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SUMMARY

In this dissertation, for the first time a novel Interval Finite Element approach

is formulated for the solution of inverse problems under uncertainty. Inverse prob-

lems include many structural problems of practical importance, such as structural

health monitoring and structural damage detection, in which material properties of

the structure are predicted based on measurement data collected from measuring de-

vices. Due to the inevitable errors in data acquisition process, predicted material

properties contain uncertainties. In this work, elastic structures with uncertain load,

geometric, and material properties are studied. All uncertain parameters are mod-

eled by intervals, and interval algorithms are developed to track propagation of the

uncertainties. The goal is to obtain an interval enclosure of the exact solution set,

with the least overestimation possible.

In the static analysis, the static response of the structure is considered. To obtain

guaranteed interval enclosure of the exact solutions and reduce overestimation due to

interval dependency, a new decomposition strategy for interval matrices is presented

in the interval forward solver. In addition, derived quantities are solved simulta-

neously as primary quantities. New element assembly strategies and a new variant

of iterative enclosure method are proposed. To solve interval inverse problems with

static measurements, a two-stage algorithm is proposed. The algorithm is based on

an adjoint-based optimization technique. To obtain a guaranteed interval enclosure

of the unknown parameters, governing equations are reintroduced into a fixed-point

form that facilitates the implementation of iterative enclosure method.

In the dynamic analysis, the structure is studied in the frequency domain, the

modal space, and the time domain. In the forward solver, the proposed matrix

xxiii



decomposition is extended to account for uncertain inertial properties and different

excitation forms. In the frequency-domain analysis, complex interval variables are

handled successfully. In the modal analysis, Interval Generalized Eigenvalue Problems

(IGEP) are solved. In the time-domain analysis, Discrete Fourier Transform (DFT)

and its inverse are incorporated into the interval solver. For the interval inverse

solver with dynamic measurements, the proposed method allows a diverse forms of

measurements: real and imaginary parts of the response, magnitudes, or the phase

angles. Guaranteed interval bounds that enclose the exact solution set is obtained

from the proposed new variant of iterative enclosure method.

In summary, this study successfully solves structural inverse problems under un-

certainty for the first time, using a novel Interval Finite Element Method. The pre-

sented method provides guaranteed sharp bounds on the exact solution sets, at low

computational cost when compared with other available methods. Overestimation

due to interval dependency is successfully handled, and the proposed method pro-

vides a useful tool in the analysis of structural forward and inverse problems under

uncertainty.
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CHAPTER I

INTRODUCTION

Many structural problems of practical importance can be classified as inverse prob-

lems. For instance, in structural health monitoring [1, 22, 57, 111, 149], mate-

rial properties of the structure are predicted by collecting measurement data from

the structure under prescribed loading conditions. In structural damage detection

[14, 35, 39, 84, 142, 156, 163], available measurement data is used to estimate the

location and severity of the damages in the structure.

Inevitably, the collected data contains errors or uncertainties caused by measure-

ment device or unfriendly environmental conditions during data acquisition. Such

uncertainties causes inconsistencies between the estimated and actual system proper-

ties [48]. Thus uncertainty analysis is necessary for the evaluation of the accuracy of

the yielded solution. Conventional treatment of uncertainties involves the probabil-

ity theory [92, 144], in which all the uncertainties are modeled as random variables.

There are extensive researches on the parameter identification [3, 133] and damage de-

tection [145, 161] of a stochastic system. In particular, Kalman filtering [71, 131, 151]

provides error estimate on the modal parameters based on noisy measurements of the

response of a time-evolving system.

However, there are limitations for probabilistic approaches, since they require

a prior knowledge on the nature of the uncertainties. In real life situations, there

are often not enough measurements to reliably assess the statistical nature of the

associated uncertainties. Instead, only partial information about its probabilities is

available. Under such circumstances, the validity of the probability approach is under

debate [98, 160], as the obtained solution depends heavily on the assumed nature of
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the probability distribution.

As an alternative, one can turn to other non-probabilistic approaches, such as

Bayesian networks [67, 132, 138], fuzzy sets [2, 33, 43, 75], evidence theory [13, 34,

70, 126], and intervals [28, 37, 69, 104]. In this dissertation, it is assumed that the only

information available is the uncertainty bounds, and intervals are used to model all

the uncertainties involved. The obtained solution is guaranteed to enclose the exact

solution, regardless of the actual nature of the uncertainties under consideration. The

results are useful in the analysis of low-probability but high-consequence events.

In the following sections, discussions on structural inverse problems are made,

followed by a brief introduction on the optimization approach that is used in the study,

as well as a review of other alternative approaches that are available in the literature.

Then the interval arithmetic is presented, which is used as the cornerstone in the

modeling and analysis of uncertainties. Basic concepts on intervals are introduced,

as well as recent developments that is relevant to the current study. In addition,

discussions are made regarding other non-interval approaches which are usually used

as comparison. Finally, the objectives of the research are stated.

1.1 Structural Inverse Problems

A structure can be viewed as a parametrized system with external excitations as

input and various forms of structural responses as output [38, 52, 80, 153]. External

excitations include different types of loads on the structure. Structural responses

include internal forces, deflections and strains at certain locations. The system is

parameterized by structural geometric and material properties such as the geometry,

stiffness, mass, and strength of each member [4, 12, 15, 97].

Sometimes the forward problem is encountered, in which both the excitations

and system properties are given, and the goal is to predict the resulting structural

responses, as shown in Figure 1.1. In the figure, the excitation, system properties, and
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Figure 1.1: Comparison between structural forward and inverse problems.

responses are realized as load, stiffness, and displacement, respectively. In contrast,

for the inverse problem, either the excitations or system properties are unknown,

and the goal is to predict the unknown excitations or system properties based on the

available measurements of the responses. The comparison between structural forward

and inverse problems is displayed in the figure [62].

Unlike their forward counterparts, inverse problems are usually ill-conditioned and

require regularization to stabilize the algorithm. In addition, the forward solver is

usually an integral part of the corresponding inverse solver. Thus in the following

subsections, discussions are made regarding the ill-conditioning of inverse problems

and the commonly used regularization methods, followed by the introduction of three

commonly used inverse methods, viz. the optimization method, the Kalman filter,

and the pseudo-inverse method.

1.1.1 Regularization methods

Inverse problems are usually ill-conditioned (or equivalently ill-posed) when compared

with the corresponding forward problems, in the sense that they bear one or more of

the following characters [62]:

Non-existence: The problem may not have a solution at all. Usually the

non-existence is caused by inconsistent measurement data due to random noise
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induced during the data acquisition process or round-off error introduced later

in the data-processing stage.

Non-uniqueness: There may be more than one feasible solution to the prob-

lem. Non-uniqueness can be caused by the inherent nonlinearity, or more fre-

quently, by the under-determined nature of the problem, viz. the measurements

are not sufficient to determine all the unknown parameters.

Instability: The solution does not depend continuously on the data. As a

result, small perturbations in the given data may cause significant changes in

the solution, rendering the yielded solution highly unreliable.

To overcome the drawbacks of the ill-conditioning of inverse problem, various types of

regularization methods are used. The goal is to stabilize the algorithm and improve

the conditioning of the problem.

To implement the regularization, one fundamental but computationally costly

approach is the Truncated Singular Value Decomposition (TSVD), which is based on

the Singular Value Decomposition (SVD) [62]. For instance, this approach is applied

to solving the following linear system

Ahxh = bh, (1.1)

where the matrix Ah and the right-hand side bh are given, and xh is the unknown

solution vector. Then for any matrix Ah, its SVD takes the form

Ah = UhΣhV
T
h =

n∑
j=1

σj
(
ujv

T
j

)
, (1.2)

where Uh and Vh are square unitary matrices with singular vectors uj and vj as their

columns, respectively, and Σh is a rectangular diagonal matrix with non-negative

singular value σj in a descending order, viz. σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. Then a “näıve”
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solution to Eq. (1.1) is given by

xh =
n∑
j=1

uTj bh

σj
vj. (1.3)

This solution is “näıve” in the sense that it does not distinguish components corre-

sponding to larger σj, which mainly contains effective data, and components corre-

sponding to smaller σj, which mainly contains random noise. To reduce this undesir-

able effects, the TSVD only uses the first k -terms of the summation in Eq. (1.3),

xh =
k∑
j=1

uTj bh

σj
vj, (1.4)

where σk+1 ≤ γ ≤ σk, and γ is the threshold that is used as a controlling parameter.

The method is computationally costly, as the singular vectors and singular values are

explicitly computed. However, it is theoretically important, as it gives insights about

the difference between effective data and random noise.

As an alternative, the Tikhonov regularization [47, 87] is computationally efficient

and widely applicable. The regularization is realized as adding a penalizing term

1

2
γ
(
αTRα

)
to the objective function associated, where γ is the regularization weight,

α is the unknown parameter vector, and R is the regularization matrix. The weight

γ serves as the controlling parameter in the algorithm. If γ is too large, the solution

is completely determined by the regularization; if γ is too small, the problem is still

ill-conditioned and the regularization is not working. The matrix R is constructed by

its associated matrix LR, where R = LTRLR. For a 1-D problem, popular choices for

LR include identity matrix LR = I, first-order finite difference matrix

LR =



1 −1

1 −1

. . . . . .

1 −1


, (1.5)
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and second-order finite difference matrix

LR =



−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1


. (1.6)

The idea can be easily extended to higher-order finite difference matrices and higher

dimensions.

1.1.2 Optimization approach

In the optimization approach, an inverse problem is solved by minimizing the differ-

ences between the predicted structural responses and the measured data. Throughout

the entire process, equilibrium and boundary conditions are treated as additional con-

straints that must be satisfied. The algorithm starts from an initial guess α0 of the

parameter vector. Then the parameter vector αj is updated iteratively,

αj+1 = αj + sjdj, (1.7)

where the subscripts denote the iteration steps, sj and dj are the step size and the

descending direction at the j -th step, respectively. In the current work, conjugate

gradient method [50] and Newton-Raphson method are used to determine the de-

scending direction dj that decreases the objective function. In addition, an inexact

line search algorithm is implemented to find the optimal search step sj. During the

process, the adjoint method is exploited to compute the gradient of the objective

function. The algorithm stops when the gradient g and the update on α are both

small enough, that is

‖αj+1 − αj‖
‖αj‖

≤ τ,
‖gj+1‖
‖g1‖

≤ τ. (1.8)

where τ is the error tolerance. Each part of the optimization process is detailed in

the following discussions.
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1.1.2.1 The adjoint method

The adjoint method [56, 94] aims to provide a computationally efficient approach

to compute gradient (or equivalently, derivative) of a function subject to prescribed

constraints. For instance, let the primary variable α ∈ Rnα and the secondary variable

u ∈ Rnu . Consider the function

Γ(u, α) : Rnu × Rnα → Rnγ , (1.9)

subject to the following constraint

feq(u, α) = 0, feq ∈ Rnu . (1.10)

Note that the number of constraints equals the dimension of u, as in the cases of

structural problems.

To compute the gradient of Γ with respect to α, u is treated as an implicit function

of α via the constraint equation feq(u, α) = 0. Then according to the chain rule of

partial derivatives,

dΓ

dα
=
dΓ(u(α), α)

dα
=
∂Γ

∂α
+
∂Γ

∂u

∂u

∂α
. (1.11)

Since the constraint Eq. (1.10) is zero everywhere, so is its total derivative. Thus

applying the chain rule again yields

∂feq
∂u

∂u

∂α
+
∂feq
∂α

= 0. (1.12)

By assuming that
∂feq
∂u

is everywhere non-singular, Eq. (1.12) can be used to eliminate

the term
∂u

∂α
in Eq. (1.11). Thus

dΓ

dα
=
∂Γ

∂α
− ∂Γ

∂u

(
∂feq
∂u

)−1
∂feq
∂α

. (1.13)

The expression −∂Γ

∂u

(
∂feq
∂u

)−1

can be understood as the solution vector w to the

following linear system (
∂feq
∂u

)T
w = −

(
∂Γ

∂u

)T
, (1.14)
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where superscript T denotes matrix transpose. The matrix transpose is also called

the matrix adjoint. Subsequently the vector w is called the adjoint variable, and the

linear Eq. (1.14) is called the adjoint equation. As a result,

dΓ

dα
=
∂Γ

∂α
+ wT

∂feq
∂α

. (1.15)

The adjoint approach needs to solve the original system in Eq. (1.10), and the linear

adjoint system in Eq. (1.14).

1.1.2.2 Conjugate gradient method

The conjugate gradient method [76, 143, 158] determines the descending direction dj

at the j -th iteration step from a recursive rule. The natural choice for the initial trial

d1 is the steepest direction (opposite of the gradient)

d1 = −g1 =
∂Γ

∂α

∣∣∣∣
1

, (1.16)

which guarantees a decrease in the objective function for a sufficiently small step size.

Then in the next iteration step, dj+1 is determined by

dj+1 = −gj+1 + rjdj, (1.17)

where the choice of rj differentiates versions of the conjugate gradient method. Pop-

ular choices for rj include

Fletcher-Reeves [49]:

rFRj =
gTj+1gj+1

gTj gj
; (1.18)

Polak-Ribière-Polyak [116, 117]:

rPRPj =
gTj+1(gj+1 − gj)

gTj gj
; (1.19)

Hestenses-Stiefel [64]:

rHSj =
gTj+1(gj+1 − gj)
dTj (gj+1 − gj)

; (1.20)
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Dai-Yuan [29]:

rDYj =
gTj+1gj+1

dTj (gj+1 − gj)
. (1.21)

The descending directions lose conjugacy subsequently for a nonlinear problem. Thus

it is preferable to reset the descending direction to the steepest direction if progress

stops, viz. dj+1 = −gj+1.

1.1.2.3 Newton-Raphson method

The Newton-Raphson method is an iterative method used to solve differentiable non-

linear equations [18]. In optimization, the method is applied to the derivative of

a twice-differentiable objective function to find its stationary point, where the first

derivative (gradient) is zero. To reach the stationary point gj+1 = 0 in the next step,

gj+1 ≈ gj +Hj (αj+1 − αj) = 0, (1.22)

where Hj is the Hessian matrix (second-order derivative) at the j -th step

Hj =
∂2Γ

∂α2

∣∣∣∣
j

=
∂g

∂α

∣∣∣∣
j

. (1.23)

The descending direction dj, as well as the step size sj, is obtained from

sjdj = αj+1 − αj = −H−1
j gj. (1.24)

However, due to the underlying nonlinearity of the problem, usually it is still necessary

to implement a line search algorithm to obtain an optimal step size sj that minimizes

the objective function along the descending direction dj.

Newton-Raphson method computes the Hessian in addition to the gradient of the

objective function. Thus it tends to converge in fewer iterations than the conjugate

gradient method, but requiring more computations in each iteration. It is also more

prone to fail if the starting initial guess is far away from the final solution.
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1.1.2.4 Inexact line search

The inexact line search [7, 127, 128, 162] is implemented to find a suitable step size

sj at each iteration after the descending direction dj is determined. Compared with

the exact line search, the inexact line search does not exactly satisfy the optimization

condition gTj+1dj = 0 at each step. As a result, the implementation is easier and

the computation is less time-consuming. In particular, the inexact line search only

requires that the accepted step size sj is large enough to yield a significant decrease

in Γ, while not too large to deviate too far from the optimal point. In particular, the

weak Wolfe line search [61, 147, 148, 157] requires

τ1 ≤
Γj+1 − Γj
sjgTj dj

,
gTj+1dj

gTj dj
≤ τ2, (1.25)

where 0 < τ1 < τ2 < 1. Other available choices include the strong Wolfe line search

τ1 ≤
Γj+1 − Γj
sjgTj dj

,

∣∣∣∣∣gTj+1dj

gTj dj

∣∣∣∣∣ ≤ τ2, (1.26)

and the Goldstein-Armijo line search [9]

τ1 ≤
Γj+1 − Γj
sjgTj dj

≤ τ2. (1.27)

The trial step sizes sk are determined from a backtracking [41, 58], a bisection [20], a

golden section [10, 74], or an interpolation search [8, 146] algorithm.

1.1.3 Kalman filtering

In the Kalman filter, the dynamic of a time-varying system is considered. Internal

state of a process is estimated based on a sequence of noisy observations [136]. The

yielded estimate contains information about the accuracy about the estimate itself,

in the form of a covariance matrix. Different versions of Kalman filters are developed,

which are applicable to linear and nonlinear problems. In the following discussions,

various types of discrete Kalman filters are presented. Further discussions can be

found in Simon’s book [131].
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1.1.3.1 Linear Kalman filter

In this subsection, the linear discrete Kalman filter is considered. The state of the

system evolves according to the following system equation

xk+1 = Akxk +Bkuk + wk, (1.28)

where subscripts k denote quantities at the k-th step, xk is the unknown state pa-

rameter to be estimated, uk represents some given input parameters that is known

prior to the analysis, wk models unknown random process noise, Ak and Bk are given

matrices. The measurement data is linearly related to xk and corrupted with random

measurement noise, according to the following measurement equation

yk = Ckxk + vk, (1.29)

where yk is the measurement vector, and vk is the measurement noise. Usually wk

and vk are assumed as white, zero-mean, Gaussian random noise, whose probability

characteristics are known as a prior.

The linear discrete Kalman filter provides an optimal estimate for the state pa-

rameter x as well as its error covariance matrix P , by minimizing the covariance of

the estimation. The process starts from the initial guess x̂0 for the state x and P0

for the covariance P . Then an prior state estimate x̂k|k−1 and its covariance Pk|k−1 at

the current step is made based on the process equation (1.28)

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1; (1.30)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1,

where x̂k−1|k−1 and Pk−1|k−1 are respectively the posterior state estimate and its co-

variance at the previous step, and Qk−1 is the given covariance matrix for the process

noise wk−1.

11



According to the measurement Eq. (1.29), the innovation vector (measurement

residue) ỹk and its covariance Sk are given by

ỹk = yk − Ckx̂k|k−1; (1.31)

Sk = CkPk|k−1C
T
k +Rk,

where Rk is the given covariance matrix for the measurement noise vk. Then the

posterior state estimate x̂k|k and its covariance Pk|k are given by

x̂k|k = x̂k|k−1 +Kkỹk; (1.32)

Pk|k = (I −KkCk)Pk|k−1,

where Kk is the optimal Kalman gain given by

Kk = Pk|k−1CkS
−1
k . (1.33)

The Kalman gain above is optimal in the sense that the yielded posterior covariance

Pk|k is minimal. Note that Pk|k is symmetric, and the second equation in (1.32) is a

simplified version of

Pk|k = (I −KkCk)Pk|k−1 (I −KkCk)
T +KkRkK

T
k , (1.34)

which is also known as the “Joseph form” [131] of the posterior estimate equation.

1.1.3.2 Extended Kalman filter

The extended Kalman filter (EKF) [120, 131] is one version of nonlinear Kalman filter

that can be applied to nonlinear systems. The nonlinear system equation is given by

xk+1 = fsys (xk, uk) + wk, (1.35)

where fsys is a nonlinear function. The nonlinear measurement equation that links

measurement data yk and state parameter vector xk is given by

yk = fmea (xk) + vk. (1.36)

12



Again, the probability characteristics of the random process noise wk and measure-

ment noise vk are known in prior.

The algorithm starts from the initial guess x̂0 for the state x and P0 for the

covariance P . By defining the following partial derivative matrices associated with

the system Eq. (1.35)

Ak−1 =
∂fsys
∂xk−1

∣∣∣∣
x̂k−1|k−1

, (1.37)

the prior state estimate x̂k|k−1 and its covariance Pk|k−1 are given by

x̂k|k−1 = fsys
(
x̂k−1|k−1, uk−1

)
; (1.38)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1.

where Qk−1 is the covariance matrix for the process noise wk−1.

Similarly, by defining the following partial derivative matrices associated with the

measurement Eq. (1.36)

Ck =
∂fmea
∂xk

∣∣∣∣
x̂k|k−1

, (1.39)

the innovation vector (measurement residue) ỹk and its covariance Sk are given by

ỹk = yk − fmea
(
x̂k|k−1

)
; (1.40)

Sk = CkPk|k−1C
T
k +Rk,

where Rk is the covariance matrix for the measurement noise vk. Then the posterior

state estimate x̂k|k and its covariance Pk|k, as well as the optimal Kalman gain Kk,

are exactly the same as in Eqs. (1.32) and (1.33), viz.

x̂k|k = x̂k|k−1 +Kkỹk;

Pk|k = (I −KkCk)Pk|k−1; (1.41)

Kk = Pk|k−1CkS
−1
k .
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The EKF is a widely applied nonlinear Kalman filter. However, it can be difficult

to tune and often yields unreliable results if the nonlinearities in the system are severe.

This is because the EKF relies on the linearization of the system and measurement

equations at the estimation points. Thus in the following discussion, another version

of Kalman filter is presented, which directly propagate the mean and covariance of

the state without linearization.

1.1.3.3 Unscented Kalman filter

The unscented Kalman filter (UKF) [131, 135] uses unscented transformation to prop-

agate the mean and covariance of the state parameters for a nonlinear dynamic sys-

tem. The probability characteristics of the random variables are represented by a set

of deterministic vectors called the σ-points, whose ensemble mean and covariance are

equal to the state parameter x and its error covariance P . For given state x ∈ Rn

and covariance P ∈ Rn×n, the ensemble of 2n σ-points are given by

x(j) = x+ x̃(j), j = 1, . . . , 2n;

x̃(j) =
(√

nP
)T
j
, j = 1, . . . , n; (1.42)

x̃(n+j) = −
(√

nP
)T
j
, j = 1, . . . , n,

where
√
nP is the matrix square root of nP such that

(√
nP
)T√

nP = nP , and(√
nP
)
j

is the j -th row of
√
nP .

For the nonlinear system given in Eqs. (1.35) and (1.36), the UKF starts from

the initial guess x̂0 for the state estimate and P0 for its covariance. For each step, the

σ-points x
(j)
k−1|k−1 are sought for the posterior estimates x̂k−1|k−1 and Pk−1|k−1 at the

previous step. Then the system Eq. (1.35) is used to propagate the σ-points x
(j)
k−1|k−1

to the k -th time step

x̂
(j)
k|k−1 = fsys

(
x

(j)
k−1|k−1, uk

)
. (1.43)
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Then the prior state estimate x̂k|k−1 and its covariance Pk|k−1 are given by

x̂k|k−1 =
1

2n

2n∑
j=1

x̂
(j)
k|k−1; (1.44)

Pk|k−1 =
1

2n

2n∑
j=1

(
x̂

(j)
k|k−1−x̂k|k−1

)(
x̂

(j)
k|k−1−x̂k|k−1

)T
+Qk−1.

Note that Qk−1 is added to the equation to account for the process noise wk−1.

For the measurement update, the σ-points x
(j)
k|k−1 are sought for the prior esti-

mates x̂k|k−1 and Pk|k−1 from Eq. (1.44). Then by using the σ-points x
(j)
k|k−1 and the

measurement Eq. (1.36), viz.

ŷ
(j)
k = fmea

(
x

(j)
k|k−1

)
, (1.45)

the predicted measurements ŷk and its covariance Py are obtained as

ŷk =
1

2n

2n∑
j=1

ŷ
(j)
k ; (1.46)

Py =
1

2n

2n∑
j=1

(
ŷ

(j)
k − ŷk

)(
ŷ

(j)
k − ŷk

)T
+Rk,

in which Rk is added to the equation to account for the measurement noise vk. In

addition, the cross covariance Pxy between x̂k|k−1 and ŷk is estimated from

Pxy =
1

2n

2n∑
j=1

(
x̂

(j)
k|k−1− x̂k|k−1

)(
ŷ

(j)
k − ŷk

)T
. (1.47)

Then the posterior state estimate x̂k|k and its covariance Pk|k are given by

x̂k|k = x̂k|k−1 +Kk (yk − ŷk) ;

Pk|k = Pk|k−1 −KkPyK
T
k , (1.48)

where Kk is the optimal Kalman gain given by

Kk = PxyP
−1
y . (1.49)

From the above discussion, it is observed that the UKF neither use the lineariza-

tion of the governing equations nor require the computation of the Jacobian (partial
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derivative matrix) as in the EKF. Thus it is widely applied to problems with severe

nonlinearity or without easy analytical expressions for the Jacobian.

1.1.4 Pseudo-inverse approach

When the inverse problem is linear, or when the nonlinearity is not significant, the

measurement data bh is assumed to be related to the unknown parameter vector xh

via the matrix Ah, as stated before in Eq. (1.1), viz. Ahxh = bh. The pseudo-inverse

approach [62, 73] aims at finding a pseudo-inverse for Ah such that

xPIh = APIh bh (1.50)

is an approximate solution to the original linear inverse problem.

The Singular Value Decomposition (SVD) approach uses the SVD of Ah, which is

given by Eq. (1.2). The corresponding pseudo-inverse is given in terms of the singular

vectors uj, vj, and the singular values σj,

APIh =
n∑
j=1

finv (σj, γ)
(
ujv

T
j

)
(1.51)

where finv (x, γ) denotes the inverse function parameterized by a controlling param-

eter γ. For the “näıve” inversion in Eq. (1.3), the corresponding inverse function

finv (x, γ) =
1

x
. (1.52)

For the TSVD solution in Eq. (1.4),

finv (x, γ) =

{
1/x, x ≥ γ;

0, x < γ.
(1.53)

Other available choices include the following function proposed by Sun et al. [134]

finv (x, γ) =
1

x

{
1− 4

π
arctan

(
e−x/α

)}
. (1.54)

The above inverse functions with different values of γ are plotted in Figure 1.2.

Observe that the function is continuous everywhere. The function is approximately

constant when x < γ, and very close to 1/x when x > γ.
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Figure 1.2: Inverse functions with different values of controlling parameter, used in
the Singular Value Decomposition approach.

The SVD approach outlined above gives insight into the inversion process, yet it

is inefficient because SVD is a computational expensive process. As an alternative,

the Moore-Penrose pseudo inverse [100, 114] can be used. Let Ah ∈ Rn×m. When

n > m, viz. the rows in Ah is more than the columns, the left inverse

APIh =
(
AThAh + γR

)−1
ATh , (1.55)

where γ is the regularization weight and R is the regularization matrix to ensure the

inverse can be performed accurately and stably. When n < m, viz. the rows in Ah is

less than the columns, the right inverse

APIh = Ah
(
AhA

T
h + γR

)−1
. (1.56)

In essence, Eq. (1.55) yields a least-square solution, while Eq. (1.56) yields a minimal-

norm solution. The regularization term γR widens the application of Eqs. (1.55)

and (1.56). Both approaches can be very good approximations to Eq. (1.51) when

appropriate regularization weights are chosen.
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Figure 1.3: Differences between deterministic and uncertainty analyses.

1.2 Uncertainty Analysis with Intervals

The uncertainty analysis of a physical system models and tracks the propagation of

the system uncertainties. The goal is to provide information regarding the reliability

of the yielded solution. Compared with its deterministic counterpart, the uncertainty

analysis handles variables representing sets of numbers.

As an example, consider the structural forward and inverse problems discussed

previously. The system properties are described by points in the parameter space,

while the measurable responses are described by points in the response space. The

parameter and response spaces are denoted by solid lines in Figure 1.3. Then the

deterministic forward and inverse solvers represent mappings between the single point

α0 in the parameter space and the single point η0 in the response space, denoted

by solid dots in the figure. In contrast, the uncertain forward and inverse solvers

represent mappings between the subset including α0 and its neighborhood α′ and the

subset including η0 and its neighborhood η′, denoted by dashed lines in the figure.

In this study, intervals are used to model uncertainties in the structural system,

whose propagation is tracked by the interval arithmetic. The obtained solution guar-

antees to enclose the exact solution to the problem, regardless of the probability

characteristics of the uncertainties under consideration. The results are especially
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useful in the analysis of low-probability but high-consequence events. In the fol-

lowing subsections, various topics about the interval-based uncertainty analysis are

discussed.

1.2.1 Preliminaries on intervals

In the current work, intervals are used to model uncertain variables encountered.

Algorithms based on interval arithmetic are proposed to obtain an interval solution to

the problem. Introductions on intervals and interval arithmetic, as well as the nature

of the interval solutions and the Taylor expansion of nonlinear interval functions, are

presented. Additional discussions on intervals can be found in [5, 79, 101].

1.2.1.1 Interval arithmetic

Intervals are extension of real numbers. Instead of representing one single real number,

an interval denotes a continuous sets of real numbers, which are most suitably denoted

by their lower and upper bounds (endpoints),

x = [x, x] = {x |x ≤ x ≤ x, x ∈ R}, (1.57)

where x denotes the interval, x and x denote its lower and upper bounds, respectively.

Hereafter, boldface font will be used to denote interval quantities.

Alternatively, an interval can be described by its midpoint xmid =
1

2
(x+ x) and

radius xrad =
1

2
(x− x). The width of an interval is defined as xwid = (x− x) = 2xrad.

Intervals with zero-width is also referred to as degenerated intervals. For intervals with

non-zero midpoint values, they can be brought into the form

x = xmid (1 + β) = xmid

[
1−

∣∣∣∣ xrad

xmid

∣∣∣∣ , 1 +

∣∣∣∣ xrad

xmid

∣∣∣∣ ] , (1.58)

where | | denotes the absolute value. The width of β, measured in percentage, is

referred to as the uncertainty level of x.

As intervals are sets of numbers, ordinary set operations on intervals, such as the

intersection ∩ and the union ∪, can be defined in the conventional sense without
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difficulty for two intersecting intervals x and y,

x ∩ y =
[
max{x, y}, min{x, y}

]
;

x ∪ y =
[
min{x, y}, max{x, y}

]
.

(1.59)

When the two intervals are not intersecting, viz. min{x, y} < max{x, y}, neither

the intersection nor the union of x and y yields another interval. However, the

corresponding interval hull x ∪ y always exists,

x ∪ y =
[
min{x, y}, max{x, y}

]
. (1.60)

Fundamental arithmetic operations on intervals can be defined as,

x⊗ y = {x⊗ y | x ∈ x, y ∈ y} . (1.61)

where ⊗ denote any of the fundamental arithmetic operations +, −, ×, /, and the

denominator in division cannot contain zero. For example, consider the interval

addition x + y and subtraction x− y, which can be expressed in an endpoint form

x + y =
[
x+ y, x+ y

]
; (1.62)

x− y =
[
x− y, x− y

]
.

Commutative and associative laws holds for interval addition and multiplication, but

the distributive law fails to hold. Instead, there is a sub-distributive law:

x(y + z) ⊆ xy + xz. (1.63)

Additive inverse and multiplicative inverse only exist for degenerated intervals.

According to Eq. (1.61), the interval arithmetic operations yield results that

are considered “conservative”: the obtained solution guarantees to enclose the exact

lower and upper bounds. This feature is referred to as the isotonic inclusion of in-

terval arithmetic operations. It also causes overestimation in the solution when there

are dependencies between the intervals, yielding wide enclosures that are practically

useless. This is the main obstacle in any interval implementation.
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Figure 1.4: Circular and rectangular representations of complex interval numbers.

1.2.1.2 Interval complex numbers

The concept of intervals can be extended to complex numbers. There are two popular

choices to model a complex interval number [17, 63, 115]: the circular representation

that denotes a circle in the complex plane, and the rectangular representation that

denotes a rectangle, as shown in Figure 1.4.

In the circular representation, a complex interval z is represented by its midpoint

zmid (a complex number) and radius zrad (a positive real number). Let the real and

imaginary parts of the midpoint zmid be respectively Re (zmid) and Im (zmid). Then z

can be expressed in the following endpoint form

z =
[
Re (zmid)− zrad, Re (zmid) + zrad

]
(1.64)

+ i
[
Im (zmid)− zrad, Im (zmid) + zrad

]
,

where i =
√
−1 is the imaginary unit. Note that the real and imaginary parts of z

have the same width in the circular representation.

In the rectangular representation, a complex interval z is represented by its real

part Re (z) and its imaginary part Im (z), which are both ordinary real intervals.
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y = [0.25, 0.75] + i [1.25, 1.75]

x × y = [0.625, 4.375]
      + i [2.375, 6.125]

Figure 1.5: Interval multiplication of two complex intervals with circular and rect-
angular representations.

Thus z is expressed as

z = Re (z) + i Im (z) . (1.65)

Note that, unlike the circular representation, the width of the real part Re (z) and the

imaginary part Im (z) can be different. Thus the rectangular representation is useful

when the uncertainty levels for the real and imaginary parts of a complex interval

variable are different.

For the circular representation, the corresponding arithmetic operations exploit

the midpoint and radius form. For instance, given two complex intervals x and y,

the midpoint and radius of the multiplication z = x× y are given by

zmid = xmidymid; (1.66)

zrad = |xmid|yrad + |ymid|xrad + xradyrad.
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For the rectangular representation, the real and imaginary parts are treated as inde-

pendent intervals. Thus the multiplication z = x× y yields

Re (z) = Re (x) Re (y)− Im (x) Im (y) ; (1.67)

Im (z) = Re (x) Im (y) + Im (x) Re (y) .

Figure 1.5 compares the products of two complex intervals x = [2.5, 3.5]+i [−1, 0]

and y = [0.25, 0.75] + i [1.25, 1.75], using the circular (subplot a) and rectangular

representations (subplot b), respectively. The boundary of x is denoted by solid

lines, while the boundary of y is denoted by white circular markers. The boundaries

of the yielded products x×y are plotted as dashed circle and rectangle, respectively.

To obtain the exact solution set, 16 equally spaced points yj on the boundary of

y are selected, denoted by white markers. Then the boundaries of yjx are plotted

as circles and rectangles in solid lines in the figure. The ensemble of these circles

and rectangles represent the exact solution set. Thus the overestimation is realized

as the white space inside the dashed circle and rectangle in the figure. Apparently,

in general, the overestimation level is much smaller for the circular representation,

because there is implicit dependency between the real and imaginary parts for the

rectangular representation.

1.2.1.3 Interval linear system

The exact solution set to an interval system, even for a linear one, may be a very

complicated set and its computation is an NP-hard problem in general [78]. For

instance, consider the following interval linear system [72, 101] [2, 4] [−2, 1]

[−1, 2] [2, 4]


x1

x2

 =

[−2, 2]

[−2, 2]

 , (1.68)

in which each interval is assumed to vary independently. The exact solution set is

displayed in Figure 1.6, which is shaded and bounded by solid lines. In practice, this
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Figure 1.6: Exact solution set and its interval enclosure to the interval linear system
in Eq. (1.68).

exact solution set is too complicated to be useful in the computation. Instead its

interval enclosure is preferred x1

x2

 =

[−4, 4]

[−4, 4]

 , (1.69)

whose boundary is denoted by dotted lines in the figure.

From the figure, it is observed that the interval enclosure contains the exact solu-

tion set, as well as points that are not a solution to the original system in Eq. (1.68).

Information about the dependency between the components x1 and x2 is completely

lost. Thus direct use of interval enclosure is not recommended.

1.2.1.4 Interval Taylor’s theorem

Another important application of interval arithmetic is to evaluate nonlinear functions

over a given interval [101, 124]. The Taylor’s theorem states that, for a given second-

order differentiable function y(x) and an arbitrary reference point x0,

y(x) = y(x0) + y′(x0)(x− x0) +
1

2
y′′(ξ)(x− x0)2, (1.70)
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where y′(x) and y′′(x) denote the first- and second-order derivatives of y(x) with

respect to x, respectively, and ξ is bounded by x and x0. Let x be substituted by

an interval x that contains x0, viz. x0 ∈ x. By noting that ξ ∈ x, the following

second-order Taylor’s expansion for an interval function y(x) is obtained

y(x) ⊆ y(x0) + y′(x0)(x− x0) +
1

2
y′′(x)(x− x0)2, (1.71)

where y′′(x) is the interval extension of the second-order derivative y′′(x). Due to the

dependency between y′′(x) and (x − x0)2, the right-hand side of Eq. (1.71) is wider

than the exact interval enclosure y(x). Apparently, Eq. (1.71) can be easily extended

to higher-order Taylor expansions, at the cost of computing the higher-order y(n)(x).

1.2.2 Interval finite element method

The Interval Finite Element Method (IFEM) [90, 103, 119] incorporates interval arith-

metic into conventional Finite Element Method (FEM) formulations. Uncertain pa-

rameters about the load, geometry, and material of the structure are modeled by

intervals. The goal is to obtain interval solutions that guarantee to enclose the exact

solutions to the problem.

To obtain a tight enclosure and reduce the overestimation due to interval depen-

dency, which is the main challenge in any interval computations, matrix decompo-

sition strategies were proposed for the IFEM matrices, such as the nodal equivalent

load vector [105] and the stiffness matrix [110]. The goal is to reduce the multiple

occurrences of the same interval variable to the minimum [32]. Then special iterative

schemes were proposed to solve the associated governing equations, taking advantage

of the interval matrix decomposition mentioned earlier. In addition, Muhanna and

Mullen [102] proposed a non-iterative strategy to solve the inner solution that bounds

the exact solution from inside, which can be used to check the quality of the bounds

obtained. Developments on these topics are introduced below.
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1.2.2.1 Decomposition of f and K

The decomposition of the nodal equivalent load f was first proposed by Mullen and

Muhanna [105], in which f is decomposed into the product of a deterministic matrix

F that contains information about the load distribution and a load uncertainty vector

δ that contains all the uncertainties in the load, viz.

f = Fδ. (1.72)

The decomposition can be conducted as follows: after obtaining the nodal equivalent

load f by following the conventional FEM procedure, all the uncertain parameters

involved are collected into the load uncertainty vector δ. Then the deterministic

matrix F is obtained by comparing f with δ.

