reactive chromatographic separation process which 

integrates SMB and PBR in a single reactive separation process. Such integration allows 

variations of reaction parameters including temperature, acid concentration, and flow rate 

inside reactor system, as well as recovers fermentable sugar from the biomass hydrolysates. 
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The biomass feedstocks can contain both cellulose and hemicellulose which have different 

rates of hydrolysis reaction.  Previous studies have explored the reactive separation 

principle using the SMB chromatography121-126, or reactive SMB, for both liquid gas phase 

reactions for equilibrium-limited reactions,127-129 but no previous work has considered a 

combination of SMB and reactor where the reactants are in the solid phase. We propose 

the solid-phase reactive separation system (SPRSS) combining the PBR and SMB units 

which have similar principles of the movement of the liquid feed to imitate the 

countercurrent movement of solid and liquid phase. The reaction and separation occur in 

the reactors and adsorption columns separately inside the process similar to the reactive 

separation proposed by Hashimoto et al129 which has been applied for several process such 

as the production of high-fructose syrup from glucose isomerization130-132 and p-xylene 

production.133 This new process creates different reactor operating conditions, including 

acid concentrations and flow rates, by means of the SMB separation to hydrolyze different 

compositions of biomass in the PBR and recovers fermentable sugar from the hydrolysates. 

The ultimate goal is to improve the sugar yield and sugar product concentration while 

minimizing the sugar decomposition reaction and undesired product formation. Moreover, 

the acid from the separation can be directly recycled; therefore, the cost of acid 

consumption is reduced especially for concentrated acid hydrolysis.  

 In this chapter, we first evaluate the potential of this new process, SPRSS, by 

constructing a model with continuous movement of solid biomass and adsorbent using the 

kinetic parameters of dilute acid hydrolysis reactions from the literature. Although we 

explore an application of SPRSS to sugar production from biomass in this study, the 
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principle of SPRSS may be applied to other separation problems that involve solid 

reactants. 

 This chapter organized as follows: section 5.2 introduces two alternatives designs 

of the reactor and chromatographic separator systems including the proposed SPRSS for 

saccharification from biomass. The model development of the approximate continuous 

SPRSS including the countercurrent reactor and true-moving-bed chromatography and the 

superstructure formulation for the optimization problem are discussed in section 5.3. The 

multi-objective optimization problem formulation is presented in section 5.4. The 

optimization results for two cases as well as the analysis on the advantages of the SPRSS 

at different kinetic parameters are presented in section 5.5.  

 

 

Figure 5.3. A realization of solid phase reactive separation system (SPRSS) 
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Figure 5.4. PBR and SMB operations in SPRSS (a) initial step (b) after SMB switching 
(c) after SMB and PBR switching. 
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5.3 Solid phase reactive separation system 

  

SPRSS can be realized by integrating SMB chromatography and PBR in a single 

loop of liquid recycle. One potential design of SPRSS is shown in Figure 5.3, which 

consists of eight chromatographic columns and two reactors. As discussed in Section 1, the 

pseudo counter-current operation of SMB is realized by periodically shifting the locations 

of the feed, desorbent, extract and raffinate streams (separator port switching).  Similarly, 

the pseudo counter-current operation of PBR is realized by periodically shifting the two 

reactors, R1 and R2 (reactor switching). These two independent switching operations are 

performed in a single SPRSS unit as illustrated in Figure 5.4. Figure 5.4a shows the initial 

SPRSS configuration where there are buffer tanks between PBR and SMB systems to 

maintain constant concentrations of all interconnecting streams. The liquid from one of the 

chromatographic columns is supplied to R1 and R2, and the outlets from R1 and R2 are 

recycled back to the SMB loop. Figure 5.4b shows the configuration after SMB switching 

and Figure 5.4c shows the configuration after switching of SMB and PBR. The order of 

the switching between PBR and SMB systems can change depends on the SPRSS design. 

It should be noted that there are many possible SPRSS designs. Design decisions 

include the number of chromatographic columns, the number of reactors, and 

configurations of the chromatographic columns and reactors.  These decisions can be 

optimized to improve the performance of SPRSS, as discussed more in detail in the next 

section. For example, a strategy to prevent byproduct formation is not to expose the 

hemicellulose in the fresh biomass in R2 to concentrated acid. On the other hand, to 

improve the overall conversion, the partially converted biomass in R1 must be treated with 
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a more concentrated acid solution. Such arrangements are realized in the design shown in 

Figure 5.3 and Figure 5.4, where R2 is located away from the acid inlet while R1 is located 

next to the acid feeding point. 

 

Figure 5.5. Comparison of two alternative designs for saccharification from biomass via 
acid hydrolysis (a) sequential design (b) SPRSS design. 

 

 The principle of the SPRSS operation can be approximated as the countercurrent 

flow between the solid and liquid phase by switching the liquid inlets and outlet ports for 

both PBR and SMB. The PBR component of SPRSS is approximated as a countercurrent 

reactor102 (CCR) to capture the hypothetical movement of the solid biomass.  Similarly, 

the SMB is approximated by the true moving-bed chromatographic separation (TMB) 

model.134 By this simplification, SPRSS can be preliminarily designed on a steady state 

basis as the first step to investigate potential benefits of this new process.  
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 In this study, we consider two specific configurations that combine a CCR and 

TMB, which are shown in Figure 5.5. Both designs, the sequential configuration (Figure 

5.5a) and SPRSS (Figure 5.5b) contain two stages of CCR where each reactor can have 

different reaction temperature. In Figure 5.5a, the countercurrent reactor is connected with 

the TMB separation in a straightforward manner where the acid from hydrolysate from 

CCR is separated from sugar in TMB columns and recycled back to CCR and mixed with 

fresh acid stream. There is no intermediate recycle and bypass streams, and the acid feed 

with similar acid concentration therefore goes to both reactors. In contrast, Figure 5.5b 

shows the proposed SPRSS configuration which fully integrates countercurrent reactor 

with TMB separation with intermediate recycled and bypass streams. Therefore, the acid 

concentration of each reactor can be manipulated by the chromatographic separation which 

removes the acid from the hydrolysate. Figure 5.6 shows the sample concentration profile 

inside the TMB for the sugar (xylose)-acid separation using a cation exchange resin 

(CS16GC in acid form135). As the liquid stream in the TMB chromatographic separation 

has variation in acid concentration, the streams could consequently be recycled to different 

reactors containing different biomass composition with a different acid concentration as 

well as flow rate. These degrees of freedom create a significant advantage over a standard 

countercurrent reactor, especially for the concentrated acid hydrolysis process which 

operates at mild temperatures without any pressurization, and the acid concentration 

strongly affects the reaction rate. 
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Figure 5.6. Concentration profile inside TMB chromatography for sugar-acid separation. 

 

5.4 Model development 

 

5.4.1 Kinetics of biomass hydrolysis 

 A widely used kinetic model of cellulose hydrolysis was first proposed by 

Saeman101 consisting of two homogeneous consecutive first order reactions as previously 

illustrated in chapter 4 and shown in Figure 5.7a.136 There are several modifications of the 

Saeman kinetic model where intermediate water-soluble oligosaccharides are formed 

before being further hydrolyzed to sugar. However, this heterogeneous behavior can be 

neglected when the conversion of oligosaccharides to glucose is relatively fast compared 

to cellulose to oligomers reaction at high temperature.137 In the case of hemicellulose 

hydrolysis, a biphasic behavior is often observed where a part of hemicellulose is 

hydrolyzed faster as illustrated in Figure 5.7b.138-139 The kinetic constants of all first order 

reactions have been modeled using an Arrhenius expression for temperature and the acid 

concentration AC  as previously presented in chapter 4 and shown in Eq. (5.1).102 

 ( ) Γ
0 e

aE
nA Tk k C

 − 
 =  (4.1) 
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a. Kinetic scheme of lignocellulose hydrolysis by Saeman101 

 
b. Hydrolysis of hemicellulose 

Figure 5.7. Kinetics pattern for lignocellulose hydrolysis 

 

Different biomass has a different composition and physical form, and the kinetics 

of hydrolysis may vary significantly because these are macroscopic models that do not 

distinguish between mass transfer and kinetics for these heterogeneous materials. This 

work considers using sulfuric acid catalyst where the summary of the kinetics parameters 

in Eq. (5.1) for the hydrolysis reaction of different biomass is shown in Table 5.1.  

 The purpose of our investigation is to understand the benefit of the acid 

concentration variation inside the reactor system. We assume the reaction temperature in 

all reactors is fixed, which would avoid the difficult operation of changing the temperature 

of the solid phase. Under this assumption, the reaction kinetics depend only on the 

concentrations of the acid and other components. The pre-exponent and the exponential 

terms of the reaction rate constant in Eq. (5.1) can be combined to become a pre-factor 

0 e
aE

TP k
−
Γ=  so that 

 ( )nAk P C=  (4.2) 
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 Table 5.1: Kinetic parameters for biomass hydrolysis with dilute sulfuric acid 
 

k0 
(min-1(%w/v)-n) n Ea 

(kJ/mol.K) 
Temperature 
(C°) 

Acid 
concentration 
(%w/v) 

Reference 

Fast-hydrolyzed hemicellulose to xylose 
1.46×1015 1 129.2 160–190 0.49–1.95 102 
1.22×1014 0.66 118.7 150–190 0.05–0.2 114 
6.17×1013 1.4 117.0 140–185 0.5 140 
 
Slow-hydrolyzed hemicellulose to xylose 
1.30×1014 0.5 125.4 160–190 0.49–1.95 102 
6.03×1013 1.18 117.0 150–190 0.05–0.2 114 
1.88×1014 1.2 129.6 140–185 0.5 140 
 
Xylose to decomposed product 
1.62×1012 0.8 115.0 160–190 0.49–1.95 102 
4.82×1013 0.71 128.3 150–190 0.05–0.2 114 
1.01×1011 0.48 105.9 140–185 0.5 140 
 
Cellulose to glucose 
5.23×1017 1.11 172.6 180–220 0.07–0.28 137 
2.80×1020 1.78 188.7 180–240 0.20–1.00 141 
1.16×1019 1 171.7 200–240 1.3–4.4 141 
 
Glucose to decomposed product 
4.85×1010 0.44 105.8 180–220 0.07–0.28 137 
4.90×1014 0.55 137.2 180–240 0.20–1.00 141 
4.13×1015 0.67 142.4 200–240 1.3–4.4 141 
      

aAll oligosaccharides is assumed to converted to monosaccharides very fast for simplicity 
 

The variations of the value of P  are estimated from the parameters in Table 5.1 at 

several temperatures between 100 – 180 °C and are presented as the approximate ranges in 

Table 5.2. From the table, the kinetic parameter P  of the fast-hydrolyzed hemicellulose 

hydrolysis reaction is up to approximately 20 times faster than that of slow-hydrolyzed 

hemicellulose and can be up to 8,000 times faster than that of the cellulose. The uncertainty 

in kinetics parameters of hydrolysis reactions may significantly affect the performance of 
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the designed process. In this work, the effect of the variation of these kinetic parameters to 

the performance of the proposed SPRSS is investigated. 

Table 5.2. Range of the kinetic parameter ratios of hydrolysis reactions at 100 – 180 °C 

Parameter Range of values 
Acid concentration (g/L) 0.5–50 
n   0.5–1.8 

Hemi-fastP  (h-1(%w/v)-n) 0.05–150 
Hemi-fast Hemi-slow/P P  1–20 
Hemi-Fast / XP P  1–60 
Hemi-Fast Cel/P P  1–8000 
Cel / GP P  0.005–6 

 

5.4.2 Countercurrent reactor and true-moving bed chromatography models 

 A mathematical model of CCR used in this work was developed by Lee et al.102  

We let the liquid flow in the positive direction for both systems. We define a set of 

component NC = {A, S, B} to denote the acid, sugar (glucose, G, and xylose, X), and all 

byproduct, respectively. j
CCRC  is the concentration of component j inside the CCR while

fastB  and slowB are the concentration of fast and slow hydrolyzed biomass inside the CCR. 

Figure 5.8a shows a single stage of CCR at where the mass balances of all components in 

the hydrolysis reaction are given in Eq. (5.3) – (5.6). 

