
FINDING AND REMEDYING HIGH-LEVEL SECURITY ISSUES IN BINARY CODE

A Thesis

Presented to

The Academic Faculty

By

David B. Dewey

In Partial Ful�llment

Of the Requirements for the Degree

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

December 2015

Copyright © David B. Dewey 2015

FINDING AND REMEDYING HIGH-LEVEL SECURITY ISSUES IN BINARY CODE

Approved by:

Dr. Patrick Traynor, Advisor

School of Computer Science

Georgia Institute of Technology

Dr. Mustaque Ahamad

School of Computer Science

Georgia Institute of Technology

Dr. William Harris

School of Computer Science

Georgia Institute of Technology

Dr. Alexandra Boldyreva

School of Computer Science

Georgia Institute of Technology

Dr. Jonathon Gi�n

Senior Software Developer

Hewlett Packard

Date Approved: August 10, 2015

For my wife, Katie,

and my daughters, Emma and Sarah.

While it will be my name on the degree,

we all earned this together.

ACKNOWLEDGEMENTS

Of all of the people I have met throughout my professional career, there is one that I admire

the most. Terry Nelms is by far the most intelligent, yet humble engineer I have ever met.

In the spring of 2009, Terry told me he was going to pursue a PhD at Georgia Tech. Then

he said something I never expected, �You should do it, too.� I had never considered going

back to school; specially not for something as intimidating as a PhD. But there was Terry

Nelms telling me he thought I could do it. How could I not do it?

Terry introduced me to Mustaque Ahamad. Since that time, Mustaque has been ex-

tremely in�uential in my life inside and outside of Georgia Tech. He helped me navigate

the enrollment process, introduced me to many great people at IBM research, added me to

the GTISC advisory board, and now I work with Mustaque at Pindrop Security. In every

encounter with Mustaque, I �nd some new incredibly impressive facet of his background and

talents.

Mustaque suggested Jonathon Gi�n as my advisor. Jon was a great �t. We shared

so much in terms of what motivated and interested us. Jon really forced me to focus

on the science of code analysis. He completely changed my outlook on how programs and

programming languages should be analyzed. When he chose to move into industry, I couldn't

have given a higher recommendation to my colleagues at Fortify Software. Jon was, without

a doubt, a perfect �t for that team.

My �rst class at Georgia Tech was Patrick Traynor's network security class. As this was

my �rst graduate-level course, and I was coming to it with ten years of information security

experience, I was a little skeptical. I was immediately impressed with Patrick, and Georgia

Tech as a whole. The way Patrick conducted his class, the expectations of the students,

and the depth of the material made it clear to me why Georgia Tech was rated so highly.

The most impressive thing I saw Patrick do was when he caught a student cheating. He

forced the student to withdraw failing from the course. Coming from the Virginia Military

Institute, honor is extremely important to me. We often think that true honor does not

iii

exist outside of VMI, but Patrick proved that it does.

When I needed to �nd a new advisor, there was no question who I was going ask. Patrick

has been an incredible mentor. He forced me to focus on, and improve, my weaknesses. Be-

fore working with Patrick, I often struggled to take constructive criticism. Rather than

treating it like an emotional de�ciency, Patrick helped me logic my way through why con-

structive criticism is so important. He also forced me to become a better writer. I'm still

not where I would like to be (more on that later), but I'm de�nitely better than I was.

I want to thank my committee. I know my research topic is well outside the common

areas of focus in GTISC. Everyone has been so accommodating in learning more about the

area so they can provide relevant feedback. Special thanks to Patrick Traynor, Mustaque

Ahamad, Jonathon Gi�n, Bill Harris, and Sasha Boldyreva.

My research would never be where it is without Mark Dowd and Ryan Smith. Mark and

Ryan have the ability to dig into the deepest levels of technology and learn everything there

is to know about a topic without any documentation or guiding road map of any kind. In

short, they are the best at what they do. I was lucky to get to work with them.

