
VIRTUALIZED RESOURCE MANAGEMENT IN HIGH
PERFORMANCE FABRIC CLUSTERS

A Thesis
Presented to

The Academic Faculty

by

Adit Ranadive

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2015

Copyright c© 2015 by Adit Ranadive

VIRTUALIZED RESOURCE MANAGEMENT IN HIGH
PERFORMANCE FABRIC CLUSTERS

Approved by:

Dr. Ada Gavrilovska,
Committee Chair
School of Computer Science
Georgia Institute of Technology

Prof. Dr. Ling Liu
School of Computer Science
Georgia Institute of Technology

Prof. Dr. Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Dr. Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Dr. Ellen Zegura
School of Computer Science
Georgia Institute of Technology

Date Approved: 12 Nov 2015

To my parents who have strived hard to give me so much,

To my brother, Rohan, to help me get started and

To my wife, Smita for her immense love and support

iii

ACKNOWLEDGEMENTS

I would like to begin by thanking my parents who have sacrificed much to give me the

opportunity to come to the US to pursue graduate studies. Without their encourage-

ment and guidance this thesis would not have been possible. They have supported

me through all these years with the ups and downs that exist in this PhD life. They

supported my decision to go through the PhD program even though it would have

been easier to accept that full-time job after MS so I could have been ‘settled’ in life.

Without my father’s advice I would not be the person that I am today.

I would like to express my heartfelt gratitude to my advisors, Prof. Karsten

Schwan and Dr. Ada Gavrilovska. They have shaped my approach to systems research

immensely on how to approach the problem and what is the best course for the

solution. They have been very patient with me as I sometimes struggled to distinguish

between the research contributions and the exact implementation details. They were

very understanding when I wanted to accept the full-time opportunity at VMware so

that I could start after finishing the proposal. I owe a lot to Ada as well for helping

me work through several iterations of papers, results and taking those phone calls to

help me help her understand what I was actually trying to achieve. I will sorely miss

Karsten in this new phase of life.

I owe an immense thanks and love to my wife, Smita whose unwavering support

through my life as a graduate student from MS to PhD has got me through the worst

of days. Her constant supply of encouragement, home-cooked food and chai was what

I would look forward on several days when we started living together. Even though

we stayed apart for four years before she moved to the US, her words would help me

stay motivated several times.

iv

I would also like to immensely thank my brother, Rohan and his wife Wendy, for

helping me settle in a new country and letting me crash in their house whenever the

long weekend beckoned to let me leave my graduate life worries behind me. Without

my brother’s support and guidance I would have found life much harder than it was.

I thank my proposal and defense committee members, Prof. Sudhakar Yalaman-

chili, Prof. Nick Feamster, Prof. Ellen Zegura, Prof. Ling Liu and Prof. Doug Blough

for their valuable insights and helping shape the thesis to what it is. I would like to

thank Chad Huneycutt for helping me setup the cluster to conduct my research on.

There have been several times where I would turn to him to fix an issue which I could

not diagnose remotely. My thanks go out to Susie McClain for all the support she

has provided to us students. To my current manager at VMware, Shelley Gong, I

would like express thanks for her patience and understanding while I was finishing

my Ph.D.

Finally, there have been so many labmates, friends, now colleagues as well, with-

out whose support and encouragement I would not have been able to finish this

thesis: Mukil Kesavan, Anand Zaveri, Priyanka Tembey, Vishakha Gupta, Romain

Cledat, Tushar Kumar, Dulloor Rao, Jay Lofstead, Himanshu Raj, Danesh Irani, Vi-

jay Arvind, Karishma Babu, Bhuvan Bamba, Neeti Wagle, Rakshita Agrawal, Raghav

Vijaywargiya, Nawaf Almoosa, and many others. Thank you all for your kind words

and bearing with my eccentricities.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xvi

I INTRODUCTION . 1

1.1 Motivation . 2

1.2 Thesis Statement . 4

1.3 Approach and Contributions . 4

II BACKGROUND ON HIGH PERFORMANCE FABRICS 10

2.1 Capabilities of High Performance Fabrics 10

2.2 InfiniBand Communication Model 11

2.3 InfiniBand Memory Management . 12

2.4 Paravirtual or VMM-bypass InfiniBand Driver Model 12

2.5 Hardware-virtualized InfiniBand Model 13

III IBMON: MONITORING VMM-BYPASS CAPABLE INFINIBAND
DEVICES USING MEMORY INTROSPECTION 15

3.1 Importance of monitoring VM resources 15

3.2 Virtual Memory Introspection . 19

3.3 Design . 20

3.4 Implementation . 21

3.5 Estimating VMs’ Bandwidth Utilization with IBMon 22

3.6 Experimental Results . 24

3.6.1 Testbed . 24

3.6.2 Monitoring Frequency . 24

3.6.3 Feasibility . 25

vi

3.6.4 Overheads . 26

3.6.5 Ability to respond to changes in VM behavior 27

3.6.6 Scalability with Multiple VMs 27

3.7 Chapter Summary . 29

IV FARES: FAIR RESOURCE SCHEDULING FOR VMM-BYPASS
INFINIBAND DEVICES . 31

4.1 Challenges for communication-intensive workloads 31

4.2 Xen Credit Scheduler . 36

4.3 Understanding I/O Thrashing in RDMA-enabled Devices 37

4.4 FaReS Overview . 42

4.5 FaReS Cap-Boost Scheduling . 44

4.6 Experimental Evaluation . 47

4.6.1 FaReS Behavior . 48

4.6.2 Application Performance . 48

4.6.3 Map-Reduce Application . 51

4.7 Chapter Summary . 52

V RESOURCE EXCHANGE: LATENCY-AWARE SCHEDULING
IN VIRTUALIZED ENVIRONMENTS WITH HIGH PERFOR-
MANCE FABRICS . 54

5.1 Latency-sensitive applications in virtual environments 54

5.2 Collocation Impact on Latency-sensitive workloads 57

5.3 Economics and Congestion Pricing 59

5.4 Nectere - A Latency-Sensitive Benchmark 60

5.5 Design Principles of ResEx . 61

5.5.1 Tracking I/O Usage and Interference for VMM-Bypass Infini-
Band Devices . 62

5.5.2 Relationship between IB I/O Latency, Buffer Ratio and CPU
Cap . 63

5.5.3 Virtual Currency Abstraction 65

5.5.4 Goals of Pricing . 66

vii

5.6 ResourceExchange Implementation 67

5.6.1 Charging VM Resource Usage in Resos 67

5.6.2 FreeMarket & Maximize Resource Utilization 68

5.6.3 I/O Shares & Lower Latency Variation 69

5.7 Experimental Evaluation . 70

5.7.1 Maximization of Resource Utilization 72

5.7.2 Lower Latency Variation . 73

5.7.3 No Interference Handling . 73

5.7.4 Response to Buffer Size . 75

5.8 Chapter Summary . 76

VI DISTRIBUTED RESOURCE EXCHANGE: VIRTUALIZED RE-
SOURCE MANAGEMENT FOR SR-IOV INFINIBAND CLUS-
TERS . 78

6.1 Challenges to manage distributed workloads 78

6.2 Overview of the Distributed Resource Exchange 82

6.3 Workload SLA Satisfaction . 86

6.3.1 Finding Satisfiable SLAs with the Workload Configurator . . 87

6.3.2 Finding Distributed Interference using DCCR Finder 89

6.4 DRX Resource Management Mechanisms 91

6.4.1 Allocating, Accounting for Resos and Charging Resources . . 92

6.4.2 Resource Pricing using Virtual Currency Abstraction 92

6.5 Platform Controls for RDMA I/O 94

6.5.1 Software-Based Controls - CPU Capping 94

6.5.2 Hardware-Based Controls - InfiniBand Hardware Features . . 95

6.6 Policies for a Distributed Resource Exchange 99

6.6.1 Equal-Blame Policies . 100

6.6.2 Hurt-Based Policies . 102

6.7 Discussion . 103

6.7.1 Comments on DRX Pricing and Workload Control 103

viii

6.7.2 Applicability towards non-RDMA networks 105

6.8 Evaluation . 105

6.8.1 DRX Implementation . 105

6.8.2 Testbed . 106

6.8.3 Workloads . 107

6.8.4 Policy Performance . 109

6.8.5 DRX Sensitivity to Resources 111

6.8.6 Limitations and Overhead of DRX 112

6.8.7 Effectiveness of Hardware Features with DRX 113

6.8.8 Key Observations on Policy Effectiveness 115

6.9 Chapter Summary . 115

VII ENFORCING LATENCY PROPORTIONALITY IN SR-IOV IN-
FINIBAND CLUSTERS USING OPENFLOW CONTROLLERS 117

7.1 Importance of Latency Proportionality 117

7.2 Challenges in collocating diverse workloads 120

7.2.1 Impact of Workload Characteristics 120

7.2.2 Impact of Workload Collocation 122

7.2.3 Configuring Network for SLA 122

7.2.4 Observations . 124

7.3 OpenFlow-based Network Controllers 125

7.4 Latency Proportionality . 126

7.4.1 Definition . 126

7.4.2 Enforcing LP via hardware controls 127

7.4.3 Observations . 128

7.5 Dynamic Hardware controls via Congestion Pricing 129

7.5.1 I/O Control Model . 129

7.5.2 Pricing Control Model . 131

7.6 Sphinx OpenFlow Controller for Enabling LP 133

7.6.1 Overview . 133

ix

7.6.2 Flow Specification . 134

7.6.3 Specifying LP through Policies 135

7.6.4 Monitoring Heterogeneous Flows 135

7.6.5 Orchestrating Network Resources to manage LP 136

7.7 Evaluation . 136

7.7.1 Testbed . 136

7.7.2 Workloads . 136

7.7.3 Achieving LP through Sphinx 137

7.8 Chapter Summary . 140

VIII PREVIOUS WORK . 142

8.1 Memory Introspection and Monitoring Network Devices 142

8.2 Economics and Resource Management 143

8.3 Virtualized Resource Management in Clusters 143

IX CONCLUSION . 147

X FUTURE DIRECTIONS . 149

REFERENCES . 150

VITA . 161

x

LIST OF TABLES

1 Performance Impact of MG NAS with RDMA Write benchmark. . . . 33

2 Performance of NAS benchmarks. 33

3 Request issue, completion times for different buffers with CPU caps. . 38

4 Various Policies implemented in DRX based on amount of interference. 99

5 InfiniBand Congestion Control Parameter and Values. 100

6 InfiniBand QoS values for various Policies. SL0 for Transactional
Workloads, SL1 for other workloads. All Policies have same IBCC
Values. 100

7 Workload Details. The #VMs column indicates the number of VMs
assigned for that benchmark followed by the VMs on every host in
brackets. 107

8 Comparison of Latencies (in µs) achieved by Nectere and Memcached
workloads when running in four configurations. All cell values are
in Nectere : Memcached format. PL refers to the Performance Loss
experienced by the application and is shown as a percentage change
from the Base values for the BP and LP configurations. 127

9 Comparison of Latencies (in µs) achieved by different Nectere and
Memcached workload characteristics with the same configurations as
above. 127

xi

LIST OF FIGURES

1 Distribution of Latencies for a Latency-Sensitive Application collo-
cated with a Data-Intensive one. 2

2 Comparing Sockets and RDMA APIs for communication. 11

3 IBMon Utility . 19

4 Tracking Application Bandwidth with IBMon for 64KB and 128KB
buffer sizes with different monitoring intervals. 25

5 Accuracy of IBMon for different monitoring granularities 26

6 IBMon overheads for different monitoring granularities 26

7 Ability to respond to dynamic changes in the VM behavior 26

8 Ability to monitor multiple VMs with different behaviors 26

9 Accuracy of IBMon in terms of average bandwidth when monitoring
multiple VMs . 28

10 Overheads of IBMon when monitoring multiple VMs 29

11 Average RDMA Write BW for different application behaviors. 38

12 Effect on Average BW by Transmission Depth and CPU Caps 40

13 Variation in Application Performance with different Communication
and Computation ratios under CPU cap changes. 41

14 FaReS Software Architecture . 43

15 Requests Completed change for High/Low Priority VMs with FaReS. 47

16 Normalized Performance of RDMA Write and MultiGrid with FaReS. 48

17 Performance of NAS Pairs of Application with FaReS and Different
Resource Proportions. The labels on the bars represent the Resource
Proportion achieved. 50

18 Performance of Pair of MPI Map-Reduce Applications with FaReS . . 51

19 Distribution of latencies of a normal server versus an interfered server
with additional load. 58

20 Change in server latency for multiple servers with interfering load. . . 58

21 A Financial Application Configuration for Nectere. 60

22 Histogram of server latency with different I/O ratios between interfer-
ing and normal servers. 63

xii

23 Change in normal server latency as CPU cap is decreased for interfering
VM. 64

24 Comparison of application latency when using FreeMarket algorithm. 72

25 Change in Reso during FreeMarket algorithm. 73

26 Comparison of application latency when using IOShares algorithm. . 74

27 Performance of FreeMarket and IOShares methods on non-interference
cases. 74

28 FreeMarket and IOShares behavior with different interfering VM buffer
size. 75

29 Distribution of Latencies for a Non-Interfered v/s an Interfered Finan-
cial Application. 80

30 Distributed Resource Exchange Model. This shows the interaction
between the various components within DRX. The Workload Configu-
rator, DCCR Finder, Resource Pricer are part of the Cluster Manager.
The Network Controller is an entity specific to the type of network
(InfiniBand) and the PM can interact with it separately to enforce
network guarantees. 83

31 Workload Layouts in Cluster . 106

32 Effect of Policies on Performance of Nectere, Hadoop and Linpack
Workloads. 108

33 Effect of Policies on the running average of Nectere CQE/s and La-
tency. High CQE/s denotes Low Latency. 109

34 Equal Blame Policy: Comparison of VME Prices, CPU Cap and SLA
Difference. 110

35 Hurt-Based Policy: Comparison of VME Prices, CPU Cap and SLA
Difference. 111

36 Comparison of DRX Policy Sensitivity with two different workloads
sizes. 112

37 Performance of Policies (Local and Distributed) with Asymmetric Work-
load Layout. Asymm1 and Asymm2 refer to the types of workload
deployment. 113

38 Performance Comparison of EB, HB and Hardware Policies for Sym-
metric Workload Layout. 114

39 Performance Comparison of EB, HB and Hardware Policies for Asymmetric-
1 Workload Layout. 115

xiii

40 RDMA-based Memcached running with another Memcached instance
using larger message sizes. 121

41 Nectere running with a Memcached instance which alternates between
small and large message sizes (shown by green line). Nectere’s latency
also increases or decreases when the Memcached message size changes. 121

42 CDF of a Latency-Sensitive application with other Cloud workloads. . 121

43 Latency Distribution of a VoIP application with Hadoop TeraSort
workload. 121

44 Using InfiniBand QoS to control Nectere workload. The values on the
X-axis denote the QoS weight assigned to the 2MB Nectere instance.
The 64KB Nectere instance is assigned a higher priority service level
than the 2MB one. In the Equal case both instances are at the same
high priority service level and equal weights. 123

45 Using both InfiniBand QoS and CC mechanisms to control the in-
terference from the Memcached workload. Values on the bar denote
the latency of the respective application. The QoS values denote the
weights assigned to each application. The CC values indicate the units
of delay added to the queue processing of each application. 123

46 N1, N2, M1, M2 represent VMs or application components for two
applications, Nectere and Memcached respectively. The colored pack-
ets represent the corresponding source flow. This represents the key
idea behind Latency Proportionality, that is to prioritize packets from
particular flows on the link. 125

47 Comparison of BP-based and LP-based performance loss ratios for col-
located Nectere and Memcached workloads. The configurations are for
Table 8 and 9 respectively. 128

48 Impact of Congestion Control delays on RDMA Send Average Latency
for a 512KB buffer. 130

49 Sphinx Two-Stage Network Resource Controller. 131

50 Enforcing LP with OpenFlow Controller in SR-IOV InfiniBand Cluster. 134

51 Achieving LP 1:1 for collocated Nectere and Memcached applications. 137

52 Achieving LP 1:4 for collocated Nectere and Memcached applications. 138

53 Normalized Application Average Latency when comparing Sphinx and
Manual for LP 1:1. 139

54 Normalized Application Average Latency when comparing Sphinx and
Manual for LP 1:4. 139

xiv

55 Sphinx allows us to change the LP value dynamically. Nectere (212us)
and Memcached (187us) used here. 140

xv

SUMMARY

Managing virtual resources in existing cloud computing infrastructure is critical

to ensure that applications deployed are provided with the required isolation and per-

formance guarantees. With high performance RDMA-based fabrics with capabilities

like VMM-bypass, SR-IOV becoming ubiquitous in the datacenter, the workloads

deployed in these VMs are becoming more latency-sensitive as well as bandwidth-

intensive to utilize the network. Thus, as applications are collocated on such net-

works, the sharing of these networks can lead to significant performance degradation

for the applications.

In order to manage this performance degradation and hence the network resources

allocated to the VMs, there exists several constraints that this thesis aims to address.

First, the hypervisor does not have any direct insight to usage of the network by the

VMs since the data transfer bypass the hypervisor completely. Second, without any

monitoring information the hypervisor cannot make fine-grained resource allocations

in order to provide isolation and performance guarantees which is required for such

workloads. Third, integrating these networks into current software-defined fabric

management solutions would not be possible without first having these mechanisms.

This thesis addresses these constraints as follows: (1) we develop IBMon, a

hypervisor-based tool to help monitor such fabrics through memory introspection

to find the current network conditions experienced in terms of bandwidth or latency,

and is the basis for our resource management mechanisms, (2) we observe the appli-

cation characteristics with which interference occurs and use them to build a resource

management system called FaReS, for collocated data-intensive workloads, (3) we

xvi

develop Economics-based resource management mechanisms to limit and provide iso-

lation and performance guarantees for latency-sensitive applications on a per-node

(Resource Exchange) or multi-node (Distributed Resource Exchange) basis (4) we

develop our fabric management solution, Sphinx that leverages our Economics-based

mechanisms to provide latency proportionality to collocated latency-sensitive and

data-intensive applications.

We use the mechanisms described in this thesis to manage both Paravirtual as

well as SR-IOV-based InfiniBand clusters running Xen and KVM hypervisors respec-

tively. We also utilize the Floodlight OpenFlow controller with Sphinx to orches-

trate the SR-IOV InfiniBand network to provide latency guarantees for consolidated

workloads. The applications deployed include low-latency financial codes, distributed

data-intensive applications and distributed MPI workloads to highlight the utility

and effectiveness of our resource management techniques to provide application-level

guarantees and performance isolation.

xvii

CHAPTER I

INTRODUCTION

Workloads such as multi-tier enterprise codes [8], latency-sensitive applications like

financial trading [126, 45], VoIP services [74], in-memory databases [59, 33, 137] and

distributed transaction workloads [136] exhibit communication-intensive and latency-

sensitive properties that rely on optimized networks for best performance. These

high-performance networks, or ‘high performance fabrics’, enable the best possible

performance to applications via mechanisms like CPU-offload, OS-bypass and Zero-

Copy capabilities that minimize buffering overhead, protocol processing costs and

loss.

Modern virtualization and cloud platforms support the use of high performance

fabrics (through software [78, 109] and hardware-based [58] methods), and thus permit

these applications to be easily deployed. However, current solutions do not support

the necessary resource provisioning required to dynamically manage resource alloca-

tions, and therefore limit the ability to consolidate these types of applications and

achieve sought-after virtualization benefits like increased platform utilization. This is

because the techniques used by such fabrics to achieve high performance allows the

VM-interconnect interactions to completely ‘bypass’ the system software, thus, pre-

venting any fine-grained I/O management that is critical to provide performance iso-

lation, fairness and guarantees in such shared virtualized platforms. As a result, such

workloads continue to be run in isolated, non-virtualized platforms, leading to server

over-provisioning and lowered utilization.

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 50 100 150

C
ou

nt

Request Service Times (µs)

Distribution of Request Latencies for a Financial App

Latency Count for Interfered App
Latency Count for Non-Interfered App

Figure 1: Distribution of Latencies for a Latency-Sensitive Application collocated
with a Data-Intensive one.

1.1 Motivation

We illustrate this key problem in Figure 1, which shows the impact on latency distribu-

tion of a latency-sensitive workload when collocated with a data-intensive workload on

a modern virtualized platform with support for a high performance fabric. We observe

that with consolidation, the latency and latency variability of the latency-sensitive

workload degrade, despite hardware-level support for isolation. This highlights that

the platform is unable to provide any performance isolation or reduce I/O interference

between these applications. Current state of the art approaches [26, 39, 40, 56] that

offer performance isolation for networks cannot be applied to such fabrics since they

use software rate-limits that performs data buffering within the OS.

Another aspect of these communication-intensive workloads concerns their deploy-

ment across multiple nodes and VMs as distributed VM Ensembles (VMEs). This

implies that there exist a number of VMs pertaining to a single application communi-

cating across the cluster which can lead to varying degrees of I/O interference across

multiple hosts. This further complicates how I/O resource provisioning must be per-

formed, which must consider the cluster-wide impact of the resource management

actions as well. While current efforts [14, 122, 42] have considered the distributed

2

impact for some of these workloads, they cannot be directly applied to a virtualized

platform with high performance fabrics for the reasons mentioned above.

Furthermore, as network management gets decoupled from the hardware itself,

network resource provisioning should become ubiquitous through abstractions that

enable such performance isolation, fairness and guarantee properties for these types of

applications. Current cloud environments that leverage Software-Defined Networking

(SDN) [101, 88], however, provide a fairly static isolation model and are incompatible

with current high performance fabrics. This prevents such platforms from providing

the necessary fine-grained I/O management required to satisfy these properties via

various user-defined policies.

When such diverse applications are collocated on shared virtualized platforms

there are many factors that contribute to the overall ‘I/O interference’ or ‘perfor-

mance degradation’ experienced by latency-sensitive and data-intensive applications:

(i) type of the virtualization platform used can impact the isolation and degree of

consolidation provided to these workloads, (ii) the I/O characteristics of these ap-

plications would determine the degree of isolation as well as guarantees that can be

provided, (iii) the communication matrix of such distributed applications can identify

hotspots or interference links in such clusters.

These factors help us identify the following management constraints for current

shared virtualized platforms (i) without the hypervisor’s ability to monitor the work-

load’s I/O characteristics or VMs usage of these fabrics, the platform cannot pro-

vide isolation and performance guarantees, (ii) since the hypervisor cannot provide

fine-grained I/O provisioning or perform management decisions for VMs due to the

techniques used to achieve high performance, this reduces the degree of consolidation

that can be supported on these platforms, (iii) without such support it is harder to

integrate these fabrics into emerging cloud computing platforms and datacenter fab-

ric management solutions, and (iv) these constraints are particularly challenging for

3

workloads spanning multiple VMs, utilizing physical resources distributed on multiple

nodes and interconnect fabric.

1.2 Thesis Statement

Novel I/O provisioning methods within existing system and network management

software can provide performance isolation, fairness and guarantees to communication-

intensive and latency-sensitive workloads deployed in virtualized high performance

fabric clusters.

1.3 Approach and Contributions

We support the thesis statement through our general management model and our

contributions which we describe next.

1.3.1 General Model

This thesis uses an ‘online and dynamic’ model to help maintain the performance

fairness and guarantee requirements specified through several user-defined policies. In

case of fairness, these policies identify how the oversubscribed network I/O resource

be shared between the collocated applications, while for guarantees they recommend

an ‘SLA value’ that needs to be satisfied. Since the VM data bypasses the hypervisor,

the online model first finds the network I/O usage for a VM through the indirect,

asynchronous method of reading memory pages shared with the device during the

runtime of the application. This identifies whether the I/O resource is split in the

fashion as dictated by the policy. If not, the model then has to find the VMs (culprit

VMs) that are receiving more than their required split or are causing interference in

case of guarantees. The model then must adjust resources allocated to the culprit VMs

in order to reduce the I/O they are performing. The resources allocated also depend

on the impact the new allocation will have on their I/O usage in the future. Such

an approach can lead to dynamism which is handled by the model by ‘continuously’

4

ensuring that the fairness and guarantee criteria are maintained during the lifetime

of the workload.

Our model is capable of supporting multiple policy definitions through its dy-

namic mechanism. Policies concerning fairness can be supported in two ways: (i)

through specification of how the I/O resource should be ‘split’ between competing

applications, thus enabling Proportional Resource consumption, (ii) through specifi-

cation of relative performance degradation which enables Distribution of Degradation

between collocated applications. We also support policies that specify the application

performance guarantee that needs to be maintained.

In order to support such diverse policies for collocated communication-intensive

and latency-sensitive workloads, our management model must interpret the impact of

allocation of resources on the I/O objective as specified by the policy. Essentially, our

online component gauges the impact of resource allocation to actual resource usage

as well as impact on application performance, i.e. finding the ‘Resource Sensitivity’

for the application. The resource sensitivity information can be measured in terms

of rate of change of I/O usage for an application for example.

The resource sensitivity values will be different for these applications since their

I/O characteristics are different. For example, latency-sensitive applications can be

‘more’ sensitive to resource changes while communication-intensive applications might

be ‘less’ sensitive. To incorporate these differences between various applications as

well as the difficulty of fine-grained allocation and monitoring we implement a set

of abstractions and specific model instances that ‘normalize’ the resource allocation

provided to applications in order to meet the different policy objectives. We describe

these within as our contributions next.

5

1.3.2 Contributions

(i) IBMon – a lightweight monitoring tool to find the I/O characteristics of ap-

plications that utilize such high performance fabrics. It leverages knowledge about

application-device interactions and how such information is stored in the VM’s mem-

ory. The information is extracted by using hypervisor-level memory introspection

techniques to read the relevant memory of the VM and provides insights into the VM

I/O behavior, including communicating endpoints, request patterns and data volume.

This allows us to infer the usage of the underlying network by the VM without any

perturbation to the application.

This monitoring information can be provided through hypervisor extensions and

used to enable resource management decisions that were not possible before for such

high performance fabrics. IBMon allows us to perform ‘timely detection’ of I/O

characteristics from which we can infer possible I/O interference for these applica-

tions. This allows us to provide monitoring information for both latency-sensitive

and throughput-intensive applications in order to support the diverse policies in our

management model. IBMon is implemented for both Xen [16] and KVM [67] hyper-

visors and the InfiniBand interconnect, is used as an example of a high performance

fabric throughout this thesis.

(ii) FaReS (Fair Resource Scheduling) – a resource management model which

uses monitoring data from IBMon and controlled CPU allocations to provide fair-

ness guarantees to data-intensive VMs using VMM-bypass on fabrics like InfiniBand.

FaReS relies on online observations made for application performance as compute

and I/O characteristics for collocated applications are changed. These observations,

in conjunction with the monitoring data from IBMon, are used to drive CPU Capping

policies in order to provide ‘fairness guarantees’ to the VMs.

We model these guarantees on ‘Proportional Resource’ consumption or conversely

‘Performance Degradation’ allocated to a VM. FaReS deducts CPU cycles from VMs

6

based on the overage of data sent by the VM. Since the OS is not involved in data

transfer we reason that this constitutes a penalty for the VM in order to reduce

the I/O performed. For various combinations of High Performance Computing or

communication-intensive workloads we show that FaReS can maintain various levels

of fairness.

(iii) ResEx (ResourceExchange) – a cluster-wide resource management model

based on microeconomics that utilizes IBMon to provide applications certain perfor-

mance guarantees. It introduces our ‘Virtual Currency Abstraction’ that allows us

to dynamically map the resource sensitivity value of latency-sensitive applications to

the underlying physical I/O resources. This uses microeconomic principles like Con-

gestion Pricing to coordinate the use of the shared interconnect on a per-host basis,

and to provide performance guarantees to latency-sensitive applications.

The evaluation of these mechanisms uses Nectere, a latency-sensitive benchmark

developed in our work, that is modeled on financial applications. Nectere can be

configured which specific CPU and I/O characteristics in order to evaluate behaviors

of such applications on virtualized high performance fabric clusters.

The flexibility of ResEx is demonstrated through implementation and evaluation

of two different policies with different goals based on Congestion Pricing - FreeMar-

ket (maximize resource utilization) and IOShares (lower latency variation). We use

our observations on I/O latency behavior to meet the latency guarantees specified

by these policies by dynamically adjusting the interfering VM’s I/O usage through

CPU allocations. These results demonstrate that latency guarantees can be provided

to collocated applications on such platforms through novel effective monitoring and

management mechanisms.

(iv) DRX (Distributed Resource Exchange) – is an extension to our resource

exchange model to consider distributed applications and reducing their impact on

latency-sensitive applications deployed on hardware-virtualized (SR-IOV) InfiniBand

7

cluster by enabling resource management policies at a cluster-level.

DRX identifies distributed applications and its components via VM Ensembles or

VMEs and interactions between VMEs and their VMs are modeled on a transitivity-

based property called the Distributed Causal Congestion Relationship (DCCR). This

relationship lets us identify the culprit(s) that impact the latency-sensitive application

collocated with the distributed applications. By utilizing Congestion Pricing on a per

VME-basis we can divide cluster-wide network resources through various policies in

order to improve performance of latency-sensitive codes.

We evaluate DRX with a combination of data-intensive (Hadoop and High Perfor-

mance Linpack) and latency-sensitive (Nectere) benchmarks for various deployment

scenarios. These results show that by factoring in the ‘distributed interference’ caused

by data-intensive applications to the resource provisioning methods allows latency-

sensitive applications to achieve their performance guarantees when collocated on

such fabrics.

(v) Sphinx – is an implementation of a software-defined network management

platform that builds upon the above mechanisms and provides Latency Proportion-

ality (LP) – a new fairness property – to collocated latency-sensitive applications

through dynamic orchestration of network resource allocations.

Latency Proportionality identifies the performance degradation that can be ex-

perienced by collocated workloads, depending on user-defined policies. Sphinx uti-

lizes a Congestion Pricing-based controller to dynamically maintain LP for collocated

latency-sensitive applications.

Sphinx is implemented on top of the OpenFlow Floodlight Controller and manages

a SR-IOV InfiniBand cluster by utilizing the underlying hardware mechanisms for

apportioning I/O for VMs. We demonstrate that Sphinx can dynamically achieve LP

for various applications I/O characteristics and user-defined policies.

8

1.4 Thesis Organization

The rest of the dissertation is dedicated to quantitatively proving the thesis statement

and is organized as follows. We provide a background on capabilities afforded by

high performance fabrics and provide key details for InfiniBand, an example fabric

in Chapter 2. Chapter 3 describes our InfiniBand monitoring extensions and how

an existing hypervisor can be enlightened to provide VM’s network usage of high

performance fabrics.

Chapter 4 discusses FaReS, our research contribution for leveraging an enlightened

hypervisor to make fairness-based decisions for scheduling HPC applications. We

describe our research contribution ResEx that uses a Virtual Currency Abstraction

for resource management to improve latencies for low-latency workloads in Chapter 5.

This chapter also presents our configurable latency-sensitive benchmark, Nectere,

which we use to evaluate our platforms.

Chapter 6 presents our Distributed Resource Exchange model that considers dis-

tributed applications when performing resource allocation decisions.

Chapter 7 discusses how we can extend existing software-defined platforms to

orchestrate the network to provide Latency Proportionality to collocated applications.

Chapter 8 discusses current and past research related to this dissertation. We

provide a summary of the thesis in Chapter 9 and list possible future directions in

Chapter 10.

9

CHAPTER II

BACKGROUND ON HIGH PERFORMANCE FABRICS

We motivated the need to provide monitoring and management methods for high

performance fabrics in the previous chapter. However, we did not delve into the

architectural and design details of such fabrics that motivate our novel resource pro-

visioning methods. In this chapter, we expand on these details and highlight how

these fabrics are deployed in virtualized environments.

2.1 Capabilities of High Performance Fabrics

We mentioned three capabilities in the previous chapter that identify networks as

‘high performance’. CPU-offload, OS-bypass and Zero-Copy are features that identify

these networks. CPU-Offload permits protocol stack processing on the NIC hardware

rather than in software. OS-bypass [133] allows the application to directly commu-

nicate with the NIC hardware through memory-mapped I/O pages to issue network

requests. Zero-Copy occurs as a result of OS-bypass and programming DMA hard-

ware to read/write safely and directly to application buffers without the need of the

OS to verify the operation.

In general, these capabilities together are referred to as providing RDMA or Re-

mote Direct Memory Access and network hardware is referred to as a Host Channel

Adapter or HCA. In order to take advantage of the RDMA characteristics, appli-

cations cannot use the standard sockets API for communication and must utilize

another programming model called the ‘Verbs API’ [52]. We illustrate the differences

between these two APIs in Figure 2, where data in the sockets-based API traverses

the entire network stack while in case of RDMA, the network hardware can directly

read the data from the application due to the OS/VMM-bypass functionality.