Mass balance of fast-hydrolyzed biomass: 

 ( )fast
fast

( )B fast
d v B

k B
dx

−
= −  (4.3) 

Mass balance of slow-hydrolyzed biomass: 

 ( )slow
slow slow

( )Bd v B
k B

dx
−

= −  (4.4) 
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Mass balance of sugars: 

 fast fast slow slow
S

S SCCR
v CCR v CCR

dCb u k B k B b k C
dx

= + −  (4.5) 

Mass balance of byproducts: 

 
B

S SCCR
CCR CCR

dCu k C
dx

=  (4.6) 

Boundary conditions: 

0

0

0, (0)
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= = ∈


= = 
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Figure 5.8. The single stage models of (a) countercurrent reactor and (b) true-moving-bed 
chromatographic separation 

 

where CCRu  is the interstitial velocity while vb  is the biomass void fraction. In this study, 

we assume the effect of shrinking-bed is negligible so that the biomass velocity ( Bv ) is 
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constant. The acid concentration is also constant throughout the reactor.  These sets of 

equations can be applied to both cellulose and hemicellulose. In this work, it is assumed 

for simplicity that glucose is produced only from cellulose and the decomposed product is 

only HMF, while xylose is produced from hemicellulose and the decomposed product is 

only furfural. Eq. (5.3) – (5.5) also describe the monophasic behavior by setting a kinetic 

constant of the fast and slow hydrolyzed biomass hydrolysis reaction to be equal 

fast slowk k= .102 The boundary condition of the biomass is applied to both fast and slow 

hydrolyzed biomass where 0B is the inlet biomass concentration. These simplifications 

make the model easier to solve, but are unlikely to have a significant impact on the 

conclusions of the relative performance of the systems we examine. 

 The mathematical model for TMB chromatographic separation has been reported 

in past studies.142-145 This work uses the linear driving force mass transfer resistance model 

described as follows in Eq. (5.7) – Eq. (5.9) (see Figure 5.8b).134 

Liquid phase mass balance: 

 ( ),
j

j j eq jTMB
TMB f TMB TMB

dCu k C C j NC
dx

ε = − − ∈  (4.7) 

Adsorbent phase mass balance: 

 ( ) ( ),1
j

j j eq j
TMB f TMB TMB

dqv k C C j NC
dx

ε− − = − ∈  (4.8) 

Adsorption isotherm: 

 ,j j eq j
TMBq H C j NC= ∈  (4.9) 

Boundary conditions: 

0

0, (0)
,

j j
TMB TMB

j j

x C C j NC
x L q q j NC
= = ∈

= = ∈
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where j

fk  is the component mass transfer coefficient, TMBu  and TMBv  are the interstitial liquid 

and adsorbent velocity, respectively,ε  is the total bed porosity, j
TMBC  and jq are the 

concentrations of liquid and solid phase, respectively, and ,eq j
TMBC  is the equilibrium 

concentration at the liquid film. These equations describe the mass transfer between the 

solid phase and liquid phase where a linear equilibrium adsorption isotherm is used. The 

effect of axial dispersion is lumped into the mass transfer resistance coefficient.142 The 

cation exchange resin CS16GC in acid form is used in this work where ε = 0.391 and the 

Henry’s constants ( jH ) are dependent on the acid concentration.18, 135 Our investigation 

reveals that the Henry’s constants of all components vary insignificantly within the acid 

concentration range of 0 – 5 %w/v assumed in this work which has negligible effect on the 

optimal design of the process; therefore, we used the values at the average sulfuric acid 

concentration of 2.5 %w/v. The mass transfer coefficient of the same column is estimated 

from the correlation in Heinonen and Sainio24 and all values are shown in Table 5.3. 

Table 5.3. Henry's law and mass transfer coefficients for adsorption column 
Components Linear Henry’s 

law constant 
Mass transfer 

coefficient (s-1) 
Sulfuric acid 0.02 0.02 
Glucose 0.18 0.03 
Xylose 0.23 0.03 
HMF 1.60 0.15 
Furfural 2.25 0.15 

 

5.4.3 Superstructure of solid phase reactive separation system 

 There are numerous alternative designs that integrate the reactors and 

chromatographic columns into one process. To find the best design from the many 
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alternatives, we consider a superstructure of SPRSS to include all possible process 

configurations. 

 Several assumptions have been made to construct the SPRSS superstructure in this 

work that are based on the practical issues in PBR and SMB processes. First, we consider 

the reactor system with a large number of columns while the SMB separation system 

contains M columns. This is to limit the number of adsorption columns; each column 

requires careful packing of the ion exchange resin which can be significantly more 

expensive than a reactor chamber. In addition, we divide the reactor system into N sections 

of variable lengths to limit the number of connecting streams between reactor and 

separation system. Under these assumptions, we approximate the PBR and SMB into CCR 

and TMB and construct the superstructure of SPRSS shown in Figure 5.9. 
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Figure 5.9. Superstructure of SPRSS 
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 This superstructure comprises of the N number of CCR between biomass and acid 

stream arranged in series and M number of TMB separation columns. Each CCR reactor 

represents each section in PBR and may have different length. We define TL  as the total 

length of overall reactor system. 

 
1

N
i T

i

L L
=

=∑  (4.10) 

 

The lengths of all TMB columns are equal where each TMB column represents a single 

SMB column. We define NR = {1,2,..,i,..,N} to be a set of the number of reactors, and NT 

= {1,2,..,k,..,M} to be a set of TMB separation columns. The flow and component balances 

of each reactor feed are shown as follows. 

CCR flow rate balances: 

 1 1 1 1
CCR A W RERu u u u= + +  (4.11) 

 { }1 1 1i i i i i i
CCR A W RER CCR FRu u u u u u i NR− −= + + + − ∈ −  (4.12) 

CCR mass balances: 

 1 ,1 1 1 ,1(0)j A j
CCR CCR A RER RERu C u C u C= +  (4.13) 

 
( )

{ }

, , 1 1 , 1(0) ( )

, 1

i j i i A i j i i i j i
CCR CCR A RER RER CCR FR CCRu C u C u C u u C L

j NC i NR

− − −= + + −

∈ ∈ −
 (4.14) 

 

 We must also avoid draining of the feed and recycle stream without passing through 

the reactor. 

 0i i i i
CCR A W RERu u u u− − − ≥  (4.15) 

 

 In this superstructure, the fresh acid ( i
Au ), water stream ( i

Wu ), and the recycle stream 

from TMB ( i
RERu ) are allowed to feed to any of the reactors where AC  and ,i

RER
jC  are the 
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fresh acid feed concentration and the concentration of the recycle stream, respectively. The 

product streams from reactor i can go to the next reactor or bypass to the TMB systems       

( i
FRu ).   

 The bypass streams from any of the reactors can be chosen to feed any TMB 

separation columns. Furthermore, the recycle stream from any of the TMB separation 

columns can be recycled to any of the reactors. However, the size of the reactors and the 

columns can be different. Therefore, the interstitial velocities of the liquid streams 

connected between the reactors and TMB columns are related by the mass balances 

Mass balances between CCR and TMB: 

 N N
FR CCRu u=  (4.16) 

 ,
, ,

1

M
i i k

v C CCR FR C TMB FT
k

b A u A u i NRε
=

= ∈∑  (4.17) 

 ,
, ,

1

M
i i k

v C CCR RER C TMB RET
k

b A u A u i NRε
=

= ∈∑  (4.18) 

 , , ,
, ,

1

( ) ,
M

i j i i k j k
v C CCR RER RER C TMB RET TMB

k

b A u C A u C L j NC i NRε
=

= ∈ ∈∑  (4.19) 

 
where  ,i k

FTu  is the liquid velocity of the feed from reactor i to the TMB column k and ,i k
RETu  

is that from TMB column k to reactor i. The bypass stream from the final stage of reactor 

is simply the liquid flow inside the reactor (Eq. (5.16)). ,C CCRA  and ,C TMBA are the cross-

sectional area of the reactors and TMB separation columns, respectively.  

 The standard superstructure of the TMB columns146 is employed in this 

superstructure. The velocity of the liquid phase inside kth TMB column ( k
TMBu ) with the 

feed concentration , (0)j k
TMBC  can be found from the flow and component balance. 
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TMB flow rate balances: 

 1 , 1 ,1

1 1

N N
M M M i M i

TMB TMB E R RET D FT
i i

u u u u u u u
= =

= − − − + +∑ ∑  (4.20) 

 1 1 1 , 1 ,

1 1

{1}
N N

k k k k i k k i k
TMB TMB E R RET D FT

i i

u u u u u u u k NT− − − −

= =

= − − − + + ∈ −∑ ∑  (4.21) 

TMB mass balances: 

 
1 ,1 , , ,1 ,

1 1

(0) ( ) ( )
N N

j M M M i M j M i j i
TMB TMB TMB E R RET TMB FT CCR

i i

u C u u u u C L u C L

j NC
= =

 = − − − + 
 

∈

∑ ∑  (4.22) 

 
, 1 1 1 , 1 , 1 , ,

1 1

(0) ( ) ( )

, {1}

N N
k j k k k k i k j k i k j i
TMB TMB TMB E R RET TMB FT CCR

i i

u C u u u u C L u C L

j NC k NT

− − − − −

= =

 = − − − + 
 

∈ ∈ −

∑ ∑  (4.23) 

 

 k
Eu  and k

Ru  are the velocity of extract and raffinate stream withdrawn from column 

k, and k
Du  is the velocity of the desorbent fed to column k. We define the set NTR = {3, 

4,…, M – 1} for the possible locations of the raffinate and feed stream and set NTE = {1, 

2,…, M – 3}for the possible locations of extract stream, and we avoid non-unique solutions 

due to the symmetry by fixing the specific flow rate. 

 0 {1}k
Du k NT= ∈ −  (4.24) 

 , 0 ,i k
FTu i NR k NT NTR= ∈ ∈ −  (4.25) 

 0k
Ru k NT NTR= ∈ −  (4.26) 

 0k
Eu k NT NTE= ∈ −  (4.27) 

 

 The solution of the SPRSS optimization problem with the superstructure 

formulation may contain many sub-optimal solutions. From our investigation, we make 

several assumptions and avoid some local solutions by introduce the binary variables (δ  ) 

to constrain the locations of several streams with logic constraints as follow.  
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1. The outlet stream from each reactor is allowed to be fed to only one TMB column 

(i.e. splitting the feed stream is not allowed). Similarly, the outlet from only one 

TMB column can be recycled to each reactor (i.e. recycle from multiple TMB 

column is not allowed).  In addition, we consider a binary separation system 

between sugars and acid where all sugars (both glucose and xylose) are withdrawn 

together from one chromatographic column as a product, while the acid is allowed 

to remove out of the process from another column. From these assumptions, only 

one location of the feed, the raffinate, the extract, and the recycle streams are 

allowed. 

 

 , ,
max ,i k i k

FT TMB FTu u i NR k NTRδ≤ ∈ ∈  (4.28) 
 , 1i k

FT
k NTR

i NRδ
∈

= ∈∑   (4.29) 

 max
k k
R TMB Ru u k NTRδ≤ ∈  (4.30) 

 1k
R

k NTR

δ
∈

=∑  (4.31) 

 max
k k
E TMB Eu u k NTEδ≤ ∈  (4.32) 

 1k
E

k NTE

δ
∈

=∑  (4.33) 

 , ,
max ,i k i k

RET TMB RETu u i NR k NTδ≤ ∈ ∈  (4.34) 
 , 1i k

RET
k NT

i NRδ
∈

= ∈∑  (4.35) 

 
maxTMBu  is the maximum velocity inside TMB column which will be chosen based 

on the maximum allowable pressure drop. 

2. There must be at least one separation column between the location of the feed 

streams and the raffinate, extract, and recycle streams. 

 , 1 1 ,i k k
FT R i NR k NTRδ δ −+ ≤ ∈ ∈  (4.36) 

 , 1 1 ,i k k
FT E i NR k NTRδ δ −+ ≤ ∈ ∈  (4.37) 

 , , 1 1 ,i k i k
FT RET i NR k NTRδ δ −+ ≤ ∈ ∈  (4.38) 
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3. The columns between the desorbent feed and the extract stream are mainly for 

desorbing the sugars from the adsorbent. Therefore, the feed, the extract, and the 

raffinate stream are not allowed to enter in this zone. 

 , ,i k k
FT E

k k

i NR k NTRδ δ
<

≤ ∈ ∈∑  (4.39) 

 , ,i k k
RET E

k k

i NR k NTδ δ
<

≤ ∈ ∈∑  (4.40) 

 k k
R E

k k

k NTRδ δ
<

≤ ∈∑  (4.41) 

 

 In this study, we use two CCR (N = 2) and 12 TMB columns (M = 12). The optimal 

SPRSS can be found by optimizing this superstructure where the optimizer can choose the 

locations of all connecting streams between the CCR and TMB, and the design complexity 

must be justified carefully. It should be noted that the sequential configuration shown in 

Figure 5.5a can also be found from this superstructure by requiring the flow rates all 

intermediate streams between each reactor to be zero.  

