

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Joona Rahko

Web Client for a RESTful Clinical Data Management System

Master’s Thesis

Degree Programme in Computer Science and Engineering

May 2015

2

Rahko J. (2015) Web client for a RESTful clinical data management system.
University of Oulu, Department of Computer Science and Engineering. Master’s

Thesis, 69 p.

ABSTRACT

With the emergence of computers, the fashion in which clinical trials are

conducted has been revolutionized. Traditionally, most clinical trials have been

run on paper based systems, which is inefficient in the light of today’s

technology. Computerization of clinical data management has improved clinical

trial processes in many ways, such as by reducing the cost of collecting,

exchanging, and verifying information. Moreover, readily available data has

also greatly improved subject safety, as physicians are faster aware of any

adverse events.

This thesis depicts the requirement elicitation, design, implementation, and

evaluation of a web client for Genesis, a web-based clinical data management

system developed primarily for the LIRA-Study. In the LIRA-Study, the

software will be used at various study sites in Finland as well as in Sweden. The

usability testing, presented in this thesis, indicated that the engineered

application was user-friendly and that its development should be continued. In

addition to serving the LIRA-Study, the secondary goal of the developed

software is to be easily portable to other studies. Initial plans have already been

made to deploy Genesis in two other large-scale studies, one of which is the

largest type 1 diabetes study in the world.

In addition to presenting the developed software, both the current state and

the history of clinical data management are also discussed. After illustrating the

software development process, the results and future prospects of Genesis are

pondered.

Keywords: Clinical data management, Web client, Programmable web, REST,

Usability

3

Rahko J. (2015) Web-asiakasohjelma REST-pohjaiseen kliinisen tiedon

hallintajärjestelmään. Oulun yliopisto, tietotekniikan osasto. Diplomityö, 69 s.

TIIVISTELMÄ

Kliinisten tutkimuksien toteuttamistapa on muuttunut valtavasti tietokoneiden

yleistyessä. Ennen tietokoneiden valta-aikaa kliiniset tutkimukset ovat toimineet

paperipohjaisilla järjestelmillä, jotka ovat nykyteknologian valossa olleet

tehottomia. Kliinisen tiedonhallinnan tietokoneistuminen on parantanut

kliinisen tutkimuksen prosesseja monilla tavoin, kuten pienentämällä

informaation keruusta, jakamisesta ja tarkistamisesta aiheutuvia kustannuksia.

Nopeasti ja helposti käytettävissä oleva data on lisäksi parantanut

tutkimuspotilaiden turvallisuutta, sillä tutkimuslääkärit ovat nopeammin

tietoisia lääkkeiden mahdollisista sivuvaikutuksista.

Tämä diplomityö esittelee web-pohjaisen kliinisen tiedon hallintajärjestelmän

Genesiksen web-asiakasohjelman vaatimukset, suunnittelun, toteutuksen ja

evaluoinnin. Kehitetyn järjestelmän ensisijainen tarkoitus on palvella LIRA-

tutkimusta. LIRA-tutkimuksessa ohjelmistoa käytetään monella tutkimus

paikkakunnalla sekä Suomessa että Ruotsissa. Tässä työssä esiteltävän

ensimmäisen version käyttäjätestaus osoitti, että kehitetty asiakasohjelma on

käyttäjäystävällinen ja sen kehittämistä kannattaa jatkaa. Ohjelmiston

toissijainen tavoite on olla helposti siirrettävissä muihin tutkimuksiin.

Ohjelmiston käyttöönottoa onkin alustavasti suunniteltu myös kahdessa muussa

ison mittakaavan tutkimuksessa. Toinen näistä tutkimuksista on maailman

suurin tyypin 1 diabeteksen kehittymistä selvittävä tutkimus.

Tässä diplomityössä keskustellaan ohjelmiston esittelyn lisäksi kliinisen

tiedon hallinnoinnin historiasta ja nykytilasta. Ohjelmistokehitysprosessin

kuvaamisen jälkeen tässä työssä pohditaan Genesiksen jatkonäkymiä ja

onnistumista ohjelmistoprojektina.

Avainsanat: Kliinisen datan hallinnointi, Asiakasohjelma, Ohjelmoitava web,

REST, Käytettävyys

4

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION .. 9
2. CLINICAL DATA MANAGEMENT ... 11

2.1. History of clinical data management .. 11
2.2. Clinical data management today .. 12

2.3. Data capture methods ... 14
2.3.1. Paper-based data capture ... 14
2.3.2. Electronic data capture .. 15

2.4. Clinical data management systems... 16
2.4.1. Local clinical data management systems 16
2.4.2. Central web-based clinical data management systems.............. 17

2.5. Common challenges in developing and deploying a CDMS 18
2.5.1. Fear of change ... 18
2.5.2. Conflicting user-group requirements... 19

2.5.3. Conflicting workflows ... 19
2.5.4. Safety, security & privacy ... 19

2.5.5. Analyzability of the data ... 20
3. SOFTWARE REQUIREMENTS... 21

3.1. Gathering requirements .. 21

3.2. Stakeholder interviews ... 22
3.3. Use cases .. 22

3.4. System requirements .. 25
4. DEVELOPMENT METHOD, TOOLS AND APPROACHES 29

4.1. Agile software development ... 29
4.2. Client-side versus server-side rendering .. 30

4.3. JavaScript framework selection .. 31
4.4. Web service architecture selection ... 32
4.5. Web service data interchange format selection 33

4.6. Version control system selection .. 34
5. WEB CLIENT DESIGN AND IMPLEMENTATION 35

5.1. System architecture .. 35
5.2. User interface navigation flow ... 36
5.3. User interface design .. 37

5.4. CRF design ... 38
5.4.1. Label positioning ... 38

5.4.2. Validation .. 39
5.4.3. Icons .. 40

5.5. CRF compilation design ... 41
5.6. CRF entry and verification flow ... 42
5.7. Interaction with backend .. 43
5.8. Information security ... 43

5.8.1. Securing communication ... 43

5

5.8.2. Preventing cross-site scripting .. 44

5.8.3. Preventing cross-site request forgeries 44
5.8.4. Password requirements .. 44
5.8.5. Authentication ... 45

6. WEB CLIENT EVALUATION ... 46
6.1. Automated testing... 46
6.2. Usability testing .. 47

6.2.1. Usability questionnaire results .. 47
6.2.2. User feedback .. 49

6.2.3. Observations during usability testing .. 49
6.3. Customer satisfaction ... 51

7. DISCUSSION .. 52
7.1. Attainment of the primary goal .. 52
7.2. Attainment of the secondary goal ... 53

7.3. Reflecting on development ... 53

7.4. Genesis compared to existing solutions ... 54

7.5. Future prospects of the developed software ... 55
8. CONCLUSION .. 57
9. REFERENCES ... 58
10. APPENDICES .. 64

6

FOREWORD

This Master´s Thesis was done in the year 2015 for the data management purposes of

the LIRA-Study under the guidance of Professor Tapio Seppänen. While crafting this

thesis, my professional knowhow has increased tremendously.

I would like to extend my sincere gratitude to Tapio Seppänen for the acrobatics

and the sorcery he pulled off in the sculpturing of this thesis. Additionally, I would

like to thank Olli Okkonen for being such a delightful colleague and friend to work

with. Further, I would like to thank our DIPP-mother Professor Riitta Veijola for the

brilliant personal growth opportunities and the support she has provided me with

during the past 5 years that I have worked in her various research projects. I would

also like to thank Lloyd ‘Shiny Rock’ Luck for reading this thesis.

Finally, I would like to thank my parents for the support they have provided

throughout my life.

Oulu, 9.5.2015

Joona Rahko

7

ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BaaS Backend as a Service

CDASH Clinical Data Acquisition Standards Harmonization

CDISC Clinical Data Interchange Standards Consortium

CDM Clinical Data Management

CDMS Clinical Data Management System

CORS Cross-Origin Resource Sharing

CRF Case Report Form

CSP Content Security Policy

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

CVS Concurrent Versions System

EDC Electronic Data Capture

GUI Graphical User Interface

HIT Healthcare Information Technology

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IT Information Technology

JSON JavaScript Object Notation

JWT JavaScript Object Notation Web Token

MedDRA Medical Dictionary for Regulatory Activities

MIT License Massachusetts Institute of Technology License

8

MITM Man-in-the-middle attack

MVC Model-View-Controller

OCR Optical Character Recognition

REST Representational State Transfer – architecture

SDLC Software Development Life Cycle

SOAP Simple Object Access Protocol

SQL Structured Query Language

SRS Software Requirements Specification

SSL Secure Sockets Layer

SUS System Usability Scale

SVN Apache Subversion

TLS Transport Layer Security

UI User Interface

URI Unique Resource Identifier

VCS Version Control System

XML Extensible Markup Language

XSS Cross-Site Scripting

9

1. INTRODUCTION

The purpose of this Master’s Thesis is to design and implement a web client for a

clinical data management system (CDMS). Overall, this software project has two

goals. The primary goal is to serve the data collection and management purposes of

the LIRA-Study. The secondary goal is for the software to be portable to other

studies.

Among illustrating the software design, this thesis addresses the general

difficulties in designing and implementing a CDMS. Additionally, this thesis enlists

principles that should be followed when designing and developing aforementioned

systems. Furthermore, this thesis introduces some of the modern development tools

such as AngularJS that can be leveraged to develop modern rich web applications.

A CDMS is a tool used by clinical trials to manage the acquired research data. An

alternative to a CDMS would be a paper based system. Paper based data

management often leads to problems such as delayed research data, inability to

successfully track and schedule patients, and missing milestones [1].

Among other benefits, a CDMS enables the management of a study to make better

resource allocation decisions and to improve inter-study communication [1].

Additionally, a CDMS offers many benefits over its paper predecessor such as input

validation, which helps to reduce traditional human transcript errors. Despite the

benefits, 30% of active trials still solely rely on the traditional method of capturing

and managing data on papers [2].

Before the digital revolution and the existence of healthcare information

technology, paper based trial data collection and management were the norm. With

the ongoing era of digitalization however, there has been an accelerating trend to

utilize computers for research use. While some of the clinical study personnel have

embraced the reformation of how clinical trials are conducted, others have not. Most

of the resistance toward technology results from the perceived threat of loss of

control and from the fear of change [3].

In order for a piece of software to be deployed, the user must perceive it to be

useful. It is the developer’s responsibility to communicate value of software to the

users and help them realize the utility and benefits of information technology. In

addition to communicating value, developers need to understand that there is a

connection between perceived usefulness and perceived ease of use [4]. The easier

the system is to use, the higher the perceived usefulness. The higher the perceived

usefulness, the more likely is the utilization of the system [4]. Based on the

aforementioned grounds, usability of the system is of vital significance, and therefore

a focal point of this thesis.

The developed CDMS will initially be utilized in the LIRA-Study, which

investigates the effect of trial drug liraglutide on type 1 diabetes prevention. The trial

will begin in 2015 and will take three years to complete. The trial will be conducted

in Oulu, Tampere, Turku and Malmö. If the system proves itself to be useful, it will

be deployed in other trials as well. To accommodate this, the system will be designed

to be easily portable to other trials.

The development of this software project was split into two distinct components.

One of these components was the web client, and the other one was the server. With

the right technology choices, we were able to establish a separation of concerns,

which allowed us to design and develop each component separately. My role in the

10

software project was to engineer the web client for the application while Olli

Okkonen was responsible for the server.

There are various reasons why this software was built in-house. First, off-the-shelf

software often does not conform to unique needs of a complicated study. Therefore,

tailor-made software can better fit the specific and unique needs of a given study.

Second, we had already developed a similar in-house software project for the same

customer which proved successful. The success of the earlier project indicated that a

customizable in-house solution would be an excellent choice. Moreover, we had

already established a clear understanding of the workflows and processes that

occurred at the study-site. This knowledge base could be leveraged in the design of a

new system. Third, tailor-made software solutions can be designed to be swiftly

modifiable and extendable. This is because familiarizing yourself with the source

code of an open source application for instance can be a tedious task, never mind

extending it with your own features. Fourth, after investigating the costs of deploying

ready-made software, it was estimated that the cost of developing a tailor-made

solution would likely be lower. Fifth, by developing the software ourselves, we

would be in the best position to provide support and training to the users.

The organization of this thesis is as follows; Chapter 2 provides background

information about clinical studies, electronic data capture and clinical data

management systems. In addition, it will address the general challenges of

developing and deploying clinical data management systems. Chapter 3 introduces

the initial functional and non-functional requirements that were placed on the system,

as well as how those requirements were collected. Chapter 4 depicts the development

method and the technology choices that were made for this project. The reasoning for

the made choices is also shown. Chapter 5 illustrates the design and implementation

of Genesis. In chapter 6, the ways to evaluate software quality and performance are

presented. Chapter 7 is assigned to the discussion. Chapter 8 is allocated for

concluding and summarizing the thesis.

11

2. CLINICAL DATA MANAGEMENT

Of late, it has been the ambition of the biopharmaceutical industry to increase its

efficiency – both internally and externally [5]. In the industry, clinical data is

globally seen as a key asset, as it acts as proof of medicine´s efficacy, safety and

utility [5]. Clinical data management systems (CDMS) are the modern solution to

manage all this valuable data.

This chapter acts as an introduction to clinical data management and electronic

data capture (EDC). The chapter starts off by illustrating the history of clinical data

management and then moves onto talking about the current state of clinical data

management. After the general overview, this chapter compares local and web-based

CDMS systems. Finally, some of the common challenges to developing a CDMS are

discussed.

2.1. History of clinical data management

Roughly 50 years ago, the medical industry began its quest of transforming paper

based clinical data collection into an electronic form. The motivation for this

transformation was the uncontrollable rate at which the paper based systems were

growing [6]. Information technology was seen as the silver bullet to the problem as

computers were excellent in performing the required functions of sending

information from place A to place B, storing data, and printing the data when it was

required [6]. In the 1960’s, most medical professionals already utilized paper forms

for storing data [6]. Moreover, the sufficient knowledge base for conducting clinical

trials had been established [6]. Harnessing all this know-how for the use of a

computerized solution was seen as “a simple matter of programming” [6]. Later, this

initial assumption was regarded as a joke [6].

The use of healthcare information technology (HIT) has been influenced by

various factors. First, as technology has evolved, computers have transformed from

extensive, highly expensive computing machines into highly interactive and

relatively commonplace everyday tools. Second, the HIT industry is relatively new,

and it has gone through a phase of trial and error, as developers have had to first

learn how to resolve the challenges, and then, how to market their solutions [6].