10

Network
Device

IPv4/v6

TCP

Sockets

Buffers Buffers

Application Application

User-level

Kernel

Sockets API RDMA Verbs API

Device Driver

Host Channel Adapter

O
S/
VM

M
 B
yp
as
s

InfiniBand iWARP RoCE
RDMA over

Converged Ethernet

Figure 2: Comparing Sockets and RDMA APIs for communication.

Examples of such fabrics include InfiniBand [52], Myrinet [90], Quadrics [107]

and more recently RoCE (RDMA over Converged Ethernet) [54] and iWARP [28].

Using these capabilities these fabrics can provide extremely low latencies (< 5µs) and

high bandwidths (>40Gbps). In this thesis, we use InfiniBand as an example high

performance and RDMA-capable fabric. We next highlight the architectural details

of IB and their usage models in virtualized environments.

2.2 InfiniBand Communication Model

The communication model used in IB is based on the concept of queue pairs (Send

and Receive Queues). A request to send/receive data is formatted into a Work Re-

quest (WR) which is posted to the respective queues. There are also Completion

Queues (CQs) in which Completion Queue Entries (CQEs) containing information

for completed requests are stored. Whenever a descriptor is posted to the queue pair

(QP), certain bits called ‘Doorbells’ are set in User Access Region (UARs) buffers.

The UARs are 4KB I/O pages mapped into the process’ address space. These pages

are shared directly between the application and the HCA and permits the OS-bypass

functionality. When a request is issued, the doorbell is “rung” in the process’ UAR.

11

The HCA will then pick up these requests and process them.

2.3 InfiniBand Memory Management

The HCA maintains a table called the Translation and Protection Table (TPT). This

table contains the mappings from physical to virtual addresses of the buffers and

queues described above. For InfiniBand, the buffers need to be registered with the

HCA, and these registry entries are stored in the TPT. Also, these buffers must be

kept pinned in the memory during data transfer so that the HCA can DMA the data

directly in and out of host memory, thus enabling Zero-copy. Each entry in the TPT

is indexed with a key that is generated during the registration process.

2.4 Paravirtual or VMM-bypass InfiniBand Driver Model

When virtualized in Xen, the device driver model is based on the ‘split device driver’

model as described in [16]. It consists of a Backend and Frontend Driver. The

frontend driver resides in the guest OS kernel while the backend driver resides in the

dom0 kernel. In the case of regular devices, all requests to access the device from

the guest VM must travel from the frontend driver to the backend driver. Therefore,

both the data and control path instructions are sent to Dom0.

For InfiniBand, the split-driver model is used slight differently. The control path

operations from the guest VM, like memory registration and queue pair creation, must

all go through the backend driver. Fast path operations like polling the CQ and QP

accesses are optimized using VMM-bypass [78]. The data path is highly optimized

since the HCA can write DMA data directly to the target buffer. As a result, IB

platforms can be virtualized with negligible impact on the attainable latency and

bandwidth.

12

2.5 Hardware-virtualized InfiniBand Model

In this section we provide a background on hardware-virtualization and how they are

used in conjunction with IB network hardware.

2.5.1 Single Root I/O Virtualization (SR-IOV)

With SR-IOV [32], the physical device interface (i.e., the device Physical Function

(PF)) and associated resources are ‘partitioned’ and exposed as Virtual Functions

(VFs). One or more VFs are then allocated to guest VMs in a manner that leverages

PCI passthrough functionality.

2.5.2 PCI Passthrough

PCI Passthrough allows PCI devices (SR-IOV-capable or standard) to be directly

accessible from within the VMs, without the involvement of the hypervisor or host

OS, but requiring Intel’s VT-d [2] or AMD’s IOMMU [9] extensions for correct address

translation from guest physical addresses to machine physical addresses [18]. The

hypervisor (e.g., KVM or Xen) is responsible for assigning the PCI device (specified for

passthrough) to the guest’s PCI bus and removing it from the management domain’s

PCI bus list – i.e., the device is under full control of the guest domain. While providing

guests with near-native virtualized I/O performance, by bypassing the management

domain, i.e., the hypervisor, it becomes challenging to monitor and manage the guest’s

I/O behavior.

2.5.3 SR-IOV InfiniBand

We utilize Mellanox ConnectX-2 InfiniBand devices in our work which provide SR-

IOV support by dividing the available physical resources, i.e., queue pairs (QPs),

completion queues (CQs), memory regions (MRs), etc., among VFs and exposing

this subset of resources as a VF. The PF driver running in the management domain

is responsible for creating the number of VFs (in our case 16). Each of these VFs are

13

assigned to a guest using PCI passthrough. A Mellanox VF driver residing in each

guest is responsible for device configuration and management.

14

CHAPTER III

IBMON: MONITORING VMM-BYPASS CAPABLE

INFINIBAND DEVICES USING MEMORY

INTROSPECTION

In the previous chapter, we described the capabilities afforded by high performance

fabrics and the architectural details that provide high performance. We utilize those

details to design our monitoring tool, IBMon for such fabrics which we describe in

this chapter. We begin by outlining the need for IBMon-like tools in providing better

resource management in virtual environments. We describe the design details of

IBMon using memory introspection for two different virtual environments and show

how IBMon can be used to provide accurate bandwidth information for RDMA-based

applications.

3.1 Importance of monitoring VM resources

Virtualization technologies like VMWare [131] and Xen [16] have now become a de-

facto standard in the IT industry. A main focus of these technologies has been to

manage the virtual machines (VMs) run by the virtual machine monitor (VMM)

or hypervisor, in order to ensure the appropriate allocation of platform resources

to each VM, as well as to provide for isolation across multiple VMs. Such actions

are necessitated by the fact that static resource allocation policies are not typically

suitable, as they imply apriori knowledge about the VM’s behavior – which may

be impossible to determine in advance, and/or worst-case analysis of its resource

requirements – which may lead to significant reductions in the attained resource

utilization and platform capacity.

15

Managing virtualized platforms relies on mechanisms that dynamically adjust re-

source allocations, based on workload characteristics and operating conditions, as well

as on current VM behavior and resource requirements [65, 127, 139]. Such techniques

are particularly relevant to distributed clouds and virtualized data centers, to more

effectively utilize aggregate platform resource and reduce operating costs, including

for power. The latter is also one reason why virtualization is becoming important for

high end systems like those used by HPC applications.

A basic requirement for effective resource management is the availability of run-

time information regarding VMs’ utilization of platform resources, including CPU,

memory, and network and disk devices. Using this information, the VMM infers the

behavior and requirements of VMs and makes appropriate adjustments in their re-

source allocations (i.e., it may increase or decrease the amount of resources allocated

to a VM) [65, 127], while still ensuring isolation and baseline performance levels.

Monitoring information is collected continuously in the hypervisor and/or its man-

agement domain (i.e., dom0 in Xen). For instance, for scheduling CPU resources, the

VMM scheduler relies on monitoring the time a VM has spent executing or idling in

order to adjust the corresponding scheduling priorities or credits [140], whereas for

memory it monitors the VM’s memory footprint, and if necessary, makes appropriate

adjustments, e.g., by using the ‘balloon-driver’ in the case of the Xen VMM. The

same is true for most devices, for which the VM’s device accesses are ‘trapped’ and

redirected to a centralized device management domain, i.e., following the ‘split device

driver model’ in Xen [16, 124]. All information regarding the VMs’ utilization of a

particular device therefore, is centrally gathered and can be easily maintained and

used to enforce limits and/or orderings on device accesses.

Furthermore, management actions may span multiple types of resources, such as

when monitoring information regarding the network buffer queues is used to adjust

16

the CPU credits for a VM, so as to eliminate buffer overflow and ensure timely re-

sponse [65, 127]. Stated more technically, the management of the virtualized platform

relies on the ability of the virtualization layer (e.g., ESX server or the Xen hypervisor

plus dom0) to have the ability to monitor and control the utilization of each of the

platform resources on behalf of a VM.

Unfortunately, some IO devices do not follow the ‘split driver’ model, and cannot

be easily monitored via the same approach as above. Some such devices exhibit ‘self-

virtualization’ capabilities [48], i.e., the management logic that controls which VM

will be serviced by the device is offloaded onto the device itself. When used in the

high performance domain, in order to meet the high bandwidth/low latency messaging

requirements of HPC applications, these devices also use their RDMA capabilities to

read/write data directly from/to guest VMs’ address spaces. Specifically, the control

path invoked during a VM’s setup and device initialization is still routed through

a management domain such as dom0, but subsequent device accesses are performed

directly, thereby ‘bypassing’ the VMM. Devices virtualized in this manner include

InfiniBand HCAs [51, 78], and they will also include next generation high performance

NICs such as those used for high end virtualized IO [48, 108] and as facilitated by

next generation device and board interconnection technology [28, 129].

The challenge addressed by our research is the acquisition of monitoring informa-

tion for devices that use VMM bypass. The outcome is a novel monitoring utility for

InfiniBand adapters, termed IBMon. IBMon’s software-based monitoring methods

can provide the information they collect to the management methods that require

it. An example is the provision of information about communication patterns that

is then used to adjust a VM’s CPU or memory resources, or to trigger VM migra-

tion. IBMon can also supplement an IB device’s monitoring logic, or it can compen-

sate for issues that arise if device-level monitoring is not performed at the levels of

granularity required by management. Most importantly, by using VM introspection

17

techniques [38, 13], IBMon can acquire monitoring information for bypass IB devices,

at small overheads and with minimal perturbation. Specifically, for such devices,

IBMon can detect ongoing VM-device interactions and their properties (i.e., data

sent/received, bandwidth used, or other properties of data transfers). Such determi-

nation of the VM’s usage of its share of IB resources is critical to proper online VM

management. Using introspection, of course, also implies that IBMon’s implementa-

tion uses knowledge about internals of the IB stack and buffer layout in the VM’s

address space. Stated differently, due to the absence of hardware-supported device

monitoring information, IBMon uses gray-box monitoring approaches to assess the

VM-device interactions and their properties.

The current implementation of IBMon enable asynchronous monitoring of the

VM’s bandwidth utilization, however, as noted earlier, the same approach can be

used to monitor other aspects of VMs’ usage of IB resources. While IBMon is imple-

mented for InfiniBand devices virtualized with the Xen hypervisor, its basic concepts

and methods generalize to other devices and virtualization infrastructures. Of partic-

ular importance are the novel ways in which the virtualization layer asynchronously

monitors VM-device interactions that bypass the VMM (i.e., for high performance),

and the insights provided regarding requirements for hardware supported monitoring

functionality.

In the remainder of this chapter, we first describe IBMon and evaluate its utility

and costs. In the following sections, we then provide brief summaries of the techniques

on which IBMon depends and next present its design and implementation. Section 3.5

describes the bandwidth estimation mechanism currently used in IBMon. We next

show experimental results to show that with IBMon, we can asynchronously monitor

VMM-bypass operations with acceptable accuracy and negligible overheads, including

as we increase the number of VMs.

18

bypass
channel

IB buffer queues

virtual HCA IF

guestVM

IB app

VMM (Xen or KVM)

control domain
(dom0)

IBMon

Monitoring
channels mapped

VM memory
other events from
hardware, VMM…

InfiniBand HCA

To Management
Utilities

per VM
state

Figure 3: IBMon Utility

3.2 Virtual Memory Introspection

The design of the IBMon tool for the Xen hypervisor is specific to (1) the manner in

which IB devices export their interfaces to applications (and VMs) and the memory

management mechanisms they support, (2) the manner in which these devices are

virtualized in Xen environments, and (3) the memory introspection techniques being

used.

We have previously described the InfiniBand architecture and communication

model related to (1), (2) in Chapter 2 and describe the relevant information for

(3) in this section.

With the Xen VMM, pages of one VM can be read by another VM simply by

mapping the page into the target VM memory. This concept was first introduced

by Garfinkel and Rosenblum [38]. Xen contains the XenControl library that allows

accessing another VM’s memory. Using the function xc map foreign range, the tar-

get memory is mapped into the current application’s virtual memory. We use this

19

mechanism to map the physical pages which correspond to the IB buffers into the

monitoring utility.

3.3 Design

Figure 3 illustrates the design of the IBMon utility. It is deployed in the VMM’s

control domain, i.e., dom0 in Xen, and its goal is to asynchronously monitor the per

VM utilization of the resources of the InfiniBand fabric, i.e., bandwidth utilization in

our current realization.

As described above, the IB HCA does have the capability to export virtual in-

terfaces, i.e., queue pairs and completion queues, directly to guest VMs. However,

the hardware only exports counters about the aggregate usage of the communication

resources used by all VMs, which is not adequate for the per-VM management deci-

sions we would like to support with IBMon. Therefore, we rely on knowledge about

the layout of the memory region used by each VM for its virtual HCA interface to

map and monitor the queues residing across those memory pages. We then apply

memory introspection techniques to detect changes in the page contents, and based

on that make conclusions regarding the VMs use of IB bandwidth.

The monitoring process is triggered periodically, with a dynamically configurable

frequency. The exact details of how the current implementation uses the accessed data

to perform bandwidth estimations is described later in Section 3.5. Dynamic changes

in monitoring frequency are necessary to adjust the sampling rate to the frequency

at which events being monitored are actually occurring, so as to avoid degradation

in the quality of the monitoring information.

Note that the in the case of IB, the HCAs do not maintain per work queue band-

width or timing information in hardware. This, coupled with the asynchronous nature

of both the monitoring operations as well as the VM’s IO operations themselves, re-

quires that we adopt the dynamic approach described above. The presence of such

20

hardware supported information in next generation IB or other multi-queue, VMM-

bypass capable devices will simplify the processing required by IBMon or similar

monitoring utilities, but it will not eliminate the need for such information to be

asynchronously accessed and then integrated with the platform level management

mechanisms.

In addition, while the presence of adequate hardware support may obviate the need

for the bandwidth estimation mechanisms integrated in IBMon, there will be other

types of information regarding the VMs’ device accesses which will still require that

we integrate memory introspection mechanisms with the monitoring tool. Examples

of such information include certain patterns in communication behavior, identification

of the peers with which the VM communicates with (e.g., to determine that it should

be migrated to a particular node), IO operations involving certain memory region

(e.g., to indicate anomalous behavior or security issues), etc.

Finally, the figure illustrates that IBMon can interface with other management or

monitoring components in the system. This feature is part of our future work, and

the intent is to leverage the tool to support better resource allocation (i.e., schedul-

ing) policies in the VMM (e.g., by using the IBMon output to make adjustments in

the credits allocated to VMs by the VMM scheduler), or to couple the monitoring

information with large-scale ‘cloud’ management utilities.

3.4 Implementation

IBMon is implemented as a monitoring application which runs inside dom0 in Xen.

It uses the XenControl library (libxc) to map the part of the VMs’ address space used

by the IB buffers. In the InfiniBand driver model, upon the front-end driver’s request,

the back-end driver allocates the buffers and then registers them with the HCA with

the help of the dom0 HCA driver. IBMon augments the back-end operations to

establish a mapping between the physical memory addresses and the types of buffers

21

they are used for (CQ, QP, etc.), for each VM. The table is indexed by the VM’s

identifier and is accessed through the ‘/proc’ interface provided by the back-end.

The IBMon utility reads the entries of the table when the guest VM starts running

an IB application. It detects any new entries in the backend driver table. For each of

the entries, the utility uses the xc map foreign range function of libxc to map that IB

buffer page to its address space. Once the page is mapped, the VM’s usage of the IB

device can be monitored. Note that these pages are mapped as read-only to IBMon’s

address space.

3.5 Estimating VMs’ Bandwidth Utilization with IBMon

InfiniBand uses an asynchronous (polling-based) model to infer completion of com-

munication. Hence, any IB-based application must poll the CQ to check whether a

request has completed or not. These CQ buffers are also mapped to IBMon’s mem-

ory space, which itself can then check and determine whether any work requests on

behalf of a specific VM have completed. The CQ buffer contains several fields which

can be used for bandwidth estimation. First is the number of completion entries

(CQE) which indicates how many completion events have occurred. Second is the

byte length (byte len) field which indicates how many bytes were transferred for each

of the completion event. These entries are written to directly by the HCA.

IBMon periodically inspects the newly posted CQEs, gathers the amounts of bytes

transmitted during the latest time interval, and uses that to estimate the bandwidth.

There are several challenges in this approach. First, the CQEs do not contain any

timing information. Therefore, if IBMon is configured with a short monitoring inter-

val, IBMon detects CQE which indicates that a work request for a read of a large

buffer just completed, using a simple Bytes/time formula it will compute bandwidths

which far exceed the fabric limits. Since we do not know when that read operation

was initiated, we cannot just adopt a model where we compute the bandwidth by

22

averaging across multiple monitoring intervals. We could extend the implementation

of IBMon to require monitoring of the VM’s original read request (by forcing traps

whenever the read call memory page is accessed), or we can monitor and timestamp

all work requests, and then match the CQE with the corresponding WQE to get a

better estimate of the bandwidth. However, both of these alternatives still include

asynchronous monitoring, and hence would not guarantee accuracy, and furthermore

are computationally significantly more complex, or, in the case of the first one, even

require inserting significant fast path overheads.

Therefore IBMon uses an approach that dynamically tunes the monitoring inter-

val to the buffer size used by the VM. The interval is reduced in the event of small

buffer sizes and increased when the VM reads/writes large buffers. Determining that

the interval should be increased whenever IBMon determines bandwidth values above

the IB limits is intuitive, however it is significantly more challenging to determine the

adequate rate at which is should be modified, and when it should be decreased again.

Assigning significantly large monitoring intervals, at the data rates supported by IB,

will result in significant margins of error of the monitoring process, and will generate

excessive amount of CQ entries to be processed in each monitoring iteration. There-

fore we rely on the buffer size value, i.e., the monitoring granularity, to determine

how to adjust the monitoring interval. For very small monitoring intervals the extra

memory access can be avoided by using the fabric bandwidth limit as an indication

that the interval should be increased. While the current bandwidth estimation mech-

anism used by IBMon uses this approach, we will further evaluate and compare other

alternatives.

23

3.6 Experimental Results

Next we present the results from the experimental evaluation of IBMon, aimed at

justifying the suitability of the design to asynchronously monitor VM’s usage of VMM-

bypass capable devices such as IB HCAs and the feasibility to attain estimates of such

usage with reasonable accuracy.

3.6.1 Testbed

The measurements are gathered on a testbed consisting of 2 Dell 1950 PowerEdge

servers, each with 2 Quad-core 64-bit Xeon processors at 1.86 GHz. The servers

have Mellanox MT25208 HCAs, operating in the 23208 Tavor compatibility mode,

connected through a Xsigo VP780 I/O Director switch. Each server is running the

RHEL 4 Update 5 OS (paravirtualized 2.6.18 kernel) in dom0 with the Xen 3.1

hypervisor.

The guest kernels are paravirtualized running the RHEL 4 Update 5 OS. Each

guest is allocated 256 MB of RAM. For running InfiniBand applications within the

guests, OFED (Open Fabrics Enterprise Distribution) 1.1 [100] is modified to be

able to use the virtualized IB driver. Both Xen and the OFED drivers have already

been modified by us, so as to be able to efficiently support multiple VMs on IB

platforms [114]. The workloads are derived from existing RDMA benchmarks part of

the OFED distribution.

3.6.2 Monitoring Frequency

The first set of measurements illustrates the relationship between the buffer sizes used

by the VM’s operation and the monitoring interval for two different buffer sizes. The

measurements are gathered by monitoring a single VM and show the bandwidth re-

ported by IBMon and the bandwidth reported by RDMA Read benchmark executing

in the VM. The benchmark performs 20000 iterations of an RDMA read operation

for a given buffer size. We vary the monitoring interval from 1 to 1000µs – larger

24

���

����

�����

������

���� ����� ����� ������ ������ �������

�
��
��
��
��
��
��
��
��
��
�
��
��

�������������

���������

����������

(a) 64KB

����

�����

������

�������

� �� �� ��� ��� ����

�
��
��
��
��
��
��
��
��
��
�
��
��

�������������

���������

����������

(b) 128KB

Figure 4: Tracking Application Bandwidth with IBMon for 64KB and 128KB buffer
sizes with different monitoring intervals.

monitoring intervals resulted in excessive amounts of CQ entries.

As seen in the graphs in Figure 4, for very small intervals relative to the buffer

size, and therefore the byte count used by IBMon to compute the bandwidth estimate,

IBMon reports the maximum bandwidth supported by the IB fabric. This is also used

by IBMon to trigger an increase in the monitoring interval. For monitoring intervals

which are too large relative to the fabric bandwidth and therefore the buffer size

transmitted with each read request, IBMon significantly under performs – at each

iteration multiple CQEs are associate with the same, much later timestamp used to

then estimate the bandwidth for the total number of bytes, resulting in up to an order

of magnitude lower estimates for the largest time interval shown in Figure 4. More

importantly, however, the graphs show that in both cases there are interval values

for which IBMon performs very well, and only slightly underestimates the actual

bandwidth usage by the VM. Using similar data for other buffer size we can either

experimentally determine the adequate interval for a range of buffer sizes, which can

then be used by IBMon, or compute its bounds based on the fabric bandwidth limits.

3.6.3 Feasibility

Next, for different monitoring granularities, i.e., different buffer sizes and the cor-

responding interval values, we evaluate the accuracy with which IBMon is able to

25

��

����

����

����

����

�����

�����

�����

����� ����� ����� ������

�
��
��
��
��
��
��
��
��
��
�
��
��

����������������

���������

����������

Figure 5: Accuracy of IBMon for different
monitoring granularities

��

��

��

��

��

���

���

���

���

���

����� ����� ����� ������

�
��
���
��
��
��
��
��
�

����������������

�������������

����������

Figure 6: IBMon overheads for different
monitoring granularities

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

B
an

d
w

id
th

 (
M

B
p

s)

Samples

Dynamic Bandwidth – 1VM

IBMon BW

Benchmark BW

Figure 7: Ability to respond to dynamic
changes in the VM behavior

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

B
an

d
w

id
th

 (
M

B
p

s)

Samples

Dynamic Bandwidth - MultiVM

No Throttle (VM1)

Throttle: 50 req/s (VM2)

Throttle: 100 req/s (VM3)

Figure 8: Ability to monitor multiple VMs
with different behaviors

estimate the VM’s utilization of the device resources. The graph in Figure 5 indi-

cates that at fine granularity, IBMon does face some challenges, and its accuracy is

only within 27% of the actual value. However for larger buffer sizes (which is often the

case for HPC applications), and therefore longer monitoring time intervals, IBMon

is able to estimate the bandwidth quite accurately, within up to 5% for some of the

data points in the graph.

3.6.4 Overheads

For each of the monitoring granularities used above, we next measure the overheads of

using IBMon. IBMon is deployed as part of dom0, and as such it is executing on a core

26

separate from the guest VM. First, it is likely that in virtualized many-core environ-

ments such management functionality will typically be deployed on designated cores.

Second, a lot of the processing overhead associated with the current implementation

of IBMon is due to the fact that it does have to perform additional computation to

estimate the bandwidth, whereas with appropriate hardware support that overhead

will be significantly reduced. One overhead which will remain is the fact that IBMon

does rely on frequent memory accesses for the monitoring operations, and as such it

will impact the application performance due to memory contention. Since the pages

are mapped as read-only into IBMon’s address space the issue of data consistency

will not arise.

In order to evaluate this impact we compare the execution of the same benchmark

with and without IBMon. The results shown in Figure 6 indicate any increase in the

VMs execution time is virtually negligible, and that therefore IBMon’s overheads are

acceptable.

3.6.5 Ability to respond to changes in VM behavior

By dynamically monitoring the frequency of the completion events and the buffer

sizes used in the RDMA operations, IBMon attempts to determine the monitoring

granularity and to adjust the rate at which it samples the VMs’ buffer queues. In

order to evaluate the feasibility of the approach we modified the RDMA benchmark

to throttle the rate at which it issues the read requests and thereby lowered its

bandwidth utilization. The graphs in Figure 7 compare the bandwidth measured by

the benchmark vs by IBMon and we observe that IBMon is able to detect the changes

in the VM behavior reasonably quickly.

3.6.6 Scalability with Multiple VMs

The above measurements focused on evaluating IBMon’s ability to monitor a sin-

gle VM. Next we conduct several experiments involving multiple VMs in order to

27

��

����

����

����

����

�����

��� ���

�
��
��
��
��
��
��
��
��
��
�
��
��

���������

���������

����������

(a) 2 VMs

��

����

����

����

����

�����

��� ��� ���

�
��
��
��
��
��
��
��
��
��
�
��
��

���������

���������

����������

(b) 3 VMs

��

����

����

����

����

�����

��� ��� ��� ���

�
��
��
��
��
��
��
��
��
��
�
��
��

���������

��������� ����������

(c) 4 VMs

Figure 9: Accuracy of IBMon in terms of average bandwidth when monitoring mul-
tiple VMs

assess the feasibility of concurrently monitoring multiple buffer queues and to track

monitoring information corresponding to multiple VMs.

First, the graphs in Figure 9 show IBMon’s accuracy in concurrently monitoring

multiple VMs. We observe that although IBMon now is responsible for tracking

multiple queues and maintaining information for multiple VMs, it is still capable of

estimating the behavior of each of the VMs with acceptable accuracy levels. The

current estimates are within 15% of the actual value, we do believe that there are

significant opportunities in this initial implementation of IBMon to further improve

these values.

Next, the measurements in Figure 8 show that in the multi-VM case IBMon is able

to respond to dynamic changes in individual VMs. For these measurements we use

the modified RDMA Read benchmark and for VMs 2 and 3 we throttle the request

rate to a lower value. The measurements do show that IBMon does not respond to

28

��

��

��

��

��

���

���

���

���

���

��� ���

�
��
���
��
��
��
��
��
�

���������

�������������

����������

(a) 2 VMs

��

��

��

��

��

���

���

���

���

���

��� ��� ���

�
��
���
��
��
��
��
��
�

���������

�������������

����������

(b) 3 VMs

��

��

��

��

��

���

���

���

���

���

��� ��� ��� ���

�
��
���
��
��
��
��
��
�

���������

������������� ����������

(c) 4 VMs

Figure 10: Overheads of IBMon when monitoring multiple VMs

the behavior changes very rapidly, but we believe that evaluating methods to more

aggressively tune the frequency interval (e.g., such as those used in AIMD in TCP)

will result in additional improvements in its responsiveness.

Finally, the results presented in Figure 10 demonstrate the acceptable overheads of

IBMon as it concurrently monitors multiple VMs, again by comparing the benchmarks

execution time with and without IBMon. While, as expected, the overheads do

increase as we increase the number of VMs, and queues IBMon has to monitor, their

impact on the VMs execution is still on average within 5% of the original performance

levels.

3.7 Chapter Summary

In this chapter we describe our novel monitoring utility for InfiniBand adapters,

termed IBMon, which enables asynchronous monitoring of virtualized InfiniBand de-

vices – an example of VMM-bypass devices heavily used in the HPC community. In

29

the absence of adequate hardware-supported monitoring information, IBMon relies

on VM introspection techniques to detect ongoing VM-device interactions and their

properties (i.e., data sent/received, bandwidth utilized, or other properties of the data

transfers). Such information can then be used for platform management tasks, such

as to adjust a VM’s CPU or memory resources, or to trigger VM migrations. Exper-

imental results demonstrate that IBMon can asynchronously monitor VMM-bypass

operations with acceptable accuracy, and negligible overheads, including for larger

number of VMs, and for VMs with dynamic behavior patterns.

While IBMon is implemented for InfiniBand devices virtualized with the Xen

hypervisor, its basic concepts and methods generalize to other devices and virtual-

ization infrastructures. Of particular importance are the novel ways in which the

virtualization layer asynchronously monitors VM-device interactions that bypass the

VMM (i.e., for high performance), and the insights provided regarding requirements

for hardware supported monitoring functionality.

30

CHAPTER IV

FARES: FAIR RESOURCE SCHEDULING FOR

VMM-BYPASS INFINIBAND DEVICES

In this chapter, we present our resource management system, FaReS that leverages

the I/O usage information from IBMon on communication-intensive applications to

provide fairness-based I/O resource allocations. We show a direct correlation between

the amount of CPU allocated to the I/O characteristics of a VM. This allows us

to dynamically provide fairness guarantees by controlling I/O usage through CPU

allocations.

4.1 Challenges for communication-intensive workloads

Parallelism in modern multicore platforms, along with advances in hardware-level

support for virtualization, are enabling increased levels of VM consolidation in large-

scale data center systems. This implies there will be runtime competition for platform

resources, as well as increased levels of dynamism in resource usage. Exacerbated by

the spectrum of workloads in the applications being consolidated, these variations can

threaten the performance of applications running on shared platforms. An important

approach to dealing with this issue is to actively monitor and supervise at runtime [71]

the ways in which platform resources are used.

Online monitoring and management take place at multiple levels of data center sys-

tems, starting with hypervisor-level fairness and isolation guarantees [16], continuing

with rack-level provisioning [50], and extending to data center-level load management

for meeting application-level SLAs within global usage or power constraints [95]. We

address the hypervisor-level fairness guarantees which provides the basis for effective

31

data center management. In this chapter we use the term fairness to denote the ratio

of decrease of application performance when collocated with other applications on

the same platform.

Our work addresses high performance backend systems and applications, assum-

ing hardware environments that combine powerful processors with high throughput,

low latency system area networks like InfiniBand or 10Gig Ethernet. To efficiently

utilize such hardware, modern hypervisors provide methods that permit VMs to di-

rectly access these high end communication devices, termed ‘hypervisor bypass’ in

literature [51, 78]. While providing high performance, unfortunately, such solutions

also prevent hypervisors from monitoring and supervising device usage by applica-

tions. As a result and as shown in this chapter, it becomes difficult or impossible for

hypervisors to provide the fairness and isolation guarantees required for successful

application consolidation. Specifically, the hypervisor (1) loses its abilities to dynam-

ically gain direct insights into the bypass device usage behaviors of guest VMs, and

(2) it cannot prevent device mis- or over-use by some VMs at the potential expense of

other virtual machines. The use of static approaches that rely on worst case estimates

of VM device usage, of course, would result in low device utilization, which prevents

aggressive consolidation and the consequent power and cost savings.

Management of VMM-bypass-enabled Devices. The challenge addressed in

this work is how to ‘dynamically’ manage high performance I/O devices, such as In-

finiBand adapters and emerging multi-queue 10GigE NICs. In contrast to traditional

devices that are under the complete control of the virtualization software (e.g., via

device drivers integrated in the hypervisor [131] or running in a special (driver) do-

main [16]), for high performance devices like InfiniBand, high performance solutions

exploit device-level support to safely map portions of the device’s resources into guest

VMs, thereby allowing direct VM-device interactions and bypassing the hypervisor,

i.e., hypervisor bypass. As a result, the hypervisor is no longer involved on the I/O

32

fastpath, and is used only in setup, termination, and for similar control plane opera-

tions. Therefore, it can no longer control the performance impact of the shared use

of device resources by multiple VMs.

Table 1: Performance Impact of MG NAS with RDMA Write benchmark.

Config RDMA Write MG-4
(MFlops/s)

RDMA Write MG-8
(MFlops/s)

MBps Reqs/sec MBps Reqs/sec

Separate 929.86 414.64 2538.25 929.86 414.64 2479.6

Table 2: Performance of NAS benchmarks.

IS CG

Separated 14.57 4.13

Consolidated 28.48 4.29

Decrease% 95.47 3.87

A hypervisor’s inability to supervise application resource usage can adversely affect

application behavior, as demonstrated by the measurements shown in Table 1. We

perform comparisons between two types of workloads – an RDMA Write benchmark

and 2 configurations of the NAS MultiGrid benchmark: MG-4 and MG-8 (where

the number shows how many processes are used). In our configuration, the RDMA

Write benchmark uses 2VMs (one server, one client), while the MG benchmark is run

with a set of 4 VMs. Our platform consists of a pair of Xen hosted servers (more

details about the platform appear in Section 4.6). The row labeled ‘Separate’ shows

the performance when each benchmark is run on the platform with no additional

load. The row labeled ‘Consolidated’ shows the performance of the two types of

benchmarks when consolidated onto the same platform in a manner that equally

33

distributes all platform resources. The goal, of course, is to fairly share the single

platform used by both applications, and to attain this goal, we allocate as much CPU

to each benchmark so the degradation in performance is according to the priorities

of the VMs. Unfortunately, because the applications share an unsupervised bypass

device, they do not actually receive their desired fair shares of the device. Instead,

experimental results clearly indicate that the I/O intensive RDMA write VM is able

to continue to obtain most of its required I/O resources, thereby ‘thrashing’ the

MultiGrid VM’s communications. In fact, the performance of the latter is degraded

by almost 40%. In the ideal case, given the same priorities of both applications, they

should have seen same performance degradation.