Compared with the equivalent load decomposition, the idea of decomposing the

stiffness matrix K is relatively new in IFEM. Early researchers [24, 102] on IFEM

focus on simple structures such as trusses and frames, whose stiffness matrix have a

simple matrix structure that does not require decomposition. Researchers can also

handle the dependency issue following a non-decomposition strategy [23, 36, 106], in

which the stiffness matrix is expressed as

K = K0 +
∑
j

∂K

∂αj
(αj − αj0) , (1.73)

whereK0 is the midpoint of K, αj are the parameters describing stiffness uncertainties

of the structure, and αj0 are corresponding midpoint values.

Then in the work of Impollonia [68], the following stiffness matrix decomposition

is proposed for a number of elements, such as truss element, frame element, and 2D

constant strain element, in which

K(α) = AD(α)AT , (1.74)

Here α is the uncertain stiffness parameter vector, A is a deterministic matrix, and

D is a diagonal matrix whose diagonal is just α, viz. D = diag(α). The idea can
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be tracked back to Rong and Lü [121]. The decomposition is applicable for simple

elements, and the geometric and material uncertainties in each element are assumed

to vary independently. The same decomposition can also be found in Neumaier and

Pownuk [110] and Gao [53].

1.2.2.2 Iterative enclosure method

The iterative enclosure method, developed by Neumaier and Pownuk [110], aims at

solving an interval linear system of the form

(C + ADB) u = a+ Fδ, (1.75)

with uncertainties in D and δ. Note that the interval terms in Eq. (1.75) resemble

the decomposition of K and f in Eqs. (1.74) and (1.72), respectively.

The iterative enclosure method assumes that there exists D0 such that the matrix

(C + AD0B) is invertible, and defines

G = (C + AD0B)−1 , (1.76)

which can be interpreted as the flexibility matrix for the structure. Then the solution

u to Eq. (1.75) is related to the auxiliary variables v = Bu and d = (D0 −D) v via

u = (Ga) + (GF )δ + (GA)d; (1.77)

v = (BGa) + (BGF )δ + (BGA)d.

For trusses, v denotes the uncertain strains, and d denote uncertainties in the stresses,

both of which are caused by the uncertain deformation of the structure.

To obtain the interval solution u, the method starts from the initial guess

d0 = [−αw, αw], α = max
j

w′′j
w′j
, (1.78)

in which the vectors w ≥ 0, w′ > 0, and

w′ ≤ w − |D0 −D| |BGA|w; (1.79)

w′′ ≥ |D0 −D| |(BGa) + (BGF )δ|.
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Then the following iterative scheme is used to obtain guaranteed interval enclosures

of the auxiliary variables v and d,

vj = {(BGa) + (BGF )δ + (BGA)dj−1} ∩ vj−1; (1.80)

dj = {(D0 −D)vj} ∩ dj−1.

The iteration stops when there is no improvement in vj and dj for two consecutive

steps, and the converged solution is denoted as vout and dout. Then a guaranteed

interval solution uout for the original linear system is obtained by substituting d with

the converged dout in Eq. (1.77).

1.2.2.3 Interval inner solution

The exact enclosure uenc, which is the tightest enclosure that contains the exact

solution set, is usually difficult to compute and only available under very rare circum-

stances. More often only the interval outer solution uout is available, which guarantees

to enclose the exact enclosure uenc, viz. uout ⊇ uenc. Due to the isotonic inclusion

of interval arithmetic operation, usually uout overestimates uenc. Thus in order to

reliably judge the overestimation level of uout without explicitly computing uenc, the

interval inner solution uinn is sought, which satisfies uinn ⊆ uenc. If the overestima-

tion in uout is approximately the same as the underestimation in uinn, the difference

between uout and uinn is used to evaluate the overestimation level.

In this work, a non-iterative interval approach is pursued to compute uinn, which

was first proposed by Muhanna and Mullen [102]. The yielded inner solution has

approximately the same overestimation level as the outer solution. For the converged

outer solution vout as in Eq. (1.80), the following equation holds

u + (GA)(D0 −D)(v0 − v) (1.81)

= (Ga) + (GF )b + (GA)(D0 −D)v0,
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where v0 is a reference vector such that v0 ∈ vout, and preferably v0 = mid vout. By

noting that the right-hand side of Eq. (1.81) can be evaluated without overestimation

(all interval variables appear only once) and defining the following auxiliary variables

Pc = (Ga) + (GF )b + (GA)(D0 −D)v0; (1.82)

Qc = (GA)(D0 −D)(v0 − v),

the inner solution uinn is obtained as

uinn =
[
P c −Qc

, P c −Qc

]
(1.83)

where a and a denote the lower and upper bounds of an interval a, respectively.

1.2.3 Alternative approaches

Besides the non-iterative interval approach outlined above, there are other non-

interval approaches to obtain the inner solution uinn, which include nonlinear pro-

gramming technique [16, 91], Monte Carlo simulation [110], sensitivity analysis [77],

and endpoint combination method [109]. In general, these methods are computation-

ally expensive and inefficient, and the results often underestimate the exact enclosure.

However, when the situation permits, these methods can yield high-quality results, or

even sometimes the exact enclosure. As an example, the structural forward problem

is considered. Thus the structural parameter vector α is given, and the goal is to

predict the structural response u. Apparently, the idea can be extended to account

structural inverse problems.

1.2.3.1 Nonlinear programming approach

The nonlinear programming approach [16, 91] provides the exact solution set when-

ever convergence is reached. Both the parameter vector α and the response vector

u are included in the solution vector x. The problem is formulated as a series of

constrained minimization problems. To compute the lower or upper bound for the
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j-th component in u, the objective function Γ to be minimized is given by

Γ = ±uj = ±cTj u, (1.84)

where ± corresponds to the lower and upper bounds, respectively, and cj extracts the

j -th component uj from the response vector u. Equality constraints usually include

the equilibrium condition of the structure, such as Ku = f , as well as essential bound-

ary conditions. The interval condition α ∈ α can be interpreted as the corresponding

inequality constraints,

α ≥ α, −α ≥ −α, (1.85)

where α and α are the lower and upper bounds of α, respectively. Then standard non-

linear programming techniques are implemented to find the lower and upper bounds

of uj, starting from a deterministic solution that satisfies all the constraints, using

the midpoint values for the parameter vector α0 = mid α.

The nonlinear programming approach is able to give exact bounds whenever con-

vergence is attained and local minimums are avoided. However, it is computationally

costly because one has to solve one constrained optimization problem for each com-

ponent in the response vector u. Thus it is not applicable to large-scale problems. In

addition, there is no guarantee of convergence prior to the analysis.

1.2.3.2 Monte Carlo simulation

In the Monte Carlo simulation approach [110], the corresponding deterministic solver

is run multiple times, using randomly generated vectors αk ∈ α. Then the final

interval solution u is obtained by combining all the deterministic solutions uk,

u =
[
min
k
uk, max

k
uk

]
. (1.86)

The Monte Carlo simulation approach is flexible and non-intrusive, since it can use

existing deterministic solvers without any adaptation. However, the method is very
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slow. Usually thousands of simulations are required for a meaningful solution. The

quality of the obtained solution often depends on the assumed probability distribution

used to generate the parameter vector αk in each simulation. In addition, the yielded

results underestimate the uncertainty in the solution, and thus are non-conservative.

1.2.3.3 Sensitivity analysis

The sensitivity analysis also yields underestimated results and uses the deterministic

solver. One version of the sensitivity analysis [77] can be conducted as follows:

1. A reference response vector u0 is obtained using the midpoint values for the

parameter vector α0 = mid α.

2. The same midpoint values are used for the parameter vector, except for the j -

th component αj, which is set as its lower or upper bound. The corresponding

response vector is obtained as uj. By comparing uj with the reference vector

u0, the sign of ∂u/∂αj is obtained. Repeat for every component in α.

3. The lower (upper) bound of u is computed using deterministic vector α− (α+),

whose j -th component is given by

• α−j = αj and α+
j = αj, for αj with positive ∂u/∂αj;

• α−j = αj and α+
j = αj, for αj with negative ∂u/∂αj.

This approach is also flexible and non-intrusive. However, it requires that the

structural response vector u to vary monotonically within the interval ranges of the

parameters. Thus it is not applicable to problems with severe nonlinearity and high

uncertainty levels. In addition, the computation is still very costly, especially for

large-scale problems.

1.2.3.4 Endpoint combination

The endpoint combination approach [109] uses the deterministic solver with all possi-

ble combinations of the lower and upper bounds of the parameter vector α. Then the
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final solution u is combined from the corresponding deterministic solutions uk from

each run, using the same Eq. (1.86) as in the Monte Carlo simulation.

The method is also non-intrusive and easy to implement. However, as the number

of combinations increases exponentially as the number of interval parameters increase,

it is only applicable to structures with very few interval parameters. In addition, the

method requires monotonicity to yield the exact enclosure. Thus it is usually used

to provide a reference solution when the structure is simple and there are very few

interval variables involved.

1.3 Research Objectives

In this dissertation, structural forward and inverse problems are studied, with uncer-

tainties in load, geometry, and material. Intervals are used to model uncertainties in

the structure, and Interval Finite Element Method (IFEM) is used as the cornerstone

in the formulation. The structure is assumed to be subject to small deformations,

so the strain-displacement relationship and the constitutive law are assumed linear.

The formulation is implemented for trusses, frames, and plane stress/strain problems,

and can be extended to other structural forms. The goal of the research is to obtain

guaranteed interval enclosures on the exact solutions to the following problems:

a) Structural static forward problems. The structure is governed by the following

equilibrium equation formulated by IFEM,

Ku = f , (1.87)

where K is the stiffness matrix, u is the unknown nodal displacement vector,

and f is the nodal equivalent load vector. The goal is to solve for the primary

variable u, as well as derived variables such as the generalized strain ε and the

generalized stress σ given by

ε = Bu, σ = Su, (1.88)
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where B is the deterministic generalized strain-displacement matrix, and S is

the interval generalized stress-displacement matrix.

b) Structural static inverse problems. The governing equations include the equi-

librium and the measurement equation for the structure, viz.

Ku = f , η = Hu, (1.89)

where η is the measurement vector that is approximated by a linear function of

the nodal displacement u. The goal is to reliably estimate the interval stiffness

parameter vector α, which parameterizes the stiffness matrix K, based on the

available measurement data stored in the measurement vector η.

c) Structural dynamic forward problems. The research includes three different

topics. In the frequency response analysis, the structure is analyzed in the

frequency domain, which is governed by

(
−ω2M + iωC + K

)
u = f , (1.90)

where ω is the angular frequency of interest, M and C are the mass and damping

matrix, respectively. In the natural frequency and modal shape analysis, the

following Interval Generalized Eigenvalue Problem (IGEP) is solved

(
−ω2M + K

)
u = 0, (1.91)

where ω is the required natural frequency and u is the corresponding modal

shape. In the transient response analysis, the structure is analyzed in the time

domain, which is governed by

Mü + Cu̇ + Ku = f , (1.92)

where u̇ and ü are the nodal velocity and acceleration, respectively.
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d) Structural dynamic inverse problems. Measurement data is processed and

transformed into the frequency domain prior to the analysis. So the govern-

ing equations include the equilibrium and measurement equations as follows(
−ω2M + iωC + K

)
u = f , η = Hu. (1.93)

The measurement vector η can be strain or acceleration signals. The goal is to

reliably estimate the interval stiffness parameter vector α based on the interval

measurement data stored in η.

The proposed study includes structural forward problems, as well as structural

inverse problems. This is because the innovative techniques in the proposed struc-

tural forward solvers are also essential in solving structural inverse problems. For

instance, consider the static forward and inverse problems in Chapter 2 and 3. The

deterministic forward solver is an integral part of the deterministic inverse solver.

In addition, the interval inverse solver also utilizes the matrix decomposition strat-

egy and essential boundary condition enforcement, which originates from the interval

forward solver. Finally, the interval inverse solver is based on a variant of iterative

enclosure method, which is originally developed to solve interval forward problems.

As a result, the proposed study contains both the forward and inverse problems.

1.4 Summary

In this chapter, background information regarding the proposed research is intro-

duced, which include discussions on structural inverse problems and the interval-based

uncertainty modeling and analysis. Specifically, ill-conditioning and regularization of

inverse problems are included, followed by the introductions on the optimization

method, the Kalman filters, and the pseudo-inverse method. Then preliminaries on

interval arithmetic and Interval Finite Element Method (IFEM) are presented in de-

tail, followed by a review of non-interval approaches that are commonly used for

comparison. Finally, the objectives of the proposed research is stated.
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CHAPTER II

UNCERTAINTY ANALYSIS OF STRUCTURAL STATIC

PROBLEMS BY INTERVALS

In this chapter, interval forward solvers are developed for structural static problems

with uncertainties in load, geometry and material. The system uncertainties are

modeled by interval variables, and Interval Finite Element Method (IFEM) [24, 54,

68, 159] is implemented. Thus the structural equilibrium condition can be described

by the following interval linear system

Ku = f , (2.1)

where K is the stiffness matrix, u is the nodal displacement vector, and f is the

nodal equivalent load vector. Then the proposed solver aims to obtain guaranteed

interval enclosures for the primary unknown variable u, as well as the following derived

variables

ε = Bu, σ = Su, (2.2)

where ε and σ represent the generalized strain and stress vector, respectively, B and

S are corresponding generalized strain- and stress-displacement matrix.

In the following sections, the proposed interval forward solver is introduced in

detail. In addition, the nonlinear programming approach is implemented to provide

reference solutions. Then the performance of the proposed method, the nonlinear

programming approach and other available methods outlined in Section 1.2.3 is tested

in a couple of numerical examples. The results show that the proposed method gives

guaranteed enclosure of the exact solution at low computational cost, and the yielded

solution is the tightest among the available methods in the literature.
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2.1 Interval Finite Element Formulation

To solve the interval linear system with the least overestimation possible, new de-

composition strategies are proposed for the IFEM variables encountered. The matrix

decompositions avoid multiple occurrences of the same interval variables, and con-

sequently reduce the overestimation due to interval dependency [101]. In particular,

the stiffness matrix K and the nodal equivalent load f are decomposed into

K = Adiag(Λα)AT , f = Fδ, (2.3)

where A, Λ, F are deterministic matrices, α is the interval stiffness parameter vector

that accounts for the geometric and material uncertainties in K, and δ is the load

uncertainty vector that accounts for the load uncertainty in f .

The derived variables are solved simultaneously as the primary variable, by intro-

ducing Lagrangian multipliers into the energy functional of the problem [119]. Thus

any unnecessary interval intermediate steps are avoided and overestimation due to

interval dependency is reduced. In addition, as the generalized stress-displacement

matrix S is linearly dependent on the material properties, it is decomposed into

S = Φsdiag(Λsα)ATs , (2.4)

where Φs, Λs, and As are deterministic matrices.

In practice, the decompositions in Eqs. (2.3) and (2.4) are performed at the el-

ement level before assembly. First the element stiffness matrix Ke and the element

nodal equivalent load vector fe are computed. Their decompositions yield the ele-

ment matrices Ae, Λe, Fe, αe and δe. These are further assembled into their global

counterparts A, Λ, F , α and δ. During the assembly, either the Element-by-Element

(EBE) assembly strategy or the conventional strategy is adopted. In the following

subsections, details on the aforementioned topics are discussed.
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2.1.1 Element matrix decomposition

In this subsection, decompositions for the element stiffness matrix Ke, the element

nodal equivalent load fe, and the element generalized stress-displacement matrix Se

are presented.

2.1.1.1 Decomposition of Ke

According to Eq. (2.3), the element stiffness matrix Ke is decomposed into

Ke = Aediag(Λeαe)A
T
e , (2.5)

where Ae and Λe are deterministic matrices, and αe accounts for the geometric and

material uncertainties in Ke. In the following discussion, plane truss, plane frame,

and plane stress/strain elements are used, but the idea is applicable to other elements.

For the standard two-node plane truss elements, because there are uncertainties

in the geometry and material property, the cross section area A and the Young’s

modulus E are modeled as intervals. The corresponding element stiffness matrix Ke

in the local coordinate system is given by

Ke =



EA

L
0 −EA

L
0

0 0 0 0

−EA

L
0

EA

L
0

0 0 0 0


. (2.6)

where L is the element length. Then αe contains the only interval variables EA in

the element, and the corresponding deterministic matrices Ae and Λe are given by

Ae =

{
−1 0 1 0

}T
, Λe =

{
1/L

}
, αe =

{
EA

}
. (2.7)

For the standard two-node Euler-Bernoulli beam elements, the cross section area

A, the moment of inertia I, and the Young’s modulus E are modeled as intervals.
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Considering the axial and bending deformation, the corresponding Ke in the local

coordinate system is given by

Ke =



EA

L
0 0 −EA

L
0 0

0
12EI

L3

6EI

L2
0 −12EI

L3

6EI

L2

0
6EI

L2

4EI

L
0 −6EI

L2

2EI

L

−EA

L
0 0

EA

L
0 0

0 −12EI

L3
−6EI

L2
0

12EI

L3
−6EI

L2

0
6EI

L2

2EI

L
0 −6EI

L2

2EI

L



, (2.8)

where L is the element length. Then αe contains the element axial stiffness EA and

the element bending stiffness EI. The corresponding Ae is a 6 × 3 matrix, whose

columns are the eigenvectors of Ke, and Λe is a 3× 2 matrix,

Ae =



1 0 0

0 0 2

0 1 L

−1 0 0

0 0 −2

0 −1 L


, Λe =



2

L
0

0
2

L3

0
3

L3


, αe =

EA

EI

 . (2.9)

Note that the above decompositions in Eqs. (2.7) and (2.9) are not unique. This

approach requires the analytical expression for Ke, which is usually not available for

most finite elements. Thus in the following discussion, a different approach based on

numerical integration is presented, using plane stress/strain elements as illustration.

This approach can be extended to a wide range of elements.

For the standard 8-node rectangular isoparametric elements in plane stress/strain

problem, the element Young’s modulus E is modeled as intervals. Then the corre-

sponding Ke is given by

Ke =

∫
Ω

BT
e (ξ)Ee(ξ)Be(ξ)t(ξ)dΩ, (2.10)
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where the integration domain Ω is just the entire element, t is the thickness, and Be

is the strain-displacement matrix. For isotropic material with Poisson’s ratio ν, the

interval constitutive matrix Ee for plane stress state is given by

Ee =
E

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2

 . (2.11)

and for plane strain state,

Ee =
E

(1− 2ν)(1 + ν)


1− ν ν 0

ν 1− ν 0

0 0
1− 2ν

2

 . (2.12)

The double integral in Eq. (2.10) can be evaluated numerically by using a 3 × 3

Gaussian integration rule, that is

Ke =
9∑
j=1

BT
e (ξj)Ee(ξj)Be(ξj)wjJ(ξj)t(ξj), (2.13)

where the coordinates ξj and weights wj for all the integration points in the standard

domain [−1, 1] × [−1, 1] are given, and J is the determinant of the Jacobian of the

coordinate transformation between the local and global reference system. Note that

the use of numerical integration has the effect of changing the modulus from a spatial

function bounded by interval values to a function described by interval coefficients.

Thus the discretization by the finite element methods results in additional smoothness

in the spatial variation of the modulus field.

In Eq. (2.13), the only interval term E can be factored out, viz. Ke = PeE, where

Pe is a deterministic matrix. This can be decomposed as Pe = Aediag(Λe)A
T
e , where

Λe is the eigenvalue matrix and the columns of Ae are the corresponding eigenvectors.

Note that Λe includes three zero eigenvalues, which correspond to rigid body motion

of translation and rotation. They are dropped and Eq. (2.13) is rewritten as

Ke = Aediag(Λe)A
T
eαe = Aediag(Λeαe)A

T
e , (2.14)
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where αe = {E} is the only interval quantity. One can also use an LDL decomposition

of Pe. As a result, Ae is a lower unitriangular matrix, and Λe is also different.

In the above decomposition strategy, Pe is explicitly computed in order to obtain

Ae and Λe. In addition, the Young’s modulus E is assumed to be constant inside

the element. Alternatively, the B-matrix approach outlined below can be adopted, in

which Pe is never explicitly computed and the element stiffness parameter vector αe

contains Ej at all the numerical integration points.

The B-matrix approach first decompose the constitutive matrix Ee(ξj) into

Ee(ξj) = Φediag
{
φeEj

}
ΦT
e . (2.15)

where Φe is a 3×3 deterministic matrix and φe is a 3×1 deterministic vector, both

depending on the Poisson’s ratio ν. And Ej denotes the Young’s modulus at the j -th

integration point ξj. Then, from Eq. (2.13)

Ke =
9∑
j=1

BT
e (ξj)Φediag

{
φeEj

}
ΦT
e Be(ξj)wjJjtj

=

{
BT
e (ξ1)Φe · · · BT

e (ξ9)Φe

}
(2.16)

(w1J1t1)diag(φe)E1

. . .

(w9J9t9)diag(φe)E9




ΦT
e Be(ξ1)

...

ΦT
e Be(ξ9)

 ,

where the subscripts j denotes variables evaluated at the j -th integration point. Then

the deterministic matrices Ae and Λe are obtained as

Ae =

{
BT
e (ξ1)Φe · · · BT

e (ξ9)Φe

}
;

Λe =


w1J1t1φe

. . .

w9J9t9φe

 , αe =


E1

...

E9

 .

(2.17)

The B-matrix approach yields Ae and Λe directly from Be and Ee, but matrices

are larger than those from the eigen- or LDL-decomposition. Indeed, in the eigen- or
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LDL-decomposition, a 16× 16 matrix Ke is decomposed, and Ae is 16× 13 and Λe is

13×1. In the B-matrix approach, a 3×3 matrix Ee is decomposed, and Ae is 16×27

and Λe is 27 × 9. Clearly, the B-matrix approach saves time in the decomposition

process, but it is more time-consuming in later computation. Comparisons between

the performance of these decomposition strategies are presented in the numerical

examples section.

Finally, note that the decomposition of diagonal matrix diag(Λeαe) is novel in

the current method, when compared with others in the literature [53, 68, 110]. The

decomposition reduces multiple occurrences of interval terms to the minimum. In later

discussions on iterative enclosure method, this decomposition plays an important role.

2.1.1.2 Decomposition of fe

The element nodal equivalent load vector fe is decomposed into the following form

using the M -δ method [105],

fe = Feδe. (2.18)

Thus the interval terms in the element load uncertainty vector δe is completely sepa-

rated from the deterministic part Fe of the equivalent load. For an arbitrary element,

its nodal equivalent load vector is given by

fe =
∑
j

NT (ξj)f0(ξj) +

∫
Ω1

NT (ξ)f1(ξ)dΩ1 (2.19)

+

∫
Ω2

NT (ξ)f2(ξ)dΩ2 +

∫
Ω3

NT (ξ)f3(ξ)dΩ3,

where N(ξ) is the shape function matrix, ξ is the local coordinate of the element, ξj

are coordinates where concentrated load is applied, f0(ξj) are the concentrated loads

under consideration, Ω1, Ω2, Ω3 are the integration domains in which line load f1,

surface load f2, volume load f3 are non-zero.

By rewriting fj(ξ) = Lj(ξ)δe (j = 0, 1, 2, 3), the interval element load uncertainty
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Figure 2.1: Distributed and concentrated loads acting on a two-node Euler-Bernoulli
beam element.

vector δe can be separated from the deterministic part of fe. Then

Fe =
∑
j

NT (ξj)L0(ξj) +

∫
Ω1

NT (ξ)L1(ξ)dΩ1 (2.20)

+

∫
Ω2

NT (ξ)L2(ξ)dΩ2 +

∫
Ω3

NT (ξ)L3(ξ)dΩ3,

As a first example, consider the Euler-Bernoulli beam element of length L shown

in Figure 2.1. The element is subject to concentrated loads pc and qc applied at

distance a from node 1, as well as transverse uniform load qd and axial uniform

load pd along the element. Then the element nodal equivalent load vector fe and its

decomposition are given by

f =



b

L
pc +

L

2
pd

b

L
qc +

L

2
qd

L2

12
qd

a

L
pc +

L

2
pd

a

L
qc +

L

2
qd

L2

12
qd



=



b

L
0

L

2
0

0
b

L
0

L

2

0 0 0
L2

12
b

L
0

L

2
0

0
a

L
0

L

2

0 0 0
L2

12





pc

qc

pd

qd


= Feδe, (2.21)

where the load uncertainty vector δe contains the four intervals in fe, and each column

of Fe corresponds to one of them.
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Figure 2.2: Concentrated, body and line loads acting on an 8-node rectangular
isoparametric element.

As a second example, consider the 8-node rectangular isoparametric element in

Figure 2.2. The element is subject to a concentrated load pc in the x -direction at

(ξ, η), a uniform body load qd in the y-direction, and a uniform line load rd outwards

on the right edge. Then δe = {pc qd rd}T and Fe is given by

Fe =



N1(ξ, η) 0
∫ L
x=0

N1J11dl

0
∫∫

A
N1(ξ, η)dA

∫ L
x=0

N1J21dl

...
...

...

N8(ξ, η) 0
∫ L
x=0

N8J11dl

0
∫∫

A
N8(ξ, η)dA

∫ L
x=0

N8J21dl


, (2.22)

where Nj is the shape function with respect to the j -th node, L is the length of the

right edge, and
{
J11 J21

}T
is the first column of the Jacobian, accounting for the

uniform load rd acting on the right edge. The formulation can be easily extended to

cases when the loads are non-uniform or defined in the local coordinate system.

2.1.1.3 Decomposition of Se

The element stress-displacement matrix Se, which is linearly dependent on the element

stiffness parameter vector αe, is decomposed into a similar form as Ke

Se = Φsediag(Λseαe)A
T
se. (2.23)
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For illustration, consider the standard 8-node rectangular isoparametric element

discussed on Page 40. Then the stress σe at given location is interpolated/extrapo-

lated from stresses at the numerical integration points,

σe =
9∑
j=1

vjσe(ξj) =
9∑
j=1

vjEe(ξj)Be(ξj)ue, (2.24)

where ξj are the coordinate of the integration points, and vj are the corresponding in-

terpolation/extrapolation weights. Factoring out ue, the element stress-displacement

matrix

Se =
9∑
j=1

vjEe(ξj)Be(ξj). (2.25)

Substituting Ee(ξj) = Φediag
{
φeEj

}
ΦT
e in Eq. (2.15) into the above equation yields

Se =
9∑
j=1

vjΦediag
{
φeEj

}
ΦT
e Be(ξj)

=

{
Φe · · · Φe

}
v1diag(φe)E1

. . .

v9diag(φe)E9




ΦT
e Be(ξ1)

...

ΦT
e Be(ξ9)

 . (2.26)

Then the deterministic matrices Φse, Λse, and Ase are obtained as

Φse =

{
Φe · · · Φe

}
, Λse =


v1φe

. . .

v9φe

 ;

Ase =

{
BT
e (ξ1)Φe · · · BT

e (ξ9)Φe

}
.

(2.27)

The idea can be easily extended to other type of elements.

2.1.2 Element assembly strategies

In this subsection, Ke, fe, Se, and Be are assembled into their global counterparts

K, f , S, and B. At the same time, the assembly rule for the decomposed matrices

are presented. Two assembly strategies are introduced here: one is the Element-

by-Element approach, which assembles the matrices block-by-block; the other is the

conventional FEM assembly strategy.
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2.1.2.1 Element-by-Element assembly

In the Element-by-Element approach, the structure is modeled by separated elements

and common nodes that connect the elements. As a result, the structural nodal

displacement vector u is a collection of all the element nodal displacement vectors ue,

and the nodal displacement vector un of the common nodes. Then the global stiffness

matrix K and nodal equivalent load f are assembled from their element counterparts

u =


ue
...

ue

un


, K =


Ke

. . .

Ke

0


, f =


fe
...

fe

fn


, (2.28)

where fn denotes concentrated forces applied directly on the common nodes. In

contrast to the standard FEM assembly, K and f are assembled block by block from

the individual element stiffness Ke and individual element load fe, respectively [119].

Note that K is a singular matrix.

To reduce overestimation due to dependency of multiple occurrences of the same

variable, K and f are further decomposed as in Eq. (2.3), viz. K = Adiag(Λα)AT

and f = Fδ. The element vectors αe and δe can be selected components of the global

interval vectors α and δ, or they can be interpolated from α and δ. In either way,

they can be brought into the following form,

αe = Lαα, δe = Lδδ. (2.29)

The corresponding assembly rule for A, Λ, and F is quite similar to the assembly rule

for K and f . Indeed, they are all assembled block by block,

A =


Ae

. . .

Ae

0 · · · 0


, Λ =


ΛeLα

...

ΛeLα

 , F =


FeLδ

...

FeLδ

Fn


. (2.30)
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where fn = Fnδ is the decomposition of fn. In the derivation, it is assumed that each

interval component in α and δ varies independently. If two or more components in α

or δ represent the same variable, corresponding columns in Λ or F should be added

together. If certain entries in δ were equal to zero, the corresponding columns in F

should be deleted.

The structural strain vector ε combines all the element strain vectors εe of interest

to the analysis, while the corresponding strain-displacement matrix B is assembled

block by block from Be,

ε =


εe
...

εe

 , B =


Be 0

. . .
...

Be 0

 . (2.31)

The assembly rules for the stress vector σ and the stress-displacement matrix S are

the same as those for ε and B, respectively

σ =


σe
...

σe

 , S =


Se 0

. . .
...

Se 0

 . (2.32)

The assembly rule for deterministic matrices Φs, Λs, and As are given by

Φs =


Φse

. . .

Φse

 , Λs =


ΛseLα

...

ΛseLα

 , As =


Ase

. . .

Ase

0 · · · 0


. (2.33)

2.1.2.2 Conventional assembly

The conventional assembly strategy provides smaller stiffness matrix and is more

efficient for large scale problems. In this case, the global nodal displacement vector

u contains only displacement vector un of the common nodes. The global stiffness

matrix and nodal equivalent load vector are given by

K =
∑
e

T Te KeTe, f =
∑
e

T Te fe + fn, (2.34)
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where Te is the transformation matrix between the global and local nodal displacement

vector u and ue. By inserting Ke = Aediag(Λeαe)A
T
e of Eq. (2.5) into Eq. (2.34),

the decomposition rule for K follows as

K =
∑
e

T Te Aediag(Λeαe)A
T
e Te (2.35)

=

{
T Te Ae . . . T Te Ae

}
diag


Λeαe

...

Λeαe



ATe Te

...

ATe Te

 .

The assembly rules for A and Λ are given by

A =

{
T Te Ae . . . T Te Ae

}
, Λ =


ΛeLα

...

ΛeLα

 . (2.36)

Similarly, using the decompositions fe = Feδe and fn = Fnδn, the nodal equivalent

load f in Eq. (2.34) can be written as

f =
∑
e

T Te Feδe + Fnδn. (2.37)

The assembly rule for F is given by

F =
∑
e

T Te FeLδ + Fn. (2.38)

Finally, the global B and S are obtained from

B =


BeTe

...

BeTe

 , S =


SeTe

...

SeTe

 . (2.39)

The assembly rules for Φs and Λs are exactly the same as in Eq. (2.33), and the

assembly rule for As is given by

As =

{
T Te Ase . . . T Te Ase

}
. (2.40)
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2.1.3 Calculation of derived variables

In this subsection, derived variables are solved simultaneously as the primary vari-

able u via the introduction of Lagrangian multipliers into the energy functional of

the structure. In the indirect approach, internal forces and support reactions can

be obtained as a by-product during the enforcement of compatibility and essential

boundary conditions. In contrast, in the direct approach, derived variables such as σ

and ε are obtained by directly enforcing σ = Su and ε = Bu, respectively.

2.1.3.1 The indirect approach

The obtained stiffness matrix K from the earlier EBE assembly strategies is singular,

because there is no connection between elements and common nodes, and essential

boundary conditions are not applied yet. To eliminate this singularity, compatibility

requirements and essential boundary conditions are enforced, which are collected into

the matrix constraint equation Cu = 0. For instance, consider the two-node Euler-

Bernoulli element discussed earlier. To enforce compatibility between one element

node (with three DOF) and the connecting common node, the corresponding three

rows of C take the following simple form,

element node DOF common node DOF

C =



· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · 1 0 0 · · · − cosϕ − sinϕ 0 · · ·

· · · 0 1 0 · · · sinϕ − cosϕ 0 · · ·

· · · 0 0 1 · · · 0 0 −1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·


(2.41)

where ϕ is the rotational angle between the local and global coordinate systems for

each element, ue for the element nodes is given in the local coordinate system, un

for the common nodes is given in the global coordinate system, and the rest entries
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of these three rows are zeros. For the 8-node rectangular isoparametric element (two

DOF at each node), the corresponding two rows of C are given by

element node DOF common node DOF

C =



· · · · · · · · · · · · · · · · · · · · ·

· · · 1 0 · · · −1 0 · · ·

· · · 0 1 · · · 0 −1 · · ·

· · · · · · · · · · · · · · · · · · · · ·


. (2.42)

Essential boundary conditions are applied by setting corresponding entries in C to 1

and leaving the rest of the row zero.

To impose compatibility and equilibrium, Lagrangian multiplier λ is introduced

to enforce the constraint Cu = 0. The energy functional Π of the system is

Π =
1

2
uTKu− uT f + λTCu. (2.43)

Minimizing Π with respect to u and λ yields the interval governing equationsK CT

C 0


u

λ

 =

f

0

 . (2.44)

To reduce overestimation, K and f are decomposed as in Eq. (2.3). Thus
A0

 diag(Λ∆α)
{
AT 0

}
+

K0 CT

C 0



u

λ

 =

F0
 δ, (2.45)

where ∆α is the difference between interval vector α and its reference vector α0, viz.

∆α = α− α0, and K0 = Adiag(Λα0)AT . Preferably, α0 = mid α.

The Lagrangian multiplier λ denotes negative internal forces between element

nodes and common nodes, when the constraint is a compatibility condition; λ de-

notes reactions at the supports, when the constraint is an essential boundary condi-

tion. Thus internal forces and support reactions are obtained as a by-product as the

Lagrangian multiplier λ enforcing the constraint equation Cu = 0.
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2.1.3.2 The direct approach

To compute other types of derived variables, such as and the generalized strain ε and

the generalized stress σ in Eq. (2.2), the direct approach is adopted. To avoid interval

intermediate steps and reduce overestimation, ε, σ and u are solved simultaneously,

by introducing the Lagrangian multipliers µ1 and µ2 associated with ε = Bu and

σ = Su, respectively. Thus the energy functional

Π =
1

2
uTKu− uT f + λTCu (2.46)

+ µT1 (ε−Bu) + µT2 (σ − Su),

where u, λ, µ1, µ2, ε and σ are the six unknowns of the problem. The first variation

of the energy functional Π yields

K CT BT ST 0 0

C 0 0 0 0 0

B 0 0 0 −I 0

S 0 0 0 0 −I

0 0 −I 0 0 0

0 0 0 −I 0 0





u

λ

µ1

µ2

ε

σ



=



f

0

0

0

0

0



. (2.47)

According to the last two rows of Eq. (2.47), µ1 = 0 and µ2 = 0. Substituting the

trivial solutions µ1 = 0 and µ2 = 0 into Eq. (2.47), the governing equation takes the

following asymmetric form,

K CT 0 0

C 0 0 0

B 0 −I 0

S 0 0 −I





u

λ

ε

σ


=



f

0

0

0


. (2.48)

The resulting stiffness matrix is smaller, but it is not symmetric as that based on the

indirect approach. Taking into account the decomposition of K and f in Eq. (2.3),
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Eq. (2.48) is rewritten into the following decomposed form



A 0

0 0

0 0

0 Φs


diag


Λ

Λs

∆α


A

T 0 0 0

ATs 0 0 0

 (2.49)

+



K0 CT 0 0

C 0 0 0

B 0 −I 0

S0 0 0 −I







u

λ

ε

σ


=



F

0

0

0


δ,

where ∆α, K0 are defined earlier in Eq. (2.45), and S0 = Φsdiag(Λsα0)ATs . The

procedure described above also applies to derived quantities that can be brought into

the form of r = Prλ, where Pr is a deterministic matrix and r is the derived quantity

associated with internal forces λ.