Finally, I would be remiss in not thanking one of my co-authors: Brad Reaves. Brad is,

by far, the best writer I have ever known. I learned so much from him by working on papers

together. There were so many times that I would write something, think it was great, and

he would make it so much better. By looking at the ways he changed what I had written I

learned a number of skills that have improved my own writing going forward.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xv

I INTRODUCTION . 1

1.1 Thesis Statement . 3

1.2 Contributions . 4

1.3 Dissertation Outline . 6

II RELATED WORK . 7

2.1 Binary Analysis Frameworks . 7

2.2 Source Code Analysis Frameworks . 8

2.3 High-Level Analyses . 9

2.3.1 Type Confusion Detection . 9

2.3.2 Reference Counting . 10

2.3.3 Memory Safety . 10

2.3.4 Control Flow Integrity . 11

2.3.5 Use-After-Free Detection . 11

2.4 COM Security . 12

v

III BACKGROUND . 14

3.1 Complex Types Built on a Primitive Language 14

3.2 C++ Background . 14

3.2.1 De�ning a Class . 14

3.2.2 Object Lifetime . 20

3.2.3 Structure of an Object After Compilation 21

3.3 COM Background . 23

3.3.1 COM Overview . 23

3.3.2 Microsoft ActiveX . 46

IV INSTANTIATION PROBLEMS . 55

4.1 C++ Constructor Failure . 55

4.1.1 Detecting C++ Constructor Failure With Static Analysis 55

4.2 COM Retention Failure . 57

4.2.1 ActiveX Object Retention Attacks I: No Retention 57

4.2.2 Detecting COM Retention Failures With Static Analysis 58

4.3 COM Initialization Failure . 58

4.3.1 Detecting COM Initialization Failure With Static Analysis 62

V OBJECT LIFETIME PROBLEMS . 63

5.1 C++ Type Confusion . 63

5.1.1 Silent Type Confusion . 63

vi

5.1.2 Reverse Engineering C++ Software 64

5.1.3 Assumptions . 66

5.1.4 Detecting C++ Type Confusion With Static Analysis 66

5.2 COM Type Confusion . 86

5.2.1 VARIANT Type Confusion Attacks I: Permissive Property Maps . . . 86

5.2.2 Type Confusion Attacks II: Misinterpreting Types 90

5.2.3 Type Confusion Attacks III: Direct Type Manipulation 93

5.2.4 Detecting Type Confusion Attacks With Static Analysis 95

5.3 VARIANT Shallow Copies . 95

5.3.1 The ActiveX Marshaller . 97

5.3.2 Detecting Shallow Copies with Static Analysis 97

5.4 COM Trust Transitivity . 98

5.4.1 Architectural Weakness . 98

5.4.2 Loading Adversary-Controlled COM Objects 100

5.4.3 Proof of Concept Attack . 103

5.4.4 Breadth of Attack . 106

5.4.5 Preventing COM Trust Transitvity With Runtime Enforcement . . . 106

VI DELETION PROBLEMS .115

6.1 C++ Use-After-Free Conditions . 115

6.1.1 C++ Objects in Memory . 115

vii

6.1.2 Use-After-Free Vulnerabilities . 116

6.1.3 Detecting Use-After-Free Conditions With Static Analysis 119

6.2 COM Release Failure . 131

6.2.1 Detecting COM Release Failures With Static Analysis 133

VII CONCLUSION .134

7.1 Summary of Results . 135

7.2 Future Work . 138

7.3 Final Thoughts . 138

APPENDIX A .141

REFERENCES .146

viii

LIST OF TABLES

1 VARIANT Basic Types . 26

2 VARIANT Modi�er Types . 27

3 Persistence Interfaces correlated to Data Interfaces 37

4 A listing of the elements of the ATL_PROPMAP_ENTRY structure and the

purpose they serve. 40

5 Github projects with injected vulnerabilities 128

6 DLLs containing use-after-free vulnerabilities 130

7 Github projects with injected vulnerabilities 138

8 DLLs containing use-after-free vulnerabilities 139

ix

LIST OF FIGURES

1 Example use of namespaces . 15

2 Example constructor declaration . 16

3 Example destructor declaration . 16

4 Example of inheritance . 17

5 Examples of use of public and private keywords 18

6 Examples of accessing public properties and methods 18

7 Examples of attempting to access private methods and properties. This code

will fail compilation with an error. 19

8 Examples of properly accessing private methods and properties. 19

9 Examples of virtual methods . 20

10 Example of stack-declared variables . 20

11 Example use of non-virtual class methods . 22

12 Memory layout of a C++ object after compilation 23