Third, during the past 40 years, the medical industry’s demand for clinical data has

grown exponentially. This demand has been met with a tremendous increase in the

supply of clinical data. The increase in both supply and demand has necessitated

computers to take an active role in information management. The need for computers

was not only created by the quantity of the data, but also by the high-cost. In the

1960’s, the estimated cost of managing clinical data varied between 25 and 39% of

the total cost of the US healthcare system [7].

While HIT held the promise of cutting down costs and enhancing health-care, its

benefits were overestimated simultaneously as its costs were underestimated [6].

This was because system developers failed to accurately gauge the complexity of

healthcare information management systems [6]. Most of the systems that made it

through the development phase failed. One of the identified reasons was lack of user-

centered design. Failed HIT solutions left an everlasting scar of skepticism and

cynicism on health-care personnel, which still affect the health industry today [6].

The reason why the ambitious project of computerizing healthcare was not

12

completely put to halt were a couple of the successfully developed systems that shed

some hope for the future of HIT. One of such projects occurred at El-Camino

hospital where the developed system was actively maintained and updated in a user-

centered manner [6]. Without some success stories, such as the one that unfolded in

El-Camino, it is unlikely that HIT would be so highly intertwined with medicine.

2.2. Clinical data management today

With the emergence of computers and the ongoing era of digitalization, there has

been a gradual increase in the use of electronic data capture and managing

technology. One such example would be the use of a CDMS; a technological tool,

utilized by clinical studies, for the purpose of clinical data management (CDM).

CDM is a vital component of clinical trials, as its purpose is to guarantee that all data

has been captured accurately on case report forms (CRF). A CDMS helps in

verifying the reliability and quality of the stored data, as it is possible to track any

changes done to the CRF´s. These changes are tracked using an audit log. In addition

to tracking changes, CDMS´s often come with the functionality to validate user

input, which helps in reducing human errors.

The use of CDM technology has had a prominent impact on how clinical trials are

being conducted today. Before, when all clinical trials were paper based, a lot of

extra effort had to be put into archiving all of the collected data as well as into

verifying it. For example, it used to take roughly 5-8 days to get a query resolved in a

traditional paper based study [8]. Today, the same task takes roughly 15 minutes [8].

In the paper-based system, the cost of a single query revolved around US$80-120,

which goes to show how much the paper based system wasted both financial and

time resources [8]. Other benefits of EDC are reduced human errors such as unclear

handwriting, interpretation errors, and lost or damaged CRF’s. Moreover, EDC

implementations have lowered the paper consumption of studies. In addition, as

clinical trial personnel are no longer required to manage endless piles of paper, huge

time savings can also be achieved [8]. Despite all of the aforementioned benefits,

30% of all active clinical trials still solely operate on a paper-based system [5].

Another massive change that has occurred in the field of clinical data management

has been the emerging utilization of clinical data management standards such as the

ones set by Clinical Data Interchange Standards Consortium (CDISC). CDISC’s aim

is to establish “global, platform-independent data standards that enable information

system interoperability to improve medical research and related areas of healthcare”

[9]. Before the rise of clinical data standards, there were a lot of discrepancies

revolving around data collection and analysis. Today, most of these complexities can

be at least minimized with the use of standards. Another benefit of standards relates

to information sharing, as harmonizing data between two different trials is no longer

as difficult. In addition, CDISC standards reduce the amount effort that has to be put

into the trial design phase, as CDISC offers an existing set of domains and variables

that can be used in any study [9]. For this project, we will pre-build the CRFs

according to the CDISC standards, so that future studies already have a base they can

modify according to their own specific needs.

13

Figure 1. Utilization rates of different ways of managing clinical data in 2013 [10].

Figure 1 illustrates the current utilization rates of CDM technology. These rates

indicate that while technology has been deployed in some clinical trials, we are still

in a transition phase, where paper is still actively being used. This means that clinical

data management has a lot of untapped potential that is yet to be realized.

Figure 2. Obstacles reported by clinical trials to deploying data management

technology in 2013 [10].

Figure 2 indicates that the biggest obstacle to deploying CDM technology is that

IT companies have failed to prove that the clinical trials need their software. This

indicates that CDM technology has not been marketed properly. Further, clinical

trials identified the lack of personnel and funds as other key determinants of not

being able to transition into using CDM technology.

28%

20%
22%

24%

0%

5%

10%

15%

20%

25%

30%

Paper-based Hybrid approach,
paper and EDC

Shared file system Full utilization of EDC

Current methods of managing clinical data

14

2.3. Data capture methods

Clinical trials have undergone major reform in the way they practice data acquisition.

While the traditional method of writing entries on paper CRF’s is still being utilized

today, electronic data capture methods have become more prevalent in clinical trials.

In order to provide a user friendly way to electronically capture data, various

methods have been developed. Each of these data-collection regimens has its unique

pros and cons.

2.3.1. Paper-based data capture

The traditional method of writing entries on paper CRFs is still actively being used.

There are various reasons for this – both acceptable and unacceptable ones.

Paper based data collection has many deficiencies. First, a longer study will

accumulate a lot of paper CRFs, which require a safe physical storage unit, to which

no external entities have access to. Second, in paper based systems, only one copy of

the entered CRF usually exists. Third, paper entries are usually deciphered and

entered into statistical analysis tools such as Excel or SPSS much later. This delayed

process results in ambiguity as the data entry clerk or the statistician has to resort to

making judgement calls due to unclear handwriting or illogical entries. Fourth, paper

based data collection does not have any kind of immediate validation. This means

that the one collecting the data can mistakenly enter insensible data, which

eventually makes its way into the actual dataset. Fifth, with paper based data

collection, the policy of strict structural data entry cannot be attained. This is because

that the data collector can, for example, enter the data on the backside of the paper,

leaving it to the data entry clerk to notice and interpret any anomalies.

Despite all of the downsides of paper based data collection, there are some benefits

and good reasons to utilize them. Each clinical trial varies in its duration and scope.

When a clinical trial is not expected to accumulate a lot of data, and needs to be

initiated in a quick timeframe, a paper based solution can be an acceptable way to

conduct the trial. Further, if the investment into a CDMS for instance would cause

undue harm to the budget of the trial, paper based data collection can be considered

to be a viable option. However, it is important to note that even if a paper based

solution feels more agile or cheaper, utilizing it can result in unpredictable data

digitalization costs and unreliable data.

Some data collectors also claim that computer utilization renders the subject

interview sessions impersonal, thus resulting in a bad visit experience for the subject.

This is a significant issue to consider, as subjects should be at the center of each

clinical trial. Without the subjects, accumulating clinical data would be impossible.

Some studies have supported the aforementioned claim that HIT deteriorates the

quality of the interview [11]. However, there have also been a lot of studies that

indicate that the physician-subject interaction could in fact be enhanced with the use

of HIT [12]. In the end, it is a matter of how well HIT is utilized by the physician in

the interview process.

15

2.3.2. Electronic data capture

Electronic records are computerized versions of the systematically collected data. In

clinical studies, multiple different methods have been developed to digitize data.

The traditional way of entering data is using a keyboard. When the data is entered

directly into a CDMS, it can be verified through various means. One way is to use

independent double data entry verification, in which two people enter data and a

third party resolves any discrepancies between the entries [13]. Another way is to use

blind double data entry verification, where two people enter data, unaware of what

the other person entered, and they cross-validate each other’s entries, correcting any

mistakes [13]. A third way is to use double data entry with interactive verification,

which is otherwise the same as blind double data entry verification, but in this the

other is aware of the others’ entries [13]. A fourth option is to use single data entry,

where the entered data is later reviewed against the source data [13]. Each of these

methods results in a different level of accuracy, as well as costs, which is why it is up

to the prime investigator to gauge what is required.

Another way to enter data is to use a voice recognition system. Voice recognition

technology has been available for longer than a decade, but the utilization of this

technology in clinical settings has been minuscule [14]. Studies comparing voice

recognition to human transcriptions have been conducted, and the results of these

studies have shown promise for the use of voice recognition technology [14]. In fact

the accuracy of voice recognition technology has in some studies been rated as high

as 99% [14]. Despite the accuracy, the overhead costs of setting up a voice

recognition system are substantial, often acting as a deterrent to taking advantage of

voice recognition technology [14].

The use of optical character recognition (OCR) has also picked up amidst clinical

studies. OCR systems scan paper entries, and decipher them into a computerized

format, rendering them immediately available for analysis. In a perfect world, OCR

would provide a seamless solution for clinical studies to capture data, as clinical

personnel could hold onto their traditional workflow of using pen and paper, not

having to worry about the digitalization of data. However, studies have shown that

the current OCR technology does not meet the level of accuracy required by clinical

studies, and is therefore, at least for the time being, out of the picture [15].

With the emerging use of tablets, clinical studies have also begun to use

handwriting recognition systems in their endeavor to computerize their data

collection process. Handwriting recognition mirrors the traditional workflows of

physicians. Studies have shown that the use of tablets and digital pens as data

collection methods were nearly as fast as using the conventional pen and paper [16].

Additionally, the same studies indicate that tablets and digital pens provide a higher

user satisfaction rating than the traditional pen and paper method [16].

To summarize, various means of EDC are already being utilized in clinical studies.

However, EDC is often coupled with the traditional pen and paper based practices.

This perhaps indicates that we are still living in a transition phase, where old

practices are being replaced with new ones. It remains to be seen, whether clinical

trials will ever completely discard their old habits. It is clear however that EDC

offers a way for studies to considerably cut down their data collection and

management costs. Due to the benefits, EDC will be deployed in the LIRA-Study.

The LIRA-Study is initially scheduled for 3 years, and due to the overhead costs, we

decided to go for a basic keyboard solution.

16

2.4. Clinical data management systems

Another issue that all of the clinical trials have to grapple with is choosing the right

CDMS. Selecting the correct CDMS is affected by the availability of financial

resources, as well as by the size, scope, and duration of the clinical trial. One option

is to store and enter the data locally, which is known a local CDMS [13]. Another

option is to deploy a local centralized CDMS [13]. Third alternative is to use a

centralized web-based CDMS [13]. The unique strengths and weaknesses of each

one of these options have to be weighed when deciding, which one to deploy.

2.4.1. Local clinical data management systems

In local CDMSs, all of the data is both collected and computerized on-site. This

means that physical copies of the data are never mailed to a central location, which

helps to save resources. Additionally, because there is no physical transmission of

data, the paper copies do not get lost as easily. Moreover, using a local CDMS

enables a swift resolution of missing and erroneous data. Another benefit of using a

local CDMS is information security. Due to the data being stored locally, local

CDMS’s are not nearly as vulnerable to being accessed by unauthorized third parties.

Local CDMS’s are also usually managed by the on-site staff, which enables the study

center to tailor the system to suit their own site-specific needs.

Despite all of the benefits, there are downsides to using a local CDMS as well. In

most cases, the ones collecting the data are physicians and nurses, who have not been

trained in keying in data. Data entry creates extra work for the staff, which is why a

need to hire additional trial personnel is often raised. Hiring more workers takes

away from the already scarce resources, which is why it is often avoided. Moreover,

new version releases of local CDMS’s have to be manually installed at each location,

inflating the maintenance costs. This is true especially when the released version

contains unnoticed bugs, and the install process has to be repeated. Moreover, in

local CDMSs, the data sharing between sites often happens through email, which has

its own security holes, and creates some delay in information sharing.

One example of a local CDMS is DIPP-Portal, a system developed for the

Diabetes Prediction and Prevention – study. The goal of DIPP-Portal was to

computerize a paper-based data collection process, and to save money by eliminating

the need for data entry clerks. DIPP-Portal was an in-house-solution, done in

collaboration with the local trial staff. DIPP-study had been ongoing for over 20

years, which is why the deployment of DIPP-Portal initially faced resistance. Users’

fear of change and loss of power are common challenges that software developers

have to face. In DIPP-Study, this resistance was notably reduced by involving the

primary users in both the design and development phases of the project.

Centralized local CDMSs work in a similar manner. However, the key difference

is that in centralized local systems the data is stored and keyed in a single location,

usually by professional data entry clerks. This means that before the data is entered,

it needs to be physically delivered to the central location. This results in high

transportation costs and increases the risk of losing CRFs. However, as data is

entered by professional data entry clerks, the entries themselves are done faster and

with fewer mistakes. These benefits might help to offset the transportation costs.

17

2.4.2. Central web-based clinical data management systems

Many larger trials require collaboration and information sharing between various

study centers. This has always been true for clinical trials, but with the globalization

of nearly everything, the role of information sharing has been set on a pedestal.

Exchanging information was previously done through physical media. This required

a lot of financial resources, as sending physical copies of data was expensive.

Moreover, this traditional information sharing process severely slowed down clinical

trials, as they had to wait for information to be delivered. Central web-based CDMSs

were the key to unlocking the door to a new way of conducting clinical trials and

managing clinical data.

Central web-based CDMSs offer remarkable benefits. First, information sharing

becomes instantaneous, as the data is available to all study centers as soon as it is

entered. Further, tremendous financial savings can also be achieved, as data

exchange no longer requires the delivery of physical media. Further, immediate

availability of data also improves the safety of the subjects, as physicians are faster

aware of any adverse events. Moreover, maintaining a web-based system is easy, as

new releases only have to be installed to the web-server, from which it is directly

available to the users. Another benefit of web-based solutions is that it is possible for

study coordinators to ensure that all of the data is being stored in a uniform manner.

Uniformity of data means that there are no differences in, for example, variable

naming or entry conventions between two different centers storing the same

information. Late detection of non-uniform data collection often results in

unnecessary problems and expenses.

While helping in cutting down costs, web-based systems suffer from certain

deficiencies. Firstly, as the data is stored on the Internet, information security

becomes a major concern. There are many aspects to information security, some of

which are completely independent of the software. However, the first gatekeepers of

confidential information are the precaution methods, which software developers

place in their software to prevent unauthorized third parties from accessing the

information. These include, but are not limited to, having strict minimum password

requirements, using a firewall protected database, and sanitizing inputs to prevent

SQL injections and cross site scripting. While software developers can take many

precautions to prevent information leaks, the truth is that most threats to information

security come from the end-users themselves [17]. Often unintentionally, end-users

compromise information security by accessing the system from a computer that has

been hijacked by malware. These end-user-related threats are addressed in the LIRA-

Study by providing information security training to the users.