2.2 Iterative Enclosure Method

The equilibrium equations to be solved for elastic structures with interval uncertain-

ties in load, material, and geometry are given in Eqs. (2.45) and (2.49). These are

special cases of the general interval equation

{
Agdiag(Λg∆α)Bg +Kg

}
ug = Fgδ, (2.50)

where Ag, Λg, Bg, Kg, Fg are given deterministic matrices, ∆α and δ are given interval

vectors. Any interval solver can be used to solve for Eq. (2.50). In the current study,

a new variant of the iterative enclosure method [110] is proposed, which incorporates

the new decomposition of K given in Eq. (2.3). In addition, the new method follows

an expanding strategy and starts the iteration from a very simple initial guess. The

goal is to find a guaranteed outer enclosure uoutg for the exact enclosure ug such that

uoutg ⊇ ug is guaranteed.
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2.2.1 The expanding strategy

To compute the outer solution uoutg , Agdiag{Λg∆α}Bgug in Eq. (2.50) is moved to

the right-hand side, leaving ug the only interval term on the left-hand side, viz.

Kgug = Fgδ − Agdiag(Λg∆α)Bgug. (2.51)

Now define G = K−1
g as the flexibility matrix of the structure. Then ug satisfies the

following fixed-point equation

ug = (GFg)δ − (GAg)diag(Bgug)Λg∆α, (2.52)

where the following identities has been used

diag(Λg∆α)Bgug = (Λg∆α) ◦ (Bgug) = diag(Bgug)Λg∆α. (2.53)

Here a ◦ b denotes the element-by-element Hadamard product of two vectors a and b.

The fixed-point Eq. (2.52) is the basis for the iterative enclosure method.

To solve for ug, one can directly iterate Eq. (2.52) to find its fixed point until

convergence is attained. However, Bgug is computed after each iteration, causing

unnecessary overestimation. To avoid that, an alternative approach follows from the

work by Neumaier and Pownuk [110]. In particular, from Eq. (2.52), the auxiliary

variable vg = Bgug is introduced, which satisfies

vg = Bgug = (BgGFg)δ − (BgGAg)diag(vg)Λg∆α. (2.54)

To find vg, the fixed-point of Eq. (2.54), the following iterative scheme is used,

vj+1
g = (BgGFg)δ − (BgGAg)diag(vjg)Λg∆α, (2.55)

where the trivial initial guess v1
g = (BgGFg)δ is used to start the iteration.

Iterating Eq. (2.55) does not yield any additional overestimation since there is no

pre-multiplication of vg by any interval quantity as in Eq. (2.52). The iterations are
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stopped when there is no improvement in two successive iterations, viz. vng = vn−1
g .

Due to the isotonic inclusion of interval operations [101], the converged vng guarantees

to enclose the exact fixed-point vg. The outer solution uoutg is obtained by substituting

Bgug in Eq. (2.55) with the converged vng , viz.

uoutg = (GFg)δ − (GAg)diag(vng )Λg∆α, (2.56)

In addition, following the discussion in Section 1.2.2.3, the inner enclosure uinng is

obtained using the following interval equality

uinng + (GAg)diag(vng − vg0)Λg∆α (2.57)

= (GFg)δ − (GAg)diag(vg0)Λg∆α,

where vg0 is the reference vector for vng , and preferrably vg0 = mid vng . As mentioned

before, the inner enclosure uinng ⊆ ug. Combined with the outer enclosure uoutg , it can

be used to judge the overestimation level of interval solutions.

2.2.2 Computational details

Note that during the computation, matrices (GFg), (BgGFg), (GAg)diag(vg)Λ, and

(BgGAg)diag(vg)Λ are computed before multiplied by δ and ∆α, respectively. For

the sake of efficiency, the block structure of these matrices are taken into account

during the computation. For instance, consider the governing equation (2.49). The

block matrices Kb, Sb, and Fb are defined as

Kb =

K0 CT

C 0

 , Sb =

B 0

S0 0

 , Fb =

F0
 . (2.58)

Then the scalar matrix GFg is given by

GFg =

Kb 0

Sb −I


−1Fb0

 =

 K−1
b Fb

SbK
−1
b Fb

 , (2.59)

53



Similarly, block matrices Ab, Φb, and Asb are defined as

Ab =

A0
 , Φb =

 0

Φs

 , Asb =

As0
 . (2.60)

Then the scalar matrix GAg is given by

GAg =

Kb 0

Sb −I


−1Ab 0

0 Φb

 =

 K−1
b Ab 0

SbK
−1
b Ab −Φb

 , (2.61)

and the scalar matrices BgGFg and BgGAg are obtained from

BgGFg =

A
T
bK

−1
b Fb

ATsbK
−1
b Fb

 , BgGAg =

A
T
bK

−1
b Ab 0

ATsbK
−1
b Ab 0

 . (2.62)

Apparently the computational efficiency is enhanced, because now the only time-

consuming step is to compute the block stiffness matrices K−1
b Fb and K−1

b Ab, which

can be performed efficiently from Gaussian elimination.

2.3 Nonlinear Programming Approach

In this section, nonlinear programming techniques are implemented to solve the uncer-

tain structural forward problem as a constrained optimization problem. Real ordinary

numbers are exclusively used, i.e. no interval variables are involved in the computa-

tion. Two different approaches, the direct approach and the adjoint approach, are

introduced in the following discussion. The corresponding solutions, which will be

compared with the proposed interval solutions in later numerical simulations, are

computed using the optimization toolbox in MATLAB.

2.3.1 The direct approach

In the direct approach, the solution vector x contains the load uncertainty vector δ,

the stiffness parameter vector α, the nodal displacement vector u, and the Lagrangian

multiplier λ (denoting internal forces and support reactions):

x =
{
δT αT uT λT

}T
. (2.63)
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To compute the lower (or upper) bound of the j -th component of the nodal displace-

ment vector uj, the objective functional Ω has the following form

Ω = cu, or − cu, (2.64)

where c is a row vector, whose only non-zero component is unity at the j -th compo-

nent. For the j -th component of the generalized strain or stress vector, the objective

functional Ω has the same form as in Eq. (2.64), with c = Bj or Sj being the j -th

row of the strain- or stress-displacement matrices B or S, respectively.

Equality constraints feq include equilibrium condition, compatibility requirements

and essential boundary conditions, which are given by K(α)u+ CTλ− Fδ = 0;

Cu = 0.
(2.65)

Further, the inequality constraints require that the load uncertainty vector δ and the

stiffness parameter vectors α vary within their respective interval bounds: δ ≤ δ ≤ δ;

α ≤ α ≤ α,
(2.66)

where a and a denote the lower and upper bounds of an interval a, respectively.

To accelerate the optimization algorithm, the gradient of the objective function Ω

and the equality constraint equation feq are provided. When the nodal displacement

or the generalized strain is considered and c does not depend on α, the gradient of

the objective functional Ω with respect to x is given by

∂Ω

∂x
=

{
0 0 c 0

}
. (2.67)

When the generalized stress is considered and c = Sj = Φsjdiag(Λsα)ATs ,

∂Ω

∂x
=

{
0 Φs,jdiag(ATs u)Λs Sj 0

}
. (2.68)
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In addition, the gradient of the equality constraints feq with respect to x is given by

∂feq
∂x

=

−F Adiag(ATu)Λ K CT

0 0 C 0

 . (2.69)

The direct approach directly use equilibrium, compatibility, and essential bound-

ary conditions in the formulation. Thus the implementation is straight-forward and

easy, at the cost of a higher memory consumption. As an alternative, in the following

discussion, the adjoint approach is presented.

2.3.2 The adjoint approach

In the adjoint approach, the unknown variable x only contains the load uncertainty

vector δ and the stiffness parameter vector α,

x =
{
δT αT

}T
. (2.70)

A Lagrangian multiplier w is introduced into the system to enforce the equilibrium

constraint Ku− Fδ. As a result, the objective functional

Ω = cu+ wT (Ku− Fδ). (2.71)

The governing equations for the original and adjoint systems are obtained from taking

partial derivatives of Ω with respect to w and uK 0

0 K


uw

 =

FδcT
 . (2.72)

The system does not include any equality constraints. The corresponding inequality

constraint is exact the same as in Eq. (2.66).

When the nodal displacement or the generalized strain is considered and c does

not depend on α, the gradient of Ω with respect to x is given by

∂Ω

∂x
=

{
−wTF wTAdiag(ATu)Λ

}
. (2.73)
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When the generalized stress is considered and c = Sj = Φs,jdiag(Λsα)ATs ,

∂Ω

∂x
=

{
−wTF wTAdiag(ATu)Λ + Φs,jdiag(ATs u)Λs

}
. (2.74)

2.4 Numerical Examples

The proposed IFEM algorithm for trusses, frames and plane stress/strain problems

is implemented using the interval MATLAB toolbox INTLAB (developed by Rump

[122]). Several numerical test cases are presented to illustrate the performance and

efficiency of the method: i) a simply supported truss, ii) a two-span continuous

beam, iii) a two-bay two-story frame, iv) a rectangular plate, and v) a plate with a

circular cutoff. The interval outer and inner solutions (OS and IS) obtained from the

proposed method are compared with i) the nonlinear programming approach (NLP),

ii) the endpoint combination method (EC), iii) the sensitivity analysis (SA), and

iv) the Monte Carlo (MC) predictions, whenever appropriate. The computations are

carried out on a PC with Intel Core2 Duo CPU E8400 3GHz with 4GB RAM under

Windows 7. The results show that the proposed IFEM algorithm gives guaranteed

enclosures of the exact structural response. Furthermore, it provides the sharpest

interval enclosure in comparison to that from other known interval solvers, and it is

computationally efficient and cheap.
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Figure 2.3: A simply supported 8-joint 15-bar truss subject to point loads.
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2.4.1 Simply supported truss

The first example is a simply supported symmetric truss composed of 15 bars, as

shown in Figure 2.3. The joints are labeled from 1 to 8, and the bars are labeled

from 1 to 15. Point loads P1, P2, P3, and P4 are applied at joints 5, 2, 6, and 3,

respectively, with midpoint values P1 = 200 kN, P2 = P3 = 100 kN, and P4 = 90 kN.

Bars 1 to 3, 13 to 15 have the same cross section area A = 1.0 × 10−3 m2, and all

other bars, viz. bars 4 to 12, have a smaller cross section area A = 6.0×10−4 m2. All

the bars are made of steel and have interval Young’s moduli E with midpoint value

E = 200 GPa.

Fifteen plane truss elements are used to model the truss in Figure 2.3, one for

each bar. The point loads Pj and element Young’s moduli E are assumed to vary

Table 2.1: Horizontal and vertical displacements u5 and v5, axial forces N2 and N8

for the simple truss of Figure 2.3 with 10% uncertainties in load and material.

 

Horizontal displ. u5 (m) Horizontal displ. v5 (m) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Outer Solution (OS) 0.02987 -1.372 0.03749 0.114 -0.13143 -0.111 -0.10613 1.243 

Reference (EC) 0.03029 --- 0.03744 --- -0.13129 --- -0.10747 --- 

Inner Solution (IS) 0.03035 0.202 0.03701 -1.159 -0.12989 1.063 -0.10767 -0.191 

Monte Carlo (MC) 0.03082 1.758 0.03670 -1.973 -0.12680 3.416 -0.11095 -3.240 

 

Axial force N2 (kN) Axial force N8 (kN) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Outer Solution (OS) -266.76 0.000 -235.29 0.000 47.069 -4.002 78.834 1.658 

Reference (EC) -266.76 --- -235.29 --- 49.031 --- 77.548 --- 

Inner Solution (IS) -266.76 0.000 -235.29 0.000 50.414 2.819 75.490 -2.655 

Monte Carlo (MC) -265.90 0.321 -235.93 -0.271 53.061 8.219 73.278 -5.507 
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independently. Thus 19 interval variables are used to model the load and material

uncertainties in the truss. Then horizontal and vertical displacements u5 and v5 at

joint 5, the axial forces N2 and N8 in bar 2 and 8 are selected for comparison among

the various methods mentioned previously.

In a first scenario, 10% uncertainties are assigned to the loads Pj and the Young’s

moduli E, i.e. the width of each interval is 10% of its midpoint value. Table 2.1

compares the outer and inner solutions (OS and IS) from the proposed method and
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Figure 2.4: Vertical displacement v5 and axial force N8 for the simply supported
truss of Figure 2.3 under up to 50% uncertainties in load and material. The Monte
Carlo prediction (MC) is obtained from an ensemble of 100,000 simulations.
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the Monte Carlo (MC) predictions from an ensemble of 100,000 simulations against

the reference solution obtained from the endpoint combination method (EC). Observe

that the OS (IS) contains (is contained by) the reference solution EC. Further, N2 is

obtained without overestimation since the axial force in bar 2 is independent of ma-

terial properties, which indicates how the present formulation captures the structural

property of statically determinate structures.

Then in a second scenario, the lower and upper bounds of v5 and N8 obtained from

the proposed method are displayed in Figure 2.4 as functions of the uncertainty level

β (up to 50% uncertainties assigned to Pj and Ej). The MC prediction and the EC

reference solution are also shown in the same figure. Note that as the uncertainty level

increases, so does overestimation. Further, the OS provides a guaranteed enclosure

and the IS is close to MC predictions for levels of uncertainties up to 25%.
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Figure 2.5: A two-span continuous beam subject to vertical loads.

2.4.2 Two-span continuous beam

The second example is a two-span continuous beam with uniformly distributed load q

applied on the left span and concentrated load P acting in the middle of the right span,

as given in Figure 2.5. In order to compare results with Zhang [160], distributed load

q = [3, 4.5] kN/m and concentrated load P = [30, 40] kN are used, which represent

40% and 28.6% uncertainties, respectively. Uncertainties in the Young’s modulus is

2% , viz. E = [198, 202] GPa. The cross section areas AAB, ABC and moments of

inertia IAB, IBC are deterministic, and AAB = 6 × 10−2 m2, IAB = 1.2 × 10−4 m4,
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Table 2.2: Selected results for the continuous beam with of Figure 2.5 load and
material uncertainties. q = [3, 4.5] kN/m, P = [30, 40] kN and E = [198, 200] GPa
(40%, 28.6% and 2% uncertainties respectively).

 

Vertical displ. vD (10-3 m) Rotation angle θC (10-3 rad) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Zhang [160] -13.949 -0.115 -8.877  0.792 3.682 -0.915 5.655 0.230 

Outer Solution (OS) -13.934 -0.008 -8.8969 0.569 3.6942 -0.586 5.6445 0.045 

Reference (EC) -13.933 --- -8.9479 --- 3.7160 --- 5.6420 --- 

Inner Solution (IS) -13.882 0.369 -8.9495 -0.018 3.7188 0.073 5.6200 -0.390 

Monte Carlo (MC) -13.802 0.938 -9.0532 -1.177 3.7558 1.070 5.5902 -0.918 

 

Bending moment MB (kN∙m) Bending moment MD (kN∙m) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Zhang [160] -48.756 -0.133 -35.157 0.346 40.204 -0.169 57.814 0.294 

Outer Solution (OS) -48.741 -0.104 -35.185 0.268 40.223 -0.122 57.814 0.029 

Reference (EC) -48.691 --- -35.279 --- 40.272 --- 57.797 --- 

Inner Solution (IS) -48.596 0.195 -35.331 -0.145 40.295 0.059 57.741 -0.091 

Monte Carlo (MC) -48.410 0.577 -35.467 -0.530 40.389 0.290 57.566 -0.401 

 

Curvature κB (10-3 m-1) Curvature κD (10-3 m-1) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Outer Solution (OS) -2.7327 -0.079 -1.9299 0.582 2.2071 -0.516 3.2393 0.028 

Reference (EC) -2.7306 --- -1.9412 --- 2.2186 --- 3.2384 --- 

Inner Solution (IS) -2.7193 0.417 -1.9434 -0.115 2.2199 0.061 3.2265 -0.367 

Monte Carlo (MC) -2.6940 1.338 -1.9624 -1.096 2.2302 0.521 3.2186 -0.614 
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Figure 2.6: Selected results for the continuous beam of Figure 2.5 under up to 50%
uncertainties in load and material. The Monte Carlo prediction (MC) is obtained
from an ensemble of 100,000 simulations.
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ABC = 4 × 10−2 m2, IBC = 0.9 × 10−4 m4. The problem is modeled by three

beam elements (AB, BD and DC ). The element Young’s moduli are assumed to vary

independently, while the uniform load q and the concentrated load P are modeled by

two intervals. Thus, there are 5 interval variables.

Table 2.2 reports the interval solutions for the nodal deflection vD at point D,

rotational angle θC at point C, bending moment MB, MD at points B and D, curva-

ture κB at point B obtained from element BD, and curvature κD at point D obtained

from element DC. The endpoint combination (EC) solution is used as the reference,

and results from Zhang [160], the proposed method (OS and IS) and Monte Carlo

(MC) predictions with 100,000 simulations are compared in Table 2.2. As the struc-

ture is statically indeterminate, internal forces depend on material properties and

overestimation in MB and MD is observed. Derived quantities MB, MD, κB, κD

and primary quantities vD, θC are obtained with the same accuracy.

The performance of the solution with increasing uncertainty up to 50% in q, P,

and E is studied. All interval variables have the following midpoint values, q = 3.75

kN/m, P = 35 kN, E = 200 GPa, and the same uncertainty level is applied to q, P,

and E. Nodal deflection vD, bending moment MD and curvature κD of element DC,

calculated using different method, are compared and displayed in Figure 2.6. Observe

that MC gives tighter inner bounds than IS, when uncertainty level is high. This is

not surprising, as 100,000 simulations are used for just 5 interval variables.

2.4.3 Two-bay two-story frame

The third example is a two-bay two-story frame adopted from Buonopane, et al. [19],

subject to distributed loads acting on each floor as shown in Figure 2.7. Columns

are labeled from C1 to C6, beams from B1 to B4, and nodes from 1 to 9. Nodes 1

to 3 are hinged to the ground. Distributed loads are modeled by four independent

intervals, i.e. q1 = [105.8, 113.1] kN/m (6.67% uncertainty), q2 = [105.8, 113.1]
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Figure 2.7: A two-bay two-story frame subject to distributed loads..

kN/m (6.67% uncertainty), q3 = [49.255, 52.905] kN/m (7.15% uncertainty), and

q4 = [49.255, 52.905] kN/m (7.15% uncertainty). In addition, the geometric and

material uncertainties are accounted. Young’s modulus E, cross section area A, and

moment of inertia I of each member are modeled by intervals, and given in Table 2.3.

The proposed method is now compared with the work by Muhanna and Zhang

[103], assuming E, A, and I to vary independently with 1% uncertainty. Numerical

simulations also show that the proposed method works just as well for uncertainty

levels up to 30%. One beam element is used to model each frame member; so there

are 10 elements and 34 independent interval variables.

Vertical displacements v5 and v9 at nodes 5 and 9 are given in the upper half of

Table 2.4, while bending moments MB2l and MC5b at the left end of beam B2 and the

bottom end of column C5 are included in the lower half of the table, where subscript

B2l denotes the left node of B2 and C5b the bottom node of C5.

The solution from the sensitivity analysis (SA) method serves as a reference, be-

cause the endpoint combination method requires 234 ≈ 1.72 × 1010 combinations,
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Table 2.3: Geometric and material properties for the two-bay two-story frame of
Figure 2.7 (1% uncertainty for E, A and I).

 Shape E (GPa) A (10-4 m2) I (10-8 m4) 

C1 W12×19 [199, 201] [35.76, 36.12] [5383.95, 5438.06] 

C2 W14×132 [199, 201] [249.0, 251.57] [63364.99, 64001.83] 

C3 W14×109 [199, 201] [205.42, 207.48] [51354.63, 51870.76] 

C4 W10×12 [199, 201] [22.72, 22.95] [2228.13, 2250.52] 

C5 W14×109 [199, 201] [205.42, 207.48] [51354.63, 51870.76] 

C6 W14×109 [199, 201] [205.42, 207.48] [51354.63, 51870.76] 

B1 W27×84 [199, 201] [159.20, 160.80] [118032.83, 119219.09] 

B2 W36×135 [199, 201] [254.85, 257.41] [323037.21, 326283.81] 

B3 W18×40 [199, 201] [75.75, 76.51] [25346.00, 25600.73] 

B4 W27×94 [199, 201] [177.82, 179.60] [135427.14, 136788.21] 

which is infeasible. SA assumes that the system response monotonically varies within

the interval ranges of the parameters, and it gives good inner bounds when the uncer-

tainty levels are low (see Section 1.2.3.3). Table 2.4 shows that the proposed IFEM

method gives solutions for the upper and lower bounds that contain the reference SA

solution with relative error less than 0.2%.

In the standard implementation of the iterative enclosure method, reference vec-

tors α0 and vg0 in Eqs. (2.45), (2.49) and (2.57) can be chosen arbitrarily. To

compute the outer solution, only α0 is needed; for the inner solution, both α0 and vg0

are needed. If the midpoint values α0 = mid α and vg0 = mid vng are chosen, the pro-

posed IFEM algorithm yields one outer and one inner estimate, hereafter referred to

as the midpoint approach. Moreover, if the endpoints α0 = α and α, vg0 = vng and vng

are chosen, IFEM provides two outer and four inner estimates. By taking the in-

tersection (interval hull) of these outer (inner) estimates, different outer and inner
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Table 2.4: Vertical displacements at nodes 5 and 9, Bending moments at the left
node of B2 and the bottom node of C5 for the frame of Figure 2.7 with given load
uncertainty and 1% uncertainties in geometry and material.

 

Vertical displ. v5 (10-3 m) Vertical displ. v9 (10-3 m) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Muhanna & Zhang [105] -2.4778 -0.012 -2.2610 0.128 -2.1009 -0.100 -1.9064 0.204 

Outer Solution (OS) -2.4777 -0.008 -2.2614 0.111 -2.0990 -0.006 -1.9083 0.107 

Reference (SA) -2.4775 --- -2.2639 --- -2.0988 --- -1.9103 --- 

Inner Solution (IS) -2.4749 0.102 -2.2641 -0.010 -2.0968 0.098 -1.9105 -0.008 

Monte Carlo (MC) -2.4588 0.755 -2.2800 -0.713 -2.0886 0.488 -1.9156 -0.279 

 

Moment MB2l (kN∙m) Moment MC5b (kN∙m) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Muhanna & Zhang [105] 1839.0 -0.071 1982.6 0.020 -688.02 -0.157 -614.90 0.274 

Outer Solution (OS) 1839.3 -0.054 1982.8 0.031 -687.31 -0.055 -615.69 0.147 

Reference (SA) 1840.3 --- 1982.2 --- -686.94 --- -616.59 --- 

Inner Solution (IS) 1841.0 0.034 1981.2 -0.050 -686.03 0.132 -616.97 -0.061 

Monte Carlo (MC) 1847.3 0.381 1976.6 -0.281 -680.14 0.990 -622.54 -0.965 

solutions are obtained, hereafter referred to the endpoint approach.

In Table 2.5 the inner solutions obtained from the midpoint and endpoint ap-

proaches are compared against the reference SA (not listed in the table) for the nodal

displacements u5, v5, θ5 at node 5 and internal forces NB2l, VB2l, MB2l at the left

end of beam B2. Here u, v, θ denote nodal displacements and rotation angle, and N,

V, M denote axial force, shear force, and bending moment, respectively. Note that

the midpoint solution is always slightly tighter than endpoint solution. This confirms

that midpoints are usually the optimal choice for a deterministic reference value.
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Table 2.5: Comparison of different choices of reference point for the inner estimation
with given load uncertainty and 1% uncertainties in geometry and material.

 

Lower Bounds Upper Bounds 

Mid- 

point 

Uncer- 

tainty (%) 

End- 

point 

Uncer- 

tainty (%) 

Mid- 

point 

Uncer- 

tainty (%) 

End- 

point 

Uncer- 

tainty (%) 

u5 (10-3 m) -7.7828 0.796 -7.7714  0.942  -6.3930 -0.217 -6.4045  -0.397  

v5 (10-3 m) -2.4749 0.102 -2.4748  0.109  -2.2641 -0.010 -2.2642  -0.017  

θ5 (10-3 rad) -4.1508 0.202 -4.1481  0.267  -3.4985 -0.078 -3.5012  -0.155  

NB2l (kN) 217.16 0.057 217.30  0.122  241.81 -0.137 241.68  -0.195  

VB2l (kN) 833.21 0.006 833.21  0.007  892.30 -0.010 892.30  -0.011  

MB2l (kN∙m) 1841.0 0.034 1841.2  0.046  1981.2 -0.050 1981.0  -0.062  

 

q E, ν, t 

L 

h 

A B 

D C 

Figure 2.8: A rectangular plate subject to uniform distributed load.

2.4.4 Rectangular plate

The fourth example is a rectangular plate subject to uniformly distributed load q =

100 kN/m, as shown in Figure 2.8. The plate is constrained by rollers at the left and

bottom edges. The length, height, and thickness of the plate are L = 0.1 m, h =

0.05 m and t = 0.005 m, respectively. The Poisson’s ratio is ν = 0.3. Consider 5%
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uncertainty in the element Young’s modulus, i.e. E = [195, 205] GPa.

A 6 × 8 finite element mesh is used to model the plate, as shown in Figure 2.9.

Again, the endpoint combination is infeasible, because there are 48 independent inter-

val Young’s modulus E and 248 ≈ 2.81× 1014 combinations are required for endpoint

combination method (EC). Thus the sensitivity analysis (SA) is adopted to provide

a reference solution.

Table 2.6 lists outer and inner solutions (OS and IS) of the nodal displacements uC

and vC computed using the proposed method, along with SA solution and MC pre-

dictions with 10,000 simulations. Three decomposition strategies are used, i.e. eigen,

LDL and B-matrix decomposition approaches. Note that different decompositions

have a small impact on OS and IS. In addition, IS is always better than MC.

To study the efficiency of the proposed method and other competing methods,

the corresponding computational time are recorded as a function of the finite element

mesh size. The MC predictions are obtained from an ensemble of 10,000 simulations.
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Figure 2.9: A 6 × 8 finite element mesh with 8-node rectangular isoparametric
elements to model the plate of Figure 2.8.
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Table 2.6: Horizontal displacement uC and vertical displacement vC at the upper
right corner C of the plate of Figure 2.8 obtained from different methods and different
decomposition strategies, with E = [195, 205] GPa (5% uncertainty).

 

Horizontal displ. uC (10-6 m) Vertical displ. vC (10-6 m) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Outer 

Solution 

(OS) 

Eigen 9.7318 -0.244 10.2682 0.110 -1.6150 -0.679 -1.3850 0.948 

LDL 9.7312 -0.250 10.2688 0.116 -1.6146 -0.652 -1.3854 0.917 

B-matrix 9.7307 -0.256 10.2694 0.121 -1.6162 -0.753 -1.3838 1.033 

Reference (SA) 9.7556 --- 10.2569 --- -1.6041 --- -1.3982 --- 

Inner 

Solution 

(IS) 

Eigen 9.7672 0.119 10.2328 -0.235 -1.5908 0.833 -1.4092 -0.786 

LDL 9.7678 0.125 10.2322 -0.241 -1.5912 0.805 -1.4088 -0.755 

B-matrix 9.7683 0.130 10.2317 -0.246 -1.5896 0.907 -1.4104 -0.871 

Monte Carlo (MC) 9.8993 1.473 10.1021 -1.510 -1.5466 3.584 -1.4580 -4.272 

0 500 1000 1500 2000 2500

10
−2

10
0

10
2

10
4

Degrees of Freedom

E
la

ps
ed

 T
im

e 
(s

)

 

 

Proposed Method (Conv)
Proposed Method (EBE)
Deterministic Solver (Conv)
Sensitivity Analysis (Conv)
Monte Carlo (Conv)

Figure 2.10: Efficiency study of the rectangular plate in Figure 2.8, under 5%
uncertainty in the Young’s modulus E.
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Table 2.7: Computational time required for the static analysis of the rectangular
plate of Figure 2.8 using different methods (5% uncertainty in material properties,
E = [195, 205] GPa).

Mesh Element DOF 

Monte 

Carlo 

(MC, s) 

Sensitivity 

Analysis 

(SA, s) 

Deter-

ministic 

(DS, s) 

Current 

EBE (s) Conv (s) 

3×4 12 102 21.32 0.24 0.00 0.12 0.09 

4×6 24 186 77.38 0.79 0.01 0.50 0.17 

6×8 48 346 400.21 5.70 0.06 2.43 0.47 

8×10 80 554 1299.76 22.27 0.21 9.45 1.07 

9×12 108 734 2801.68 61.77 0.44 21.29 2.03 

10×14 140 938 5375.86 156.88 0.91 43.85 3.59 

12×16 192 1266 --- 474.90 2.23 108.09 7.47 

13×18 234 1530 --- 982.34 3.89 191.26 12.98 

15×20 300 1942 --- 2423.76 7.73 --- 23.73 

16×22 352 2266 --- 4476.31 12.28 --- 37.15 

18×24 432 2762 --- --- 22.49 --- 63.59 

Table 2.7 lists the corresponding element numbers and total number of Degrees Of

Freedom (DOF) for each mesh, as well as the computational time for each method.

Figure 2.10 visualizes the comparison in the table via a semi-log plot. The compu-

tational time for the deterministic solver (DS) is also included, enabling to extend

the estimate for cases when the SA and MC solutions are computationally unfeasi-

ble. For instance, for a 15 × 20 mesh, it is estimated that MC from an ensemble of

10,000 simulations requires 7.73× 10, 000 = 7.73× 104 seconds, or 21.5 hours. Both

the Element-by-Element (EBE) and the conventional (Conv) assembly are included
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Table 2.8: Computational time required for the static analysis of the rectangular
plate of Figure 2.8 using different assembly strategies (5% uncertainty in material
properties, E = [195, 205] GPa).

Mesh 
Element 

Number 

Dimen. 

of G 

EBE Assembly Dimen. 

of G 

Conv. Assembly 

Assem-

bly (s) 

Inver-

sion (s) 

Itera-

tion (s) 

Total 

(s) 

Assem-

bly (s) 

Inver-

sion (s) 

Itera-

tion (s) 

Total 

(s) 

3×4 12 502 0.03 0.03 0.06 0.12 118 0.00 0.00 0.09 0.09 

4×6 24 976 0.06 0.28 0.16 0.50 208 0.00 0.05 0.12 0.17 

6×8 48 1912 0.31 1.84 0.28 2.43 376 0.05 0.08 0.34 0.47 

8×10 80 3152 1.15 7.69 0.61 9.45 592 0.19 0.27 0.61 1.07 

9×12 108 4234 2.64 17.64 1.01 21.29 778 0.44 0.69 0.90 2.03 

10×14 140 5468 5.35 37.22 1.28 43.85 988 0.83 1.34 1.42 3.59 

12×16 192 7468 13.18 92.63 2.28 108.09 1324 2.07 2.95 2.45 7.47 

13×18 234 9082 23.62 163.94 3.70 191.26 1594 3.62 5.30 4.06 12.98 

15×20 300 --- --- --- --- --- 2014 7.33 10.39 6.01 23.73 

16×22 352 --- --- --- --- --- 2344 11.64 16.54 8.97 37.15 

18×24 432 --- --- --- --- --- 2848 21.18 29.03 13.38 63.59 

in the proposed method. However, SA, MC, and DS only use the conventional as-

sembly. It is observed that MC is the most time-consuming, whereas the proposed

method is the fastest when conventional assembly is used.

Table 2.8 compares the two element assembly strategies in detail. The algorithm

is divided into three consecutive steps:

1) Assembling generalized stiffness matrix Kg from the deterministic matrices K0,

C, B, and S0, as in Eqs. (2.45) and (2.49);

2) Computing GMg and GAg either by direct matrix inversion or by Gaussian

elimination;

3) Iterating Eq. (2.55) to obtain the interval outer enclosure uoutg .
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The computational time at each step, as well as the total time, is listed in Table

2.8. In addition, the dimension of G is included. Observe that the inversion is by far

the most time-consuming component in the Element-by-Element assembly approach.

This is because the dimension of G is much larger than its counterpart from the

conventional assembly. Indeed, in the latter, the three steps require comparable time.

Thus, the conventional assembly is preferred when efficiency is the primary concern.

 

q E, ν, t 
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Figure 2.11: A rectangular plate with a circular cutoff subject to uniformly dis-
tributed line load.

2.4.5 Plate with a circular cutoff

The fifth example is a rectangular plate with a circular cutoff subject to uniformly

distributed load q = 100 kN/m, as shown in Figure 2.11. The left and bottom edges

of the plate are restrained by rollers. The length, height, and thickness of the plate

are L = 0.1 m, h = 0.05 m, t = 0.005 m. The radius of the circular cutoff is r =

0.02 m, and the Poisson’s ratio is ν = 0.3. Element Young’s moduli are modeled by

intervals, i.e. E = [199, 201] GPa, and each E is assumed to vary independently. To

compare results with Zhang [160], 1% uncertainty in E is used.

72



The finite element mesh of the plate is shown in Figure 2.12. This is generated by

dividing the plate into three curvilinear quadrilaterals, EFGH, ABEH and BCDE, as

shown in Figure 2.11. Each macro quadrilateral element is divided into n×n smaller

curvilinear quadrilaterals, which are modeled by one 8-node rectangular element or

two 6-node triangular elements. The generated mesh is characterized by n. For

instance, Figure 2.12 shows a triangular element mesh with n = 6.

Table 2.9 compares nodal displacement uC at point C and normal stress σxx at

point G obtained from different methods, using 6-node triangular elements and 8-

node rectangular elements. The nonlinear programming approach is implemented to

provide the reference solution (NLP). The Monte Carlo prediction (MC, obtained from

10,000 simulations) as well as that reported by Zhang [160] is compared against the

interval outer and inner solutions (OS and IS) obtained from the proposed method.

Results in column 2 to 5 (6 to 9) are obtained using a mesh with 6-node triangular

(8-node rectangular) elements. Observe that OS and IS provide the tightest bounds

Figure 2.12: Finite element model used in the analysis of the plate with circular
cutoff of Figure 2.11 (6-node triangular elements are used).
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Table 2.9: Horizontal displacement uC at point C and normal stress σxx at point G
of the plate of Figure 2.11, obtained from different methods and different elements,
with E = [199, 201] GPa (1% uncertainty).

Horizontal 

displacement uC  

(10-6 m) 

6-node triangular element 8-node rectangular element 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Zhang (2005) 11.8768 -0.197 12.0387 0.144 --- --- --- --- 

Outer Solution (OS) 11.8989 -0.011 12.0221 0.006 11.9003 -0.010 12.0233 0.005 

Reference (NLP) 11.9002 --- 12.0214 --- 11.9015 --- 12.0227 --- 

Inner Solution (IS) 11.9009 0.006 12.0201 -0.011 11.9021 0.005 12.0214 -0.011 

Monte Carlo (MC) 11.9457 0.382 11.9752 -0.384 11.9429 0.348 11.9784 -0.368 

Normal stress σxx  

at point G (MPa) 

6-node triangular element 8-node rectangular element 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Outer Solution (OS) 75.0310 -0.055 76.6051 0.046 75.1558 -0.058 76.5105 0.053 

Reference (NLP) 75.0726 --- 76.5696 --- 75.1996 --- 76.4701 --- 

Inner Solution (IS) 75.1082 0.047 76.5280 -0.054 75.2400 0.054 76.4263 -0.057 

Monte Carlo (MC) 75.4938 0.561 76.1068 -0.604 75.5849 0.512 76.1147 -0.465 

of NLP, and they are respectively tighter than MC and Zhang’s solutions.

To study the performance of proposed method under refinement of FE meshes, a

series of meshes of the plate with coarse-to-fine discretization are considered. Six-node

triangular elements are used in the modeling. Table 2.10 lists the total DOF, element

numbers and dimension of the generalized flexibility matrix G for each mesh. Here,

5% material uncertainty is considered and E = [195, 205] GPa. Nodal displacements

uC at point C and normal stress σxx at point G computed from different methods are

displayed in Figure 2.13. The NLP solution (solid lines with circular markers) is set

as a reference, which is compared against MC solution (dashed lines with diamond
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markers) and the interval OS (dotted lines with triangular markers). NLP and MC

can only be computed for coarse meshes.

From Figure 2.13, it is observed that, when the mesh is refined, the overall widths

of the interval solutions do not change, and the difference between OS and NLP

remains unchanged. This means that overestimation in the proposed method, if any,

does not depend on specific finite element mesh or problem scale.
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Figure 2.13: Horizontal displacement uC at point C and normal stress σxx at
point G of the plate of Figure 2.11, obtained from different methods, with E =
[195, 205] GPa (5% uncertainty). The Monte Carlo prediction (MC) is obtained from
an ensemble of 10,000 simulations.
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Table 2.10: Finite element meshes used in the analysis of the plate of Figure 2.11:
DOF, number of elements, and size of G for 6-node triangular elements.

Mesh DOF Element Dimen. Mesh DOF Element Dimen. 

2×2 130 24 144 7×7 1290 294 1334 

3×3 266 54 286 8×8 1666 384 1716 

4×4 450 96 476 9×9 2090 486 2146 

5×5 682 150 714 10×10 2562 600 2624 

6×6 962 216 1000     

2.5 Summary

In this chapter, a new interval-based formulation for the structural static analysis

of trusses, frames, and plane stress/strain problems under uncertainty is presented.