13 Example use of virtual class methods . 24

14 Type de�nition for __tagVARIANT . 25

15 Type de�nition for tagSAFEARRAY . 28

16 Type de�nition for tagSAFEARRAYBOUND . 28

17 List of IDispatch methods . 32

18 Type de�nition for tagDISPPARAMS . 33

x

19 Diagram representing various media that can contain the IStream data. . . . 35

20 An example of a storage �le's contents. 36

21 The inheritance hierarchy of persistence interfaces. 38

22 Type de�nition of ATL_PROPMAP_ENTRY . 39

23 Class de�nition for HelloCom . 41

24 A listing of the elements contained in a stream for the �ctitious HelloCom

example . 42

25 ActiveX control marked as �Safe for Initialization� (SFI) and �Safe For Script-

ing� (SFS) . 47

26 ActiveX Killbits in IE . 49

27 COM object with an alternate CLSID . 50

28 Excerpt of the preapproved list . 50

29 Example of a control restricted from a single user 51

30 Example of a control approved to be run from the Microsoft.com domain . . 52

31 Navigating to the Add-on Manager . 53

32 Operations to display controls that will run without permission 53

33 Example C++ code with a failure in the constructor 56

34 Example C++ code with a failure in the constructor with proper exception

handling . 56

35 Code demonstrating the failure to call AddRef() 58

36 Code sample demonstrating the omission of VariantInit() 60

xi

37 Code demonstrating a subtle initialization failure 61

38 Code sample demonstrating initialization failure with VariantChangeType() . 61

39 C++ code with a type-safety violation . 65

40 Compiled objects in binary code . 65

41 C++ code with heap-declared objects . 70

42 High-Level Architecture of llvm-decomp: Representation of how data �ows

from x86 assembly through to the LLVM IR for analysis 73

43 Original Source . 80

44 Corresponding Binary . 81

45 Excerpt from LLVM bitcode �le generated by llvm-bcwriter 82

46 Original source for de�nition of class1 . 84

47 Compiled binary for class1 . 85

48 Example COM property map . 87

49 Di�erence between PROP_ENTRY_* macros and PROP_DATA_ENTRY 88

50 Code sample showing a subtle VARIANT type confusion vulnerability 90

51 An attempt at �xing the vulnerable code . 91

52 Attempted �x that ignores the complete length of the type mask 92

53 Code excerpt from Microsoft ATL . 94

54 Code demonstrating a shallow copy of an object 96

55 Code demonstrating the copy of a VT_BYREF 96

xii

56 Transitive trust between COM Objects allows normally unauthorized objects

to be loaded and executed. 99

57 Source code for CComVariant::ReadFromStream() 101

58 Approximation of OleLoadFromStream() . 102

59 The successful exploitation of a COM Object in Microsoft Word, demon-

strated by having Word open a socket on port 4444. 104

60 Pop-up Warning from Microsoft Word When Attempting to Instantiate an

Out-of-Policy Control . 105

61 Hooking Architecture for COMBlocker. Using binary rewriting, we force all

COM objects to be checked against the global policy at their instantiation.

Note on the left the policy check � call AlertCLSID; test eax, eax; . . . 109

62 COMBlocker Successfully Stopping Instantiation 111

63 Sample C++ code with a use-after-free vulnerability. 117

64 Memory layout of a valid object and after a use-after-free exploit 119

65 Control �ow graph of code from Figure 63. At point 1, the object a is declared.

At point 2, the object is deleted. At point 3, a->print() is called again. Note

that because point 3 is reachable via point 2, a use-after-free vulnerability is

possible. 126

66 AODA results show that compiled code of Figure 63 contains a use-after-free

vulnerability . 127

67 AODA results detect use of an object that is not in the AV AIL set in a

previously-disclosed vulnerability . 127

68 Sample code showing a reference counting over�ow 131

xiii

69 A �x for the code shown in Figure 68 . 132

70 JavaScript example with a release failure . 132

xiv

SUMMARY

C++ and Microsoft's Component Object Model (COM) are examples of a high-level lan-