 

5.5 Multi-objective optimization problem formulations 

  

 The ultimate goal for this work is to maximize the sugar productivity as well as 

minimize the production cost which includes capital and operating costs. Table 5.4 lists the 

objectives which should be considered for designing SPRSS. In this work, we simplify and 

make several assumptions for the optimization problem as follows. First, we fix the 

temperature in the reactor system where the kinetic model shown in Eq. (5.2) is used, since 

this work mainly focuses on the effect of acid concentration on the reactions as previously 

discussed. Therefore, the heat consumption of the process is fixed. Second, the diameters 
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of the two reactors are fixed to one meter allowing the reactor capital cost depends only on 

the length while the TMB columns length is fixed to one meter allowing the TMB capital 

cost depends only on the diameter. Third, the cost of fresh water consumption (diluent in 

reactor system and desorbent in TMB separation) is assumed negligible, while water 

evaporation cost is represented by the sugar concentration. Under these assumptions, we 

consider the single-objective optimization problem with constraints presented in Table 5.5 

where the decision variables and all model assumptions used in this study are summarized 

in Table 5.6. 

Table 5.4. Objectives for designing SPRSS 

Objectives 

maximize 

Total yield of sugars 
Sugar concentration in extract 
Biomass throughput 
Selectivity of sugars 

minimize 

Capital cost 
- Size of Reactor and TMB columns (length and 

diameter) 
Operating cost 

- Acid consumption 
- Water consumption 
- Energy consumption (reaction temperature) 

 
 

Table 5.5. Optimization problem formulation 

max S
SPRSSY   Yield of sugars 

Subject to:  
1. min

S SC C≥  minimum sugar concentration (g/L) 
2. min

B BM M≥  minimum biomass throughput (kg/h) 
3. min

S S
SPRSSS S≥  minimum selectivity of sugars (%) 

4. maxTMB TMBD D≤   maximum TMB column diameter (m) 
5. max

T TL L≤  maximum CCR length (m) 
6. max

A AF F≤  maximum fresh acid consumption (kg/h) 
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Table 5.6. Decision variables and model assumptions 

Decision variables Model Assumptions 
Biomass velocity Reactor diameter 1 m 
The lengths of two reactors Number of reactors 2 
Acid and water feed rates to each of two 
reactors TMB column length 1 m 

Two outlet flow rates from each of the 
two reactors and its feed location to TMB Number of TMB columns 12 

Two recycle flow rates to each of the two 
reactors and its location from TMB maxTMBD  2 m 

One extract stream flow rate and its 
location in TMB ,CCR,max TMB,maxu u  10 m/h 

One desorbent stream flow rate at the 
first TMB column Fresh acid concentration, AC   900 g/L 

One raffinate stream flow rate and its 
location in TMB biomass void fraction, vb  0.8 

Adsorbent velocity   

 

 In addition to the constraints in Table 5.5, we have additional constraints on the 

acid purity at the product stream and the maximum liquid flow rate of all reactors and TMB 

columns to avoid excessive pressure drop. 

 maxPUR PUR AA ≤  (4.42) 
 max

i
CCR CCRu u≤  (4.43) 

 max
k
TMB TMBu u≤  (4.44) 

 

 The overall sugars’ yield, SY  , containing glucose from cellulose and xylose from 

fast and slow hydrolyzed hemicellulose can be found from Eq. (5.45).110 

 
 S G G X XY f Y f Y= +  (4.45) 
 

where each coefficient f is the fraction of the corresponding biomass. The calculations of 

the sugar yield and all constraints are shown in Table 5.7.  
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Table 5.7. Definition of objective funtion and model constraints 
Xylose yielda 
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a Xylose yield is defined as the ratio of the mass of xylose from both fast and slow 
hydrolyzed hemicellulose produced at the extract stream over the biomass throughput. 
The overall sugars’ yield can also be expressed in terms of the multiplication of the yield 
from the reaction in CCR and the yield from the recovery of sugar in TMB separation. 
The glucose yield can be calculated similar to the xylose yield. 
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5.6 Results and discussions 

  

The superstructure of SPRSS mathematical model is formulated as an MINLP 

problem and solved in GAMS 23.8.1 environment using CONOPT 3.15A solver, and the 

optimizations are run on six-Core 2.4 GHz AMD Opteron(tm) Processor with 8 GB of 

RAM. The analytical solutions of the ordinary differential equations of reactor systems are 

used while the TMB columns are discretized into 50 elements using the first order 

backward difference for liquid phase and forward difference for solid phase. The 

superstructure model consists of approximately 9500 variables with 72 integer variables, 

and the computation times is up to 15 minutes. 

 

5.6.1 Optimal configuration of SPRSS 

 In this study, we consider two different cases to analyze the optimal process 

structure of SPRSS. In Case 1, we consider only hemicelluloses which produces xylose 

and further decomposes into furfural.  We consider a biphasic system, where the biomass 

consists of two fractions: fast decomposing and slow decomposing. In Case 2, we consider 

a more extensive case study where both hemicelluloses and cellulose exist. In both cases, 

we compare the sequential configuration with SPRSS design (Figure 5.5) in order to see 

the benefits of the variation of acid concentration. In the case of sequential configuration, 

all inlets and outlet streams between two reactors are switched off. Only one recycled 

stream from TMB column is allowed which is mixed with the fresh acid feed stream. The 

length of each reactor has no effect on the optimal solutions and is fixed to be equal. For 

the SPRSS configuration, there is no restriction on the inlets and outlets streams between 
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two reactors, and each reactor length are allowed to vary with the same max
TL . In both cases, 

the constraints on selectivity of sugars ( min
SS ) and fresh acid consumption ( max

AF ) are chosen 

to be their minimum and maximum values, respectively, that make both constraints 3 and 

6 in Table 5.5 active for the sequential configuration design. 

 

Table 5.8. Model parameters 

 Case 1 Case 2 
 

BM  = 400 kg/h BM  = 500 kg/h 

Design 
parameters 

max
TL = 3 m max

TL = 5 m  
max
AF  = 0.74 kg/h max

AF  = 0.44 kg//h 
min
SC = 60 g/L min

SC = 80 g/L 
maxPUR A

= 0.1 (wt%) maxPUR A

= 0.1 (wt%) 
min
SS = 76.9 % min

SS  = 73.3 % 
 Hemi-Fast

0B = 65 kg/m3 
Hemi-Fast
0B = 39 kg/m3 

 Hemi-Slow
0B = 35 kg/m3 

Hemi-slow
0B = 21 kg/m3 

Kinetic 
parameters 

Hemi-fastP = 35 h-1 (%w/v)-n Cel
0B = 40 kg/m3 

 Hemi-slowP  = 1.75 h-1 (%w/v)-n Hemi-fastP = 8 h-1 (%w/v)-n 
 XP = 3.5 h-1 (%w/v)-n Hemi-slowP  = 4 h-1 (%w/v)-n 
 Hemi-fastn = 0.5 XP = 4 h-1 (%w/v)-n 
 Hemi-slown  = 1.5 CelP = 2.67 h-1 (%w/v)-n 
 Xn

 = 1.1 
GP  = 0.53 h-1 (%w/v)-n 

  Hemi-fastn = 0.5 
  Hemi-slown  = 0.5 
  Xn

 = 1.0 
  Celn = 0.8 
  Gn

 = 0.9 
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Case 1: Biphasic hemicellulose 

 We first apply the SPRSS model to the system where biomass contains only 

hemicellulose with the biphasic behavior (see Figure 5.7b), or equivalently where the 

conditions are too mild for the cellulose to react. In this case, the system contains only three 

components including acid, xylose, and furfural as a decomposed product. The model 

parameters are assumed and presented in Table 5.8 where the values of the kinetic 

parameters are chosen based on Table 5.2.  

Figure 5.10 shows the optimal solution and concentration profile inside CCR and 

TMB separation of the sequential configuration. In Figure 5.10a, it can be seen that the 

conversion of the fast-hydrolyzed hemicellulose increase sharply at the solid inlet (x = 3) 

and reach the final conversion of nearly 100% at the solid outlet (x = 0) while that of slow-

hydrolyzed hemicellulose increase at a slower rate and reach the final conversion of around 

98% at x = 0. This makes the xylose concentration increase rapidly at x = 2.5 to 3 as 

presented in Figure 5.10b. In a trade-off between the biomass conversion and the sugar 

decomposition, the optimizer found the acid concentration at 24.6 g/L inside CCR with the 

maximum total reactor length max
T TL L=  give the highest xylose yield.  The liquid stream 

from the TMB column 10 has relatively low xylose concentration as well as high acid 

concentration which is therefore chosen to be recycled to the CCR with a negligible amount 

of purge as raffinate stream (see Figure 5.10c). The fresh acid consumption is therefore 

small at 0.74 kg/h. This small amount can be further reduced by tightening the constraints 

on the fresh acid consumption ( max
AF ) which sacrifices the xylose yield slightly.  
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Figure 5.10. Optimal solution of the sequential configuration for biphasic hemicellulose 
hydrolysis (a) biomass conversion of fast-hydrolyzed, slow-hydrolyzed, and total 
hemicellulose (b) concentration profile inside CCR and TMB columns (c) optimal process 
configuration. 
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Figure 5.11. Optimal solution of the SPRSS design for biphasic hemicellulose hydrolysis 
(a) biomass conversion of fast-hydrolyzed, slow-hydrolyzed, and total hemicellulose (b) 
concentration profile inside CCR and TMB columns (c) optimal process configuration. 
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Figure 5.11 shows the optimal solution and concentration profiles inside the CCR 

and TMB of the SPRSS configuration. The initial guess for this optimization is the optimal 

solution for the sequential design.  From Figure 5.11a, it can be seen that the fast-

hydrolyzed hemicellulose is mainly hydrolyzed in R2 which contacts a low acid 

concentration of 0.5 g/L while the slow-hydrolyzed hemicellulose is only converted in R1 

by a higher acid concentration at 50 g/L (see Figure 5.11b). The reactor length of the R2 is 

approximately twice that of R1 which means the reaction time of the hydrolysis reaction 

with the high acid concentration is around one-third of the total reaction time. 

 The optimal solution of the SPRSS shown in Figure 5.11c has two interconnecting 

loops between the CCR and TMB which have different internal acid concentrations. One 

loop is between R1 in the CCR and Columns 9 and 10 in the TMB. In this loop, the outlet 

of R1 is fed to the Column 9 where the xylose, a higher affinity component, is adsorbed 

into the solid phase. The liquid flows to Column 10 with a reduction in xylose 

concentration, and the outlet is recycled to R1. Similarly, there is another loop between R2 

in the CCR and Column 6 in the TMB. In this loop, the outlet of R2 is fed to Column 6 in 

the TMB where the xylose is adsorbed, and the liquid from the same column is recycled to 

R2. These create two separate closed recycle loops with different acid concentrations where 

the xylose is produced inside the CCR and then partially recovered by TMB separation. It 

is noteworthy that the optimizer chooses to feed the xylose of a moderately high 

concentration from Column 6 back to R2. This is to increase the sugar concentration to 

meet the constraint for the minimum sugar concentration (Constraint 1 in Table 5.5). 

Furthermore, a small amount of fresh water is fed to the second reactor to further dilute the 

acid which has a small effect on the xylose concentration. The key observation is that the 
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SPRSS design can change the acid concentration inside the reactor system independently 

from the sugar concentration, which is enabled by the separation of the TMB. 

 The TMB separation can be divided into seven zones as shown in Figure 5.11b. In 

Zone I, all xylose from the adsorbent is desorbed into the liquid phase and the product is 

removed at the extract stream. In Zone II and Zone IV, the acid is desorbed from the 

adsorbent and the acid concentration in the liquid stream rises to the optimal acid 

concentration which is recycled back to the reactor. The xylose from the reactor outlet is 

adsorbed in Zone III and Zone V so the sugar concentration reduces while the acid 

concentration remains the same. Zone VI and Zone VII of the TMB separation are used to 

adsorb the acid before being recycled back to Zone I. The acid is recycled from column 6 

to R2 and from column 10 to R1 while the remaining amount, which is negligible, is purged 

as the raffinate stream at column 11. Our investigation reveals that the acid purging stream 

may increase at different model parameters to allow a higher acid concentration to be 

recycled to the first reactor.  

 The optimal results of the sequential and SPRSS designs are compared in Table 

5.9. It can be seen in this table that the SPRSS configuration increases the total yield of 

xylose by 7.9%. In addition, less furfural formation is observed and the selectivity of xylose 

improves by 8.2%. It is noteworthy that the total sugar yield consists of two parts: the 

reaction yield and the recovery of sugar from TMB separation (see Table S3 in the 

Supporting Information). Our investigation shows that in both designs, there is negligible 

amount of xylose lost to the raffinate stream, which indicates that the recovery of sugar 

from the TMB separation is nearly complete. Thus, the total xylose yield at the extract 

product stream is equivalent to the sugar yield from the reaction.  
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 The constraints on the sugar concentration, biomass throughput, TMB column 

diameter, reactor length, and fresh acid consumption are all active in the optimal solutions 

for both configurations. There is no constraint on the fresh water consumption; however, 

the values for both configurations are similar. These results demonstrate the potential 

improvement of sugar yield using the SPRSS configuration.  