The presented work uses intervals to model uncertainties in the load, geometry and

material of the structure. It is the basis for the interval inverse solver for structural

static problems, which is presented in Chapter 3. The method is based on a new

decomposition strategy of the stiffness matrix and a new variant of the iterative

enclosure method, which is specially redesigned to incorporate the new decomposition

strategy. The fixed-point form is the key to the development of the iterative scheme.

Numerical examples prove that the presented method is robust, efficient, and

gives guaranteed tight enclosures on the exact solution. In particular, the presented

method works stably under excessively large uncertainty levels; its computational

time is negligible when compared with other methods such as nonlinear programming,

Monte Carlo simulation, sensitivity analysis, and endpoint combination method; its

outer solution always encloses the exact solution, and its inner solution is always

enclosed by the exact solution; the obtained outer and inner encloses are the tightest

in comparison with other competing methods in the literature.
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CHAPTER III

INTERVAL PARAMETER IDENTIFICATION OF

STRUCTURAL STATIC PROBLEMS

In this chapter, interval-based parameter identification algorithm is developed for

structural static problems with uncertainties in load, material, and measurement

data. The uncertain parameters are modeled by intervals, and Interval Finite Element

Method (IFEM) is used as the cornerstone of the proposed method. The goal is to

provide a reliable estimate of the interval stiffness parameter vector α, based on the

available measurement data η corrupted with noise [21, 43, 44, 52, 59]. The structural

equilibrium equation is given by the following interval linear system

Ku = f , (3.1)

where K is the stiffness matrix, u is the nodal displacement vector, and f is the

nodal equivalent load vector. Here K is parameterized by the stiffness parameter

vector α to be identified. Further, the relationship between the measurement data η

and the nodal displacement u is assumed linear. Thus η and u satisfy the following

measurement equation

η = Hu, (3.2)

where H is a deterministic matrix. The above Eq. (3.2) means that the interval

enclosure of the predicted response Hu cannot exceed the interval bounds of η.

In the following sections, the proposed interval inverse solver is introduced in de-

tail. The solver is composed of a deterministic stage and an interval stage. In the

deterministic stage, the inverse algorithm is formulated using the adjoint optimization

method. Then the algorithm is extended to intervals. Alternative approaches based
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on the pseudo-inverse method, the Kalman filtering, and the nonlinear programming

technique are developed for comparion. Finally, several numerical examples are pre-

sented to validate the performance of the proposed method.

3.1 Deterministic Inverse Solver

In this section, a deterministic solution of the stiffness parameter vector α is sought,

using the midpoint values of the interval load uncertainty vector δ and the interval

measurement vector η. The proposed algorithm is derived using the adjoint-based

optimization [26, 42, 45], and it exploits conjugate gradient or Newton-Raphson type

methods to find the optimal estimate of the unknown parameters. At first, the

measurement data is collected under a single load condition. Then the algorithm

is extended to cases when mutiple load conditions are considered.

3.1.1 Conjugate gradient approach

The proposed inverse solver aims at minimizing the difference between the predicted

response Hu and the midpoint measurement vector η, under the equilibrium con-

straint Ku = f . Thus the objective functional to be minimized is given by

Γ =
1

2
(Hu− η)TW (Hu− η) (3.3)

+
1

2
γ(αTRα) + wT (Ku− f),

where W is a diagonal matrix defining the weight for each measurement,
1

2
γ(αTRα)

provides regularization for the problem if necessary, and w is the Lagrangian mul-

tiplier to enforce equilibrium [46]. Here, γ is the regularizer weight and R is the

regularization matrix associated with the second-order finite difference [62, 123].

From the decomposition of Eq. (2.3), the first variation of Γ

δΓ = δuTHTW (Hu− η) + δαT (γR)α (3.4)

+ δuTKTw + δwT (Ku− f) + wTAdiag(Λδα)ATu
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is null if 
Ku− f = 0;

Kw + (HTWH)u− (HTW )η = 0;

ΛT (ATu ◦ ATw) + (γR)α = 0,

(3.5)

where a◦b denotes the element-by-element (Hadamard) product of two vectors a and

b. To obtain Eq. (3.5) from Eq. (3.4), the following matrix symmetry

K = KT = Adiag(Λα)AT (3.6)

and the following chain of identities

wTAdiag(Λδα)ATu = wTA(Λδα ◦ ATu) = δαTΛT (ATu ◦ ATw). (3.7)

have been exploited. The three equations in Eq. (3.5) can be interpreted as: i)

equilibrium condition of the original system with equivalent load f, ii) equilibrium

condition for the adjoint system with equivalent load HTW (η−Hu), and iii) optimal

condition that the gradient g of Γ with respect to α is zero at the solution point.

In the conjugate gradient approach, the first two equations in Eq. (3.5), viz. the

equilibrium conditions for the original and adjoint systems, are recast in block formHTWH K

K 0


uw

 =

HTWη

f

 . (3.8)

The unknown vectors u and w follow asuw
 =

 0 K−1

K−1 Tw


HTWη

f

 , (3.9)

where Tw = −K−1HTWHK−1. The corresponding objective functional Γ and its

gradient g with respect to α, viz. third equation in Eq. (3.5), can be rewritten as

Γ =
1

2
(Hu− η)TW (Hu− η) +

1

2
αT (γR)α; (3.10)

g =
∂Γ

∂α
= ΛT (ATu ◦ ATw) + (γR)α.
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The conjugate gradient method is then exploited to iteratively solve for Eq. (3.5).

During the computation, α serves as the “master” variable. The solution vectors u

and w are solved from Eq. (3.9) after α is updated at each iteration.

3.1.2 Newton-Raphson approach

In the Newton-Raphson approach, in addition to the gradient g, second-order infor-

mation such as the Hessian matrix is used to determine the descending direction. By

noting the following approximations

∆(Ku) = K∆u+ Adiag(ATu)Λ∆α;

∆(Kw) = K∆w + Adiag(ATw)Λ∆α; (3.11)

∆
{

ΛT (ATu ◦ ATw)
}

= ΛTdiag(ATu)AT∆w + ΛTdiag(ATw)AT∆u,

the linearization of the governing Eq. (3.5) leads to
HTWH K T 〈ATw〉T

K 0 T 〈ATu〉T

T 〈ATw〉 T 〈ATu〉 γR




∆u

∆w

∆α

 =


0

0

−g

 , (3.12)

where T 〈x〉 maps a given vector x into the following matrix

T 〈x〉 = ΛTdiag(x)AT . (3.13)

During the derivation, the following equalities have been used

(∆K)u = Adiag(Λ∆α)ATu = Adiag(ATu)Λ∆α; (3.14)

(∆K)w = Adiag(Λ∆α)ATw = Adiag(ATw)Λ∆α.

Directly solving the linear system in Eq. (3.12) is inefficient, because one is only

interested in the update in the stiffness parameter vector ∆α. Here the generlized

stiffness matrix in Eq. (3.12) is divided into four blocks such that

Kb =

HTWH K

K 0

 , Tb =

{
T 〈ATw〉 T 〈ATu〉

}
(3.15)
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The upper-left block Kb has already been inverted earlier in Eq. (3.9). Then the

inverse of the generalized stiffness matrix is given byKb T Tb

Tb γR


−1

=

K−1
b +K−1

b T Tb GαTbK
−1
b −K−1

b T Tb Gα

−GαTbK
−1
b Gα

 , (3.16)

where Gα =
(
γR− TbK−1

b T Tb
)−1

. Then the descending direction and the step size is

determined simultaneously

∆α = −Gαg. (3.17)

The Newton-Raphson method converges faster than the aforementioned conjugate

gradient method in the neighborhood of the optimal point, but it is not as robust

as the conjugate gradient method elsewhere. Thus it is beneficial to switch between

these methods to enhance the performance of the inverse algorithm.

3.1.3 Multiple load conditions

In the above discussion, the measurement data is assumed to be collected under a

single load condition. To account for multiple load conditions, the objective functional

Γ has the following form,

Γ =
m∑
j=1

1

2
(Huj − ηj)TW (Huj − ηj) (3.18)

+
m

2
α(γR)α +

m∑
j=1

wTj (Kuj − fj),

where m is the number of load conditions, and subscripts j denote variables associated

with the j -th load condition. The corresponding optimal conditions are
Kuj − fj = 0;

Kwj + (HTWH)uj − (HTW )ηj = 0;∑m
j=1 ΛT (ATuj ◦ ATwj) +m(γR)α = 0.

(3.19)
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The solution vectors uj and wj to the original and adjoint systems under each

load condition are obtained fromujwj
 =

 0 K−1

K−1 Tw


HTWηj

fj

 . (3.20)

where Tw = −K−1HTWHK−1. Then the objective functional Γ, as well as its gradient

g with respect to α, is expressed in terms of uj, wj, and α as

Γ =
m∑
j=1

1

2
(Huj − ηj)TW (Huj − ηj) +

m

2
αT (γR)α; (3.21)

g =
∂Γ

∂α
=

m∑
j=1

ΛT (ATuj ◦ ATwj) +m(γR)α.

The matrix Gα in the Newton-Raphson approach is given by

Gα =

(
mγR−

m∑
j=1

Tb,jK
−1
b T Tb,j

)−1

, (3.22)

where Tb,j is the block matrices associated with uj and wj

Tb,j =

{
T 〈ATwj〉 T 〈ATuj〉

}
. (3.23)

Then either the conjugate gradient method or the Newton-Raphson method can be

implemented to obtain the optimal estimate for the problem.

3.2 Interval Inverse Solver

The deterministic inverse solver outlined in the previous section obtains deterministic

solutions u0, w0, and α0. In the current section, by using these deterministic solutions

as reference points, the corresponding interval governing equations are transformed

into a fixed-point form. Then a special variant of the iterative enclosure method is

implemented to solve for a guaranteed interval enclosure of the unknown stiffness

parameter vector α. The current section develops the interval inverse solver for both

single and multiple load conditions in detail.
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3.2.1 Interval governing equations

When the measurement data is collected under a single load combination, the interval

extension of Eq. (3.5) yields the following interval nonlinear governing equations
K(α)u− Fδ = 0;

K(α)w + (HTWH)u− (HTW )η = 0;

ΛT (ATu ◦ ATw) + (γR)α = 0,

(3.24)

where the decomposition f = Fδ has been used, and K(α) emphasizes the depen-

dency of K on the unknown stiffness parameter α.

To transform Eq. (3.24) into a fixed-point form, the key step in implementing

the iterative enclosure method, let δ0 and η0 be the midpoint values of δ and η,

respectively. Now, introduce the auxiliary variables

∆δ = δ − δ0, ∆η = η − η0;

∆u = u− u0, ∆w = w − w0, ∆α = α− α0

(3.25)

to represent deviations of the interval vectors from the corresponding reference so-

lutions, where u0, w0, and α0 are the deterministic solutions obtained earlier. Note

that δ0, η0, u0, w0, and α0 satisfy Eq. (3.5). Then, the following equalities hold

Ku = K0u0 +K0∆u + ∆Ku0 + ∆K∆u;

Kw = K0w0 +K0∆w + ∆Kw0 + ∆K∆w;

ATu ◦ ATw = ATu0 ◦ ATw0 + ATu0 ◦ AT∆w

+AT∆u ◦ ATw0 + AT∆u ◦ AT∆w.

(3.26)

Eq. (3.24) is equivalent to
HTWH K0 T 〈ATw0〉T

K0 0 T 〈ATu0〉T

T 〈ATw0〉 T 〈ATu0〉 γR




∆u

∆w

∆α

 = (3.27)


0 HTW

F 0

0 0


∆δ

∆η

−

A 0 0

0 A 0

0 0 ΛT



AT∆w ◦ Λ∆α

AT∆u ◦ Λ∆α

AT∆u ◦ AT∆w

 ,
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by repeatedly using Eq. (3.26) and the following identities

∆Kx = Adiag(Λ∆α)ATx = Adiag(ATx)Λ∆α; (3.28)

ATx ◦ ATy = diag(ATx)ATy = diag(ATy)ATx,

where K0 denotes stiffness matrix parameterized by α0, viz. K0 = Adiag(Λα0)AT ,

T 〈x〉 has been defined earlier in Eq. (3.13), viz. T 〈x〉 = ΛTdiag(x)AT , x and y can

be either ∆u or ∆w in Eq. (3.28).

3.2.2 Iterative enclosure method

The governing Eq. (3.27) can be recast into the compact form

Kg∆ug = Fg∆δg − AgΘ(Bg∆ug), (3.29)

which emphasizes the direct relationship between uncertainties of the given data ∆δ,

∆η (collectively denoted as ∆δg) and those of the unknown vectors ∆u, ∆w, ∆α

(collectively denoted as ∆ug). Here, Kg, Fg, Ag are known scalar matrices, and

Bg∆ug is composed of the secondary unknown vectors AT∆u, AT∆w, and Λ∆α.

The function Θ(Bg∆ug) in Eq. (3.29) maps Bg∆ug into the following interval vector

Θ(Bg∆ug) = Θ



AT∆u

AT∆w

Λ∆α


 =


AT∆w ◦ Λ∆α

AT∆u ◦ Λ∆α

AT∆u ◦ AT∆w

 . (3.30)

The generalized stiffness matrix Kg is invertible, as shown in Eq. (3.16). By

defining G = K−1
g , Eq. (3.29) is equivalent to the following fixed-point form

∆ug = (GFg)∆δg − (GAg)Θ(Bg∆ug), (3.31)

Following the work by Neumaier and Pownuk [110], an auxiliary variable vg = Bg∆ug

is introduced, which satisfies

vg = Bg∆ug = (BgGFg)∆δg − (BgGAg)Θ(vg). (3.32)
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From this, the following iterative scheme is proposed to find a guaranteed interval

enclosure for vg. The iteration starts from the trivial initial guess v1
g = (BgGFg)∆δg

and proceeds in accord with

vj+1
g = (BgGFg)∆δg − (BgGAg)Θ(vjg), (3.33)

where the superscripts j denote the j -th iteration steps. The iteration stops when

there is no change between vng and vn−1
g in two consecutive steps. Then a guaranteed

outer enclosure ∆uoutg is obtained by substituting Bg∆ug in Eq. (3.31) with the

converged vng . The final interval enclosures u, w and α are obtained by adding u0,

w0, and α0 to the obtained ∆u, ∆w, ∆α in the outer enclosure ∆uoutg , viz

u = ∆u + u0, w = ∆w + w0, α = ∆α+ α0. (3.34)

To further reduce overestimation, the scalar matrices (GFg), (GAg) in Eq. (3.31) and

(BgGFg), (BgGAg) in Eq. (3.32) are calculated before multiplication with the interval

vectors ∆δg and Θ(vg). To enhance computational efficiency, the matrix inversion is

performed in a block form, as shown in Eqs. (3.9), (3.15), and (3.16).

3.2.3 Multiple load conditions

When measurement data is collected under multiple load conditions, the interval

extension of the governing Eq. (3.19) is given by
Kuj − Fδj = 0;

Kwj + (HTWH)uj − (HTW )ηj = 0;∑m
j=1 ΛT (ATuj ◦ ATwj) +m(γR)α = 0.

(3.35)

where subscript j denotes the j -th load condition.

By using the same manipulations as in the previous discussion and defining

∆δj = δj − δj0, ∆ηj = ηj − ηj0,

∆uj = uj − uj0, ∆wj = wj − wj0, ∆α = α− α0,
(3.36)
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the governing Eq. (3.35) is equivalent toHTWH K0

K0 0


∆uj

∆wj

+

T 〈ATw0j〉T

T 〈ATu0j〉T

∆α (3.37)

=

0 HTW

F 0


∆δj

∆ηj

−
A 0

0 A


AT∆wj ◦ Λ∆α

AT∆uj ◦ Λ∆α

 ;

and

m∑
j=1

{
T 〈ATw0j〉 T 〈ATu0j〉

}∆uj

∆wj

+m(γR)∆α (3.38)

= −
m∑
j=1

ΛT
(
AT∆uj ◦ AT∆wj

)
.

Then the iterative enclosure method can be implemented to solve for a guaranteed

outer enclosure for the stiffness parameter vector α, as well as for the solution vectors

uj and wj corresponding to each load condition.

3.3 Pseudo-Inverse Approach

In the pseudo-inverse approach, the algorithm is also divided into two stages. The

deterministic pseudo-inverse solver starts from an initial guess for the unknown pa-

rameter α, and iteratively updates it to minimize the difference between the predicted

system response Hu and the measurement data η, just the same as in the optimization

approach. However, the update is obtained from a linearization of the relationship

between the unknown stiffness parameters α and the measurements η.

In particular, the system is governed by the equilibrium condition and the mea-

surement equation,

Ku = f, Hu = η, (3.39)

which can be linearized into

Adiag(ATu)Λ∆α +K∆u = 0, H∆u = ∆η, (3.40)
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where the identities ∆Ku = Adiag(Λα)ATu = Adiag(ATu)Λα have been used. Thus

a direct relationship between the increment ∆α and ∆η is obtained as

Hα∆α = ∆η, (3.41)

where Hα = −HK−1Adiag(ATu)Λ.

For given stiffness parameter vector α and measurement vector η, the update

∆α aims at eliminating the difference between the predicted system response Hu =

HK−1f and the measurement data η, viz.

∆α = −HPI
α (η −HK−1f), (3.42)

where HPI
α is the pseudo-inverse of Hα, which can be obtained from one or more

approaches outlined in Section 1.1.4. Iteratively update of α using Eq. (3.42) yields

the deterministic solution α0 and u0.

In the interval stage, the following interval extension of Eq. (3.39) is solved,

Ku = Fδ, Hu = η. (3.43)

By introducing the new auxiliary variables

∆δ = δ − δ0, ∆η = η − η0,

∆u = u− u0, ∆α = α− α0

(3.44)

the governing Eq. (3.43) is equivalent toK0 Adiag(ATu0)Λ

H 0


∆u

∆α

 (3.45)

=

F 0

0 I


∆δ

∆η

−
A0

(AT∆u ◦ Λ∆α
)
.

The newly formulated governing Eq. (3.45) can be recast into the fixed-point form

∆ub = (GFb)∆δb − (GAb)
(
AT∆u ◦ Λ∆α

)
. (3.46)
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where the pseudo-inverse matrix G is given by

G =

K0 Adiag(ATu0)Λ

H 0


PI

=

K−1
0 +GtH

PI
α HK−1

0 −GtH
PI
α

−HPI
α HK−1

0 HPI
α

 . (3.47)

where Gt = K−1
0 Adiag(ATu0)Λ. Then the iterative enclosure method can be im-

plemented based on Eq. (3.46) to obtain a guaranteed outer enclosure on α. The

method can be extended to cases when measurements are collected under multiple

load conditions.

3.4 Nonlinear Kalman Filtering

For a structural static problem, the stiffness parameter vector α does not evolve in

time. To solve the parameter identification problem using Kalman filters, a pseudo

time t′ is introduced. Then the stiffness parameter vector α is the state vector, which

nominally evolves over the pseudo time t′ without any noise:

αk+1 = αk, (3.48)

where subscripts k denote the k -th time step. Then the k -th set of measurement data

ηk is related to the stiffness parameter αk via the measurement equation

ηk = HK(αk)
−1fk + vk, (3.49)

where vk is the random measurement noise, whose probability characteristics are

known as a prior. Thus a sequence of measurements ηk are processed systematically.

When the Extended Kalman Filter (EKF) is used (see Section 1.1.3.2 for detail),

one only needs to know the system and measurement equations, which are given in

Eqs. (3.48) and (3.49), and the derivative matrices Ak−1 and Ck, which are given by

Ak−1 = I, Ck =
∂ηk
∂αk

= Hαk , (3.50)

where Hαk = −HK(αk)
−1Adiag(ATu)Λ has been defined earlier in Eq. (3.41).
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When the Unscented Kalman Filter (UKF) is used (see Section 1.1.3.3 for detail),

one only needs to replace the measurement Eq. (1.45) with

η̂
(j)
k = HK(α̂

(j)
k|k−1)−1fk (3.51)

where α̂
(j)
k|k−1 and η̂

(j)
k are the σ-points for the prior estimate and the predicted mea-

surement at the k -th step, respectively. Apparently, the UKF is non-intrusive and

easy to implement.

3.5 Nonlinear Programming Approach

In this section, the uncertain parameter identification problem is formulated as a

constrained optimization problem. Depending on how the solution vector x and the

equality constraints feq are constructed, the nonlinear programming algorithms are

classified into: i) the direct approach, ii) the explicit adjoint approach, and iii) the

implicit adjoint approach. These approaches are implemented using the MATLAB

optimization toolbox, and provide reference solutions in later numerical examples.

3.5.1 The direct approach

In the direct approach, the solution vector x includes the load uncertainty vector δ,

the measurement vector η, the nodal displacement vector u, the Lagrangian multiplier

λ, and the stiffness parameter vector α:

x =
{
δT ηT uT λT αT

}T
. (3.52)

The objective functional Ω has the following general form

Ω = cα, or − cα, (3.53)

when the lower (or upper) bound of the j -th component of the stiffness parameter

vector α is computed. Here c is a row vector, whose only non-zero component is unity

at the j -th component.
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Equality constraints include equilibrium conditions, compatibility requirements,

essential boundary conditions, and measurement equation, collectively given by
K(α)u+ CTλ− Fδ = 0;

Cu = 0;

Hu = η.

(3.54)

And the inequality constraints require that the load uncertainty vector δ and the

measurement vector η vary within their respective interval bounds: δ ≤ δ ≤ δ;

η ≤ η ≤ η.
(3.55)

To accelerate the convergence, the gradient of the objective functional

∂Ω

∂x
=
{

0 0 0 0 c
}

(3.56)

and the gradient of the equality constraint equations

∂feq
∂x

=


−F 0 K CT T 〈ATu〉T

0 0 C 0 0

0 −I H 0 0

 (3.57)

are computed, where T 〈x〉 = ΛTdiag(x)AT as in Eq. (3.13).

3.5.2 Explicit adjoint approach

In the adjoint approach, the measurement equation η = Hu is not directly used.

Instead, the governing Eq. (3.5) is used, either explicitly or implicitly. In the explicit

adjoint approach, the solution vector x is given by

x =
{
δT ηT uT λT wT λTw αT

}T
, (3.58)

where w is the adjoint solution, and λw is the corresponding Lagrangian multipliers.

Then the objective functional Ω, its gradient ∂Ω/∂x, and the inequality constraints

are the same as in the direct approach.
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However, the equality constraints are given by
K(α)w + CTλw + (HTWH)u− (HTW )η = 0, Cw = 0;

K(α)u+ CTλ− Fδ = 0, Cu = 0;

ΛT (ATu ◦ ATw) + γRα = 0.

(3.59)

The corresponding gradient is

∂feq
∂x

=



0 −HTW HTWH 0 K CT T 〈ATw〉T

0 0 0 0 C 0 0

−F 0 K CT 0 0 T 〈ATu〉T

0 0 C 0 0 0 0

0 0 T 〈ATw〉 0 T 〈ATu〉 0 γR


. (3.60)

3.5.3 Implicit adjoint approach

In the third approach, the adjoint equations are no longer explicitly included in the

equality constraints. Instead, they are implicitly satisfied in the optimization process.

As a result, the solution vector

x =
{
δT ηT αT

}T
, (3.61)

And the equality constraint is just

ΛT (ATu ◦ ATw) + γRα = 0, (3.62)

where u and w are the solution vectors to the original and adjoint systems, viz.HTWH K

K 0


uw

 =

0 HTW

F 0


δη
 . (3.63)

The corresponding gradient of the equality constraint is

∂feq
∂x

=
{
TbK

−1
b Fb γR− TbK−1

b T Tb

}
, (3.64)

where Kb and Tb are introduced earlier in Eq. (3.15), and Fb is the anti-diagonal

block matrix on the right-hand side of Eq. (3.63).
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3.6 Numerical Examples

The proposed interval inverse algorithm is coded in INTLAB [122], which is an interval

arithmetic extension package developed for the MATLAB environment. To test the

performance of the method, uncertain parameter identification of the Young’s moduli

of i) a pin-roller bar, ii) a simply supported truss, iii) a simply supported beam,

and iv) a two-bay two-story frame are considered. The numerical results show that

the proposed method is able to provide a guaranteed interval enclosure of the exact

parameters. The results are independent of the probability characteristics of the

uncertainty, and the algorithm is computationally efficient.

To obtain an interval measurement vector η that guarantees to enclose the exact

system response, the following procedure is adopted to generate η.

1) Use a structural FEM model (not necessarily that used in the inversion) to

generate the exact measurement data ηex. The interval vector ηex is obtained

with midpoint value ηex and radius equal to the device tolerance δη.

2) An ensemble of perturbed measurements ηj are generated by adding random

noise to ηex. The noise is smaller than the tolerance δη so that ηj ∈ ηex.

3) Perturbed interval measurement vectors ηj are generated using ηj as midpoint

and device tolerance δη as radius. ηj guarantees to contain ηex, i.e. ηex ∈ ηj.

4) The measurement vector η is obtained as the intersection of all the ηj in the

ensemble. As a result, η contains a random perturbation in its midpoint values

and it still guarantees to contain ηex, i.e. ηex ∈ η.

 

P 

B C 

L, A 
 

Figure 3.1: A pin-roller bar subject to concentrated traction at the other end.
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3.6.1 Pin-roller bar

Consider a straight bar of length L = 5 m, as shown in Figure 3.1. The pin-roller bar

is subject to concentrated force P = 100 kN at one end C. The cross section of the

bar is uniform, with an area A = 0.005 m2. Only axial deformations are allowed, and

the bar is modeled by 10 equal-length planar truss elements with uniform material

properties. For each element,

E = 115 + 10 sin
(x
L

)
− 5 cos

(x
L

)
GPa, (3.65)

where x is the coordinate of element centroid, and the values of E are given up to four

significant digits. The same 10-element model is also used to generate measurement

data. Axial displacements at 10 equally distributed nodes along the bar are collected

Table 3.1: Exact and perturbed measurement data for the pin-roller bar of Figure
3.1. The device tolerance is the same for all measurements, ±2× 10−6 m, and 3 sets
of perturbed measurements are sampled to define the perturbed data.

Node 

# 

ηex 

(10-3 m) 

η (10-3 m) Difference (10-3 m) Uncertainty (%) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 0.09091  0.09042  0.09226  -0.00049  0.00135  -0.534  1.482  

2 0.17281  0.17202  0.17570  -0.00079  0.00289  -0.458  1.671  

3 0.24991  0.24789  0.25020  -0.00202  0.00029  -0.809  0.118  

4 0.33208  0.33197  0.33265  -0.00011  0.00057  -0.032  0.171  

5 0.41980  0.41975  0.42022  -0.00005  0.00042  -0.012  0.102  

6 0.50713  0.50554  0.50771  -0.00159  0.00058  -0.315  0.114  

7 0.59813  0.59800  0.60031  -0.00013  0.00218  -0.021  0.365  

8 0.69694  0.69638  0.69975  -0.00056  0.00281  -0.080  0.403  

9 0.79119  0.79014  0.79157  -0.00105  0.00038  -0.133  0.048  

10 0.87466  0.87357  0.87555  -0.00109  0.00089  -0.125  0.101  
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into the exact measurement vector ηex. The interval measurement vector η is obtained

from 3 sets of perturbed measurements ηj with device tolerance ±2 × 10−6 m. The

results are listed in Table 1. Note that η contains ηex, and uncertainties in η range

from 0.1% to 2%.

This problem has 10 measurements and 10 unknown element Young’s moduli Ej,

and it has an analytical solution. Since the bar is statically determined, axial forces in

each element equal to the concentrated traction P at the free end. Then Ej depends

upon the displacements uj, uj−1 of the neighboring nodes, viz.

N = EjA
uj − uj−1

Le
⇒ Ej =

NLe
A (uj − uj−1)

, (3.66)

where N = P = 100 kN is the axial force, A is the cross section area, Le = L/10 is

the element length, and u0 = 0 denotes the boundary condition at the hinged end.

The problem is well-posed, so no regularization is required. The initial guess

E = 60 GPa for all the elements. To reach convergence, 60 iterations are needed in
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Figure 3.2: Interval-based identification of Young’s moduli of the pin-roller bar of
Figure 3.1: exact values (solid lines with squares) and interval solution (dashed lines
with triangles), which is indistinguishable from the Monte Carlo predictions from an
ensemble of 10,000 simulations (measurement uncertainty level 0.1-2%).
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Table 3.2: Exact Young’s moduli and predicted values for the pin-roller bar of Figure
3.1. Relative differences (EN − EA)/EA × 100% for the lower and upper bounds of
the two interval solutions are also listed.

Element 

# 

Exact 

(GPa) 

EN (GPa) EA (GPa) Relative Diff. (%) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 110.0 108.37  110.59  108.39  110.59  -0.020  0.000 

2 122.1 117.00  125.37  117.27  125.37  -0.231  0.000 

3 129.7 127.48  138.52  127.90  138.52  -0.332  0.000 

4 121.7 117.91  122.30  117.98  122.30  -0.066  0.000 

5 114.0 113.30  114.80  113.31  114.80  -0.009  0.000 

6 114.5 113.63  117.22  113.68  117.22  -0.048  0.000 

7 109.9 105.39  110.75  105.52  110.75  -0.120  0.000 

8 101.2 98.12  104.08  98.28  104.08  -0.169  0.000 

9 106.1 104.91  110.63  105.05  110.63  -0.137  0.000 

10 119.8 116.99  121.95  117.09  121.95  -0.085  0.000 

the deterministic stage, and 12 iterations in the interval stage. The estimated and

exact solutions are plotted in Figure 3.2. In the figure, the lower and upper bounds

of the estimated solution are the dashed lines with triangular markers, and the exact

solution is the solid line with rectangular markers. Apparently, the exact values of

the Young’s moduli are contained by the interval bounds.

Table 3.2 compares the numerical solution EN from the proposed method against

the analytical solution EA from Eq. (3.66). The upper bounds of the two solutions

are identical, while the lower bounds of EN are always smaller than the lower bounds

of EA. In other words, EN guarantees to enclose EA. Exact Young’s moduli and

relative differences (EN −EA)/EA× 100% for the lower and upper bounds of the two

interval solutions are also included in the table.
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Note that the row of GFg corresponding to Young’s modulus Ej of the j -th element

has all of the entries close to zero, except those at columns corresponding to the

measurements uj and uj−1 at the neighboring nodes. In addition, the two entries

have similar magnitude and opposite sign. This is in agreement with the analytical

solution given in Eq. (3.66), that is: the modulus Ej of the j -th element is only a

function of uj and uj−1.
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Figure 3.3: A simply supported truss subject to concentrated loads.

3.6.2 Simply supported truss

The second example is a simply supported 15-bar truss, subject to concentrated loads,

as shown in Figure 3.3. Nodes of the truss are labeled from 1 to 9, and the bars are

labeled from 1 to 15. Horizontal load 60 kN is applied at node 2, vertical load 100

kN at node 3, horizontal load 30 kN and vertical load 100 kN at node 6. The bars

have uniform cross sections with area A = 0.005 m2. Each bar is modeled by one

planar truss element with constant material property, and the corresponding Young’s

modulus is denoted by short bars with circular markers in Figure 3.4. Here we assume

that bar 3 and 13 have been damaged, and their effective Young’s moduli are 80 GPa

and 60 GPa, respectively.

The same finite element model is used to generate the exact measurement data.
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Table 3.3: Exact and perturbed measurement data for the simply supported truss
of Figure 3.3. The device tolerance is ±1 × 10−5 m for nodal displacements, and
±1 × 10−6 for strains. Three sets of perturbed measurements are sampled to yield
the perturbed data.

 
Exact 

(10-3 m) 

Perturbed data (10-3 m) 

Lower 

Bound 

Uncer-

tainty (%) 

Upper 

Bound 

Uncer-

tainty (%) 

u2 0.7557 0.7532 -0.321 0.7586 0.382 

v2 -5.1714 -5.1732 -0.036 -5.1591 0.238 

u3 1.3922 1.3871 -0.369 1.4021 0.711 

v3 -7.6368 -7.6393 -0.032 -7.6349 0.025 

u4 2.8297 2.8141 -0.551 2.8310 0.047 

v4 -4.3003 -4.3045 -0.097 -4.2914 0.208 

u5 3.2930 3.2924 -0.019 3.3089 0.482 

 
Exact 

(10-4) 

Perturbed data (10-4) 

Lower 

Bound 

Uncer-

tainty (%) 

Upper 

Bound 

Uncer-

tainty (%) 

ε5 -2.3246 -2.3306 -0.256 -2.3210 0.155 

ε6 -0.6822 -0.6827 -0.078 -0.6674 2.161 

ε7 0.9664 0.9661 -0.025 0.9777 1.167 

ε8 1.0388 1.0309 -0.769 1.0456 0.648 

ε9 1.1427 1.1387 -0.346 1.1457 0.265 

ε10 1.1028 1.1000 -0.253 1.1043 0.133 

ε11 -1.4241 -1.4354 -0.795 -1.4213 0.199 

ε12 -1.3736 -1.3748 -0.088 -1.3591 1.058 
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To illustrate the performance of the current method under different forms of mea-

surements, nodal displacements of bottom nodes 2 to 5, as well as strains of medium-

height bars 5 to 12, are measured. The device tolerance is ±1 × 10−5 m for nodal

displacement measurements, and ±1× 10−6 for strain measurements. The measure-

ment vector η is obtained from 3 sets of perturbed ηj, and the results are shown in

Table 3.3. The uncertainties in η range from 0.06% to 2%, approximately.

This problem has 15 measurement and 15 unknowns. It is well-posed and no

regularizer is needed. The initial guess E = 60 GPa is used. 465 iterations are run

in the deterministic stage, and 12 iterations in the interval stage. In Figure 3.4, the

obtained interval solution (IS) is compared against the exact solution (ES) and Monte

Carlo (MC) predictions based on an ensemble of 10,000 simulations.

Clearly, both IS and MC predictions enclose the exact values of the Young’s mod-

uli, and IS contains MC. It is observed that the interval enclosures of IS are very

tight for elements 5 to 12, and very wide for elements 13 to 15. This is caused by the
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Figure 3.4: Interval-based identification of Young’s moduli of a simply-supported
truss of Figure 3.3: short bars with circular markers denote the exact values; the long
bars denote interval prediction from the proposed method; median-length bars with
circles denote Monte Carlo predictions from an ensemble of 10,000 simulations.
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Table 3.4: Exact and predicted Young’s modulus for the simply supported truss of
Figure 3.3. Relative error of the interval solutions from the proposed method and
Monte Carlo predictions from an ensemble of 10,000 simulations.

 

Young’s modulus E3 (GPa) Young’s modulus E4 (GPa) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Kalman 

Filters 

EKF 80.08  0.056  81.69  -0.209  116.62  0.348  123.68  -0.758  

UKF 77.24  -3.497  85.14  4.007  116.01  -0.175  126.17  1.240  

Proposed (IS) 80.02  -0.026  81.86  0.000  115.92  -0.253  124.63  0.000  

NL Program. (NLP) 80.04  --- 81.86  --- 116.21  --- 124.63  --- 

Monte Carlo (MC) 80.04  0.001  81.86  -0.001  116.22  0.003  124.62  -0.005  

Exact Solution (ES) 80.40  0.453  80.40  -1.781  124.10  6.788  124.10  -0.424  

 

Young’s modulus E8 (GPa) Young’s modulus E9 (GPa) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Kalman 

Filters 

EKF 100.87  -8.288  121.69  9.080  96.71  -7.826  114.48  8.444  

UKF 101.79  -7.453  126.06  12.998  97.13  -7.430  119.34  13.048  

Proposed (IS) 109.98  -0.010  111.56  0.000  104.92  -0.002  105.57  0.000  

NL Program. (NLP) 109.99  --- 111.56  --- 104.92  --- 105.57  --- 

Monte Carlo (MC) 109.99  0.000  111.56  0.000  104.92  0.000  105.57  0.000  

Exact Solution (ES) 110.70  0.648  110.70  -0.769  105.20  0.265  105.20  -0.346  

 

Young’s modulus E13 (GPa) Young’s modulus E14 (GPa) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Kalman 

Filters 

EKF 53.27  -10.836  67.79  6.307  103.15  -3.316  129.39  10.055  

UKF 51.52  -13.765  77.09  20.885  91.92  -13.843  121.61  3.440  

Proposed (IS) 59.61  -0.220  63.77  0.000  106.16  -0.495  117.57  0.000  

NL Program. (NLP) 59.74  --- 63.77  --- 106.68  --- 117.57  --- 

Monte Carlo (MC) 59.79  0.090  63.72  -0.082  106.93  0.227  117.18  -0.330  

Exact Solution (ES) 60.80  1.776  60.80  -4.659  113.50  6.389  113.50  -3.458  
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distribution of measurements. The strains of element 5 to 12 and the displacements of

the bottom nodes are directly measured. So the estimates on Ej (j = 1, . . . , 12), espe-

cially Ej (j = 5, . . . , 12), are more accurate than the estimates on Ej (j = 13, . . . , 15).

Table 3.4 compares the obtained estimates on the Young’s modulus Ej in detail.