ClinCaputre, developed by Clinovo, is one example of a centralized web-based

CDMS [18]. Clinovo offers various clinical data related services, such as clinical

data management, biostatistics, clinical and statistical programming, and medical

writing [18]. Clinovo also offers a standard version of clinCapture with limited

features for free [18]. With clinCapture, it is possible for end-users such as prime

investigators to design their own electronic CRF’s [18]. This reduces the need for a

clinical trial to hire an IT professional to create the forms. Unfortunately, free

versions of the available clinical data management systems were not enough to fulfill

the specific demands of the LIRA-Study, which is why they were not utilized. In

addition, the cost of purchasing off-the-shelf software was estimated to of have been

too high.

18

2.5. Common challenges in developing and deploying a CDMS

CDMS holds the promise of better clinical trial management. As aforementioned,

CDMS offers many benefits, including financial and time savings. However, these

cannot be realized if the CDMS is not being utilized [19]. Like with technology in

general, in developing a CDMS, there are many hurdles that a developer needs to

jump over. Some of these obstacles are discussed below.

2.5.1. Fear of change

CDMS is expected to improve clinical trial management and patient safety.

However, the utilization of CDM technology often faces resistance from the same

professionals, who ought to benefit most from its use [3]. Studies have shown that

the resistance for technology is often caused by the general resistance to change [3].

This is especially true, when the users perceive that the technology threatens the

status quo, or would potentially reduce their own power and control over the

organizational resources [3]. Fear of change is one of the most prominent detriments

to information technology usage, which is why developers should have a basic

understanding of managing change in an organizational setting.

Figure 3. Kurt Lewin’s change model.

Kurt Lewin, a psychologist, argued in his work that change is a process, rather

than an event [20]. Lewin’s change model helps us to comprehend the three different

steps of this process. The first step, which is the unfreezing phase, is focused on

preparing the users for change [20]. In the unfreezing phase, developers should

communicate to the users, why the software is necessary, and help the users move

outside of their comfort zones. The better the developers are able to convince the

users that the change is necessary, the more motivated the users are to make the

change [20]. One way to brace the users is to demo the software with them

throughout the development. This helps the users to familiarize themselves with the

software.

The second step in Lewin’s model is change, which is focused on actually making

the alterations. This step is usually the hardest, as people are unsure of the new

methods of conducting affairs and organizing their workflows [20]. In this phase, the

main focus of software developers should be to encourage users and provide support

through training sessions and one-on-one coaching.

Once the transition phase has been completed, the next step in the model is the

refreezing phase [20]. In the refreezing, changes become the new norm [20]. In this

step, the focus should be on sustaining the results of the transformation [20]. In the

modern world, change is often rapid and continuous, which is why refreezing is

probably not the best term to describe the third step. Rather, we should think of the

last step as something more flexible, so that the organization can go through the

‘unfreezing’ phase faster in the future [20].

19

2.5.2. Conflicting user-group requirements

When there are many user-groups using a given piece of software, the requirements

of these user-groups might conflict. In CDMSs, the requirements of the users

entering the data, and the users analyzing it, are at a dissonance. The users entering

the data often want the CRFs to be very lightweight. To explain, they want to enter

the data in an unrestricted manner, and as little of it as possible. This need contradicts

the needs of the prime investigators, who wish to collect as much data possible.

However, if we give precedence to the quality of the data, the user experience might

be heavily influenced. Thus, the software might become cumbersome to use for the

users entering the data. Moreover, in the LIRA-Study, all of the subjects are

volunteers, which is why the visits cannot be made overly burdensome and lengthy.

If the trial visits take up too much of the subjects´ time, the withdrawal rate of

subjects will increase, thus reducing the trial sample size. Reduced sample size can

undermine a trial, which is why finding an appropriate level of collected data is vital.

Software developers have to balance out and prioritize all of the conflicting user-

group requirements. This can be done by discussing with all of the user-groups, and

communicating the needs of one group to another. In addition, software developers

should try to find ways to automate as much of the data entry as possible. Simply

put, the focus should be on not having the users enter data that could be collected

programmatically.

2.5.3. Conflicting workflows

Another issue that software developers need to address are workflows. Ideally, a

given CDMS should be designed to support the existing workflows of the trial staff,

rather than replace them with new ones. Each clinical trial is different, which is why

designing an all-purpose CDMS is difficult. The benefit of in-house solutions is that

all of the user-specific needs can better be taken into consideration. Additionally, if

the users have no experience in EDC, it might be necessary to train the users on how

to utilize the system to support their tasks. According to studies, if the CDMS

conflicts with the existing workflows of the trial management by too much, it can

lead to the abandonment of the system [21]. This is why consideration of the existing

workflows is paramount to a successful implementation and deployment of a CDMS

[21].

In order to address the existing workflows, the developers should do on-site

observing and analysis of the existing workflows. It is always easier to change

software, than people, which is why the CDMS should be designed to suit the needs

of a given trial, instead of trying to get the trial staff to suit the framework set by the

CDMS.

2.5.4. Safety, security & privacy

Studies have shown that information security is one of the factors that affect the

general acceptance of information technology [22]. With CDMS, none of the data

should be accessible by an unauthorized third party. Compromising the information

security of subject related data causes financial, psychological, and social harm to the

20

subject [23]. This is why information security should be a focal point in designing

CDMS systems.

According to statistics, information security is compromised more often in

systems, where the subject data can be accessed remotely or in systems where the

data is physically transported to a centralized data storage [23]. However, by

utilizing modern information safety precautions and methods, a higher level of

information security can be achieved, than what could be with the traditional paper-

based method [23]. In addition, it is important to train the users on information

security as most threats to information security are posed by the users [17].

2.5.5. Analyzability of the data

In clinical trials, there are various factors that result in contingencies of the data.

First, a big portion of the entered data, such as illnesses or medication, is based on

the information elicited from the subjects. Subjects´ self-diagnosed illnesses and

medication cannot be medically verified, which results in inaccuracy of the data.

Second, data is keyed in by a trial staff member, who uses his or her own discretion

on how to enter the subject´s story into the available input fields. Entry formats often

vary from one staff member to another, which is why statistical analysis of the data

becomes cumbersome.

These problems can be alleviated with the use of a standardized international

medical terminology. These standards can be used both for regulatory

communication and evaluation of data pertaining to medicinal products for human

use [24]. One such standard is the Medical Dictionary for Regulatory Activities (or

MedDRA), which provides a library of standardized medical terminology. By using

the standardized terminology, the data does not need to be converted from one

terminology to another, which often results in distortion of data [24]. Moreover, with

the use of single terminology, data can easily be statistically analyzed later [24]. On

the other hand, using the library requires an extra effort from the trial staff, as they

are required to search for the correct terms from the library. In the LIRA-Study, the

decision whether to use MedDRA is yet to be made. However, we will integrate the

support for the MedDRA library as part of the system so that a given trial can deploy

it at will.

In addition to utilizing MedDRA, the analyzability of the data can further be

improved by deploying a data entry standard such as the Clinical Data Acquisition

Standards Harmonization (CDASH) developed by CDISC [9]. CDASH describes the

basic recommended data collection fields and formats for 18 different domains [9].

These domains include aspects such as demographics, adverse events, and other

common domains that are common to most therapeutic areas and phases of clinical

research [9]. CDASH also includes implementation guidelines and best practice

recommendations for any CDMS project [9].

21

3. SOFTWARE REQUIREMENTS

Chapter 3 starts by talking about requirement elicitation on a general level.

Thereafter, this chapter illustrates the means of how the requirements were collected

in this software project. Lastly, this chapter depicts both the functional and the non-

functional requirements that were placed on Genesis.

3.1. Gathering requirements

The first step in the software development life cycle (SDLC) is to gather the business

requirements for the software. In this phase, all of the stakeholders will come

together and attempt to find answers to questions such as:

 Who are the users of the system?

 Can the users be separated into specific groups?

 What kind of functionality should the software have?

 Where will the users use the system?

 When should the system realistically be available?

 What is the estimated lifespan of the system?

The requirement elicitation phase necessitates all parties to participate, because

nowhere else in the SDLC do the interests of all of the stakeholders intersect to such

an extent. An enormous portion of problems in the software industry originate from

the shortcomings in the ways that people discover, document, discuss and modify the

system requirements [25]. Most frequently problems arise from informal information

gathering, implied functionality, miscommunicated assumptions, and poorly

specified requirements [25]. The requirement elicitation phase should be of vital

significance for software developers as statistics show that roughly 50% of all errors

found in testing can be attributed to defects in requirements [26]. In addition, the cost

of changing functionality in the software increases exponentially as the project

moves further in its development life cycle.

Requirement elicitation and analysis is an iterative process that can be split into

three distinct phases. The first step is the actual elicitation of the requirements, which

can be done through interviews and questionnaires. The second step is to analyze the

elicited requirements and make sense of them. In this step it is important to

determine whether the elicited requirements are understandable and unambiguous.

Use cases and process diagrams can be used for the aforementioned analysis phase.

The third step is to document all of the analyzed requirements, which can be done in

various forms such as by using summary lists, mockups, use cases, data models, and

process flow diagrams.

In this software project, the requirements were collected using one-on-one

interviews, group interviews, questionnaires, use cases, and mockups. Some of these

are described below.

22

3.2. Stakeholder interviews

This project started with one-on-one interviews with the customer, who in this case

was the prime investigator of the research. In the initial interviews, the customer

described what kind of functionality was needed from the software, when it should

be available, and who would be its users. During these interviews, specifying

questions were made to the customer in order to properly map out the specific

requirements. There is often a communication disconnect between the developer and

the customer, which is why it is important to ensure that both parties are on the same

page in regards to the project. This can only be done via communicating and resisting

the urge to make assumptions about the nature of the software.

After the initial interviews, a first version of the software requirements

specification (SRS) was made. This document enlisted the basic functionality that the

software should have. The SRS was presented to the customer and all of the enlisted

requirements were examined. This was in order to affirm that we had truly

understood the customer’s needs. After re-examining the requirements, the

requirement gathering and analyzing process was iterated until a solid view of what

needed to be done had been established.

In addition to talking to the actual customer, a communication channel was also

established to the primary users of the software. This was done in order to elicit any

user-specific requirements. Involving the users in the requirement collecting phase is

significant, because it helps to build rapport between the users and the developer. In

addition, it helps to prepare the users for change, which was identified in chapter 2 as

one of the difficulties to developing a CDMS.

In this software project, we recorded most of the requirement interviews. By

recording the interviews, we could solely focus on communicating with the

customers and the users, instead of making notes on a paper. By having the

recordings, we could later revisit some specific details of the interview as well as to

evaluate the quality of the interviewing process itself.

3.3. Use cases

A use case depicts a list of actions that an actor performs when interacting with a

system. Use cases provide a lot of benefits in analyzing the elicited requirements. To

illustrate, they help in managing the complexity of a given system by focusing on a

single usage aspect at once [27]. Use cases are an excellent tool for user-centered

design because they are based on the viewpoint that a system should be designed first

and foremost for its users [27]. Additionally, by utilizing use cases, software

developers are encouraged to visualize all of the alternative solutions before deciding

on the final one.

Despite all of the benefits, there are some downsides to using use cases. While

excelling at illustrating functional requirements, use cases do not account for non-

functional requirements such as usefulness, user experience, and usability. Another

drawback of use cases is the fact that they look at each process individually, which

often leads to disregarding the interactions between multiple processes [27].

23

Figure 4. Use case diagram showing actors and main processes.

The use case diagram, illustrated in Figure 4, shows the primary actors and main

processes of Genesis. In our system, we have various user groups and roles. One

such group is data entry clerks whose job is to enter CRFs and respond to queries.

These queries are made by a monitor in case the submitted CRFs are invalid or need

clarifying. If the data is entered correctly, the monitor has the power to accept the

entry. Coordinators are general managers of the trial whose job is to ensure that all

tasks are being completed in a timely manner. Role specific tasks for the prime

investigator are to export data, manage the trial, and to view audit trails. System

administrators are responsible for managing the existing user accounts. As depicted

in the use case diagram, in addition to the role specific duties, all of the users have

some global rights such as to view general information about the study, to print data,

to create and read messages, and to view subject data. In addition to the primary

actors, we have the subjects. Subjects are allowed to fill out some CRFs and to view

certain data about themselves.

24

Table 1. Example of a detailed use case of form submission.

Use Case Element Form submission

Use Case Number 3

Application Genesis

Use Case Name Form submission sequence

Use Case

Description

Describes how user can open subject info and submit forms

Primary Actor Data Entry Clerk

Precondition Trial ongoing, subject exist

Trigger -

Primary Flows User clicks subjects button or tasks to open the subjects

protocol

Subjects button:

1. User opens a view of all subjects in it

2. User finds the correct subject and opens its view

3. User identifies the correct visit and opens it

4. User selects a form from the visit, opening the form

5. User fills the form and clicks the submit button

6. On submit button click, both the client and the server

verifies data

Search bar:

1. User searches for user by their code

2. User finds the correct subject and opens its view

3. User identifies the correct visit and opens it

4. User selects a form from the visit, opening the form

5. User fills the form and clicks the submit button

6. On submission, client and server validates the data.

Task menu:

1. User opens a view of all tasks on it

2. User finds the correct task and opens the form

associated with it

3. User fills the form and clicks the submit button

4. On submit button click, both the client and the server

verifies data

Alternative Flows -

Table 1 is an example of a specific use case. Specific use cases were created for any

activities that were considered to be even a bit ambiguous. All of the use case

elements were given a name and a number. Each use case was also given a brief

description that describes what happens in the use case. Additionally, for each use

25

case, the primary actor was identified as well as any preconditions that had to be met

for the use case to occur. Primary flow depicts the most common way the scenario

could unfold. Alternative flow illustrates what happens if something goes wrong with

the primary flow. There are no alternative flows in Table 1, but for example, if a user

is unable to login to the system, an alternative flow would be to first retrieve a new

password and then to login.

3.4. System requirements

System requirements are the blueprints that a developer utilizes in engineering the

software. System requirements can be separated into functional and non-functional

requirements. A functional requirement states what a single functional piece or part

of a system is supposed to accomplish. Non-functional requirements illustrate all of

the requirements that are not included in the functional requirements. They are

requirements that describe how a piece of software will accomplish the enumerated

functional requirements. Non-functional requirements are often used as quality

metrics to judge the performance of a system. Tables 2 and 3 describe what high-

level system requirements were placed on the developed software. Functional

requirements that were decided to be excluded from the first version are marked as

(ex).

Table 2. Functional requirements of Genesis.

FUNCTIONAL REQUIREMENTS

1. Users
a. User should be able to be created/deleted.

b. Forgotten user passwords should be able to be retrieved.

c. Users should be able to change their password.

d. Users should be able to be banned from accessing the system.