guage and development framework that were built on top of the lower-level, primitive lan-

guage, C. C was never designed to support concepts like object orientation, type enforcement,

and language independence. Further, these languages and frameworks are designed to com-

pile and run directly on the processor where these concepts are also not supported. Other

high-level languages that do support these concepts make use of a runtime or virtual machine

to create a computing model to suit their needs. By forcing these high-level concepts into

a primitive computing model, many security issues have been introduced. Existing binary-

level security analysis tools and runtime enforcement frameworks operate at the lowest level

of context. As such, they struggle to detect and remedy higher-level security issues. In this

dissertation, a framework for elevating the context of binary code is presented. By bringing

the context for analysis closer to where these security issues are introduced, this framework

allows for higher-level analyses and enforcement frameworks to be developed.

xv

Chapter I

INTRODUCTION

As is often the case, when a fundamental technology is adapted and abstracted for higher-

level concepts, security issues arise. Take for example, the use of HTTP as the transport

protocol for web applications. HTTP � a stateless protocol � has to be pretty drastically

misused to support stateful web applications, leading to myriad security issues. This same

concept exists at the programming language level. C served as the primary programming

language for many years. C is an extremely low-level language, providing very little abstrac-

tion from processor-level primitives. With that, there is a very close coupling between the

computing model of the processor and the programming model of C. C types are one-to-one

representations of types available at the processor level. Memory allocations and accesses

represent direct access to the memory used to store data (of course, ignoring virtual mem-

ory layout). Because of this close coupling to the processor, C provides developers with

extremely powerful tools that allow for the extreme optimization of their code. Of course,

with great power comes great responsibility. C developers shoulder the responsibility of

enforcing types, ensuring proper memory accesses, and general error checking.

As applications became more and more complex, and programming became a necessary

skill for the masses, C became an unwieldy tool that did not meet the needs for many

developers. The advent of object oriented programming, type-enforcement, and language

independence required higher-level language constructs than those provided in C. The �rst

steps toward providing these constructs was to build higher-level languages on top of C. In

fact, early C++ compilers actually translated the C++ code into C. C++, for example,

builds on top of the C struct type. The struct type was not intended to support object

orientation, but by adding some compile-time modi�cations, it became the foundation for

objects in C++. Extending this concept to yet another level of abstraction, Microsoft's

Component Object Model (COM) is built on top of C++. COM provides a framework

1

for self-describing, language independent, type-enforced object orientation with a standard

interface. Note that none of the properties of COM just listed are actually properties of, or

enforceable in, C++.

Much like the HTTP example, using C as the fundamental building block for C++ and

COM has led to security issues. Because there is no type enforcement at the C level (because

it is not enforced by the processor), it is impossible to build proper type enforcement for

C++ of COM. Because there is no implicit reference counting for memory allocations, issues

like memory leaks and use-after-free conditions are possible. As will be seen throughout this

dissertation, oftentimes, the inventors of these higher-level languages try to �x these exact

kinds of issues. However, this is only so much that can be done since the primary building

block was not designed to support these concepts. In fact, as we will show, it is often the

attempt to �x these issues that leads to other security issues.

In this work, we discuss the details of how these adaptations and abstractions have led to

security issues. We cover issues that are introduced into these higher-level constructs at the

time objects are instantiated, as they are used during their lifetime, and as they are being

deleted. In the case of C++, security issues arise at instantiation time when constructors fail

to properly execute. During their lifetime, we see issues with type confusion and the security

issues associated with treating an object of the wrong type. Because object deletion is the

onus of the developer, we �nd problems that arise causing use-after-free conditions. In the

case of COM, we show the security issues that arise when instantiation fails. Throughout the

lifetime of a COM object, we will demonstrate issues related to type confusion, the copying

of objects, and a trust transitivity issue that exists in the COM security infrastructure. As

COM objects are deleted, we will show issues that occur when deletion is handled incorrectly.