In particular, E3, E4, E8, E9, E13, and E14 are chosen for display. Solutions obtained

from the proposed method (IS), Extended Kalman Filter (EKF), Unscented Kalman

Filter (UKF), and Monte Carlo prediction (MC) are compared against the reference

solution obtained from the nonlinear programming approach (NLP). From the table,

it is observed that:

1) The EKF does not guarantee to enclose the NLP. In contrast, the UKF guar-

antees to enclose the NLP, but the corresponding overesimation is large.

2) The proposed method guarantees to enclose the NLP with little overestimation.

In addition, the upper bounds of the esimates are exactly the same as those

obtained from NLP.

3) Different versions of NLP (the direct approach and explicit/implicit adjoint

approach) give identical results. However, the implicit adjoint approach is the

fastest, while the explicit adjoint approach is the slowest.

4) The Monte Carlo prediction obtained from an ensemble of 10,000 simulations

is contained by the NLP, thus underestimates the uncertainties.

5) All these methods contains the exact values.

 
q 

B C 

L, A, I 
 

Figure 3.5: A simply supported beam subject to uniformly distributed load.
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3.6.3 Simply supported beam

The third example is a simply-supported beam subject to uniformly distributed ver-

tical load q = 100 kN/m, as shown in Figure 3.5. The beam has a length L = 2 m,

and a 5 cm × 3 cm rectangular cross section (cross section area A = 0.015 m2 and

moment of inertia I = 1.125× 10−4 m4). The beam is subject to lateral deformation,

and 20 two-node Euler-Bernoulli beam elements are used in the finite element mesh.

The stiffness matrix is computed using the three-node Gaussian quadrature rule. In

order to generated a continuous material field, Young’s moduli at the quadrature

nodes are linearly interpolated from those at the material mesh nodes

E = 220 + 10 sin

(
6x

L

)
− 5 cos

(
13x

L

)
GPa, (3.67)
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Figure 3.6: The L-curve used to find the optimal regularization weight γ: (top)
normalized solution vector norm |α| vs. normalized residue vector norm |r|, (bottom)
curvature κ of the curve in the top subplot vs. the regularization weight γ. Each
circular marker corresponds a different weight γ, and the green rectangular marker
denotes the optimal weight γ ≈ 2× 10−3.
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where x is the nodal coordinate, and the values are given up to four significant digits.

The stiffness parameter vector α has 21 components, one for each mesh node.

In the first case, a finer 80-element finite element model is used to generate the

measurement data. Young’s moduli are linearly interpolated from the abovemen-

tioned 21-node material mesh. Further, 9 lateral deflections at equidistant points

along the beam are collected as measurements. The measurement vector η, which

has 9 components, is obtained from 3 sets of perturbed data ηj with device toler-

ance ±2× 10−6 m. The resulting η has uncertainties ranging from 0.1% to 1%, and

contains the exact measurement data.

The problem is ill-posed, since only 9 measurements are available to estimate 21

unknown parameters. This requires regularization. The regularizer weight γ should

be chosen with caution: it has to be large enough to avoid useless estimate or even

divergence with unbounded intervals, but not that large, otherwise the solution will be

over-smooth [62]. Here, a second-order regularization matrix R is used. To determine

the optimal γ, the famous L-curve method is used, as shown in Figure 3.6. According

to the figure, γ = 2× 10−3 is chosen as the regularization weight.

Then for the proposed method, the initial guess E = 160 GPa for all components

inα. Convergence is attained in 289 and 37 iterations in the deterministic and interval

stages, respectively. The interval estimates are compared against the exact Young’s

moduli from Eq. (3.67) and Monte Carlo predictions from an ensemble of 100,000

simulations. Figure 3.7 shows the exact solution (ES, solid lines with rectangular

markers), the interval solution (IS, dotted lines with triangular markers) and the

Monte Carlo prediction (MC, dashed lines with diamond markers). Observe that

IS indicates a high level of uncertainty near both ends, especially near the right end,

which is attributed to the relatively small bending moment near the ends. In addition,

both IS and MC guarantees to enclose ES everywhere, and IS contains MC.

In the second case, two opposing bending moments M = 50 kN·m are added to
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Figure 3.7: Interval-based identification of the Young’s moduli of the simply sup-
ported beam of Figure 3.5 under uniformly distributed load: interval solution (IS),
exact solution (ES) and Monte Carlo (MC) prediction from an ensemble of 100,000
simulations (measurement uncertainty level 0.1-1%).
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Figure 3.8: Interval-based identification of Young’s moduli of the simply supported
beam of Figure 3.5 under uniformly distributed load and bending moments at both
ends: interval solution (IS), exact solution (ES) and Monte Carlo (MC) prediction
from an ensemble of 100,000 simulations (measurement uncertainty level 0.1-1%).
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the ends B and C, in order to create a more uniform bending moment diagram for

the beam. In addition, rotation angles θB and θC at both ends are measured. The

device tolerance is now ±5 × 10−6 m for deflections and ±2 × 10−5 rad for θB and

θC . As a result, the level of uncertainty in η ranges from 0.1% to 1%, roughly the

same as in the first case. IS and MC predictions are compared against the exact

values ES in Figure 3.8. Note that the level of uncertainty at the ends is reduced

significantly. This is due to the additional bending moments at the ends and extra

measurements θB and θC . Indeed, the maximum level of uncertainty at the ends is

approximately 13% on the left and 23% on the right. In the previous case of Figure

3.7, the uncertainty levels are much higher, approximately 25% on the left and 56%

on the right. Near the mid-span, the level of uncertainty is slightly reduced from

about 8% in Figure 3.7 to about 5% in Figure 3.8.
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Figure 3.9: Influence of the reference measurement vector η0 in the interval-based
parameter identification of Young’s moduli of the simply supported beam of Figure
3.5: exact solution (solid line with circular marker), Monte Carlo prediction from an
ensemble of 100,000 simulations (dotted lines with square markers), lower and upper
bounds of the interval solution (solid lines with triangular markers). The lightest
lines correspond to the lower bound, viz. η0 = inf η and the darkest lines the upper
bound, viz. η0 = sup η.
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Figure 3.10: Comparison between the interval solution and Monte Carlo predic-
tion of the Young’s modulus E9 of the simply supported beam of Figure 3.5 from an
ensemble of 100,000 simulations: (left) observed probability density function (PDF)
of axial displacement measurement v6 sampled from (a) uniform, (b) truncated ex-
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Carlo predicted interval [min(E9) max(E9)] (square markers).
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In the previous discussions, the deterministic reference vector η0 is assumed to be

the midpoint of the interval measurement vector η. Figure 3.9 compares the interval

solutions obtained from the proposed method with different choices of η0, from the

lower bound η0 = inf η to the upper bound η0 = sup η. It is observed that the

midpoint values η0 = mid η yields the tightest bounds in general.

Finally, note that interval solutions guarantee to enclose all possible predictions

associated with different probabilistic distributions of the measurements, either sym-

metrical or not (see Figure 3.10).
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Figure 3.11: A two-bay two-story frame subject to uniformly distributed loads.

3.6.4 Two-bay two-story frame

The fourth example is a two-bay two-story planar frame hinged to the ground, subject

to uniformly distributed vertical loads on each floor, as shown in Figure 3.11. The

frame is composed of six columns and four beams, labeled as Cj (j = 1, . . . , 6) and

Bj (j = 1, . . . , 4), respectively. Connecting joints and supports are labeled from 1

to 9. Uniformly distributed vertical loads qj (j = 1, . . . , 4) are applied on Bj, where
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Table 3.5: Geometric and material properties for the members of the two-bay two-
story frame shown in Figure 3.11.

 Shape A (10-4 m2) I (10-8 m4) E (GPa)  Shape A (10-4 m2) I (10-8 m4) E (GPa) 

C1 W12×19 35.940 5411.00 210 B1 W27×84 160.000 118625.96 205 

C2 W14×132 250.320 63683.41 214 B2 W36×135 256.130 324660.51 208 

C3 W14×109 206.450 51612.70 205 B3 W18×40 76.130 25473.36 215 

C4 W10×12 22.835 2239.32 201 B4 W27×94 178.710 136107.68 214 

C5 W14×109 206.450 51612.70 204      

C6 W14×109 206.450 51612.70 206      

q1 = q2 = 109.45 kN/m and q3 = q4 = 51.08 kN/m.

Each member of the frame has uniform cross section and material property. The

corresponding cross section area A, moment of inertia I and Young’s modulus E are

listed in Table 3.5. Ten two-node Euler-Bernoulli beam elements are used to model

the frame, one for each member.

Measurement data used in the inverse algorithm is generated from the same 10-

element finite element model. Only nodal displacement uj, vj and rotation angle θj

at nodes 4 to 9 (i = 4, . . . , 9) are included in the measurement vector η. η is obtained

from 3 sets of perturbed measurements ηj, and the corresponding device tolerance is

±2 × 10−5 m for nodal displacements and ±2 × 10−5 rad for rotation angles. The

level of uncertainty in η ranges from approximately 0.1% to 1%, with the exception

of θ4 = [−1.2442, −0.9825]× 10−4 rad (22.2% uncertainty).

In this benchmark case, 18 measurements (6 nodes × 3 DOF) are used to predict

the Young’s moduli E of the 10 members. The problem is well-posed and no reg-

ularizer is required. Initial guess E = 160 GPa is used. The results are compared

with the exact values and the Monte Carlo prediction with 10,000 runs in Figure

3.12, following the same guidelines as in Figure 3.4 of the simply-supported truss.
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Figure 3.12: Interval-based identification of Young’s moduli of the two-bay two-
story frame in Figure 3.11: short bars with circular markers denote the exact values;
long bars denote interval predictions from the proposed method; median-length bars
denote the Monte Carlo predictions from an ensemble of 10,000 simulations (mea-
surement uncertainty level 0.1-1%).
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Figure 3.13: Interval-based identification of the Young’s moduli of the two-bay two-
story frame in Figure 3.11 using more accurate measurements in v4 and v7 than those
used in Figure 3.12: short bars with circular markers denote the exact values; long
bars denote interval prediction from the proposed method; median-length bars denote
the Monte Carlo prediction from an ensemble of 10,000 simulations (measurement
uncertainty level 0.1-1%).
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Observe that the interval solution provides a guaranteed enclosure of both the exact

and Monte Carlo solutions.

In Figure 3.12, note that the width of the interval estimate E4 for the Young’s

modulus of the left column C4 on the upper floor, is much wider than other estimates.

The wide enclosure is mainly caused by the lateral displacements v4 and v7 at nodes

4 and 7, viz. the vertical displacement of the column C4. They are modeled by two

intervals with about 1% uncertainty, i.e. v4 = [−2.3599, −2.3399] × 10−3 m and

v7 = [−3.4548, −3.4186]× 10−3 m. In order to obtain a narrower interval prediction

for E4, the accuracy of the measurements v4 and v7 is increased, and the level of

uncertainty is reduced to about 0.2%, i.e. v4 = [−2.3515, −2.3465] × 10−3 m and

v7 = [−3.4378, −3.4288]× 10−3 m. The results are depicted in Figure 3.13, showing

a significant increase in the accuracy of the predicted value for E4. In particular, the

previous estimate in Figure 3.12 is E4 = [193.09, 207.39] GPa (7.1% uncertainty),

and that in Figure 3.13 is E4 = [197.72, 203.34] GPa (2.8% uncertainty).

3.7 Summary

In this chapter, for the first time structural inverse problems under uncertainty is

solved using an interval-based inverse solver. Uncertainties in the system are modeled

by intervals, and IFEM is exploited. The resulting inverse algorithm stems from

an adjoint-based optimization formulation, and it provides an interval estimate of

the unknown parameters (e.g. element Young’s moduli). The associated nonlinear

interval equations are solved by means of a new variant of the iterative enclosure

method. In addition, overestimation is reduced by means of the decomposition of the

IFEM matrices, which limits multiple occurrences of the same variable by separating

deterministic and interval terms.

The interval solution from the current solver guarantees to enclose the exact pa-

rameters, as confirmed by several numerical benchmark problems. In addition, the
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interval solution guarantees to enclose the reference solution obtained from the non-

linear programming approach and the Monte Carlo predictions, and the results are

independent on the actual probability characteristics of the uncertainties used in the

analysis. The performance of the current method is also superior to the nonlinear

Kalman filters that are widely used in parameter identifications.
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CHAPTER IV

FREQUENCY RESPONSE AND MODAL ANALYSIS OF

STRUCTURAL DYNAMIC PROBLEMS BY INTERVALS

In this chapter, the interval forward solver outlined before is extended to structural

dynamic problems. The frequency responses, natural frequencies and modal shapes

of the structure with uncertain parameters are analyzed using Interval Finite Element

Method (IFEM). In the frequency response analysis [31, 51, 99, 108, 124, 125, 155],

the following complex interval linear system is solved

(−ω2M + iωC + K)u = f , (4.1)

where i =
√
−1 is the imaginary unit, ω is the angular frequency under consideration,

M, C, and K are respectively the mass, damping, and stiffness matrix of the structure,

u is the unknown nodal displacement vector, and f is the nodal equivalent load. Note

that u and f are complex interval vectors. The goal is to compute an interval enclosure

of the stationary response u at given frequency ω, as well as interval enclosures of

derived quantities such as generalized strain ε and generalized stress σ,

ε = Bu, σ = Su, (4.2)

where B and S are the generalized strain- and stress-displacement matrix.

In the modal analysis of the structure, the following Interval Generalized Eigen-

value Problem (IGEP) [65, 82, 83, 95, 96] is solved,

(K− ω2M)u = 0, (4.3)

where ω is the natural angular frequency measured in rad/s (with ω2 being the

generalized eigen-value of the system), u is the corresponding modal shape (or the

corresponding generalized eigen-vector).
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In the following sections, interval forward solvers are developed to provide guar-

anteed interval enclosures of the stationary responses at given frequencies, as well as

the natural frequencies and modal shapes, for elastic structures with uncertainties

in load and material. The proposed method is based on the new matrix decomposi-

tion outlined in Chapter 2 and new variants of iterative enclosure method specifically

designed. In addition, the nonlinear programming techniques are implemented to

provide reference solutions for comparison. Finally, several numerical examples are

presented to illustrate the performance and computational efficiency of the proposed

IFEM algorithm.

4.1 Frequency Response Analysis

In the interval-based frequency response analysis, the goal is to solve the complex

interval linear system Eq. (4.1), and obtain guaranteed interval enclosures on the

primary quantity u, as well as derived quantities such as the strain vector ε and the

stress vector σ [88]. For simplicity, the Rayleigh damping is adopted. Thus

C = αdM + βdK, (4.4)

where αd and βd are the Rayleigh damping coefficients. More discussions on the

Rayleigh damping can be found in Appendix B.

To reduce overestimation in the final solution, the matrix decomposition strategy

is presented for IFEM interval vectors and matrices. Derived quantities are solved

simultaneously as the primary variables u [119]. Then a new variant of the iterative

enclosure method is presented, which provides guaranteed enclosures of the structural

frequency response. The excitation can be either external loads or ground motion,

and both the circular and rectangular representation of complex interval variables are

considered. The final enclosures are expressed in either Cartesian (real and imaginary

parts) or polar (amplitudes and phases) form. In the following subsections, these

topics are discussed in detail.
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4.1.1 Interval matrix decomposition

The matrix decomposition strategy aims at reducing overestimation when solving the

complex interval linear system Eq. (4.1) by limiting multiple occurrences of the same

interval variables. In particular, the stiffness matrix K and the stress-displacement

matrix S are decomposed in accordance with Eqs. (2.3) and (2.4), viz.

K = Adiag(Λα)AT ; (4.5)

S = Φsdiag(Λsα)ATs ,

where A, Λ, Φs, Λs, and As are deterministic matrices, and α is the interval stiffness

parameter vector that accounts for the material uncertainties in the stiffness matrix

K. For the mass matrix M, the decomposition is similar to that of K, that is

M = Amdiag(Λmαm)ATm, (4.6)

where Am and Λm are deterministic matrices, and αm is the mass parameter vector

that accounts for the material uncertainties in M. In practice, the decomposition of

M is obtained from the same procedure as in the case of K. First the element mass

matrix Me is computed. Its decomposition yields the element matrices Ame, Λme, and

αme. They are further assembled into their global counterparts Am, Λm, and αm.

For example, consider the decomposition of Me for the standard 8-node rectan-

gular isoparametric elements in plane stress/strain problem. Assume uncertainties in

the mass density ρ, and

Me =

∫
Ω

ρ(ξ)NT
e (ξ)Ne(ξ)t(ξ)dΩ, (4.7)

where the integration domain Ω is just the entire element, Ne is the element shape

function matrix, and t is the thickness of the element. The integral above is evaluated

via a 3×3 numerical integration rule, that is

Me =
9∑
j=1

wjJ(ξj)ρ(ξj)N
T
e (ξj)Ne(ξj)t(ξj), (4.8)
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where ξj are wj are the coordinates and weights for all the integration points, and J

is the determinant of the Jacobian of the coordinate transformation between the local

and global reference systems. Following the same procedure adopted to decompose

Ke, the summation in Eq. (4.8) is rewritten into a matrix form

Me =

{
NT
e (ξ1) · · · NT

e (ξ9)

}
(4.9)

(w1J1t1)I2×2ρ1

. . .

(w9J9t9)I2×2ρ9



Ne(ξ1)

...

Ne(ξ9)

 ,

where the subscripts j denotes variables evaluated at the j -th integration point. Then

the decomposition of Me follows as

Me = Amediag(Λmeαme)A
T
me, (4.10)

where deterministic matrices Ame, Λme and interval vector αme are given by

Ame =

{
NT
e (ξ1) · · · NT

e (ξ9)

}
;

Λme =


w1J1t1e2

. . .

w9J9t9e2

 , αme =


ρ1

...

ρ9

 .

(4.11)

Note that e2 is an 2 × 1 vector with all entries set to 1. The length of the vector en

equals the number of translational Degrees of Freedom (DOF) at each node.

For the nodal equivalent load vector f , when the structure is excited by external

loads, the decomposition is given in Eq. (2.3), viz.

f = Fδ, (4.12)

where F is a deterministic matrix and δ is the load uncertainty vector that accounts

for the load uncertainty in f . When the excitation is caused by ground motion, the

corresponding nodal equivalent load

f = −Ma = −Mqδ, (4.13)
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where δ denotes the ground acceleration, a represents the nodal acceleration of the

structure caused by the ground acceleration, and q relates δ to a, viz. a = qδ. Noting

the decomposition of M in Eq. (4.6),

f = −Amdiag(Λmαm)ATmqδ (4.14)

= Amdiag (Λmαm)Bfδ,

where Bf = −ATmq.

Then the complex interval linear system Eq. (4.1) is transformed into a fixed-

point form using the matrix decompositions discussed above, and solved by a new

variant of iterative enclosure method, as detailed in the following subsections.

4.1.2 Interval governing equations

According to Eq. (4.1), the effective stiffness matrix of the system is given by

Keff = (−ω2M + iωC + K). (4.15)

Since the Rayleigh damping is adopted,

Keff = (−ω2 + iαdω)M + (1 + iβdω)K. (4.16)

This can be decomposed such as

Keff = Aeffdiag(Λeffαeff)Beff, (4.17)

where

Aeff =
{

(1 + iβdω)A (−ω2 + iαdω)Am

}
;

Λeff =

Λ 0

0 Λm

 , αeff =

 α

αm

 , Beff =

ATATm
 .

(4.18)

Note that the matrix decomposition in Eq. (4.17) is not symmetric since Beff 6= ATeff.

Following the way essential boundary conditions are applied in static problems,

the IFEM equations associated with the structural system are obtained by combining
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the equilibrium equation Keffu + CTλ = f and the constraint equation Cu = 0 (see

Section 2.1.3.1 for detail), where C is the constraint matrix, and λ is the Lagrangian

multiplier representing the internal forces and support reactions. When the structure

is excited by external loads and f = Fδ, the governing equations are given byKeff CT

C 0


u

λ

 =

F0
 δ. (4.19)

Using the decompositions for Keff in Eq. (4.17), the above equation is recast intoAeff

0

 diag
(
Λeff∆αeff

){
Beff 0

}
(4.20)

+

Keff 0 CT

C 0


u

λ

 =

F0
δ,

where ∆αeff is the difference between αeff and the reference vector αeff0, viz. ∆αeff =

αeff−αeff0, and Keff 0 = Aeffdiag(Λeffαeff0)Beff. Preferably, αeff0 = mid αeff, where mid

denotes the midpoint value of an interval variable. By moving the first term in Eq.

(4.20) to the right-hand side, the following equivalent form is obtainedKeff 0 CT

C 0


u

λ

 =

F0
δ −

Aeff

0

 diag
(
Beffu

)
Λeff∆αeff, (4.21)

where the following identity has been used

diag
(
Λeff∆αeff

)
Beffu = diag

(
Beffu

)
Λeff∆αeff. (4.22)

When the structure is excited by ground acceleration, f is decomposed in accor-

dance with Eq. (4.14), which can be rewritten into

f = Amdiag (Λmαm0)Bfδ + Amdiag (Λm∆αm)Bfδ (4.23)

= F0δ + Amdiag (Bfδ) Λm∆αm,

where ∆αm is the difference between αm and the reference vector αm0, and the

deterministic matrix F0 = Afdiag (Λmαm0)Bf . Again, preferrably, αm0 = mid αm.
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By rewriting the generalized equivalent load of the system intof

0

 =

F0

0

δ +

Af0
 diag (Bfδ) Λm∆αm, (4.24)

and noting that Λm∆αm =
{

0 Λm

}
∆αeff, the following equivalent governing equa-

tion is obtainedKeff 0 CT

C 0


u

λ

 =

F0

0

δ (4.25)

−

Aeff Am

0 0

 diag

Beffu

−Bfδ


 Λeff

0 Λm

∆αeff.

To compute the derived quantities such as the strain vector ε and the stress

vector σ, the strain and stress equations Bu − ε = 0 and Su − ε = 0 are added to

the governing equation. For instance, when the structure is excited by external loads

and f = Fδ, the governing equation becomes

Keff CT 0 0

C 0 0 0

B 0 −I 0

S 0 0 −I





u

λ

ε

σ


=



F

0

0

0


δ, (4.26)

which is equivalent to the following equation

Keff 0 CT 0 0

C 0 0 0

B 0 −I 0

S0 0 0 −I





u

λ

ε

σ


=



F

0

0

0


δ (4.27)

−



Aeff 0

0 0

0 0

0 Φs


diag


Beffu

ATs u



 Λeff

Λs 0

∆αeff.
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The above formulation can be extended to cases when the response is caused by

ground acceleration.

In the previous discussions, the circular representation is used for the complex

interval variables, in which each interval represents a circle in the complex plane (see

Section 1.2.1.2 for detail). Alternatively, the rectangular representation can be used,

in which the real and imaginary parts of the interval variables are modeled separately

and each interval represents a rectangle in the complex plane. To implement the

rectangular representation, all the complex interval variables are separately modeled

by their real and imaginary parts, respectively. For instance, the nodal displacement

vector u has the following two equivalent representations:

u = uR + iuI , ⇒ uC =

uR

uI

 , (4.28)

where superscripts R and I denote the real and imaginary parts of the interval vari-

able, respectively, and superscript C denotes variables used in the realization. The

decomposition of the nodal equivalent load f yields

f = FRδ + iF Iδ, ⇒ fC = FCδ =

FR

F I

 δ. (4.29)

For the constraint equation Cu = 0,

Cu = CuR + iCuI = 0, ⇒ CCuC =

C 0

0 C


uR

uI

=

0

0

. (4.30)

Thus, the realized matrices FC and CC are defined as

FC =

FR

F I

 , CC =

C 0

0 C

 . (4.31)

Similarly, the realized effective stiffness matrix KC
eff is given by

KC
eff =

 K− ω2M −ω(αdM + βdK)

ω(αdM + βdK) K− ω2M

 (4.32)
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which can be decomposed into

KC
eff = ACeffdiag(ΛC

effαeff)BC
eff, (4.33)

with

ACeff =

 A −(βdω)A −ω2Am −(αdω)Am

(βdω)A A (αdω)Am −ω2Am

 ;

ΛC
eff =



Λ 0

Λ 0

0 Λm

0 Λm


, BC

eff =



AT 0

0 AT

ATm 0

0 ATm


.

(4.34)

Note that the realized effective stiffness matrix KC
eff is not symmetric, and BC

eff 6= ACTeff .

Then the governing equation is given byKC
eff 0 CCT

CC 0


uC

λC

 =

FC

0

δ, (4.35)

where λC contains the real and imaginary parts of the Lagrangian multiplier λ. The

corresponding decomposed form is given byKC
eff 0 CCT

CC 0


uC

λC

 =

FC

0

δ −
ACeff

0

 diag
(
BC

effuC
)
Λeff∆αeff. (4.36)

Apparently, the formulation can be extended to account for ground acceleration and

derived quantity calculation.

4.1.3 Iterative enclosure method

To solve the interval linear systems Eqs. (4.21), (4.25), (4.27), and (4.36), they are

recast into the following compact form

Kgug = Fgδ − Agdiag(vg)Λg∆αeff, (4.37)

where Kg, Fg, Ag, Λg are given deterministic matrices, ug is the unknown interval

vector, δ and ∆αeff are given interval vectors, and vg is linearly dependent on ug, viz.
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vg = v0 + Bgug. In the most general case, ug includes all the primary and derived

variables such as u, λ, ε, and σ, and vg includes additional auxiliary variables Beffu,

−Bfδ, and ATs u.

Now introduce G = K−1
g as the generalized flexibility matrix for the system. A

fixed-point form for vg is obtained as

vg = v0 + (BgGFg)δ − (BgGAg)diag(vg)Λg∆αeff. (4.38)

Following the general procedure of iterative enclosure method (see Section 2.2 for

more details), a guaranteed outer enclosure for the fixed-point vg is obtained using

the following iterative scheme

vj+1
g = v0 + (BgGFg)δ − (BgGAg)diag(vjg)Λg∆αeff. (4.39)

where subscripts j denote the j -th iteration. The trivial initial guess v1
g = v0 +

(BgGFg)δ is used at the beginning. The iteration stops when no improvement in vjg

is observed for two consecutive iterations, and the converged solution is denoted as

vng . Then the outer solution

uoutg = (GFg)δ − (GAg)diag(vng )Λg∆αeff. (4.40)

Up to now, the discussion is restricted to the real and imaginary parts (the Carte-

sian form) of complex interval variables. However, magnitude and phase angle (the

polar form) of a complex interval variable are also important. Here special algorithms

are developed to compute a guaranteed enclosure of the magnitudes and phase angles

of the solution vector ug without unnecessary overestimation.

When the circular representation is adopted, the magnitudes and phase angles

are computed after the outer solution is computed. For example, given the complex

nodal displacement vector u in circular form, its magnitude is given by

|u| =
[
|mid u| − rad u, |mid u|+ rad u

]
, (4.41)
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where | | denotes the magnitude of a complex variable, mid and rad denote the

midpoint and radius of an interval, respectively. The associated phase angle

arg(u) =


arg(mid u)− sin−1

(
rad u

|mid u|

)
,

arg(mid u) + sin−1

(
rad u

|mid u|

)
 , (4.42)

where arg( ) is the phase angle of a complex variable.

When the rectangular representation is adopted, to reduce overestimation, Eq.

(4.40) is reformulated to directly express the magnitudes and phase angles in terms

of δ, ∆αeff, and vng . For example, to compute the magnitude of the nodal displacement

u, first compute

|u|2 =
(
uR
)2

+
(
uI
)2

= |u0|2 +
(
uR + uR0

)
◦∆uR +

(
uI + uI0

)
◦∆uI , (4.43)

= |u0|2 + diag
(
uR + uR0

)
∆uR + diag

(
uI + uI0

)
∆uI ,

where superscripts R and I denote the real and imaginary parts of the interval variable,

respectively, u0 is a reference vector, and ∆u is the difference between u and u0, viz.

∆u = u− u0. Then the real and imaginary terms in Eq. (4.40) are separated,
uR = (GFg)

Rδ − (GAg)
Rdiag(vg)Λg∆αeff;

uI = (GFg)
Iδ − (GAg)

Idiag(vg)Λg∆αeff.

(4.44)

where the superscripts R and I denote the rows in GFg and GAg corresponding to uR

and uI , respectively. Inserting Eq. (4.44) into Eq. (4.43) yields

|u|2 = |u0|2 +

 diag(uR + uR0 )(GFg)
R

+ diag(uI + uI0)(GFg)
I

∆δ (4.45)

−

 diag(uR + uR0 )(GAg)
R

+ diag(uI + uI0)(GAg)
I

 diag(v)Λg∆αeff,

where ∆δ = δ − δ0, and δ0 is used to compute the reference vector u0. Then |u| is

obtained by taking the square root of |u|2.
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Similarly, for the phase angle arg (u), by using the following guaranteed interval

approximation

arg (u) = arg (u0)− uI0 ◦∆uR

|u0| ◦ |u|
+
uR0 ◦∆uI

|u0| ◦ |u|
, (4.46)

the interval phase angle arg (u) is obtained as

arg (u) = arg (u0) +

−diag
{
uI0/(|u0|◦|u|)

}
(GFg)

R

+ diag
{
uR0 /(|u0|◦|u|)

}
(GFg)

I

∆δ (4.47)

−

−diag
{
uI0/(|u0|◦|u|)

}
(GAg)

R

+ diag
{
uR0 /(|u0|◦|u|)

}
(GAg)

I

 diag(v)Λg∆αeff.

The magnitudes and phase angles for other variables, such as the Lagrangian

multiplier λ, strain ε, and stress σ, are obtained in the same way as u.

4.2 Natural Frequency and Modal Shape Analysis

In the interval-based modal analysis, interval enclosures of the natural frequencies

and modal shapes of a given elastic structure with uncertain material properties are

obtained by solving the Interval Generalized Eigenvalue Problem (IGEP) in Eq. (4.3).

To reduce overestimation, the interval matrix decomposition is adopted, and a special

version of iterative enclosure method is developed to solve the IGEP. In the following

subsections, the proposed method is presented in detail.

4.2.1 Interval governing equations

In the proposed method, the stiffness matrix K and the mass matrix M are decom-

posed in accordance with Eqs. (4.5) and (4.6), viz.

K = Adiag(Λα)AT ; (4.48)

M = Amdiag(Λmαm)ATm,

where interval parameter vectors α and αm model uncertainties in the stiffness and

mass of the structure, respectively.
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To maintain the decomposition forms in Eq. (4.48), the compatibility conditions

and essential boundary conditions are imposed by means of the constraint equation

Cu = 0 (see Section 2.1.3.1 for detail). Thus the natural frequency ω and the

corresponding modal shape u of the structure satisfyK CT

C 0

− ω2

M 0

0 0


u

λ

 =

0

0

 , (4.49)

where λ is the Lagrangian multiplier associated with the constraint equation Cu = 0,

which denotes internal forces and support reactions.

To solve the IGEP in Eq. (4.49), consider the deterministic system obtained

by replacing K and M with their respective midpoint values. The corresponding

deterministic solution ω0, u0, and λ0 can be obtained from any generalized eigen-

value problem solver, which satisfyK0 CT

C 0

− ω2
0

M0 0

0 0


u0

λ0

 =

0

0

 , (4.50)

where K0 = Adiag(Λα0)AT and M0 = Amdiag(Λmαm0)ATm, α0 and αm0 are the

midpoint of α and αm, respectively. To uniquely determine u0, additional constraint

uT0M0u0 = 1 is imposed. Now define the auxiliary variables

∆α = α− α0, ∆αm = αm − αm0;

∆ω2 = ω2 − ω2
0, ∆u = u− u0, ∆λ = λ− λ0

(4.51)

to represent the difference between the interval vectors and their respective reference

solutions. Then the following equalities hold

Ku = K0u0 +K0∆u + ∆Ku;

ω2Mu = ω2
0M0u0 + ω2

0M0∆u + ∆ω2M0u0 (4.52)

+ ∆ω2M0∆u + ω2∆Mu.
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Then Eq. (4.49) is equivalent to−M0u0 K0 − ω2
0M0 CT

0 C 0




∆ω2

∆u

∆λ

 =

M0

0

∆u∆ω2 (4.53)

−

A Am

0 0

diag

 ATu

ω2ATmu


Λ 0

0 Λm


 ∆α

∆αm

 .

by using the following identities

∆Ku− ω2∆Mu = Adiag(Λ∆α)ATu− ω2Amdiag(Λm∆αm)ATmu

= Adiag(ATu)Λ∆α− Amdiag(ω2ATmu)Λm∆αm (4.54)

=

A Am

0 0

diag

 ATu

ω2ATmu


 Λ∆α

Λm∆αm

 ,

and Eq. (4.50). Eq. (4.53) can be brought into the following compact form

{
−Mbu0 Kb

}
∆ω2

∆u

∆λ

 = Mb∆u∆ω2 − Abdiag

 ATu

ω2ATmu


Λeff∆αeff, (4.55)

by introducing the following block matrices

Kb =

K0 − ω2
0M0 CT

C 0

 , Mb =

M0

0

 ;

Ab =

A Am

0 0

 , Λeff =

Λ 0

0 Λm

 , ∆αeff =

 ∆α

∆αm

 .

(4.56)

Eq. (4.55) can be solved by the iterative enclosure method presented below.

4.2.2 Iterative enclosure method

To apply the iterative enclosure method to the interval nonlinear system Eq. (4.53),

it must be transformed into a fixed-point form with respect to the unknown interval

variables ∆ω2, ∆u, and ∆λ, which are given by

∆ω2 = (GωMb)∆u∆ω2 − (GωAb)diag

 ATu

ω2ATmu


Λeff∆αeff, (4.57)
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and ∆u

∆λ

 = (GuMb)∆u∆ω2 − (GuAb)diag

 ATu

ω2ATmu


Λeff∆αeff, (4.58)

where Gω = −
{
uT0 λT0

}
, and Gu is defined as

Gu =

Kb + γ

u0

λ0

uT0M
T
b

−1(
I −Mbu0

{
uT0 λT0

})
, (4.59)

where the constant γ is used to adjust the conditioning number of the matrix to be

inverted. The detailed derivation for Eqs. (4.57) and (4.58) is included in Appendix

C. To further reduce overestimation, introduce the auxiliary variablesAT∆u

ATm∆u

 =

AT 0

ATm 0


∆u

∆λ

 = ATb

∆u

∆λ

 , (4.60)

and from Eq. (4.58),AT∆u

ATm∆u

 = (ATb GuMb)∆u∆ω2 − (ATb GuAb)diag

 ATu

ω2ATmu


Λeff∆αeff. (4.61)

As a result, the number of multiple occurrences of the same interval variables is

minimized, the essential key step to reduce overestimation due to interval dependency

[101]. From Eqs. (4.57), (4.58), and (4.61), the final fixed-point equations have the

following compact form

∆ug = (GMg)∆u∆ω2 − (GAg)diag

 ATu

ω2ATmu


Λeff∆αeff, (4.62)

where

∆ug =



∆ω2

∆u

∆λ

AT∆u

ATm∆u


, GMg =


GωMb

GuMb

ATb GuMb

 , GAg =


GωAb

GuAb

ATb GuAb

 . (4.63)
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To solve Eq. (4.62), the following iterative scheme is used,

∆uj+1
g = (GMg)∆uj(∆ω2)j − (GAg)diag

 ATuj

(ω2)jATmuj


Λeff∆αeff, (4.64)

where ∆uj+1
g is the interval solution at the (j+1)-th iteration, and ∆uj and (∆ω2)j

are entries of ∆ujg from the previous iteration. Moreover,

(ω2)j = ω2
0 + (∆ω2)j,

ATuj

ATmuj

 =

ATu0

ATmu0

+

AT∆uj

ATm∆uj

 (4.65)

The initial guess at j = 1 is set as

∆u1
g = −(GAg)diag

 ATu0

ω2
0A

T
mu0


Λeff∆αeff, (4.66)

and the iterations stop when there is no solution improvement after two consecutive

steps, viz. when ∆un+1
g = ∆ung . Now, denote the corresponding converged solution

as ∆ung . Then the outer solution uoutg = ug0 + ∆ung is obtained. The solution uoutg

includes the squared angular frequency ω2 and the associated modal shape u. The

angular frequency ω is obtained as the square root of ω2, and can be transformed

into the (temporal) frequency f measured in Hz, viz. f =
1

2π
ω.

To further reduce overestimation in Eq. (4.64), the deterministic matrix GMg

and the interval matrix (GAg)diag

({
ATuj

(ω2)jATmuj

})
Λeff have to be computed before

multiplying each of them by the interval vectors ∆uj(∆ω2)j and ∆αeff, respectively.

The aforementioned procedure can be repeated to obtain all interval natural fre-

quencies and modal shapes, by choosing the corresponding deterministic frequency

ω0 and modal shape u0 (and the Lagrangian multiplier λ0) that satisfy Eq. (4.50).

4.3 Nonlinear Programming Approach

In the nonlinear programming approach, constrained optimization techniques are im-

plemented to solve for the stationary responses under given frequencies, as well as
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the natural frequencies and the corresponding modal shapes of the structure. The

goal is to provide a reference solution to compare with the proposed method. In this

section, real numbers are used exclusively, i.e. no interval or complex numbers are

involved in the computation.