Table 5.9. Comparison of sequential and SPRSS optimal configuration 

 Case 1 Case 2 

Parameters Sequential 
configuration 

SPRSS 
configuration 

Sequential 
configuration 

SPRSS 
configuration 

SY  

  65.0 % 73.2 % 
76.3 % 84.2 % XY = 65.3 % XY = 72.0 % 

  GY = 64.7 % GY = 73.4 % 
SS  76.9 % 85.1 % 73.3 % 77.6 % 

Water usage 5.1 m3/h 5.6 m3/h 4.0 m3/h 4.6 m3/h 
AF  0.74 kg/h 0.44 kg/h 
SC  60 g/L 80 g/L 

BM  400 kg/h 500 kg/h 
TMBD  

2 m 2 m 
TL  3 m 5 m 

 

Case 2: Mixture of cellulose and hemicellulose 

 We now consider the system where both cellulose and hemicellulose exist in the 

biomass (see Figure 5.7). The system now contains five component including acid, glucose, 

xylose, HMF, and furfural, and the separation becomes more complex. In this case study, 

we assume the biomass has a total concentration of 100 kg/m3 consisting of 60% 

hemicellulose ( Xf = 0.6) with 65% fast-hydrolyzed and 35% slow-hydrolyzed, and 40% 

cellulose ( Gf = 0.4). The initial concentration of each biomass portion and the model 

parameters are assumed based on Table 5.2 and shown in Table 5.8.  
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 Figure 5.12 shows the optimal solution of the sequential configuration. In Figure 

5.12a, it can be seen that final conversion of the fast-hydrolyzed hemicellulose, slow-

hydrolyzed hemicellulose, and cellulose at the solid outlet from the reactor (x = 0) are 

99.3%, 91.9%, and 76.8%, respectively, while the optimal acid concentration inside the 

reactor is 6.4 g/L (see Figure 5.12b). The model chooses a slightly low acid concentration 

to lessen the amount of byproduct formation with an expense of lower conversion of slow-

hydrolyzed hemicellulose and cellulose. The concentration profiles inside the TMB and 

the optimal process configuration (Figure 5.12c) are similar to Case 1. The acid from 

Column 11 is recycled completely to R1 without any purge stream, and the flow rate of 

fresh acid feeding to the first reactor is therefore very small.   

The optimal solution of the SPRSS configuration is shown in Figure 5.13 where we 

use the optimal solution of the sequential configuration as an initial guess. In Figure 5.13a, 

the final conversion of the fast, slow-hydrolyzed hemicellulose, and cellulose at x = 0 

increase to 99.7%, 94.8%, and 88.9%, respectively, which was enabled by the two-level 

acid concentration in the CCR (Figure 5.13b). The optimal configuration also contains two 

loops (Figure 5.13c) where the first loop is connected to reactor R1 with a high acid 

concentration of 25.3 g/L while the second loop is connected to reactor R2 with a lower 

acid concentration of 2.4 g/L. There is no raffinate stream and the acid from TMB column 

8 and 11 is recycled to the CCR, thus there are six separation zones in this case as shown 

in Figure 5.13b.   
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Figure 5.12. Optimal solution of the sequential configuration for cellulose and biphasic 
hemicellulose hydrolysis (a) biomass conversion of fast and slow hydrolyzed 
hemicellulose, cellulose, and total biomass conversion (b) concentration profile inside 
CCR and TMB columns (c) optimal process configuration. 
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Figure 5.13. Optimal solution of SPRSS design for cellulose and biphasic hemicellulose 
hydrolysis (a) biomass conversion of fast and slow hydrolyzed hemicellulose, cellulose, 
and total biomass conversion (b) concentration profile inside CCR and TMB columns (c) 
optimal process configuration. 
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The comparison of the sequential and SPRSS configurations is presented in Table 

5.9 where an improvement in total sugar yield is 8.2 % while the selectivity increases by 

4.3 %. The optimal solutions can vary significantly depending on the constraints and model 

assumptions. The effect of kinetic parameters is examined in the next section. 

 

5.6.2 Effect of kinetic parameters to the SPRSS design 

 The results presented in the previous section shows the benefits of the SPRSS 

configuration over the sequential configuration. However, the optimal solutions can vary 

significantly depending on many model parameters including the size of equipment, the 

value of the constraints on the problem formulation such as the biomass throughput and 

biomass initial concentration, and all of kinetic parameters of the hydrolysis reactions. Our 

investigation reveals that the kinetic parameters have the most significant impact on the 

sugar yield improvement of the SPRSS over that of sequential design. The improvement 

from SPRSS in this work mainly comes from the ability to change the acid concentration 

without interfering with the sugar concentration. Consequently, SPRSS design is favorable 

when changing acid concentration significantly influences the reaction kinetics.  

 In the investigation below, we always avoid trivial solutions by assuming that when 

the acid concentration increases, the reaction rate of the byproduct formation increases 

more significantly than that of the sugar formation. This condition can be expressed in the 

reaction model considered in Figure 5.7 and Eq. (5.2) as the following conditions: 

 ( ) ( ) ( )Hemi-Fast Hemi-Slow CelX X Gn n n n n n≤ ∨ ≤ ∨ ≤  (4.46) 
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Without this condition, the optimizer would always find a trivial solution of increasing the 

acid concentration to the highest value.  

 There are many reaction paths that occur during biomass hydrolysis where each 

kinetic parameter of each reaction could have an interaction effect on the objective 

function. It is not straightforward to determine at which values of these kinetics parameters 

would justify the more complex SPRSS design than that of the sequential design.  

 Our investigation below reveals two main observations of the kinetic parameters’ 

values that could further enhance the advantage of using SPRSS configuration over 

sequential design. In these two observations, the sequential and SPRSS configuration 

designs are compared at several different kinetic parameters based on model parameters 

from Case 1 in Table 5.8 where the value of min
SS  and max

AF  are chosen to be the minimum 

and maximum values, respectively, so that the constraints 3 and 6 in Table 5.5 are active 

for the sequential configuration design. We always assume that Eq. (5.46) is satisfied in 

this investigation. In addition, each reactor length, TMB column diameter, and all integer 

variables are fixed at the optimal solution of Case 1 for both sequential and SPRSS 

configurations. This is to investigate the flexibility of both designs at different kinetic 

parameters. 

5.6.2.1 Effect of reaction kinetic parameters  for byproduct formation  

 The SPRSS design can be more favorable at a higher rate of byproduct formation. 

In the reaction model considered in Eq. (5.2), this corresponds to a large value of XP  and 

Xn in the reaction path shown in Figure 5.7b. Figure 5.14 shows an improvement of xylose 

yield of the SPRSS over sequential configuration design at different Hemi-fast/XP P  and Xn . 
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From the figure, the xylose yield improvement increases with increasing the ratio 

Hemi-fast/XP P  at Xn  = 0.7 and 0.8. This indicates that when the rate of byproduct formation 

increases relative to sugar generation so that suppressing decomposition of sugars is more 

difficult, the SPRSS configuration has greater advantages over the sequential design. 

However, when the order of acid concentration of xylose decomposition reaction increases 

to Xn = 1.1, the increase is less significant, while the yield improvement decrease when Xn

= 1.5 at a high Hemi-fast/XP P . This is because the byproduct formation rate is extremely fast 

and highly sensitive to the acid concentration, and consequently the optimizer decides to 

lower the acid concentration. Figure 5.15 illustrates the acid concentration inside the 

reactors R1 and R2 of the SPRSS design. From the figure, the acid concentration inside R2 

is almost constant in all cases, while that of R1 decreases when increasing the ratio 

Hemi-fast/XP P  at Xn = 1.1 and 1.5. Due to a very high byproduct formation rate, even the 

SPRSS design cannot avoid the sugar decomposition and thus it is necessary to reduce the 

acid concentration to avoid the decomposition reaction. In addition, it can be seen from the 

figure that this causes a smaller difference in acid concentration between R1 and R2. Due 

to a smaller variation of acid concentration inside the reactor system, the benefit of 

changing the acid concentration accordingly becomes smaller resulting in a smaller 

advantage of the SPRSS design over the sequential configuration. In summary, at a high 

rate of byproduct formation relatively to sugar generation, SPRSS could suppress 

byproduct formation better than the sequential design leading to an improvement of sugar 

yield, but a too fast byproduct formation cannot be suppressed even by SPRSS. 

103 
 



 

Figure 5.14. Effect of the ratio  and  on an improvement of xylose yield 
of the SPRSS configuration over sequential design. 

 

 

Figure 5.15. Effect of the ratio  and  on acid concentration inside R1 and 
R2 of SPRSS. 

 

5.6.2.2 Effect of the different sensitivities of the sugar production rates to the acid 

concentration for different biomass portions 

 The improvement of SPRSS design over the sequential configuration is more 

significant if there is a substantial difference in the sensitivity of sugar formation rate from 

Hemi-fast/XP P Xn

Hemi-fast/XP P Xn

104 
 



different biomass portions to the acid concentration. This is corresponding to a large 

difference between the values of Hemi-slown   and Hemi-fastn in the model in Eq. (5.2) for the 

reaction paths presented in Figure 5.7b. In this investigation, the parameter Hemi-slown  is 

varied while Hemi-fastn , Xn  , and the other model parameters from Case 1 are used and fixed. 

 

Figure 5.16. Effect of  on an improvement of xylose yield of SPRSS over 
sequential configuration design. 

 

 Figure 5.16 shows an improvement of xylose yield of the SPRSS over the 

sequential configuration design at different values of Hemi-slown . As can be seen in this 

figure, the improvement in the yield of the SPRSS is greater at a high value of Hemi-slown . 

The reason for this can be explained by a higher degree of conflict in choosing the acid 

concentration for the two hemicellulose portions in the biomass, as discussed in Section 

5.6.1, which is examined more in detail below.  

 The improvement of the SPRSS over the sequential configuration can be illustrated 

further by comparing the ratio of the kinetic constant, which is described in Equation 2, 

between fast-hydrolyzed and slow-hydrolyzed hemicellulose to that of byproduct 

formation at different acid concentration demonstrated in Figure 5.17. We consider two 

Hemi-slown
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cases (see Figure 5.16); Case (a) is for a small difference in the sensitivities of the sugar-

forming reaction rates to the acid concentration ( Hemi-fast / Xn n  = 0.45 and Hemi-slow / Xn n  = 

0.73), while Case (b) is for a large difference ( Hemi-fast / Xn n  = 0.45 and Hemi-slow / Xn n  = 1.36). 

 

 

Figure 5.17. The ratio of the kinetic constant between fast-hydrolyzed and slow-
hydrolyzed hemicellulose to that of byproduct formation reaction at different acid 
concentration,  = 35 h-1(%w/v)-n,  = 1.75 h-1(%w/v)-n, = 3.5 h-

1(%w/v)-n, and = 1.1, (a)  = 0.8  (b)  = 1.5. 

 

 Case (a) is illustrated in Figure 5.17a where the difference in the sensitivities of the 

sugar-forming reaction rates to the acid concentration is small. It can be seen that when the 

acid concentration increases, both Hemi-fast / Xk k   and Hemi-slow / Xk k  reduce because the values 

of both Hemi-fast / Xn n  and Hemi-slow / Xn n  are less than one. As the fast and slow hydrolyzed 

hemicellulose in this case behave quite similarly, the optimal acid concentration between 

the sequential and SPRSS designs for both R1 and R2 are not significantly different 

Hemi-fastP Hemi-slowP XP
Xn Hemi-slown Hemi-slown
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compared to Case (b). Consequently, the improvement of the sugar’s yield of the SPRSS 

over sequential design is small.  

 In contrast, Case (b)  shown in Figure 5.17b where the difference in the sensitivities 

of the sugar-forming reaction rates to the acid concentration is large, the two ratios of the 

reaction rate constants behave differently to the change of acid concentration; the ratio 

Hemi-slow / Xk k  rises when the acid concentration is increased since Hemi-slow / Xn n   is greater 

than one, while Hemi-fast / Xk k decreases. Due to this difference in the behavior of 

Hemi-fast / Xk k  and Hemi-slow / Xk k , it can be seen that the optimal acid concentrations of SPRSS 

for R1 and R2 diverge to the two values: one at the maximum value of 50 g/L in R1 to 

hydrolyze slow biomass portion, and another at the minimum value at 0.5 g/L to hydrolyze 

fast biomass portion. Such a large difference in the optimal acid concentration of SPRSS 

between R1 and R2 in Figure 5.17b compared to that in Figure 5.17a indicates that there is 

a higher degree of conflict in choosing the acid concentration to hydrolyze different 

biomass composition when increasing the value of Hemi-slown . From this investigation, it can 

be concluded that the advantage of SPRSS could be further enhanced when there is a 

significant difference in the sensitivity of the rates of sugar generation from different 

biomass compositions to the acid concentration.  