2. Authentication (Access Management)
a. Users should be able to authenticate themselves. Authentication is done

via username and password. Correct credentials provide the client with

a token, which is used to access resources.

3. Authorization (Access Management)
a. On each request, the system needs to verify that the user is authorized

to access the requested resource.

4. Manage user privileges (Access Management)
a. User roles should be able to be set. Roles define access rights.

b. User group should be able to be set to a user. Groups have group

specific privileges.

5. Trials (Study Management)

a. Trials should be able to be created/modified/deleted.

b. Trials should be able to be given details such as description and

duration.

26

6. Visits (Study Management)
a. Visits should be able to be created and linked to a protocol. Visits

contain the CRFs.

b. Visit details such as description and date should be able to be set.

7. Forms/CRFs (Study Management)

a. CRFs should be able to be created/modified/deleted.

b. CRFs should be able to linked to visits.

c. Each CRF should have an audit log that shows the modifications done

to a given CRF.

8. Variables (Study Management)
a. Variables should be able to be created/modified/duplicated /deleted.

b. Variable validation rules should be able to be set.

9. Study sites (Study Management)
a. Study sites should be able to be created/deleted.

b. Study site is a consortium of users, users should be able to be linked

and unlinked to study sites.

10. Subjects (Study Management)
a. Subjects should be able to be created/modified/deleted.

b. Subjects should be able to be mass-imported from a data source.

c. Subjects should be able to be linked to a study site.

11. CRF entry
a. Data should be able to be entered into CRFs. CRFs should be able to be

submitted.

b. CRFs’ should be editable for t amount of time after the form has been

submitted, which after it is locked and pending for monitor approval.

12. CRF validation

a. Entry validation (client)

Client should validate the entries in real-time according to the set

validation rules.

b. Form submit validation (client)

Client should validate that all of the required fields have been entered

on clicking the submit button.

c. Form validation (server)

Server should validate that all of the required data has been received,

and that all of the data is in correct format.

d. Form validation (monitor)

 Monitor should be able to validate that the CRF entry.

13. CRF verification
a. Monitor should be able to flag invalid CRFs.

b. Monitor should be able to verify a CRFs.

14. Audit trail

a. System should store what changes have been done to a CRF.

b. System should store who made the changes, and when.

27

15. Calendar
a. Calendar events should be able to be created/modified/deleted.

16. Metadata collection

a. Metadata should be collected on who enters or validates the CRF, how

long it took to enter or validate the CRF and so forth.

17. Printing (ex)

a. User should be able to print out a completed CRF, as well as an empty

CRF.

18. Communication (ex)
a. Users should be able to send messages to each other.

b. Users should be able to read messages from one another.

c. Administrators should be able to send messages to all system users.

19. Data export (ex)
a. All data should be able to be exported to Excel, CSV, SPSS or similar

formats.

20. Study Overview (ex)

a. Authorized users should be able to view, at what phase the trial is at

(how many tasks have been completed and so forth)

Table 3. Non-functional requirements of Genesis.

NON-FUNCTIONAL REQUIREMENTS

1. Usability
a. The system should use language that is intuitive to the users.

b. The system should have workflows that mirror those of real-life.

c. The system should use widgets that are intuitive to the users.

2. Reliability
a. The system should not have downtime during regular working hours.

b. The system should not lose data after CRF submission.

c. The system should make sure that all data is stored in correct format;

strings as strings and numbers as numbers.

d. The system should make sure that required data has been entered.

e. The system should disallow users from modifying locked CRFs.

f. The system should handle exceptions and announcing them to the user.

3. Performance
a. The system should be responsive.

b. The system should support at least 30 concurrent users.

c. The system should have high scalability.

4. Supportability
a. The system should be able to be ported later to a mobile phone or

tablet.

b. The system should be maintained by a person with a proficiency in

information technology.

c. The system should easily be extendable.

28

5. Implementation
a. Software should be web-based as users will be at various different

locations.

b. The users’ browsers should have JavaScript enabled.

c. The users should have up-to-date browsers.

d. The source code should be commented and understandable for easy

maintainability.

e. All crucial functions of the software should be unit and e2e tested.

6. Operation
a. The system will be maintained by Joona Rahko & Olli Okkonen.

7. Packaging
a. The software will be delivered to end-users in a software-as-a-service

based model. This means only modern browsers, Internet connection

and JavaScript is required.

8. Safety, Security & Privacy

a. The system should not be able to be accessed by unauthorized users.

b. The system should have high minimum password requirements and

users should be trained on selecting unique passwords.

c. The system should be immune to most common security threats such

as CSRFs and XSS.

d. Data should be maintained on a separate database server, protected by

a firewall.

29

4. DEVELOPMENT METHOD, TOOLS AND APPROACHES

This chapter begins with the description of the development method that was chosen

for this project. Afterwards, modern web development approaches and tools that

were considered for this project are discussed comparatively. The underlying

reasoning behind the selection of each development tool and approach is also

illustrated in this chapter. Lastly, the way version control was conducted in this

project is described.

4.1. Agile software development

CDMSs are people focused software. To explain, they are used by people to store

data about other people. The information elicitation, an important process and art of

its own, is based on the interaction between the nurse and the subject. A well

designed CDMS should support this interaction, which is why the developers need to

understand how the research staff and the subjects interact with each other. This

understanding can only be gained by actively interacting with the research nurses.

Agile software development is a development method, which is best suited for

people focused software. This is because agile software development is based on

rapid cycles, in each of which a new version is first developed, and then tested with

the users [28]. Afterwards, the user feedback is analyzed and the process continues

[28]. By continuously interacting with the users, a developer can better grasp how a

CDMS should be built to support the interaction between the subject and the research

nurse. According to the Manifesto for Agile Software Development, developers

should focus on individuals and interactions over processes and tools. This statement

demonstrates the people-oriented nature of agile development [29].

Among the aforementioned reasons, agile methodology was adopted in Genesis

development for another reason. Our initial end goal was not clear, which is why the

classical waterfall approach was not the best choice for this project. By keeping the

iterations short, the software could be steered towards a better, yet unknown

direction. Moreover, agile development helps to reduce the time to the market

because the software can be worked on meanwhile requirements are still being

gathered [30].

Another benefit of agile development is active communication with the users,

which helps to build ownership of the software for the users. Additionally, as the

users see that their ideas are valued, trust is also established between the developers

and the users. Moreover, active testing also functions implicitly as training, as the

users slowly familiarize themselves with the software while it is still being

implemented.

We were able to deploy agile software methodology in the development of

Genesis because our workstations were at the study site, enabling us to constantly

gather user feedback. Without the users to test the software, there can be no agile

development, as user feedback is paramount.

30

4.2. Client-side versus server-side rendering

In developing web-applications, an important architectural decision has to be made

on where to render the HTML. There are two ways to conduct rendering, either on

the server-side or the client-side [31]. The current paradigm is to utilize a mixture of

both methods. The traditional approach has been to render templates on the server-

side [32]. This is because front-end web development tools have not been around for

long and historically browsers used to have compatibility issues [32]. With the

release of JQuery, and introduction of various JavaScript based frameworks, web

front-end development has been revolutionized [32]. Both client- and server-based

rendering have their unique strengths and weaknesses that need to be evaluated in

order to find the best option for a given project. The pros and cons of both client-side

and server-side rendering are illustrated in the Table 4. The symbol indicates a

positive aspect whereas the symbol indicates a negative aspect.

Table 4. Comparison between pure server- and client-side rendering [32][33].

Server-side rendering Client-side rendering

 Performance is independent of users

hardware and software because data

is rendered on the server

 Performance depends on user

hardware and software because data

is rendered on user browser

 Page rendering is faster, no extra

DOM manipulation

 Page rendering is slower, extra

DOM manipulation

 Browser independent, server deals

with rendering

 Older browsers might not support

all client-side rendering features

 Faster initial paint time, slower last

paint time. Better if page needs to be

shown immediately

 Faster last paint time, slower initial

paint time. Better if all data is

needed before view can be shown

 Despite going with server-side

rendering, client-side programming

language (JS, HTML, CSS)

knowledge still required

 No knowledge of server-side

programming languages is required.

Makes developing easier for front-

end developers

 Server needs to worry about data

visualization, no decoupling

 Decoupling, separation of concerns,

client visualizes data

 A lot of traffic between server and

client, view alterations need to be

done at the server. User interactions

needs to confer with server

 Helps to reduce traffic between

client and server. Server only

responds to API calls and serves

static HTML templates

Client-side rendering was chosen for this project because it was found to be more

favorable for the following reasons:

1. Users had modern browsers, negating one of the client-rendering weaknesses.

2. Users are expected to have longer usage sessions, which is why initial load

time does not matter. Interaction after the initial load has to be optimized.

3. Both the web client and the server-side could be developed separately. This

was very important as we had two developers working on the whole system.

31

4.3. JavaScript framework selection

After having decided to go with client-side rendering, the next decision, which was

one of the key ones, was to choose the client-side JavaScript framework. There were

various decent options available to choose from, namely AngularJS, Backbone.js,

and Ember.js, which is why some research had to be put into mapping out the pros

and cons of each alternative. One of the key factors in choosing a framework is

community support. Strong community support is especially beneficial because

strong communities often have a lot of existing modules that a developer can use in

an application. In addition, big communities often offer an existing broad library of

information that a developer can tap into. Table 5 illustrates that AngularJS has an

exceptionally strong community compared to the other frameworks.

Table 5. Community support metrics and results on August 16th, 2014 [34].

Metric AngularJS Backbone.js Ember.js

Stars on Github ~ 27.2k ~ 18.8k ~ 11.0k

Third-Party Modules ~ 800 ~ 236 ~ 21

StackOverflow Questions ~ 49.5k ~ 15.9k ~ 6k

YouTube Results ~ 75k ~ 16k ~ 6k

GitHub Contributors 928 230 393

Chrome Extension Users ~ 150k ~ 7k ~ 38.3k

In addition to having a strong community, AngularJS seems to be growing in

interest among developers. This is an important statistic, as it is vital that a

framework is expected to have support in the long run. A comparison of AngularJS,

Backbone.js, and Ember.js interest can be seen in Figure 5.

Figure 5. Graph of JavaScript framework popularity based on Google trend on

4.10.2015. Y-axis represents number of searches relative to the highest number of

searches [35].

Moreover, Google has helped to develop and has used the framework to build

many of its applications. Due to this, it is unlikely that Google would migrate away

from AngularJS in the near future, helping to create stability for the framework [34].

AngularJS´s future prospects are further improved with the oncoming release of

AngularJS 2.0 [36]. Due to the aforementioned reasons, the AngularJS framework

was chosen over the other available options.

32

4.4. Web service architecture selection

A web-based CDMS is a web service. A web service is defined as “a software

system designed to support interoperable machine-to-machine interaction over a

network” [37]. Representational State Transfer (REST) and Simple Object Access

Protocol (SOAP) are two of the mainstream options to offer web services [38]. REST

is an architectural approach, which gives certain rules on how a web service should

be developed, whereas SOAP is a protocol, which strictly defines a set of rules for

XML-based message exchange [38]. REST and SOAP are similar in the sense that

they both use HTTP as their transport layer [38]. Both of the aforementioned

approaches are actively used on the web, which is why an analysis had to be made on

which one to deploy in Genesis [38]. REST and SOAP are compared in the Table 6

below.

Table 6. Comparison of REST and SOAP approaches [38][39][40][41][42].

REST SOAP

 Permits many data formats, not just

XML. While adding an extra layer

of complexity, newer formats can

fare better compared to XML

 Permits only XML as a data format.

Beneficial because of reduced

complexity due to not having to

support many formats

 Client-side coding is less complex,

server-side becomes more complex

 Server-side coding is less complex,

client-side becomes more complex

 REST is more scalable due to

statelessness, which also allows

caching

 SOAP based web services often

maintains state for clients, using

states prevents caching

 REST has better performance:

higher throughput of clients and

kilobytes. Faster response time with

number of clients

 SOAP has worse performance, loses

to REST in throughput of clients

and kilobytes. Slows down as

number of clients increases

 REST has been found to be 9 to 30

times faster on mobile applications

 Much slower in mobile applications

compared to REST

 No in-built security mechanisms,

relies mainly on SSL, additional

layers of security need to be built-in

 Supports WS-Security, which has

some enterprise security features,

such as tracking identity through

intermediaries

 REST relies on clients to handle

communication errors, retrying etc.

 Has in built messaging system with

successful/retry logic built-in

One of the goals of our software is to serve multiple clients on different platforms,

such as tablets and phones. Further, REST offers a much higher overall performance,

especially in mobile applications. This is why in Genesis we chose to deploy REST

over SOAP.

33

4.5. Web service data interchange format selection

Because REST was chosen as our web service type, a choice could also be made on

what communication language to use on the client-side to communicate with the

server. While other options are available, the most common formats that are used on

the web are JavaScript Object Notation (JSON) and Extensible Markup Language

(XML). While a REST API can support both languages, there is no reason to use

multiple data interchange formats on the client-side. In determining, whether to use

JSON or XML, some research had to be conducted in order to reach a decision on

which one to harness. The results of the literature review can be seen in Table 7.

Table 7. Comparison between JSON and XML formats [43][44][45][46].

XML JSON

 XML is simple, open and

interoperable

 JSON is simple, open and

interoperable

 Self-describing data and

internationalization, Unicode

support

 Self-describing data and

internationalization, Unicode

support

 XML allows for storing any type of

data, making it a bit more flexible

 JSON is limited to classical data

types (strings, integers, numbers…)

 XML has inbuilt XML document

validation

 JSON does not have inbuilt

validation

 Increased data type flexibility of

XML creates an additional layer of

complexity, and makes XML less

human readable

 JSON is easier for humans to read

because JSON supports less data

types. In addition, the structure of

the data itself is standardized

 While XML supports any file of any

format, it creates security threats, as

an executable malicious file can be

transferred (XML-RPC)

 Simplicity of JSON data structures

makes it impossible to send

malicious executable files

 Slower format for transporting large

quantities of data compared to JSON

 Faster format for transporting large

quantities of data compared to XML

 Uses more hardware resources than

JSON

 Uses less hardware resources than

XML

 More verbose compared to JSON Less verbose compared to XML

 Not natively supported by

JavaScript, needs to be parsed on the

client-side

 Natively supported by JavaScript, no

need to parsed on the client-side

Through investigation it was found that transferring JSON encoded data is

generally faster compared to transferring XML encoded data [46]. In addition,

JavaScript natively supports JSON parsing and deserialization, which makes client

development considerably easier. For the aforementioned reasons, JSON was chosen

as the client-server communication language.