4.3.1 Frequency responses

In the frequency response analysis, the stationary responses under given frequency

ω are computed. The solution vector x includes the load uncertainty vector δ, the

parameter vector αeff, the nodal displacement u, and the Lagrangian multiplier λ:

x =
{
δT αTeff uCT λCT

}T
, (4.67)

where αeff contains the stiffness and mass parameter vectors α and αm, uC contains

the real and imaginary parts of the nodal displacement vector, and so does λC .

To compute the lower (or upper) bound of the real part of the j -th component of

the nodal displacement vector uRj , the corresponding objective functional Ω has the

following general form

Ω = cuR, or − cuR, (4.68)

where c is a row vector, whose only non-zero component is unity at the j -th compo-

nent. For the j -th component of the stress or strain vector, the objective functional

Ω has the same form as in Eq. (4.68), with c = Sj or Bj being the j -th row of the

stress- and strain-displacement matrices S and B, respectively. For the imaginary

part of the unknown quantities, the real part uR is substituted with the imaginary

part uI . For the magnitudes or the phase angles,

‖Ω‖ =
√

(ΩR)2 + (ΩI)2; (4.69)

or arg(Ω) = atan2
(
ΩI ,ΩR

)
,

where atan2( ) denotes the arctangent function with two arguments.
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Equality constraints include equilibrium equations and essential boundary condi-

tions, which are collectively given by KC
effu

C + CCTλC = FCδ;

CCuC = 0.
(4.70)

where KC
eff is the effective stiffness matrix parameterized by αeff, as in Eq. (4.17).

Further, the inequality constraints require that the load uncertainty vector δ and the

parameter vectors αeff vary within their respective interval bounds: δ ≤ δ ≤ δ;

αeff ≤ αeff ≤ αeff,
(4.71)

where a and a denote the lower and upper bounds of an interval a, respectively.

Then standard MATLAB optimization toolbox is used to solve the problem, in which

gradients are used to accelerate convergence. The method can be extended to cases

when the structure is excited by ground motion.

4.3.2 Natural frequencies and modal shapes

To compute the natural frequencies and their respective modal shapes, the solution

vector x includes the parameter vector αeff, the natural frequency ω, the modal shape

u, and the Lagrangian multiplier λ, viz.

x =
{
αTeff ω2 uT λT

}T
. (4.72)

Note that the square of natural frequency ω2 is treated as a single variable. To

compute the lower (upper) bound of ω2, u, or λ, the objective functional Ω to be

minimized takes one of the following forms:

Ω = cx, or − cx, (4.73)

and c is a constant row vector. In particular, c is zero except for the j -th component,

which can be either the squared natural frequency ω, or the modal shape u, or the

Lagrangian multiplier λ.
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The equality constraint requires: i) the structure is in equilibrium, ii) essential

boundary conditions are satisfied, and iii) nodal displacement vector is normalized

by the mass matrix M, viz.
(K − ω2M)u+ (1− ω2)CTλ = 0;

Cu = 0;

uTMu− 1 = 0.

(4.74)

In addition, the inequality constraints are given by

αeff ≤ αeff ≤ αeff, (4.75)

where αeff and αeff denote the lower and upper bounds of αeff, respectively.

4.4 Numerical Examples

The proposed IFEM algorithm is coded in INTLAB [122], which is an interval arith-

metic extension package developed in the MATLAB environment. To test the per-

formance of the proposed method, the frequency responses, natural frequencies, and

modal shapes are computed for several sample structures: i) a five story rigid frame,

ii) a cantilever beam, iii) a plate with a circular cutoff, and iv) a gable frame. The In-

terval solutions (IS) obtained from the proposed method are compared against those

obtained from: i) the endpoint combination method (EC [109]), ii) Monte Carlo

predictions (MC) and iii) nonlinear programming approach (NLP). Material uncer-

tainties in both stiffness and mass are considered. For the frequency response analysis,

the excitation can be either external loading or ground motion. The computations

are carried out on a PC with Intel Core2 Duo, CPU E8400, 3GHz with 4GB RAM

under Windows 7. Numerical results show that IS guarantees to enclose the reference

solution (NLP), and the corresponding computation time is negligible when compare

with other available methods.
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Table 4.1: Interval mass and stiffness for the five-story rigid frame of Figure 4.1,
including 7%-11% uncertainties in mass, and 1%-3% uncertainties in stiffness.

Floor 
Mass (kg) Stiffness (N/m) 

mj mid mj rad mj kj mid kj rad kj 

1 [29, 31] 30 1 [2000, 2020] 2010 10 

2 [26, 28] 27 1 [1800, 1850] 1825 25 

3 [26, 28] 27 1 [1600, 1630] 1615 15 

4 [24, 26] 25 1 [1400, 1420] 1410 10 

5 [17, 19] 18 1 [1200, 1210] 1205 5 

 

m1 u1 

k1 

m2 u2 

k2 

m3 u3 

k3 

m4 u4 

k4 

m5 u5 

k5 

m1 

m2 

m3 

m4 

m5 

k1 

k2 

k3 

k4 

k5 

 

Figure 4.1: A five-story rigid frame and the equivalent spring-mass system.

130



4.4.1 Five-story rigid frame

In the first example, the five-story frame of Figure 4.1 is considered, adopted from

the work of Sim, et al. [130]. The frame floors are assumed rigid enough to model

the structure as an equivalent spring-mass system with 5 Degrees of Freedom (DOF)

(see right-hand side of Figure 4.1). The mass mj and shear stiffness kj (j = 1, . . . , 5)

of each floor are modeled as independent interval variables (see Table 4.1).
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Figure 4.2: Real (top) and imaginary (bottom) parts of the frequency response
function −ω2H55(f) for the five-story frame of Figure 4.1: IS (solid lines) from the
proposed method, EC (dashed lines), and MC (dash-dotted lines) from an ensemble of
10,000 simulations. Material uncertainty is 7%-11% for mass, and 1%-3% for stiffness.
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Table 4.2: Natural frequencies of the five-story frame of Figure 4.1. IS = Interval
solution from the proposed method, MC = Monte Carlo solution from an ensemble
of 10,000 simulations, and EC = endpoint combination reference solution. Material
uncertainty is 7%-11% for mass, and 1%-3% for stiffness.

 
1st-order frequency f1, (Hz) 2nd-order frequency f2, (Hz) 

f̱1 Error (%) f̅1 Error (%) f̱2 Error (%) f̅2 Error (%) 

Simon et al. [130] 0.3420 -11.228 0.4454 9.741 1.0160 -1.528 1.0992 1.490 

Proposed (IS) 0.3842 -0.275 0.4060 0.034 1.0281 -0.359 1.0845 0.129 

Reference (EC) 0.3852 --- 0.4058 --- 1.0318 --- 1.0831 --- 

Monte Carlo (MC) 0.3876 0.620 0.4038 -0.503 1.0364 0.446 1.0777 -0.499 

 
3rd-order frequency f3, (Hz) 4th-order frequency f4, (Hz) 

f̱3 Error (%) f̅3 Error (%) f̱4 Error (%) f̅4 Error (%) 

Simon et al. [130] 1.5802 -0.142 1.6616 0.137 2.0060 0.254 2.0927 -0.256 

Proposed (IS) 1.5743 -0.512 1.6639 0.277 1.9871 -0.690 2.1073 0.438 

Reference (EC) 1.5824 --- 1.6593 --- 2.0009 --- 2.0981 --- 

Monte Carlo (MC) 1.5902 0.493 1.6500 -0.560 2.0085 0.380 2.0890 -0.434 

 
5th-order frequency f5, (Hz)  

f̱5 Error (%) f̅5 Error (%)     

Simon et al. [130] 2.3146 0.473 2.4029 -0.463     

Proposed (IS) 2.2888 -0.647 2.4244 0.427     

Reference (EC) 2.3037 --- 2.4141 ---     

Monte Carlo (MC) 2.3146 0.473 2.4047 -0.389     

The structural frequency response within the range of f = [0, 2.5] Hz is consid-

ered. In particular, the real and imaginary parts of the frequency response function

−ω2H55(f) are computed, which denotes the nodal acceleration at node 5 due to a

unit concentrated force at node 5. The damping matrix C = 0.4M + 0.02K. Figure

4.2 compares IS (solid lines) with EC (dashed lines) and MC (dash-dotted lines)
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Figure 4.3: Modal shapes of the five natural frequencies of the five-story frame of
Figure 4.1: IS = Interval solution (solid lines), EC = endpoint-combination reference
solution (dashed lines), and MC = Monte Carlo solution from an ensemble of 10,000
simulations (dash-dotted lines). Material uncertainty is 7%-11% for mass, and 1%-3%
for stiffness.
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solutions obtained from 10,000 simulations. Observe that IS always contains EC, and

EC always contains MC. In addition, IS has larger overestimation near the resonance

frequencies ≈ 0.4, 1.1, and 1.6 Hz.

Table 4.2 compares the lower and upper bounds of the natural frequencies from

IS against those from EC (used as the reference solution), MC (from an ensemble of

10,000 simulations), and Sim, et al. [130]. Observe that the overestimation for IS

is the smallest for the lowest frequency (f1, about 0.3%), and it increases for higher

frequencies (f4 and f5, about 1.1%).

The corresponding modal shapes are displayed in Figure 4.3. Here, IS (solid

line) from the proposed method is displayed along with EC (dashed line) and MC

(dash-dotted line). Observe that for the low-frequency modes, the uncertainty level

is relatively small (0.8-5.0% for the 1st-order mode), and so is the overestimation

level (0.05-0.25% for the 1st-order mode). As a result, the different solutions (IS,

EC, and MC) are practically indistinguishable from each other. However, for the

highest 5th-order mode, the uncertainty level is much higher (20-77%), and so is the

overestimation level (3.4-52% for the 5th-order mode).

 

B C 
 

Figure 4.4: A cantilever beam subject vertical ground acceleration.

4.4.2 Cantilever beam

Consider now the cantilever beam shown in Figure 4.4 subject to ground acceleration.

The beam has a length L = 1 m, and a constant rectangular cross section (with

cross section area A = 6 × 10−4 m2 and moment of inertia I = 1.8 × 10−7 m4).

Ten equal-length Bernoulli-Euler beam elements are used to model the beam. 5%
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uncertainties in material are considered for each element, viz. mass density ρ =

[7.605, 7.995]× 103 kg/m3, and Young’s modulus E = [195, 205] GPa. The damping

matrix C = 50M + 1× 10−4K.

The nodal acceleration aC of the free end of the beam are computed within in the

range of [0, 600] Hz. Unit vertical ground acceleration (δ = 1 m/s2) is used as the

excitation, and Figure 4.5 shows the real and imaginary parts of aC as a function of
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Figure 4.5: Real (top) and imaginary (bottom) parts of the free end acceleration aC
for the cantilever beam in Figure 4.4: IS (solid lines) from the proposed method, NLP
(dashed lines), and MC (dash-dotted lines) from an ensemble of 10,000 simulations.
Material uncertainty is 5% for both mass density and Young’s modulus.
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Figure 4.6: Comparisons between IS obtained from the proposed method, NLP, and
MC of the free end acceleration aC at f = 300 Hz of the cantilever beam of Figure 4.4
from an ensemble of 10,000 simulations: (left) observed probability density function
(PDF) of the Young’s modulus E = [195, 205] GPa (5% uncertainty) sampled from
(a) uniform, (b) truncated exponential, and (c) bimodal probability distributions
(interval endpoints denoted by circular markers); (middle) corresponding aC in the
complex plane: MC (dots), NLP (dashed box), IS from rectangular representation
(solid box), IS from circular representation (dash-dotted box); (right) corresponding
aC in the complex plane, magnitude and phase angle: MC (dots), NLP (dashed
curved box), IS from rectangular representation (solid curved box), IS from circular
representation (dash-dotted curved box).
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Figure 4.7: Selected results for the cantilever beam of Figure 4.4 under up to 30%
uncertainties in material properties at given frequency f = 300 Hz: (top) real part
of nodal acceleration aC at the free end C, (middle) real part of bending moment
MB at the fixed end B, (bottom) real part of curvature κB at the fixed end B. IS
(dotted lines with triangular markers) from the proposed method and MC (dashed
lines with square markers) from an ensemble of 10,000 simulations are compared
against reference solution NLP (solid lines with circular markers).
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the frequency f. The EC solution is computationally unfeasible since it requires to

solve for 220 ≈ 1.05× 106 combinations (20 independent interval variables, i.e. ρ and

E for each element). Thus the NLP solution is used as a reference. Figure 4.5 show

that IS always contains NLP, and NLP contains MC. Again, observe the increased

overestimation level for IS near the resonance frequencies ≈ 50, 310 Hz.

Figure 4.6 show IS guarantees to enclose both NLP and MC solutions, regardless

of the type of probability distribution used to model the uncertainties. In addition,

the rectangular representation for interval variables gives tighter enclosures than the

circular representation, except for the phase angle.

Figure 4.7 shows that IS gives guaranteed enclosures up to 30% uncertainties in

material properties for the nodal acceleration aC at the free end C, as well as derived

quantities such as the bending moment MB and curvature κB at the fixed end B. Note

that the IS and NLP solutions for MB are identical since the structure is statically

determined. Overestimation on internal forces, such as MB, is completely eliminated

if one solves for the Lagrangian multiplier λ [119]. Overestimation in the curvature

κB is comparable to that in the nodal acceleration aC .
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Figure 4.8: A plate with a circular cutoff subject to uniformly distributed line load.
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4.4.3 Plate with a circular cutoff

The third example is a plate with a circular cutoff at its lower-left corner, subject to

uniformly distributed load q on the right edge CD, as shown in Figure 4.8. The left and

bottom edges (FG and AC ) of the plate are restrained by rollers. The length, height,

and thickness of the plate are respectively L = 0.1 m, h = 0.05 m, and t = 0.005 m.

The radius of the circular cutoff is r = 0.02 m, and Poisson’s ratio is ν = 0.3. Here

2% uncertainties in material are considered, viz. ρ = [7.722, 7.878]× 103 kg/m3 and

E = [198, 202] GPa for each element. The damping matrix C = 2×103M+5×10−7K.

For simplicity, q = 10 kN/m is assumed for all frequencies.

Figure 4.9 shows the finite element mesh used in the analysis. The mesh is gener-

ated as follows: first the plate is divided into three curvilinear quadrilaterals (EFGH,

ABEH, and BCDE ), as shown in Figure 4.8. Each quadrilateral macro element is

further divided into m × n smaller curvilinear quadrilaterals, which are modeled by

one 8-node quadrilateral isoparametric element. The generated mesh is characterized
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Figure 4.9: Finite element model used in the analysis of the plate with a circular
cutoff of Figure 4.8 (8-node quadrilateral isoparametric elements are used).
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by m and n. For instance, m = n = 3 for the mesh depicted in Figure 4.9.

Figure 4.10 plots the magnitude of the horizontal acceleration aC at the corner C

at different frequencies within the range [0, 30] kHz, under distributed load q = 10

kN/m acting on the right edge CD. IS (solid lines) obtained from the proposed method

is compared with NLP (dashed line) and MC (dash-dotted lines) obtained from an

ensemble of 10,000 simulations. Observe that the overestimation level is low, except

for points near the resonance frequencies ≈ 10, 17, and 25 kHz.

To study the performance of proposed method as function of the mesh size, a

series of finite element meshes with coarse-to-fine discretization are considered. The

corresponding horizontal acceleration aC at the corner C at given frequency f = 15

kHz are computed, and plotted against the total DOF of the mesh in Figure 4.11.

The corresponding DOF, number of elements, and computational time, if applicable,

are listed in Table 4.3.
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Figure 4.10: Magnitude of nodal acceleration aC at the corner C for the plate
of Figure 4.8 with 2% material uncertainties. IS (solid lines) from the proposed
method, NLP (dashed lines), and MC (dash-dotted lines) from an ensemble of 10,000
simulations are included for comparison.
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Table 4.3: Performance of proposed method under refinement of FE meshes of the
plate of Figure 4.8. The number of total DOF and elements of different finite element
meshes are listed, along with the corresponding computation time (in seconds) for
different methods.

Mesh 
Element 

Number 

Number 

of DOF 

Computational time (s) 

NLP MC IS 

1×1 3 36 2.046 16.623 0.137 

2×2 12 106 18.676 63.496 0.582 

3×3 27 212 2601.736 373.599 2.683 

4×4 48 354 --- 1467.872 11.957 

5×5 75 532 --- 3920.601 32.178 

6×6 108 746 --- --- 83.932 

7×7 147 996 --- --- 330.817 
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Figure 4.11: Magnitude of nodal acceleration aC at the corner C for the plate of
Figure 4.8 with 2% material uncertainties at given frequency f = 15 kHz, obtained
from different finite element meshes. IS (solid lines) from the proposed method, NLP
(dashed lines), and MC (dash-dotted lines) from an ensemble of 10,000 simulations
are included for comparison.
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From Table 4.3 and Figure 4.11, the following observations are made:

1) IS always contains NLP and MC. The difference between IS and NLP remains

unchanged as the mesh refines. Thus the overestimation of the proposed method

does not depend on the specific finite element mesh or problem scale (In other

words, the level of overestimation is not increasing as a function of the number

of uncertain parameters).

2) NLP and MC solutions are computationally expensive. Even when the mesh is

quite coarse, the corresponding computational time is significantly longer than

the proposed method.
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Figure 4.12: A symmetric gable frame with a hollow structural section (HSS) col-
umn at the midspan.

4.4.4 Gable frame

Consider the gable frame whose overall geometry is shown in Figure 4.12. Assume

standard rolled steel sections are used (see AISC [89]). In particular, W21×44 is used

for the rafters, W21×50 is used for the columns, and HSS7×7×1/4 is used for the

Hollow Structural Section (HSS) column. Geometric and material properties, such as

the cross section area A, moment of inertia I, mass density ρ, and Young’s modulus

E are listed in Table 4.4. Here 5% uncertainty in ρ and 20% uncertainty in E are
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Table 4.4: Geometric and material properties of the gable frame of Figure 4.12.

 A (10-3 m2) I (10-4 m4) ρ (103 kg/m3) E (GPa) 

Rafters 8.387 3.509 [7.605, 7.995] [180, 220] 

Columns 9.484 4.096 [7.605, 7.995] [180, 220] 

HSS column 3.980 0.193 [7.605, 7.995] [180, 220] 

Haunch 1 14.88 28.45 [7.605, 7.995] [180, 220] 

Haunch 2 10.55 8.573 [7.605, 7.995] [180, 220] 

considered. In addition, since two beam elements are used to model each haunch (four

elements in total), two different cross section properties are listed for the haunches in

Table 4.4.

The IFEM model for the gable frame consists of 37 two-node Euler-Bernoulli beam

elements (labelled from 1 to 37), as shown in Figure 4.13. Moreover, 6 elements are

used to model each column (1 to 6 and 31 to 36), 12 elements for each rafter (7 to

18 and 19 to 30), including the four used for the two haunches (7 & 8, 29 & 30), and

one element for the HSS column (37). The gable frame is hinged to the ground, and
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Figure 4.13: Finite element model used to model the gable frame of Figure 4.12.
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the HSS column is subject to axial deformation only. For the columns and rafters

(including the haunches), the corresponding mass densities and Young’s moduli at

the integration points are linearly interpolated from Ej and ρj (j = 1, . . . , 13) at

the material mesh nodes 1 to 13, as show in Figure 4.13. For the HSS column,

the corresponding mass density and Young’s modulus are denoted as E14 and ρ14,

respectively. Note that the material mesh nodes do not coincide with the finite

element mesh nodes.
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Figure 4.14: Enclosure of the natural frequencies f1, f2, f3, and f4, and corresponding
modal shapes for the gable frame of Figure 4.12. Mass density ρj and Young’s
modulus Ej under 5% and 20% uncertainties, respectively. IS = Interval solution
(solid line), NLP = nonlinear programming solution (dashed line) and MC = Monte
Carlo prediction from an ensemble of 100,000 simulations (dash-dotted line).
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The lowest four natural frequencies f1, f2, f3, and f4 are calculated, and the cor-

responding modal shapes of the gable frame are displayed in Figure 4.14. The unde-

formed frame configuration is also displayed (dotted lines). In the figure, the interval

solution (IS, solid lines) from the proposed method is compared against solutions

obtained from the nonlinear programming approach (NLP, dashed lines) and Monte

Carlo predictions (MC, dash-dotted lines) from an ensemble of 100,000 simulations.
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Figure 4.14: Enclosure of the natural frequencies f1, f2, f3, and f4, and corresponding
modal shapes for the gable frame of Figure 4.12. Mass density ρj and Young’s
modulus Ej under 5% and 20% uncertainties, respectively. IS = Interval solution
(solid line), NLP = nonlinear programming solution (dashed line) and MC = Monte
Carlo prediction from an ensemble of 100,000 simulations (dash-dotted line).
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Figure 4.15: Comparisons between IS obtained from the proposed method, NLP,
and MC of the first-order natural frequency f1 of the gable frame of Figure 4.12: (Left)
observed probability density function (PDF) of the Young’s modulus E = [180, 220]
GPa (20% uncertainty) sampled from (a) uniform, (b) exponential, (c) Rayleigh,
and (d) bimodal probability distributions (endpoints denoted by circular markers);
(right) observed PDF of the first-order natural frequency f1 of the Interval solu-
tion (IS, endpoints denoted by circular markers), nonlinear programming approach
(NLP, endpoints denoted by diamond markers) and Monte Carlo predicted interval
[min(f1), max(f1)] from an ensemble of 100,000 simulations (MC, square markers).
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From the figure, observe that IS guarantees to enclose the exact solution NLP,

which encloses MC. Further, the overestimation of IS is smaller than that of MC.

Unfortunately, the NLP solution is not available at some nodes, because the MATLAB

optimization solver did not always converge. In contrast, the proposed method works

everywhere. In addition, note that the computational time for IS is 1.2 seconds, which

is several order of magnitude less than that required by NLP (993 seconds) and MC

methods (2889 seconds for an ensemble of 100,000 simulations).

Figure 4.15 shows that IS guarantees to enclose both NLP and MC predictions

from an ensemble of 10,000 simulations, regardless of the type of probability distri-

bution used to model uncertainties. Figure 4.16 reports the interval solutions for the

lowest natural frequency f1 as function of the uncertainty level β (up to 30%) in mass

density ρj and Young’s modulus Ej. The interval solution (IS) obtained from the

proposed method always contains the reference NLP solution and MC predictions.
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Figure 4.16: Enclosure of the lowest natural frequency f1 as a function of the
uncertainty level β (up to 30%) in mass density ρj and Young’s modulus Ej: IS =
Interval Solution (dotted line with triangular markers), MC = Monte Carlo solution
from an ensemble of 10,000 simulations (dashed line with square markers) and NLP
= Nonlinear programming reference solution (solid line with circular markers).
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4.5 Summary

In this chapter, dynamics of structural systems under uncertainty are studied, and a

new interval method is presented, which extends the application of the static forward

solver discussed in Chapter 2. The presented method uses intervals to analyze the

frequency responses, natural frequencies, and modal shapes of elastic structures with

uncertain geometric and material properties. In the frequency response analysis, the

structural responses at given frequencies are obtained by solving an complex interval

linear system. In the modal analysis, the natural frequencies and corresponding modal

shapes are obtained simultaneously by solving an Interval Generalized Eigen-value

Problem (IGEP).

The proposed interval forward solver provides guaranteed enclosures of the exact

reference solution with small overestimation, as shown in a number of numerical

examples. The results prove that the new decomposition strategy for the IFEM

matrices successfully reduces overestimation due to interval dependency. In addition,

the efficiency of the proposed method is superior to other available methods in the

literature.
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CHAPTER V

TRANSIENT RESPONSE ANALYSIS OF STRUCTURAL

DYNAMIC PROBLEMS BY INTERVALS

In this chapter, the time-domain dynamics of elastic structures with uncertain geo-

metric and material properties are studied. Uncertain parameter of the structure are

modeled by intervals, and Interval Finite Element Method (IFEM) is implemented

[66, 118, 137, 150]. The structure is governed by the following interval differential

equation in the time domain,

Ku + Cu̇ + Mü = f , (5.1)

where K, C, and M are respectively the stiffness, damping, and mass matrix of the

structure, u is the unknown nodal displacement vector, u̇ and ü are the corresponding

nodal velocity and acceleration vector, f is the time-varying nodal equivalent load.

The initial conditions are expressed in an interval form, that is

u(0) = u0, u̇(0) = v0, (5.2)

where u0 and v0 are the initial nodal displacement and velocity vector, respectively.

Besides the primary variables u, u̇ and ü at given time, derived variables such as the

strain vector ε and the stress vector σ are also required, which are obtained from

ε = Bu, σ = Su, (5.3)

where B and S are the strain- and stress-displacement matrix, respectively.

In practice, the differential Eq. (5.1) is solved at discrete time tk, which are

usually uniformly spaced in time. Conventional numerical integration approaches

solve the above differential equations recursively, viz. the solution at the current
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time tk is obtained by using the solution in the previous time tk−1. One notable

example of the numerical integration method in structural analysis is the Newmark-β

method [30, 40, 112]. However, such recursive approach is not applicable for IFEM

implementation, because overestimation due to interval dependency accumulates, and

the yielded interval enclosure quickly become excessively wide and practically useless

after a few iterations in time.

Alternatively, the transformation approach can be used [11, 154]. In the proposed

method, the Discrete Fourier Transform (DFT) approach is adopted. A brief intro-

duction on the DFT can be found in [123] and Appendix D. The governing Eq. (5.1)

is transformed into the frequency domain using DFT, and the computed response is

expressed back into the time domain using the corresponding inverse transform (In-

verse Discrete Fourier Transform, IDFT). As a result, the solution vector at all time

steps are obtained simultaneously.

In the following sections, first the deterministic solver based on the DFT approach

is presented. Then the proposed interval solver is introduced in detail. The governing

Eq. (5.1) is reintroduced into a fixed-point form, and iterative enclosure method is

implemented to obtain a sharp interval enclosure of the exact solution. Finally, the

performance of the proposed method is compared with other available methods in a

few numerical example.

5.1 Deterministic Dynamic Solver

In this section, the deterministic dynamic solver based on the DFT approach [140, 141]

is presented. The dynamic response of a linearly elastic structure is studied, which,

after FEM discretization, is governed by

Ku+ Cu̇+Mü = f, (5.4)

where K, C, and M are the stiffness, damping, and mass matrices of the structure,

respectively, u is the nodal displacement vector, u̇ and ü are the first and second
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derivatives of u with respect to the time (or, equivalently, nodal velocity and accel-

eration), and f is the nodal equivalent load. The initial condition is given by

u(0) = u0, u̇(0) = v0. (5.5)

In addition, the system is assumed discretized in time. The nodal equivalent load at

discrete time tk is given, and the goal is to solve for the nodal displacement vector u

at tk, as well as its derivatives u̇ and ü. That is,

f(tk) = fk, u(tk) = uk; (5.6)

u̇(tk) = u̇k, ü(tk) = ük.

Usually, the time steps are uniformly spaced, viz. tk = k∆t. The sampling interval

∆t must be small enough to prevent any potential aliasing [123]. Let T be the total

time length of the signal and N the total number, then T = N∆t.

In the discrete Fourier transform approach, DFT is applied to the discrete version

of the governing Eq. (5.4) and transform it into(
−ω2

jM + iωjC +K
)
Ft(u)j = Ft(f)j, (5.7)

where i =
√
−1 is the imaginary unit, ωj = j∆ω with ∆ω = 2π/T being the funda-

mental frequency, Ft(u)j and Ft(f)j are the Fourier transform of the nodal displace-

ment uk and equivalent load fk, respectively. Then the nodal displacement vector in

the time-domain is obtained by applying the IDFT to Ft(u)j, viz.

un =
1

N

N−1∑
j=0

Ft(u)je
−i(2π/N)jn (5.8)

=
1

N

N−1∑
j=0

GjFt(f)je
−i(2π/N)jn,

where Gj is the inverse of the effective stiffness matrix in Eq. (5.7). To ensure that

the final solution un has zero imaginary part, Gj takes the following form,

Gj =

{ (
−ω2

jM + iωjC +K
)−1

, 0 ≤ j < N/2;

conjugate of GN−j, N/2 ≤ j < N.
(5.9)
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The above approach essentially solves for the stationary response of the structure

caused by periodic loads with period T . The results are identical to the actual dy-

namic response with trivial initial conditions (u0 = v0 = 0) when enough zero-padding

is attached. The length of the zero-padding, Tp, can be estimated from

e−ζωTp < τerr, ⇒ Tp >
ln τerr
ζω

, (5.10)

where τerr is the error tolerance, ω is the lowest natural frequency of the structure,

and ζ is the corresponding effective damping ratio. Let T0 be the length of the original

signal, then T = T0 + Tp.

Non-trivial initial conditions can be modeled by modifying the equivalent load

[81, 85, 93]. For initial displacement u0, it is equivalent to add a constant load

fu0 = Ku0, (5.11)

which exist for the time interval T0 ≤ t < T . For initial velocity v0, it is equivalent

to add an impulse load

fv0 =
M

∆t
v0, (5.12)

at time t = 0 for a duration of time ∆t.

5.2 Interval Dynamic Solver

Assume the elastic structure under study contains uncertain parameters, which are

modeled by intervals. The structural system is governed by Eqs. (5.1) and (5.2). For

simplicity, the Rayleigh damping is adopted. The damping matrix

C = αdM + βdK, (5.13)

where αd and βd are the Rayleigh damping coefficients. To reduce overestimation due

to interval dependency, the interval matrix decomposition outlined before is adopted.

Then DFT is used to transform the governing equation into a fixed-point form, which

is further solved by a new variant of iterative enclosure method. Details on the

proposed method is presented as follows.
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5.2.1 Interval matrix decomposition

The matrix decomposition strategy reduces overestimation due to interval dependency

by avoiding multiple occurrences of the same interval variable in the formulation.

As discussed before, the stiffness matrix K, the mass matrix M, and the stress-

displacement matrix S are decomposed into

K = Adiag(Λα)AT ;

M = Amdiag(Λmαm)ATm; (5.14)

S = Φsdiag(Λsα)ATs ,

where A, Λ, Am, Λm, Φs, Λs, and As are deterministic matrices, α is the interval

stiffness parameter vector that accounts for uncertainties in the stiffness matrix K,

and αm is the interval mass parameter vector that accounts for uncertainties in the

mass matrix M. Detailed discussions on the decomposition and assembly of K, M,

and S can be found in Section 2.1 and 4.1.1.

By combining the nodal equivalent load vector fk at different time steps tk, the

interval load matrix f is obtained, whose k -th column is fk. When the structure is

subject to external loading and the M -δ method is adopted [102], f is decomposed

into

f = Fδt, (5.15)

where F is a deterministic matrix, and δt is the time-varying load uncertainty matrix.

Usually it is necessary to distinguish the uncertainty in the magnitude of the load

and the uncertainty in the time-history of the load. Thus δt is further decomposed

into an interval column vector δ and an interval row vector dt, viz. δt = δdt, where

δ models the uncertainties in the load magnitude and dt models the uncertainties in

the load time-history. Finally, the nodal equivalent load f is decomposed into

f = (Fδ)dt. (5.16)
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Similarly, when the structure is subject to ground motion, f is decomposed into

f = −Ma = −Mqδt, (5.17)

where δt denotes the time-varying ground acceleration, a represents the resulting

nodal acceleration of the structure, and q relates δt to a, viz. a = qδt. By using the

same decomposition for δt, and noting Eq. (5.14),

f = −Amdiag(Λmαm)ATmqδdt (5.18)

= Am (Λmαm ◦Bfδ) dt,

where Bf = −ATmq, and a ◦ b is the element-by-element Hadamard product of two

vectors a and b.

When the initial conditions are non-trivial and modeled by intervals, as shown in

Eq. (5.2), the corresponding nodal equivalent load f is given by

f = Ku0du0 + Mv0dv0 , (5.19)

where du0 and dv0 are two deterministic row vectors. du0 is zero for the time interval

0 ≤ tk < T0 and unity for the time interval T0 ≤ tk < T , where T0 and T are the

length of the original and padded signal. dv0 represents an impulse load which is 1/∆t

at tk = 0 and zero everywhere else. Noting the decomposition in Eq. (5.14),

f = A
(
Λα ◦ ATu0

)
du0 (5.20)

+ Am
(
Λmαm ◦ ATmv0

)
dv0 ,

which has a similar matrix form as Eq. (5.18). Thus the non-trivial initial conditions

are treated in the same manner as ground accelerations.

5.2.2 Interval governing equations

To solve the interval differential Eq. (5.1), following the DFT approach outlined in

Section 5.1, the equation is transformed into the frequency domain, viz.(
−ω2

jM + iωjC + K
)
Ft(u)j = Ft(f)j, (5.21)
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where Ft(u)j and Ft(f)j are the Fourier transform of the nodal displacement uk and

equivalent load fk, respectively.

To include compatibility requirements and essential boundary conditions in the

governing equation, and to ensure that the final solution has zero imaginary part, Eq.

(5.21) is brought into the following equivalent form,Keff,j CT

C 0


Ft(u)j

Ft(λ)j

 =

Ft(f)j

0

 , (5.22)

where Keff,j is the effective stiffness matrix corresponding to the j -th frequency ωj,

which is given by

Keff,j =

{
−ω2

jM + iωjC + K, 0 ≤ j < N/2;

conjugate of Keff,N−j, N/2 ≤ j < N,
(5.23)

C is the constraint matrix that imposes compatibility requirements and essential

boundary conditions, and λk is the Lagrangian multiplier representing the internal

forces and support reactions at tk. By adopting the Rayleigh damping and the de-

composition of K and M in Eq. (5.14), Keff,j can be decomposed into

Keff,j = Aeff,jdiag (Λeffαeff)Beff, (5.24)

where Aeff,j is a deterministic matrix depending on the frequency ωj,

Aeff,j =

{ {
(1 + ibωk)A (−ω2

k + iaωk)Am
}
, 0 ≤ j < N/2;

conjugate of Aeff,N−j, N/2 ≤ j < N,
(5.25)

and Λeff, Beff, and αeff are time-invariant variables, previously given in Eq. (4.18)

Λeff =

Λ 0

0 Λm

 , Beff =

ATATm
 , αeff =

 α

αm

 . (5.26)

Suppose the structure is subject to external loading, then

Ft(f)j = Ft(Fδdt)j = FδFt(dt)j. (5.27)
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Then Eq. (5.22) is equivalent to the following decomposed formKeff,j0 CT

C 0


Ft(u)j

Ft(λ)j

 =

F0
δFt(dt)j (5.28)

−

Aeff,j

0

 diag
(
BeffFt(u)j

)
Λeff∆αeff,

by using the decomposition in Eqs. (5.24) and (5.27) and the following identities

Aeff,jdiag (Λeffαeff)BeffFt(u)j

= Aeff,j

(
Λeffαeff ◦BeffFt(u)j

)
(5.29)

= Aeff,jdiag
(
BeffFt(u)j

)
Λeffαeff,

where ∆αeff is the difference between αeff and the reference vector αeff0, viz. ∆αeff =

αeff − αeff0, and Keff,j0 = Aeff,jdiag(Λeffαeff0)Beff.

When the structure is subject to ground motion, according to Eq. (5.18),

Ft(f)j = Af (Λmαm ◦Bfδ)Ft(dt)j

=
(
Af (Λmαm0 ◦Bfδ) + Af (Λm∆αm ◦Bfδ)

)
Ft(dt)j (5.30)

= F0δFt(dt)j + Afdiag
(
BfδFt(dt)j

)
Λm∆αm,

where ∆αm is the difference between αm and the reference vector αm0, viz. ∆αm =

αm−αm0, and F0 = Afdiag(Λmαm0)Bf . Then the generalized equivalent load in Eq.

(5.22) is decomposed intoFt(f)j

0

 =

F0

0

δFt(dt)j +

Af0
 diag

(
BfδFt(dt)j

)
Λm∆αm, (5.31)

Eq. (5.22) is equivalent to the following decomposed formKeff,j0 CT

C 0


Ft(u)j

Ft(λ)j

 =

F0

0

δFt(dt)j (5.32)

−

Aeff Af

0 0

 diag

 BeffFt(u)j

−BfδFt(dt)j


 Λeff

0 Λm

∆αeff.
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Due to the similarities between the decomposition of the equivalent load in Eqs.

(5.18) and (5.20), the above formulation can be extended to cases when the initial

conditions are non-trivial, viz. either u0 6= 0 or v0 6= 0.