 There are other biomass properties that could affect the advantage of SPRSS. For 

instance, the different initial biomass concentration of each portion could substantially 

affect the rate of sugar generation. Additionally, a real biomass could contain different 

kinds of biomass with different portions as well as various kinetic parameters, which have 

more complex reaction paths than those shown in Figure 5.7. The analysis above indicates 

that the SPRSS design has the potential of achieving a higher yield while suppressing 
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byproduct formations by manipulating the acid concentrations. The justification of the 

optimal complex design of SPRSS must be more carefully examined. 

 In this study, we examined SPRSS only in an application of sugar production from 

biomass. The principle of SPRSS may be applied to other separation problems that involve 

solid-phase reactants. In particular, if there is a sequential reaction that decomposes the 

desired product, the SPRSS process may produce the desired product more effectively by 

selectively separating components.   

 

5.7 Conclusions 

  

A new reactive separation process that handles solid reactants, SPRSS, is proposed. 

This process combines the PBR and SMB together where both have similar principles of 

the counter-current movement between the solid and liquid phase, and the process is 

applied to the saccharification of biomass via acid hydrolysis in this work. The principle 

of SPRSS may be applied to other reactive separation problems related to solid reactants.  

 The continuous moving-bed model at steady state for the sequential configuration 

and the new SPRSS design are optimized and compared using the superstructure 

formulation to investigate the potential advantages of SPRSS. The optimal designs for two 

cases are demonstrated where one contains only biphasic hemicellulose and the other 

contains a mixture of cellulose and biphasic hemicellulose in the biomass. Each component 

of the biomass has a different rate of decomposition during hydrolysis reaction, and the 

optimal condition for each reaction path is different.  
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 The results show a potential improvement in the sugar yield as well as lower 

byproduct formation for both cases using the SPRSS design. The key reason for this 

improvement is mainly from a higher degree of freedom in changing the liquid flow rate 

as well as acid concentration inside the reactor system without diluting the sugar 

concentration. The process enables the fresh biomass to contact a low acid concentration 

to convert a fast-hydrolyzed biomass portion in the first stage and the treated biomass is 

treated with a high acid concentration in the second stage to decompose the remaining 

slower-hydrolyzed biomass portion.  

 The kinetic parameters of the hydrolysis reactions strongly affect the optimal 

process configuration design of sugar production. When there is a high byproduct 

formation rate, as well as a large difference in the kinetic behavior of the sugar generation 

reactions from different biomass portions, the more complex SPRSS design improves the 

sugar yield and selectivity.  

 A potential improvement of the SPRSS design for saccharification via acid 

hydrolysis has been demonstrated within a dilute acid concentration range. An 

improvement in sugar yield from acid hydrolysis reaction using this new SPRSS process 

is expected to increase in the concentrated acid hydrolysis process where the acid 

concentration play an important role in the reaction kinetics, which is discussed in the next 

chapter. 
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APPLICATION OF SOLID-PHASE REACTIVE 

CHROMATOGRAPHIC SEPARATION SYSTEM FOR BIOMASS 

SACCHARIFICATION VIA CONCENTRATED ACID HYDROLYSIS 

6.1 Motivation 

  

The solid phase reactive separation system (SRPSS) for biomass saccharification is 

proposed in the previous chapter where the kinetic parameters in the dilute-acid-hydrolysis 

region is explored. The benefits of SPRSS comes from the variation in acid concentration 

inside the reactor system without any dilution or interfering the sugar concentration. The 

benefits of the SPRSS is expected to be higher for the concentrated acid hydrolysis process 

where the acid concentration plays an important role in the reaction kinetics.  

Due to the different and complex composition of the biomass, there is a high 

uncertainty in the kinetic parameters of the hydrolysis reactions.  The previous chapter 

explored the effect of these kinetic parameters to the benefits of the SPRSS over the 

sequential design. It was found that the rate of byproduct formation must be sufficiently 

fast and more sensitive to the acid concentration compared to the sugar generation to see 

the benefits of SPRSS. In addition, a higher difference in sensitivities of the rate of sugar 

production to the acid concentration from the different biomass composition could increase 

the benefits of SPRSS. These observation can be used to preliminary investigate the 

benefits of SPRSS for different biomass with different hydrolysis kinetic parameters. 
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In this chapter, the benefit of SPRSS is investigated for the concentrated acid 

hydrolysis process where the real kinetic parameters from the batch experiment presented 

in Chapter 4 is used with the simplified continuous model of SPRSS including 

countercurrent reactor (CCR) and true moving bed chromatography (TMB) discussed in 

Chapter 5. The optimization problem formulation follows the same method as presented in 

previous chapter where two alternative designs including the sequential and SPRSS are 

compared. 

This chapter is organized as follow: section 6.2 presents the investigation on the 

kinetic parameters of the concentrated acid hydrolysis reaction for the potential benefits of 

the SPRSS process. The model parameters for the optimization problem is shown in section 

6.3 and the comparison between the optimal results two alternative designs are presented 

in section 6.4. 

 

6.2 Analysis of the kinetics parameters of the concentrated acid hydrolysis 

 

The kinetic parameters for the concentrated acid hydrolysis of the xylose (C5) 

reaction paths and glucose (C6) reaction paths estimated from the experimental work in 

Chapter 4 are summarized in Table 6.1 where the reaction mechanism is shown in Figure 

4.1 with the Arrhenius expression as follows. 

 ( )0 e
aE

nA Tk k C
 − Γ =   (5.1) 

 

 These parameters are applicable for the range of sulphuric acid concentration 

between 10wt% (around 100g/L) and 50wt% (around 700 g/L) and temperature between 
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80 – 100 °C. From the table, it can be seen that the xylose decomposition reaction is more 

sensitive to the acid concentration with the exponent n = 2.88 compared to the xylan 

hydrolysis reaction where n = 1.96. In contrast, the sensitiveness of the rate of glucose 

decomposition and Avicel hydrolysis to the acid concentration is quite similar where n = 

2.94 and 3.00, respectively. These kinetics parameters satisfies the condition shown in Eq. 

(5.46) which enables the benefits of changing the acid concentration. Furthermore, the 

kinetic behaviour of the xylan and Avicel hydrolysis is very different where Avicel is more 

sensitive to the acid concentration ( cel xylann n> ) but the pre-exponent of the rate constant 

(see Eq. (5.2) and Table 6.1) is around 105 times lower than that of xylan hydrolysis. These 

observation can preliminary justify that the SPRSS design can be favourable over the 

sequential design. 

 

Table 6.1. Kinetic parameters of concentrated acid hydrolysis reaction. 

Reactions k0 (min-1(%w/v)-n) n Ea (kJ/mol) 
Xylan hydrolysis 1.42×1017 1.96 142.52 
Xylose decomposition 3.15×1014 2.88 151.30 
Avicel hydrolysis 2.96×1010 2.94 129.98 
Glucose decomposition 1.76×1010 3.00 127.32 
Temperature (°C) 80 90 100 
Xylan pre-exponent (min-1(%w/v)-n) 1.18 ×10-4 4.49×10-4 1.59 ×10-3 
Avicel pre-exponent(min-1(%w/v)-n) 1.76 ×10-9 5.95 ×10-9 1.89 ×10-8 
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6.3 Model parameters  

 

The column CS16GC18, 24 is used in TMB system where the Henry’s coefficient is 

varied at different sulfuric acid concentration. In this work, the sulfuric acid concentration 

is set to vary between 10 wt% and 50 wt%. Therefore, the Henry’s coefficients are 

estimated at the average sulfuric concentration of 30 wt%. The Henry’s coefficients and 

mass transfer resistance are estimated and summarized in Table 6.2.  

Table 6.2. Henry's law and mass transfer coefficients for adsorption column 
Components Linear Henry’s 

law constant 
Mass transfer 

coefficient (s-1) 
Sulfuric acid 0.23 0.02 

Glucose 0.36 0.03 
Xylose 0.42 0.03 
HMF 3.00 0.15 

Furfural 3.13 0.15 
 

 
 The optimization problem is simplified to be a single-objective optimization 

problem with three main assumptions as presented in section 5.4. It is found that the 

constraints on the optimization problem significantly affect the benefits of the SPRSS. This 

investigation additionally assume that the size of the CCR is fixed for both length and 

diameter so that the capital cost of the reactor system is fixed. The single-objective 

optimization problem considered in this study is shown in Table 6.3. It should be noted 

that the selectivity constraint (constraint 3 in Table 5.5) is ignored and replaced with the 

constraint on the furfural concentration (decomposed product of xylose) of the extract 

sugar product stream. The design and model parameters are shown in Table 6.4 and the 

decision variables are presented in Table 6.5. 
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Table 6.3. Optimization problem formulation 

max S
SPRSSY   Yield of sugars 

Subject to:  
1. min

S SC C≥   minimum sugar concentration (g/L) 
2. min

B BM M≥  minimum biomass throughput (kg/h) 
3. Furfural Furfural

maxC C≤  maximum furfural concentration (g/L) 
4. maxTMB TMBD D≤   maximum TMB column diameter (m) 
5. max

A AF F≤  maximum fresh acid consumption (kg/h) 
6. max

A APUR PUR≤  maximum purity of acid in extract 
7. TMB,maxTMBu u≤  maximum flow rate in TMB (m/h) 
8. ,maxCCR CCRu u≤  maximum flow rate in CCR (m/h) 

 
 
 

Table 6.4. Design and model parameters 
min
BM   1000 kg/h 

max
AF  400 kg/h 

min
SC  80 g/L 

maxPUR A  1 wt% 
furfural
maxC  0.1 g/L 
Hemi
0B   48 kg/m3 

0
CelB  64 kg/m3 

Reactor diameter 1.5 m 
Total Reactor length 20 m  

SPRSS Reactor section length Section 1 = 15 m  
Section 2 = 5 m  

Number of reactors 2 
TMB column length 1 m 
Number of TMB columns 12 

maxTMBD  3 m 
,CCR,max TMB,maxu u  10 m/h 

Fresh acid concentration 900 g/L 
biomass void fraction ( vb ) 0.8 
Reaction temperature  90 °C 
Range of acid concentration 100 – 700 g/L 
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Table 6.5. Decision variables  

Acid and water feed rates to each of two reactors, ,A Wu u  
Two outlet flow rates from each of the two reactors and its feed location to TMB, FTu  
Two recycle flow rates to each of the two reactors and its location from TMB, RETu  
One extract stream flow rate and its location in TMB, Eu  
One desorbent stream flow rate at the first TMB column, Du  
One raffinate stream flow rate and its location in TMB, Ru  
Adsorbent velocity, TMBv  

 

6.4 Optimal designs of the SPRSS for concentrated acid hydrolysis process 

 

Figure 6.1 illustrates the CCR and TMB profile from the optimal results of the 

sequential configuration. From the result, the acid concentration is chosen to be relatively 

low at 210.4 g/L which could hydrolyze all hemicellulose portion. However, the cellulose 

portion is unable to convert at this low acid concentration. This is because the optimizer 

avoids the formation of the byproduct to meet the constraint on the furfural concentration 

(constraint 3 in Table 6.3), and therefore choose not to have high acid concentration and 

convert only the easily hydrolyzed hemicellulose. It can be seen from Figure 6.1a that the 

conversion of hemicellulose occurs only around one-fourth of the total reactor length. This 

indicates that the reactor system with this fixed size is not optimal for this sequential 

configuration. 

Figure 6.2 shows the CCR and TMB profile from the optimal results of the SPRSS 

design. From the figure, it can be seen that the optimizer choose to have two acid 

concentration where one is at its maximum at 700 g/L in section 1 and the other one is at 

its almost minimum at 102.7 g/L in section 2. This variation in the acid concentration is 

enabled by the interconnecting stream between CCR and TMB. The high acid 

115 
 



concentration in section 1 is able to convert the cellulose around 25 % which occurs for 

three-fourth of the total reactor length. On the other hand, hemicellulose is mainly 

converted in section 2 with a lower acid concentration where the reaction happens for one-

fourth of the total reactor length. This is to avoid the byproduct formation to meet the 

constraint on the furfural concentration. It can be seen from Figure 6.2a that the reactor 

with this size is fully utilized to convert two portions of the biomass. 