34

4.6. Version control system selection

Version control is very important in software development because it allows

developers to keep track of changes that have occurred during the development.

Version control systems (VCS), such as Git, Apache Subversion (SVN), and

Concurrent Versions System (CVS) make version control much easier. They allow

developers to revert files or even an entire project back to a previous state, compare

changes over time, see who has made modifications to the source code, and much

more. A traditional way of handling version control is to copy files into timestamped

directories. However, this process is prone to human errors, as wrong files can be

overwritten and actual development files can be lost. Moreover, without a VCS two

people cannot work efficiently and safely on the same file at once. [47]

In this project, we knew that we would be working from various locations such as

the hospital, the university, and our homes. Moreover, in each of these locations, we

would not necessarily have access to the Internet. Due to the nature of our work, we

needed our version control system to be able to operate locally without the need for

the Internet. Git supports this functionality by default, which is why it was deployed

in this project. Git icon can be seen below in Figure 6.

Figure 6. Icon of Git version control system.

35

5. WEB CLIENT DESIGN AND IMPLEMENTATION

This chapter begins by illustrating the overall architecture and navigation flow of the

system. Thereafter, the general UI of Genesis is illustrated. After discussing the UI,

we discuss how the CRFs in Genesis were designed and built. Thereafter, the

different states of CRFs and how those states affect the UI are shown. Additionally,

this chapter shows how the information exchange between the client and server is

handled. The means to ensure information security are also depicted in this chapter.

5.1. System architecture

Figure 7 depicts the system architecture for Genesis. The web client uses the model-

view-controller (MVC) architectural software pattern. Local storage can also be

utilized for temporary data storage. All of the web client communication goes

through AngularJS $http service, which enables the user to perform basic http

operations. All of the http operations are intercepted using an http interceptor. The

interceptor adds a JSON Web Token (JWT) to the header of each http request. The

JWT lets the server know that the client has the right to access the data. All of the

data transmissions between the server and the client are done using JSON. The server

side uses the Django REST framework and a PostgreSQL database.

Figure 7. System architecture diagram for Genesis.

36

5.2. User interface navigation flow

The user interface navigation flow is illustrated in Figure 8. When users enter the

trial website, they are first taken to the login page (Appendix 1). On the login page,

users can enter their credentials or retrieve a forgotten password. Users might also be

prompted for a new password if the previous one has expired. After inputting correct

credentials, users are redirected to the dashboard state (Appendix 2). The dashboard

is one of the states of the main view, which is the root state for the client. In the main

view, users can enter the account state (Appendix 3). In this state, the users can

changes their password and other account. In the subjects state (Appendix 4), users

can add new subjects to the trial or view subject related information. Subject specific

information is contained in CRFs, all of which are generated from the JSON schema.

In the main view, users can also view their tasks (Appendix 5), which act as links to

different parts of the system. For example, the user might have a task to complete a

CRF for a subject. In the messages (Appendix 6), users can communicate with the

personnel of the study. The calendar state (Appendix 7) is reserved for managing

appointments. In the study overview (Appendix 8), the progression of the study can

be viewed. The dashboard is a general state where users can see if they have received

new messages or tasks. In addition, the changelog for new versions of the software

can also be viewed from the dashboard.

Figure 8. Flow chart of user interface navigation.

37

5.3. User interface design

The wireframe illustrated in Figure 9 was the base for the user interface design for

Genesis. On the left, we have the static state navigation, which is the user’s primary

mean of navigating within the application. The static state navigation contains all of

the primary states, such as subjects, messages, and tasks. Dynamic sub-state

navigation is also used to aid navigation within the parent state. This sub-state

navigation is implemented using a bread-crumb approach, where previous states are

shown and are accessible. The dynamic content area contains all of the dynamically

changing content, which depends on the current state, as well as on the data provided

by the backend. Graphical layout of the user interface is illustrated in Figure 10.

Figure 9. Wireframe of user interface design.

Figure 10. Graphical layout of the user interface.

38

5.4. CRF design

In CDMSs, most of the system-user interaction happens through CRFs. This is why

CRF design should be one of the focal points when developing a CDMS. In Genesis,

we strive to offer the best possible user experience through an efficient CRF design.

Excellently devised CRFs do not only improve user experience, but they also help to

reduce human related entry errors. Moreover, with good design, the time for data

entry can be reduced, and thus, scarce resources can be saved. To achieve the

aforementioned benefits, good CRF design principles must be utilized. Here are

some of the factors that were taken into consideration in the CRF design for Genesis.

5.4.1. Label positioning

Figure 11. Illustration of label positioning options.

There are various legitimate ways to position field labels inside a form. These are

shown in Figure 11. The pros and cons of each option are depicted in Table 8.

Table 8. Comparison of label placements options in a CRF [48][49].

Option 1 Option 2 Option 3

~500ms saccade duration ~200ms saccade duration ~50ms saccade duration

 Requires less vertical

space

 Labels can be longer

than fields

 Labels are easier to

scan, no field

separation

 Heavy cognitive load

 No localization

support, long labels

push the input fields

 Form requires more

horizontal space

 Far from the

corresponding field,

hard to associate

 Requires less vertical

space

 Labels can be longer

than fields

 Labels easy to scan,

no field separation

 Close proximity to

corresponding field,

easier to associate

 Heavy cognitive load

 No localization

support, long labels

push the input fields

 Form requires more

horizontal space

 Long labels that warp

are harder to read

 Requires less

horizontal space

 Smallest cognitive

loading

 Allows easy

localization, label

lengths can change

 Longer labels are

easier to read

 Easy to associate field

with label

 Best for mobile

devices

 Requires a lot of

vertical space

 Labels can be harder

to scan due to field

separation

39

In Genesis, we decided to use option 3 of placing the label on top of the input

field. One of the goals of Genesis is to be able to provide localization support in the

future. Placing the label on top of the input field allows for the labels to vary in

length without affecting the layout of the form. Another reason option 3 was chosen,

was to reach fast CRF completion times. Option 3 had been proven to perform the

best in this department, which is why it was deployed.

5.4.2. Validation

In CDMSs, data entries can be validated both on the server-side and on the client-

side. Any CDMS system should at least deploy server-side validation in order to

ensure the reliability and quality of the collected data. While server-side validation is

enough for reliable CRF validation, relying only on it does not provide the best user

experience as the user has to wait for the server [50]. Therefore, a well-designed

CDMS should also be accompanied with client-side validation. With client-side

validation, it possible to use rules and conditions to validate user input

instantaneously [50]. Despite the benefits, implementing a client-side validation

requires some extra effort from the developer. However, the improved user

experience is worth the cost. After deciding to perform client-side validation,

decision must be made on what to validate, when to validate, and how to validate.

There are three ways to schedule validation. To illustrate, the first way is to

validate the web-form upon submit. With on-submit validation, the user does not

know whether the fields are correct or incorrect until the form has been submitted.

While this is not the optimal way of performing validation, it is sometimes the only

available option if, for example, JavaScript is not enabled on the client-side [50]. If

we add client-side validation into the mixture, the fields can also be validated in

either real-time or on-blur. The result is a more responsive and visually richer

validation [50]. Real-time validation means that the input fields are being validated

continuously, with each character or number input. However, by showing an error

message prematurely, the user experience might be negatively affected. Real-time is

the fastest way of giving feedback to the user about field validity. On-blur validation

means that a given field is validated after the field specific entry has been completed.

In Genesis, both server- and client-side validation are utilized. On the client-side,

the web-form is being validated using the on-blur method. If the user enters

erroneous data to an entry field, the user interface tells the user that the entry is

invalid, and shows an example of a correct entry. This is illustrated in Figure 12.

Figure 12. Example of a number validation message.

40

In Genesis, all of the input fields have been designed to allow for many ways to

input the same data. An example of various acceptable ways to enter data would be

the date field. Genesis accepts period, dash, and slash as date separators. In addition

to using on-blur validation, the client also utilizes on-submit validation. On-submit

validation is used for checking that all of the required fields have been filled before

submitting the CRF. If any of the required fields have not been completed, the

system notifies the user and highlights the required fields. This can be seen in Figure

13. In addition to letting the user know when an entry is incorrect, Genesis also gives

the user feedback on a successful data entry. Example of this is shown in Figure 13.

Figure 13. Validation example of different fields.

5.4.3. Icons

As we can see in Figure 13, icons are also actively being used in Genesis web-forms.

The purpose of the icons is to improve the affordance of the UI. Affordance means

how intuitive using the UI elements is [51]. By using a calendar icon for date fields,

a pound sign for number fields, and a paragraph icon for text fields, the user can

faster realize what type of data the entry field requires. Icons are also used on the

right of the input fields to indicate the validity of the field.

41

5.5. CRF compilation design

In order for the web client to serve various trials, all of the CRFs need to be created

based on data received from the backend. In Genesis, CRFs are built based on a

JSON Schema, provided by the backend. JSON Schema is a JSON based media type

used to define the structure of JSON data [52]. The purpose of the JSON Schema is

to define validation, documentation, hyperlink navigation, and interaction control of

JSON data [52]. According to the JSON Schema standard, implementations can

define their own unique keywords, but these should not override the ones set by the

standard [52].

Figure 14. Example of interpreting JSON schema into an HTML form.

Figure 14 illustrates how the JSON schema is interpreted by the client and

converted into an HTML based web form on the client side. In order to make the

building of the JSON Schemas a lot more effortless, a GUI based form builder will

later be developed. Currently, Genesis uses a tool that creates the CRFs from a

comma-separated values (CSV) file. Having a GUI based web-form creator and

manager, would enable the prime investigators to build their own variables and

CRFs, as well as to define their own validation rules.

42

5.6. CRF entry and verification flow

In addition to the automatic entry validation, most CRFs are verified by a monitor in

the LIRA-Study. The monitor’s role in a trial is to verify and query forms. Query is

an error message generated by the monitor when there is a discrepancy in the data

entry. The process of CRF verification is illustrated in Figure 15. Due to the different

CRF states, the same CRF has to be shown in multiple different formats depending

on both the CRF status and the role of the user viewing the CRF. The way different

states of CRFs can change the GUI can be seen in Figure 16.

Figure 15. CRF entry and verification flow.

Figure 16. Different CRF states in the protocol.

43

5.7. Interaction with backend

In Genesis, the backend as a service (BaaS) approach is utilized. BaaS offers a way

for clients to link their frontend to a backend by an application programming

interface (API). In Genesis, the client utilizes a REST API. In REST, resources and

basic HTTP methods are utilized to exchange and modify data. Resources are

individual collections of data, identified in requests by using a unique resource

identifier (URI). These resources are usually offered in either JSON or XML

formats. The aforementioned methods, or verbs, utilized in the REST architecture are

GET, PUT, POST, and DELETE. For example, the verb GET would be utilized to

retrieve a collection of data from the server. [53]

We decided to utilize a REST API in Genesis because the same API could be

reused to serve other clients such as mobile devices. Additionally, REST helps to

build a clean separation of concerns between the client and the server as the

implementation of all of the resources is invisible to the client. Moreover, the

separation of concerns allowed us to develop the client and server as separate

components. Because the client consumes the resources through an abstract interface,

it is possible for us to alter the backend without influencing the client.

5.8. Information security

One of the key aspects of a browser-based CDMS is security. Web browsers are the

most commonly used client-side application, which is also why they are often one of

the main targets for hacking [54]. In addition to being a prime target for malicious

endeavors, web-browsers are being used by users with little-to-no experience in

information security [54]. Moreover, with new web-technology being released daily,

and with new vulnerabilities being discovered all the time, merely keeping up with

web-security is a time consuming task. All of these factors combined make

information security a difficult, yet a vital aspect to consider.

Information security has been heavily considered in the design of Genesis. In order

for the implemented information security measures to be efficient, interplay between

the server and client is necessary. A basic approach to web-application security is

that the server should never trust anything from the client [55].

5.8.1. Securing communication

In Genesis, all of the content is served over Hyper Text Transfer Protocol Secure

(HTTPS). With HTTPS, all of the communication between the client and the server

is insulated using either Secure Sockets Layer (SSL) or Transport Layer Security

(TLS) encryption [56]. Both SSL and TLS protocols deploy an asymmetric Public

Key Infrastructure system [56]. Without the encryption, all of the data travelling

between the client and server would be in plain text, making the data vulnerable to

man-in-the-middle (MITM) attacks [56]. In MITM, a third, unauthorized party

hijacks the connection and is able to secretly relay and alter the communication

between the server and the client. HTTPS encryption renders the data impossible to

decrypt, even if somebody breaks into the connection [56].

44

5.8.2. Preventing cross-site scripting

Cross-site scripting, or XSS, is a vulnerability in web applications where the attacker

injects client-side script into web pages viewed by real users. The malicious scripts

are injected into fields that are used to generate output, and can be used to bypass

access controls such as the same-origin policy. In Genesis, we prevent script

injections by sanitizing all of the inputs given by the user. This is done using

AngularJS’s ngSanitize module. NgSanitize first parses the website HTML into

tokens [57]. Then, after parsing the HTML in to the tokens, all of the tokens that are

deemed safe according to a whitelist, are then serialized back to HTML strings [57].

Using this method, no unsafe scripts make it through. Input sanitation helps to

protect the application from cross-site scripting attacks (XSS), as well as from SQL

injections. In order to further immunize the system from XSS attacks, a Content

Security Policy (CSP) is deployed. CSP tells the client from which location and what

type of resources it is allowed to use [57].

5.8.3. Preventing cross-site request forgeries

Cross-site forgery (CSRF) is an attack where a harmful web application forces the

user’s browser to perform unwanted actions on another trusted application running in

the browser [58]. CSRF attacks cause damage, because they trick the victim to send a

malicious request on their behalf [58]. CSRF attacks aim to cause a state change on

the server. There are various prevention measures to protect against CSRFs. One

method is to use same-origin policy [58]. Same-origin policy ensures that a

document retrieved from location A, cannot access a document retrieved from

location B [58]. This functionality is implemented by the web browsers. The strict

same-origin policy can be relieved with the use of cross-origin resource sharing

(CORS), which makes cross-domain communication possible.

Application developers can also take action to prevent CSRFs by utilizing an

unpredictable challenge token on each HTTP request and associating it with the users

unique session. Tokens verify that all requests come from the user [59]. In Genesis,

we have deployed tokens, which help to build a strong immunity against CSRF

attacks.