When derived quantities such as the strain vector ε and the stress vector σ are

required, the strain and stress equations Bu − ε = 0 and Su − ε = 0 are added

to the governing equation. Suppose the structure is subject to external loads and

f = FδFt(dt)j, the governing equations are given by

Keff,j CT 0 0

C 0 0 0

B 0 −I 0

S 0 0 −I





Ft(u)j

Ft(λ)j

Ft(ε)j

Ft(σ)j


=



F

0

0

0


δFt(dt)j, (5.33)

which is equivalent to the following decomposed form

Keff,j0 CT 0 0

C 0 0 0

B 0 −I 0

S0 0 0 −I





Ft(u)j

Ft(λ)j

Ft(ε)j

Ft(σ)j


=



F

0

0

0


δFt(dt)j (5.34)

−



Aeff,j 0

0 0

0 0

0 Φs


diag


BeffFt(u)j

ATs Ft(u)j



 Λeff

Λs 0

∆αeff.

Apparently, the formulation can be extended to account for ground motion and non-

trivial initial conditions.

5.2.3 Iterative enclosure method

To solve the interval linear system Eqs. (5.28), (5.32), and (5.34), they are recast

into the following compact form

Kg,jFt(ug)j = FgδFt(dt)j − Ag,jdiag
(
Ft(vg)j

)
Λg∆αeff, (5.35)
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where Kg,j, Fg, Ag,j, Λg are given deterministic matrices, ug is the unknown interval

vector, δ, dt, and ∆αeff are given interval vectors, and vg linearly depend on ug,

viz. vg = v0 + Bgug. Here subscripts j denotes variables associated with the j -th

frequency ωj. Note that matrices Kg,j and Ag,j are functions of the frequency ωj. In

the most general case, ug includes all the primary and derived variables such as u, λ,

ε, and σ, and the auxiliary variable vg includes Beffu, −Bfδdt, and ATs u.

Now introduce Gj = K−1
g,j . Multiplying both sides of Eq. (5.35) by Gj yields

Ft(ug)j = (GjFg)δFt(dt)j − (GjAg,j)diag
(
Ft(vg)j

)
Λg∆αeff. (5.36)

Then ug is obtained by applying the IDFT to both side of (5.36),

ug,k =
(
F−1
t (GjFg) ∗ dt

)
k
δ (5.37)

−
(
F−1
t (GjAg,j) ∗ diag(vg)

)
k
Λg∆αeff,

where (a ∗ b)k denotes the convolution between two discrete signals ak and bk (see

Appendix D for detail). Eq. (5.37) can be recast into the following summation form,

ug,k =

(
N−1∑
l=0

F−1
t (GjFg)k−ldt,l

)
δ (5.38)

−

(
N−1∑
l=0

F−1
t (GjAg,j)k−ldiag(vg,l)

)
Λg∆αeff.

Then a fixed-point form for vg,k is obtained as

vg,k = v0,k +Bg

(
F−1
t (GjFg) ∗ dt

)
k
δ (5.39)

−Bg

(
F−1
t (GjAg,j) ∗ diag(vg)

)
k
Λg∆αeff.

A guaranteed outer enclosure for vg,k is obtained by iteratively using Eq. (5.39),

starting from the trivial initial guess v1
g,k = v0,k +

(
F−1
t (GjFg) ∗ dt

)
k
δ. The iteration

stops when no improvement in vjg,k is observed for two consecutive iterations, and

the converged solution is denoted as vng,k. Then the outer solution uoutg,k is obtained

by substituting vg,k in Eq. (5.37) with the converged solution vng,k.
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5.2.4 Fast enclosure of convolution

In the iterative enclosure method, the convolution between two signals are computed

multiple times, as shown in Eqs. (5.37) and (5.39). To increase the computational

efficiency and reduce overestimation in the final solution, the fast interval convolution

algorithm, proposed by Liu and Kreinovich [86], is adopted. For a deterministic signal

ak and an interval signal bk, the convolution

(a ∗ b)k =
N−1∑
l=0

ak−lbl. (5.40)

Using the midpoint-radius form for intervals, Eq. (5.40) is equivalent to

{
mid (a ∗ b)k =

∑N−1
l=0 ak−l mid (bl);

rad (a ∗ b)k =
∑N−1

l=0 |ak−l| rad (bl).
(5.41)

In other words, the midpoint of (a ∗ b)k is the convolution of two deterministic signals

ak and mid bk; the radius of (a ∗ b)k is the convolution of another two non-negative

deterministic signals |ak| and rad bk. They can be computed efficiently using the

DFT (see Eqs. (D.6), (D.7), and (D.8) in Appendix D. For instance,

mid (a ∗ b)k = F−1
t

{
Ft(a)Ft(mid b)

}
k
, (5.42)

where the superscript ∗ denotes the conjugate of a complex variable.

In particular, consider the first convolution in Eq. (5.37), the midpoint

mid
(
F−1
t (GjFg) ∗ dt

)
k

(5.43)

= F−1
t

{
(GjFg)Ft(mid dt)

∗
}
k
,

and the corresponding radius

rad
(
F−1
t (GjFg) ∗ dt

)
k

(5.44)

= F−1
t

{
Ft
(
|F−1

t (GjFg)|
)
Ft(rad dt)

∗
}
k
.
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For the second convolution in Eq. (5.37), the midpoint

mid
(
F−1
t (GjAg,j) ∗ diag(vg)

)
k

(5.45)

= F−1
t

{
(GjAg,j)diagFt(mid vg)

∗
}
k
,

and the corresponding radius

rad
(
F−1
t (GjAg,j) ∗ diag(vg)

)
k

(5.46)

= F−1
t

{
Ft
(
|F−1

t (GjAg,j)|
)
diagFt(rad vg)

∗
}
k
.

During the iteration in Eq. (5.39), only the radius of vg is updated. All other

vectors and matrices do not change after the first iteration. In other words, Eqs.

(5.43), (5.44), and (5.45) are used once before the iteration starts, and Eq. (5.46) is

used once per iteration.

5.3 Numerical Examples

The proposed IFEM algorithm is implemented using the interval MATLAB toolbox

INTLAB [122]. Interval enclosures of the structural responses of the following sam-

ple problems are calculated: i) a four-story rigid frame and ii) a simply supported

truss. The performance of the proposed method is compared against other avail-

able methods in the literature: i) the endpoint combination method (EC) and ii)

the Monte Carlo (MC) simulation. The results shows that the proposed method is

applicable to the transient analysis of structural dynamic problems with uncertain

parameters. Guaranteed interval enclosures of the exact structural responses in the

time domain are obtained with small overestimations. In addition, the computational

time is negligible when compared with other competing methods.

5.3.1 Four-story rigid frame

The first example is a four-story frame shown in Figure 5.1. The floors of the frame

are assumed to be rigid enough to model the structure as an equivalent spring-mass
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Figure 5.1: A four-story rigid frame and the equivalent spring-mass system.

system (shown in the right-hand side of Figure 5.1). The mass mj and the inter-story

shear stiffness kj of each floor (j = 1, . . . , 4) are modeled by independent interval

variables, and given in Table 5.1.

Consider the structural response of the frame under a concentrated impact force

acting on the top floor. The force has a duration of 4 s, and its variation during that

time is deterministic, viz.

f(t) =

{
P sin(πt/2), 0 ≤ t ≤ 4 s;

0, t > 4 s,
(5.47)

where P = [0.99, 1.01] kN (2% uncertainty in the magnitude of the load). The

damping matrix C = 0.5M + 5 × 10−3K. The sampling rate is 100 Hz, so the

sampling interval ∆t = 0.01 s.

To compare the recursive Newmark-β method and the Discrete Fourier Transform

(DFT) approach in Section 5.1, the nodal displacement u4 at the top floor for the first

10 s is displayed in Figure 5.2. Midpoint values are taken for all interval variables,
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Table 5.1: Interval mass and stiffness for the five-story rigid frame of Figure 5.1,
including 1% uncertainties in mass, and 5% uncertainties in stiffness.

Floor 
Mass (kg) Stiffness (kN/m) 

mj mid mj rad mj kj mid kj rad kj 

1 [5.416, 5.470] 5.443 0.027 [1.180, 1.240] 1.210 0.030 

2 [5.416, 5.470] 5.443 0.027 [1.677, 1.763] 1.720 0.043 

3 [5.416, 5.470] 5.443 0.027 [1.862, 1.958] 1.910 0.048 

4 [5.416, 5.470] 5.443 0.027 [1.775, 1.865] 1.820 0.045 

viz. mj = mid mj, kj = mid kj, and P = mid P. Observe these two solutions are

indistinguishable. Their maximal difference is 1.89×10−6 m, which is less than 0.1%.

Figure 5.3 compares the lower and upper bounds of u4 for the first 10 s, obtained

from the proposed method (IS, solid lines), Monte Carlo predictions (MC, dashed

Figure 5.2: Deterministic time history of the nodal displacement u4 for the four-
story frame of Figure 5.1 under a sinusoidal impact force: solutions obtained from
the recursive Newmark-β method (solid line) and the DFT approach (dashed line).
Midpoint values are taken for the interval variables.
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lines) from an ensemble of 10,000 simulations, the reference solution obtained from

endpoint combination (EC, dash-dotted lines), and the deterministic solution (DS,

dotted line). Note that IS always contains the reference solution EC, and MC is always

contained by EC. In addition, the overestimation level of the proposed method slightly

increases as the time increases. In the figure, MC solution is obtained using the

DFT approach, which indistinguishable from the solution obtained from a recursive

Newmark-β method.

Then the concentrated force f(t) is removed, and the structure is subject to non-

trivial initial conditions. Figure 5.4 shows the nodal displacement u4 at the top floor

for the first 10 s with non-trivial initial nodal displacement u0 (top) and nodal velocity

v0 (bottom), respectively. Here 2% uncertainty is considered for u0 and v0, viz.

u0 =
{

0 0 0 0 [0.99, 1.01]
}T × 10−3 m; (5.48)

v0 =
{

0 0 0 0 [0.99, 1.01]
}T × 10−2 m/s.
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Figure 5.3: Lower and upper bounds of the nodal displacement u4 for the four-
story frame of Figure 5.1 under a sinusoidal impact force: IS (solid lines) from the
proposed method, NLP (dashed lines), and MC (dash-dotted lines) from an ensemble
of 10,000 simulations. Material uncertainty is 1% for mass, and 5% for stiffness. Load
uncertainty is 2% for the magnitude.
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Figure 5.4 shows that the high frequency components dissipate quickly. After

about 3 s, the response of the structure is dominated by the lowest frequency vi-

bration. Observe that the performance of the proposed method is the same as in

the previous case. The obtained interval solution guarantees to enclose the reference

solution (endpoint combination, EC), and the overestimation level increases slightly

as the time increases. Thus non-trivial initial conditions are handled successfully.

0 1 2 3 4 5 6 7 8 9 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Elapsed time t, s

N
od

al
 d

is
pl

ac
em

en
t  u 4, ×

 1
0−

3 m

 

 
Interval Solution (IS)
Endpoint Comb. (EC)
Monte Carlo (MC)
Deterministic (DS)

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

Elapsed time t, s

N
od

al
 d

is
pl

ac
em

en
t  u 4, ×

 1
0−

3 m

 

 
Interval Solution (IS)
Endpoint Comb. (EC)
Monte Carlo (MC)
Deterministic (DS)

Figure 5.4: Lower and upper bounds of the nodal displacement u4 for the four-
story frame of Figure 5.1 under non-trivial initial conditions: (top) non-trivial initial
displacement u0, (bottom) non-trivial initial velocity v0. IS (solid lines) from the
proposed method, EC (dashed lines), and MC (dash-dotted lines) from an ensemble
of 10,000 simulations. Material uncertainty is 1% for mass, and 5% for stiffness.
Uncertainty in the initial condition is 2%.
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Figure 5.5: A simply supported symmetric truss subject to concentrated force.

5.3.2 Simply supported truss

The second example is a simply supported symmetric truss composed of 15 bars, as

shown in Figure 5.5. The joints are labeled from 1 to 8, and the bars are labeled from

1 to 15. Time-varying concentrated load P acts at joint 5. Bars 1 to 3, 13 to 15 have

the same cross section area A = 1.0× 10−3 m2, and all other bars, viz. bars 4 to 12,

have smaller cross section area A = 6.0 × 10−4 m2. All the bars are made of steel.

They have the interval mass density ρ with midpoint value ρ = 7.8× 103 kg/m3, and

the interval Young’s modulus E with midpoint value E = 200 GPa.

Fifteen bar elements are used to model the truss in Figure 5.5. Element mass

density ρ and Young’s modulus E are assumed independent, and they are modeled

by 30 interval variables. The midpoint value of the concentrated load P is a sinusoid

with a frequency of 50 Hz and an amplitude of 200 kN, viz.

P = 200 sin(100πt) kN. (5.49)

The damping matrix C = 20M + 3 × 10−5K. The sampling rate is 10 kHz, so the

sampling interval ∆t = 1× 10−4 s.

Then vertical displacement v5 at joint 5 and axial strain ε8 in bar 8 are selected for

comparison among the various methods mentioned previously. Consider 1% uncer-

tainty for the magnitude and time-history of the load, as well as Young’s modulus and
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mass density of each bar. Figure 5.6 plots the lower and upper bounds of v5 and ε8

for the first 0.1 s obtained from the proposed method (IS, solid lines) and the Monte

Carlo predictions (MC, dashed lines from the Newmark-β approach, and dash-dotted

lines from the DFT approach) from an ensemble of 100,000 simulations. Observe that

the proposed method obtains guaranteed enclosures of the MC prediction for both

the primary and derived quantities.
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Figure 5.6: Lower and upper bounds of the nodal displacement v5 at joint 5 (top)
and axial strain ε8 in bar 8 (bottom) for the four-story frame of Figure 5.5 under
external loads: IS (solid lines) from the proposed method and MC predictions (dashed
lines and dash-dotted lines) from an ensemble of 100,000 simulations. Parameter
uncertainties are 1% for load magnitude, load history, Young’s modulus, and mass
density.
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To compares the impact of different types uncertainties, Figure 5.7 and Figure

5.8 respectively plot the vertical displacement v5 at joint 5 with 2% uncertainties in

material and load. In Figure 5.7, 2% uncertainty is assigned to the Young’s modu-

lus (top subplot) and mass density (bottom subplot) of the structure, respectively.

Observe that the uncertainties in the structural responses are almost identical. In

addition, the uncertainties do not increase over time. In Figure 5.8, 2% uncertainty
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Figure 5.7: Lower and upper bounds of the nodal displacement v5 at joint 5 for the
four-story frame of Figure 5.5 with only material uncertainties: (top) 2% uncertainty
only in Young’s modulus; (bottom) 2% uncertainty only in mass density. IS (solid
lines) from the proposed method and MC predictions (dashed lines and dash-dotted
lines) from an ensemble of 100,000 simulations.
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is assigned to the load magnitude (top subplot) and load time-history (bottom sub-

plot), respectively. Apparently, the uncertainties in the structural responses increase

significantly when the load time-history uncertainty is considered.

This behavior is due to the fact that the load history uncertainties are modeled

by independently varied intervals at different time steps. In the current example,

this means 0.1 s × 10 kHz = 1,000 independent interval variables. As a result, the
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Figure 5.8: Lower and upper bounds of the nodal displacement v5 at joint 5 for the
four-story frame of Figure 5.5 with load uncertainties: (top) 2% uncertainty only in
load magnitude; (bottom) 2% uncertainty only in load history. IS (solid lines) from
the proposed method and MC predictions (dashed lines and dash-dotted lines) from
an ensemble of 100,000 simulations.
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overall uncertainty level is much higher than 2%. This also explains the growing

differences between IS and MC predictions over time. Figure 5.9 plots the vertical

displacement v5 at joint 5 with 2% uncertainties in load magnitude, Young’s modulus,

and mass density. Observe that the uncertainties now do not increase over time, and

the difference between IS and MC is much smaller than previous cases in Figure 5.8.

So it is indeed the increased number of interval variables that caused the increased

uncertainty and the difference between IS and MC.
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Figure 5.9: Lower and upper bounds of the nodal displacement v5 at joint 5 for the
four-story frame of Figure 5.5 with load and material uncertainties: 2% uncertainties
in load magnitude, Young’s modulus, and mass density. IS (solid lines) from the
proposed method and MC predictions (dashed lines and dash-dotted lines) from an
ensemble of 100,000 simulations.

5.4 Summary

In this chapter, an interval finite element formulation is presented for the time-domain

dynamic analysis of elastic structures with uncertain geometric and material prop-

erties. By using the Discrete Fourier Transform (DFT) and the Inverse Discrete

Fourier Transform (IDFT), the given equivalent load and the final obtained struc-

tural responses are both given in the time domain, but the matrix inversion process
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is performed in the frequency domain. Ground motion and non-trivial initial con-

ditions are successfully handled via the introduction of the corresponding equivalent

nodal forces. The resulting method is both efficient and widely applicable.

Uncertain parameters of the structure are modeled as intervals. The obtained

interval enclosures guarantee to enclose the exact solution set, and the corresponding

overestimation is small, even for large uncertainty levels. Numerical examples show

that the presented method gives guaranteed sharp bounds on the dynamic responses

of the structure, even in cases when a large number of interval variables are present

and other available methods give over-optimistic prediction on the lower and upper

bounds.
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CHAPTER VI

INTERVAL PARAMETER IDENTIFICATION OF

STRUCTURAL DYNAMIC PROBLEMS

In this chapter, the interval-based parameter identification algorithms are extended

to structural dynamic problems with uncertainties in load, geometry, and material

of the structure [55, 113, 152]. The proposed interval inverse solver models the un-

certainties of the structure as intervals, and the formulation is based on the Interval

Finite Element Method (IFEM). The goal is to predict the material properties of the

structure (such as Young’s modulus) based on measured structural responses in the

frequency domain [14, 84, 129]. Other uncertain parameters, such as the correspond-

ing external excitations, the mass and damping properties of the structure, are known

in prior. In particular, the structure is governed by the following complex interval

linear system

(
K + iωC− ω2M

)
u = f , (6.1)

where i =
√
−1 is the imaginary unit, ω is the given angular frequency (measured in

rad/s), K, C, and M are respectively the interval stiffness, damping, and mass matrix

for the system, u is the interval nodal displacement vector, and f is the interval nodal

equivalent load. Measurement data includes acceleration and strain signals collected

at prescribed locations of the structure, which are transformed into the frequency

domain and brought into the following general matrix form,

η = Hu, (6.2)

where H is a deterministic matrix, and η is the measurement vector.
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In the current study, the Rayleigh damping is adopted, and the damping matrix

C = αdM + βdK, (6.3)

where αd and βd are the Rayleigh damping coefficients. To reduce overestimation due

to interval dependency, the interval matrix decomposition is used, avoiding multiple

occurrences of the same interval variables as much as possible. In particular, the

stiffness matrix K and the mass matrix M are decomposed into

K = Adiag(Λα)AT ; (6.4)

M = Amdiag(Λmαm)ATm,

where A, Λ, Am, and Λm are deterministic matrices, α is the unknown interval

stiffness parameter vector that accounts for uncertainties in the stiffness matrix K,

and αm is the given interval mass parameter vector that accounts for uncertainties

in the mass matrix M. When the structure is subject to external loading, the nodal

equivalent load vector f is decomposed into

f = Fδ, (6.5)

where F is a deterministic matrix, and δ is the load uncertainty vector. When the

excitation is caused by ground motion, the nodal equivalent load

f = −Ma = −Mqδ, (6.6)

where δ denotes the ground acceleration at given frequency, a represents the nodal

acceleration of the structure caused by the ground motion, and deterministic column

vector q relates δ to a, viz. a = qδ.

In the proposed method, the unknown parameters of the structure are solved by

adjoint-based constrained optimization techniques. For convenience, all the complex

variables are replaced by their respective real and imaginary parts. For instance, the
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governing Eq. (6.1) is replaced by its realized form

(
KC + MC

)
uC = fC , (6.7)

where the superscripts C emphasize that these variables contains the real and imagi-

nary parts of the corresponding complex variables. In particular, uC and fC contain

their respective real and imaginary parts, viz.

uC =

uR

uI

 , fC =

fR

f I

 , (6.8)

in which superscripts R and I denote the real and imaginary parts of complex variables,

respectively. KC is the part of the effective stiffness matrix that is directly related to

the unknown stiffness parameter α, which can be decomposed into

KC =

 K −βdωK

βdωK K

 = ACdiag(ΛCα)BC , (6.9)

where deterministic matrices AC , ΛC , and BC are given by

AC =

A 0

0 A

 , ΛC =

Λ

Λ

 , BC =

 AT −(βdω)AT

(βdω)AT AT

 . (6.10)

Note that BC 6= ACT , because KC is not a symmetric matrix. Similarly, MC is

the part of the effective stiffness matrix that is directly related to the given mass

parameter vector αm, which can be decomposed into

MC =

−ω2M −αdωM

αdωM −ω2M

 = ACmdiag(ΛC
mαm)BC

m, (6.11)

where the corresponding deterministic ACm, ΛC
m, and BC

m are given by

ACm =

Am 0

0 Am

 , ΛC
m =

Λm

Λm

 , BC
m =

 −ω2ATm −(αdω)ATm

(αdω)ATm −ω2ATm

 . (6.12)
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Note that BC
m 6= ACTm as well. When the structure is subject to external loading, fC

is decomposed into the following matrix form,

fC =

FδRFδI

 =

F 0

0 F


δRδI

 = FCδC , (6.13)

where δR and δI are the uncertainties in the real and imaginary parts of the load,

respectively. When the excitation is caused by ground motion, fC is decomposed into

fC =

−MqδR

−MqδI

 =

−Mq 0

0 −Mq


δRδI

 (6.14)

= ACmdiag(ΛC
mαm)BC

f δ
C ,

where ACm and ΛC
m are the same as in Eq. (6.12), and BC

f is given by

BC
f =

−ATmq 0

0 −ATmq

 . (6.15)

The corresponding measurement Eq. (6.2) is replaced by

ηC = HCuC , (6.16)

where ηC and HC are given by

ηC =

ηRηI
 , HC =

H 0

0 H

 . (6.17)

In the above discussion, the measurements are assumed to be the real and imag-

inary parts (Cartesian form) of the structural responses in the frequency domain.

However, such complete information is not always available. For instance, when only

the magnitude information is available, the measurement vector

ηρ = |Hu| =
√

(HuR)2 + (HuI)2, (6.18)

where | | denotes the norm of a complex variable. When only the phase information

is available, the measurement vector contains the phase angles, viz.

ηϕ = arg (Hu) = atan2
(
HuI , HuR

)
. (6.19)
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where arg( ) is the argument of a complex variable, and atan2( ) is the arctangent

function with two arguments.

In the following sections, the proposed interval inverse solver for structural dy-

namic problems is presented in detail. The solver is based on the adjoint optimization,

and contains a deterministic stage and an interval stage. The structural excitation

can be external loads or ground motion. The measurement data contains the real and

imaginary parts (Cartesian form) of the frequency response, or the magnitudes and

the phase angles (polar form), which can be obtained via the Discrete Fourier Trans-

form (DFT) of the original measurement data in the time domain. In both cases, the

measurements are modeled by intervals. The goal is to provide a reliable prediction of

the stiffness of the structure, which guarantees to enclose the exact solution. Several

numerical examples validate the performance of the proposed method.

6.1 Deterministic Inverse Solver

In the deterministic stage of the proposed inverse solver, a deterministic solution of

the unknown stiffness parameter vector α is sought, using the midpoint values for all

the given interval variables in the system, such as the load uncertainty vector δ, the

mass parameter vector αm, and the measurement vector η. The algorithm is derived

using the adjoint-based constrained optimization, and conjugate gradient or Newton-

Raphson type methods are exploited to find the optimal estimate of the unknown

parameters. In the first subsection, the measurement data contains both the real and

imaginary parts of the frequency response. Then in the second subsection, the solver

is extended to cases when only the magnitudes or phase angles are measured.

6.1.1 Adjoint-based constrained optimization

The proposed inverse solver aims at minimizing the differences between the predicted

structural response and the midpoint measurement vector, under the equilibrium
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constraint. The objective functional to be minimized is given by

Γ =
1

2
(HCuC − ηC)TWC(HCuC − ηC) (6.20)

+ wCT
(
KC

effu
C − fC

)
+

1

2
αT (γR)α,

where HCuC is the predicted structural response, ηC is the midpoint of the measure-

ment vector ηC , viz. ηC = mid ηC , WC is a diagonal matrix containing the measure-

ment weights, wC is the Lagrangian multiplier introduced to enforce the equilibrium

condition KC
effu

C = fC , KC
eff = KC +MC is the effective stiffness matrix of the struc-

ture, γ and R are the regularization weight and regularization matrix, respectively.

From the decomposition of KC in Eq. (6.9), the first variation of Γ

δΓ = δuCTHCTWC(HCuC − ηC) + δwCT
(
KC

effu
C − fC

)
(6.21)

+ δuCTKCT
eff wC + wCT δKCuC + δαT (γR)α,

leads to the following optimization conditions:
KC

effu
C − fC = 0;

KCT
eff wC −HCTWC

(
ηC −HCuC

)
= 0;

ΛCT
(
ACTwC ◦BCuC

)
+ (γR)α = 0,

(6.22)

where a◦b denotes the element-by-element (Hadamard) product of two vectors a and

b. To obtain Eq. (6.22) from Eq. (6.21), the following identity

wTACdiag(ΛCδα)BCu = δαTΛCT (BCu ◦ ACTw) (6.23)

have been exploited. The three equations in Eq. (6.22) can be interpreted as: i)

equilibrium condition of the original system with equivalent load fC , ii) equilibrium

condition for the adjoint system with equivalent load HCTWC
(
ηC −HCuC

)
, and iii)

optimal condition that the gradient g of Γ with respect to α is zero.

In the conjugate gradient approach, the gradient of the objective functional is

computed as follows. The equilibrium conditions for the original and adjoint systems
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are recast into a block matrix formWC
η KCT

eff

KC
eff 0


uCwC

 =

PC
η η

C

fC

 , (6.24)

where WC
η = HCTWCHC and PC

η = HCTWC . Then the solution vectors uC and wC

follow as uCwC
 =

 0 K−Ceff

K−CTeff TCw


PC

η η
C

fC

 , (6.25)

where TCw = −K−CTeff WC
η K

−C
eff . Then the corresponding objective functional and its

gradient are expressed in terms of uC , wC and α as

Γ =
1

2
(HCuC − ηC)TWC(HCuC − ηC) +

1

2
αT (γR)α; (6.26)

g =
∂Γ

∂α
= ΛCT

(
ACTwC ◦BCuC

)
+ (γR)α.

Then the conjugate gradient method can be implemented, using the same descend-

ing direction updating strategy, inexact line search method, and stopping criteria as

discussed before.

When the Newton-Raphson approach is adopted, the linearization of the governing

Eq. (6.22) leads to
WC
η KCT

eff TB〈ACTwC〉T

KC
eff 0 TA〈BCuC〉T

TB〈ACTwC〉 TA〈BCuC〉 γR




∆uC

∆wC

∆α

 =


0

0

−g

 , (6.27)

where TA〈x〉 and TB〈x〉 maps a vector x into the following matrices

TA〈x〉 = ΛCTdiag(x)ACT ; (6.28)

TB〈x〉 = ΛCTdiag(x)BC ,

respectively. When one is only interested in the update of the stiffness parameter

∆α, by defining the following block matrices

Kb =

WC
η KCT

eff

KC
eff 0

 , Tb =

{
TB〈ACTwC〉 TA〈BCuC〉

}
, (6.29)
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the inverse of the generalized stiffness matrix in Eq. (6.27) is given byKb T Tb

Tb γR


−1

=

K−1
b +K−1

b T Tb GαTbK
−1
b −K−1

b T Tb Gα

−GαTbK
−1
b Gα

 , (6.30)

where Gα =
(
γR− TbK−1

b T Tb
)−1

. Then the update ∆α is obtained from

∆α = −Gαg. (6.31)

Then the same inexact line search method and stopping criteria, combined with con-

jugate gradient method, can be implemented in the algorithm.

The structure can be excited by either external forces or ground motion, and

appropriate decomposition form the equivalent load fC should be chosen accordingly.

6.1.2 Measuring the magnitude and phase

When the measurement data contains only the magnitude information, the corre-

sponding objective functional Ω to be minimized is given by

Γ =
1

2
(|Hu| − ηρ)T W (|Hu| − ηρ) (6.32)

+ wCT
(
KC

effu
C − fC

)
+

1

2
αT (γR)α,

where ηρ is the midpoint of the measurement vector ηCρ , viz. ηCρ = mid ηCρ . By noting

the equality

δ (|Hu|) =
HuR

|Hu|
◦
(
HδuR

)
+
HuI

|Hu|
◦
(
HδuI

)
(6.33)

=

{
diag

(
HuR

|Hu|

)
diag

(
HuI

|Hu|

)}
HCδuC ,

the governing equations for the system are obtained as
KC

effu
C − fC = 0;

KCT
eff wC −

(
PC
ηρηρ −HCTWCHCuC

)
= 0;

ΛCT
(
ACTwC ◦BCuC

)
+ (γR)α = 0,

(6.34)
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where the deterministic matrix PC
ηρ is defined as

PC
ηρ = HCTWC

diag
(
HuR

/
|Hu|

)
diag

(
HuI

/
|Hu|

)
 . (6.35)

Note that the only difference between Eqs. (6.22) and (6.34) is the equivalent load

term for the adjoint system: HCTWC
(
ηC −HCuC

)
in Eq. (6.22) is replaced by(

PC
ηρηρ −HCTWCHCuC

)
in Eq. (6.34). Thus the rest of the derivation is exactly the

same as before. The only modifications are replacing PC
η in Eqs. (6.24) and (6.25)

by PC
ηρ in Eq. (6.35), and replacing WC

η in Eq. (6.27) by

WC
ηρ = HCTWC

D11
ηρ D12

ηρ

D12
ηρ D22

ηρ

HC . (6.36)

where D11
ηρ, D

12
ηρ, and D22

ηρ are diagonal matrices given by

D11
ηρ = diag

{
1− ηρ
|Hu|

◦ (HuI)2

|Hu|2

}
;

D12
ηρ = diag

(
ηρ
|Hu|

◦ Hu
R

|Hu|
◦ Hu

I

|Hu|

)
; (6.37)

D22
ηρ = diag

{
1− ηρ
|Hu|

◦ (HuR)2

|Hu|2

}
.

Alternatively, when the measurement data contains only the phase angles,

Γ =
1

2

(
arg (Hu)− ηϕ

)T
W
(

arg (Hu)− ηϕ
)

(6.38)

+ wCT
(
KC

effu
C − fC

)
+

1

2
αT (γR)α.

where ηϕ is the midpoint of the measurement vector ηCϕ , viz. ηCϕ = mid ηCϕ . By

noting the equality

δ arg (Hu) = − HuI

|Hu|2
◦
(
HδuR

)
+
HuR

|Hu|2
◦
(
HδuI

)
(6.39)

=

{
−diag

(
HuI

|Hu|2

)
diag

(
HuR

|Hu|2

)}
HCδuC ,

179



the governing equations for the system are obtained as
KC

effu
C − fC = 0;

KCT
eff wC − PC

ηϕ

(
ηρ − arg(HCuC)

)
= 0;

ΛCT
(
ACTwC ◦BCuC

)
+ (γR)α = 0,

(6.40)

where the deterministic matrix PC
ηϕ is defined as

PC
ηϕ = HCTWC

−diag
(
HuI

/
|Hu|2

)
diag

(
HuR

/
|Hu|2

)
 . (6.41)

The subsequent derivation is the same as before. One only needs to replace PC
η in

Eqs. (6.24) and (6.25) by PC
ηϕ in Eq. (6.41), and WC

η in Eq. (6.27) by

WC
ηϕ = HCTWC

D11
ηϕ D12

ηϕ

D12
ηϕ D22

ηϕ

HC , (6.42)

where D11
ηϕ, D12

ηϕ, and D22
ηϕ are diagonal matrices given by

D11
ηϕ = diag

{
2
(
ηϕ−arg(Hu)

)
◦Hu

R

|Hu|
◦Hu

I

|Hu|
+

(HuI)2

|Hu|2

}
;

D12
ηϕ = diag

{(
ηϕ−arg(Hu)

)
◦
(

(HuI)2

|Hu|2
− (HuR)2

|Hu|2

)
− HuR

|Hu|
◦Hu

I

|Hu|

}
; (6.43)

D22
ηϕ = diag

{
2
(
ηϕ−arg(Hu)

)
◦Hu

R

|Hu|
◦Hu

I

|Hu|
+

(HuR)2

|Hu|2

}
.

Then either the conjugate gradient method or the Newton-Raphson method can

be implemented to solve the governing Eqs. (6.34) and (6.40). The yielded result is

the optimal prediction of the system properties that minimize the difference between

the measured and predicted responses of the structure.

6.2 Interval Inverse Solver

The deterministic solution uC0 , wC0 , and α0 obtained from the deterministic solver

outlined in the previous section now serves as the reference solution in the interval

stage. The corresponding interval governing equations are transformed into a fixed-

point form, and a guaranteed interval enclosure of the unknown stiffness parameter
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vector α is obtained by using the iterative enclosure method. The proposed method

is also extended to account for magnitude and phase angle measurements.

6.2.1 Iterative enclosure method

When the structure response is caused by external loads, the interval extension of

Eq. (6.22) yields 
KC

effuC − FCδC = 0;

KCT
eff wC −HCTWC

(
ηC −HCuC

)
= 0;

ΛCT (ACTwC ◦BCuC) + (γR)α = 0,

(6.44)

where KC
eff = KC + MC , and ηC includes both the real and imaginary parts of the

measured response. Note that the decomposition fC = FCδC has been used above.

To transform Eq. (6.44) into a fixed-point form, let δC0 , ηC0 , and αm0 be the mid-

point values of δC , ηC , and αm, respectively. Now, introduce the auxiliary variables

∆δC = δC − δC0 , ∆ηC = ηC − ηC0 , ∆αm = αm − αm0;

∆uC = uC − uC0 , ∆wC = wC − wC0 , ∆α = α− α0

(6.45)

to denote the difference between the interval vectors and their respective deterministic

reference vectors. Then the following equalities hold

KCx = KC
0 x0 +KC

0 ∆x + ∆KCx0 + ∆KC∆x;

MCx = MC
0 x0 +MC

0 ∆x + ∆MCx0 + ∆MC∆x;

ACTwC ◦BCuC = ACTwC0 ◦BCuC0 + ACTwC0 ◦BC∆uC

+ACT∆wC ◦BCuC0 + ACT∆wC ◦BC∆uC ,

(6.46)

where x can be either uC or wC . Eq. (6.44) is equivalent to
WC
η KCT

eff 0 TB〈ACTwC0 〉T

KC
eff 0 0 TA〈BCuC0 〉T

TB〈ACTwC0 〉 TA〈BCuC0 〉 γR




∆uC

∆wC

∆α


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=


0 PC

η −TBm 〈ACTm wC〉T

FC 0 −TAm〈BC
muC〉T

0 0 0




∆δC

∆ηC

∆αm

 (6.47)

−


BCT 0 0

0 AC 0

0 0 ΛCT



ACT∆wC ◦ ΛC∆α

BC∆uC ◦ ΛC∆α

BC∆uC ◦ ACT∆wC

 ,

by repeatedly using Eq. (6.46) and the following identities

∆KCx = ACdiag(ΛC∆α)BCx = ACdiag(BCx)ΛC∆α;

∆MCx = ACmdiag(ΛC
m∆αm)BC

mx = ACmdiag(BC
mx)ΛC

m∆αm; (6.48)

x ◦ y = diag(x)y = diag(y)x,

where WC
η = HCTWCHC , PC

η = HCTWC , KC
eff 0 denotes the effective stiffness matrix

parameterized by α0 and αm0, TA〈x〉 and TB〈x〉 are defined earlier in Eq. (6.28),

TAm〈x〉 and TBm 〈x〉 are given by

TAm〈x〉 = ΛCT
m diag(x)ACTm ; (6.49)

TBm 〈x〉 = ΛCT
m diag(x)BC

m.

To further separate the deterministic and interval terms, the following interval

matrix in Eq. (6.47) can be decomposed into

Fg =


0 PC

η −TBm 〈ACTm wC〉T

FC 0 −TAm〈BC
muC〉T

0 0 0

 = Fg0 + AFg diag
(
vFg
)
BF
g , (6.50)

where

Fg0 =


0 HCTWC 0

FC
0 0 0

0 0 0

 , AFg =


0 −BCT

m

−ACm 0

0 0

 ;

vFg =

 BC
muC

ACTm wC

 , BF
g =

 0 0 ΛC
m

0 0 ΛC
m

 .

(6.51)
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Thus the governing Eq. (6.47) can be recast into the following compact form

Kg∆ug =
{
Fg0 + AFg diag

(
vFg
)
BF
g

}
∆δg − AgΘ(Bg∆ug), (6.52)

where Kg, Ag, Fg0, AFg , and BF
g are known deterministic matrices, and ∆ug depends

upon the unknown interval vectors ∆uC , ∆wC , and ∆α. Further, ∆δg depends upon

the known interval vectors ∆δC , ∆ηC , and ∆αm. vFg is composed of the interval

vectors BC
muC , and ACTm wC . Bg∆ug is composed of the secondary unknown vectors

BC∆uC , ACT∆wC , and ΛC∆α. The function Θ(Bg∆ug) in Eq. (6.52) maps Bg∆ug

into the following interval vector

Θ(Bg∆ug) = Θ



BC∆uC

ACT∆wC

ΛC∆α


 =


ACT∆wC ◦ ΛC∆α

BC∆uC ◦ ΛC∆α

BC∆uC ◦ ACT∆wC

 . (6.53)

Eq. (6.52) emphasizes the direct relationship between uncertainties of the given data

∆δC , ∆ηC , ∆αm (collectively denoted by ∆δg) and those of the unknown vectors

∆uC , ∆wC , ∆α (collectively denoted by ∆ug).