Additional results in Table 2 show that this issue exists not only when one of the

VMs executes an aggressive I/O application such as RDMA Write. These results are

gathered for 8 VMs running the Integer Sort (IS) and the Conjugate Gradient (CG)

benchmarks from the NAS suite, when executing individually vs. consolidated on the

same platform, with 4 VMs per benchmark and a VCPU for each VM. When the

benchmarks are run on the same platform, the Xen scheduler should load balance the

CPUs fairly and the HCA should service each VM in a fair manner. However, we see

that IS suffers an almost 50% drop in performance, while CG performance remains

almost unchanged. This can be attributed to the fact that the I/O behavior of the

CG benchmark interferes with the communications of the IS benchmark. To attain

fairness, therefore, the benchmark must be ‘throttled’ to issue requests in a controlled

manner in order to restrict interference between the benchmarks.

FaReS. The FaReS approach to Fair Resources Scheduling for VMM-bypass capable

devices described and evaluated in this chapter uses:

• asynchronous, external monitoring – to continuously monitor all VM-device

interactions, externally and without the need to interpose virtualization software

into the VM-device fast path, implemented via

34

• VM memory introspection – to interpret the VM’s utilization of device resources,

and coupled with runtime management that uses

• cap boost – to indirectly control a VM’s level of device usage and prevent mis-

use, by dynamically altering the allocations of resources under the hypervisor

control, i.e., CPU cap.

High performance is attained because FaReS does not “mediate” all VM-device

accesses, but uses a monitoring daemon to asynchronously gather information about

device usage. The daemon is not interposed in device communications, either, but

uses VM memory introspection to assess current device usage. In this approach,

FaReS monitors the state of the VM’s memory used by the VM-level device stack

and/or the device itself, from which it then infers the device usage data. FaReS then

uses this information to adjust the CPU allocations of the VMs sharing the bypass

device, using a CPU chargeback mechanism computed from VMs’ device usage data.

This work applies the approach to InfiniBand devices, but similar methods can be

used for any bypass device.

FaReS is implemented for platforms virtualized with the Xen hypervisor, and it

is evaluated with RDMA and NAS microbenchmarks, as well as with an MPI-based

Map-Reduce application. Experimental results demonstrate that for mixed HPC-

related workloads, the use of FaReS degrades application performance modestly, while

at the same time, attaining substantial improvements in application fairness. FaReS

can provide desired levels of fairness between applications very accurately (within

2%) and achieves this with less than 1% overhead.

Newer bypass devices like InfiniBand may offer hardware improvements that fa-

cilitate the implementation of FaReS monitoring and chargeback. First, concerning

monitoring, there will likely be device-level counters useful to the hypervisor for com-

puting realistic device usage data. Such counters could be used to better determine

application-level message or request rates (note that each application-level message

35

may be comprised of multiple device-level requests). Second, next generation In-

finiBand devices already enforce prioritization and isolation via hardware-supported

Virtual Lanes. While these allow control over physical link allocations, the number

of Virtual Lanes as well as the number of physical Queues for Multi-device Queue

Devices are limited, thereby also limiting VM consolidation in terms of the number of

VMs’ communications mapped to these Virtual Lanes/Queues. The FaReS approach

can be used to remove such limits.

The remainder of the chapter is organized as follows. In Section 4.2 we discuss

certain additional techniques that are used by FaReS. In Section 4.3, using exper-

imental data, we discuss the impact of various types of VM I/O behaviors on the

performance of other concurrently running workloads, and we establish guidelines for

detecting and controlling such I/O thrashing. Section 4.4 provides an overview of how

FaReS interacts with hypervisor and IBMon. Section 4.5 describes the chargeback

mechanisms used in FaReS. Experimental evaluations are discussed in Section 4.6.

We present a summary of the chapter at the end.

4.2 Xen Credit Scheduler

At its core, FaReS utilizes the memory introspection capabilities of IBMon and the

memory management APIs described in Chapter 3. The additional techniques used

by FaReS to control VM allocations are mentioned here.

The Xen scheduler [140] provides an interface to set the CPU values for the re-

quired VMs. We use this interface with the IBMon tool to set the value. Internally,

each VM is assigned credits at its startup (100). These credits are deducted ev-

ery clock tick (10ms) and the VM is preempted at the scheduling interval (30ms).

Depending on whether the credits are positive or negative, the VM’s priority is set

to Under or Over. The scheduler will first try to run the VMs in the respective

VCPU runqueue in the Under priority. If no such VM is present, it will run a VM in

36

the Under priority from another VCPU runqueue followed by the local VCPU run-

queue in Over priority and finally by the remote VCPU runqueue in Over priority.

When the CPU cap value is set for a VM, the credits are assigned accordingly. We

interact with the XenStat library to get VM related information as well as to set the

CPU caps.

4.3 Understanding I/O Thrashing in RDMA-enabled De-
vices

To control the utilization of CPU and I/O resources, we must be able to determine

at runtime the extents to which such resources are used. For CPUs, counters offered

by hardware and accessible to hypervisors continually assess resource usage. For high

end I/O devices like InfiniBand, however, devices asynchronously carrying out VMs’

requests do not provide hypervisors with detailed insights into their operation. In

fact, our previous work with IB devices has shown that in the absence of accurate

device-level timestamps, it is impossible to accurately determine the I/O bandwidth

utilized by a VM at any given point [110]. Similarly, while it may be possible to

determine average I/O (bandwidth) utilization at some time scale, such assessments,

when made on the wrong time scale can be misleading and will lead to inadequate

resource management actions. We next use several examples to better characterize the

relationship between various properties of the I/O behavior of a VM, their impact on

the performance of other co-located workloads, and the utility of using such properties

to represent trends in the VM’s bandwidth utilization. The goal is to then use these

insights, by monitoring changes in those multiple properties of the I/O accesses of a

given VM, to infer information regarding the VM’s bandwidth and device usage.

Buffer Size. Figure 11 shows the performance of the RDMA Write benchmark for

two different application behaviors. These two application instances are run between

two VMs each (a client and server for each application). Here, both VMs have the

same amounts of resources (CPU, memory, I/O). We compare two cases: one in which

37

��

����

����

����

����

�����

������ ����

�
��
��
��
��
��
��
��
��
��
�
��
��

�����������

��������������

����������

Figure 11: Average RDMA Write BW for different application behaviors.

Table 3: Request issue, completion times for different buffers with CPU caps.

CPU Ratios 100:100 75:75 50:50

Buffer Size 2KB 2MB 2KB 2MB 2KB 2MB

Issue Time (s) 0.034 21.44 0.044 21.5 0.103 21.61

Average BW (MBps) 448.44 932.67 445.74 926.34 188.77 927.01

Total Time (s) 1.52 22.93 2.05 23.51 3.11 24.54

both VMs send the same number of requests (10K) and a second one in which they

send the same amount of data (number of requests times the buffer size). In the first

case, the VM with a 2MB buffer size prevents the VM with the 128K buffer from

reaching maximum bandwidth, thereby ‘thrashing’ it. In the second case, the 128KB

VM issues 160K requests to send the same amount of data as the 2MB VM. This

results in the reverse problem, where the 2MB VM gets thrashed by the 128KB VM.

When applications with smaller buffer sizes are used jointly with applications with

larger buffer sizes, measurements presented in Table 3 make apparent that the ‘small

buffer’ VMs may get thrashed. Here, both VMs issue 10K requests, where issue time

38

is the amount of time spent in posting requests and checking for completions. The

figure shows that for the small buffer (2KB) VM, the issue time is much less than for

the ‘large buffer’ (2MB) VM. This is because for the 2KB VM, the actual completions

of requests may occur before the checking of completions has been performed. This

is due to the asynchronous nature of InfiniBand and the lack of hardware timers

for timing completed requests. When the CPU cap is decreased, the effect becomes

more pronounced for the 2KB VM, because it may complete more or less the same

number of requests in the scheduling interval but may not also get time to check for

completions in that interval; this has a negative effect on its issue time. For the 2MB

VM, it can still issue almost the same number of requests, which better exploits the

DMA ability of the HCA and hides the fact that the VM is not always scheduled to

run.

From these measurements, it is clear that a device operating asynchronously ‘on

behalf’ of a VM cannot be assumed to naturally emulate with its behavior the VM’s

processing behavior enforced by the hypervisor’s CPU scheduler. To attain fairness

and isolation for VMs’ device usage, therefore, we must find ways to control the data

transfers performed by different VMs and/or ways to prevent such transfers from

affecting each other, as per VMs’ priorities. To do so without requiring new device

capabilities or changing device drivers, we choose the ‘indirect’ method of control

by which we penalize VMs that make excessive use of the device in terms of their

ability to run and issue additional device requests. Naively, for an application to

issue X number of requests in an interval, it needs Y% of the CPU. By decreasing the

CPU to Y/2, we expect that the number of requests issued would decrease by some

appropriate fraction (X/2 in the linear case).

Transmission Depth. Figure 12 demonstrates the effect on bandwidth when the

CPU allocation is changed along with changes in the transmission depth for the

benchmark. Here, by transmission depth we mean the number of requests issued in a

39

��

����

����

����

����

�����

�� ��� ��� ����

�
��
��
��
��
��
��
��
��
��
�
��
��

������������������

�������� ������� �������

Figure 12: Effect on Average BW by Transmission Depth and CPU Caps

single loop without checking for completions. The figure shows that even when little

CPU is allocated, for a large enough transmission depth, the application’s average

bandwidth is nearly equal to the Peak bandwidth. We attribute this to the size of

the Xen scheduling time slice (10ms), which is large enough for the application to

post these requests. Since the data transfer happens ‘outside’ the VM world, it is

not included in the scheduling accounting, thus giving the application much higher

bandwidth. For smaller transmission depths, the check for completions may happen

in the next schedule phase, and the application infers that the small datasize takes the

whole timeslice to transfer, resulting in a lower bandwidth. Lowering the CPU cap

effectively translates to decreasing the time slice, resulting in a much lower bandwidth.

The peak bandwidth reached across all configurations is about 932 MBps.

For each request issued in a loop, there is a corresponding completion entry written

in the memory by the HCA. As the transmission depth is increased, the number of

entries increase and may span multiple pages. By monitoring these pages we can infer

device utilization changes. Then we use this information to adjust CPU caps.

Communication vs. Computation Ratio. To demonstrate the potential impact

40

��

���

���

���

���

����

����

���� �� �� �� ��

�
��
�
��
��
��
��
��
��
��
��
��
��

��

�������� ������� �������

Figure 13: Variation in Application Performance with different Communication and
Computation ratios under CPU cap changes.

of the VMM scheduler, we modify the existing RDMA Write benchmark to include a

MD5 computation. After the RDMA Write is performed, the client computes a MD5

hash on the data in the buffer before sending it. We choose the MD5 hash function

as it is simple to include in the test as well as it scales with the size of the input data

thus varying the compute times for the benchmark.

In Figure 13, we observe that depending on the amount of computation vs. com-

munication, the application’s sensitivity to changes in the CPU cap differs. The

percentage in the graph corresponds to the time the application spends in posting

sends as well as polling for completions. The remainder of the time is the compu-

tation time for MD5. We subtract the setup time for the QPs, CQs, etc. from the

total time. For decreasing percentages of communication we increase the number of

MD5 hash computations in a linear fashion. For the percentage of 97.5 we do not use

the MD5 hash. The figure shows that as the communication percentage decreases i.e.

computation to communication ratio increases the effects of the VMM scheduler on

the performance of the application/VM is more visible. The performance decrease

41

matches the decreasing CPU cap for the VM.

By understanding the application’s communication or computation ratio, we can

infer the impact of the reduction of the CPU cap on the performance of the applica-

tion/VM. Depending on the priority of the VM, we dynamically adjust the caps for

the VMs. For example, a low priority communication intensive VM will get much

reduced CPU cap, since we know that the impact on the VM performance will not

be large. On the other hand, for a compute intensive high priority VM, maximum

CPU will be allocated depending on the current system load.

Summary of Observations. The above experiments show that an application’s

bandwidth may not be dependent solely on its CPU usage. Other application-level

parameters, like number of completed requests and buffer size, also affect the appli-

cation’s performance. When determining the amount of CPU to be allocated to an

VM, we therefore also use the buffer size and ‘fullness’ of the entry page as additional

indicators concerning the utilization of the HCA by the VM. Depending on the VM’s

communication/computation ratio the above information is used to affect the VM’s

CPU usage by different levels of the entry page. Specifically, we charge time back’ to

the VM, where the amount charged back depends on its buffer size (as motivated by

the measurements shown above). We term the resulting algorithm the ‘Cap Boost’

method, discussed in detail in Section 4.5.

4.4 FaReS Overview

Figure 14 represents the key components of the FaReS software architecture, more

specifically, our current prototype implementation of FaReS for platforms with In-

finiBand I/O devices, virtualized with the Xen hypervisor. In order to monitor the

VM-device interactions, FaReS relies on a monitoring utility - IBMon [110]. IBMon

relies on dynamic introspection of the guest VMs’ memory used by their OFED stacks

42

virtual HCA IF 

IB app 

VMM (Xen)  

mapped 
VM memory 

other events from 
hardware, VMM… 

InfiniBand HCA  

virtual HCA IF 

guestVM 

IB app 

guestVM 

IB buffer  
queues  

bypass  
channel 

control domain (dom0)  

XenControl IF  XenStat Lib 

Cap 
Booster 

IBMon  per 
VM 
state 

FaReS 

Service Level, 
FaReS parameters 

To Management 
U8li8es 

Figure 14: FaReS Software Architecture

to asynchronously extract information regarding their I/O usage, and is further de-

scribed in Chapter 3.

The ‘Cap Booster’ component of FaReS is responsible for controlling the CPU

allocations for a particular VM, based on information provided by IBMon, along with

additional inputs regarding existing system loads, domain information (e.g., priorities,

past resource usage, etc.). This component uses the concept of ‘Cap Charge-Back’,

where the VM’s CPU cap is reduced when it sends too much data. This algorithm is

presented in more detail in Section 4.5.

FaReS relies on the hypervisor-level APIs for interacting with the resource man-

agement entities on the virtualized platforms. For our prototype realization of FaReS,

these include the XenControl and XenStat libraries. The XenStat library is used to

get/set the CPU allocations and domain information. The XenControl library is

43

used to map the pages from the guest VM to FaReS for monitoring. FaReS can

also be augmented to take more external inputs from system administrators to tweak

the performance of the system depending on the policy required. FaReS has certain

parameters that can be changed, to make scheduling more aggressive or more conser-

vative. Also, it takes the various priorities of the VMs as input to provide different

levels of service. FaReS relies on a set of parameters that can be modified to make

the scheduling more aggressive or more conservative. In the latter case, the primary

objective of FaReS is to manage the performance degradation experienced by VMs

as a result of consolidation with other VMs, at potentially different priority levels, as

opposed to aggressively reduce the resources allocated to the existing workloads, so

as to potentially permit the collocation of other VMs or to attain other benefits, such

as reduced energy requirements.

FaReS interacts with IBMon (Chapter 3) to determine the current number of

requests completed by a running VM. FaReS uses this in its Cap Booster component

to determine how to adjust the CPU allocation for the VM. FaReS maintains a ‘per

VM state’ to keep track of requests completed, current CPU usage, CPU cap assigned.

Also, FaReS provides an interface to higher level management tools for retrieving the

monitored data and can be used to couple the monitoring information with large-scale

‘cloud’ management utilities.

4.5 FaReS Cap-Boost Scheduling

Cap-Boost Scheduling tries to provide certain VM-level guarantees to maintain a fair

share of resources. We attempt to proportionally share the platform resources between

contending applications/VMs with the objective of maximizing the performance of

the higher proportioned application while maintaining a lower-bound performance

for other resource-contending applications. The proportion can be decided by system

administrators and forms an input to the algorithm. We define ‘Fair Share’ for such

44

Algorithm 1 Algorithm for FaReS Cap-Boost Scheduler.

1: Start with unbounded resource allocation for all VMs
2: IBMon provides the Requests Completed (reqs) and Time required to send 1

request (t1req)
3: Use different levels of fullness of CQ page (High Level - HL, Medium Level - ML,

Low Level LL)
4: function FindCPUBoost(reqs, t1req)
5: if reqs > HL then
6: cap boost = α ∗ reqs ∗ t1req
7: else if reqs > ML and reqs < HL then
8: cap boost = β ∗ reqs ∗ t1req
9: else if reqs > LL and reqs < ML then
10: cap boost = γ ∗ reqs ∗ t1req
11: else if reqs < LL then
12: cap boost = δ ∗ (MAX REQs− reqs) ∗ t1req
13: end if
14: return cap boost
15: end function
16:

17: Current load = Get Running CPU percent from xenstat
18:

19: if VM = highpriority and Current load < MAX LOAD and reqs > HL then
20: cap boost = MAX REQs ∗ t1req
21: else if VM = lowpriority then
22: cap boost← FindCPUBoost(reqs, t1reqs)
23: end if
24:

25: Add cap boost to current VM cap

VMM-bypass enabled systems by regulating the amount of degradation perceived by

the VM. In our algorithm the VM degradation is inversely proportional to the share

of resources given to the VM – i.e., a higher share of resources (credits) will result

in lower degradation. This share of resources is the resource proportion (RP), which

is allocated by the administrators. For example, if we allocate a RP of X:Y for the

VMs V1 & V2 respectively, we expect that for every X% performance reduction in

V2 there is Y% performance decrease in V1.

This section describes the ‘Cap Boost’ Algorithm 1 that we have used in FaReS.

The algorithm is a scheduling engine which takes as inputs the VMs’ communication

45

(completed I/O requests), computation (CPU credits and caps), proportionality re-

quirements, system parameters (CPU loads and bandwidth), and outputs resulting

(adjustments to) VMs’ CPU allocations.

In order to account for the I/O requests the algorithm uses a ‘charge-back’ mech-

anism, where it penalizes the VM for sending an excess of data beyond its allocated

proportion. We claim that a charge-back mechanism is appropriate for such VMM-

bypass devices since the CPU/OS/VMM is not responsible for the data transfer, but

instead, it is performed by the HCA (in case of IB). Thus, it also could be said that

the VM effectively ‘gains’ time by not participating in the data transfer. By ‘charging

back’ this CPU amount to the VM we aim to throttle the request rate of the VM.

The amount of ‘charge back’ also depends on the resource proportion assigned to

the VMs, where a VM with lower resources will be penalized more for sending excess

data. The algorithm determines this excess data by scanning the CQ for number of

requests completed. It uses weighted parameters called ‘Scalers’ for different values

of excess data. These ‘Scalers’ denoted by α, β, γ, δ exist for different numbers of

completed requests in the CQE page. They can be positive or negative which results

in the appropriate boost. The algorithm uses these parameters to tune the decrease

in CPU ‘charge back’. For example, a VM with very large number of CQEs needs to

be charged back more in order to reduce its request rate. We determine the value for

these ‘scalers’ empirically for a given set of VMs. The algorithm also uses another

parameter called ‘t1req’ to calculate ‘charge back’. The ‘t1req’ parameter depends

on the buffer size and corresponds to the time required to send a request. Also, the

‘Scalers’ allows us to tune the aggressiveness of the algorithm as more CPU can be

reclaimed from the VM.

46

��

���

���

���

���

����

����

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
��
��
�
��
��
��
��

������������������

�������������������������
����������������������

�������������������������
����������������������

Figure 15: Requests Completed change for High/Low Priority VMs with FaReS.

4.6 Experimental Evaluation

The testbed consists of two Dell PowerEdge 1950 servers. One server has dual-socket

quad-core Xeon 1.86GHz processors, while the other has dual-socket dual-core Xeon

2.66Ghz processors (in total 12 cores). Both servers have 4GB of RAM. Mellanox

MT25208 HCA (memfull cards) cards are used in both the machines which connected

via a Xsigo VP780 I/O Director Switch. We are using a recent Xen 3.3 unstable

distribution on both the servers. Also, both the servers are running the same para-

virtualized Linux kernel running in dom0. The InfiniBand modules we used in [114]

have been updated to run under the new Linux 2.6.18.8 kernel and Xen 3.3. The

guest OS’ are configured with 512 MB of RAM and have the OFED-1.1 distribution

installed. This distribution has been modified to run inside the guest VM. We are

also running the OFED-1.1 distribution in the dom0s. We use OpenMPI version 1.1.1

in all our VMs as well as dom0s.

To demonstrate the utility and effectiveness of FaReS we evaluate the system on

a mixture of RDMA-based benchmarks, NAS Parallel Benchmarks [92] and a sample

application based on the MPI Map-Reduce paradigm.

47

��

���

���

���

���

����

����

����

����

����

���������� ������������� �������������

�
��
�
��
��
��
��
��
��
��
��
��
��

������������

������

������

������

��������

Figure 16: Normalized Performance of RDMA Write and MultiGrid with FaReS.

4.6.1 FaReS Behavior

Figure 15 shows the change in the requests completed for low and high priority VMs

with and without FaReS running over continuous time samples. The samples are

collected for a low priority VM part of Integer Sort (IS) benchmark set of VMs and

a high priority VM part of the MultiGrid (MG) benchmark VMs. All the other

VMs which are part of the running benchmark exhibit similar behaviors. The figure

shows that when FaReS is not running the MG benchmark does get thrashed by

the IS benchmark and has a low request completion rate. With FaReS there is

considerable improvement in the requests completed for the MG benchmark, which

remain constant throughout the experiment while the requests of IS are completed

at a slower rate.

4.6.2 Application Performance

The next set of measurements demonstrate FaReS’ ability to control the impact of

consolidation and limit the performance degradation experienced by VMs to levels

which are proportional to their relative priorities.

48

RDMAWrite vs. MG. In Figure 16, we show the MultiGrid and RDMA Write

benchmarks running in multiple VMs. The RDMA-Write benchmark is configured to

run in 2 VMs (1 server, 1 client). The MultiGrid-4 and MultiGrid-8 are 2 different

configurations with 4 and 8 processes we ran for the benchmark in 4 VMs. We

compare the performance of the application with and without FaReS in place with

the original performance (“Required”) when the benchmark is run by itself with no

additional load. FaReS is not involved in the baseline “Thrash” configuration, and

all VMs compete for resources. We use two cases to illustrate how FaReS affects the

application performance with different priorities.

In the SL (Service Level) 1/1 case FaReS manages the two benchmarks, both

executing at high priority and FaReS tries to provide an equal set of resources. Even

for this case, we observe improved performance compared to the baseline case. Since

FaReS can ‘’throttle’ the I/O requests and thereby affect when the request reaches

the HCA. The HCA is not inundated with requests as is with the non-FaReS case and

has lesser number of outstanding requests. This results in FaReS providing a degree

of overlap of communication and computation phases of the VM.

For SL 0/1 the RDMA Write benchmark is run at low priority and FaReS will

aggressively try to reduce resources for it. We observe that the performance of the

high priority MG benchmark is improved significantly more compared to the baseline

case, and that the performance of the low priority RDMA write benchmark is affected

more compared to the SL 1/1 case.

NAS Benchmarks Performance. Figure 17 shows the performance of various

pairs of NAS benchmarks when run in a consolidated manner without FaReS as

well as with FaReS for different ratios of Resource Proportions (1:1, 5:1, 10:1). The

application marked as (B) is run as a background application and is assigned the lower

set of resources. Here the background application is run continuously till the main

application finishes. The labels on the bars indicate the performance degradation ratio

49

��

���

���

���

���

����

����

�������� ��� ��� ����

��������

��������

��������

��������

�
��
��
���
��
��
��
�
��
��
��
���
�

�������������������

������ ����������

(a) BT vs. CG

��

���

���

���

���

���

���

�������� ��� ��� ����

�������� ��������

��������

���������

�
��
��
���
��
��
��
�
��
��
��
���
�

�������������������

������ ����������

(b) LU vs. CG

��

���

���

���

���

����

����

����

����

�������� ��� ��� ����

�������� ��������

�������
���������

�
��
��
���
��
��
��
�
��
��
��
���
�

�������������������

������ ����������

(c) BT vs. SP

��

��

���

���

���

���

���

�������� ��� ��� ����

��������
��������

��������

��������

�
��
��
���
��
��
��
�
��
��
��
���
�

�������������������

������ ����������

(d) LU vs. FT

��

���

���

���

���

����

����

����

�������� ��� ��� ����

�������

��������

�������

��������

�
��
��
���
��
��
��
�
��
��
��
���
�

�������������������

������ ����������

(e) SP vs. IS

��

���

���

���

���

���

���

���

���

�������� ��� ��� ����

��������
��������

�������

������

�
��
��
���
��
��
��
�
��
��
��
���
�

�������������������

������ ����������

(f) BT vs. FT

Figure 17: Performance of NAS Pairs of Application with FaReS and Different
Resource Proportions. The labels on the bars represent the Resource Proportion
achieved.

between the background application and the main application. The performance here

is the execution time for the application. We can see from the figure that using a 1:1

resource proportion degrades each application by the same amount. In the case for

the different resource ratios FaReS shows on average does 5:1, 10.36:1 with a standard

deviation as 0.33, 0.8 for the 5:1, 10:1 ratios respectively.

FaReS Overhead. For each of the benchmarks used in the above experiments,

we also gathered measurements with FaReS running to just monitor the set of VMs

without perform any CPU scheduling. We found that the change in performance with

50

��

��

��

��

��

���

������� �������

�
��
��
��
���
��
�
��
��
��
�

�����������������

����������

����������������

�����

(a) FaReS Ratio = 4.92:1

��

��

���

���

���

������� �������

�
��
��
��
���
��
�
��
��
��
�

������������������

����������

����������������

�����

(b) FaReS Ratio = 9.8:1

��

��

���

���

���

���

���

���

���

������� �������

�
��
��
��
���
��
�
��
��
��
�

������������������

����������

����������������

�����

(c) FaReS Ratio = 5.03:1

Figure 18: Performance of Pair of MPI Map-Reduce Applications with FaReS

respect to the consolidated values is less than 1% across all the sets of applications.

This shows that there is minimal perturbation to the running application due to

FaReS.

4.6.3 Map-Reduce Application

In order to evaluate the different levels of fairness provided by FaReS when instances

of the same application exhibit different behaviors we use an application which is a

subset of a larger HPC application, the Gyrokinetic Toroidal Code (GTC)[68]. The

GTC is a 3-Dimensional Particle-In-Cell code used to study micro-turbulence in mag-

netic confinement fusion from first principles plasma theory. The subset application

is based on MPI Map-Reduce and performs sorting of the GTC particle data. We

call this application MPI Map-Reduce (MMR). The idea of fairness here is to pro-

vide relative decrease in performance between applications according to the I/O or

Compute Ratio and to minimize the negative effects of consolidation as mentioned in

Section 4.3.

51

Figure 18 shows the performance for 2 different instances of MMR running on the

platform with and without FaReS. We evaluate the performance of the instances for

3 different I/O ratios 1:5, 1:10, 1:20. The base case used here is for both applications

sending same number of requests (1:1). The ratios are the amount of I/O messages the

instances issue. Each instance is run on a set of 4 VMs (2 on each physical machine).

We scale the I/O for MMR-2 in this case. We run the MMR-1 instance multiple times

while the MMR-2 instance is running and provide an average performance decrease.

The ideal case is when both applications incur the same performance decrease as the

I/O ratios. For the 1:20 ratio we increase for MMR-2, the communication-to-compute

ratio to 80%. In this case we see that FaReS has little effect on the fairness ratio

since MMR-2 outputs a large amount of I/O and behaves similar in the case of the

RDMA Write and MG Grid test.

We see from the figure that both instances suffer more than twice the ideal per-

formance(in case of MMR-2 the decrease is 1600% for 1:10 I/O ratio). When FaReS

is enabled we see that performance improves for both instances when compared to

the non-FaReS case. This is due to the ability of FaReS to overlap the communica-

tion and computation phases for the application instances as explained in the above

section.

4.7 Chapter Summary

In this chapter we describe FaReS, an approach for fair resource scheduling in virtual-

ized platforms with high-end, VMM-bypass capable devices. In order to address the

lack of hypervisor involvement in the VMs’ I/O accesses in these environments, FaReS

relies on (1) asynchronous monitoring – to continuously monitor all VM-device inter-

actions, (2) VM memory introspection – to interpret the VM’s utilization of device

resources, and (3) a ‘cap boosting’ technique – to dynamically control the allocations

of those resources which are under the hypervisor control, i.e., CPU caps, so as to

52

prevent or boost the VM’s level of I/O utilization.

Based on observations about the characteristics of the I/O behavior of a VM

which impact the performance of other collocated VMs, and the sensitivity to CPU

allocations exhibited by such I/O behaviors, we asynchronously extract information

regarding the VMs’ I/O behavior and use it to make appropriate adjustments in

the VMs’ CPU allocation, using a ‘charge-back’ mechanism which penalizes a VM

for sending an excess amount of data. We claim that a charge-back mechanism is

appropriate for such VMM-bypass devices since the CPU/OS/VMM is not responsible

for the data transfer but it is the HCA in case of IB. Thus, it also could be said that

the VM effectively ‘gains’ time by not participating in the data transfer. FaReS

is implemented for InfiniBand platforms virtualized with the Xen hypervisor and

evaluated using microbenchmarks and realistic applications. We show that FaReS

assigns fairness to mixed workload HPC applications within 2% of the required value

for 3 different levels of fairness. For all such applications FaReS provides a very low

(<1%) monitoring overhead.

53

CHAPTER V

RESOURCE EXCHANGE: LATENCY-AWARE

SCHEDULING IN VIRTUALIZED ENVIRONMENTS

WITH HIGH PERFORMANCE FABRICS

While FaReS is designed to provide fairness guarantees to communication-intensive

workloads it cannot provide any guarantees to latency-sensitive applications. In this

chapter, we show that in order to achieve guarantees for latency-sensitive we have go

beyond the bandwidth-based metrics that FaReS uses and enable more finer-grained

resource provisioning.

We do this by introducing a Virtual Currency Abstraction using Resos, which

enables us to dynamically map the virtual I/O resources to underlying physical re-

sources through Economic methods like Congestion Pricing. We use these methods to

build multiple policies that allow latency-sensitive applications to meet the specified

guarantees.

5.1 Latency-sensitive applications in virtual environments

Virtualized infrastructures have seen strong acceptance in data center systems and

applications, but have not yet seen adoptance for HPC codes which require I/O to ar-

rive within predictably and consistently short durations (i.e., no ‘noise’), in exchanges

like ICE, CME, and NYSE which need trades to complete in a certain amount of time

(deadlines), also in server systems performing phone call switching or multimedia de-

livery, which require soft deadlines to be met. At the same time, however, there is a

need for virtualization in such environments, as demonstrated by recent work in which

soft deadline capabilities are added to the Xen hypervisor in order to support VOIP

54

call switching server applications [74]. In fact, there are even greater opportunities

for virtualization for exchanges, since their average machine utilization can be less

than 10% under normal load conditions, due to conservative provisioning in order to

meet peak demands and high availability requirements. There are also opportunities

with HPC codes, for which data centers routinely report issues with under-utilization

despite intensive user of batch job schedulers, and these opportunities will grow as

leadership machines move to the exascale, due to the difficulties many programs will

have to efficiently and concurrently use resources at that scale.

In this chapter, we develop mechanisms to better enable hosting and collocation

of latency-sensitive applications, such as those listed above, on virtualized platforms.

We are specifically targeting high-performance RDMA-enabled interconnects, for two

reasons. First, these devices have features such as higher bandwidths (≥10Gbps),

as with InfiniBand [52] and 10GigE [91] network fabrics, support for remote DMA,

protocol offload, and kernel bypass, and, as a result, they provide the low-latency

high-bandwidth requirements needed by the aforementioned types of applications.

Second, the same set of features also enables efficient near-native I/O virtualization

of these devices [108], which makes them more suitable candidates for virtualized

platforms for latency-sensitive applications.

However, to enable consolidation for latency-critical applications, problems to be

solved go beyond efficient I/O virtualization, to also include dealing with the shared

use of I/O, memory, and compute resources, in ways that minimize or eliminate

interference. Newer generation InfiniBand cards allow controls such as setting a limit

on bandwidth for different traffic flows and giving priority to certain traffic flows over

others, thereby controlling latency for that flow. Also, what is required is for the

hypervisor scheduler to be enhanced to make sure that it can take into consideration

the latency requirements of the VMs, the loads they pose on the shared network

infrastructure, and the levels of interference and noise they cause due to their I/O

55

access patterns. This is particularly challenging in virtualization solutions for RDMA

devices such as InfiniBand HCAs, since due to the VMM/OS-bypass capabilities

provided by these devices, the hypervisor loses control in monitoring and managing

device-VM interactions. Therefore, it becomes harder for the hypervisor to maintain

data rate or latency service levels to its guest VMs.

To address these issues, we develop a hypervisor-level solution which dynamically

adjusts the compute and I/O resources made available to each VM, so as to provide

better isolation – i.e., control noise – and improve performance for latency-critical ap-

plications, while still allowing consolidation and improved aggregate resource usage,

without requiring worst-case-based reservations. Our approach, termed Resource Ex-

change or ResEx, leverages (i) IBMon – a tool developed in our prior work [110] that

enables dynamic monitoring of the I/O usage for virtualized InfiniBand devices, and

(ii) Virtual Currency Abstraction that uses congestion pricing models and supply-

demand microeconomic concepts to provide more flexible and fine-grained resource

allocations.