Software security vulnerabilities are as old as software itself. Because of this, many

security analysis frameworks and runtime enforcement engines have been developed to try

to eliminate and/or mitigate these problems. Static analysis frameworks that function on

source code have shown signi�cant progress toward reducing the number of vulnerabilities

that are released into production code. However, many applications are still commonplace

on modern-day operating systems that were developed prior to the widespread adoption of

2

such source code analysis tools. Additionally, not every software vendor employs such tools,

or maintains strict secure coding practices throughout their software development life cycle.

With that, when closed source applications are deployed in the world, the user has no other

way to evaluate their true security risk than analyzing the binary code. Further, if security

issues are discovered, runtime enforcement engines (e.g., host-based IDS, anti-virus systems,

etc.) must interface with these applications through binary insertion.

The static analysis frameworks that were developed for analyzing source code have a

major advantage over those that much interface with the resultant binary code: context.

As high-level code is compiled, much of the context present in the source code is lost. In

essence, the high-level constructs present in C++ and COM have to be translated into some

low-level contextual equivalent that can be represented and operated on by the processor.

As discussed, the processor has no concept of an object (C++ or COM object). The process

of compilation translates these higher-level constructs into their lower-level counterparts.

Because the goal of this work is to address security issues introduced into applications by

high-level language constructs, operating at the low-level context provided by binaries is

insu�cient.

1.1 Thesis Statement

The work presented in this dissertation will show how by elevating the context of binary

code, we can then apply higher-level analyses to address the more complex security issues

introduced by C++ and COM. We describe how decompiling binary code into a high-level

intermediate representation allows us to reconstruct high-level constructs like C++ objects

and COM objects. With this high-level context regained, we can adapt and apply analyses

that had only previously been applicable to source code analysis. Additionally, we can

properly inform runtime enforcement engines to address security issues while still only being

able to interface with applications through binary injection. We explain the feasibility of

such work by suggesting the following thesis statement:

C++ and Microsoft's Component Object Model (COM) build upon the lower-level C

3

language. To allow for object oriented design, these programming paradigms extend, some-

times to a dangerous extent, the features of C, allowing developers to inadvertently introduce

complex security vulnerabilities. The static analysis and runtime enforcement frameworks

intended to address these types of vulnerabilities operate in a lower-level context than that

in which the vulnerabilities were introduced. By reconstructing C++ and COM objects from

their compiled counterpart, we can e�ectively elevate the context of binary-level frameworks,

allowing for the development of more complex analyses and enforcement logic to address

previously undetectable vulnerabilities.

The security vulnerabilities presented in this dissertation continue to plague the software

world. With the current state of a�airs, we are attempting to solve extremely complex

problems with comparatively simple solutions. Developments like those presented in this

work are a necessary step toward increasing the security of applications that are critical to

our everyday lives.

1.2 Contributions

In this dissertation, we make the following contributions:

� Construct a general C++ decompilation framework: We create a framework

for reversing C++ compiled code into the intermediate representation used by the

LLVM compiler infrastructure, allowing an analyst to employ any of the dozens of

pre-built analyses that ship with LLVM. We implemented this system as a plugin

for the popular IDA Pro disassembler. With this framework, we are able to resolve

dynamically dispatched virtual calls in C++.

� Develop an object reaching de�nition analysis algorithm for the detection

of type confusion vulnerabilities: Using the framework described above, we were

able to implement a set of data �ow algorithms which can trace object types from

their instantiation to their use. Then, at each use point, we can programmatically

determine whether the usage of that object conforms to its de�nition. By �nding

cases where objects are treated as an incorrect type, we can �nd instances of vtable

4

escape vulnerabilities.

� Develop a general-purpose data �ow algorithm for detection of use-after-

free conditions: We present and formally de�ne a data �ow algorithm based on a

technique from compiler theory known as available expression analysis. Our technique,

called Available Object De�nition Analysis (AODA) can be used by source code anal-

ysis tools, compilers and binary static analysis frameworks to identify use-after-free

conditions.

� Discover and characterize a systemic weakness in the COM security infras-

tructure: We demonstrate that the existing killbit list security policies governing the

instantiation of COM objects can easily be circumvented. We show that due to a

weakness in the underlying COM architecture, many COM objects that are part of

the default installation of the operating system can load other objects without ever

consulting a policy of any kind. We demonstrate that this attack is possible through

virtually every application that is commonly installed on Windows.