5.8.4. Password requirements

Passwords are the first-line of defense against malicious users. In Genesis,

information security is also improved with the use of good password standards. To

illustrate, Genesis enforces a minimum password length requirement, as well as

requires the user to use special characters in the password. Moreover, dictionary

words are not permitted in the password, as they are susceptible to dictionary attacks

[60]. In addition to these standards, each password is set to expire after a certain

amount of time. Brute force attacks are prevented by only allowing for a limited

number of attempts to login into the system until the account is locked.

Studies have shown that while users accumulate more accounts for different web-

services, the number of passwords the use remains roughly constant [61]. This

indicates that many of the users practice password reuse. Specifically, one study

showed that the amount of password reuse per account is on average four accounts

45

per password [61]. Recycling passwords creates many security vulnerabilities. If an

unauthorized person gets a hold of the user’s password, he or she most likely has

access to the user´s other accounts using that password as well. Because selecting a

unique password is significant for the overall security of a given system, we will

train the users on the importance of a unique password when Genesis is deployed.

5.8.5. Authentication

Because HTTP by its nature is both stateless and session-less, the client must

authenticate itself on each HTTP request by providing an authentication token or

authenticator [60]. Authentication in Genesis is done using a token-based approach.

This is a modern method of conducting authentication, and is contrary to the

traditional method of using cookies. Both of these methods are illustrated in Figure

17.

Figure 17. Illustration of token- and cookie-based authentication.

There are various reasons why token-based authentication is used instead of

cookie-based authentication. First, with cookies, all of the sessions have to be stored

somewhere, and therefore, as the number of users grow, so does the amount of

sessions. With tokens, storing sessions is not required, which allows for server-side

scalability [62]. As Genesis endeavors to serve multiple users, server-side scalability

is of vital importance. Second, using tokens makes authentication a lot easier for

mobile devices, because by using tokens, you do not have to deal with cookie

containers [62]. Third, using tokens allows for looser decoupling as tokens do not

force you to use the framework specific authentication scheme [62]. Another key

benefit of using tokens is that cross-origin resource sharing (CORS) is made

effortless [62]. This is due to being able to make AJAX calls to any server or

domain, which is the result of storing the user information in the header of each

HTTP request [62].

46

6. WEB CLIENT EVALUATION

This chapter illustrates some of the aspects of Genesis’s performance that were

evaluated. First, we discuss automated testing, which has been deployed to ensure the

robustness and functionality of the system. Thereafter, usability testing and the

results of the first testing iteration are illustrated. Additionally, the satisfaction of the

primary customer is evaluated.

6.1. Automated testing

In Genesis, automated testing was deployed to ensure the functionality of significant

pieces of the application, such as the robustness of an input field or successful

transmission of data. Test automation helps to reduce the chance of regression bugs

that might occur due to refactoring the code [63]. In Genesis, two different types of

automated testing were used: unit testing and end-to-end testing.

Unit testing was used to test the low-level functionality of the system. Low-level

functionality testing means that the tests are run on a very limited set of code such as

a function. For unit testing the client code, Jasmine was utilized. Jasmine is a

behavior-driven development (BSD) framework for testing JavaScript code [64]. In

order to run the unit tests automatically on changing code, Karma was used. Karma

spawns a web server that executes source code against the unit tests for each of the

browsers connected [65].

End-to-end testing is used to test the high-level functionality of the code. End-to-

end tests are often used to test entire use case scenarios, such as logging-in or

entering data. In Genesis, we used Protractor for end-to-end testing. Protractor is an

end-to-end test runner, which simulates user interactions helping to verify the

functionality of an Angular application [66]. Some of the existing end-to-end tests

and their results are shown in Table 9.

Table 9. Example list of existing end-to-end tests.

Test description Result

User enters the website and is taken to the login page. User writes

incorrect credentials and clicks login button. Invalid login message should

be shown and user should stay on login page. After entering the correct

credentials and click the login button, valid login message should be

shown and invalid login message should be hidden. Afterwards, the user

should be taken to the dashboard.

PASS

When a user is on the dashboard, the dashboard button class should be

active. When the user clicks tasks, the dashboard button’s active class

should be removed and the tasks button should now have an active class.

In addition, the current URL route should reflect the tasks state.

PASS

When a user tries to submit a CRF with missing required fields, an error

message should show up. If there are no missing fields, a success modal

should pop-up and the user should be taken to the protocol state. On

clicking the ok button, the modal should disappear.

PASS

When users click either logout button, they should be taken to login. PASS

47

6.2. Usability testing

Genesis’s usability testing was conducted in collaboration with the research nurses of

DIPP-Study in Oulu. Users at the other study sites are likely to have a similar

background and experience in healthcare, which is why our test users were

considered likely to simulate the users at other sites. In addition to testing the

software with the actual users, hallway testing was also utilized. In hallway testing,

the test users are random people who have no prior knowledge of the software [67].

Hallway testing helped us in identifying any flaws in the flow of the G6denesis UI.

Studies have shown that the best and the most economical way to conduct usability

testing is to do plenty of short testing iterations and to test the UI with no more than

five people [68]. This is because the chance of finding a new UI flaw reduces as the

number of test users grows [68]. For the enumerated reasons, each evaluation round

of a new version will purposefully be kept short and will not be tested with more

users. On each iteration, the user interface will be improved according to the user

feedback.

Use case scenarios, which the users were requested to complete on the first testing

iteration are described in Table 10 below. Full use case descriptions can be found in

Appendix 9. These use case scenarios were chosen, because they were regarded as

most important for the functionality of the first version.

Table 10. Use case scenarios that were tested with the users.

Scenario description

1 User enters subject data to a CRF

2 User finds a previously stored CRF

3 User validates a CRF

4 User responds to a CRF query

5 User validates a queried CRF

6 User changes password

7 User creates an appointment for subject

After completing all of the scenarios, each user completed a questionnaire. In

addition to the questionnaire, the users were interviewed to elicit any other

suggestions for improvement. Each evaluation session lasted roughly 40 minutes.

6.2.1. Usability questionnaire results

For the usability testing, we decided to deploy the SUS questionnaire. SUS stands for

system usability scale, and is a standardized measuring tool to easily rate the

usability of a system [69]. It has been referenced in over 600 publications, thus

validating its efficiency. In the 10 item questionnaire below, the score contribution of

odd numbered questions runs from 0 to 4. For the even numbered questions, the

point contributions run from 4 to 0 [69]. All of the points are added together and then

multiplied by 2.5 to get a score ranging from 0 to 100 [69]. This score does not

reflect a percentile, but rather it can be used to calculate the actual percentile. The

questions and the results of the first usability testing iteration can be seen in Table

10.

48

Table 11. Distribution of the SUS questionnaire answers with five users.

Statement

S
tro

n
g
ly

 D
isa

g
ree

D
isa

g
ree

N
eu

tra
l

A
g
ree

S
tro

n
g
ly

 A
g
ree

P
o
in

ts

1
I think that I would like to use this

system frequently.
 3 2 17

2
I found the system unnecessarily

complex.
1 3 1 15

3 I thought the system was easy to use. 3 2 17

4

I think that I would need the support of a

technical person to be able to use this

system.

2 1 2 13

5
I found the various functions in the

system were well integrated.
 5 15

6
I thought there was too much

inconsistency in this system.
2 2 1 16

7
I would imagine that most people would

learn to use this system very quickly.
 4 1 16

8
I found the system very cumbersome to

use.
2 3 17

9 I felt very confident using the system. 1 1 3 12

10
I needed to learn lots things before I

could get going with this system.
1 3 1 15

Total points = 153, Point Average = 153 / 5 = 30.6

Total score = 30.6 * 2.5 = 76.5

500 studies have indicated that the average SUS score is 68 [70]. According to the

distribution of the SUS results, Genesis is placed in the top 25 percentile. In order to

place in the top 10 percentile, a score of 80.3 or above would be needed. Only one of

the test users had some previous knowledge of using Genesis. Therefore, the

usability score will likely increase in the future as the users learn to use the software.

49

6.2.2. User feedback

In the interviews it was found that the users really liked the UI and considered it

aesthetic and modern. All of the users stated that the color choices were well-

thought-out and that the UI was not too noisy. Despite the UI itself looking good,

many of the test users raised the question of why the software was in English. These

users indicated that the language barrier was the most detrimental issue to the

usability of the software. Furthermore, the same users also stated that they would

have rated the usability higher in the survey if the UI had been in their native

language. This illustrates our presupposition that localization might be required for

the best user experience.

When we asked the users, whether they would use email or the software for

communicating, it was found that the users prefer their email over any software

solutions. Users explained that this was mainly because they use their email for other

work related communication, and therefore using other mediums would likely result

in confusion. On this observation, the implementation of the messaging functionality

is low on our priority list.

One user asked if they could link queries to specific fields in the future. This

would allow for the monitor to submit field-specific queries. With field-specific

queries, we could, for example, highlight the queried fields with a red color.

Highlighting would make it easier for the users to recognize the queried fields. We

regarded that this feature would add value to the software, which is why it will be

implemented in the future.

One of the most important pieces of feedback that we received was related to the

dashboard. When we asked the users what they would like to see on their dashboard,

the users told us that they would like to have direct links to their daily tasks. In

addition, they would like to see any actions that they have taken recently. Because of

space limitations, the dashboard cannot be made to conform to the needs of all of the

user roles simultaneously. Therefore, we could perhaps make the dashboard change

dynamically depending on the role of the user. By doing this, we can show

information most relevant for a specific user role.

The most prominent usability aspect that we were interested in was the success of

the CRF design. In the interviews, all of the users indicated that the CRFs were easy

to complete. Despite using all of the possible data collection methods, users did not

find any of the collection methods hard to comprehend. In the LIRA-Study, regular

users will spend most of their time entering and verifying CRFs, which is why it was

significant that we succeeded in designing user-friendly CRFs.

6.2.3. Observations during usability testing

All of the users started the completion of the scenarios from the login screen. None

of the users had issues in logging in or logging out of the system. When the users

arrived to the dashboard, they were told to complete a CRF for a subject. Some of the

users had initial difficulties in figuring out where to go. However, without any

outside help, after roughly 30 seconds, even the last user was able to move into the

subject’s protocol state. Only one of the five users used tasks to move into the

protocol state while all of the other users found the subject from the subjects state.

No one used the search bar to find the subject. When asked, the users indicated that

they did not see the search bar, which is why it needs to be made more visible.

50

When the users entered the protocol state, all of them were easily able to spot the

visit. However, three of the users did not initially realize how the accordion widget

on the protocol functioned. Some of them clicked on the visit date closing and

reopening the visit a couple of times. Despite this, all were eventually able to move

into the CRF state without help.

In the data entry scenario, while completing the fields, two of the users clicked the

date icon assuming that it was a drop down calendar widget. This indicates that some

of the users associate the date icon with a calendar widget. In order to improve the

intuitiveness of Genesis, we probably need to implement this functionality. It was

also noticed that two of the users attempted to write dates without separators. After

seeing the error message however, they added the separators. On this observation the

system needs to be altered to support this way of entering the date as well.

Aside from the date input, three of the users made an entry error during the CRF

completion scenario. On two of the occasions, the users were immediately able to see

the error message and fix the input accordingly. This indicates that the error

messages are visible and work as intended. One of the users entered a different

height value than what was told in the scenario. The validation did not fire on this

instance. This is because the entry itself was in the correct format, but the entered

value was insensible. This indicates that the users can currently key in erroneous data

that cannot be verified in real-time. In order to ameliorate this, we need to develop an

automated server-side validation, where similar subjects are compared to each other

in order to find any data anomalies.

 When entering the array elements, two of the users could not immediately

differentiate between the different levels of an array. To illustrate, when we asked the

user to add a medication for a medical condition, they added a new medical condition

instead. However, both of the users noticed their error and were able to spot the

delete button at the top-right corner of the array widget. To address this problem, we

should probably use a different button color for adding an inner array item.

It was noticed during testing that each user followed the entry guidelines given in

descriptions underneath the fields. This indicates that these descriptions play a huge

role on how the users enter the data, which is why effort needs to be put into

formulating both concise and unambiguous entry descriptions.

After having finished entering all of the fields, all users were easily able find the

submit button and submit the CRF. After submitting the CRF, none of the users had

problems logging out of the system.

Overall, all of the users were able to complete all of the use case scenarios without

outside help. During testing, it was noticed that two of the users often wanted a

confirmation that what they had done was correct. These users also happened to be

the oldest of the testers. The fact that the users required confirmation indicates that

the users were somewhat unconfident using the software, which was also indicated

by the SUS questionnaire. However, it might also denote that there are differences in

the use behavior between various cohorts.

51

6.3. Customer satisfaction

After testing the usability and the functionality of the client, a customer satisfaction

survey was also given to the customer who ordered the project. The purpose of this

survey was to determine whether the customer was content with the first version and

the development process so far. The survey questions and its results can be seen in

Table 12.

Table 12. Customer satisfaction survey results.

Statement

S
tro

n
g
ly

 D
isa

g
ree

D
isa

g
ree

N
eu

tra
l

A
g
ree

S
tro

n
g
ly

 A
g
ree

1
The existing feature set fulfills the needs of

this trial.
 X

2 I am happy with user interface of Genesis. X

3
The invested time and resources in the

development of Genesis have been worth it.
 X

4
I am happy with the results of the usability

testing.
 X

5
The existing functionalities have been

implemented well
 X

6
The underlying design of Genesis has been

thought out well.
 X

7 I am satisfied with the current version. X

8
I would like to deploy Genesis in other

trials.
 X

9
The development of the software has been

agile.
 X

10 I see a lot of potential in Genesis. X

52

7. DISCUSSION

This project had two major goals, the first and primary goal of this work was to

design and implement a client for a REST-architecture based clinical data

management system that would suit the needs of the LIRA-Study. The secondary

goal for the developed software was to be easily portable to other studies. This

chapter discusses how well these two goals were achieved. In addition, this chapter

reflects on the development process, and discusses the future prospects of Genesis.

7.1. Attainment of the primary goal

The primary goal of Genesis was to serve the data management and collection

purposes of the LIRA-Study. Roughly 6 months since the commencement of the

project, all of the client-side functionalities that were considered vital for the

operation of the LIRA-Study have been implemented and evaluated. These

functionalities included the entry and verification of CRFs, as well as scheduling and

managing appointments. There are still components missing, but the trial is not

hindered by the lack of them.

Fulfillment of the required functionalities was evaluated with real users. Testing

results demonstrated that all of the required workflows could be completed

effortlessly. In addition to being functional, the conducted usability testing indicated

that the first version of the web client offered an excellent user experience. Our

discussions with the trial staff, prior to development, had revealed that users found

some of the existing HIT technology to be unfriendly. On this observation, we

decided to focus heavily on usability in this project. Despite doing relatively well on

the usability aspect, there is always room for improvement.