Specific contributions of our research include (1) the design and implementation of

the Resource Exchange approach, and (2) its resource trading ‘currency’ abstraction

– Resos, and (3) mechanisms for dynamic monitoring of VMs’ resource usage and the

interference, or the ‘congestion’ they cause, so as to be able to (4) support range of

resource pricing policies derived from our Virtual Currency Abstraction. (5) Using

Nectere – a latency-sensitive benchmark modeled after a financial trading exchange,

(6) we implement and experimentally evaluate two such policies, and demonstrate the

feasibility of the ResEx approach to make RDMA-based virtualized platforms more

manageable and better suited for hosting even latency-sensitive workloads.

The remainder of this chapter is organized as follows. Section 5.2 uses experi-

mental data to show the effect of collocation on latency-sensitive applications. In

Section 5.3 we give a brief description of the economics pricing theory we rely on.

56

Section 5.4 describes the latency-sensitive benchmark that we have developed and

use throughout the chapter. In Sections 5.5 and 5.6 we describe in detail the de-

sign goals and implementation for ResEx. Section 5.7 provides experimental results

demonstrating the benefits of ResEx.

5.2 Collocation Impact on Latency-sensitive workloads

While high-end fabrics, such as the InfiniBand fabric considered in our research, ex-

hibit high bandwidth and low latency, their shared usage for latency-sensitive work-

loads has been limited. When running a latency-sensitive workloads on shared net-

work infrastructure it is expected to observe some level of perturbation in the achieve

latency. Under some conditions, the variability may be within acceptable levels,

and/or may be exhibited only by some of the collocated applications, and not by the

most latency-sensitive ones. In other cases, however, this variation can exceed desired

limits, especially when the degree of interference with other applications is high.

Our goal in this section is to demonstrate that, in spite of the superior performance

properties of high-end fabrics like InfiniBand, their shared usage by latency-sensitive

applications may result in prohibitive levels of variability. For this, we explain the

changes experienced by a low latency workload when it is being run with (Interfered)

and without (Normal) another interfering workload. We use different configurations

(i.e., different data sizes) of the Nectere latency-sensitive benchmark developed by

our group (explained in Section 5.4) as both a low latency workload and second as

an interference generator, each run in a separate VM. Both benchmark instances,

i.e., both VMs, are assigned to separate CPUs, therefore there is no response-time

variability due to CPU scheduling.

Figure 19 shows the frequency distribution of the low latency workload when it

is run with and without the interference load. In the Normal case the latencies are

highly stable at around 209 µs. But when it is run alongside the interfering load the

57

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 150 200 250 300 350 400

C
ou

nt

Request Service Times (µs)

Distribution of Request Latencies for Normal v/s Interfered Server

Count of Latencies for Interfered Server
Count of Latencies for Normal Server

Figure 19: Distribution of latencies of a normal server versus an interfered server
with additional load.

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

No. of Servers

Multiple Servers/Clients (1:1)

CTime
WTime
PTime

CTime (Load)
WTime (Load)
PTime (Load)

Figure 20: Change in server latency for multiple servers with interfering load.

latencies are distributed across the interval. This shows that not only the average

increases but the variation/jitter as well even for RDMA-based interconnects. Note

58

that for certain requests the service time is smaller than Normal server possibly due

to no interference occurring for those requests.

Figure 20 shows the change in server latency as server and client count is increased,

as well as when there is interfering load added to the system. There are three parts to

the server latency - Compute Time (CTime), I/O Wait Time (WTime), Polling Time

(PTime). Each of them is shown with the variation in error bars. Here, the number

of servers refers to separate instances of the low-latency workload configuration of

the benchmark. For each group of servers, we report average latency when these are

the only collocated applications on the node, vs. when also run with a VM running

an interference generator. Again, all VMs are allocated to their own CPUs. Since

CTime is independent of I/O interference it remains fairly constant. From the figure

we observe that both WTime and PTime start increasing with load since now a

RDMA operation from the server takes more time to process due to the interfering

load at the device level. We also observe, however, that when collocating only the VMs

running the original application, the interference effects, and any latency degradation,

are much less noticeable, demonstrating that it is feasible to allow latency-sensitive

workloads to share the virtualized platform.

5.3 Economics and Congestion Pricing

ResEx relies on certain properties of the underlying fabric – InfiniBand – and hyper-

visor – Xen, in our case. While the InfiniBand properties and hypervisor extensions

are described before in Chapters 2-4, here we describe the economics and congestion

pricing ideas used in ResEx.

Many of ideas that we incorporate into ResEx have been motivated by principles of

microeconomics like supply and demand [47]. By supply we mean the set of physical

resources that are available to each VM to use in a given time period or ‘epoch’.

The demand is the amount of resources that each VM consumes in that ‘epoch’.

59

Black

scholes

call

pricing

European

call

pricing

Volatility

Perpetual

call

pricing

Read

request

Write

response

O
u

tp
u

t b
a

rrie
r

F
ile

-s
y
s
te

m
 o

r

N
e

tw
o

rk

F
ile

-s
y
s
te

m
 o

r

N
e

tw
o

rk

Figure 21: A Financial Application Configuration for Nectere.

Microeconomics theory states that when the demand for a commodity goes up the

price for that commodity increases and the converse is true as well. We use this idea

as the main motivator for reducing congestion on shared resources by VMs.

This idea is more expressly presented in another concept of economics derived

from supply and demand called ‘Congestion Pricing’ [138]. By increasing the price

of a resource we aim to reduce the demand for it thereby reducing the ‘congestion’

for that resource. Congestion arises since the demand or ‘resource usage’ exceeds the

supply or ‘resource availability’. Changing the price for this resource corresponds to

charging the heavy users for causing the congestion. We describe this in more detail

in Section 5.5.3.

5.4 Nectere - A Latency-Sensitive Benchmark

In order to evaluate the behavior of latency-sensitive workloads on virtualized RDMA-

enabled fabrics, we develop an RDMA-based latency evaluation benchmark, which

allows us to easily parameterize and experiment with this class of applications. The

benchmark, termed Nectere [45], is modeled after a commercial trading engine used

60

by one of our industry collaborators (ICE – Intercontinental Exchange) [126]. The

benchmark uses a server-client model similar to trading systems where multiple clients

post transactions and request feeds from a trading server hosted by the Exchange,

and it includes traces which model the I/O and processing workloads present in an

exchange like ICE today. Furthermore, the benchmark further allows us to easily

configure it and change its I/O behavior – e.g., rates, sizes, etc. – or per-request

processing times, thereby simulating applications with different performance and re-

source usage profiles. It also allows us to combine various financial computations to

mimic workloads. Figure 21 shows one possible financial configuration for Nectere.

In Nectere, our clients send multiple transaction requests to the server using

RDMA, each of which is time stamped by the client. The server maintains these

requests in a queue and processes them in a first come first serve basis. The FCFS

criterion is important to exchanges since each transaction may change the outcome

of the next one and we implement the same criteria for our benchmark.

In addition to trace data, since we do not have the proprietary data and pro-

cessing codes used in real exchanges, our server uses a financial processing algorithm

library [19] for request processing to perform operations such as Black Scholes Options

Pricing. The clients wait for the server results, timestamp the reply, and calculate

the latency of the request by taking a difference between the two timestamps.

Nectere also provides an online monitoring interface to an external agent, running

inside each VM, through which it can continuously report the observed server-side

latencies. The agent may then forward this information to the main ResEx module

running in Dom0, as described in Section 5.6.

5.5 Design Principles of ResEx

In order to provide a better understanding of our implementation of ResEx, we next

describe the methodologies leveraged in its design. First, we describe how we can

61

track InfiniBand I/O usage of VMs and therefore the I/O interference between VMs.

Second, we introduce our ‘Virtual Currency Abstraction’ called Resos that provides

a dynamic mapping of the impact of CPU allocation to IB resource usage. The

dynamism comes from the allocation of Resos as well as price updates using the

‘Congestion Pricing’ model which we describe next. Finally, we outline the various

goals of our resource pricing schemes and discuss alternatives on charging VMs.

5.5.1 Tracking I/O Usage and Interference for VMM-Bypass InfiniBand
Devices

Since the VMs can directly talk to the devices it is almost impossible for the hypervisor

to estimate I/O usage for such devices. We use our IBMon tool [114] to track the

amount of IB resources that a VM is consuming. By using IBMon we can estimate

the amount of data that a VM sent in a given interval of time. This amount of data

corresponds to a number of packets that the HCA has to send on behalf of the VM.

Each packet size is equal and is referred to as a MTU (Maximum Transmission Unit).

By knowing the size of the MTU we can infer the number of packets that a VM sent.

Therefore, we track the ‘number of MTUs sent’ (MTUSent) by a VM as a metric for

I/O usage.

Each application within a VM uses a buffer size which may be different for each

application. We call the ratio of an application’s buffer size to another application’s

as the ‘buffer ratio’ (BR). We also use this metric for estimating the amount of I/O

performed by one VM compared to another.

We define ‘interference’ as the positive change in any I/O latency or a negative

change in device usage perceived by the VM or the application within the VM. First,

a direct way to track interference is to get feedback from the application in terms of

the latency it perceives from its requests. Second, an indirect way, would be to infer

from the IB memory how many requests were completed by the HCA on the VM’s

behalf in a given time interval and then decide the percentage of bandwidth used by a

62

 0

 50

 100

 150

 200

 250

 300

 350

32(2MB) 16(1MB) 8(512KB) 4(256KB) 2(128KB) 1(64KB)

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

I/O Ratio (Buffer Sizes)

CTime
WTime
PTime

Figure 22: Histogram of server latency with different I/O ratios between interfering
and normal servers.

VM. By knowing the percentage of bandwidth consumed we can estimate its impact

on other VMs. Once we can estimate the impact of one VM on another’s latency we

aim to control it using CPU scheduling or capping the interfering VM’s CPU. We

discuss those ideas next.

5.5.2 Relationship between IB I/O Latency, Buffer Ratio and CPU Cap

In order to determine how to best control I/O latency interference across VMs, we

perform several experiments to establish the dependencies between various parameters

of the VM’s I/O and CPU usage.

Figure 22 shows the change in I/O latency for a VM when another interfering

VM is running. We run our Nectere application within each VM. Each instance

has a different application buffer size. We report latencies for the server side of the

benchmark. The number in brackets corresponds to buffer size of the interfering

VM. The number before the brackets is the ‘buffer ratio’ of the ‘interfering VM’ with

respect to the ‘reporting VM’. The buffer size of the reporting VM is set to 64KB. We

63

 0

 50

 100

 150

 200

 250

 300

 350

100 90 80 70 60 50 40 30 20 10 3 Base

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

CPU Caps for 2MB VM

CTime
WTime
PTime

Figure 23: Change in normal server latency as CPU cap is decreased for interfering
VM.

compare latencies achieved by the reporting VM when the CPU cap of the interfering

VM is set according to the buffer ratio. For example, the CPU cap for a 256KB

VM is set to 100/4 = 25%. Since the latencies experienced by the reporting VM

do not change between all the instances we can say that the CPU Cap has a direct

relationship with the buffer ratio and I/O latencies experienced by a VM.

In Figure 23 we set the buffer size of the interfering VM to 2MB and compare

the latencies of the reporting VM when the CPU cap for the interfering VM is set

accordingly. We see that by changing the CPU cap steadily the latencies experienced

by the reporting VM decrease and when the CPU cap is equivalent to the buffer

ratio-based value the latency experienced is equal to the base latency.

Therefore, by knowing the buffer sizes of the VMs and I/O latency experienced

by the VM we can identify an interfering VM and assign a particular CPU cap in

order to remove congestion. We use this as an indicator for our ResEx algorithm as

described in Section 5.6 in order to provide a consistent CPU allocation for the VMs.

64

We base the consistent CPU allocation by unifying the resources used by a VM under

a single entity which we describe next.

5.5.3 Virtual Currency Abstraction

This model is responsible for identifying dynamically the impact of resource alloca-

tions like CPU Capping on the resources used by the VMs as well as the impact on

latency-sensitive applications. We provide the abstraction by introducing the concept

of ‘Resource Units’ or Resos using which VMs ‘buy’ resources to use during their ex-

ecution. Here, as ‘buy’ we refer to the ResEx ability to deduct Resos from the VM,

based on its resource usage. Each Reso enables the VM to buy a certain amount

of CPU and IB MTUs; sending more data will result in deduction of more Resos.

The total number of Resos in a system is determined by the entire set of available

physical resources in the system – the ‘supply’. This set, in our case, comprises of

the InfiniBand bandwidth link and CPU Cycles. We first determine the aggregate

available resources, i.e., the corresponding aggregate Resos, and then distribute this

equally among all collocated VMs. The Resos can also be distributed unequally, e.g.,

based on priority of the VMs. VMs can be charged for their resource usage differ-

ently, depending on the level of interference they cause, and based on the goals of the

pricing algorithm (see the following section). Summarizing, Resos is a mechanism to

abstract different types of resources and their availability for each VM.

Resos are deducted at every interval for a VM based on its I/O and CPU usage, as

described in Section 5.5.1. A collection of intervals is called an ‘epoch’ and after every

epoch we replenish the number of Resos of a VM to the original allocated value. Any

Resos left over from the earlier epoch are discarded. Deduction of Resos depends on

the objectives of a pricing system. These objectives and pricing schemes are discussed

in the section below.

65

5.5.4 Goals of Pricing

In general any pricing scheme should be able to regulate the supply and demand of

the commodity. Therefore, when the price for a commodity is increased the demand

for that commodity should fall. We use the same notion of pricing in ResEx when

charging VMs for resource usage. In our current work we consider 2 goals for our

pricing strategies, outlined below.

5.5.4.1 Maximize Resource Utilization

The pricing scheme should be able to allow VMs to purchase resources whenever

they can and have enough Resos’ to do so. Here the scheme will have fixed prices

for a unit resource and is identical for all VMs. This allows each VM to use its

resources to the maximum, and at a rate depending on the application(s) running

within the VM. Once the VM does run out of Resos, its resource usage should be

kept either to a minimum or completely blocked until the next epoch when its Resos

may be regenerated. In this scheme, resource prices are set at the start of each epoch

uniformly for all VMs, based only on the aggregate availability of and demand for

resources.

5.5.4.2 Lower Latency Variation

Another goal of a pricing scheme is to allow each VM to pay for resources differently.

The pricing differentiation starts when a VM starts using more of one resource causing

other VMs to suffer in their performance – i.e., causes interference. The interference

causes an increase in latency of the applications, which in turn may miss their SLA

for delivery/receipt of data. Thus, interfering VMs will need to be charged more in

order to reduce their demand for the resource and reduce congestion.

These and other pricing strategies require support for, dynamic monitoring of

resource availability and usage (CPU and I/O resources in our case), as well as for

determining the ‘interference’ or ‘congestion’ caused by one VM, so that it can be

66

charged for its resources in a differentiated manner, based on some priority notion or

other policies.

5.6 ResourceExchange Implementation

In this section we describe in detail the implementation of ResourceExchange or

ResEx approach to lower I/O congestion for VMs using InfiniBand devices. First, we

define how the Resos are distributed between all the VMs and the initial charging

policy. Next, we describe 2 pricing policies that we developed based on the set of

goals outlined at end of the previous section.

5.6.1 Charging VM Resource Usage in Resos

Since we are dealing with a multi-resource setup, Resos simplifies the way to charge

VMs on resource usage. We first break down the CPU and I/O resources into indivis-

ible quantities which can then be charged ‘by the Reso’. ResEx performs allocation of

Resos at every epoch, which in our case is 1 second. Resos for the resources consumed

are deducted at every interval of 1 millisecond.

5.6.1.1 CPU Charging

ResEx converts the CPU cycles based on the frequency to a set of Resos for each

CPU depending on the epoch/interval time. It then associates a VM with a CPU. We

currently allocate an entire PCPU to each VM, thus the VM can use the entire CPU

and the set of Resos associated with it. It charges every percentage of CPU the VM

consumes in the interval. This percentage corresponds only to the CPU cycle count

for the interval. Initially, the rate of charge is 1 Reso per CPU percent. Therefore, the

VM is initially allocated PercentPerInterval ∗NumberOfIntervals = 100 ∗ 1000 =

100, 000 Resos for CPU consumption. Here the CPU percent is the indivisible quantity

used for charging.

67

5.6.1.2 I/O Charging

ResEx allocates Resos based on the capacity of the InfiniBand. The physical capacity

of our IB Link is 8Gbps (due to the 8b/10b IB encoding) i.e. 1 Gigabyte per second.

From Section 5.5.1 we use MTUs as the smallest chargeable quanta. We assume a

default MTU size of 1024bytes(1KB) used by applications to send data. Therefore,

the IB Link is capable of sending LinkBW/MTUSize = 1∗1024∗1024∗1024/1024 =

1048576 MTUs in one second or in one epoch. Initially, we charge 1 Reso per MTU

sent. Here the entire Resos are shared between the VMs since the link is shared

between them. ResEx can adjust this sharing to be equal between the VMs or unequal

based on priority or weight of the VM.

We have now broken down each physical resource into their chargeable units. Each

of these units can be charged using a single currency called Reso. Next, we describe

how ResEx implements different charging policies based on the goals described in

Section 5.5.4.

5.6.2 FreeMarket & Maximize Resource Utilization

In this scheme, every VM is charged based on the amount of I/O and CPU resources

consumed. The rate of charging remains same for all VMs. For every interval and

monitored VM, ResEx detects the number of MTUs sent by the VM (using IBMon)

and the CPU cycles consumed (using the XenStat library). This is converted to

a number of Resos to be deducted from the VM’s allocation. Now, this value is

deducted from the VM’s Reso allocation. Thus, using this scheme every VM can use

their maximum set of resources allocated in the epoch and this scheme achieves the

maximum resource utilization pricing goal. We call this pricing scheme FreeMarket

to denote that the VMs can freely purchase their resources.

However, when the VM’s remaining Resos is below a certain limit (10% in our

case), and more than 10% of the epoch is remaining, we start decreasing the CPU

68

for that VM gradually. The CPU is decremented by 10% from its earlier allocated

value. We do this to ensure that we do not have to abruptly stop the CPU for the VM

when it runs out of Resos. This simply ensures a gradual decrease in performance

experienced by the VM rather than a sudden stoppage. There are multiple ways in

order to reduce the CPU when the VM runs out of Resos but those are beyond the

scope of this thesis.

Algorithm 2 shows the pseudo-code for the pricing scheme. The charging calls use

the same rate of 1 Reso per unit resource for converting the resources used to Resos.

The CPU cap returned depends on the number of Resos left of the VM allocation

and is changed as described above.

Algorithm 2 FreeMarket Algorithm

1: InitializeResos(FreeMarket)
2: while true do
3: for all MonitoredVMs do
4: IBMTUs← GetMTUs(ThisVMId) . Use IBMon
5: CPUPct← GetCPUPercent(ThisVMId)
6: IBResos← ConvertToIBResos(IBMTUs)
7: CPUResos← ConvertToCPUResos(CPUPct)
8: CPUCap← GetCPUCap(ThisVMId, IBResos, CPUResos)
9: DecrementResos(ThisVMid, IBResos, CPUResos)
10: SetVMCap(ThisVMId, CPUCap)
11: end for
12: end while

5.6.3 I/O Shares & Lower Latency Variation

For meeting the second goal of pricing resources we now incorporate any latency

feedback from the application within the VM in charging Resos. We base this charge

on the Virtual Currency Abstraction where the VM(s) causing the congestion are

charged more. Algorithm 3 describes the pseudo-code of the pricing scheme, where

we now adjust the charging rate for the interfering VM when we detect that a VM

is experiencing increased latencies. The line [6] in Algorithm 3 computes the I/O

69

interference percentage for the current VM. It looks at the latencies reported by the

VM and computes the average and standard deviation of the values. The percentage

increase in either of these is then returned to the scheme. If the percentage increase

is greater than a certain value (i.e., SLA guarantee) then the interfering VM is found

and its charging rate is increased based on the following formula:

Increase In Rate(r′) = IOShare ∗ IntfPercent

where IOShare is define as:

IOShare =
MTUsSentByInterferingVM

TotalMTUsSentByVMs

Next, we compute the CPU cap to be computed for the current VM, decrement

the Resos used and set the VM cap. When the interfering VM is being monitored

then it will be charged with the new rate as computed in the reported VM in the last

iteration of the loop. The CPU cap now for this interfering VM will be set as

New CPU Cap =
100 ∗ PreviousRate
PreviousRate+ r′

5.7 Experimental Evaluation

The testbed consists of two Dell PowerEdge 1950 servers. One of the servers has

dual-socket quad-core Xeon 1.86 Ghz processors, while the other one has dual-socket

dual-core Xeon 2.66 Ghz processors. Both servers have 4GB of RAM. Mellanox

MT25208 HCA (memfull cards) cards are used in all machines, connected via a Xsigo

VP780 10Gbps I/O Director Switch. We are using a Xen 3.3 unstable distribution

on all servers. Also, all servers are running the same para-virtualized Linux kernel

running in dom0. We are using para-virtualized InfiniBand driver modules which work

under the Linux 2.6.18.8 dom0 and domU kernels. The guest OS’ are configured with

512 MB of RAM and have the OFED-1.2 distribution installed. This distribution

has been modified to run inside the guest VM. We are also running the OFED-1.2

70

Algorithm 3 I/O Shares Algorithm

1: InitializeResos(IOShares)
2: while true do
3: for all MonitoredVMs do
4: IBMTUs← GetMTUs(ThisVMId) . Use IBMon
5: CPUPct← GetCPUPercent(ThisVMId)
6: IOIntfPct← GetIOIntf(ThisVMId)
7: IntfVMId← GetIOIntfVMId(ThisVMId)
8: IOShare← GetIOShare(ThisVMId, IntfVMId)
9: ChargeRate← ChangeIBRate(IntfVMId, IOIntfPct)
10: IBResos← ConvertToIBResos(IntfVMId, IBMTUs, ChargeRate)
11: CPUResos ← ConvertToCPUResos(IntfVMId, CPUPct, ChargeR-

ate)
12: CPUCap← GetCPUCap(ThisVMId, IBResos, CPUResos)
13: DecrementResos(ThisVMid, IBResos, CPUResos)
14: SetVMCap(ThisVMId, CPUCap)
15: end for
16: end while

distribution in the dom0s. Each guest domain is assigned a VCPU each in order to

minimize the effects of shared CPUs.

We use certain terminologies in the experiments below which we explain first.

We refer to an application running within a VM by its configured buffer size. For

example, 64KB VM means that the Nectere application uses 64KB as its buffer size.

Interfering VM is a VM that has a buffer size greater than 64KB. The base case

refers to a configuration where only one instance of the benchmark is run without an

interfering load. In most of the experiments we use 2 VMs each on 2 separate physical

machines unless otherwise mentioned. One of the VMs is the reporting VM and the

other is the interfering VM. The latencies are always mentioned for the reporting VM.

To demonstrate the utility and effectiveness of ResEx we use different combina-

tions and configurations of the Nectere Latency benchmark. The results are classified

by the goals and types of the pricing system developed.

71

 100

 150

 200

 250

 300

 350

 400

 0 20000 40000 60000 80000 100000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

C
P

U
 C

ap

Iteration #

SLA Performance of FreeMarket

Base Latency 64KB VM
Intf Latency 64KB VM

Freemarket Latency 64KB VM
Freemarket CPU Cap 2MB VM

Figure 24: Comparison of application latency when using FreeMarket algorithm.

5.7.1 Maximization of Resource Utilization

Here we compare the application performance of the FreeMarket algorithm with the

base case and the case with interfering load. Figure 24 shows the change in the

application latency when the FreeMarket algorithm is used. We can see that the

latency of the 64KB VM (reporting VM) is lower when FreeMarket allocation is

performed than the interfering case. This is due to the fact that the CPU cap is

lowered for the 2MB VM periodically whenever its Reso count decreases below a

minimum. This achieves some more control over the requests issued by the 2MB VM

and thus reduces latencies for the 64KB VM.

Figure 25 shows the deduction in Reso when the FreeMarket algorithm is used.

The algorithm keeps deducting Resos until a minimum level (10%) is reached after

which it starts reducing the CPU Cap. The effect of this is seen by the 2MB VM. It

also ‘maximizes resource usage’ by always allowing a VM access to the resource if it

has enough Resos.

72

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 8000 8200 8400 8600 8800 9000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

R
es

os
 a

va
ila

bl
e

C
P

U
 C

ap

Interval #

Free Market performance with Rated Capping

Resos 64KB VM
CPU Cap 64KB VM

Resos 2MB VM
CPU Cap 2MB VM

Figure 25: Change in Reso during FreeMarket algorithm.

5.7.2 Lower Latency Variation

In Figure 26 we compare the application performance when the IOShares algorithm

is used. We see that the algorithm is able to achieve near base case latencies for the

application by taking into consideration the interference percentage of the 64KB VM

and thus ‘charging’ the 2MB VM more for resources used. The CPU Cap is changed

dynamically to a lower value for the 2MB VM by detecting the amount of congestion

occurring. Here each VM reports its latencies to ResEx and on an average uses 10µs

for reporting. This value for reporting is included with the latency to highlight the

asynchronous nature of IB communication which may be useful in hiding latencies.

5.7.3 No Interference Handling

We also run two more cases where the interference between the 2 VMs is either

negligible or the same as the reporting VM itself. Figure 27 shows the impact of

those cases when either of the Reso management algorithms are used. In the figure,

FM refers to the FreeMarket algorithm and IOS refers to the IOShares algorithm.

73

 100

 150

 200

 250

 300

 350

 400

 0 20000 40000 60000 80000 100000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

C
P

U
 C

ap

Iteration #

SLA Performance of IOShares

Base Latency 64KB VM
Intf Latency 64KB VM

IOShare Latency 64KB VM
IOShares CPU Cap 2MB VM

Figure 26: Comparison of application latency when using IOShares algorithm.

 0

 50

 100

 150

 200

 250

Base-64KB

FM-64KB-64KB

FM-64KB-2MB-NoIntf

IOS-64KB-64KB

IOS-64KB-2MB-NoIntf

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

Configuration

Comparison of Latencies acheived by Freemarket, IOShares

Total I/O Latency

Figure 27: Performance of FreeMarket and IOShares methods on non-interference
cases.

The two cases chosen here are, one, when along with the Reporting 64KB VM there

is another 64KB VM running Nectere and two, the 2MB VM is issuing requests at

74

 0

 50

 100

 150

 200

 250

 300

64KB 128KB 256KB 512KB 1MB

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

Buffer Size

Freemarket, IOShares v/s Buffersizes

Average Base I/O Latency
Freemarket Average I/O Latency

IOShares Average I/O Latency

Figure 28: FreeMarket and IOShares behavior with different interfering VM buffer
size.

10 requests per epoch (a much slower rate than the interfering VM used in prior

experiments).

Figure 27 compares the average latency experienced by the Reporting 64KB VM

in these cases with the Base 64KB latency. We see that the values are almost equal

to the Base values. This highlights two aspects of ResEx. One, ResEx can not only

detect interference for a VM but also back off when there isn’t any interference (in

case of 64KB-2MB-nointf). Two, ResEx adapts to the I/O performed by the VMs to

not penalize VMs if they are doing the same amount of I/O (in case of 64KB-64KB).

5.7.4 Response to Buffer Size

Applications may be configured to use different buffer sizes and therefore ResEx

should be able to adapt the different resource management strategies based on that

value. Figure 28 shows the latency of the 64KB VM when run against interference VM

configured with different buffer sizes. We see that IOShares outperforms FreeMarket

by maintaining the average latency very close to the base value.

75

FreeMarket does not limit the latency since it does not have access to that in-

formation. By allowing VMs to ‘spend’ their Resos as they wish FreeMarket does

not eliminate congestion but makes sure the existing resources are used completely.

This shows the ‘work-conserving’ capability of the FreeMarket algorithm. IOShares

on the other hand, maintains the running average latency of the VMs and charges

VMs causing congestion more. This leads to VMs resources being reduced slowly and

as a result the congestion drops. Thus, IOShares is more conservative and aggressive

than FreeMarket as a resource management scheme.

5.8 Chapter Summary

In this chapter, we have described ResEx – a resource management approach to im-

prove the ability of virtualized RDMA-based platforms to be shared by collocated

latency-sensitive applications. ResEx uses the Virtual Currency Abstraction through

the Resos resource unit and mechanisms based on supply-demand economic concepts

and congestion pricing to dynamically manage VMs usage of I/O and CPU resources.

By using a common “currency” ResEx allows us to establish conversion rates be-

tween the two types of resources, which is particularly necessary on RDMA-based

platforms which support VMM-bypass, where the hypervisor’s only mechanism for

dynamically managing the VMs’ I/O usage is through appropriate changes in their

CPU allocations.

ResEx is implemented for InfiniBand platforms virtualized with the Xen hyper-

visor, and evaluated using an RDMA-based latency-sensitive benchmark Nectere,

modeled after a financial electronic exchange, and for two different resource pricing

policies. The results demonstrate that virtualized RDMA-based platforms can be

suitable for shared use by latency-sensitive applications. Furthermore, however, the

mechanisms and abstractions introduced by ResEx are important for achieving bet-

ter performance and management of SLA guarantees and for controlling unwanted

76

latency variability.

77

CHAPTER VI

DISTRIBUTED RESOURCE EXCHANGE:

VIRTUALIZED RESOURCE MANAGEMENT FOR

SR-IOV INFINIBAND CLUSTERS

In the previous chapter, we demonstrated how we can achieve latency guarantees

for collocated latency-sensitive workloads on individual nodes using our Virtual Cur-

rency Abstraction. This chapter extends this model to consider distributed work-

loads deployed on a multi-node and multi-VM setups and their cluster-wide impact

on network interference. We first present the challenges that exist in managing these

workloads deployed in high performance fabric clusters and thus, motivate the need

for distributed, coordinated resource management actions. These actions are imple-

mented via our Distributed Resource Exchange (DRX) model to provide guarantees to

latency-sensitive applications collocated with data-intensive distributed applications.

6.1 Challenges to manage distributed workloads

Current data center workloads exhibit diverse resource and performance requirements,

ranging from communication- and I/O-intensive applications like parallel High Per-

formance Computing (HPC) tasks, to throughput-sensitive mapreduce-based appli-

cations, multi-tier enterprise codes, to latency-sensitive applications like transaction

processing, financial trading [126] or Voice over IP (VoIP) services [74].

Furthermore, concerning I/O, commoditization of high-end fabrics such as 40+Gbps

InfiniBand and RDMA over Converged Ethernet (RoCE), and hardware improve-

ments for I/O virtualization like Single Root I/O Virtualization (SR-IOV) [77], pro-

vide high levels of aggregate I/O capacity and low-overhead I/O operations.

78

A remaining challenge, however, is the ability to consolidate the above mentioned

highly diverse workloads across multiple shared, virtualized platforms. This is be-

cause current systems lack the methods for fine-grained I/O provisioning and iso-

lation needed to control potential interference and noise phenomena [85, 106, 114].

Specifically, while SR-IOV-based devices provide low-overhead device access to mul-

tiple VMs consolidated on a single platform, this hardware-supported device resource

partitioning is insufficient in providing performance isolation. In fact, we demonstrate

that for I/O-intensive applications running across consolidated SR-IOV devices, there

remain serious issues with performance variability and lack of isolation. We see evi-

dence of this variability in Figure 29 for a transactional latency-sensitive benchmark

when it is running by itself versus when consolidated with a throughput-intensive

one.

Recent efforts, including our own, have addressed these issues on individual virtu-

alized nodes [26, 39, 44, 112, 79], but effective solutions that span multi-node virtual-

ized infrastructures and distributed, multi-VM applications remain unavailable. This

is because there are additional challenges with workloads deployed as distributed VM

Ensembles (VMEs), which include:

(i) quantifying the workload characteristics in terms of network I/O guarantees,

(ii) for the timely detection and management of I/O-related interference effects,

(iii) in ways that consider all relevant VME components, and

(iv) take into account all of the physical resources and nodes being used.

This is particularly the case for environments with high-end fabrics, running I/O-

intensive workloads, where delays in diagnosing and managing resource congestion

and the resulting interference effects, have significant impact on performance degra-

dation [134]. Stated technically, the effectiveness and timeliness of the performance

and isolation management operations concerning the I/O use of distributed VM en-

sembles requires coordinated resource management actions across the entire set of

79

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 50 100 150

C
ou

nt

Request Service Times (µs)

Latency Count for Interfered App
Latency Count for Non-Interfered App

Figure 29: Distribution of Latencies for a Non-Interfered v/s an Interfered Financial
Application.

relevant distributed platform resources.

To achieve this goal, we propose a resource management framework called Dis-

tributed Resource Exchange or DRX – for managing the performance interference

effects seen by distributed workloads deployed in shared virtualized environments.