Table 6.6 compares optimal results between the sequential and SRPSS design. It 

can be seen that the SPRSS could improve the sugar yield by around 7.7 % from the 

sequential design while maintaining the same concentration of furfural at 0.1 g/L. The 

optimal acid purity in the product extract stream of the sequential design is chosen to be 

lower than that of the SPRSS design. Both configurations have the acid purging stream 

through the raffinate stream where the acid concentration is relatively low: 33.2 g/L in 

sequential design and 61.9 g/L in SPRSS design. The acid in the raffinate stream can be 

concentrated by evaporation and recycled to the reactor system. A slightly higher acid 

concentration in the purging raffinate stream in SPRSS design could reduce the evaporation 

cost of the acid compared to the sequential design. It should be noted that there is no 

constraint on the byproduct of glucose (HMF) on the extract sugar product stream from 

this optimization problem. Therefore, the SPRSS produces more HMF at around 5 g/L in 

the product stream compared to the sequential designs which has almost no byproduct from 

glucose since there is almost no cellulose conversion.  

It is found that the benefits of the SPRSS is significantly sensitive to these 

constraints. Table 6.7 shows the sensitivity of two constraints including the furfural 

concentration at the product stream and the fresh acid consumption. From the table, 
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increase the maximum allowable furfural concentration increases the sugar yield of the 

sequential design. However, this constraint is not active for the SPRSS design and therefore 

the sugar yield and the furfural concentration remain the same. Moreover, tightening the 

constraint on fresh acid consumption reduce the sugar yield of the sequential slightly but 

significantly decrease the yield from the SPRSS design. There are some other parameters 

such as the initial biomass concentration and the reactor length that could also affect the 

benefit of SPRSS. The justification on choosing the optimal design between the SPRSS 

and sequential design must be performed carefully.  

Table 6.6. Comparison of sequential and SPRSS optimal configuration 

Parameters Sequential 
configuration 

SPRSS 
configuration 

SY  
43.3 % 51.0 % 
GY =1.0 % GY = 14.4 % 

XY =99.5 % XY = 99.7 % 
HMFC  0.01 g/L 5.0 g/L 

Acid concentration in raffinate 33.2 g/L 61.9 g/L 
PUR A  0.07 % 1 % 

FurfuralC  0.1 g/L 
SC  80 g/L 
BM  1000 kg/h 

TMBD  3 m 
AF  400 kg/h 

 

Table 6.7. Sensitivity of the model constraints 

Constraints SY  
Sequential design SRPSS design 

furfural
maxC     

0.1 g/L 43.3 %  51.0 %  
0.3 g/L 45.9 %  51.1 % (inactive) 
0.5 g/L 46.7 %  51.1 % (inactive) 

max
AF    
400 kg/h 43.3 %  51.0 %  
200 kg/h 43.1 %  47.7 %  
50 kg/h 42.9 %  43.2 %  
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Figure 6.1. Optimal solution of the sequential design (a) biomass conversion of different 
portions, (b) CCR and TMB concentration profiles. 
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Figure 6.2. Optimal solution of the SPRSS design (a) biomass conversion of different 
portions, (b) CCR and TMB concentration profiles. 
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6.5 Conclusions 

 
 
 The benefits of the SPRSS is investigated for the biomass saccharification via 

concentrated acid hydrolysis. It is found that kinetic parameters of the biomass 

saccharification via concentrated acid hydrolysis are in the range where using the SPRSS 

design to vary the acid concentration in the reactor system could be advantageous on an 

improvement in sugar yield as well as the reduction of the byproduct formation.   

Two alternative designs including the sequential and SPRSS designs are optimized 

and compared using the continuous moving-bed model of the countercurrent reactor and 

the true-moving-bed chromatography at steady state with the superstructure formulation. 

With appropriate constraints, it is observed that the SPRSS could increase the sugar yield 

by allowing the high acid concentration to hydrolyze the slow-hydrolyzed cellulose part 

and the low acid concentration to hydrolyze the fast-hydrolyzed hemicellulose part. In 

contrast, the sequential design can only hydrolyze the hemicellulose part with a single acid 

concentration due to the constraint on the byproduct formation. The results reveal that 

SPRSS could maintain the same level of byproduct formation from the xylose 

decomposition reaction and the same amount of fresh acid consumption compared to the 

sequential design. In addition, the concentration of the acid in the purging raffinate stream 

from TMB of the SPRSS design is higher than that of the sequential design which could 

reduce the cost of acid recycle through evaporation. Sensitivity analysis on the model 

constraints reveals that the benefits of SPRSS could change significantly at different values 

of the model constraints. Therefore, choosing the optimal design for biomass 

saccharifcation via acid hydrolysis must be carefully justified.
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DYNAMIC MODELLING OF THE PROGRESSING BATCH 

REACTOR IN SOLID-PHASE REACTIVE CHROMATOGRAPHIC 

SEPARATION SYSTEM FOR BIOMASS SACCHARIFICATION VIA 

ACID HYDROLYSIS 

7.1 Motivation 

  

 The solid-phase reactive chromatographic separation system (SPRSS) has been 

proposed as a new reactive separation process for the system involving the solid reactants. 

This process integrates the progressing batch reactor (PBR) and simulated moving bed 

chromatography (SMB) where both processes have similar principles of the switching of 

all liquid inlet and outlet ports to imitate the solid phase movement. This work has applied 

the new SPRSS to the biomass saccharification process via acid hydrolysis. The ultimate 

goal is to seek an opportunity to increase the sugar yield as well as to minimize the 

byproduct formation generated from the sugar decomposition such as furfural and 

hydroxymethylfurfural (HMF) which are the main inhibitors for the fermentation process 

for bioethanol production.17  

 In the previous chapter, the advantages of the SPRSS has been investigated using 

the simplified model for sugar production where the countercurrent reactor (CCR) and the 

true-moving bed chromatography (TMB) are used as the approximation of the PBR and 

SMB system. The benefit of SPRSS is compared with the sequential design which connects 

the CCR and TMB in a straightforward manner without any interconnecting stream. It has 
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been found that the SPRSS can potentially increase the sugar yield and reduce byproduct 

formation where the key benefit comes from the higher flexibility to vary the acid 

concentration as well as the liquid flow rate inside the reactor system without interfering 

high sugar concentration enabled by the chromatographic separation system. These 

advantages allow the acid with different concentration to hydrolyze different compositions 

of biomass which has different hydrolysis reaction kinetics.92  

 This chapter presents dynamic modelling of the PBR system as part of the PBR-

SMB process for two designs including the sequential design and SPRSS design. The 

dynamic models of the SMB chromatography have been developed and validated with 

numerous operating schemes such as VARICOL, POWERFEED147, and ternary separation 

configurations.148 A good approximation of the concentration profile between the SMB 

and true moving bed model have been previously demonstrated.149 In contrast, dynamic 

modelling of the PBR operation is not well-established. Several steps in cyclic operations 

for PBR such as emptying and loading the solid biomass require several assumptions that 

need to be carefully analyzed as these steps are not captured in the steady state 

countercurrent reactor model. In this work, the biomass filling and dumping operation for 

the two alternative designs are proposed where the operating parameters from the steady 

state countercurrent reactor model are used to estimate that of PBR. The simulation results 

from the PBR model is compared with that from the CCR. 

 This chapter is organized as follows. The dynamic modelling of PBR as well as the 

proposed filling and emptying step of biomass are presented in section 7.2. The PBR 

simulation problem formulation is discussed in section 7.3 and the simulation results of the 

PBR model in a comparison of CCR is discussed in section 7.4. 
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7.2 Progressing batch reactor 

 

 The operation of PBR proposed by Wright et al.111 has been discussed in previous 

chapter and are re-illustrated in Figure 7.1.  From the figure, each step of the PBR operation 

follows the same pattern where the acid feeding stream are switched in the direction of the 

liquid flow. Likewise, the reaction temperature are switched to hydrolyse different 

composition of the biomass where a high temperature are applied to hydrolyse cellulose 

and low temperature are applied to hydrolyse hemicellulose. The operation in each step 

proceed similarly, and thus the operation becomes a cycle which is similar to the SMB 

process. 

 Despite these similarities, the operation of the solid biomass in PBR requires the 

filling and emptying process, and cannot be recycled like the adsorbent in the SMB process. 

From the PBR operation in Figure 7.1, the liquid inside the reactor E for all steps are 

dumped, and thus the sugars as well as acid are left out of the reactor system. Therefore, 

the sugar concentration in the product stream and the sugar recovery reduces. In addition 

to this, during the biomass filling step in reactor F, an assumption must be made for the 

initial condition whether there is a liquid acid or nothing inside the reactor filled with the 

fresh biomass. These steps are not present in the SMB chromatography operation and 

requires unique mathematical modelling as well as assumptions to model the PBR system. 

This work proposes the filling and emptying of the biomass for both sequential and SPRSS 

designs which could partially recover the sugars and acid to the reactor system. The 

detailed discussion of these are given in the following section. 
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Figure 7.1. Operation of the progressing batch reactor (F = biomass filling, E = biomass 
emptying, C = cellulose hydrolysis, H = hemicellulose hydrolysis). 

 

7.2.1 Dynamic model of progressing batch reactor 

 In this chapter, the biomass is assumed to contain both cellulose and hemicellulose 

where the reaction mechanism follows the same pattern presented in Figure 5.6. The two 

consecutive first-order reactions is applied for cellulose hydrolysis and the biphasic 

behaviour is assumed for the hemicellulose hydrolysis. The kinetic model proposed by 

Saeman101 is implemented for all reaction paths which depends on temperature and acid 

concentration shown in Eq.(5.1).  

 The mathematical model of a single percolation reactor has been present by Kim et 

al.110 In this work, the PBR contain a series of percolation reactors where the mass balances 

of each component in the solid and liquid phases shown in Eq. (7.1) - (7.4) are applied. 

 

 

124 
 



 
,i

,( , ) ( , ) fast, slow
k

B k iB x t k B x t k
t

∂
= − =

∂
  (6.1) 

 

 
, , 2 ,

2

( , ) ( , ) ( , )A i A i A i

PBR ax
C x t C x t C x tu D

t x x
∂ ∂ ∂

+ =
∂ ∂ ∂

  (6.2) 

 

 
, , 2 ,

k, ,
2

( , ) ( , ) ( , ) 1 ( , ) ( , )
S i S i S i

B i S S ik
PBR ax

kv

C x t C x t C x tu D k B x t k C x t
t x x b

∂ ∂ ∂
+ = + −

∂ ∂ ∂ ∑  

 (6.3) 
 

 
, , 2 ,

,
2

( , t) ( , ) ( , ) ( , )
B i B i B i

S S i
PBR ax

C x C x t C x tu D k C x t
t x x

∂ ∂ ∂
+ = +

∂ ∂ ∂
  (6.4) 

 

where PBRu  is the liquid flow rate in the PBR, ,k iB , ,A iC ,S iC , and ,B iC  are the 

concentrations of solid biomass of the fast and slow hydrolysed portions, acid, sugar, and 

byproducts at reactor i, respectively, vb  is the biomass porosity, and PBRu  is the liquid 

interstitial velocity. This model also considers the axial dispersion in the liquid phase with 

Danckwerts boundary conditions149 shown below.  

 0
0

ax
CuC D uC
x

∂ − = ∂ 
  (6.5) 

 
0

0C
x

∂
=

∂
  (6.6) 

 

 In this work, an identical operation in each step is repeated while performing the 

liquid port switching in the downstream direction, resulting in a cyclic steady state (CSS) 

and symmetric operation. In such an operation, the concentration profiles at the end of each 

step are identical to those at the beginning of the same step where the entire profiles are 

shifted in the downstream direction for the length of a one reactor chamber, which is similar 

to the cyclic operation with step symmetric in SMB process.146 The following constraints 
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are enforced to ensure that the concentration profiles of liquid phase in PBR at the end of 

the next step is identical to those at the beginning of the current step. 

 

 , , 1( ,0) ( , ) 1,..., 1j i j i SMB
stepC x C x t i N+= = −   (6.7) 

 
 , ( ,0) 0j NC x =   (6.8) 
 
 , , 1( ,0) ( , ) 1,..., 1k i k i SMB

stepB x B x t i N+= = −   (6.9) 
 
 , ,

0( ,0)k N k NB x B=   (6.10) 
 

 The liquid concentration of component j in Reactor i is denoted by ,j iC . In the PBR 

system with N reactor chambers, we assume that the fresh biomass is loaded in Reactor N 

at a given initial biomass concentration, Eq. (7.10), and is filled with fresh water, and thus 

the initial liquid concentration of all components are zero as shown in Eq. (7.8). 