� Design and implement a prototype policy enforcement infrastructure for

COM objects: We design and implement a prototype infrastructure for the system-

wide COM instantiation policy enforcement, which we call COMBlocker. In this sys-

tem, we are able to quickly compare (average lookup time of 554µs) the instantiation

of COM objects against a global policy. Our approach is e�ective as it uses binary

rewriting to force all COM object instantiations to be compared against the global

policy, thus mitigating the above attack. We then compare our proposed solution

to the patch recently issued by Microsoft (Security Bulletin MS10-036), which was

created in response to our private disclosure of the vulnerability.

� Discover and de�ne several new classes of vulnerability: In this work we

provide the de�nition of several new exploitable vulnerability classes including C++

constructor failure, COM retention and initialization failure, COM type confusion and

trust transitivity, and COM object release failures.

5

1.3 Dissertation Outline

In Chapter 2, we discuss the related research to this �eld. Here we will �nd that signi�cant

e�ort has been applied to the static analysis of source code, and the analysis of C-level

security issues in binary code, but little work has been applied to the analysis of high-level

constructs at the binary level.

Chapters 3 provides the background required for the reader to understand the low-level

technical details of how these vulnerabilities arise and how they can be addressed. A through

understanding of how a compiler translates high-level language constructs to a context that

can be understood by a processor is necessary to understand how these issues can be detected

through static analysis and enforced at runtime.

Chapters 4, 5, and 6 discuss the security issues that arise with complex types as they

are instantiated, during their lifetime, and as they are deleted. Failures during object

instantiation can result in very subtle bugs that can lead to exploitation. Throughout the

lifetime of and object, there are several ways a developer can introduce security issues like

type confusion. The improper deletion of objects can lead to use-after-free conditions.

Finally, Chapter 7 concludes the dissertation and discusses the future of research in this

�eld.

6

Chapter II

RELATED WORK

2.1 Binary Analysis Frameworks

The focus of this work is on elevating the context of binary applications for the purposes of

static analysis and runtime enforcement. Many tools have been developed in the past for the

purposes of reversing binary code into an intermediate representation. Cousot and Cousot

showed that by restructuring a language into an abstract representation, complex analyses

are more easily implemented [19]. Following this concept, Song, et al. developed the BitBlaze

framework for binary decompilation and analysis [81]. Several open source and commercial

tools exist speci�cally for the decompilation of binary code. For example, the popular Hex-

Rays plugin for IDA Pro reverses binary code to a C-like intermediate representation [39].

Dullien and Porst developed the Reverse Engineering Intermediate Language (REIL) for

their commercial product, Bindi� [25].

None of these frameworks were appropriate for the goal of this work - focusing on security

vulnerabilities introduced by higher-level language constructs. They all focus on reversing

binary code to a C-like intermediate representation, thus leaving the IR at least one level

lower than the higher-level frameworks in focus in this work. The LLVM IR natively supports

the concept of object orientation. ReCall allows for the decompilation of objects into the

LLVM IR format, making them available to all of the higher-level analyses we developed.

Of course, this is not the only way to achieve higher-level context from binary code. Binary

data structure recovery has been studied for use in host-based intrusion prevention systems,

forensic analysis, and reverse engineering. For example, Dolan-Gavitt et al. [23] developed a

dynamic-analysis system that creates attack detection signatures by monitoring kernel data

structures in a way that is resistant to evasion. Similarly, Cozzie et al. developed Laika [20],

a system that uses Bayesian unsupervised learning to detect the presence of data structures

in memory indicative of a bot infection. Slowinska et al. [80] created a system that recovers

7

data structures from a compiled binary for the purpose of reverse engineering.

This same problem exists for runtime analysis frameworks. Such tools either must be

instrumented into the application at compile time or interface with the compiled application

in its binary form. Because of this, the insertion points of the runtime framework have to

operate at a contextual layer lower than the security issues discussed in this work. Here

we present a runtime analysis framework that uses binary insertion to enforce security con-

straints on higher-level frameworks. Our runtime analysis framework, COMBlocker, allows

for the dynamic enforcement of COM objects by inserting itself into compiled binaries.