Initially, the customer would have liked the software to of have been online and

running in 5 months. We considered this time schedule to be extremely rigorous

considering the large scope of the project. Despite this, we estimated that, if

necessary, we would have been able to provide an operational version with minimal

functionality by this deadline. However, mid development, the LIRA-Study was

postponed by four months due to bureaucratic reasons, thus giving us more time for

development. Given the extra time, we decided to spend more time on designing

instead of rushing the implementation of the software. In our design, we aimed to

ensure the extensibility and the portability of the software, as well as find ways to

automate manually conducted trial processes.

In order to affirm the attainment of the primary goal, we also measured the

satisfaction of the primary customer through a survey. The results of the survey

indicated that the customer was very content with the development process so far.

The customer was especially happy that she could also deploy Genesis in her future

trials. Due to the portability, Genesis is expected to offer a lot of utility and financial

savings to the primary customer in the long run. In addition to the system itself, the

customer also benefitted immensely from our investigation of the existing clinical

data management standards. Our acquired knowledge of the CDISC and data

management standards was capitalized in designing the LIRA-Study.

53

7.2. Attainment of the secondary goal

The secondary, yet perhaps the most prominent goal of this project was to be easily

portable to other studies. This requirement was not directly espoused by the

customer, but we regarded that the portability of the CDMS would offer the most

utility in the long run. This is why in our design we focused heavily on finding

solutions that would universally suit the needs of any given study.

Portability of Genesis is achieved in multiple ways. The first and the most

important factor in considering the portability of Genesis is the data model design.

This thesis did not discuss the underlying data model in great detail. This was mainly

because its implementation was mostly the concern of the backend developer.

However, the web client has been designed to work in accordance to the underlying

data model. The second way Genesis’s portability is ensured, is by using JSON

schemas as blueprints to create the CRFs. By deploying JSON schemas, web-forms

do not need to be hard-coded on the client side. Third, Genesis is based on REST

architecture, which renders the software scalable, allowing for us to serve massive

amounts of users at once. In addition, REST architecture allows for Genesis to be

deployed on mobile devices such as phones and tablets. There have already been

inquiries to deploy Genesis on a tablet for the purpose of off-site recruiting. Fourth,

Genesis has been built to be compatible with CDISC standards. The use of these

standards greatly enhances the quality of the entered data. Moreover, we have used

CDISC guidelines to pre-build a list of CRFs so that a given study can easily pick

which ones to utilize in their study. This is expected to cut down the time required by

the database planning phase of a trial.

In order for Genesis to be easily portable to other studies, it should be able to be

deployed by a person with little-to-no information technology experience. As we

initially assumed, we did not have enough time to implement a trial builder and

managing tool. However, Genesis has been designed with the idea that a GUI based

tool will later be designed and implemented to allow for the studies to be created and

managed by regular users. In this tool, the user will be able to initialize a trial, plan

protocols, drag and drop variables into CRFs, design validation rules for variables,

and much more. When this functionality is completed, Genesis can be expanded

rapidly into other studies and its full potential can be realized. To summarize, while

the goal of Genesis being easily portable has not yet been achieved, we regard

ourselves as being successful in designing and implementing the underlying

framework that will allow this ambitious goal to be achieved.

7.3. Reflecting on development

In the initial stages of development, a lot of research had to be done in order to

understand the current state of web development. In addition, we had to explore the

many existing technology options and choose the best ones that would allow for both

rapid development and longevity of the software. I regard that we succeeded in our

choices thanks to the performed research.

One prominent decision, which had to be made on the client-side, was to choose

the JavaScript framework. As previously shown, AngularJS was chosen as the

JavaScript framework for Genesis development. In hindsight, this choice proved

itself to be extremely successful. The strong community around AngularJS has given

rise to a broad selection of MIT licensed modules that we could relatively effortlessly

54

deploy in Genesis. These modules helped immensely in cutting down the

development time of the web client. While using third-party add-ons helped to shear

off development time, it can lead to unnoticed bugs that are induced by the modules.

In order to ascertain that the modules were compatible with Genesis, time had to be

spent on reviewing the source code of the modules. In the future, if we wish to

upgrade the module versions, we need to re-verify that the newer version remains

compatible with our existing software.

In the implementation phase, time should have been spent on writing automated

tests, instead of rapidly adding on new pieces of functionality. Automated tests were

not written in the initial stages of development, which resulted in time having to be

spent on manual testing. By using automated tests, time will be saved in the long run,

as the functionality of the software does not need to be manually retested. Therefore,

the plan is to extend the currently scant code coverage of Genesis, and to focus on

writing more unit and end-to-end tests in the future. This is especially vital for the

extensibility of the software, as the larger the functionality set becomes, the more

manual testing would need to be done.

In addition to writing automated tests earlier, we should have started to do user

testing earlier. The idea was to start testing the UI once we had the first functional

version of the web client ready. However, this could have resulted in a lot of excess

work, if the first design would have been unusable. In that sense, we were lucky that

the design that was deployed ended up being liked by the users.

Another issue that should have been taken into consideration in the web client

development was browser JavaScript compatibility. Older browsers do not support

all of the newer JavaScript functions that have been used in Genesis. Browser

compatibility will not be a problem in the LIRA-Study, as all of the users are using

modern browsers. However, if we wish to extend Genesis’s compatibility to older

browsers, some of the functions will need to be rewritten.

7.4. Genesis compared to existing solutions

While the current version of Genesis does not offer any groundbreaking ideas that

would revolutionize the CDMS industry, it fulfills the primary needs of the LIRA-

Study. Furthermore, Genesis still lacks the broad feature set that the existing

commercial CDMS systems such as OpenClinica or Oracle InForm possess. Most of

the existing systems have been under development for many years, which is why

surmounting them in number of features is likely to be an impossible task.

Despite lacking a broad feature set, Genesis excels in conforming to the specific

needs of the LIRA-Study. Ready-made commercial CDMS solutions often strive to

cater to large audiences. On the contrary, by developing Genesis specifically for the

LIRA-Study, we were able to take user-specific needs into consideration, and thus

generate an excellent user experience. This was proven by the conducted usability

testing. Moreover, before Genesis, we had already developed an in-house solution

for the same user group, which allowed us to leverage the already established trust

between the users and us.

Overall, because Genesis is currently being developed by just two developers, it is

unlikely that we would be able to compete with the largest CDMS providers in the

near future. Despite this, we can strive to excel in being chameleon-like and adapt

swiftly to different trials.

55

7.5. Future prospects of the developed software

While the first version of Genesis’s web client could be considered successful, it by

no means is the final version. Our next step is to keep iterating and polishing the

existing version until the commencement of the LIRA-Study. Afterwards, we will

start to gradually implement the missing features. All of the functionalities can be

deployed on the system as components without interfering with the existing

functionality, thus reducing the chance of regression bugs.

One prominent component that we did not have time to engineer yet is a GUI

based trial management tool. This trial management tool will be a separate module

that can be used to create and manage trials, protocols, visits, CRFs, and variables.

The goal for this tool is to be highly user friendly so that Genesis could be deployed

in any research without the help of IT professionals. The need for this tool was

recognized early in the design phase, which is why the current version is engineered

to be compatible with the to-be-developed tool.

Another plan of ours is to utilize the metadata acquired from the LIRA-Study to

analyze the completion times of CRFs. The insight gained from the analysis will be

used to estimate the completion time of any CRF. Because visits are formed of

CRFs, we can further estimate the entry time for a trial visit. Moreover, by knowing

the total amount of visits within the trial, we can estimate the labor hours that need to

be invested into entering the data. Labor hours can be directly used by the prime

investigators to estimate the costs of data entry. Moreover, we can use the CRF

completion metadata to analyze the correlation between CRF length and completion

time. This data can later be used for optimizing the user experience. Another method

that we plan to utilize in order to improve user experience is to start collecting

metadata on the use of the UI elements. If the metadata indicates that some of the UI

elements are not being used, we will remove them to reduce the cognitive load.

We also plan to improve the validation of CRFs by comparing the data of subjects

with each other. By doing this, we can spot any anomalies in the dataset. This

modification will help to enhance the quality of the data. While the automatic

validation can be used to prevent most human mistakes, the users can still induce

errors that our in-built validation safety net does not cover. To illustrate, a data entry

clerk could enter data for a wrong subject. In order to resolve a problematic situation

such as the one described above, help would be needed from an IT professional. In

the future, we need to generate ways for the users to easily recover from these kinds

of situations themselves.

Due to the rigorous schedule of the project, remote testing had not initially been

one of our plans. Given the extra time however, we plan to do some remote testing

with the research nurses from other study sites. This will likely give rise to a

completely new set of ideas, as the research nurses at the other sites have used

different pieces of software compared to the nurses that had originally tested the

software. In addition to doing more testing with the users, the current code coverage

of the automated tests is scant and needs to be greatly improved.

As aforementioned, our current technology choices should be long-lasting. Despite

this, we need to keep our eyes and ears open, as there are various interesting changes

that will occur in the field of web development in the near future. One such change is

the release of AngularJS 2.0 [36]. The new version of the framework is going to

bring about radical changes. To illustrate, AngularJS 2.0 is focused on optimizing

performance for mobile devices rather than web clients [36]. In addition, some of the

56

modules of the existing version will be removed from the core in order to improve

performance [36]. Because our goal is to serve Genesis on mobile devices, we might

want to consider transitioning to the new framework when it becomes more well-

established. Further, in the coming years, current HTTP-based applications will

likely begin to gradually migrate to HTTP/2 [71]. Compared to HTTP, HTTP/2

offers various new features that result in faster overall load times and improved

information security [71][72]. One major change of HTTP/2 is that the format of data

transmission is now in binary rather than text [71]. While the text-based protocol is

certainly more intuitive to developers and better for debugging, the binary format

allows for faster computer processing [73]. Despite the changes, the new HTTP/2

protocol is out-of-the-box compatible with existing API’s [73]. Therefore, adopting

HTTP/2 on Genesis should not induce any problems and should be looked into if we

later deem that a performance boost is necessary.

As it was mentioned earlier in this thesis, we are currently living in an era where

computers are actively being deployed virtually everywhere. Genesis is a product of

this era as well as a part of a broad movement that strives to computerize data

collection and management of studies. In our study site alone, we have already

introduced and proved the business case for the use of information technology in

clinical studies. Once we deploy Genesis in other trials, it is to be expected that we

will also further fortify the paradigm that IT is a beneficial tool that can be leveraged

to conduct better science.

Discussions have already been had to deploy Genesis in two other large-scale

trials. One of these trials is the world’s largest type 1 diabetes study. If Genesis

shows promise in the LIRA-Study and the other two trials, it will be commercialized

and marketed to other trials as well. As it was illustrated in chapter 2, the market for

CDMS systems is still quite unsaturated. In addition to the plans to commercialize

Genesis, we will publish a paper on Genesis in either a technology or healthcare

related journal. Further, Genesis will be referenced in future publications that are

based on the trials that run on Genesis.

57

8. CONCLUSION

In this thesis, both the design and the implementation process of Genesis’s web client

were illustrated. In addition, the current state of clinical data management and web

development were mapped out. As the result of this thesis, the first version of the

clinical data management system was released.

This thesis started with the study of clinical data management´s history and current

state. Thereafter, some of the common challenges in developing health information

technology were investigated. After reviewing the current state of clinical data

management, both the functional and nonfunctional requirements of the developed

system were depicted. In addition to the requirements, the requirement elicitation

process and methods were also discussed. The benefits of each requirement

collection method were also considered. The gathered requirements partially guided

the development method and tool selections, which were also illustrated in this

thesis. The selection process, and the justification for the made choices were also

presented.

Based on the requirements and the selected tools, the design for the web client was

created. The design was illustrated in the design and implementation chapter, which

started with the representation of the underlying system architecture. Genesis´s user

interface design and flow were additionally portrayed. Further, the means to ensure

client-side information security were discussed as well.

After developing the first version of the web client, it was evaluated with real users

who were both interviewed and given a questionnaire. The acquired feedback was

used to gauge the quality and usability of the application, as well as for making

changes for the next version. In addition to testing the usability, satisfaction of the

customer who ordered the work was also evaluated.

Finally, the results of the project were evaluated. In addition to analyzing the

achieved results, future prospects and extensibility of Genesis were also

contemplated.

58

9. REFERENCES

[1] Pal A. (2014) Data Capture Challenges in Clinical Trials. URL:

http://thedoctorweighsin.com/data-capture-challenges-in-clinical-trials/.

Accessed on 9.4.2015.

[2] Survey Reveals Technology Gap in Managing Clinical Trial

Documentation. URL: http://www.centerwatch.com/news-online/article

/5444/survey-reveals-large-technology-gap-in-managing-clinical-trial-

documentation#sthash .T0A2awxk.dpbs. Accessed on 9.4.2015.

[3] Bhattacherjee A & Hikmet N. (2007) Physicians’ Resistance toward

Healthcare Information Technologies: A Dual-Factor Model. In 40th

Annual Hawaii International Conference on System Sciences, 2007.

HICSS 2007. January 3-6. DOI:

http://dx.doi.org/10.1109/HICSS.2007.437.

[4] Seckman C. (2008) Clinicians' Perceptions of Usability of an Electronic

Medical Record Over Time. DOI:

http://dx.doi.org/10.1097/01.NCN.0000360477.08025.80.

[5] Lu Z & Su J. (2010) Clinical data management: Current status, challenges,

and future directions from industry perspectives. Dove Press Journal, p.

93-105. DOI: http://dx.doi.org/10.4103%2F0253-7613.93842.

[6] Hammond W. (1987) Patient Management Systems: The Early Years. In

HMI '87 Proceedings of ACM conference on History of medical

informatics. ACM, p. 153-164. DOI:

http://dx.doi.org/10.1145/41526.41541.

[7] Jackson G. (1969) Information handling costs in hospitals. Datamation

15:56, p. 15-56.

[8] Babre D. (2011) Electronic data capture - Narrowing the gap between

clinical and data management. Perspectives in Clinical Research 2011;2:1-

3. DOI: http://dx.doi.org/10.4103%2F2229-3485.76282.

[9] CDISC | Strength Through Collaboration. URL: http://www.cdisc.org/.

Accessed on 9.4.2015.

[10] State of Trial Master Files in 2013. NextDocs. URL:

https://rammellconsulting.files.wordpress.com/2013/10/rpe-state-of-trial-

master-files-oct-2013.pdf. Accessed on 9.4.2015.