 

7.2.2 Biomass filling and emptying 

 Two optimal designs including the sequential and SPRSS designs from the case 2 

presented in Chapter 5 are generalized to the PBR and SMB and shown in Figure 7.2a and 

Figure 7.2b, respectively. Both designs from the figures consist of five PBRs and twelve 

SMB columns where it is assumed that the system has small buffer tanks to connect all 

streams between these two processes and no reaction occurs in this tank due to the 

sufficiently small residence time. These tanks are to ensure that the component 

concentration of the feed streams from the PBR to SMB and that of the recycle streams 

from the SMB to PBR are constant. 
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Figure 7.2. Optimal configurations found from the superstructure of SPRSS continuous 
model (a) Sequential design (b) SPRSS design. 
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Figure 7.3. Progressing batch reactor with proposed filling and emptying steps as part of 
the (a) sequential design (b) SPRSS design. 
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The operations of the biomass filling and emptying steps could significantly affect 

the sugar concentration and yield from the hydrolysis reaction. In this study, we include 

the biomass filling and empting step by dividing the PBR operation in each step into two 

sub-steps consisting of the production period ( prodt ) and the transfer period ( trant ) which 

are illustrated in Figure 7.3 for both sequential and SPRSS designs for N = 5. The PBR in 

the sequential design (Figure 7.3a) has the same liquid residence time inside all reactors 

since there is no interconnecting stream. On the other hand, for the PBR in the SPRSS 

design illustrated in Figure 7.3b, the process is divided into two sections which have two 

and three percolation reactors. By having the interconnecting streams between PBR and 

SMB, the reactor system can have different liquid residence time as well as acid 

concentration in each section. At the beginning of a step in these two designs, the fresh 

biomass is filled in R5, which is filled with fresh water while the treated biomass stays 

inside R1.  

 The first sub-step of the PBR operation in the sequential design illustrated in Figure 

7.3a corresponds to the transfer period where the acid in R4 flows to hydrolyze the fresh 

biomass in R5, while the water in R5 goes to R1 which contains the treated biomass. The 

second sub-step corresponds to the production period where the external fresh acid and the 

recycle stream from SMB is fed to R2 and the hydrolysate is produced at R5. The treated 

biomass filled with water inside R1 is also dumped at this step. 

 For the PBR system in the SPRSS design which has two sections shown in Figure 

7.3b, the transfer and production periods occur simultaneously at different sections. In the 

first sub-step, the transfer process occurs in section 1 (R3-R4-R5) while production process 

happens in section 2 (R1-R2). In section 1, the liquid with low acid concentration is 
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transferred to hydrolyze the fresh biomass in R5 while the water in R5 goes to the R3. 

Meanwhile, in section 2, the liquid with higher acid concentration from the fresh acid 

stream and the recycle stream from SMB are fed to R1 to hydrolyze the treated biomass 

and the hydrolysate is produced at R2. In the second sub-step, the transfer process is 

switched to occur in section 2 (R1-R2-R3), while the production process takes place in 

section 1 (R4-R5). In section 1, the recycle stream from SMB is fed to R4 and the 

hydrolysate is produced at R5. For section 2, the water in R3 is moved to the R1 before 

being dumped with the treated biomass. It can be seen that a different number of reactor 

chamber is allocated in each section. In this operation, the hydrolysis condition of the 

partially treated biomass in R3 is switched from a low to a high acid concentration and is 

exposed to a different liquid residence time. 

 In this proposed filling and dumping the biomass, the operating parameters from 

the steady state countercurrent reactor model including the liquid interstitial velocity               

( CCRu ) and the biomass interstitial velocity ( bv ) can be directly converted to the operating 

parameters of PBR including the overall switching time ( PBR
stept ), transfer period ( trant ), 

production period prodt , and the interstitial velocity of liquid phase ( PBRu ) from the 

following equations:  

 

 
( )

Total TMB reactor length
1R

R

L
N

=
−

  (6.11) 

 PBR R
step

b

Lt
v

=   (6.12) 

 PBR CCR bu u v= +   (6.13) 
 
 PBR

prod PBR step CCRt u t u=   (6.14) 
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 PBR
tran prod stept t t+ =   (6.15) 

 
 The proposed emptying and filling steps require one additional percolation reactor 

to the PBR system because there is no hydrolysate produced during the transfer period, and 

so Eq. (7.11) must be applied. Eq. (7.14) is to ensure the average outlet stream from the 

reactor system between PBR and CCR are equivalent. It should be noted that in the two 

sub-step process where Eq. (7.15) is applied, the following constraint are required for the 

CCR model in order to convert CCR parameters into those for PBR 

 

 1 2
b CCR CCRv u u=   (6.16) 

 

where 1
CCRu  and 2

CCRu  are the liquid velocity inside CCR in section 1 and section 2, 

respectively.  

7.3 Problem formulation and numerical approaches 

 

The dynamic models of the PBR with the biomass filling and emptying sub-step 

for both designs are formulated in the GAMS modeling environment discretizing the time 

domain with six finite elements by the Radau collocation, and spatial domain with 60 

elements by the centered finite difference method. The simulation problems of these two 

designs are solved where the flow rates and the concentration of all feed streams including 

the fresh acid and the recycle streams from SMB are fixed at the values in the optimal 

solutions obtained from the steady state countercurrent reactor and true moving bed 

chromatography model.  
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7.4 Results and discussion 

 

The reactor length, the switching time, and the time period of the PBR for the 

transfer and production period are estimated from CCR using Eq. (7.11) – Eq. (7.15) and 

the values are shown in Table 7.1. The optimal concentration and flow rate of the inlet and 

outlet streams of the continuous CCR model as part of the sequential and SPRSS design 

are presented in Table 7.2 and Figure 7.4, respectively. These results are achieved from the 

optimization problem discussed in Case 2 of the section 5.5.1 where where the axial 

dispersion coefficient Dax is set to 1.4 ×10-4 m2/s for all components. In addition, the 

constraint in Eq. (7.16) is also applied for the SPRSS design. The concentration and flow 

rate of these recycle streams and the feed streams to the PBR system for both designs are 

fixed at the optimal values from the CCR.  

 

Table 7.1. PBR parameters 

Parameters Sequential design SPRSS design 
Number of Reactor 5 

The length of each reactor (m) 1.25 
Switching time (s) 706.85  

Transfer period 362.23 344.04 (section 2) 
Production period 344.63 362.81 (section 2) 
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Table 7.2. Concentration of each streams 

Configuration Stream Concentration (g/L) 
Acid Glucose HMF Xylose Furfural 

CCR Sequential 
1
RERu  5.03 13.70 5.30 0.89 24.25 
2
FRu  5.03 41.49 10.08 49.61 45.12 

PBR Sequential 2
FRu  4.04 38.31 7.77 48.97 36.65 

CCR SPRSS 

1
RERu  20.27 5.86 7.68 0.33 19.97 
1
FRu  20.38 30.68 15.31 9.96 33.69 
2
RERu  2.22 34.68 8.63 9.40 21.18 
2
FRu  2.22 45.37 10.73 48.18 31.13 

PBR SPRSS 
1
FRu  17.29 28.42 9.88 9.62 25.21 
2
FRu  1.83 42.25 9.62 46.01 26.86 

 

 

 

Section 2 Section 1

(b)

(a)

1 0.01 m/hAu =

1 1.36 m/hWu =

1 4.69 m/hRERu =
2 6.06 m/hFRu =

6.37 m/hbv =

1 0.001 m/hAu =

1 6.04 m/hFRu =
2
FRu

6.37 m/hbv =

1 6.04 m/hRERu =

2 6.71 m/hRERu =

 

Figure 7.4. Optimal countercurrent reactor as part of (a) sequential design (b) SPRSS 
design. 
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The concentrations of the outlets of all interconnecting streams of the PBR and 

SMB from the simulation results is shown in Table 7.2. By comparing the concentration 

of the similar stream from CCR, it can be seen that the concentration of all components 

reduce slightly from the CCR model for both designs. This is mainly because a small 

amount of these components remains inside the treated biomass and are lost during the 

biomass emptying step. This phenomenon is illustrated in Figure 7.5 which shows the 

concentration profile of the liquid phase for SPRSS design at the PBR
stept t=  before emptying 

the biomass in R1. From the figure, it can be seen that there are some amount of sugars, 

acid, and other components remaining inside R1 which are lost when emptying the 

biomass. Our investigation shows that these losses are caused by the axial dispersion. 

During the transfer periods of SPRSS (see Figure 7.3b) where the fresh water is transferred 

from R5 to R3 in sub-step 1 and then from R3 to R1 in sub-step 2, all components diffuse 

into this portion of water. Consequently, the loss of these components during dumping the 

treated biomass with the liquid in R1 is inevitable. This phenomenon is not captured in the 

CCR model.  

 

Figure 7.5. PBR concentration profile in the SPRSS design at t = tswt before biomass 
emptying. 
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The comparison of the reactor performance in the sequential and SPRSS designs 

between the CCR and PBR are shown in and Table 7.3. From the table, the conversion of 

the biomass in both designs between the CCR and PBR are very close to each other. 

However, the sugar yield at the outlets of the PBR is lower than that from the CCR due to 

the sugar lost during the biomass emptying step. The sugar and acid lost are calculated 

based on the percentage of the outlet stream shown below. 

 

 component mass lost% Lost = 100
outlet mass (at ) + component mass lostFRu

×   (6.17) 

 

From Table 7.3, the sugar lost is at 9.7 % for the sequential design and 11.0 % for the 

SPRSS design while the acid lost for both designs are almost similar at around 19%.  

The sugar lost during biomass emptying can be recovered later by the SMB system 

or another separation process. By assuming these sugars can be fully recovered, the total 

reaction sugar yield shown in Table 7.3 for both designs are higher than that predicted from 

the CCR. The reason for this is that there is a dynamic variation in acid concentration 

resulting from the axial dispersion in PBR which causes different reaction kinetics 

compared to that in CCR. From the results, the byproduct formation in PBR is observed to 

be lower than that in CCR. The performance of PBR with the proposed biomass filling and 

emptying steps can be partially predicted using the CCR model with sufficient accuracy.  

It should be noted that the overall performance of the dynamic SPRSS model with 

these PBR designs may be significantly different from the continuous model. Due to 

components lost in emptying steps which causes the lower sugar and acid concentration at 

the outlet stream of the PBR, the feed concentration to the SMB is different from the 
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continuous model. Therefore, the optimal operating parameters of the SMB is different 

from the TMB model. In addition, this causes the acid concentration as well as other 

components and the flow rate of the recycle stream from SMB to PBR be different from 

the continuous model which finally affect the reaction kinetics inside the PBR system. Due 

to the acid lost during biomass emptying step, it is believed that the fresh acid consumption 

for the dynamic SPRSS model is higher than what is predicted from the continuous model. 

Therefore, the optimal design of the dynamic SPRSS model may be significantly different 

from the continuous SPRSS model. 

 

Table 7.3. Performance comparisons between CCR and PBR 

 Sequential Design SPRSS Design 
 Countercurrent PBR Countercurrent PBR 

Biomass conversion 85.3 % 84.1 % 94.3 % 94.2 % 
Sugar yield at outlet 60.7 % 57.8 % 67.9 % 61.5 % 

Sugar lost in emptying step - 9.7 % - 11.0 % 
Acid lost in emptying step - 19.5 % - 19.0 % 
Total reaction sugar yield 60.7 % 64.9 % 67.9 % 74.3 % 
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7.5 Conclusions 

 

 Dynamic models of PBR in SPRSS are formulated and the biomass filling and 

emptying processes are proposed for sequential and integrated designs by diving each step 

operation into two sub-steps including the transfer and production period. The operating 

parameters of the PBR with the proposed configuration can be obtained from the proper 

conversion of the CCR operating parameters. The results show that the performance of the 

PBR process can be partially predicted from that of CCR where the difference comes from 

the dynamics that are not accounted for in the CCR model. The proposed filling and 

emptying steps result in a lower outlet concentration of the outlet streams for all 

components owing to the lost amount during emptying the biomass which is not captured 

in the CCR model. Due to these discrepancies, the optimal design of the full dynamic 

SPRSS model with PBR and SMB may be significantly different from the continuous 

SPRSS model with CCR and TMB. 
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CONCLUSION AND FUTURE WORK 

8.1 Conclusions 

 
 The results presented in this thesis have met the three main objectives stated in 

Chapter 2: 

1. To identify the optimal separation process configuration with feed pretreatment via 

reverse osmosis for dilute bioethanol purification processes. 

2. To model the kinetics of concentrated acid hydrolysis reactions of cellulose and 

hemicellulose. 

3. To conceptualize and design a novel optimal solid phase reactive chromatographic 

separation system for biomass saccharification using a rigorous optimization 

strategy. 