DRX incorporates an I/O workload model to find the resource allocations of work-

loads in order to satisfy SLAs for a possible set of workloads. DRX enforces these

resource allocations by borrowing ideas from microeconomics principles on manag-

ing commodities’ supply and demand, thereby treating virtualized clusters as an ex-

change. DRX controls resource allocations through continuous accounting, charging,

and dynamic price adjustment methods. The price acts a single indicator of interfer-

ence and therefore, resource sensitivity, allowing us then to translate that value to a

realizable resource allocation at the platform level. DRX provides its own methods to

interact with the physical platform through a series of platform-dependent resource

80

knobs to ensure that VMEs receive their share of resources. Both the pricing mecha-

nisms and platform-based controls allow DRX to construct a varied range of resource

management policies enforceable on such clusters.

Although the ideas used in the DRX design are general, the distributed, coordi-

nated resource allocation actions it enables are particularly important for virtualized

clusters with high-end fabrics. Here, the bandwidth and latency properties of the

interconnect make them suitable platforms for shared deployment of both I/O- and

communication-intensive workloads, and where, precisely because of the I/O-sensitive

nature of some of these distributed workloads, the need for low-overhead, effective

management actions is more pronounced.

The specific contributions made by this research include the following.

(1) We present the design of the DRX framework and its implementation for cluster

servers interconnected with InfiniBand SR-IOV fabrics, and virtualized with the KVM

hypervisor.

(2) We develop an I/O workload model which presents a generalized method for SLA

satisfaction and resource allocations as input to DRX.

(3) We devise a relationship called the Distributed Causal Congestion Relationship

(DCCR) that tracks interference-causing distributed VMEs for a given VM.

(4) DRX integrates mechanisms for low-overhead accounting of resource usage, usage-

based charging, and dynamic resource price adjustment.

(5) DRX can be configured to use a generalized method or take advantage of certain

platform features to help control the I/O performed by VMs in order to reduce inter-

ensemble interference.

(6) The importance of these mechanisms and use of platform features is illustrated

through the implementation of two classes of policies:

(i) Equal-Blame Policies - which charges every VM/VME responsible for causing

interference equally.

81

(ii) Hurt-Based Policies - which charges every VM/VME proportionally to the

amount of I/O generated by them.

(7) The realization of DRX leverages our own prior work, which developed memory-

introspection-based techniques for light-weight accounting, i.e., monitoring of the use

of I/O resources in InfiniBand-(and similar) connected platforms [110], and mecha-

nisms for managing performance interference on single node platforms through the

use of appropriate charging methods [112].

(8) Evaluations use representative application benchmarks corresponding to transac-

tional, data-analytics, and parallel workloads. The results indicate the importance

and efficacy of our distributed management solution and make consolidation on SR-

IOV fabrics more feasible for SLA-driven workloads.

The remainder of this chapter is organized as follows. In Section 6.2, we intro-

duce and explain the design of Distributed Resource Exchange (DRX). Section 6.3

describes our the theoretical underpinnings of the mechanisms used by DRX to rea-

son about and manage SLA requirements of the collocated applications and their

VMEs. We next describe the DRX mechanisms and their interactions in Section 6.4.

In Section 6.5 we provide two examples of dynamic, fine-grained I/O controls that

can be used by DRX, a purely software-based one, and another one that leverages

available hardware features. This is followed by illustration of two different classes

of management policies. Section 6.7 explains our reasoning behind the pricing model

used by DRX as well as applicability of DRX to other types of networks. Section 6.8

describes our experimental methodology and measurement results.

6.2 Overview of the Distributed Resource Exchange

Figure 30 shows the architecture of our DRX system with various interactions be-

tween the components. At its core, DRX is a multi-level software structure spanning

machines and the VM ensembles using them. The main components of DRX are

82

VM (i)

Cluster Manager

Workload
Configurator DCCR Finder Resource

Pricer
Workload
Spec

Ensemble Manager Ensemble Manager

Host
Agent

Host
Agent

Host
Agent

SLA Set

DCCR (i)

Resource
PriceΔSLA(i)

Resos/Price ΔSLA(i) Resos/PriceΔSLA(j)

Resos(i)
Price(i) Resources (i)

VM VM

CPU
Host

VM VM

Host

VM VM

Host

Resources

HCA

Network
Controller

Network
Settings

(Optional)

Network SLA

HCA HCACPU CPU

Policy
Spec

Resources (j)
Resos(j)
Price(j)

. . .

Figure 30: Distributed Resource Exchange Model. This shows the interaction be-
tween the various components within DRX. The Workload Configurator, DCCR
Finder, Resource Pricer are part of the Cluster Manager. The Network Controller is
an entity specific to the type of network (InfiniBand) and the PM can interact with
it separately to enforce network guarantees.

the Cluster Manager (PM), the Ensemble Manager (EM) and the Host Agent (HA).

The PM internally consists of various sub-components like the Workload Configura-

tor, Distributed Causal Congestion Relationship (DCCR) Finder and the Resource

Pricer and work with the rest of the PM to enforce cluster-wide policies for provid-

ing resource allocations to VM Ensembles (VMEs). VMEs are identified as a set of

VMs corresponding to a single cloud tenant or a single application, for example, a

multi-tier enterprise workload or a distributed Message Passing Interface (MPI) or

MapReduce job.

DRX uses the notion of VMEs as a schedulable entity on the cluster. As with

scheduling, each VME is also identified with certain minimum and/or upper-bound

guarantees called Service Level Agreements (SLAs). These are provided to the ‘Work-

load Configurator’ as a ‘Workload Specification’. The job of the Workload Config-

urator is to realize the set of VMEs – based on their guarantees, priorities as well

83

as network capacity – that must be satisfied in order to meet a cluster-wide utility

function. These selected workloads are then given to the PM in order to correctly

enforce the selected policy, which could be as simple as making sure the SLAs for this

set are always satisfied. We describe the Workload Configurator in Section 6.3.1.

Since we use VMEs as a schedulable entity, to enforce the selected policy, we

have to make resource allocation choices that affect entire VMEs. This also means

that there will be interaction between VMEs due to shared platform resources for

its constituent VMs. Thus, DRX must also take into consideration this inter-VME

interference when making resource allocation choices. This potential interference is

found by the ‘DCCR Finder’ which defines a relationship between a VM and the

constituent VMs of other VMEs, based on the network links being shared. Further,

this implies that a single resource allocation for a VME from the PM would translate

to many actions – through the EM and the HAs – performed on that VM and/or on

the VMs in the DCCR. The DCCR is defined and described in detail in Section 6.3.2.

In the middle tier of our DRX hierarchy are the EMs that are responsible for

monitoring the VME’s resource and performance needs as well as reporting SLA

violations to the PM. They interpret a resource allocation action that the PM issues

and interact with the HAs deployed on every host to drive the necessary outcome of

the action. The HAs (one per host) maintain accounting information for the host’s

VM’s resource usage, and manage (reduce or increase) resource allocations based on

the action from the PM relayed through the EM to them.

In order to facilitate the coordinated resource management actions between var-

ious components, the resource management provided by DRX behaves like an ex-

change. We allocate credits called Resos to the participants (VMEs and their VMs),

and are used to determine the resource allocation for the VMs by the corresponding

Host Agent. This allows us to decouple the dependencies between various platform

resources and use a single metric of ‘Resource Price’ to enforce a collective action

84

across VMs. This collective action is enforced through the application of various

DRX mechanisms for allocation, accounting, and charging. These mechanisms are

performed by each HA in order to enforce a given resource allocation policy. When

DRX detects I/O congestion and the resulting performance degradation, it manages

the resource by dynamically pricing it for a particular VME (and therefore its VMs)

that may be causing the congestion as indicated by the DCCR list. The price is

determined by the PM – in response to performance interference events – through

the ‘Resource Pricer’ sub-component considering various factors like current price,

number of VMs and VMEs, amount of I/O usage. We describe these mechanisms

more in detail in Section 6.4.

Intrinsically, DRX contains the ability to map the price changes to actual resource

allocations at the platform-level. The HAs are mainly responsible for performing this

conversion and it depends on the type of resource, the new price calculated by the

PM, the performance degradation experienced as well as the available platform con-

trols. With DRX we focus on data-intensive applications running on multicore servers

supporting SR-IOV InfiniBand cards with an abundance of CPU resources. This al-

lows HAs to focus on controlling the VMs’ I/O accesses by charging for their I/O

usage. We obtain I/O usage from IBMon [110], which samples each VM’s I/O queues

to estimate its current I/O demand. Controlling I/O usage, however, is not easily

done in SR-IOV environments: (1) the VM-device interactions bypass the hypervisor

and prevent its direct intervention; and (2) SR-IOV IB devices carry out I/O via

asynchronous DMA operations directly to/from application memory. Software that

‘wraps’ device calls with additional controls would negate the low-overhead SR-IOV

bypass solution. The HA, therefore relies on two methods to control I/O usage:

(1) the relatively crude method of CPU capping to indirectly control the I/O alloca-

tions available to the VM which have been prototyped before in [112]; and

(2) manipulation of hardware-level congestion settings that control the amount of

85

data injected by a particular IB Queue Pair and/or application.

In order to use the hardware controls in IB, there are various network settings that

must be written in the Network Controller configuration. For IB, it is the Subnet

Manager (SM) that enforces the hardware controls by sending specific packets to the

HCA after we set the hardware values in its configuration. While these settings seem

very specific to SR-IOV IB, the methods in DRX are generic enough to be extended to

other networks, for example Ethernet, which do not have such hardware capabilities.

The HA can easily be updated to support resource allocations for Ethernet fabrics

by updating the resource conversion function. We give more specifics in Section 6.7.

Finally, to deal with dynamism in the workload requirements DRX uses an epoch-

based approach: Resos allocations are determined and renewed at the start of an

epoch, based on overall supply and demand, per-VM or VME accounting information,

etc.; the resource price, along with the charging function, determine the rate at which

the workload (some VM or component) will be allowed to consume I/O resources.

These mechanisms allow us to treat physical resources like commodities which can

then be bought or sold from an ‘exchange’. Further, we can use economics-based

schemes to control the commodity supply and demand, thereby affecting resource

utilization, and the consequent VM performance and interference effects. In the next

few sections we describe in detail each of the components of DRX.

6.3 Workload SLA Satisfaction

Given a set of workloads that can be deployed on the shared cluster along with

their SLAs, DRX finds the set that can be satisfied as well as which workloads

(VMEs/VMs) to charge when a SLA violation occurs after deployment. We explore

both these points in this section through our ‘Workload Configurator’ and ‘DCCR

Finder’ respectively.

86

6.3.1 Finding Satisfiable SLAs with the Workload Configurator

The Workload Configurator or WC shown in Figure 30 takes an input of the work-

load specification that defines the SLA (an upper and lower bound in terms of I/O

requirements) as well as a priority (weight) for the workload. The priority and SLA

of the workload can be negotiated by the tenant with the cluster administrator and

the exact process is beyond the scope of this work. We assume a workload model,

where each VM Ensemble (VMEi) or Workload (Wi) consists of one or more VMs,

identified by its SLA and priority, distributed across nodes in the cluster and is pro-

vided to DRX in terms of the specification. Given that a cluster has limited capacity

in terms of I/O, there can be instances where not all workloads can have their SLA

satisfied at the same time. Thus, the overall goal of WC is to select workloads (or

SLAs), based on the priorities assigned subject to the I/O capacity of the cluster.

6.3.1.1 Conditions for selecting Satisfiable SLA

In this work, we are concerned with data center settings where the I/O interconnect

is the key source of contention (i.e., VMs’ vCPUs are allocated to their own physical

CPUs), and therefore use I/O as a key performance metric: (1) Ws’ SLAs are de-

scribed in terms of their I/O requirements - g, and (2) Ws’ performance is monitored

through monitoring their I/O usage at time t, given as m(W, t). Therefore, given a

number of workloads (W1..Wn), the goal of WC, stated more specifically, is then

(i) to maximize the weighted sum of the high priority workloads, Wi whose SLA

requirements could be met, i.e., αi ∗ g(Wi), while,

(ii) minimizing the SLA violation or error, e, experienced by the remaining work-

loads Wj (ej(t) = (m(Wj, t)− IOmin(Wj)) > 0). This implies that the performance

for some workloads must be at the lower bounds of their SLA, where the lower bound

is identified by IOmin(Wj).

As a result of the max-min SLA conditions, the workloads are divided into two

87

distinct sets called the Set-Satisfiable (SS) and Set-Victims (SV), respectively. We

use a Utility Function, Us to decide which workloads can have their SLAs satisfied

given their current performance guarantee, g(Wi) by maximizing the weighted (αi)

sum of the utilities.

Maximize
k∑

i=1

Us(g(Wi), αi) (1)

subject to, ∑
i∈SS

g(Wi) <
∑
n∈N

Ln −
∑
j∈SV

IOmin(Wj) (2)

In Equation 1, the utility function (i.e., weighted sum) can be specified based

on number of factors, which include the cluster-wide profit expected from satisfying

certain SLAs, the total number of satisfied SLAs, the ability to decrease the aggregate

load on the cluster, etc. Equation 2 permits the workloads in set SS to meet their

SLAs provided there is sufficient capacity in the links (Ln) for the SS workloads I/O

as well as for I/O from all workloads in SV if reduced down to their lower bound

or minimum guarantee IOmin(Wj). The minimum value ensures that workloads in

SV can continue to make progress and are not stalled indefinitely for lack of network

resources. Note, that the WC runs only when workloads are to be admitted into the

cluster, to re-balance the SS and SV sets if required.

6.3.1.2 Optimizing Selection of SLA Satisfiable Workloads

The above equations essentially are an example of Combinatorial Optimization where

the cloud provider wants to optimize their profits or utility when multiple applications

are sharing the data center. Generally, Combinatorial Optimizations are illustrated

by the ‘Knapsack Problem’ [30, 103], where we can only fit ‘x’ items each weighing a

certain amount ‘wi’ into a ‘Knapsack’ capable of carrying a certain maximum weight,

‘W’. Here, the cloud provider needs to select a certain number of applications to

satisfy their SLAs given their guarantees (‘g(Wi)’) and network link capacity (‘Ln’).

In general, the Knapsack Problem belongs to the NP-Hard family, i.e., it is unlikely

88

that we would find an algorithm that runs in polynomial time. However, we can

find approximate solutions using various programming techniques described in [53,

120]. Using the dynamic programming technique to solve the 0-1 Knapsack problem,

where each application/VME represents a separate item/instance, we can solve the

utility function such that we can find the list of applications that are part of the

Set-Satisfiable.

In this work, we use a simple priority-based function to select satisfiable SLAs to

simplify the computation required for selecting the workloads. Algorithm 4 shows an

approximate solution to finding the SS and SV VME sets for the utility function. The

input to the algorithm is the set of VMEs or workloads identified as High Priority

(HP) or Low Priority (LP). Next, we place all the VMEs identified as low priority

into SV and all VMEs identified as high priority into SS. We sort the workloads in SS

by their ascending order of guarantees. Here, we intrinsically assume that workloads

with the highest guarantees have the highest utility. Next, we keep inspecting the

value of Equation 2 to make sure we are within the limits. If not we move a workload

from SS to the SV set. Since we have sorted SS based on ascending order at every

step we select the workloads with maximum utility therefore we would still reach our

maximization goal as defined by the utility function. The worst case of this algorithm

depends on the sorting technique used during Sort SS which is approximately O(n

log n) with Merge Sort.

6.3.2 Finding Distributed Interference using DCCR Finder

While the Utility Function provides a way to select the VM Ensembles or workloads

which need to have their SLA met, we need to track and identify VMEs that share

physical links. This is important since these VMEs can potentially cause interference

to one another due to their actions on the same link. The ‘DCCR Finder’ tracks

this distributed interference by identifying such VMEs distributed across the cluster.

89

Algorithm 4 Algorithm for Utility Function Solution

Input: WorkloadSpec Wi = (g(Wi), IOmin(Wi), αi)
Output: Set SS, Set SV
1: Initialize SV ← Low Priority Apps
2: Initialize SS ← High Priority Apps

/* Store total of SS Workload Guarantees */

3: G(W)←
∑
i∈SS

g(Wi)

/* Store total link capacity */

4: L←
∑
n∈N

Ln

/* Store total of SV IOmin */

5: IO(W)←
∑
j∈SV

IOmin(Wj)

6: Sort SS in ascending order of guarantees
7: for all Workload Wi ∈ SS do

/* Move Wi to SV if g(Wi) unsatisfiable */
8: if (G(W) > (L− IO(W)) then

/* Remove Wi from SS */
9: SS ← SS −Wi

/* Wi from SS to SV */
10: SV ← SV +Wi

/* Remove g(Wi) from total guarantee */
11: G(W)← G(W)− g(Wi)
12: else
13: return Set SS, Set SV
14: end if
15: end for

This relationship between VMEs is formally called the Distributed Causal Congestion

Relationship or DCCR, and is expressed as the set of VMEs potentially affecting the

performance reduction of a VMi:

DCCR(i) = {VMEj}
∣∣∣ [VMk ∈ VMEj ∧ VMk ∈ P(VMi)] (3)

The DCCR Set is computed by the PM on a per-VME or per-VM level. We choose

to do it on a per-VM level since DRX tracks and charges per VM and the Ensemble

Manager (EM) reports to the PM about a specific VM(s) not receiving its (their)

SLA(s), This is more fine grained than reporting the entire VME as not receiving

the SLA. The DCCR Set includes VMEs that share physical links with the this VM,

90

i.e. VMEs with VMs that are on the same physical machine as VMi, denoted by the

function P.

After computing this set we identify those VMs within these VMEs that are ac-

tually causing the interference and infer the amount of interference by using the I/O

monitoring data. The resulting VMEs can also be present in the SS Set selected

by the utility function, in that case, we can only limit their resource allocations,

and corresponding performance degradation, down to their SLA value. The inter-

ference amount, i.e. the performance degradation, is then used in our ‘Economics’-

and ‘Control Theory’-based DRX mechanisms which compute resource allocations

for these VMEs. We discuss these mechanisms along with their use in specific SLA

policies next.

6.4 DRX Resource Management Mechanisms

The overall goal of DRX is to provide SLA guarantees to certain applications iden-

tified by the utility equation, and it must do so for dynamic workloads without any

pre-existing knowledge of the workload characteristics. The DRX platform, there-

fore, implements a range of mechanisms which work together in order to satisfy the

workloads selected by the Workload Configurator. These mechanisms are centered

around three aspects: (a) Use of our ‘Virtual Currency Abstraction’ that uses ‘Resos’

as a Resource currency for VMs which enables Exchange transactions for EMs, (b)

Supply-Demand principles that govern the distribution and pricing of resources to

VMs, and (c) Control theory semantics to understand the change in performance of

VMs when their resource allocations change. The ‘Resource Pricer’ sub-component

of the PM is responsible for enforcing these three aspects and relies on the input from

the DCCR Finder about the set of interfering VMEs as well as the performance degra-

dation value reported by the EMs. In this section we explain the implementation of

the mechanisms and how the Resource Pricer uses each of these aspects.

91

6.4.1 Allocating, Accounting for Resos and Charging Resources

The PM is responsible for global resource management of the cluster and it ensures

resources are allocated in an appropriate manner to meet the resources of the VMs.

However, to improve scalability for VM resource management, the PM allocates a

certain number of Resos per EM called ‘EM Allocation’. Each EM Allocation depends

on the set of all resources present in the cluster, i.e., ‘Resource Supply’ and on the

resource management policy, see Section 6.6. Further, each EM is responsible for

distributing Resos to its VMs. For the sake of simplicity, we assume EMs distribute

Resos to its VMs ‘equally’, unless we state otherwise is our policies. Since we are

focused on IB resources for management, we assign Resos to VMs only for these

resources.

In order to deal with resource dynamism in the cluster, we use an ‘Epoch and

Interval-based model’ for accounting of resources. We distribute Resource usage cred-

its – Resos – at the start of each epoch. Resource accounting is performed at specific

time intervals, where multiple time intervals constitute an epoch. Specifically, every

interval, the Host Agent deducts Resos from the VM’s Resos allocation – i.e., charges

VMs – to account for the I/O consumed by each VM in that interval. We use an

epoch of 60 seconds and an interval length of 1 second. These values allow a suitable

balance between the overhead and accuracy of accounting and resource allocation for

VMs. We next describe how we use our ‘Virtual Currency Abstraction’ for resource

pricing within our DRX model.

6.4.2 Resource Pricing using Virtual Currency Abstraction

First, the price increase intrinsically depends on the amount of congestion-caused

Performance Degradation (PD) of a VM/VME. We find the PD for a VM using

IBMon to detect changes in the IB usage. The PD is the percentage change in the

CQEs (for RDMA) or I/O Bytes (for IPoIB or RDMA port counters) generated by

92

the VM. To maintain a certain SLA the VM needs to generate a required number of

CQEs or Bytes. When this CQE rate falls below the SLA, IBMon detects it and we

can report the difference between it and the SLA to the HA. The HA further reports

this to the EM of that VM which in turn sends the value to the PM. This SLA

value in CQEs can be pre-computed based on the I/O requirements of the workload,

before the workload is deployed on the cluster. However, the exact computation is

beyond the scope of this work and we assume that it is provided to us as a workload

input [99].

Second, pricing is performed on a per-VME Basis. This simplifies our ability

to track prices across the cluster when pricing for an entire VME and reduces the

amount of communication performed between HAs and the PM. By performing price

changes on the entire VME, we can provide a faster response to reduce congestion,

rather than repeatedly changing prices per VM. All VMEs that belong to the DCCR

set of a VM whose performance degradation triggers a price adjustment, will have

their price increased. The amount of the price increase for each VME would depend

on these factors listed above, as well as on the cluster-wide policy.

Third, in order to be more flexible in changing the price based on the policy we

use two parameters αi and δPi, which control the price increases for a VMEi. αi

defines the weight or priority for the VMEi and is between 0 and 1 as defined in the

Workload Specification. δPi is the policy coefficient for a VMEi and is defined for

each policy in Section 6.6.

Fourth, pricing is performed in a continuous manner, i.e., the next price is based

on the previous price and is updated based on observed performance degradation.

This allows us to use Control Theory to adapt the change in price to the dynamism

of the workloads running in the cluster. This is important since we do not know

apriori what is the specific impact on price changes per workload. This price change

will also affect the underlying physical resource allocation for the affected VMEs. We

93

therefore utilize a Proportional Adaptive Controller, similar to controllers described

in [102, 135], to realize our Pricing function for a VME and is shown as follows.

pi(t) = f(pi(t− 1), ej(t), δPi, αi)

pi(t) = pi(t− 1) +Ki(t) ∗ ei(t)

Ki(t) = δPi ∗ αi, 0 < Ki(t) < 1

(4)

In Equation 4 the terms K refers to the ‘gain’ of the respective control functions.

It is defined to be dependent on the performance degradation experienced by the

workloads and converts this error into Price changes for congestion causing work-

load. The δPi and αi parameters affect how sharp the price increase for a particular

workload should be, and are further discussed in the context of specific policies in

Section 6.6.

6.5 Platform Controls for RDMA I/O

While the price of the resource computed for a VME identifies the amount of I/O

interference caused, we need to convert that value into realizable resource allocations

without apriori workload knowledge. The resource allocation value depends on the

effectiveness of the control on the I/O performed as well as how flexible the control is

in setting the value. We discuss these factors and their applicability for two specific

platform controls - CPU Capping and InfiniBand Hardware Features - for controlling

RDMA InfiniBand I/O.

6.5.1 Software-Based Controls - CPU Capping

We can use the CPU Scheduler on each host to change the amount of CPU, i.e. CPU

Cap for each VM. As a result the VM gets lesser time to send a RDMA request which

goes directly to the hardware, thereby giving us a crude method to control the I/O

the VM performs as shown before in [112, 111]. CPU Capping is a host-level control,

94

that can be assigned per VM and has a unit-level granularity. While it does not

translate to an exact resource allocation, the impact on the I/O is easily evident and

configurable to provide the necessary reduction in I/O interference.

The capping degree depends on the policy being implemented. In general, the

CPUCap for a VM depends on the New Price for the VMEi (pi(t)), Old Cap for VM

(cji (t−1)), VME Priority (αi) and a CPUCap policy coefficient, δCj
i (t), which defines

the conversion of Price into a CPU Cap. Here we again use a Proportional Adaptive

Controller which takes into account the previous Price change and CPU allocated to

the VM to compute the new CPU.

cji (t) = f(cji (t− 1), pi(t), αi, δC
j
i (t))

cji (t) = cji (t− 1)− Zj
i (t) ∗ pi(t)

Zj
i (t) = δCj

i (t), 0 < Zj
i (t) < 1

(5)

In Equation 5, the term Z refer to the ‘gain’ of the control function. The gain Z,

defines the amount of CPU to be deducted based on the New Price computed. Z is

defined such that it is workload specific rather than policy-dependent, by capturing

the workload ‘I/Oness’, i.e., the change of I/O with CPU, which is different for

different workloads.

6.5.2 Hardware-Based Controls - InfiniBand Hardware Features

Here, we describe the use of features supported on newer generation InfiniBand

adapters for DRX resource management. These features include Congestion Control

and Quality of Service support and can provide differing performance characteristics

to applications based on IB Service Level/Queue Pair used. These features are set

in the configuration of the Network Controller, i.e. the Subnet Manager and are

designed to service the IB Queue Pairs based on the values set and the feedback on

congestion from the network devices.

95

While the hardware features provide a low-overhead mechanism to perform re-

source management for RDMA-based fabrics, one of the limitations of using these

features is the flexibility/granularity in setting the values for enforcing resource man-

agement. The limitation comes from two factors: One, that the values apply to the

entire HCA and not individual VMs so in order to provide guarantees for a VME,

each VME must be identified by a SL. Two, the features are designed to be work-

conserving such that there is no unused bandwidth maintained, which works against

DRX to reduce actual I/O performed by the VM.

6.5.2.1 Congestion Control

InfiniBand networks use a credit-based mechanism for flow control where ports are

assigned a certain number of credits for sending packets. The port can continue

to send packets as long as it has credits available. The credits are replenished at

intervals. It is possible that when multiple ports send data into the network certain

links are overused. This prevents ports from injecting data even though it may have

credits available. Such a state for a port is called ‘Congestion’ and can be mitigated

by utilizing the ‘Congestion Control’ mechanism on InfiniBand hardware [117, 144].

This mechanism allows setting parameters on hardware that control the rate of

injecting packets by QPs on the HCAs. The InfiniBand specification [52] describes

these parameters for both HCAs and Switches as well as the values to be assigned

to them. Switches use the Forward Explicit Congestion Notification or FECN bit in

the IB packets to inform destination HCAs that there is congestion present in the

link. The destination HCA will send a Congestion Notification Packet or CNP with

the Backward Explicit Congestion Notification or BECN bit set to the source HCA

indicating that the QP should reduce its send rate. The parameters described in the

specification govern the rate of sending BECNs, injection rate delays for QPs/SLs,

and logging congestion information.

96

The parameters are divided into 2 groups, one called ‘Congestion Control Table’

which provides a list of injection rate delays (IRD) to be used, two called ‘Conges-

tion Control Parameters’ which denotes how the preceding table is traversed. The

following parameters are the most relevant for enabling congestion control:

• Congestion Control Table Index Minimum (CCTIMin): The minimum index to

be used in the CCT when congestion occurs.

• Congestion Control Table Limit (CCTILimit): The maximum index to be used

in the CCT for congestion.

• Congestion Control Table Index Increase (CCTI Inc): The increase in the CCT

Index when a BECN is received on that HCA.

• Congestion Control Table Index Timer (CCTI Timer): After this timer value

expires the CCTI is reduced by 1. The timer is reset if a BECN is received for

that QP/SL.

• Congestion Control Table Shift (CCT Shift) and Multiplier (CCT Mult): Both

these values together specify how the IRD changes as BECNs are received by

the HCA. These are 2-bit and 14-bit values respectively and the maximum IRD

possible is ≈3.4ms.

We set these values for the HCA nodes by sending InfiniBand MADs (Management

Datagrams) to the Subnet Manager (SM). The SM then forwards these values to the

appropriate HCAs using MADs. With DRX the PM can send these MADs to the SM

when HAs report a SLA violation. The PM can continuously change the value of the

IRDs for certain QPs, i.e., the CCT Shift and CCT Mult values in order to reduce

congestion from these QPs. We configure the HCAs to apply congestion control on

a port Service Level (SL) basis and set the ‘ControlMap’ in the SM accordingly. As

97

BECNs are received the CCTI will be incremented for that SL and hence any QPs

using that SL will be serviced after a delay as specified by the CCTI.

6.5.2.2 Quality of Service or QoS

An InfiniBand link is divided into several Virtual Lanes or VLs, each of which can

be assigned to a different application. Each VL can be configured to provide differ-

entiated service to the application attached to it. Here, each application is assigned

a Service Level (SL) for the QP associated with that application. The QoS feature

of InfiniBand configures the mapping of these SLs to VLs called ‘SL2VLMapping’.

The HCA performs arbitration of VLs based on a table called the ‘VLArbitration’

table containing weights for each VL. The weights govern the proportion of the band-

width allocated to that VL. Each unit of weight allows the HCA to service that VL

for one chunk of 64 bytes. The VLs are also divided as low and high priority VLs.

High priority VLs are serviced up to the ‘High Limit’ value in order to prevent low

priority VLs from starvation. By configuring higher weights to certain VLs and map-

ping SLs to these VLs, we can ensure higher bandwidths for these VLs. The HCAs

ensure processing of VLs in a ‘work-conserving’ manner, i.e. the HCA will keep the

link utilized as long as some VL has data. This nature of QoS is very useful for

throughout-oriented applications but affects latency-sensitive applications since they

always need their data to be immediately processed.

The QoS mechanism allows specification of a simple policy consisting of mapping

Upper Layer Protocols or ULPs, like SDP or IPoIB, to different SLs as well as weights

or mapping for these SLs. We use this simple policy injunction with the congestion

control mechanism to provide resource management for the applications. We set these

QoS values in the configuration file of the Subnet Manager and therefore, these values

apply to QPs that were created after the SM is restarted with these values set. Next,

we describe how we use the platform controls along with the DRX mechanisms to

98

provide a varied range of policies that can be enforced on such clusters.

6.6 Policies for a Distributed Resource Exchange

Given the various components and mechanisms of DRX in Section 6.2 and 6.4 we

now describe various ways in which these components interact using the Workload

Model described in Section 6.3 to provide distributed resource management. We

divide our policies into two classes based on the interference charges to the VMEs,

i.e. whether all VMEs are equally charged or are charged based on the percentage of

interference caused. We further categorize policies via the ‘Control Mechanism’ for

reducing interference - Pricing versus purely using Platform Controls. The policies

constructed using only ‘Platform Controls’ eschew the Pricing mechanism and directly

apply resource allocation values based on some policy parameters. This allows us to

compare the effects of whether the Price is a good indicator of interference as well

as a vehicle for performing distributed resource allocation actions. Table 4 shows the

list of policies that we have implemented for DRX. Also, Tables 5 and 6 show the

specific configuration values we use the InfiniBand Congestion Control- and Quality

of Service-based Platform Control policies, respectively.

Table 4: Various Policies implemented in DRX based on amount of interference.

Control Mechanism Equal-Blame Hurt-Based

Distributed Pricing EB-Dist HB-Dist

Local Pricing EB-Local HB-Local

Platform-Based

CC-Dist PC-Dist

StMax StMaxQ

DRXMax DRXMaxQ

99

Table 5: InfiniBand Congestion Control Parameter and Values.

IBCC Parameter Value

CCTI Timer 32767

CCTI Inc 10

Trigger 100

CCTI Min 10

CCTI Limit 127

CCTI Shift 0

CCTI Mult 16383

Table 6: InfiniBand QoS values for various Policies. SL0 for Transactional Workloads,
SL1 for other workloads. All Policies have same IBCC Values.

Policy QoS Values

SL-VL VL Weights

StMax 0,1 32,32

DRXMax 0,1 32,32

StMaxQ 0,1 254, 1

DRXMaxQ 0,1 254, 1

6.6.1 Equal-Blame Policies

In general, this type of policy treats interference from all VMEs ‘equally’ and there-

fore, charges them the same amount whether as a Price or directly as a reduction in

resource allocation.