By introducing G = K−1
g , Eq. (6.52) is equivalent to

∆ug =
{

(GFg0) + (GAFg )diag(vFg )BF
g

}
∆δg − (GAg)Θ(Bg∆ug). (6.54)

Then iterative enclosure method can be implemented to obtain a guaranteed outer

enclosure for the exact solution ug (see Section 3.2.2 for reference). To avoid unnec-

essary overestimation during the computation, instead of directly iterating on ∆ug,

the following auxiliary variable is introduced

vg =
{(
BC
m∆uC

)T (
ACTm ∆wC

)T (
BC∆uC

)T (
ACT∆wC

)T (
ΛC∆α

)T }T
. (6.55)

which contains all the secondary uknown vectors.

When the structure is subject to ground motion, fC = ACmdiag(ΛC
mαm)BC

f δ
C , the
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nodal equivalent load fC can be rewritten into

fC = ACmdiag(ΛC
mαm0)BC

f δ
C + ACmdiag(ΛC

m∆αm)BC
f δ

C (6.56)

= FC
0 δ

C + ACmdiag(BC
f δ

C)ΛC
m∆αm,

where FC
0 = ACmdiag(ΛC

mαm0)BC
f . Then the governing equation is the same as in Eq.

(6.47), except for the interval matrix Fg, which has the following form

Fg =


0 PC

η −TBm 〈ACTm wC〉T

FC
0 0 −TAm〈BC

muC −BC
f δ

C〉T

0 0 0

 . (6.57)

Thus the formulation remains mostly unchanged, and the only modification is to

substitute BC
muC with BC

muC−BC
f δ

C .

6.2.2 Measuring the magnitude and phase

When the measurement data contains only the magnitudes, the interval extension of

the governing Eq. (6.34) yields
KC

effuC − FCδC = 0;

KCT
eff wC −

(
PC
ηρηρ −HCTWCHCuC

)
= 0;

ΛCT (ACTwC ◦BCuC) + (γR)α = 0,

(6.58)

where ηρ is the measurement vector, and the interval matrix PC
ηρ is defined as

PC
ηρ = HCTWC

diag
(
HuR

/
|Hu|

)
diag

(
HuI

/
|Hu|

)
 , (6.59)

By using the following guaranteed interval approximation,

∆
(
PC
ηρηρ −HCTWCHCuC

)
= PC

ηρ∆ηρ −WC
ηρ∆uC , (6.60)

Eq. (6.58) can be transformed into a similar equivalent matrix form as Eq. (6.47).

One only needs to replace WC
η in Eq. (6.47) with WC

ηρ, and PC
η in Eq. (6.47) with
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PC
ηρ. Here WC

ηρ has been introduced earlier in Eq. (6.36). Noting the following

decomposition of PC
ηρ,

PC
ηρ = HCTWCdiag

HuR
/
|Hu|

HuI
/
|Hu|


 I

I

 , (6.61)

the interval matrix Fg can be decomposed into a similar form as before.

When the measurement data contains only the phase angles, the interval extension

of the governing Eq. (6.40) yields
KC

effuC − FCδC = 0;

KCT
eff wC −PC

ηϕ

(
ηϕ − arg(HCuC)

)
= 0;

ΛCT (ACTwC ◦BCuC) + (γR)α = 0,

(6.62)

where ηϕ is the measurement vector, and the interval matrix PC
ηϕ is defined as

PC
ηϕ = HCTWC

−diag
(
HuI

/
|Hu|2

)
diag

(
HuR

/
|Hu|2

)
 , (6.63)

By using the following guaranteed interval approximation,

∆
{

PC
ηϕ

(
ηϕ − arg(Hu)

)}
= PC

ηϕ∆ηϕ −WC
ηϕ∆uC , (6.64)

Eq. (6.62) can be transformed into a similar equivalent matrix form as Eq. (6.47).

One only needs to replace WC
η in Eq. (6.47) with WC

ηϕ, and PC
η in Eq. (6.47) with

PC
ηϕ. Here WC

ηϕ has been introduced earlier in Eq. (6.42). Noting the following

decomposition of PC
ηϕ,

PC
ηϕ = HCTWCdiag

−HuI
/
|Hu|2

HuR
/
|Hu|2


 I

I

 , (6.65)

the interval matrix Fg can be decomposed into a similar form as before.

6.3 Nonlinear Programming Approach

In this section, nonlinear programming (NLP) techniques are implemented to solve

the uncertain parameter identification problem. Similar to the static case, depending
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on how the solution vector x and the equality constraints feq are constructed, the NLP

methods are classified into: i) the direct approach, ii) the explicit adjoint approach,

and iii) the implicit adjoint approach. These approaches are presented as follows.

6.3.1 The direct approach

In the direct approach, the solution vector x includes the load uncertainty vector δC ,

the measurement vector ηC , the mass parameter vector αm, the nodal displacement

vector uC , the Lagrangian multiplier λC , and the stiffness parameter vector α:

x =
{
δCT ηCT αTm uCT λCT αT

}T
. (6.66)

When the lower (or upper) bound of the j -th component of the stiffness parameter

vector α is required, the objective functional Ω has the following general form

Ω = cα, or − cα, (6.67)

where c is a row vector whose only non-zero component is unity at the j -th entry.

Equality constraints include equilibrium conditions, compatibility requirements,

essential boundary conditions, and measurement equation, collectively given by
KC

effu
C + CCTλC − FCδC = 0;

CCuC = 0;

HCuC = ηC .

(6.68)

And the inequality constraints require that the load uncertainty vector δ, the mea-

surement vector η, and the mass parameter vector αm vary within their respective

interval bounds: 
δC ≤ δC ≤ δ

C
;

ηC ≤ ηC ≤ ηC ;

αm ≤ αm ≤ αm.

(6.69)
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To accelerate the convergence, the gradient of the objective functional

∂Ω

∂x
=
{

0 0 0 0 0 c
}
, (6.70)

and the gradient of the equality constraint equations

∂feq
∂x

=


−FC 0 TAm〈BC

mu
C〉T KC

eff CCT TA〈BCuC〉T

0 0 0 CC 0 0

0 −I 0 HC 0 0

 . (6.71)

are computed, where TA〈x〉 = ΛCTdiag(x)ACT and TAm〈x〉 = ΛCT
m diag(x)ACTm , as

defined earlier in Eqs. (6.28) and (6.49).

6.3.2 Explicit adjoint optimization

The adjoint approach does not directly use the measurement equation ηC = HCuC .

Instead, the governing Eq. (6.22) is used, either explicitly or implicitly. In the explicit

adjoint approach, the solution vector x includes the load uncertainty vector δC , the

measurement vector ηC , the mass parameter vector αm, the nodal displacement vector

uC , its Lagrangian multiplier λC , the adjoint solution wC , its Lagrangian multiplier

λCw , and the stiffness parameter vector α:

x =
{
δCT ηCT αTm uCT λCT wCT λCTw αT

}T
. (6.72)

Then the objective functional Ω, its gradient ∂Ω/∂x, and the inequality constraints

are the same as in the direct approach.

However, the equality constraints are given by

KCT
eff wC + CCTλCw + (HCTWCHC)uC − (HCTWC)ηC = 0;

KC
effu

C + CCTλC − FCδC = 0;

CCuC = 0, CCwC = 0;

ΛCT (BCuC ◦ ACTwC) + γRα = 0.

(6.73)
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The corresponding gradient is

∂feq
∂x

=



0 0 −FCT 0 0

−WCHC 0 0 0 0

TBm 〈ACTm wC〉 0 TAm〈BC
mu

C〉 0 0

HCTWCHC 0 KCT
eff CCT TB〈ACTwC〉T

0 0 CC 0 0

KC
eff CCT 0 0 TA〈BCuC〉T

CC 0 0 0 0

TB〈ACTwC〉 0 TA〈BCuC〉 0 γR



T

, (6.74)

where deterministic matrices TA〈x〉, TB〈x〉, TAm〈x〉, and TBm 〈x〉 have been defined

earlier in Eqs. (6.28) and (6.49).

6.3.3 Implicit adjoint optimization

In the implicit adjoint approach, the adjoint equations are no longer explicitly in-

cluded in the equality constraints. Instead, they are implicitly satisfied in the opti-

mization process. In particular, the solution vector

x =
{
δCT ηCT αTm αT

}T
, (6.75)

and the equality constraint is just

ΛCT (BCuC ◦ ACTwC) + γRα = 0, (6.76)

where uC and wC are the solution vectors to the original and adjoint systems, viz.WC
η KCT

eff

KC
eff 0


uCwC

 =

PC
η η

C

FCδC

 , (6.77)

where WC
η = HCTWCHC and PC

η = HCTWC , and uC and wC implicitly depend on

the unknown stiffness parameter vector α. The corresponding gradient of the equality

constraints is given by

∂feq
∂x

=
{
TbK

−1
b Fb − TbK−1

b Tmb γR− TbK−1
b T Tb

}
, (6.78)
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where Kb and Tb are introduced earlier in Eq. (6.29), and the other two block matrices

Fb and Tmb are given by

Fb =

 0 WC
η

FC 0

 , Tmb =

TBm 〈ACTm wC〉T

TAm〈BC
mu

C〉T

 (6.79)

Finally, note that the formulation outlined in this section can be extended to

account for magnitude and phase angle measurements.

6.4 Numerical Examples

The proposed interval inverse algorithm for structural dynamic analysis in the fre-

quency domain is implemented using the interval MATLAB toolbox INTLAB de-

veloped by Rump [122]. The performance of the proposed method is illustrated by

solving: i) a pin-roller bar and ii) a simply supported beam. Displacements at given

locations on the structure are collected as measurement data, which are transformed

into the frequency domain prior to the analysis. By assigning appropriate measure-

ment noises, interval measurement vector models the frequency response of the struc-

ture of i) both the real and imaginary parts, or ii) only the magnitudes. The yielded

lower and upper bounds from the proposed method are compared against solutions

obtained from the nonlinear programming (NLP) approach and the Monte Carlo pre-

diction (MC). The results show that the proposed method gives guaranteed enclosure

of the exact solution, and its computational time is negligible when compared with

other methods.

6.4.1 Pin-roller bar

Consider a straight bar of length L = 5 m, as shown in Figure 6.1. The pin-roller bar

is subject to concentrated force P = 100 kN at one end C. The cross section of the

bar is uniform, with an area A = 0.005 m2. Only axial deformations are allowed, and

the bar is modeled by 10 equal-length planar truss elements with uniform material
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Figure 6.1: A pin-roller bar subject to concentrated traction at the other end.

properties. For each element, the Young’ modulus

E = 115 + 10 sin
(x
L

)
− 5 cos

(x
L

)
GPa, (6.80)

where x is the coordinate of element centroid, and the values of E are given up to

four significant digits. The mass density ρ = 8.3× 103 kg/m3.

The same 10-element model is also used to generate measurement data. Axial

displacements at 10 equally distributed nodes along the bar are collected into the

exact measurement vector ηex. The measurement data is obtained within the fre-

quency range [0.1, 1] kHz, and the fundamental frequency ∆f = 25 Hz. Thus the

measurement data η contains axial displacements at 36 different frequencies. The

uncertainties in η range from 0.1% to 2%, and material uncertainty in ρ is 1%.

For each frequency point, there are 10 measurements and 10 unknown element

Young’s moduli Ej. The problem is well-posed, so no regularization is required.

The initial guess E = 60 GPa for all the elements. Figure 6.2 shows the obtained

deterministic solution as a function of the frequency f. In the figure, the solid lines

are the obtained deterministic solutions corresponding different frequencies, starting

from 0.1 kHz to 1 kHz at every 25 Hz. Observe that the solutions at lower frequencies

oscillate, while the solutions at higher frequencies are more stable. This is due to the

additional stabilization introduced by the increased influence of the mass matrix M,

which improves the conditioning number of the problem.

Then the proposed interval inverse solver is applied. The obtained lower and upper

bounds of the the estimated Young’s modulus E4 for the fourth element are plotted
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Figure 6.2: Deterministic solution of the Young’s modulus E for the pin-roller bar
in Figure 6.1 at different frequencies: from 0.1 kHz to 1 kHz with 25 Hz intervals.
Measurement uncertainty is 0.1-2% and material uncertainty is 1% in mass.

in Figure 6.3. Observe that the low-frequency solutions are missing, because the

measurement uncertainty is too large and the corresponding fixed-point iteration does

not converge. However, when the proposed method converges, the yielded interval

solutions (IS, solid lines with circular markers) guarantee to enclose the reference

solutions obtained from the nonlinear programming solution (NLP, dashed lines with

rectangular markers) and Monte Carlo predictions (MC, dotted lines with triangular

markers). All these solutions contain the exact Young’s modulus (solid line).

By intersecting these interval solutions, the final enclosure of the Young’s moduli

is obtained. The results are plotted in Figure 6.4, following the same guidelines as in

6.3. Apparently, the proposed method provides guaranteed interval enclosures of the

exact solution set, for all the unknown parameters of the structure.
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Figure 6.3: Lower and upper bounds of the Young’s modulus E4 for the pin-roller bar
in Figure 6.1 at different frequencies: exact value (solid line), interval solution (IS),
nonlinear programming solution (NLP), and Monte Carlo prediction (MC) obtained
from an ensemble of 10,000 simulations. Measurement uncertainty is 0.1-2% and
material uncertainty is 1% in mass.
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Figure 6.4: Interval-based identification of Young’s moduli of the pin-roller bar of
Figure 6.1: exact values (ES), interval solution (IS), nonlinear programming solution
(NLP), and Monte Carlo prediction (MC) from an ensemble of 10,000 simulations.
Measurement uncertainty is 0.1-2% and material uncertainty is 1% in mass.
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Figure 6.5: A simply supported beam subject to vertical ground motion.

6.4.2 Simply supported beam

The second example is a simply supported beam subject to vertical ground motion,

as shown in Figure 6.5. The beam has a length L = 2 m, and a 5 cm × 3 cm

rectangular cross section (cross section area A = 0.015 m2 and moment of inertia I =

1.125×10−4 m4). The beam is subject to lateral deformation, and 20 two-node Euler-

Bernoulli beam elements are used in the finite element mesh. The stiffness matrix

and the mass matrix are obtained using the three-node Gaussian quadrature rule.

In order to generated a continuous material field, Young’s moduli at the quadrature

nodes are linearly interpolated from those at the material mesh nodes

E = 220 + 10 sin

(
6x

L

)
− 5 cos

(
13x

L

)
GPa, (6.81)

where x is the nodal coordinate, and the values are given up to four significant digits.

The mass density ρ = 7.8×103 kg/m3 is interpolated from the same material mesh as

E. Thus the stiffness parameter vector α and mass parameter vector αm both have

21 components, one for each mesh node.

A finer 80-element finite element model is used to generate the measurement data.

Further, the magnitude of nine lateral deflections at equidistant points along the beam

are collected as measurements. The measurement vector ηj at different frequencies,

which has 9 components, is obtained with a constant device tolerance ±2× 10−4 m.

The sampling frequency ranges from 50 Hz to 750 Hz at a 25 Hz increment. The

resulting interval measurement vector η has uncertainties ranging from 0.1% to 1%,

and contains the exact measurement data.
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Figure 6.6: Deterministic solution of the Young’s modulus E of the simply supported
beam of Figure 6.5 at different frequencies: from 50 Hz to 750 Hz with 25 Hz intervals
(measurement uncertainty level 0.1-1%).

The problem is ill-posed, and the measurement data at each frequency is not

enough to uniquely determine the 21 unknown parameters. Thus regularization is

required. Here, a second-order regularization matrix R is used. The regularizer weight

γ is cautiously chosen [62]: the famous L-curve method is used, and γ = 2× 10−4 is

chosen as the optimal regularization weight.

Then for the proposed method, the initial guess E = 160 GPa for all elements.

Figure 6.6 displays the deterministic solutions obtained from the proposed method.

Observe that the deterministic solution is more stable near the mid-span of the beam,

where more effective measurements are available, than those near both ends. Figure

6.7 compares the corresponding lower and upper bounds of the Young’s modulus E9

as a function of the sampling frequency f . Observe that the Monte Carlo prediction
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Figure 6.7: Lower and upper bounds of the Young’s modulus E9 of the simply sup-
ported beam of Figure 6.5: exact values (solid line), interval solution (IS), and Monte
Carlo prediction (MC) obtained from an ensemble of 10,000 simulations (measure-
ment uncertainty level 0.1-1%).
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Figure 6.8: Interval-based identification of Young’s moduli of the simply supported
beam of Figure 6.5: exact values (ES), interval solution (IS), nonlinear program-
ming solution (NLP), and Monte Carlo prediction (MC) from an ensemble of 10,000
simulations (measurement uncertainty level 0.1-1%).
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obtained from an ensemble of 10,000 simulations is always contained by the interval

solution (IS). Both methods fail to provide reliable estimates on the Young’s modulus

near the resonance frequency (≈ 200 Hz), even where the measurement uncertainty

level is uniform. As a result, it is better to avoid resonance frequencies in the mea-

surement data aquisition process.

The final interval enclosure of the exact solution set is obtained by intersecting

the obtained interval enclosures at all frequencies. Figure 6.8 compares the proposed

method with the MC predictions. Observe that containment is guaranteed and the

overestimation is very small. Thus the proposed method works well, even for ill-

conditioned problems.

6.5 Summary

In this chapter, the proposed interval parameter identification algorithm is extended

to dynamic problems. The measurement data is processed and transformed into the

frequency domain prior to the analysis, and the goal is to predict material proper-

ties of the structure based on noisy measurement data modeled by intervals. Other

parameters of the structure, such as external loads and inertial properties, are also

modeled by intervals.

The algorithm is composed of the deterministic stage and the interval stage. In the

deterministic stage, a deterministic prediction is obtained by minimizing the difference

between the predicted and measured responses of the structure, using the adjoint-

based optimization technique. In the interval stage, the interval enclosure of the

unknown parameter is obtained, which guarantees to enclose the exact solution set.

In addition, a new variant of the iterative enclosure method is used in the algorithm.

Numerical examples show that the current method is reliable and efficient.
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CHAPTER VII

CONCLUSION

In this dissertation, for the first time structural inverse problems under uncertainty

are successfully solved using an interval finite element approach. Inverse problems

in structural analysis include some important applications that have drawn the at-

tention of numerous researchers in recent years, such as structure health monitoring

[1, 22, 57, 111, 149] and structure damage detection [14, 35, 39, 84, 142, 156, 163]. In

these problems, internal properties of the structure are predicted based on measure-

ment data collected from measuring devices deployed on the structure. Inevitably,

measurements contain noise and the prediction contains uncertainties. The main

source of uncertainty is due to the accuracy of measuring devices; these are designed

to operate within specific allowable tolerances, as defined by National Institute of

Standards and Technology (NIST). Tolerances are performance requirements that fix

the limit of allowable error or departure from true performance or value. Thus closed

intervals are the most realistic way to model uncertainty in measurements. In this

dissertation, intervals are adopted as a basis for the analysis of the uncertainty mod-

eling and propagation [28, 37, 69, 104]. The results are reliable and computationally

inexpensive.

The presented work studies elastic structures that can be modeled as trusses,

frames, and plane stress/strain problems. Interval Finite Element Method (IFEM)

[32, 90, 102, 103, 105, 110, 119] is used as a cornerstone of the formulation. Efficient

and accurate interval forward and inverse solutions in static and dynamic domains

have been developed. The static forward solver solves for structural response under

given load, geometry, and material uncertainties. The static inverse solver predicts
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material properties of the structure (e.g. Young’s modulus), based on the displace-

ment or strain measurements at prescribed locations. The dynamic forward solver

yields the interval enclosure of the frequency responses, natural frequencies, modal

shapes, and transient responses of elastic structures with uncertain parameters. The

dynamic inverse solver obtains interval predictions on the structural material proper-

ties using dynamic measurement data, which are collected and transformed into the

frequency domain.

In the implementation of the current method, the first challenge encountered is

caused by the ill-conditioning nature of inverse problems. The ill-conditioning ba-

sically means that the problem might have no solution, or have multiple solutions,

or show significant changes in the solution when there is only small perturbations in

the data. Thus various regularization techniques are exploited to stabilize the inverse

algorithm and improve the conditioning of the problem. The second challenge is the

inherent high computational cost that the uncertainty analysis possesses. In order to

reliably estimate the accuracy of the solution, the computational resources required

are immense when compared with those in a deterministic analysis. However, due

to the adoption of interval arithmetic, the interval-based uncertainty analysis is per-

formed similarly to the conventional deterministic analysis. In addition, the obtained

interval enclosures guarantee to contain the exact solution set, regardless of the ac-

tual nature of the uncertainty under consideration. However, due to the conservative

nature of interval arithmetic, which yields guaranteed results in the calculation, there

are overestimations in the final solution when dependency exists among interval vari-

ables. If not handled properly, this detrimental effect can quickly accumulate and

render the final solution excessively wide and practically useless. Thus the third chal-

lenge is to develop interval algorithms that reduce this overestimation due to interval

dependency to a minimum.

The current work successfully handles these challenges. For the inverse problem
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solving, the adjoint-based optimization technique is incorporated into the formula-

tion, which provides a computational efficient approach to calculate the gradient of

a given function under given constraint. By combining the adjoint method with

other optimization techniques such as conjugate gradient method, Newton-Raphson

method, and inexact line search, the current method is applicable to structural in-

verse problems both in the static and dynamic cases. For the reduction of overesti-

mation due to interval dependency, the following innovative approaches are adopted:

i) new decomposition strategies for the interval variables in IFEM formulation, ii) an

element-by-element assembly strategy followed by the Lagrangian multiplier approach

in enforcing compatibility requirements and essential boundary conditions, and iii)

new variants of iterative enclosure method. The key idea is to reduce multiple occur-

rences of the same interval variables and delay interval operations.

To illustate the performance of the current method, a variety of numerical exam-

ples are presented. The examples include plane trusses, space trusses, plane beams,

plane frames, and plane stress/strain problems. Besides simple finite elements such

as two-node truss elements and two-node Euler-Bernoulli beam elements, isoparamet-

ric elements such as 8-node rectangular plane elements and 6-node triangular plane

elements are included. The examples include simple illustrative ones that have only

a few elements, as well as more complex ones that require several hundreds. The

problems can be either linear in the mathematical sense, such as the static forward

problems and the frequency response analysis and the transient response analysis

of dynamic problems, or nonlinear, such as the natural frequency and modal shape

analysis of dynamic problems and inverse problems (both static and dynamic). In all

the examples, the current method yields guaranteed interval enclosure of the exact

solution set with small overestimation, regardless of the conditioning of the problem,

the source of the external excitation, or the level of uncertainty. The obtained interval

enclosures are sharp and the corresponding overestimation is small when compared
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with other competing methods, such as endpoint combination method [109], the sen-

sitivity analysis [77], the Monte Carlo simulation [110], the nonlinear programming

approach [16, 91], and other interval-based methods proposed by other researchers.

The computational time of the current method is negligible when compared with

other competing methods in the literature, such as endpoint combination, Monte

Carlo simulation, and nonlinear programming approach.

In summary, the presented method works well for a wide spectrum of structural

forward and inverse problems. Interval arithmetic has been proven a useful tool in

the uncertainty analysis of elastic structures with load, geometry, and material un-

certainties. The obtained interval enclosure guarantees to enclose the exact solution

set with very small overestimation, and the corresponding computational time is neg-

ligible when compared with other conventional approaches in uncertainty analysis of

structural problems. The current method can be extended in different directions.

For instance, currently it is assumed that no information other than the bounds are

known for the uncertainties under study. In reality, it is plausible to know partial

information about the nature of the uncertainty, and to model them as random vari-

ables with interval parameters. Also it is future work to extende the current work to

other types of finite elements, such as space frames, solid elements, plate elements,

and shell elements, and other types of analysis, such as buckling analysis. Finally it

is worth mentioning that the current method only assumes a linear constitutive law,

and considers elastic structures. It is plausible to extend to include nonlinearity in

geometry, material, and boundary condition, and beyond the range of elasticity.
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APPENDIX A

DERIVED QUANTITY CALCULATION

For displacement-based finite element method as in the current study, the primary

variable in the formulation is the nodal displacement vector u. All other quantities,

such as element displacements, strains, internal forces, and stresses, are calculated

after nodal displacement vector u has been obtained. Thus they are referred to as

derived quantities. For linear problems, these derived quantities can be expressed

linearly in terms of the primary variable u.

Consider the displacement dξ at given point ξ inside an element. It is interpolated

from the element nodal displacement vector ue via the shape function matrix Ne,

dξ = Ne(ξ)ue = Ne(ξ)Teu. (A.1)

where Te is the transformation matrix that relates between the element and global

displacement vector, viz. ue = Teu. For the strain component εξ at given location ξ,

εξ = Be(ξ)ue = Be(ξ)Teu, (A.2)

where Be is the element strain-displacement vector. Eqs. (A.1) and (A.2) show that

the calculation of dξ and εξ has the following generalized form

ε = Bu, (A.3)

where ε is the generalized strain vector, and B depends on the assumed displacement

field, geometry and orientation of the element. Note that B is not influenced by the

material properties of the structure.

The internal forces between elements are obtained from the element nodal force
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re due to element deformation, which is further given by

re = Keue = KeTeu. (A.4)

For the stress component σξ at given location ξ, the simplest approach is to multiply

the strain εξ in Eq. (A.2) with the constitutive matrix Ee(ξ) at the given location,

σξ = Ee(ξ)εξ = Ee(ξ)Be(ξ)Teu. (A.5)

If the stress σξ is extrapolated from stresses at Gaussian integration points inside the

same element, or even averaged from stresses obtained from different elements, the

calculation is very similar to Eq. (A.5). Alternatively, σξ can be obtained from the

direct interpolation of the stress field [?]. As the stress field must generate the same

element nodal force as in Eq. (A.4), σξ is related to the element nodal force re. Thus

σξ = Pe(ξ)re = Pe(ξ)KeTeu, (A.6)

where the matrix Pe(ξ) is determined by the assumed stress field and geometry of the

element. Eqs. (A.4), (A.5), and (A.6) show that the calculation of re and σξ has the

following generalized form

σ = Su, (A.7)

where σ is the generalized stress vector, and S is influenced by the structural material

properties and is linearly dependent on the stiffness of the element.
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APPENDIX B

RAYLEIGH DAMPING

Structural systems in real life possess energy dissipation mechanisms, which are re-

ferred to as damping. The Rayleigh damping assumes that the damping matrix C is

a linear combination of the stiffness and mass matrix, viz.

C = αdM + βdK, (B.1)

where αd and βd are the Rayleigh damping coefficients, with units 1/sec and sec,

respectively. The Rayleigh damping model is especially useful for the modal analysis

of structural dynamic systems, as the resulting governing equations are uncoupled

[6, 25]. Although real life structures usually have non-proportional damping, it is a

common practice to adopt the Rayleigh damping in both experimental and theoretical

studies [107, 154].

The Rayleigh damping has different effective damping ratio for different frequen-

cies. At given frequency ω, the corresponding damping ratio ζ is given by

ζ =
1

2

(αd
ω

+ βdω
)
. (B.2)

Figure B.1 plots the effective damping ratio ζ against the frequency ω for differnet

sets of Rayleigh damping coefficients. It is observed that ζ is very large for low

frequencies, remains relatively unchanged for middle frequencies, and increases slowly

for high frequencies.

According to Hall [60], to obtain a desired damping ratio that lies within an

interval [ζ−αc, ζ+αc] for frequencies ranging from ω to βcω, the damping coefficients

αd and βd should be chosen as

αd = 2ζω
2βc

1 + 2
√
βc + βc

, βd =
2ζ

ω

2

1 + 2
√
βc + βc

. (B.3)
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Figure B.1: Effective damping ratio as a function of frequency for Rayleigh damping
with different damping coefficients.

The corresponding αc is also determined by the range ratio βc,

αc = ζ
1− 2

√
βc + βc

1 + 2
√
βc + βc

. (B.4)

Apparently, αc increases as the desired range ratio βc increases.
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APPENDIX C

FIXED-POINT FORM DERIVATION

The goal of this section is to transform the following interval nonlinear system into a

fixed-point form with respect to the unknown interval variables ∆ω2, ∆u, and ∆λ,

{
−Mbu0 Kb

}
∆ω2

∆u

∆λ

 = Mb∆u∆ω2 − Abdiag

 ATu

ω2ATmu


Λeff∆αeff, (C.1)

where Kb, Mb, and Ab are given by

Kb =

K0 − ω2
0M0 CT

C 0

 , Mb =

M0

0

 , Ab =

A Am

0 0

 , (C.2)

ω0, u0, and λ0 are deterministic reference solution that satisfiesK0 − ω2
0M0 CT

C 0


u0

λ0

 =

0

0

 , uT0M0u0 = 1, (C.3)

and ∆ω2, ∆u, and ∆λ are the difference between the interval variables and their

respective reference points,

∆ω2 = ω2 − ω2
0, ∆u = u− u0, ∆λ = λ− λ0. (C.4)

To solve for ∆ω2, both sides of Eq. (C.1) are multiplied by Gω = −
{
uT0 λT0

}
.

According to Eq. (C.3),

GωKb = −
{
uT0 λT0

}{
−Mbu0 Kb

}
=
{
uT0M0u0 0

}
=
{

1 0
}
, (C.5)

∆ω2 is obtained from

∆ω2 = (GωMb)∆u∆ω2 − (GωAb)diag

 ATu

ω2ATmu


Λeff∆αeff. (C.6)
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To solve for ∆u and ∆λ, both sides of Eq. (C.1) are multiplied by

Gu =

Kb + γ

u0

λ0

uT0M
T
b

−1(
I −Mbu0

{
uT0 λT0

})
, (C.7)

where the constant γ is used to adjust the conditioning number of the matrix to be in-

verted. For the deterministic matrix −Mbu0, multiplication with
(
I−Mbu0

{
uT0 λT0

})
yields

(
I −Mbu0

{
uT0 λT0

})
(−Mbu0)

= −Mbu0 +Mbu0

{
uT0 λT0

}
Mbu0 (C.8)

= −Mbu0 +Mbu0

(
uT0M0u0

)
= 0.

For the block stiffness matrix Kb, observe that

(
I −Mbu0

{
uT0 λT0

})
Kb = Kb −Mbu0

{
uT0 λT0

}
Kb = Kb. (C.9)

and Kb + γ

u0

λ0

uT0M
T
b

I −
u0

λ0

uT0M
T
b


= Kb + γ

u0

λ0

uT0M
T
b −Kb

u0

λ0

uT0M
T
b (C.10)

− γ

u0

λ0


uT0MT

b

u0

λ0


uT0M

T
b = Kb.

According to Eqs. (C.8) and (C.9),

(
I −Mbu0

{
uT0 λT0

}){
−Mbu0 Kb

}
=
{

0 Kb

}
. (C.11)

According to Eq. (C.8),Kb + γ

u0

λ0

uT0M
T
b

−1{
0 Kb

}
=

0 I −

u0

λ0

uT0M
T
b

 . (C.12)
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Combining Eqs. (C.11) and (C.12) yields

Gu

{
−Mbu0 Kb

}
=

0 I −

u0

λ0

uT0M
T
b

 =

0 I − u0u
T
0M0 0

0 −λ0u
T
0M0 I

 . (C.13)

Finally, by assuming ∆u is perpendicular to the deterministic vector M0u0, viz.

uT0M0∆u = ∆uTM0u0 = 0, ∆u and ∆λ are obtained from∆u

∆λ

 = (GuMb)∆u∆ω2 − (GuAb)diag

 ATu

ω2ATmu


Λeff∆αeff. (C.14)
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APPENDIX D

DISCRETE FOURIER TRANSFORM

Discrete time signals can be decomposed into a series of sines and cosines. This

representation is called the Discrete Fourier Transform (DFT) of the signal. The

process is reversible and the inverse transform is called the Inverse Discrete Fourier

Transform (IDFT). The DFT and IDFT are widely used in the analysis of discrete

time signals [123].

Suppose a discrete time signal xk is given at time tk. The sampling interval ∆t

is the distance between two contiguous time steps, and it is usually a constant for a

specific problem. Then the k-th time is

tk = k∆t. (D.1)

The DFT of the signal xk yields a series of complex coefficients Xj = Ft(xk)j. The

real and imaginary parts of the coefficients, viz. Re(Xj) and Im(Xj), denote the

amplitude of the cosine and sine with frequency ωj that is required to form the signal

xk, respectively, where ωj is given by

ωj = j
2π

T
. (D.2)

Here the fundamental period T = N∆t is the duration of the N -component signal xk,

and ∆ω = 2π/T is the fundamental frequency.

In practice, the Fourier coefficients Xj are computed from the signal xk according

to the following analysis equation:

Xj = Ft(x)j =
N−1∑
k=0

xke
−i(2π/N)kj, (D.3)
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in which i =
√
−1 is the imaginary unit, and the Euler’s formula eiθ = cos θ+ i sin θ

has been used. The inverse procedure computes the time signal xk from the Fourier

coefficients Xj according to the following synthesis equation:

xk = F−1
t (X)k =

1

N

N−1∑
j=0

Xje
i(2π/N)kj. (D.4)

Eqs. (D.3) and (D.4) together form a “Fourier pair”. For a real-valued signal xk, its

Fourier coefficients Xj is conjugate symmetric, viz.

Xj = X∗N−j, (D.5)

where superscript ∗ denotes complex conjugate.

Due to the development of the Fast Fourier Transform (FFT) algorithm [27, 139],

DFT is widely applied in engineering, science, and mathematics. One application of

DFT is the calculation of the convolution zk of two discrete signals xk and yk,

zk =
N−1∑
j=0

xk−jyj, (D.6)

where the head of the signal yk is filled with zeros such that y−1 = y−2 = . . . = 0.

Eq. (D.6) is especially useful in the analysis of dynamic systems, in which xk is the

system excitation, yk is the impulse response signal, and zk is the system response.

The DFT-based approach first compute the DFT of xk and yk,

Xj = Ft(x)j, Yj = Ft(y)j. (D.7)

Then the convolution zk is obtained by applying the IDFT to the product of the

Fourier coefficients Xj and Yj, viz.

zk = F−1
t (XY )k . (D.8)

Due to the high-efficiency of the FFT algorithm, the DFT-based approach is much

faster than the direct formula in Eq. (D.6).
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The DFT implicitly assumes periodicity over the duration T of the finite length

signal xk, as the base functions in Eqs. (D.3) and (D.4) have the common period T .

Thus truncated signals cause discontinuities at both ends, and yield highe-frequency

components in the Fourier coefficients. Figure D.1 illustrates this phenomenon in

detail. Subplot (a) shows a sinusoid signal with 6 complete cycles. Its auto spectrum

(or equivalently, the norm of its Fourier coefficients) is shown in (b), which is an

impulse in the frequency domain. Subplot (c) shows a truncated sinusoid signal with

5.5 cycles, and its auto-spectrum in (d) shows a significant energy leakage to the

neighboring frequencies. To reduce the leakage, the original signal xk is multiplied

with a gradually varying window wk. Then the “windowed” signal x′k is obtained as

x′k = xk · wk. (D.9)
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Figure D.1: Effects of truncation and windowing in Discrete Fourier Transform:
(a,b) A single-frequency sinusoid with complete number of cycles and its auto-
spectrum; (c,d) The same sinusoid with incomplete number of cycles and its auto-
spectrum; (e,f) Windowed signal and its auto-spectrum.
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The Hanning and Hamming windows are two commonly used windowing functions:

Hanning wk =
1

2
− 1

2
cos

(
2π

N
k

)
; (D.10)

Hamming wk = 0.54− 0.46 cos

(
2π

N
k

)
.

In Figure D.1, the signal in subplot (e) is obtained from applying the Hanning window

to the truncated signal in (c). Its auto-spectrum in (f) shows a significant reduction

in leakage. Also it is observed that windowing reduces the energy of the signal.

In DFT, the frequency resolution ∆ω = 2π/T can be increased by expanding the

original signal for a longer duration T . The most common extension strategy just

appends zeros to the signal. Figure D.2 considers a simple example. A truncated

sinusoid signal with N = 32 is displayed in subplot (a), as well as its auto-spectrum

in (b). The corresponding zero-padded signal in subplot (c) doubles the duration,

and the corresponding auto-spectrum in (d) shows a doubled frequency resolution.
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Figure D.2: Effects of zero-padding in Discrete Fourier Transform: (a,b) A trun-
cated sinusoid signal with N = 32 and its auto-spectrum; (c,d) The zero-padded
signal with N = 64 and its auto-spectrum. Note the doubled frequency resolution for
the padded signal in (d).
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