[11] Rouf E, Whittle J, Lu N & et al. (2007) Computers in the Exam Room:

Differences in Physician–Patient Interaction May Be Due to Physician

Experience. J Gen Intern Med. 2007 January 22(1): p. 43–48. DOI:

http://dx.doi.org/10.1007%2Fs11606-007-0112-9

59

[12] Irani J, Middleton J, Marfatia R & et al. (2009) The use of electronic health

records in the exam room and patient satisfaction: a systematic review. J

Am Board Fam Med 2009;22: p. 553–562. DOI:

dx.doi.org/10.3122/jabfm.2009.05.080259.

[13] Huong N. (2012) Clinical Data Management (Process and practical guide).

URL: http://www.gfmer.ch/SRH-Course-2011/Geneva-Workshop/pdf/

Clinical-data-management-Huong-2012.pdf. Accessed on 9.4.2015.

[14] Kang H, Sirintrapun J, Nestler R & et al. (2010) Experience With Voice

Recognition in Surgical Pathology at a Large Academic Multi-Institutional

Center. American Journal of Clinical Pathology. 2010 Jan;133(1):p. 156-

DOI: dx.doi.org/10.1309/AJCPOI5F1LPSLZKP.

[15] Wahi M, Parks D, Skeate R & et al. (2008) Reducing Errors from the

Electronic Transcription of Data Collected on Paper Forms: A Research

Data Case Study. Journal of the American Medical Informatics

Association. Vol 15. p. 386–389. DOI:

http://dx.doi.org/10.1197%2Fjamia.M2381.

[16] Elodia C, Pisano E, Clary G & et al. (2005) A comparative study of mobile

electronic data entry systems for clinical trials data collection. International

Journal of Medical Informatics. Vol. 75(10-11). p. 722-729. DOI:

http://dx.doi.org/10.1016/j.ijmedinf.2005.10.007.

[17] Rossi B. (2014) Educating the end user and eliminating the biggest security

risk. Information Age. URL: http://www.information-

age.com/technology/security/123458150/ educating-end-user-and-

eliminating-biggest-security-risk. Accessed on 9.4.2015.

[18] Clinovo – cloud based eClinical software. URL: http://www.clinovo.com/.

Accessed on 9.4.2015.

[19] Ulinski D. (2013) Computerized Physician Order Entry: Reluctance of

Physician Adoption of Technology Linked to Improving Health Care.

Dissertation. Walden University.

[20] The Kurt Lewin Model of Change. URL: http://www.change-management-

coach.com/kurt_lewin.html. Accessed on 9.4.2015.

[21] Krohn R. (2003) In search of the ROI from CPOE. Journal of healthcare

information management, Vol. 17(4), p. 6-9.

[22] Thompson C. (2013) Benefits and risks of Electronic Medical Record

(EMR) An interpretive analysis of healthcare consumers' perceptions of an

evolving health information systems technology. Dissertation. Robert

Morris University.

[23] Barrows R. (1996) Privacy, Confidentiality, and Electronic Medical

Records. Journal of the American Medical Informatics Association, Vol

3(2), p. 139-148. DOI: http://dx.doi.org/10.1136/jamia.1996.96236282.

60

[24] Vision for MedDRA – MedDRA. URL: http://www.meddra.org/about-

meddra/vision. Accessed on 9.4.2015.

[25] Wiegers K, Beatty J. (2013) Software Requirements.

[26] Schwaber C, Leganza G & Daniels M. (2006) The Root Of The Problem:

Poor Requirements.

[27] Lee J & Xue N. (1999) Analyzing User Requirements by Use Cases: A

Goal-Driven Approach. Software, IEEE Vol 16(4). p. 92-101. DOI:

http://dx.doi.org/10.1109/52.776956.

[28] What is Agile model – advantages, disadvantages and when to use it?.

URL: http://istqbexamcertification.com/what-is-agile-model-advantages-

disadvantages-and-when-to-use-it/. Accessed on 9.4.2015.

[29] Manifesto for Agile Software Development. URL:

http://agilemanifesto.org. Accessed on 10.4.2015.

[30] Agile Methodology – Agile Software Development – versionOne. URL:

http://www.versionone.com/agile-101/agile-development-methodologies-

scrum-kanban-lean-xp/. Accessed on 10.4.2015.

[31] Dale T. (2015) You’re Missing the Point of Server-Side Rendered

JavaScript Apps. URL: http://tomdale.net/2015/02/youre-missing-the-

point-of-server-side-rendered-javascript-apps/. Accessed on 10.4.2015.

[32] Fabric V. (2014) Server vs client side rendering (AngularJS vs server side

MVC). URL: http://technologyconversations.com /2014/07/10/server-vs-

client-side-rendering-angularjs-vs-server-side-mvc/. Accessed on

10.4.2015.

[33] Slatkin B. (2015) Experimentally verified: "Why client-side templating is

wrong". URL: http://www.onebigfluke.com /2015/01/experimentally-

verified-why-client-side.html. Accessed on 10.4.2015.

[34] Shaked U. (2014) AngularJS vs. Backbone.js vs. Ember.js. URL:

https://www.airpair.com/js/javascript-framework-comparison. Accessed on

10.4.2015.

[35] Google Trends – Web search interest: AngularJS, Backbone.js, Ember.js –

Worldwide, 2004 – present. URL: https://www.google.com/trends/

explore#q=AngularJS%2C%20Backbone.js%2C%20Ember.js&cmpt=q&t

z. Accessed on 10.4.2015.

[36] Esteva S. (2014) AngularJS 2.0 Status and Preview. URL: http://ng-

learn.org/2014/03/AngularJS-2-Status-Preview/. Accessed on 10.4.2015

[37] Web Services Glossary. URL: http://www.w3.org/TR/ws-gloss/. Accessed

on 10.4.2015.

61

[38] Potti P. (2011) On the Design of Web Services: SOAP vs. REST. UNF

Theses and Dissertations.

[39] Prescod P. (2002) Roots of the REST/SOAP Debate. 2002 Extreme

Markup Languages Conference, Montréal, Canada.

[40] Francia S. (2010) REST vs SOAP, The Difference Between Soap and Rest.

URL: http://spf13.com/post/soap-vs-rest. Accessed on 10.4.2015.

[41] Nene A. (2014) Web Services Architecture – When to Use SOAP vs REST

URL: http://java.dzone.com/articles/web-services-architecture. Accessed

on 10.4.2015.

[42] Davelaar S. (2015) Performance Study – REST vs SOAP for Mobile

Applications. URL: http://www.ateam-oracle.com/performance-study-rest-

vs-soap-for-mobile-applications/. Accessed on 10.4.2015.

[43] JSON: The Fat-Free Alternative to XML. URL:

http://www.json.org/xml.html. Accessed on 10.4.2015.

[44] Laurent S. (1998) Why XML?. URL: http://www.simonstl.com/articles

/whyxml.htm. Accessed on 10.4.2015.

[45] Mikoluk K. (2013) JSON vs XML: How JSON Is Superior To XML. URL:

https://blog.udemy.com/json-vs-xml/. Accessed on 10.4.2015.

[46] Nurseitov N, Paulson M, Reynolds M, et al. (2009) Comparison of JSON

and XML Data Interchange Formats: A Case Study. Scenario, p. 157-162.

[47] Git – About Version Control. URL: http://git-

scm.com/book/en/v2/Getting-Started-About-Version-Control. Accessed on

10.4.2015.

[48] Penzo M. (2006) Label Placement in Forms. URL:

http://www.uxmatters.com/mt/archives/2006/07/label-placement-in-

forms.php. Accessed on 10.4.2015.

[49] Enders J. (2014) The Definitive Guide to Form Label Positioning. URL:

http://www.sitepoint.com/definitive-guide-form-label-positioning/.

Accessed on 10.4.2015.

[50] Jovanovic J. (2009) Web Form Validation: Best Practices and Tutorials.

URL: http://www.smashingmagazine.com/ 2009/07/07/web-form-

validation-best-practices-and-tutorials/. Accessed on 10.4.2015.

[51] Usability First – Usability Glossary – Affordance. URL:

http://www.usabilityfirst.com/glossary/affordance/. Accessed on

10.4.2015.

[52] JSON Schema: core definitions and terminology. URL: http://json-

schema.org/latest/json-schema-core.html. Accessed on 10.4.2015.

62

[53] Using HTTP Methods for RESTful Services. URL:

http://www.restapitutorial.com/lessons/httpmethods.html. Accessed on

10.4.2015.

[54] Nilkanth H. (2010) Client-Side Security. Thesis. National Institute of

Technology, Karnataka.

[55] Toomey P. (2010) How NOT to build your client-server security

architecture. URL: http://labs.neohapsis.com/2010/02/26/how-not-to-build-

your-client-server-security-architecture/. Accessed on 10.4.2015.

[56] HTTP to HTTPS – What is a HTTPS certificate? URL:

https://www.instantssl.com/ssl-certificate-products/https.html. Accessed on

10.4.2015.

[57] AngularJS: API Reference. URL: https://docs.angularjs.org/api. Accessed

on 10.4.2015.

[58] Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet – OWASP.

URL:https://www.owasp.org/index.php/Cross-Site_Request_Forgery

_%28CSRF%29_Prevention_Cheat_Sheet. Accessed on 10.4.2015.

[59] Same Origin Policy – Web Security. URL: https://www.w3.org/

Security/wiki/Same_Origin_Policy. Accessed on 10.4.2015.

[60] Fu K, Sit E, Smith K & et al. (2001) Dos and Don'ts of Client

Authentication on the Web. In Proceedings of the 10th USENIX Security

Symposium, Washington, D.C. August 2001.

[61] AlFayyadh B, Throsheim P, A Jøsang & et al. (2012) Improving usability

of password management with standardized password policies. In 7th

Conference on Network and Information Systems Security.

[62] Pose A. (2014) Cookies vs Tokens. Getting auth right with Angular.JS.

URL: https://auth0.com/blog/2014/01/07/ angularjs-authentication-with-

cookies-vs-token/. Accessed on 10.4.2015.

[63] Testing in the Software Lifecycle. URL: https://msdn.microsoft.com/en-

us/library/jj159342.aspx. Accessed on 20.4.2015.

[64] Jasmine: Behavior-Driven JavaScript. URL: http://jasmine.github.io/.

Accessed on 20.4.2015.

[65] Karma – How It Works. URL: http://karma-

runner.github.io/0.12/intro/how-it-works.html. Accessed on 20.4.2015.

[66] Protractor – end to end testing for AngularJS. URL:

http://angular.github.io/protractor/#/. Accessed on 20.4.2015.

[67] OpenHallWay Blog – Blog Archive – What is Hallway Usability Testing?

URL: http://blog.openhallway.com/?p=146. Accessed on 6.5.2015.

63

[68] Nielsen J. (2000) Why You Only Need to Test with 5 Users. URL:

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/.

Accessed on 10.4.2015.

[69] System Usability Scale | Usabbility.gov (SUS). URL:

http://www.usability.gov/how-to-and-tools/methods/system-usability-

scale.html. Accessed on 20.4.2015.

[70] Sauro J. (2011) Measuring Usability with the System Usability Scale

(SUS). URL: http://www.measuringu.com/sus.php. Accessed on

20.4.2015.

[71] HTTP/2. URL: http://http2.github.io/. Accessed on: 8.5.2015.

[72] Orsini L. (2015) Everything You Need To Know About HTTP2. URL:

http://readwrite.com/2015/02/18/http-update-http2-what-you-need-to-

know. Accessed on: 8.5.2015

[73] Sidey T. (2015) What REST API Services Can Expect from HTTP/2?

URL: https://www.api2cart.com/blog/rest-api-services-can-expect-http2/.

Accessed on: 8.5.2015.

64

10. APPENDICES

Appendix 1. Login state

Appendix 2. Dashboard state

Appendix 3. Account state

Appendix 4. Subjects state

Appendix 5. Task state

Appendix 6. Message state

Appendix 7. Calendar state

Appendix 8. Trial overview state

Appendix 9. Use case scenarios

65

Appendix 1. Login state.

Appendix 2. Dashboard state.

66

Appendix 3. Account state.

Appendix 4. Subjects state.

67

Appendix 5. Tasks state.

Appendix 6. Messages state.

68

Appendix 7. Calendar state.

Appendix 8. Trial overview state.

69

Appendix 9. Use case scenarios.

All use case scenarios start from the log-in screen

Use case scenario 1 – User enters subject data to a CRF

Subject code LIRA_001_002 comes for a regular study visit on 01.01.2014 with his

mother. The subject is named Erkki Esimerkki and he has been born on 15.8.2010.

You measure his height, and find out that his height is 80.7 cm. After measuring the

height, you measure his weight and find out that he weighs 35.4 kg. Lastly you

measure the circle of head, which is 49 cm. After entering the measurements, you

enter the date of the measurement, which is today. Afterwards, you write, whether

Erkki has type 1 diabetes or not. After asking Erkki’s mother, he tells you that he

does not have diabetes. You also enter Erkki’s study site, which is Oulu. Thereafter,

you inquire the mother, has Erkki had any medical conditions. Erkki’s mother tells

you that Erkki has an active Asthma, which was diagnosed in June 2010. Flixotide

250µg and ventoline 100µg are used to treat the condition. Erkki also has celiac

disease, which was diagnosed in November 2012, which is active, but is not being

treated in any way. Afterwards, you write into the other information field that

nothing out of the ordinary occurred during the visit.

Use case scenario 2 – User finds a previously stored CRF

LIRA_001_002 had a visit on 01.02.2014, you decide to view the CRF from that

visit.

Use case scenario 3 – User validates a CRF

A data entry clerk has submitted a CRF for LIRA_001_002 for visit 3 that was held

on 01.03.2014.Your task is to validate the submitted CRF. While validating the

entry, you notice that the name is in format first name + lastname, while it actually

should be in format lastname + firstname. You also know that subject

LIRA_001_002 study site should be Turku instead of Oulu.

Use case scenario 4 – User responds to a CRF query

A monitor has queried a CRF that you entered for visit 4 that was held on

01.04.2014. Your task is to make the proper fixes and respond to the query.

Use case scenario 5 – User validates a queried CRF

A data entry clerk has responded to a query that was made. Your task is to check the

CRF again and make sure that the requested changes have been made.

Use case scenario 6 – User changes password

Your task is to log into the system and change your password. Your old password is

password1 and you need to change it into fancypassword2.

Use case scenario 7 – User creates an appointment for a subject

Your task is to create the next visit appointment for subject LIRA_001_002 for date

14.07.2015.