6.6.1.1 EB-Dist and EB-Local Policies

We implement these policies to show a naive method of charging VMEs when there

is congestion. The difference in the two policies is which VMEs/VMs are charged

when congestion occurs. In EB-Dist every VM of a VME present in the DCCR of

congested VM x is charged, termed a ‘Distributed Policy’. In EB-Local, only VMs

present on the same host as the congested VM x have their prices increased, a ‘Local’

100

policy. For example, if the performance degradation reported by an HA ‘y’ is 30%,

then with 2 VMEs in the DCCR of congested VM ‘x’, each VME’s price is increased

by 15% for the EB-Dist Policy. For EB-Local, only the VMs belonging to the DCCR

and present on host y will have their price increased by 15%. The Price and CPU

Cap functions for a VMEi and VM j as follows:

pi(t) = pi(t− 1) + (pi(t− 1) ∗ δPi ∗ αi) ∗ ej(t) (6)

cji (t) = cji (t− 1)− cji (t− 1) ∗
(
pi(t)− pi(t− 1)

pi(t− 1)
∗ δCj

i (t)

)
= cji (t− 1)

(
1−

(
δPi ∗ αi ∗ ej(t) ∗ δCj

i (t)
)) (7)

δPi =
1

N(DCCRx)
δCj

i (t) =
ELh

RLj
i (t)

where, N(DCCRx) denotes the number of VMEs in the DCCR set of VME x, ELh

and RLj
i (t) denote the % of Epoch Left on HA h and % of Resos Left for VM j ∈

VMEi respectively.

For this policy the Pricing function is a linear function that increases prices when

the error is larger than the required SLA value. The coefficients δPi and δCj
i (t) were

specifically chosen to highlight the equal contribution of the interfering workloads and

to penalize VMs for using their Resos at a faster rate than the epoch progression.

6.6.1.2 Platform-Based Policies

CPUCap Distributed (CC-Dist) - The goal of this policy is to only use the software-

based platform controls to validate the benefits of Pricing, i.e if we are converting

Prices to CPU Caps using CPUCaps directly should help as well. Since all interfering

VMs are charged the same, we decrease the CPU Cap steadily by 5% (up to 25%)

for all these VMs distributed across the entire cluster.

Static Max (StMax) - We use the Congestion Control feature in IB to control the

interference caused. This policy is equivalent to the CC-Dist policy since we are

charging all VMs equally for interference by adding the maximum possible value

101

of IRD for their queues. These values are applied directly at the SM without the

intervention of DRX and therefore are static. The QoS feature is enabled but equal

weights, i.e. equal priorities are assigned to every SL.

DRX Max (DRXMax) - We can leverage DRX’s ability to track an application’s SLA

violation and then specify IBCC values to minimize the violations. Here, we use

the same maximum IRD values as in StMax and DRX applies these values when it

receives a SLA violation message from the HA. Here, the PM sends Management

Datagrams (MADs) to the Subnet Manager in order to apply the values. Also, the

QoS mechanism is configured in the same way as StMax.

6.6.2 Hurt-Based Policies

This type of policy uses the ratio of I/O generated by the VMEs to calculate a

price increase since the I/O generated, i.e. ’Hurt’ would proportionally impact the

performance degradation more.

6.6.2.1 HB-Dist and HB-Local Policies

The Distributed and Local policies imply the same meaning from before. From the

earlier example, if the VMEs perform I/O in a ratio of 9:1, the effective price increase

for VME1 would be 27% and VME2 3% for 30% PD. The PM finds the aggregated

I/O from the HAs to compute the I/O ratio between VMEs and therefore adjusts the

prices accordingly. The goal of this policy is to charge the VMEs more based on the

fraction of performance degradation they caused. For this policy δPi and δCj
i (t) in

Equations 6, 7 for VMEi and VM j are as follows:

δPi =
IOi∑N
k=0 IOk

, δCj
i (t) =

ELh

RLj
i (t)

where, N denotes the number of VMEs in the DCCR set of VME x and IOi the amount

of IO performed by VMEi. The rest of the formula is the same as the Equal-Blame

Policy.

102

The δPi term makes sure the Price increase tracks the amount of I/O generated

by the VMEi and is therefore uses a linear adaptive gain in order to provide a better

response to minimize SLA error.

6.6.2.2 Platform-Based Policies

Proportional CPUCap (PC-Dist) - In PC-Dist, we decrease the CPU Cap for the

interfering VMEs based on their I/O Ratio metrics. Therefore, each VM would have

its CPU Cap reduced by a fraction of the 5% based on the I/O Ratio.

Static Max QoS (StMaxQ) - We use the VL prioritization and weight assignment along

with the maximum IBCC values to give a higher priority to transactional workloads

like Nectere [45] and lower priority to other workloads. Therefore, we simulate a

Hurt-Based policy since workloads that send out more I/O would be penalized more,

i.e. get less bandwidth.

DRX Max QoS (DRXMaxQ) - This is again similar to the StMaxQ policy but the

application of IBCC parameters is performed by DRX rather than set manually.

Also, we use the VL weights assignment to prioritize transactional workloads over

other applications.

6.7 Discussion

6.7.1 Comments on DRX Pricing and Workload Control

Integral to the Pricing and CPU Cap Equations is the reaction of the workloads to

changes in these quantities. DRX tries to capture the relationship between Pricing,

CPU capping and Workload I/O changes using these equations. This depends on how

closely DRX can ‘track’ the workloads’ response to resource changes and this limits

the effectiveness of DRX on such workloads. Therefore, when DRX detects workload

I/O changes it can infer whether those changes are within ‘limits’ which DRX can

control. We establish certain conditions on DRX Pricing.

103

When does DRX limit Price changes?

We limit price changes to one per interval which allows workloads to adapt to the

change in price, therefore change in resources. Also, we limit the maximum price that

can be charged to the VME Ensemble as MaxPricei = ResosAlloci
IntsPerEpoch

and set the price

as the minimum between this MaxPricei and pi(t). This prevents unbounded price

increases.

When does DRX set minimum resource allocations?

If we set MaxPrice we also allocate the minimum I/O for that VME, IOmin(Wi)

which implies that we set minimum values for the physical resources like CPU for

the individual VMs and prevent any further price changes. Conversely, if we allocate

IOmin(Wi) for a VME i during the epoch through price changes, then we prevent

any further price changes for VME i.

What are the conditions for DRX stability?

Since we use DRX for controlling RDMA-based workloads through CPU Capping,

stability of our control functions is important. We define stability as the tendency of

DRX to allow SS workloads to meet or exceed their SLA while keeping SV workloads

at or above their IOmin values. Therefore, DRX is stable when the price increases

for SV correspond to an appropriate decrease in their respective I/O, i.e.

pi(t)−pi(t−1)
pi(t−1) ≈ mi(t)−mi(t−1)

mi(t−1)

Stated differently, and based on the properties of the control theory model DRX

uses [102, 135], there is an explicit relationship between the selected parameters of

the pricing function (i.e., αi, K and δPi) and the type of workload variability that

DRX can successfully manage. Furthermore, as long as this condition is met, DRX

will continue to make progress towards the IOmin value for SV workloads as well as

make sure the SS workloads can meet their SLAs.

104

6.7.2 Applicability towards non-RDMA networks

The methods described in this chapter are of a general nature and can be applied

for other types of networks as well, for example, Ethernet. Intrinsically, our DRX

solution relies on three specific network properties in order to work effectively.

One, the underlying SLA workload model relies on the accuracy of the SLA spec-

ified and that value may need to be updated when the application is run on a slower

bandwidth Ethernet network. This means that the Utility Function algorithm will

behave correctly to select the right workloads to be satisfied.

Two, the pricing strategies defined in DRX use the monitoring data from IBMon

to decide whether a workload should have its priced increased or not. For Ethernet

networks the pricing strategies can be updated to take into account Ethernet frames

sent/received by the application instead of the IB MTU. The HAs can acquire this

information directly by using tools provided by the OS.

Three, the control knobs that DRX uses for reducing the amount of I/O an appli-

cation performs must be changed for Ethernet networks. DRX relies on both software

and hardware-based control knobs due to the OS-bypass model of InfiniBand, for Eth-

ernet however, these knobs can be completely in software as described in [122]. Here,

the application data can be buffered in the OS/Hypervisor till it is the application’s

turn to transmit the data. The buffer time is dependent on the application SLA and

the current network price imposed on the application.

6.8 Evaluation

6.8.1 DRX Implementation

We have implemented DRX in C and it utilizes the libvirt [76] for interacting with

the KVM hypervisor and the ZeroMQ library [143] for distributed communication

between the DRX Components (PM, EMs, and HAs). In order to simplify imple-

mentation, our HAs also act as EMs for the VMs that are present on that host, i.e.

105

S/V$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$

M1$

M2$

M3$

M4$

M5$

M6$

M7$

M8$

S/V$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$

M1$

M2$

M3$

M4$

M5$

M6$

M7$

M8$

S/V$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$

M1$

M2$

M3$

M4$

M5$

M6$

M7$

M8$

Hadoop Terasort Nectere Linpack

Symmetric Layout Asymmetric 1 Layout Asymmetric 2 Layout

Figure 31: Workload Layouts in Cluster

they react and response to VM’s SLA’s degradation as an EM and allocate resources

as required as an HA. This reduces the amount of communication and computation

required between the components. The PM resides on a pre-defined machine possibly

with other VMs and an HA, while HAs are assigned one per host. For CPU Capping,

we rely on Linux ‘Control Groups’ [116] that limit the CPU bandwidth for a VM

process. We set the ‘cpu. cfs period us’ and ‘cpu.cfs quota us’ parameters to set a

CPU Cap. We use the KVM libvirt function ‘virDomainMemoryPeek’ in IBMon to

perform memory introspection of the guest to interpret IB QP and CQE information.

6.8.2 Testbed

Our testbed consists of 8 Relion 1752 Servers. Each server consists of dual hexa-

core Intel Westmere X5650 CPUs (HT enabled), 40Gbps Mellanox QDR (MT26428)

ConnectX-2 InfiniBand HCA, 1 Gigabit Ethernet and 48GB of RAM. Our host OS

is RHEL6.3 OS with KVM and the guest OS’ are running RHEL6.1. Each guest

is configured with 1 VCPU (pinned to a PCPU), 2GB of RAM and an IB VF. We

use the mlx4 core beta version of the drivers (based on OFED 1.5) for the hosts and

guests, configured to enable 16VFs, so we can run up to 16VMs on each host. The

IB cards are connected via a 36-port Mellanox IS5030 switch.

106

Table 7: Workload Details. The #VMs column indicates the number of VMs assigned
for that benchmark followed by the VMs on every host in brackets.

Workload Data Size #VMs
Nectere 64KB 2 (1)

Hadoop - TeraSort 10GB 32 (4)
Linpack 300 1000 7500 (Ns) 32 (4)

6.8.3 Workloads

We use three benchmarks, each representing a different type of cluster workload.

Nectere [45], is a server-client-based financial transactional workload with low latency

characteristics. We measure its performance in terms of µs for request completion.

We use Hadoop’s TeraSort [46] with a 10GB dataset as a representative for data

analytic computing to generate distributed interference. For Hadoop workloads we

use the job running time as the performance metric. Linpack [49] is a characteris-

tic MPI workload for clusters and uses Gflops as its performance metric. Table 7

summarizes the parameters for our workloads used. We run the workloads in a stag-

gered manner, where we start and let the Hadoop job run for 30s before starting the

Linpack job. Next, we start the Nectere workload and run all the jobs till Nectere

completes successfully. This ensures that the workloads are performing sufficient I/O

communication before Nectere starts.

Figure 31 shows in detail the layouts of the VMs for each of the workloads and lay-

outs described here. Each row in Figure 31 denotes the node and the VMs configured

on that node. In the ‘Symmetric Layout’ each physical machine is running 4 VMs of

each benchmark. Additionally, we also use 2 Asymmetric Layouts – Asymmetric-1

and Asymmetric-2. In Asymmetric-1, we have more Linpack and Hadoop VMs (up

to 16 total) on the same physical machine as the Nectere VMs. Therefore, this layout

should cause more interference to the Nectere application. In Asymmetric-2, there

107

 0

 10

 20

 30

 40

 50

 60

Nectere-Latency Hadoop Linpack

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 %

Workload

NoMgmt

CC-Dist

PC-Dist

EB-Local

EB-Dist

HB-Local

HB-Dist

Figure 32: Effect of Policies on Performance of Nectere, Hadoop and Linpack Work-
loads.

is only one VM each of Linpack and Hadoop along with the Nectere VM. This ex-

plores the other end of the asymmetry, where there is minimal interference. These

are asymmetric in the sense of how distributed the workload VMs are in the cluster.

In general, we run each policy for the ‘Symmetric’ layout unless we mention ex-

plicitly the type of layout. Each DRX policy is run one at a time and it ensures that

when Nectere is running, it maintains the CQE/s within a SLA limit of 15% (we

can easily configure other values) from the base value. We design our experiments in

order to highlight some of the important features of DRX and their impact on the

selected workloads.

Broadly, we divide the results into three different categories: (i) policy perfor-

mance, (ii) policy sensitivity to resources usage patterns, (iii) limitations and over-

head of DRX in different workload layouts, and (iv) effectiveness of hardware features,

which we describe next.

108

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000

C
Q

E
/s

 f
o

r
6

4
 K

B
 N

e
c

te
re

Monitor Instance #

SLA=15%

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

R
e

q
u

e
s

t
L

a
te

n
c

y
 (

µs
)

Nectere Request #

SLA=15%

Non-Interfered Server
Interfered Server

EB-Dist Policy
HB-Dist Policy

Figure 33: Effect of Policies on the running average of Nectere CQE/s and Latency.
High CQE/s denotes Low Latency.

6.8.4 Policy Performance

Figure 32 shows the impact of the distributed and local policies on workload perfor-

mance. The CC-Dist and PC-Dist policies do help in reducing Nectere latency, but

not to its SLA level. These also have a much greater impact on the performance of

Linpack and Hadoop, because of the continuous capping. The EB-Local and HB-

Local policies cannot reduce the latency for Nectere below the SLA because Linpack

VMs on other machines are actually causing congestion by sending data to its VMs

collocated with Nectere. However, in the case of the EB-Dist and HB-Dist policies,

Nectere can meet its SLA of 15%. This demonstrates the feasibility of resource pricing

as a vehicle to reduce congestion, as well as the importance of performing distributed

resource management actions, as enabled by DRX.

Figure 33 shows the impact of the EB-Dist and HB-Dist policies on the latency of

the Nectere application (bottom graph). It also shows the change in the metric used

109

-20

-19

-18

-17

-16

-15

-14

-13

-12
 1 1.2 1.4 1.6 1.8 2

 40

 50

 60

 70

 80

 90

 100

S
L

A
 D

if
f

%

C
P

U
 C

a
p

Price (Resos/MTU)

SLA=15%

VME IBMTU Price

CPUCap

Figure 34: Equal Blame Policy: Comparison of VME Prices, CPU Cap and SLA
Difference.

by DRX to manage I/O performance – CQE/s. Both the Equal-Blame and Hurt-

Based policies are effective in reducing contention effects and providing performance

within the guaranteed SLA levels – they reach the same value for latency, though

their impact on the interfering workload performance is different. Also, the HB-Dist

policy provides the least degradation of Hadoop and Linpack workloads while meeting

the SLA for Nectere.

Figures 34, 35 show the impact of the EB-Dist and HB-Dist policies respectively

on VME Prices, CPU Cap and SLA Difference. The CPU Cap here denotes the

average CPU received by the VMs belonging to the respective workload. The EB-

Dist policy degrades the workloads more since it increases the prices equally for both

VMEs which negatively impacts how fast the CPUCap is reduced. As a result the

EB-Dist policy is more reactive or fast-acting to SLA violations as highlighted by

the CPU Cap reductions versus price increases shown in Figure 34. EB penalizes

interfering VMs more than HB and assesses a lower CPU Cap for Hadoop, Linpack

110

-22

-20

-18

-16

-14

-12

-10

-8
 1 1.5 2 2.5 3 3.5

 40

 50

 60

 70

 80

 90

 100

S
L

A
 D

if
f

%

C
P

U
 C

a
p

Price (Resos/MTU)

SLA=15%

Hadoop VME IBMTU Price

Linpack VME IBMTU Price

Linpack CPUCap

Hadoop CPUCap

Figure 35: Hurt-Based Policy: Comparison of VME Prices, CPU Cap and SLA
Difference.

at 60. Figure 35, shows the more slow-acting nature of the HB-Dist policy, where

the CPUCap of the interfering workloads is decreased much more gradually than

EB-Dist. HB-Dist allocates a higher CPU Cap to Hadoop (71) and lower CPU Cap

to Linpack (50) since these are based on the I/O Ratio between the VMEs. For

both these policies the PM always responds to a SLA violation messages within 5ms,

therefore DRX always detects and acts upon congestion in a timely manner.

Essentially, EB and HB policies serve two respective methods for SLA satisfaction

– (1) fast-acting while not performing graceful degradation of workloads, (2) slow-

acting while providing graceful degradation to other workloads. This result highlights

an important aspect of DRX: multiple policies can be constructed and configured to

meet the SLA values for applications.

6.8.5 DRX Sensitivity to Resources

In order to evaluate the effect of resource usage patterns on the effectiveness of DRX,

we use two more workload setups. In one setup we use an instance of Nectere along

111

 0

 20

 40

 60

 80

 100

Nectere HPL1 HPL2

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 %

Workload

EB-Dist
HB-Dist

Nectere MRBench HPL

Figure 36: Comparison of DRX Policy Sensitivity with two different workloads sizes.

with 2 Linpack instances. In the second, we use an instance of Nectere along with

the Hadoop MRBench application and a smaller data size for Linpack. We observe

from Figure 36 that when the interfering workloads perform similar amounts of I/O

both EB and HB policies behave equally well, however, since EB treats both VMEs

similarly at all times, and applies the same cap simultaneously, it achieves a lower

latency for Nectere. In the adjacent graph, HB becomes more aggressive than EB and

it caps both Linpack and MRBench much more. This is because as HB performs the

capping, it leads to oscillations in the VME that dominates the I/O Ratio (> 95%).

This forces HB to perform large amounts of cap alternately on the VMEs. This is not

evident in Figure 32 as the difference in the I/O Ratio between Hadoop and Linpack

is smaller. Therefore, we find that HB is more sensitive to large swings in the I/O

Ratio while EB is less sensitive to differences in the generated I/O. Future policies

will be extended with mechanisms to detect such oscillations, and to further limit

their aggressiveness under such circumstances.

6.8.6 Limitations and Overhead of DRX

We show in Figure 37 that for two different workload layout (Asymmetric-1 and

Asymmetric-2 from Figure 31), the DRX policies affect them differently. When there

is a lot of interference in the Asymm1 layout, none of the policies can satisfy the

112

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Nectere-Latency Hadoop Linpack

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 %

Workload

EB-Local-Asymm1 Policy
EB-Dist-Asymm1 Policy

HB-Local-Asymm1 Policy
HB-Dist-Asymm1 Policy

NoMgmt-Asymm1

EB-Local-Asymm2 Policy
EB-Dist-Asymm2 Policy

HB-Local-Asymm2 Policy
HB-Dist-Asymm2 Policy

NoMgmt-Asymm2

Figure 37: Performance of Policies (Local and Distributed) with Asymmetric Work-
load Layout. Asymm1 and Asymm2 refer to the types of workload deployment.

Nectere SLA. This is because, despite CPU capping, the VMs still generate sufficient

I/O to cause congestion for Nectere. In this case, having more support from the

hardware to control I/O would be very useful. In the Asymm2 case where Nectere has

minimal interference, DRX ensures that other workloads are perturbed much less or

not at all. Here, both Linpack and Hadoop perform very close to their baseline values.

These results highlight the limited utility of CPU Capping in extreme interference and

also the low overhead caused by DRX components and their management actions.

6.8.7 Effectiveness of Hardware Features with DRX

We perform initial experiments which leverage the Congestion Control and Quality

of Service features built into InfiniBand hardware and how they can be used to im-

prove latencies for the Nectere application. Figure 38 and 39 show the impact for

two workload layouts, Symmetric and Asymmetric-1 and compare the performance

between the best CPU Capping policies and Hardware Features Policies.

Both these figures highlight that the Static Enforcing Policy (StMax, StMaxQ)

113

 0

 20

 40

 60

 80

 100

Nectere-Latency Hadoop Linpack

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 %

Workload

NoMgmt

EB-Dist

HB-Dist

StMax

DRXMax

StMaxQ

DRXMaxQ

Figure 38: Performance Comparison of EB, HB and Hardware Policies for Symmetric
Workload Layout.

outperform the DRX Enforced Policies (DRXMax, DRXMaxQ) as they limit the in-

terfering workloads as soon as they start running and therefore have maximum impact

on their performance. However, they cannot improve the Nectere latency below the

20% performance degradation which the CPU Capping policies easily achieve. This

highlights one limitation of the hardware features that the enforcement granularity is

not per VM but rather per SL which could be shared by multiple QPs across multiple

VMs. Note, that in case of Hadoop and Static Policies, there is no corresponding

column shown in the graph since Hadoop failed to start for these policies. One of the

utilities of the hardware features is highlighted in Figure 39 where Congestion Con-

trol policies outperform CPU Capping policies and Nectere latency can reach 20%

degradation. In such a workload layout where there is much more I/O than CPU

Capping can limit, we can use the hardware features instead.

114

 0

 20

 40

 60

 80

 100

Nectere-Latency Hadoop Linpack

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 %

Workload

NoMgmt

EB-Dist

HB-Dist

StMax

DRXMax

StMaxQ

DRXMaxQ

Figure 39: Performance Comparison of EB, HB and Hardware Policies for
Asymmetric-1 Workload Layout.

6.8.8 Key Observations on Policy Effectiveness

In general, ‘EB-Dist’ and ‘HB-Dist’ provide that Nectere can meets its SLA in the

Symmetric layout. In the Asymm1 layout, ‘StMax’ provides the best performance

for Nectere, while in Asymm2 layout any of distributed or local pricing-based policies

are useful in maintaining Nectere’s SLA.

6.9 Chapter Summary

In this chapter we describe our approach called Distributed Resource Exchange or

DRX which offers hypervisor-level methods to mitigate inter-application and dis-

tributed interference in SR-IOV-based cluster systems. We monitor VM Ensembles –

a set of VMs part of a distributed application – which enables controls that apportion

interconnect bandwidth across different VMEs by implementing diverse cluster-wide

policies. We implement two classes of policies: one that assigns ‘Equal Blame’ to

115

interfering VMEs and another that looks at how those VMEs are affected – ‘Hurt-

Based’ policies, that show the feasibility of such distributed controls. Each class in

turn contains policies that apply the Price changes in a distributed or local manner,

and that only use the software- or hardware-based platform controls. With DRX,

we show that latency-sensitive codes can be protected against sets of distributed

applications, when they experience ‘hurt’ only when hurt is present.

The results demonstrate that DRX is able to maintain SLA for low-latency codes

to within 15% of the baseline by controlling collocated data-analytic and parallel

workloads. Limitations of the DRX approach are primarily due to its current method

to mitigate interference, which is to ‘cap’ the VMs that over-use the interconnect

and cause ‘hurt’. We also show initial results with leveraging hardware-based con-

gestion and quality of service controls for mitigating congestion for latency-sensitive

workloads.

116

CHAPTER VII

ENFORCING LATENCY PROPORTIONALITY IN

SR-IOV INFINIBAND CLUSTERS USING OPENFLOW

CONTROLLERS

Previous chapters have highlighted the necessity to provide isolation, fairness and

performance guarantees to collocated sets of latency-sensitive and communication-

intensive applications. While, the mechanisms used are general in nature, the man-

agement platform cannot be integrated into existing network management platforms

to be generally applicable.

In this chapter, we first highlight the motivation to add such mechanisms for

current network management platforms and how they can utilized to provide a new

fairness property called ‘Latency Proportionality’ for collocated latency-sensitive ap-

plications. We use our Virtual Currency Abstraction mechanics to build a dy-

namic feedback-based controller, Sphinx, that performs network allocations through

hardware-based controls. Sphinx is built on top of the OpenFlow-based Floodlight

controller and administers a SR-IOV InfiniBand cluster to provide latency guarantees.

7.1 Importance of Latency Proportionality

Performance-critical flows are becoming increasingly common in datacenters where

networks with new features like Remote Direct Memory Access (RDMA) [52, 54, 1]

and Single Route I/O Virtualization (SR-IOV) [2, 32] are being deployed. These

flows are part of new application classes like financial [126, 123], VoIP [74], Mem-

cached [59, 61], Hadoop [55] and Video Streaming [17, 35] which have specific per-

formance constraints that rely on the low latency and high bandwidth capabilities

117

afforded by these features.

Another trend common to datacenters is the deployment of Software-Defined Net-

working or SDN [25, 69, 82] solutions to simplify network management. Current cloud

computing platforms can achieve network-wide visibility through a centralized log-

ical controller [37, 97, 20]. The various flows between virtual machines (VMs) or

applications can be managed through the centralized interface and network access

policies can be constructed accordingly. This logical separation of policy definition

from enforcement allows for specification of policies for performance-critical flows.

However, there are key challenges related to identifying flow requirements, enforcing

flow isolation as well as monitoring flow performance that have to be addressed in

order to improve server consolidation of performance-critical flows.

Currently, specification of flow requirements [10, 75] is more commonly treated

as a division of network throughput between collocated flows based on some fairness

conditions [104]. While this works well for throughput-intensive workloads, this still

does not apply in the same manner to the latency-sensitive workloads which cannot

meet their guarantees. As evident from recent work [40, 7, 63], latency-sensitive

workloads need more co-operation from the network/host to reduce the ‘delay’ with

which its packets get sent on the wire. By providing acceptable bounds to this

delay, current network management solutions can better service performance-critical

applications.

Second, with RDMA-based fabrics deployed in datacenters, there is an increasing

need to manage these type of flows collocated with other TCP-based flows. Due to

this heterogeneity, network resources must be balanced in order to bound the delay

for the performance-critical flows.

Third, since network and resource management solutions cannot apriori know the

impact of collocated workloads, they must perform continuous monitoring of these

flows to check for unbounded delays. Thus, as a result of missing the delay guarantees

118

they must orchestrate network resources to let the flow meet its delay bound.

Recent work [98, 63, 113] has addressed some challenges of scheduling individ-

ual low latency flows on shared networking infrastructure. Other efforts show the

advantages of coordinating flow schedules across the network through various vir-

tual abstractions [4, 15, 42] as well as minimizing flow interference between ten-

ants [14, 56, 40]. Also, efforts to find interference effects and resource requirements

can be obtained by sandboxing applications [31, 99, 80], however, such efforts only

deal with CPU and Memory constraints while ignoring the network component. Thus,

there are still challenges related to dependence of intra-application flows as well as het-

erogeneous types of flows that need to be addressed to schedule performance-critical

workloads correctly.

In this chapter, we address the problems discussed above by creating a man-

agement solution for high performance networks called Sphinx, which manages the

performance interference of collocated performance-critical and data-intensive flows.

We identify the permissible level of interference through a Proportional Fairness-

based [81] property called ‘Latency Proportionality’ which identifies the correct fair-

ness and guarantee for such flows based on user-defined policies. Sphinx enforces this

property through our ‘Virtual Currency Abstraction’ described in Chapter 5 as well as

orchestrating the network via various host-specific and cluster-wide network resource

controls. We use an existing network controller to build these abstractions and high-

light the need for such management actions through a combination of user-defined

policies and latency-sensitive workloads.

Broadly, this chapter makes the following key contributions:

(i) Definition of a new network property, Latency Proportionality, that specifies

the performance bound on the collocated application flows on the network based on

their latency-sensitivity.

(ii) Dynamic network resource allocations using our Virtual Currency Abstraction

119

and network hardware features.

(iii) An implementation, Sphinx, of the above mechanisms, that can enforce flexible

policies through the Floodlight OpenFlow Controller.

(iv) Evaluation of Sphinx on a SR-IOV-based InfiniBand cluster with a mix of

latency-sensitive and data-intensive workloads. Sphinx utilizes the hardware features

of InfiniBand fabrics to allocate network resources for flows.

The rest of this chapter is organized as follows. Sections 7.2 and 7.3 describe the

key motivations for developing Sphinx and the technologies used by Sphinx respec-

tively. In Section 7.4 we define our Latency Proportionality network property. We

describe our Pricing Resource Control Model in Section 7.5. Section 7.6 describes the

implementation of Sphinx. We provide an evaluation of Sphinx in Section 7.7, and

we summarize in Section 7.8.

7.2 Challenges in collocating diverse workloads

In this section we show that with SR-IOV fabrics there are challenges when collocating

workloads with mixed SLA requirements and using mechanics provided by the fabric

mitigate the impact, are insufficient by themselves. We begin by showing initial

results of running both throughput and latency-sensitive applications on our testbed

(detailed in Section 7.7), comprising of 12-core nodes connected by a 40Gbps Single

Route I/O Virtualization (SR-IOV) enabled InfiniBand network.

7.2.1 Impact of Workload Characteristics

For a RDMA-based application the network request bypasses the OS and therefore,

the request size determine the workload characteristics application [110, 58]. Thus,

by providing larger request sizes the application can grab a higher share of the band-

width.

We demonstrate this behavior in our testbed using two instances of Memcached [59]

to request data of sizes 16K and 512K respectively. Figure 40 shows that there is an

120

 0

 10

 20

 30

 40

 50

 60

 70

Set Get Mixed

A
ve

ra
ge

 L
at

en
cy

 (
µ

s)

Memcached Operation

Base

512K Load

Figure 40: RDMA-based Memcached run-
ning with another Memcached instance us-
ing larger message sizes.

���

���

���

���

���

���

���

���

�� ������ ������ ������ ������ ������

��

����

�
��
��
��
��
��
��
��
��
�
��

�
��
��
��
��
��
��
��
��
��
��
�

���������

���������������
����������������������

Figure 41: Nectere running with a Mem-
cached instance which alternates between
small and large message sizes (shown by
green line). Nectere’s latency also in-
creases or decreases when the Memcached
message size changes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30 40 50 60 70 80 90 100

Pr
ob

ab
ili

ty

Request Service Times (µs)

95%

Standalone Nectere

With Memcached

With Memcached, Media, Hadoop

Figure 42: CDF of a Latency-Sensitive ap-
plication with other Cloud workloads.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

C
ou

nt

Call Round Trip Times (µs)

Latency Count for Non-Interfered App

Latency Count for Interfered App

Figure 43: Latency Distribution of a VoIP
application with Hadoop TeraSort work-
load.

impact on the response time for the 16K client even though the requests are being ser-

viced by two different but collocated server VMs. We modified a RDMA-Memcached

client to perform ‘Get’ operations of different message sizes (4K and 512K) for 1K

iterations alternatively. Figure 41 shows the impact on a collocated Nectere [45] ap-

plication’s latency, which tracks the rise and fall in Memcached message sizes. The

latency increases by almost 40% when the Memcached message size is 512K.

121

7.2.2 Impact of Workload Collocation

We run a few cloud-based applications like Hadoop, Memcached, Media-Streaming [35]

with other Latency-constraint applications like Nectere and Voice Over IP in our

testbed. We show the impact of collocating these cloud-based applications with

Latency-sensitive applications in Figures 42 and 43.

Figure 42 shows the CDF of the Nectere Request Times when running (i) stan-

dalone, (ii) with Memcached, and (iii) with Memcached, Hadoop, Media Streaming

Benchmark. Figure 43 shows the Latency distribution for a VoIP/SiPP benchmark

when running standalone versus collocated with Hadoop. Both these figures demon-

strate that even on modern interconnect networks which support RDMA and OS-

Bypass features, server consolidation can lead to reduced performance for workloads.

This is mainly due to the sharing of the network link between the VMs on the host

and as a result some VMs get a lower share of the bandwidth than their SLA require-

ments. Since the network card that schedules packets from each VM on the link is not

aware of the VM SLA it does the scheduling naively, i.e. to improve the bandwidth

utilization.

7.2.3 Configuring Network for SLA

Since for RDMA-based fabrics the NIC is responsible for servicing application requests

directly, the firmware on the NIC must support management of applications. This

management could include bandwidth rate limiting or stopping/starting flows in the

network. This would help in alleviating some of the workload characteristics impact

on other applications.

With respect to InfiniBand networks there are two capabilities - Quality of Service

(QoS [6]) and Congestion Control (CC [117]) - which can be used to reduce interfer-

ence between applications. Briefly, QoS allows us to prioritize communication from

one application over another by assigning weights to each application. CC allows us

122

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Base 1 4 8 16 32 64 128 254 Equal

N
ec

te
re

-6
4K

 L
at

en
cy

 (
µ

s)

Nectere 2MB VL Weights

45.06 56.6 57.65 72.1 56.11 56.55 57.88 60.57 62.82 72.3

Figure 44: Using InfiniBand QoS to con-
trol Nectere workload. The values on the
X-axis denote the QoS weight assigned to
the 2MB Nectere instance. The 64KB
Nectere instance is assigned a higher pri-
ority service level than the 2MB one. In
the Equal case both instances are at the
same high priority service level and equal
weights.