2.2 Source Code Analysis Frameworks

Software vulnerability detection systems have existed for many years. Lint, created in 1977,

has the ability to �nd �aws in the source code of C programs [46]. Lint-like systems have

been developed over the years for the analysis of C programs. For example, Sparse [82] is a

tool designed to �nd �aws in the Linux kernel. Splint [83] is the modern-day and maintained

version of Lint, and Clang [15] is a popular compiler with built-in static analysis capability.

Larochelle and Evans built upon these early works to statically detect the presence of bu�er

over�ow vulnerabilities in source code [48, 27]. Shankar et al. developed a system to statically

detect format string vulnerabilities [79]. ARCHER, a system developed by Xie, Chou, and

Engler, uses a constraint solver to determine the safety of array accesses [88]. Similarly,

Austin et al. created a system to detect pointer and array access errors [5]. Yet even with

all the work in this area, Heelan points out that these problems are still unsolved [38].

As simple bu�er over�ows and format string vulnerabilities became increasingly rare,

research focused on the detection of dynamic memory errors. Evans [29] and Bush et al. [10]

present di�ering approaches to the detection of dynamic memory errors. These concepts were

readily extended to the analysis of compiled C programs. Bugscam [9] is one of the oldest of

these types of binary scanning tools and has been used to discover hundreds of vulnerabilities

since its release. An entire industry has grown from these early tools: companies like Ounce

Labs (now part of IBM), Coverity, Fortify Software (now part of HP), and Veracode all o�er

commercial products and services for the analysis of source code and compiled binaries.

8

Indeed static code analysis frameworks focused on higher-level language constructs al-

ready exist, but in order to maintain the needed context, they operate on source code -

where context has not been lost by compilation. For example, research has been done in the

area of C++ object reconstruction [77], which relies on access to the source code or runtime

type information (RTTI). Additionally, Viega, et al. developed ITS4 [86]�a vulnerability

scanner with support for C++. In this work, we reconstruct C++ objects from their com-

piled binary equivalent without access to any additional information. Many static analyses

have been integrated directly into popular compilers to provide developers with warnings

and errors as they are building their software. C++ analyses typically come in the form of

type-checking and checks for const-ness and volatility and are fully enumerated in the C++

standard [75]. Signi�cant research has attempted to extend required checks with virtual

function call resolution in C++ programs. Bacon and Sweeny [6], for example, developed

a static analysis algorithm to determine whether dynamic dispatch is truly necessary for a

given method call. In cases where it is not, it can be replaced with a static function call,

thus reducing the size of the compiled binary and the complexity of the program. Pande

and Ryder [74, 73] and Calder and Grunwald [12] continue this concept to eliminate late

binding where possible to take advantage of instruction pipelining on modern-day proces-

sors. SAFECode, a system developed by Dhurjati, Kowshik, and Adve [21] introduces a new

type system that can be enforced at compile-time to prevent several types of vulnerabilities.

2.3 High-Level Analyses

The concept of analyzing code for higher-level security issues is not unique to this work.

However, this work is unique in its application of high-level analyses to binary code, where it

was previously believed too much context had been lost. The following subsections describe

high-level analyses that are applied to source code.

2.3.1 Type Confusion Detection

SafeDispatch, developed by Jang, et al. analyzes source code for vtable escape

vulnerabilities[44]. The GCC compiler has recently been extended by Google [36] to enable

�vtable veri�cation.� Microsoft also added extensions to Visual Studio for the runtime

9

detection of vtable escape vulnerabilities [67]. While all of these techniques are interesting,

they only apply to new applications that are compiled with these tools enabled. They do

not apply to the myriad applications that are already deployed that were built without these

tools. Several tools have been developed to run during compilation to detect spatial safety

issues [5, 47].

2.3.2 Reference Counting

Reference counting [17, 76, 50] is a method for tracking the lifetime of an object. Concep-

tually, it keeps a counter for every usage of the object. Each time an application needs the

object, it increments the counter. When it is done with the object, it decrements the counter.