The first objective is discussed in Chapter 3, where separation processes with 

reverse osmosis membrane pretreatment are investigated for fuel-grade bioethanol 

production from dilute ethanol-water mixtures. The superstructure of the hybrid distillation 

column – membrane pervaporation with the reverse osmosis membrane pretreatment is 

formulated and optimized to find the best separation scheme at minimal unit separation 

cost. It was found that reverse osmosis membrane pretreatment could reduce the separation 

costs for the dilute ethanol feeds at less than 3 wt% where the optimal process configuration 

of the reverse osmosis membrane system is observed to be different at different ethanol 

feed concentrations. In addition, the pretreatment is found to be necessary at a high feed 

throughput to meet the constraint on the size of the distillation column. The key benefit of 

reverse osmosis membrane pretreatment is the significant saving in the energy 
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consumption of the reboiler duty of the distillation column when the ethanol feed purity is 

very low.  The results for this research objective provides a useful guideline for choosing 

the optimal separation technology at different ethanol feed concentrations. 

 The second research objective is satisfied by the experimental work on concentrated 

acid hydrolysis of cellulose and hemicellulose which is discussed in Chapter 4. The batch 

experiments for xylan and pure cellulose (Avicel) hydrolysis as well as xylose and glucose 

decomposition have been performed at different sulfuric acid concentrations between 10 – 

50 wt% and temperatures between 80 – 100 °C. From the experiments, increasing the 

temperature and acid concentration increases the hydrolysis reaction rate as well as the rate 

of sugar decomposition. It has been found that rate of cellulose (Avicel) hydrolysis is much 

slower than that of xylan, and this is hypothesized to be due to the cellulose crystallinity. 

The effect of initial crystallinity of the cellulose to the rate of acid hydrolysis is also 

investigated in a separate series of batch experiments where the pure cellulose is treated 

with phosphoric acid at different concentrations. A dramatic reduction in cellulose 

crystalline index is observed when the phosphoric acid concentration is increased at a very 

narrow range between 77 – 80 wt%. The initial crystallinity of the Avicel significantly 

affects the hydrolysis rate where the rate increases with a lower initial crystallinity index.  

 The kinetic parameters for concentrated acid hydrolysis have been estimated from 

the batch experiments for the glucose and xylose reaction paths where, for the sugar 

concentration evolution over time, good agreement between the model predictions and the 

batch experiments is observed. These kinetic parameters were used to predict the 

performance of the reactive separation system for the concentrated acid hydrolysis of 

biomass. 
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 The research work for the final objective of the research thesis is discussed in 

Chapter 5, Chapter 6, and Chapter 7 where a new solid-phase reactive chromatographic 

separation (SPRSS) process is proposed and the benefits of this new process are 

investigated. In this new process, the progressing batch reactor (PBR) and simulated 

moving bed chromatography (SMB) are combined. Both systems have similar principles 

for the imitation of the solid phase movement by liquid port switching in the direction of 

the liquid flow. This new process can be applied to systems involving solid reactants like 

biomass. 

 The integration of PBR and SMB has been compared for two alternative designs. 

The first one is the sequential design where the PBR and SMB are integrated in a 

straightforward manner, in series, where PBR and SMB have no interconnecting stream. 

The second one is the proposed SPRSS design where the interconnecting streams between 

PBR and SMB are allowed so that the PBR is fully integrated into SMB. The simplified 

continuous moving-bed model including the countercurrent reactor (CCR) and true-

moving-bed chromatography (TMB) at the steady state for the two designs are optimized 

and compared using the superstructure formulation to investigate the potential advantages 

of SPRSS for biomass saccharification. The SPRSS with the kinetic parameters from the 

dilute acid hydrolysis reaction are investigated in Chapter 5 while that of the concentrated 

acid hydrolysis fitted from experiments are addressed in Chapter 6. It has been found that 

there is a potential improvement in sugar yield and less byproduct formation for the SPRSS 

design compared to the sequential design where the key benefit comes from the flexibility 

in varying the acid concentration and flow rate in the reactor system without interfering 

with the sugar concentration and dilution. The proposed SPRSS allows different acid 
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concentrations to hydrolyze different compositions of biomass which have different 

hydrolysis rates where the high acid concentration hydrolyzes the slow-hydrolyzed 

biomass portion like cellulose, and the low acid concentration hydrolyzes the fast 

hydrolyzed biomass portion like hemicellulose. These advantages enhance the 

saccharification process with less byproduct formation and thus reduce the subsequent 

separation cost of byproducts from sugars, which are strong inhibitors for the fermentation 

process.  

 The dynamic model of the progressing batch reactor as part of the full SPRSS 

system is formulated for two alternative designs. The filling and emptying step of the 

biomass in PBR system is proposed to recover the sugars lost during the emptying step. 

Each step of PBR operation is divided into two sub-steps including the transfer period and 

production period. The operating parameters of this proposed process can be estimated 

from the CCR model with appropriate reformulation. The simulation results from the PBR 

model is compared with that from CCR where a slight mismatch is observed which comes 

from the loss of the component during the emptying step as well as the dynamic behavior 

of the PBR system. The results from the CCR can be used to approximate the PBR system 

with sufficient accuracy for design purposes. 

 Overall, this work has developed novel pretreatment processes for bioethanol 

production from the biomass where an optimization strategy is successfully applied to 

systematically determine the optimal process design. These processes could reduce the 

bioethanol cost from the conversion of the lignocellulosic material and make the process 

more economically attractive. Furthermore, the separation process with pretreatment could 

be applied for the separation of other components when the feed is dilute. Likewise, the 
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propose solid-phase reactive separation system can be applied to other process which 

involves solid reactants. 

 

8.2 Future work 

 

 There are some open questions that must be further investigated and some 

recommendations for future research projects. 

8.2.1 Model refinement  

8.2.1.1 Kinetic model refinement 

 A more rigorous kinetic model for the biomass hydrolysis should be investigated 

and implemented in the reactor model to investigate its performance. In the current study, 

Saeman’s model101 is assumed in the reactor model which consists of two consecutive 

reactions where the biomass is hydrolyzed into monosaccharides and decomposed into 

byproducts which are assumed to be HMF and furfural. However, oligosaccharides can 

also present in the system as well as other byproducts such as humins, formic acid, and 

levulinic acid. These components could affect the reactor performance as well as the 

separation in the SMB system. There are several studies that consider a more rigorous 

kinetic model for the cellulose and hemicellulose for the pretreatment process using dilute 

acid hydrolysis. Figure 8.1a illustrates the reaction path from the pretreatment using stream 

explosion where there is reversible reaction between the crystalline and amorphous 

cellulose where both may yield oligomers at a different rates before being further 

hydrolyzed into glucose and decomposed products.150 A more complex reaction scheme 
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for the xylose reaction path from hemicellulose is illustrated in Figure 8.1b for dilute acid 

pre-hydrolysis.151 These reaction schemes may happen in the concentrated acid hydrolysis 

process and should be further investigated the experiments. 

Amorphous 
cellulose

Oligomers

Levulinic acid
Crystalline
cellulose

Glucose HMF

Formic acid

Humins

Oligomers Xylose Furfural Formic acid

Fast-hydrolyzed 
hemicellulose

Slow-hydrolyzed 
hemicellulose

(a)

(b)

Intermediates

Condensation 
products

 

Figure 8.1. A more rigorous kinetic model for hydrolysis reaction (a) glucose reaction 
path150 (b) xylose reaction path.151 

 

In addition, the effect of the mass transfer resistance could be added into the reactor 

model. The current work has neglected the effect of mass transfer resistance from the 

reactor system because it is assumed the particle size is relatively small. In biomass with 

larger particles, this effect may have a significant impact on the reaction kinetics. Several 

past studies have investigated the effect mass transfer resistance. Mittal et al. 152 has 

assumed the kinetic model of xylan autohydrolysis reaction in hot water with three 

mechanisms including xylan solubilization, reaction in the pore liquor, and reaction in the 

bulk liquor where the xylose is formed both inside and outside the biomass particles. Dasari 

and Berson 153 have investigated the effect of the cellulose particle size on the enzymatic 
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hydrolysis rate where the glucose concentration from the hydrolysis of cellulose from 

sawdust is shown in Figure 8.2. It can be seen that for the smaller size of particles, the 

release rate of glucose is higher. It is possible that there is a concentration gradient of acid 

inside the particle so that the rate of hydrolysis is different. There is only a limited number 

of studies on the kinetic model with the effect of mass transfer resistance especially on the 

biomass saccharification via acid hydrolysis. This model should be developed and 

validated through experiment with different reactor systems. 

 

 

Figure 8.2. Glucose concentration from enzymatic hydrolysis for different initial cellulose 
particle size, Dasari and Berson 153 

 

8.2.1.2 Nonlinear adsorption isotherm 

This work consider a simple linear isotherm where all Henry’s coefficients are 

approximated at the average acid concentration of the process. However, the Henry’s 

coefficient can change significantly especially for the concentrated acid hydrolysis 

process where the acid concentration varies significantly. Previous research has  modeled 

the non-linear isotherm with the exponential function for the acid and the competitive anti-
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Langmuir isotherms for the sugars.24 Different adsorption isotherms may significantly 

affect the performance of the SMB in SPRSS which should be investigated carefully. 

 

8.2.2 Extension of SPRSS to different process schemes 

8.2.2.1 Incorporation of biomass pretreatment steps  

It has been shown that the reaction rate of the cellulose hydrolysis strongly depends 

on its initial crystallinity. The pretreatment step is commonly done at a very high acid 

concentration with a cold temperature to decrystallize the cellulose as well as avoid the 

hydrolysis reaction to occur. It is possible to incorporate the pretreatment step into the 

SPRSS system where the SMB could vary the acid concentration inside the reactor to 

decrystallize as well as hydrolyze the biomass at different percolation reactors without the 

acid dilution. This could save the cost of acid recovery as well as increase the sugar yield. 

8.2.2.2 Multicomponent separation  

Multicomponent separation schemes can be applied and explored in the SPRSS 

system which could bring several advantages. One potential improvement could be from 

the separation of sugars from the biomass saccharification. For example, hexoses and 

pentoses require different microorganism for fermentation to achieve the highest 

bioethanol yield. Hence, the overall ethanol yield could be improved by performing the 

multicomponent separation between each sugar and acid where the separated sugar is fed 

to fermentation separately. In addition, multicomponent separation could be performed to 

separate the byproduct from the acid and sugars. This could create a more favorable 

condition of the hydrolysate for the fermentation and will subsequently reduce the cost of 

the detoxification process. 
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An example of straightforward configurations of SPRSS which separates two 

sugars from the acid is illustrated in Figure 8.3 which consists of two separated SMB. From 

the figure, the concentrated acid hydrolyzes the treated biomass in Section 1, which mainly 

contains cellulose to achieve glucose and goes to the SMB-1 to separate acid from glucose. 

The acid from SMB-1 becomes dilute and can recycle to the Section 2 to hydrolyze fresh 

biomass which mainly contain hemicellulose. The hydrolysate from this reactor, which 

contains mainly pentose such as xylose, goes to the SMB-2 to separate pentoses from acid. 

From this configurations, the hexoses, pentoses, and acid are separated and each sugar 

could be fed to the fermentation separately while acid can be concentrated and recycled to 

the reactor system. 
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Figure 8.3. The integration of PBR and two SMBs to separate the C5 and C6 sugars from 
acid. 
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There are many other configurations for the multicomponent separation using SMB 

such as eight-zone configuration, JO process, and generalized full cycle configuration 

which are for ternary separation.148 These configurations could be incorporated into the 

superstructure of the SPRSS to seek the potential benefits of multicomponent separation 

system. 

8.2.2.3  Nonstandard configurations  

 The nonstandard SMB could be employed into the SPRSS process. This includes 

the PowerFeed where the liquid inlets and outlets velocities are time-variant, and 

VARICOL process where the system performs asynchronous valve switching.147, 154-155 In 

addition, the reactor system can be integrated with the SMB without the intermediate buffer 

tanks. Therefore, the concentrations as well as the velocities of the feed stream to the SMB 

and the recycle stream to reactor system are time-variant. A new mathematical model of 

this process should be constructed where the two cyclic operations of the progressing batch 

reactor and the SMB chromatography must be optimally designed. These nonstandard 

configurations provide more flexibility to the process operation which could potentially 

increase the advantage of the SPRSS.   

 

8.2.3 Dynamic optimization of SPRSS with experimental validation 

Optimization of the full dynamic SPRSS model proposed in this thesis should be 

performed. Moreover, the optimal design of the SPRSS found from the model should be 

validated by the experiment. This includes the experiment solely on the reactor system as 

well as the overall SPRSS. There are several points from the mathematical model which 

need to be compared with the experiment. First, the kinetic model as well as the effect of 
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mass transfer resistance in the percolation reactor should be validated by experiment. In 

addition, the impact of the shrinking bed should be investigated carefully from the 

experiment as the biomass keeps dissolving into the liquid phase during the hydrolysis 

causing the reduction in the packing bed size.156  Finally, the overall SPRSS performance 

from the experiment should be compared with the prediction from the model such as sugar 

concentration and acid consumption. Additional model refinement may be required based 

on the results from the experiment. 

 

 

.
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