 0

 50

 100

 150

 200

 250

Nectere Memcached

A
ve

ra
ge

 L
at

en
cy

 (
µ

s)

Application

Base

NoQoS

QoS(1:2)

CC(0:1)

45

187

70

190

57

190

52

212

Figure 45: Using both InfiniBand QoS
and CC mechanisms to control the interfer-
ence from the Memcached workload. Val-
ues on the bar denote the latency of the
respective application. The QoS values de-
note the weights assigned to each appli-
cation. The CC values indicate the units
of delay added to the queue processing of
each application.

to add delays in the servicing of requests sent from applications. We describe these

in more detail in Section 7.3. The NIC is responsible for enforcing these capabilities

when it is configured using the Subnet Manager (SM).

We explore these options in trying to reduce interference in applications used

above in this section. In Figure 44 we use QoS to reduce the interference between two

Nectere instances. While the QoS can reduce the interference to a certain degree, it

is harder to predict what the reduction in the value would be as well as how it will

affect the variation. For example, with a weight of 8 for the 2MB Nectere instance,

the interference effect is the same as the one for Equal weight.

In Figure 45 we show the effects of using QoS and CC on two co-located appli-

cations with different workload characteristics to reduce interference. With either

QoS and CC there is an reduction on the latency value but with CC the impact on

the Memcached instance is more. Therefore, there must exist some combination of

QoS and CC that might reduce interference but the impact is not as much on other

123

applications.

7.2.4 Observations

The above experiments demonstrate that while collocating disparate workloads is

good for increasing link and server utilization there are still some challenges in how

the link bandwidth should be divided in order to satisfy applications’ SLAs. One,

in order to meet VM/application SLA the network should be configured correctly

and in the case of hardware virtualized and RDMA-based NICs, this entails finding

the right values for the hardware-based rate-limiting mechanisms. Therefore, there

must be some mechanism to convert the application SLA values to a network-specific

rate-limit value. Two, due to the work-conserving property for existing network man-

agement, both latency-sensitive and bandwidth-based flows are treated equally. This

actually leads to more delays in processing for latency-sensitive flows. Thus, to re-

duce this delay, the network should be configurable such that latency-sensitive flows

are given a higher preference before other flows. Three, as workload characteristics

change the impact on collocated workload is affected which may increase the amount

of congestion caused. Thus, as a result the corresponding hardware rate-limit value

may be incorrect in satisfying the application SLA. This implies that we must mon-

itor applications’ current performance and update the rate-limit values continuously.

Four, when we adding delays or priorities to a single VM belonging to a cluster-wide

distributed application, it impacts the entire application SLA as well. Therefore, it

is crucial to find the right network configuration values for all the nodes hosting the

application components. Five, the tuning of the network configuration components

is crucial as well to find the right combination such that applications can meet their

SLA while other applications are not extremely penalized which might lead to very

under-utilized networks.

124

Host1 Host2

N1 M1 N2 M2

HCA HCA

Switch

Figure 46: N1, N2, M1, M2 represent VMs or application components for two ap-
plications, Nectere and Memcached respectively. The colored packets represent the
corresponding source flow. This represents the key idea behind Latency Proportion-
ality, that is to prioritize packets from particular flows on the link.

7.3 OpenFlow-based Network Controllers

Sphinx relies on several technologies that motivate its design. We describe the hard-

ware virtualization techniques in Section 2.5 as well as the hardware network mecha-

nisms in InfiniBand in Section 6.5.2. Here we describe additional technologies relevant

only to Sphinx.

Software-Defined Networking provides a separation of the control and data plane

of the networking infrastructure into configurable software components. The Open-

Flow protocol [82, 37] provides a specification for how these separate components can

interact. The OpenFlow controller is the software component that controls the net-

work hardware to perform datapath operations based on network policies entered

by the operators. This simplifies network management by presenting a uniform

OpenFlow-based interface even if the hardware itself is heterogeneous. In a virtu-

alized environments, the controller manages both virtual and physical switches and

collects statistics from the switches based on the OpenFlow protocol.

125

7.4 Latency Proportionality

7.4.1 Definition

We define ‘Latency’ as well as Service Level Objective for an application as the time

measured between consecutive requests sent. To achieve the required latency the ap-

plication must receive a set of I/O resources corresponding to flow credits, scheduling

slots, switch buffers on the network link. When applications are collocated these

flow credits and slots are shared resulting in latency increases and thus performance

reduction. Due to differing I/O characteristics these network resources end up be-

ing shared in an ‘unfair’ manner. This sharing is worse for OS-bypass and RDMA

networks as there is little control at the OS-level apart from CPU Capping [113].

The cause of this interference is well-studied and arises from some packets [112, 40]

of a more latency-sensitive flow being delayed by packets from other flows. In order

to reduce the delay packets from lower latency (or more performance-critical) flows

should be scheduled on the network link first. We illustrate this in Figure 46, where

flows from two latency-critical applications must be prioritized on the link for all

components of the applications.

However, the amount of delay to be reduced is not known since achieving a delay of

zero for a flow would imply degrading the rest of the flows by almost 100%. We need

a metric to provide a ‘fair’ and ‘expected’ performance for collocated applications,

such that this delay between packets of each application is bounded. The delay can be

summed as ‘Performance Loss’ for the flow SLO for a request that is sent. Thus, the

‘Fairness criteria’ can be defined in terms of expected Performance Loss to the flows

which can be similar to the notion of ‘Proportional Fairness’ [81] well-established

before. We call this criteria ‘Latency Proportionality’ or ‘LP’ and it allows us to

define relative performance degradation between collocated flows. For the four flows

126

shown in Figure 46 we can define LP for the pairs of collocated flows as:

LP (N1,M1) =
PLN1

PLM1

LP (N2,M2) =
PLN2

PLM2

In this rest of this section, we show how we can achieve LP for such collocated

flows deployed on a RDMA-based cluster using hardware mechanisms and outline our

observations from these experiments.

Table 8: Comparison of Latencies (in µs) achieved by Nectere and Memcached work-
loads when running in four configurations. All cell values are in Nectere : Memcached
format. PL refers to the Performance Loss experienced by the application and is
shown as a percentage change from the Base values for the BP and LP configura-
tions.

LP Value Base Collocated Collocated + BP Collocated + LP % PL Ratios

BP LP

1 : 1 48 : 187 64.1 : 196.7 63.7 : 204.5 59.2 : 230 33% : 9.4% 23.3% : 23%

1 : 4 48 : 187 64.1 : 196.7 63.3 : 205.1 54 : 284 32% : 9.7% 12.5% : 52%

4 : 1 48 : 187 64.1 : 196.7 65.8 : 196.9 63.6 : 200.3 37% : 5.3% 32.5% : 7%

1 : 10 48 : 187 64.1 : 196.7 63 : 205.5 52.4 : 364 31% : 10% 9% : 95%

Table 9: Comparison of Latencies (in µs) achieved by different Nectere and Mem-
cached workload characteristics with the same configurations as above.

LP Value Base Collocated Collocated + BP Collocated + LP % PL Ratios

BP LP

1 : 1 100.5 : 99.5 121.3 : 112.8 116.3 : 110.4 116 : 113.5 15.7% : 11% 15.4% : 14%

1 : 4 212 : 187 238.2 : 191.4 225.6 : 195.6 222.3 : 215.9 6.4% : 4.6% 4.9% : 15.9%

4 : 1 48 : 46.7 57.4 : 51.1 60.7 : 50.6 60.8 : 50.3 26.5% : 8.3% 26.7% : 7.7%

1 : 10 212 : 99.5 223.4 : 112.6 223.5 : 103.8 219.5 : 132.8 5.4% : 4.3% 3.5% : 33.5%

7.4.2 Enforcing LP via hardware controls

We use the technologies and applications described in Section 7.3 related to Infini-

Band to control the performance losses experienced by collocated applications. The

two applications we use are Nectere [45] and RDMA-based Memcached [59]. We con-

figure each application in terms of request size, computation performed in order to

show various cases for Latency Proportionality values. We run each application com-

ponent (server, client) in separate VMs on different hosts on our testbed (described

127

��

��

��

��

��

��

��

��

��

��� ��� ��� ����

�
��
��
��
���
��
��
��
��
��
�
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��������

�����������������������������

��������
��
��

(a)

��

��

��

��

��

��

��

��� ��� ��� ����

�
��
��
��
���
��
��
��
��
��
�
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��������

����������������������������������

��������
��
��

(b)

Figure 47: Comparison of BP-based and LP-based performance loss ratios for collo-
cated Nectere and Memcached workloads. The configurations are for Table 8 and 9
respectively.

in Section 7.7) for each LP configuration. For LP value we run the applications - one,

without any resource controls to show the collocated performance, two with resource

controls to show we can meet the required LP values. We use the hardware controls

- Quality of Service and Congestion Control present on InfiniBand HCAs to control

the set of resources allocated to each application. Here, each application is allocated

a different Service Level (SL) for enabling the hardware controls.

Tables 8 and 9 provides the latency values for Nectere and Memcached when

they are running in four configurations: (i) Base (or standalone), (ii) Collocated, (iii)

Collocated + BP, where we configure the IB QoS weights in the inverse ratio of LP

specified, (iv) Collocated + LP, where we configure both IB QoS and CC values in

order to meet the required LP value. Figure 47 shows the LP value achieved for four

different LP configurations from the Tables 8, 9 and how we can achieve them using

the right settings for the hardware controls.

7.4.3 Observations

From the above graph and table, we can summarize the results as follows. One,

when partitioning the network from a complete bandwidth perspective it is hard to

achieve LP as seen from Figure 47. This is due to differing I/O characteristics of the

collocated flows as well as how work-conserving the hardware platform is. When the

128

I/O characteristics are equal as in LP 1:1 (100 us), LP behaves very similar to BP.

Two, each hardware control setting corresponds to a set of resources provided to the

application. These sets of resources does not directly correspond to the LP, for two

reasons mentioned above. Three, the controls established here are static controls,

while more generally we need a dynamic approach that takes into consideration the

current performance loss experienced by the application and makes the corresponding

change in hardware controls to achieve the Latency Fairness Property. The next

section describes our control model to dynamically adjust the resource controls based

on the performance loss experienced by the flows.

7.5 Dynamic Hardware controls via Congestion Pricing

When application flows interfere with each other, the network resources allocated

to each flow may need to be changed based on the performance loss experienced

by the flows. Since we do not have apriori knowledge of workloads and the impact

of resource controls, we use our ‘Virtual Currency Abstraction’ to abstract the re-

lationship between the performance losses experienced and exact resource controls.

This also allows us to deal with the dynamic nature of an application’s performance

through ‘Price Changes’ on collocated applications that result in resource allocation

changes. We combine both these key ideas into our ‘Pricing Control Model’ that can

dynamically orchestrate network resources to meet a particular performance loss or

LP value. We next discuss several key aspects of this model.

7.5.1 I/O Control Model

Even though we do not rely on apriori knowledge of workloads, we need to know

the impact of changing resource controls on application performance. This dictates

the right amount of control to set in order to increase or decrease application per-

formance loss. One of the approaches to apply control theory to system modeling is

to use a black-box approach [102], where we vary the resource controls and see the

129

��

��

��

��

��

���

���

���

���

�� �� �� �� �� ��� ���

�
��
��
��
��
��
�
��
��
��

�
�
��
��

�������������������������

��������

Figure 48: Impact of Congestion Control delays on RDMA Send Average Latency
for a 512KB buffer.

corresponding impact on the application performance. Instead of creating a model

for each RDMA-based application, we measure this impact on the individual RDMA

operations which are the basic building blocks for such applications. This allows us

to generalize the impact of the resource controls while at the same time reduce the

possible set of combinations to model. ‘RDMA Send’ is one of most common oper-

ations used and we study the impact of using InfiniBand Congestion Control delays

on its latency.

We utilize a RDMA Send microbenchmark that measures the latency of the oper-

ation for different buffer sizes. This benchmark is run between two VMs on separate

hosts (we describe our testbed in Section 7.7) and we keep increasing the delay to

measure the latency impact. The delay is changed by interacting with the InfiniBand

Subnet Manager (SM) through Management Datagrams (MADs) to specify the host

HCA and the delay value required. The delay value is converted to an IRD value by

the HCA for a QP as we describe before in Section 6.5.

Figure 48 shows the impact of the congestion control delays on a RDMA Send

microbenchmark using a 512 KB buffer size. As we see from the graph, this implies

a mainly monotonically increasing relationship between the latency increase and the

130

Price
Controller

Resource
Controller

+LP(i, j)

P(i, t-1)
P(j, t-1)

R(i, t-1)
R(j, t-1)

PLi, PLj

LP(i, j, t)
= f(PLi, PLj)

LPe

P(i, t)
P(j, t)

R(i, t)
R(j, t)

Figure 49: Sphinx Two-Stage Network Resource Controller.

delay value. Therefore, we can easily use a linear regression approach to find the exact

relationship between the latency increase or performance loss with changing delay.

The following equation captures this and we can use the coefficient of the equation to

find the right delay value given the performance loss desired. This linear relationship

exists for other buffer sizes as well though there was no effect on latencies of buffer

sizes of 4KB and smaller.

∆CCDelay = 1.28 ∗∆Latency (8)

This implies that a linear control model will allow us to find the right congestion

control delay given the latency percentage increase desired. However, as the number

of delay values are limited and small values can have a large impact on latency

(for example, when delay = 15), we still need to flexibly and dynamically allocate

resources, which we describe next.

7.5.2 Pricing Control Model

We use our ‘Virtual Currency Abstraction’ to provide a dynamic and flexible resource

abstraction to manage network resources. We perform our price changes in a dynamic

fashion based on the monitored values from the applications such that it can meet the

desired latency objectives, i.e. the Latency Proportionality property we described in

Section 7.4. Essentially, our ‘Pricing’ mechanism finds the right response-time curve

131

for a flow’s latency to the change in network resources.

There are two goals that the Currency mechanism provides: one, a dynamic

method to control over time the LP property desired and two, a single control point

for allocating resources for different applications, i.e. abstract the actual physical

resource control used.

These requirements allow us to construct a controller that takes as its input as the

error between the LP values required and the desired value for the collocated set of

flows. The final output of the controller will be the right resource settings that allow

us to reach the LP value. However, since we do not know apriori the right resource

controls to use we must perform this in two stages. One, we find the ‘Price Change’

based on this error which can be negative or positive. Two, this ‘Price change’ then

dictates the right resource control to use, i.e. IB QoS, Congestion Control, CPU

Capping [113] or Linux qdisc mechanisms.

We show one such controller in Figure 49 where we compute the New Price based

on the current Price for the flow, the error in the desired LP value as well as the

current performance experienced by the collocated flows. We can define the control

equation for a flow i using our Price Controller stage as follows:

P (i, t) = f(LPe, P (i, t− 1), PLi)

Similarly, our Resource Controller stage accepts the updated Price changes and

previous resource settings to output the settings to be applied to the network as

follows:

R(i, t) = f((P (i, t)− P (i, t− 1)), R(i, t− 1))

We model our Price Controller on an integral controller where we keep track of

all the errors measured for the target LP value. This allows us to make sure our

Price changes are an effect over time rather than at each time quantum. This also

smoothens out the impact of the price changes to help reach the right LP value.

132

Furthermore, we expand our control equation as follows:

P (i, t) = KI ∗
∫ t

0

LPe(t)dt (9)

where, KI is our integral gain.

We model our Resource Controller on the linear property as a Proportional Con-

troller as defined by Equation 8 as follows:

∆R(i, t) = KP ∗∆P (i, t) (10)

where, KP is our proportional gain.

Through both these equations 9 and 10 we can meet our goals for the Price Control

model which we defined above. In the next section we describe how we use this Pricing

model to enable the LP property within a software-defined network controller.

7.6 Sphinx OpenFlow Controller for Enabling LP

In this section we describe Sphinx, our OpenFlow Floodlight-based [37] network con-

troller to administrate a SR-IOV InfiniBand cluster using the Pricing Control Model

described earlier to help collocated flows maintain Latency Proportionality.

7.6.1 Overview

Figure 50 shows the overall architecture of our Sphinx OpenFlow Controller to orches-

trate a SR-IOV InfiniBand-based virtual cluster. We modify an existing networking

controller, Project Floodlight [37], to implement the mechanisms and methods de-

scribed before in this chapter.

Overall, the main goal of Sphinx is to achieve the desired Latency Proportion-

ality value by continuously monitoring the latencies of the workloads and making

the appropriate changes using the Pricing and Resource Controllers to change net-

work resources. The main components Pricing and Resource Controllers interpret the

monitoring data sent by the IBMon tool deployed on each host. These controllers are

133

Sphinx Floodlight
Controller

Pricing Two-Stage
Controller

SM Host

Subnet ManagerVM

OS

IBA

VM

OS

IBA

VM

OS

IBA

IBMon Host Agent

IBCC	
MADs

IBCC	 MADs	
to	 Hosts

ZeroMQ

MADs

IBCC/QoS

ZeroMQ

Host

Guests

HCA

InfiniBand Switch

REST	 API

Host/VM

Figure 50: Enforcing LP with OpenFlow Controller in SR-IOV InfiniBand Cluster.

deployed as a module within Floodlight. We use ZeroMQ [143] as the out-of-band

communication method between IBMon instances and controllers. Floodlight also

exposes REST APIs to allow users to set flow properties and latency proportionality

values. To effectively orchestrate and manage the network, we divide the Sphinx

workflow into various components described next.

7.6.2 Flow Specification

Applications are divided into flows such that each flow gets its separate SLO. This

can be done apriori based on the requirements of the user. Each flow is identified

with its flow SLO, the type of flow (RDMA or TCP) and the different endpoints of

the flow. A model described here [75] can be used to mark specific communications

of an application as latency-sensitive as required and the remainder can be tagged as

throughput-based. For throughput-intensive applications we allow the user to specify

a minimum bandwidth guarantee which we convert to a network latency value for

sending a MTU sized packet. This allows us to treat throughout-based traffic as a

LP flow.

134

7.6.3 Specifying LP through Policies

Rather than allow users to specify the exact LP value we describe certain general

policies that pertain to behaviors that users might want flows to achieve. For example,

when the user wants to establish a 1:1 LP, he/she can pick the ‘Fair’ policy. These

policies can be specified using the same APIs we expose for setting the flow model.

While these policies are built into Sphinx, the mapping of the LP ratio can be changed

as required. This allows us to dynamically change the mapping if required to give the

notion of differentiated performance. We use these policy definitions to define certain

minimum guarantees for workloads using the bandwidth proportionality notion we

define in Section 7.4.

7.6.4 Monitoring Heterogeneous Flows

We identify both RDMA (QP-based) flows as well as TCP/IP (IPoIB) flows using

Sphinx. As applications continue to run on the cluster we monitor each flow using our

IBMon tool. Each host in our cluster contains an IBMon instance that measures both

IPoIB and RDMA flows to find the amount of data is sent (based on information sent

by Sphinx). Each VM contains an extremely lightweight IB Agent that records the

relevant memory address of QPs, CQs created by the VM and reports it to the main

IBMon agent running in the host via ZeroMQ messaging methods. For RDMA-based

flows IBMon uses Libvirt [76] memory-mapping functions to map this guest memory

into its address space to track WQEs added to the QPs and completions added to

the CQs. The WQE contains a ‘byte count’ attribute to indicate how much data was

sent and the CQE contains the same value in its ‘byte count’ field when the request

completes successfully. This allows us to track the amount of data a QP sent. For

IPoIB flows, we use the port statistics (TX bytes and packets) that are present in the

guest and return those values to our IBMon agent.

135

7.6.5 Orchestrating Network Resources to manage LP

Sphinx relies on the 2-stage controller we described in the previous section to help

maintain LP. The advantage of the 2-stage controller is to allow us to substitute

various different resource control knobs as required by the application monitored.

Since we monitor heterogeneous set of flows, each type of flow would need a different

control knob to change its allocation.

Sphinx is deployed for InfiniBand networks, therefore, we provide a Resource

Controller that utilizes IB hardware mechanism - Quality of Service and Congestion

Control to control RDMA-based flows. The performance of the controller depends on

the integral gain and the proportional gain values used in the equations to provide a

stable LP output. Based on manual experimentation using Nectere and Memcached

workloads (using configurations from Table 8) and InfiniBand CC Delays, we found

that using KI = 4 and KP = 0.25 as the gain values gave us the most stable values.

7.7 Evaluation

7.7.1 Testbed

Our testbed consists of six Relion 1752 Servers. Each server consists of dual hexa-

core Intel Westmere X5650 CPUs (HT enabled), 40Gbps Mellanox QDR (MT26428)

ConnectX-2 InfiniBand HCA, 1 Gigabit Ethernet and 48GB of RAM. Our host OS

is RHEL6.5 OS with KVM and the guest OS’ are running Centos6.1. Both the host

and guest are configured with recent Mellanox software to enable SR-IOV support

(upto 16 VFs) for the HCAs. The IB cards are connected via a 36-port Mellanox

IS5030 switch.

7.7.2 Workloads

We use a combination of microbenchmarks, RDMA- and TCP-based benchmarks to

evaluate the utility of Sphinx in such clusters. Nectere, is a financial application [45]

136

����

��

����

��

����

��

����

��

����

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
���
�

��������

���������
���������������������

������
������

(a) Latency SLOs: 100.5us vs 99.5us

����

�����

����

�����

����

�����

����

�����

����

�����

����

�����

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�

��������

��������������������
����������������

����������������������
������������������

(b) App Performance Loss - With Sphinx and
Bandwidth Partitioned

��

��

��

��

��

��

��

��

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
���
�

��������

���������
���������������������

������
������

(c) Latency SLOs: 48us vs 187us

��

����

����

����

����

����

����

����

����

����

�� ��� ��� ��� ��� ���� ���� ���� ���� ����
��
��
��
�
��
��
��
��
��
�
��
��
��
�

��������

��������������������
����������������

����������������������
�����������������

(d) App Performance Loss - With Sphinx and
Bandwidth Partitioned

Figure 51: Achieving LP 1:1 for collocated Nectere and Memcached applications.

that was developed previously by us. RDMA Memcached [59] is a low-latency version

of Memcached that leverages the Verbs API designed for high performance RDMA

fabrics.

We compare LP values, Performance Loss and Application Latencies achieved with

three other resource management policies - Unmanaged, Bandwidth Proportioned

and Manual. Unmanaged means no resource management is being performed and

both applications share the same IB QoS service level. We define the Bandwidth

Proportioned (BP) and Manual policies in Section 7.4. The Manual policy implies

the best division of resources that can be achieved to meet the LP.

7.7.3 Achieving LP through Sphinx

Figure 51 and 52 show three aspects when achieving LP for different latency SLO com-

binations for collocated Nectere and Memcached applications. One, Figures 51(a), 51(c),

137

��

����

��

����

��

����

��

����

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
���
�

��������

���������
���������������������

������
������

(a) Latency SLOs: 212us vs 187us

�����

����

�����

����

�����

����

�����

����

�����

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�

��������

��������������������
����������������

����������������������
������������������

(b) App Performance Loss - With Sphinx and
Bandwidth Partitioned

��

��

��

��

��

��

��

��

��

��

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
���
�

��������

���������
���������������������

������
������

(c) Latency SLOs: 48us vs 187us

��

����

����

����

����

��

����

�� ��� ��� ��� ��� ���� ���� ���� ���� ����
��
��
��
�
��
��
��
��
��
�
��
��
��
�

��������

��������������������
����������������

����������������������
����������������������

(d) App Performance Loss - With Sphinx and
Bandwidth Partitioned

Figure 52: Achieving LP 1:4 for collocated Nectere and Memcached applications.

52(a) and 52(c) show how Sphinx changes the Latency Proportionality to required

value for the collocated applications and two target LP values - 1:1 and 1:4. The

LP values achieved by Sphinx are closest to the Manual values when compared to

the Unmanaged and BP cases. This highlights the control model of Sphinx where it

continuously updates the resource management to keep the LP to required LP.

Two, since LP tracks the ratio of the performance loss of the application, i.e.

difference in latency experienced from the SLO, we also show the continuous perfor-

mance loss experienced by the respective applications in Figures 51(b), 51(d), 52(b)

and 52(d). In most of the cases, Sphinx can maintain the performance loss of the

applications such that the LP value can be met, however in Figure 52(d), Sphinx is

unable to maintain the performance loss for Memcached. This is due to a limitation

on how much delay the Congestion Control delays can add and their impact on the

application latency.

138

��

����

����

����

����

��

����

����

������� ���������

�
��
�
��
��
��

�
��
��
��
�
��
��

�����������

���� ������ ������

(a) 100.5 vs 99.5us

��

����

����

����

����

��

����

����

������� ���������

�
��
�
��
��
��

�
��
��
��
�
��
��

�����������

���� ������ ������

(b) 48us vs 187us

Figure 53: Normalized Application Average Latency when comparing Sphinx and
Manual for LP 1:1.

��

����

����

����

����

��

����

����

������� ���������

�
��
�
��
��
��

�
��
��
��
�
��
��

�����������

���� ������ ������

(a) 212us vs 187us

��

����

��

����

��

������� ���������

�
��
�
��
��
��

�
��
��
��
�
��
��

�����������

���� ������ ������

(b) 48us vs 187us

Figure 54: Normalized Application Average Latency when comparing Sphinx and
Manual for LP 1:4.

Three, Figures 53 and 54 show that Sphinx can meet the required application

latency when compared to the Manual policy.

In Figure 55 we highlight another feature of Sphinx where it allows us to change

the target LP dynamically. When running Nectere and Memcached application with

target LP 1:4, we change the target to LP 1:1. Sphinx can dynamically adapt the

network resources to meet the new target LP by reducing or increasing resources for

Memcached based on the monitored latency from the Host Agent. This is possible

through our Pricing control loop where the new target LP would trigger a Price

decrease which further implies that a resource allocation decision must be made.

139

��
����
����
����
����
��
����
����
����
����
��

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

���������
��
��
��
��
��
��
��
���
�

��������

Figure 55: Sphinx allows us to change the LP value dynamically. Nectere (212us)
and Memcached (187us) used here.

7.8 Chapter Summary

In this chapter we have shown that there are various challenges in provisioning col-

locating performance-critical and data-intensive workloads in hardware-virtualized

clusters using Software-Defined platforms. We address this problem by defining a

new latency-based fairness criteria called ‘Latency-Proportionality’ that allows the

user to specify how performance between such flows should be maintained. We use

our Virtual Currency Abstraction to build a control model that continuously mon-

itors the set of heterogeneous flows that will exist on such platforms. We develop,

Sphinx, our network management platform that uses these techniques to enable LP

for such type of flows. Sphinx, is extensible with respect to the type of flows to be

monitored as well as the resource controls that can be used to provision each flow.

We demonstrate the utility of Sphinx to maintain the LP property for latency-

sensitive and data-intensive applications within a SR-IOV InfiniBand cluster. Sphinx

leverages the network hardware mechanisms as well as host-based controls to limit or

increase the network resources allocated to each flow. The limitations in Sphinx arise

from its dependence on the coarse-grained IB Congestion Control and QoS mecha-

nisms to reduce interference between such collocated applications for certain workload

140

behaviors. Sphinx is user configurable through REST APIs to specify policies and

can dynamically orchestrate the network to meet the policy LP requirement.

141

CHAPTER VIII

PREVIOUS WORK

In this section we discuss prior research that is related to this thesis. We categorize

the research into various areas that thesis most closely identifies with.

8.1 Memory Introspection and Monitoring Network De-
vices

Memory introspection techniques have been used extensively for monitoring VMs.

VMSafe [130] is a security framework provided by VMWare for their industry-standard

hypervisor, ESX Server, which includes sets of APIs to perform introspection of dif-

ferent resources of the system. [38] discusses a technique called Virtual Machine Intro-

spection (VMI) used to construct an Intrusion Detection System (IDS). VMI monitors

resources like CPU, memory, and network used by the virtual machine, and the IDS

detects any attacks originating from the VM. Similarly, Payne et al. [13] develop

a framework for virtual memory introspection and virtual disk monitoring for the

Xen hypervisor. While IBMon targets InfiniBand devices, as a sample device with

VMM-bypass capabilities, other devices with similar capabilities [107, 54, 28] can be

monitored via the same techniques. Other hardware-based techniques [60, 108] moni-

tor the VM’s memory for detect malicious changes. More recent work, Pingmesh [43]

and Planck [115] can monitor high throughput networks out-of-band to get overall

application performance.

142

8.2 Economics and Resource Management

We are not the first ones to use congestion pricing for resource management. There

has been earlier work in computer networks for allocations [72], congestion avoid-

ance [66], energy management [93] that also used this model to reduce congestion.

Also, it is used in QoS management [96] for providing better CPU scheduling for

tasks. Currencies have also been used for providing energy management as shown

in [141, 142]. In addition, market-based economic strategies are also used for re-

source allocation in large datacenters. This is very prevalent in cloud computing

infrastructures since these models make it easier to allocate the physical infrastruc-

ture [24, 34, 128]. More recent work in [22] has investigated on how to reduce costs

for collocated HPC workloads while mitigating interference.

8.3 Virtualized Resource Management in Clusters

8.3.1 Host-based Resource Management

Several research efforts by our own group as well as others focus on dynamic mon-

itoring and analysis on the behavior of applications deployed on a single system or

across distributed nodes [3, 127, 31, 99, 102]. Other work provide functionalities such

as node-level power management [94], CPU scheduling and memory allocation [62]

or VM deployment and migration in cluster settings [27, 70, 139, 80]. There are

several industry-related efforts [21, 41, 105] that provide support for network/storage

bandwidth guarantees for VMs within a datacenter, however, they are limited to the

hypervisor that is used or uses an emulated platform as VM workload. There also is

other recent research on modifying vNICs to provide fairness guarantees [11], how-

ever this effort relies on modifying specialized hardware and might provide limited

functionality. A key distinction in our resource management work is that it enables

monitoring of devices and VM interactions with such devices which occur ‘outside’ of

the virtualization layer. To the best of our knowledge, there hasn’t been prior work

143

focusing on dynamic monitoring of the VMs or applications’ use of devices such as

the IB HCAs, when accessed in a manner which bypasses the operating system or the

hypervisor layer.

8.3.2 Distributed Network Management

Many recent efforts have explored distributed control for providing network guaran-

tees for cloud-based workloads. These have looked at providing min-max fairness to

workloads [104], providing minimum bandwidth guarantees [42], or using congestion

notifications from switches [23]. Mogul et. al. in [87] provide a detailed survey of

these approaches. There are also other efforts that provide network guarantees for

per-tenant [73] and inter-tenant communication [14]. Authors in Gatekeeper [122]

enforce limits per tenant per physical machine by providing exact egress and ingress

bandwidth values. In other work we similarly enforce such bandwidth values dynam-

ically by providing prices and setting CPU Cap limits or Network Controls. Some

recent efforts [57, 29, 5] provide performance isolation for VMs by constructing dis-

tributed virtual switches, faster performance and performance guarantees to network

flows respectively in the datacenter.

8.3.3 Software-Defined Network Management

As the popularity of open source efforts [82, 88] increases, there is a growing need

among cloud infrastructure manufacturers to provide compatible hardware for such

platforms [83]. With high performance fabrics it is important to maintain that perfor-

mance while integrating the NICs with the infrastructure. [12] enables some support

for cloud computing applications within a supercomputer infrastructure, however,

this effort is limited to the type of supercomputer used, BlueGene/P, and not to

more commodity fabrics/clusters available. Other efforts [89, 121] enable different

architectures for the network by leveraging such software-defined networks. By pro-

viding such support they demonstrate the flexibility and deployability of SDNs. Some

144

vendors have added support on the hardware to newest generation Ethernet devices

in order to provide high performance [84]. While this approach is extremely viable, it

seems to neglect older generation devices that may not have such support available.

One of the areas that these approaches lack/limit is the support for enabling Quality

of Service (QoS) and performance isolation between VMs. As more VMs are con-

solidated using Software Defined Networks, there has to be support enabled at the

controller level to provide isolation between groups of VMs that share the same links.

Also, such support is usually configured in a static manner which may lead to lower

network utilization or performance guarantee misses, thus motivating the need for

Sphinx-level dynamic mechanisms to configure these in conjunction with application

monitoring techniques.

8.4 Network Management for Low-Latency Workloads

Providing resource management for lower latencies is becoming increasingly common

and a number of recent works has tried to address this problem in various ways. In

order to provide latency guarantees, various efforts [40, 56, 10] utilize rate limiters

built into operating systems or virtual switches to control the injection of packets into

the network. While these approaches are geared towards Ethernet-based networks,

the core idea of delaying some packets for specific applications is used by us as well for

RDMA-based and other workloads. However, as networks move towards 100Gbps, it

will be increasing difficult for software rate limiters to keep up with application traffic

and such controls must be pushed to hardware [119, 64, 36]. Also, we believe that

application programming models like RDMA to provide direct network access will be

more common to help applications use the maximum network throughput.

Using hardware-based mechanisms to reduce congestion are also increasingly com-

mon. Networks utilize notification mechanisms on the wire between hosts and switches

to find whether the ports are overloaded. While, approaches like DCQCN [145] and

145

Timely [86] generally alleviate congestion in the network overall, Sphinx leverages

similar existing mechanisms to ‘delay’ the packets to prevent congestion from occur-

ring in the first place as well as use the application performance to tune the network

accordingly.

Chronos [63] is another system that provides an overall approach to reduce end-

to-end latencies in all areas of the network stack as well as provide an optimized

network controller to minimize application latency. It will be useful for Sphinx to

take advantage of such a controller to help further reduce latencies.

There is also recent work in the area of providing bandwidth guarantees for cloud

tenants that is related to our work since the fairness and guarantees provided can be

viewed as a set of dynamic bandwidth guarantees. Oktopus [15], CloudMirror [75]

motivated our flow model design used by applications to specify SLOs. These ef-

forts aim to provide notions of bandwidth fairness, minimum guarantees or maximize

network utilization, which can be used within Sphinx as diverse sets of policies.

146

CHAPTER IX

CONCLUSION

This thesis addresses the problems with managing I/O for VMs within clusters that

are connected using high performance fabrics by creating a flexible, dynamic resource

management system through hypervisor enlightenment and Economics-based resource

allocations. These abstractions allow the collocation of various performance-critical

and data-intensive workloads, on single as well as distributed nodes in order to meet

their SLO objectives. We present the following contributions that re-assert the ob-

jectives outlined in the beginning of the thesis.

IBMon, is our hypervisor-based monitoring tool for RDMA-based workloads and

fabrics which allows low-level and fine-grained network monitoring through memory

introspection techniques. Using the tool hypervisors are now aware of the network

utilization by each VM. This further enables the construction of network management

platforms that can more effectively manage such fabrics.

FaReS and Resource Exchange, our example platforms that manage I/O on a

per-node basis for collocated bandwidth-intensive and latency-sensitive applications

respectively. FaReS presents observations and results that underpin the tradeoffs

regarding how such fabrics should be managed. ResEx introduces our Congestion

Pricing-based resource management abstraction to control the I/O for latency-sensitive

applications. ResEx shows that through such Pricing abstractions VMs can meet their

latency guarantees even when there is a high level of interference.

147

The observations and results from ResEx have allowed us to design and con-

struct Distributed Resource Exchange that extends our Pricing-based resource man-

agement to consider workloads deployed on multiple nodes. DRX co-ordinates re-

source allocations on a cluster-basis by monitoring VM Ensembles and their impact

on latency-sensitive workloads when deployed on shared SR-IOV InfiniBand clusters.

DRX allows low-latency workloads to meet their SLAs to within 15% by penalizing

distributed applications only when they are found to cause ‘hurt’.

Finally, we present Sphinx, our software-defined fabric management solution based

on the principle of Resource Exchange that allows performance-critical and data-

intensive workloads to be collocated in a hardware-virtualized InfiniBand platform.

Sphinx introduces a fairness concept called ‘Latency Proportionality’ that defines

what performance degradation is acceptable for these workloads through user-defined

policies. By leveraging network hardware mechanisms to control interference we can

dynamically orchestrate the network to meet the policy goals for low-latency work-

loads.

The limitations in our resource management techniques arise due to the control

mechanisms available for VMM-bypass I/O to affect the workload I/O performed at a

finer granularity. When workload behavior is within certain I/O-intensiveness for the

minimal allocation, the mechanisms prescribed here operate to provide the required

fairness and performance guarantees.

Overall, the contributions of this thesis enable current hypervisors and network

management utilities to monitor such high performance fabrics as well as provide finer-

grained allocations to help multiple applications meet their performance objectives

when collocated on such clusters. Though the mechanisms described in this thesis

are general, they can easily be extended to consider the capabilities and properties of

future networks in order to manage them.

148

CHAPTER X

FUTURE DIRECTIONS

This thesis provides several different aspects to consider for future work. The IBMon

tool can be extended with regards to different network capabilities like timestamps.

Future RDMA networks will contain a timestamp on each CQE, that would allow

IBMon to provide much more accurate latency and bandwidth information for each

VM or an application deployed.

Also, future network devices will have per-VF resource controls, i.e. have QoS

or CC settings described on a per-VF basis, that allows much more finer grained

management. The mechanisms described in Sphinx can easily be extended to leverage

these capabilities and can easily provide a better resource management model. These

capabilities can further be used to enforce end-to-end SLAs for distributed low-latency

workloads by using DRX to co-ordinate network configuration actions across hosts.

Also, with future devices like Omnipath [118] allowing control for each application at

the network flit-level, better packet scheduling would enable better latency guarantees

as well.

The Pricing-based mechanisms allows various Economics-based schemes to be

combined with cloud computing model. For example, Revenue and Billing services

can use these mechanisms to penalize the cloud provider for missing SLOs of appli-

cations or the cloud user can be charged exactly based on the I/O used for VMM-

bypass networks. The network management model can be integrated with other

system-level resource management techniques like VMware DRS [132], Island-based

Management [125] to provide a fully-integrated cloud resource management platform

that can provide latency as well as fairness guarantees from all resource perspectives.

149

REFERENCES

[1] “Direct Data Placement over Reliable Transports.” http://tools.ietf.org/

html/rfc5041.

[2] Abramson, D. and others, “Intel Virtualization Technology for Directed
I/O,” Intel Technology Journal, vol. 10, no. 3, 2006.

[3] Agarwala, S. and Schwan, K., “SysProf: Online Distributed Behavior Di-
agnosis through Fine-grain System Monitoring,” in ICDCS, 2006.

[4] Al-Fares, M., Radhakrishnan, S., Barath, R., Nelson, H., and Amin,
V., “Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Pro-
ceedings of the USENIX Conference on Networked Systems Design and Imple-
mentation, Apr 2010.

[5] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vah-
dat, A., “Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
Proceedings of NSDI, 2010.

[6] Alfaro, F. J., Sanchez, S., and Duato, D., “QoS in InfiniBand Subnet-
works,” IEEE Transactions on Parallel Distributed Systems, 2004.

[7] Alizadeh, M., Kabbani, A., Edsall, T., Prabhakar, B., Vahdat, A.,
and Yasuda, M., “Less is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center,” in Proceedings of NSDI, 2012.

[8] “Amazon Web Services: Case Studies.” http://aws.amazon.com/solutions/case-
studies.

[9] “AMD I/O Virtualization Technology.” http://tinyurl.com/a6wsdwe.

[10] Angel, S., Ballani, H., Karagiannis, T., O’Shea, G., and Thereska,
E., “End-to-end Performance Isolation through Virtual Datacenters,” in
OSDI’14: The 11th USENIX Symposium on Operating Systems Design and
Implementation, Oct 2014.

[11] Anwer, M. B., Nayak, A., Feamster, N., and Liu, L., “Network I/O
Fairness in Virtual Machines,” in Proceedings of SIGCOMM VISA, 2010.

[12] Appavoo, J., Waterland, A., Da Silva, D., Uhlig, V., Rosenburg, B.,
Van Hensbergen, E., Stoess, J., Wisniewski, R., and Steinberg, U.,
“Providing a Cloud Network Infrastructure on a Supercomputer,” in Proceed-
ings of HPDC, 2010.

150

[13] B. Payne and M. Carbone and W. Lee, “Secure and Flexible Monitoring
of Virtual Machines,” in Proceedings of ACSAC, 2007.

[14] Ballani, H., Jhang, K., Karagiannis, T., and et. al., C. K., “Chatty
Tenants and the Cloud Network Sharing Problem,” in Proceedings of NSDI,
2013.

[15] Ballani, Hitesh and Costa, Paolo and Karagiannis Thomas and
Rowstron Ant, “Towards Predictable Datacenter Networks,” in Proceedings
of the ACM SIGCOMM Conference, SIGCOMM ’11, pp. 242–253, Aug 2011.

[16] Barham, P., Dragovic, B., Fraser, K., Hand, S., and others, “Xen
and the Art of Virtualization,” in Proceedings of SOSP, 2003.

[17] Barker, S. K. and Shenoy, P., “Empirical Evaluation of Latency-sensitive
Application Performance in the Cloud,” in Proceedings of MMSys, February
2010.

[18] Ben-Yehuda, M., Mason, J., Krieger, O., Xenidis, J., Dorn, L. V.,
Mallick, A., Nakajima, J., and Wahlig, E., “Utilizing IOMMUs for Vir-
tualization in Linux and Xen,” in Ottawa Linux Symposium, 2006.

[19] Bernt Arne Ødegaard, “C++ programs for Finance.”
http://finance.bi.no/ bernt/gcc prog/.

[20] BigSwitchNetworks, “Big Network Controller.”
http://bigswitch.com/products/SDN-Controller/.

[21] Billaud, J.-P. and Gulati, A., “hClock: Hierarchial QoS for Packet Schedul-
ing in a Hypervisor,” in Proceedings of EuroSys, apr 2013.

[22] Breslow, A. D., Tiwari, A., Schulz, M., Carrington, L., Tang, L.,
and Mars, J., “Enabling Fair Pricing on HPC Systems with Node Sharing,” in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, November 2013.

[23] Briscoe, B. and Sridharan, M., “Network Performance Isola-
tion in Data Centres using Congestion Exposure (ConEx),” 2012.
http://datatracker.ietf.org/doc/draft-briscoe-conex-data-centre.

[24] Byde, A., Byde, A., Sallé, M., Sallé, M., Bartolini, C., and Bar-
tolini, C., “Market-Based Resource Allocation for Utility Data Centers,”
Tech. Rep. HPL-2003-188, HP Labs, sep 2003.

[25] Casado, M., Koponen, T., Ramanathan, R., and Shenker, S., “Vir-
tualizing the Network Forwarding Plane,” in Proceedings of the Workshop on
Programmable Routers for Extensible Services of Tomorrow, nov 2010.

151

[26] Cherkasova, L. and Gardner, R., “Measuring CPU Overhead for I/O
Processing in the Xen Virtual MachineMonitor,” in Proc. of USENIX ATC,
2005.

[27] Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., and Fox,
A., “Capturing, indexing, clustering and retrieving system history,” in Proc. of
SOSP, 2005.

[28] Consortium, R., “RDMA-enabled NIC.” www.rdmaconsortium.org.

[29] Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P.,
Sharma, P., and Banerjee, S., “DevoFlow: Scaling Flow Management for
High-Performance Networks,” in Proceedings of SIGCOMM, 2011.

[30] Dantzig, G. B., “Discrete-variable extremum problems,” tech. rep., Rand
Corporation, 1957.

[31] Delimitrou, C. and Kozyrakis, C., “Quasar: Resource-efficient and QoS-
aware Cluster Management,” in Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, March 2014.

[32] Dong, Y., Yu, Z., and Rose, G., “SR-IOV Networking in Xen: Architecture,
Design and Implementation,” in Proceedings of WIOV, 2008.

[33] Dragojević, A., Narayanan, D., Hodson, O., and Castro, M., “FaRM:
Fast Remote Memory,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2014), April 2014.

[34] Feldman, M., Lai, K., and Zhang, L., “A Price-Anticipating Resource
Allocation Mechanism for Distributed Shared Clusters,” in Proceedings of the
ACM Conference on Electronic Commerce, jun 2005.

[35] Ferdman, M., Adileh, A., Onur, K., Stavros, V., Mohammad, A.,
Djordje, J., Cansu, K., Daniel, P. A., Anastasia, A., and Babak, F.,
“Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern
Hardware,” in Proceedings of ASPLOS, Mar 2012.

[36] Flajslik, M. and Rosenblum, M., “Network Interface Design for Low La-
tency Request-response Protocols,” in Proceedings of USENIX ATC, June 2013.

[37] “Project Floodlight.” http://www.projectfloodlight.org/floodlight/.

[38] Garfinkel, T. and Rosenblum, M., “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proceedings of NDSS, 2003.

[39] Govindan, S., Nath, A. R., Das, A., Urgaonkar, B., and Sivasub-
ramaniam, A., “Xen and co.: Communication-Aware CPU Scheduling for
Consolidated Xen-based Hosting Platforms,” in Proceedings of VEE, 2007.

152

[40] Grosvenor, M. P., Schwarzkopf, M., Ionel, G., N.M., W. R., W.,
M. A., Steven, H., and Jon, C., “Queues don’t matter when you can jump
them!,” in Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), May 2015.

[41] Gulati, A., Merchant, A., and Varman, P. J., “mClock: Handling
Throughput Variability for Hypervisor IO Scheduling,” in Proceedings of OSDI,
2010.

[42] Guo, C., Lu, G., Wang, H. J., and et. al., S. Y., “SecondNet: A Data
Center Network Virtualization Architecture with Bandwidth Guarantees,” in
Proceedings of ACM CoNext, 2010.

[43] Guo, C., Yuan, L., Dong, X., Yingnong, D., Ray, H., Dave, M.,
Zhaoyi, L., Vin, W., Bin, P., Hua, C., Zhi-Wei, L., and Varugis, K.,
“Pingmesh: A Large-Scale System for Data Center Network Latency Measure-
ment and Analysis,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, Aug 2015.

[44] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A., “Enforcing
Performance Isolation Across Virtual Machines in Xen,” in Proc. of Middle-
Ware, 2006.

[45] Gupta, V., Ranadive, A., Gavrilovska, A., and Schwan, K., “Bench-
marking Next Generation Hardware Platforms: An Experimental Approach,”
in Proceedings of SHAW, 2012.

[46] “Apache Hadoop.” http://hadoop.apache.org/.

[47] Henderson, H. D., “Supply and Demand,” 1922.

[48] Himanshu Raj and Karsten Schwan, “High Performance and Scalable
I/O Virtualization via Self-Virtualized Devices,” in HPDC, 2007.

[49] “High Performance Linpack.” http://www.netlib.org/benchmark/hpl.

[50] “HP Procurve: Data Center Provisioning Automation.”
http://www.procurve.com/solutions/enterprise/datacenter/connectivity.htm.

[51] Huang, W., Liu, J., and Panda, D., “A Case for High Performance Com-
puting with Virtual Machines,” in ICS, 2006.

[52] “InfiniBand Trade Association. InfiniBand Architecture Specification, Release
1.2.” http://www.infinibandta.org.

[53] Ibaraki, T., “Enumerative approaches to combinatorial optimization,” Annals
of Operations Research, vol. 10, Jan 1988.

[54] InfiniBand Trade Association, “RDMA over Converged Ethernet.” http:

//www.infinibandta.org/content/pages.php?pg=about_us_RoCE, 2014.

153

[55] Islam, N. S., Rahman, M. W., Jose, J., Rajachandrasekar, R., Wang,
H., Subramoni, H., Murthy, C., and Panda, D. K., “High Performance
RDMA-based Design of HDFS over InfiniBand,” in Proceedings of SC, Novem-
ber 2012.

[56] Jang, K., Sherry, J., Hitesh, B., and Toby, M., “Silo: Predictable Mes-
sage Latency in the Cloud,” in Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, Aug 2015.

[57] Jeyakumar, V., Alizadeh, M., Mazières, D., Prabhakar, B., Kim, C.,
and Greenberg, A., “EyeQ: Practical Network Performance Isolation at the
Edge,” in Proceedings of NSDI, 2013.

[58] Jose, J., Li, M., Lu, X., and et. al., K. C. K., “Sr-iov support for virtu-
alization infiniband clusters: Early experience,” in Proceedings of CCGrid, apr
2013.

[59] Jose, J. and Subramoni, H. and Miao Luo and Minjia Zhang and
Jian Huang and Wasi-ur-Rahman M. and Islam N.S. and Xiangyong
Ouyang and Hao Wang and Sur S. and Panda D.K., “Memcached
Design on High Performance RDMA Capable Interconnects,” in Proceedings of
ICPP, September 2011.

[60] Jr., N. L. P., Fraser, T., Molina, J., and Arbaugh, W. A., “Copilot
-a coprocessor-based kernel runtime integrity monitor,” in Proceedings of the
USENIX Security Symposium, 2004.

[61] Kalia, Anuj and Kaminsky, Michael and Andersen David G., “Using
RDMA Efficiently for Key-value Services,” in Proceedings of the ACM Confer-
ence on SIGCOMM, SIGCOMM ’14, pp. 295–306, Aug 2014.

[62] Kalyvianaki, E. and Charalambous, T., “On Dynamic Resource Provi-
sioning for Consolidated Servers in Virtualized Data Centers,” in Workshop on
Performability Modeling of Computer and Communication Systems, 2007.

[63] Kapoor, R., Porter, G., Tewari, M., Voelker, G. M., and Vahdat,
A., “Chronos: Predictable Low Latency for Data Center Applications,” in Pro-
ceedings of SOCC, 2012.

[64] Kaufmann, A., Peter, S., Anderson, T., and Krishnamurthy, A.,
“FlexNIC: Rethinking Network DMA,” in 15th Workshop on Hot Topics in
Operating Systems (HotOS XV), May 2015.

[65] Kesavan, M., Ranadive, A., Gavrilovska, A., and Schwan, K., “Active
CoordinaTion (ACT) - Towards Effectively Managing Virtualized Multicore
Clouds,” in Proc. of IEEE Cluster, 2008.

[66] Key, P., Mcauley, D., Barham, P., and Laevens, K., “Congestion Pric-
ing for Congestion Avoidance,” tech. rep., Microsoft Research, 1999.

154

[67] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A., “kvm:
the Linux Virtual Machine Monitor,” in Proceedings of Linux Symposium, 2006.

[68] Klasky, S., Ethier, S., Lin, Z., Martins, K., McCune, D., and Sam-
taney, R., “Grid-Based Parallel Data Streaming Implemented for the Gyroki-
netic Toroidal Code,” in Proceedings of the SC, 2003.

[69] Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A.,
Fulton, B., Ganichev, I., Gross, J., Ingram, P., Jackson, E., Lam-
beth, A., Lenglet, R., Li, S.-H., Padmanabhan, A., Pettit, J., Pfaff,
B., Ramanathan, R., Shenker, S., Shieh, A., Stribling, J., Thakkar,
P., Wendlandt, D., Yip, A., and Zhang, R., “Network Virtualization in
Multi-tenant Datacenters,” in Proceedings of NSDI, Apr. 2014.

[70] Kumar, S., Talwar, V., Ranganathan, P., Nathuji, R., and Schwan,
K., “M-Channels and M-Brokers: Coordinated Management in Virtualized Sys-
tems,” in Workshop on MMCS, HPDC, 2008.

[71] Kumar, Sanjay and Talwar, Vanish and Kumar, Vibhore and Ran-
ganathan, Parthasarathy and Schwan, Karsten, “vManage: Loosely
Coupled Platform and Virtualization Management in Data Centers,” in Pro-
ceedings of ICAC ’09, pp. 127–136, 2009.

[72] Kurose, J. F. and Simha, R., “A Microeconomic Approach to Optimal Re-
source Allocation in Distributed Computer Systems,” IEEE Trans. Comput.,
vol. 38, no. 5, pp. 705–717, 1989.

[73] Lam, T., Radhakrishnan, S., Vahdat, A., and Varghese, G., “NetShare:
Virtualizing Data Center Networks across Services,” Tech. Rep. CS2010-0957,
University of California, San Diego, 2010.

[74] Lee, M., Krishnakumar, A. S., Krishnan, P., Singh, N., and Yajnik,
S., “Supporting Soft Real-Time Tasks in the Xen Hypervisor,” in Proceedings
of VEE, 2010.

[75] Lee, Jeongkeun and Turner, Yoshio and Lee Myungjin and Popa
Lucian and Banerjee Sujata and Kang Joon-Myung and Sharma
Puneet, “Application-driven Bandwidth Guarantees in Datacenters,” in Pro-
ceedings of the ACM Conference on SIGCOMM, SIGCOMM ’14, pp. 467–478,
August 2014.

[76] “Libvirt: Virtualization api.” http://www.libvirt.org/.

[77] Liu, J., “Evaluating Standard-Based Self-Virtualizing Devices: A Performance
Study on 10 GbE NICs with SR-IOV Support,” in Proceedings of IPDPS, 2010.

[78] Liu, J., Huang, W., Abali, B., and Panda, D. K., “High Performance
VMM-Bypass I/O in Virtual Machines,” in Proc. of USENIX ATC, 2006.

155

[79] Marius Hillenbrand and Viktor Mauch and Jan Stoess and Kon-
rad Miller and Frank Bellosa, “Virtual InfiniBand Clusters for HPC
Clouds,” in Proceedings of the International Workshop on Cloud Computing
Platforms (CloudCP), Apr 2012.

[80] Mars, J., Tang, L., Hundt, R., Skadron, K., and Soffa, M. L., “Bubble-
Up: Increasing Utilization in Modern Warehouse Scale Computers via Sensi-
ble Co-locations,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, December 2011.

[81] Matthew Andrews, K. K., Ramanan, K., Stolyar, A., Whiting, P.,
and Vijayakumar, R., “Providing Quality of Service over a Shared Wireless
Link,” IEEE Communications, February 2001.

[82] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Pe-
terson, L., Rexford, J., Shenker, S., and Turner, J., “OpenFlow: En-
abling Innovation in Campus Networks,” SIGCOMM CCR, Mar. 2008.

[83] Mellanox Technologies, “Mellanox: Generation of Open Ethernet.”
http://www.mellanox.com/openethernet/.

[84] Mellanox Technologies, “Mellanox OpenStack and SDN/OpenFlow So-
lution Reference Architecture.” http://www.mellanox.com/sdn/pdf/Mellanox-
OpenStack-OpenFlow-Solution.pdf.

[85] Menon, A., Santos, J. R., Turner, Y., Janakiraman, G. J., and
Zwaenepoel, W., “Diagnosing Performance Overheads in the Xen Virtual
Machine Environment,” in Proceedings of VEE, 2005.

[86] Mittal, R., Lam, V. T., Nandita, D., Emily, B., Hassan, W., Monia,
G., Amin, V., Yaogong, W., David, W., and David, Z., “TIMELY: RTT-
based Congestion Control for the Datacenter,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, Aug 2015.

[87] Mogul, J. and Popa, L., “What We Talk About When We Talk About Cloud
Network Performance,” ACM CCR, 2012.

[88] Monsanto, C., Reich, J., Foster, N., Rexford, J., and Walker, D.,
“Composing Software-Defined Networks,” in Proceedings of NSDI, 2013.

[89] Mudigonda, J., Yalagandula, P., Mogul, J., Stiekes, B., and Pouf-
fary, Y., “NetLord: A Scalable Multi-Tenant Network Architecture for Vir-
tualized Datacenters,” in Proceedings of SIGCOMM, 2011.

[90] “Myricom, Inc. Myrinet.” www.myri.com.

[91] “Low-Latency 10-Gigabit Ethernet.” http://myri.com/Myri-
10G/documentation/Low Latency Ethernet.pdf.

156

[92] NASA, “NAS Parallel Benchmarks.” http://www.nas.nasa.gov/Resources/Software/npb.html.

[93] Nathuji, R., England, P., Sharma, P., and Singh, A., “Feedback Driven
QoS-Aware Power Budgeting for Virtualized Servers,” in Workshop on FeBID,
2009.

[94] Nathuji, R. and Schwan, K., “VirtualPower: Coordinated Power Manage-
ment in Virtualized Enterprise Systems,” in Proc. of SOSP, 2007.

[95] Nathuji, R. and Schwan, K., “Vpm tokens: Virtual Machine-aware Power
Budgeting in Datacenters,” in Proceedings of HPDC ’08, pp. 119–128, 2008.

[96] Neugebauer, R. and McAuley, D., “Congestion Prices as Feedback Signals:
An Approach to QoS Management,” in ACM SIGOPS Workshop, 2000.

[97] Nicira, “NOX OpenFlow Controller.” http://www.noxrepo.org.

[98] Niranjan Mysore, R., Porter, G., and Amin, V., “FasTrak: Enabling
Express Lanes in Multi-tenant Data Centers,” in Proceedings of the ACM Con-
ference on Emerging Networking Experiments and Technologies, CoNEXT ’13,
Dec 2013.

[99] Novaković, D., Vasić, N., Novaković, S., Kostić, D., and Bianchini,
R., “DeepDive: Transparently Identifying and Managing Performance Inter-
ference in Virtualized Environments,” in Proceedings of USENIX ATC, June
2013.

[100] “OpenFabrics Enterprise Distribution.” http://www.openfabrics.org/.

[101] “OpenFlow - Enabling Innovation in Your Network.”
http://www.openflow.org/.

[102] Padala, P., Shin, K. G., Zhu, X., Uysal, M., and et al., “Adaptive
Control of Virtualized Resources in Utility Computing Environments,” in Pro-
ceedings of EuroSys, 2007.

[103] Pisinger, D., “Core Problems in Knapsack Algorithms,” tech. rep., DIKU,
University of Copenhagen, Denmark, 1994.

[104] Popa, L., Kumar, G., Chowdhury, M., and et. al., A. K., “FairCloud:
Sharing the Network in Cloud Computing,” in Proceedings of ACM SIGCOMM,
2012.

[105] Popa, L., Yalagandula, P., Banerjee, S., Mogul, J. C., Turner, Y.,
and Santos, J. R., “ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing,” Proceedings of NSDI, 2013.

[106] Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., and Pu, C., “Un-
derstanding Performance Interference of I/O Workload in Virtualized Cloud
Environment,” in Proceedings of IEEE Cloud, 2010.

157

[107] “Quadrics, Ltd. QsNet.” www.quadrics.com.

[108] Ram, K. K., Santos, J. R., Turner, Y., Cox, A. L., and Rixner, S.,
“Achieving 10Gbps using safe and transparent network interface virtualization,”
in Proc. of VEE, 2009.

[109] Ranadive, A. and Davda, B., “Toward a paravirtual vrdma device for
vmware esxi guests,” tech. rep., VMware, Inc., December 2012.

[110] Ranadive, A., Gavrilovska, A., and Schwan, K., “IBMon: Monitoring
VMM-Bypass InfiniBand Devices using Memory Introspection,” in HPCVirtu-
alization Workshop, Eurosys, 2009.

[111] Ranadive, A., Gavrilovska, A., and Schwan, K., “FaReS: Fair Resource
Scheduling for VMM-Bypass InfiniBand Devices,” in Proceedings of CCGrid,
pp. 418–427, 2010.

[112] Ranadive, A., Gavrilovska, A., and Schwan, K., “ResourceExchange:
Latency-Aware Scheduling in Virtualized Environments with High Performance
Fabrics,” in Proceedings of IEEE Cluster, 2011.

[113] Ranadive, A., Gavrilovska, A., and Schwan, K., “Distributed Resource
Exchange: Virtualized Resource Management for SR-IOV InfiniBand Clusters,”
in Proceedings of IEEE Cluster, 2013.

[114] Ranadive, A., Kesavan, M., Gavrilovska, A., and Schwan, K., “Per-
formance Implications of Virtualizing Multicore Cluster Machines,” in HPCVir-
tualization Workshop, EuroSys, 2008.

[115] Rasley, J., Stephens, B., Colin, D., Eric, R., Wes, F., Kanak, A.,
John, C., and Rodrigo, F., “Planck: Millisecond-scale Monitoring and Con-
trol for Commodity Networks,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, Aug 2014.

[116] RedHat Inc., “Redhat resource management guide.” https://access.

redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/

Resource_Management_Guide/sec-cpu.html.

[117] Reinemo, S.-A., Gran, E. G., Eimot, M., Skeie, T., Lysne, O., Huse,
L. P., and Shainer, G., “First experiences with congestion control in infini-
band hardware,” in Proceedings of IPDPS, March 2010.

[118] Rimmer, T., “Intel Omni-Path Architecture: Enabling Scalable, High Perfor-
mance Fabrics,” in Proceedings of Symposium on High-Performance Intercon-
nects, August 2015.

[119] Rumble, S. M., Ongar, D., Stutsman, R., Rosenblum, M., and
Ousterhout, J. K., “It’s Time for Low Latency,” in Proceedings of HotOS
Workshop, 2011.

158

[120] Silvano Martello, P. T., Knapsack Problems: Algorithms and Computer
Implementations. John Wiley, 1990.

[121] Singla, A., Hong, C.-Y., Popa, L., and Godfrey, P. B., “Jellyfish: Net-
working Data Centers Randomly,” in Proceedings of NSDI, 2012.

[122] Soares, P. V., Santos, J. R., Tolia, N., and Guedes, D., “Gatekeeper:
Distributed Rate Control for Virtualized Datacenters,” Tech. Rep. HPL-2010-
151, HP Labs, 2010.

[123] Subramoni, H., Petrini, F., Agarwal, V., and Pasetto, D., “Streaming,
Low-Latency Communication in On-line Trading Systems,” in Proceedings of
IPDPS, April 2010.

[124] Sugerman, J., Venkitachalam, G., and Lim, B.-H., “Virtualizing I/O
Devices on VMware Workstation’sHosted Virtual Machine Monitor,” in Proc.
of USENIX ATC, 2001.

[125] Tembey, P., Gavrilovska, A., and Schwan, K., “Merlin: Application-
and Platform-aware Resource Allocation in Consolidated Server Systems,” in
Proceedings of the ACM Symposium on Cloud Computing, November 2014.

[126] “InterContinental Exchange.” http://www.theice.com.

[127] Urgaonkar, B. and Shenoy, P., “Sharc: Managing CPU and Network
Bandwidth in Shared Clusters,” in IPDPS, 2004.

[128] “How to Implement Chargeback in a Virtualized
Data Center Using the Resource Consumption Model.”
http://www.vkernel.com/downloads/chargebackmethodology.

[129] “Virtual Machine Device Queues.” www.intel.com/network-
/connectivity/vtc vmdq.html.

[130] “VMSafe.” www.vmware.com/technology/security/vmsafe.html.

[131] “The VMWare ESX Server.” http://www.vmware.com/products/esx/.

[132] VMware, “Vmware distributed resource scheduler, distributed power manage-
ment.” http://www.vmware.com/products/datacenter-virtualization/

vsphere/drs-dpm.html.

[133] von Eicken, T., Basu, A., Buch, V., and Vogels, W., “U-Net: A User-
level Network Interface for Parallel and Distributed Computing,” in Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles, December
1995.

[134] Wang, C., Rayan, I. A., Eisenhauer, G., Schwan, K., and et. al.,
“VScope: Middleware for Troubleshooting Time-Sensitive Data Center Appli-
cations,” in Proc. of MiddleWare, 2012.

159

[135] Wang, Z., Zhu, X., and Singhal, S., “Utilization and SLO-Based Control
for Dynamic Sizing of Resource Partitions,” Tech. Rep. HPL-2005-126, Hewlett
Packard, 2005.

[136] Wasi-ur Rahman, M., Islam, N. S., Lu, X., Jose, J., Subramoni, H.,
Wang, H., and Panda, D. K., “High-Performance RDMA-based Design of
Hadoop MapReduce over InfiniBand,” in Proceedings of IPDPSW, May 2013.

[137] Wei, X., Shi, J., Chen, Y., Chen, R., and Chen, H., “Fast In-memory
Transaction Processing Using RDMA and HTM,” in Proceedings of the 25th
Symposium on Operating Systems Principles, October 2015.

[138] “Congestion Pricing.” http://en.wikipedia.org/wiki/Congestion pricing.

[139] Wood, T., Shenoy, P., Venkataramani, A., and Yousif, M., “Black-box
and Gray-box Strategies for Virtual Machine Migration,” in NSDI, 2007.

[140] “Xen Credit Scheduler.” wiki.xensource.com/xenwiki/CreditScheduler.

[141] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A., “ECOSystem:
managing energy as a first class operating system resource,” SIGOPS Oper.
Syst. Rev., October 2002.

[142] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A., “Currentcy: A
Unifying Abstraction for Expressing Energy Management Policies,” in Proceed-
ings of the USENIX Annual Technical Conference, 2003.

[143] “ZeroMQ.” http://zeromq.org.

[144] Zhang, Z., Sun, Z., Chen, H., LV, G., and LU, X., “IBShare: A Dynamic
IB Bandwidth Allocation Based on Congestion Control,” Journal of Informa-
tion and Computational Science, vol. 9, no. 18, 2012.

[145] Zhu, Y., Eran, H., Daniel, F., Chuanxiong, G., Marina, L.,
Yehonatan, L., Jitendra, P., Shachar, R., Haj, Y. M., and Ming, Z.,
“Congestion Control for Large-Scale RDMA Deployments,” in Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication,
Aug 2015.

160

VITA

Adit Ranadive was born to Uday Ranadive and Dr. (Mrs.) Nilima Ranadive on

February 26th, 1984 in Mumbai (formerly Bombay), a city in the state of Maha-

rashtra in India. He finished his high school in Mumbai and Bachelors in Computer

Engineering from Thadomal Shahani Engineering College part of the University of

Mumbai in 2006. He completed his Masters in Computer Science in May 2008 from

Georgia Institute of Technology and continued his research after enrolling in the Ph.D.

program.

He completed his doctoral dissertation in November 2015 after working with Prof.

Karsten Schwan and Dr. Ada Gavrilovska. He is working at VMware in Palo Alto,

CA and lives there with his wife Smita Vaidya. His primary research interests are

in Operating Systems, Virtualization, High Performance Networking, Performance

Isolation and general system scalability.

161