Objects should not be deleted until the counter is zero. Automatic Reference Counting [16] is

used extensively by Apple's Xcode development environment. In theory, reference counting

prevents the deletion of objects that are still in use, and use-after-free conditions. However,

as will be seen later in this dissertation, it is often implemented incorrectly resulting in

exploitable security issues.

2.3.3 Memory Safety

Many tools have been developed for the enforcement of memory safety. Many of these tools

insert additional checks into code before using memory-resident objects. Examples of such

tools are CCured [70, 69], Cyclone [45], Purify [37], and Deputy [18]. These tools often

require the developer to insert annotations in their code which can lead to missing vulner-

abilities. Additionally, like above, they only apply to new applications that are developed

with these toolsets. The work presented later in this dissertation shares many attributes

of dangling pointer analysis. Dhurjati and Adve propose a solution by which they allocate

an new virtual page of memory for each allocation [22]. In the attack that will be later

described in Chapter 6, we describe how memory reuse in a very speci�c way is required for

the exploitation of use-after-free conditions [78]. DieHard and DieHarder use randomization

to reduce the likelihood that these precise requirements can be met [8, 72].

10

2.3.4 Control Flow Integrity

Control Flow Integrity (CFI) is one of the �rst areas that garnered attention from the

research community. This was driven by the ease of exploitation and prevalence of stack

over�ow vulnerabilities. In short, the concept is to ensure that all code branches go to

a proper location [1]. Zhang, et al. showed that CFI can be implemented with minimal

runtime overhead [91]. Zeng, et. al showed how to introduce CFI using only static analysis

[90]. Zhang and Sekar then later showed how CFI could be enforced with a low-level reference

monitor [92]. Control Flow Integrity is an area of security that is inline with the low-level

analysis frameworks that are already in existence. In this work, we focus on security issues

that are introduced at much higher levels of context than CFI issues. However, in the face

of all of these solutions, it has been shown that dangling pointer issues can be exploited to

bypass CFI [14, 35].

2.3.5 Use-After-Free Detection

With binary code properly elevated to a higher-level context, we can now focus on higher-

level vulnerabilities. Use-after-free vulnerabilities are an example of one such case. Searching

speci�cally for use-after-free vulnerabilities, Caballero, et al. developed Undangle [11]; a run-

time taint tracking tool used to detect dangling pointers. Also focused on dangling pointers,

Lee, et al. created DangNull[49] to nullify class pointers when objects are deleted. While

this is a sound solution to prevent exploitation of use-after-free vulnerabilities, it relies on

the application's pre-existing ability to handle null pointers, else it would introduce stability

problems [51]. Another example of C++speci�c vulnerabilities comes in the form of type

confusion. Tice [85] proposed a compile time solution to verify the validity of a virtual

function pointer before its invocation via inserting veri�cation checks. Cling only allows for

memory reuse by objects of the same type [3]. The closest work to what is found in this

dissertation was done by Feist, et al. In their work [30], they use a memory model to detect

use-after-free conditions in binary code. They use a memory model based approach because

they focus on use-after-free conditions on primitive types.

11

2.4 COM Security

At yet an even higher level of context, we have Microsoft's Component Object Model (COM),

and the ActiveX framework built on top of it. ActiveX has garnered signi�cant attention

from security experts over the past several years. Attacks against these controls range in

severity from downloading �les to an adversary-supplied location to arbitrary code execu-

tion [60, 61, 57, 58, 62]. As a variety of vulnerabilities have been found in COM objects

included with the default installation of their operating systems, Microsoft has generally

prevented the exploitation of the objects by adding them to a blacklist intended to prevent

instantiation known as the killbit list. We previously demonstrated that it was possible

to bypass the killbit settings in Internet Explorer using a vulnerability for ActiveX con-

trols [24]. However, while this weakness was patched for Internet Explorer [63], the general

susceptibility of the COM architecture and applications relying upon it has not previously

been investigated.

The issue of securing the execution of content published by potentially untrusted third

parties is not unique to COM or Windows. Java applets, for example, expose a web browser

to similar classes of threats encountered by ActiveX [4, 53]. Security of Java applets has

been studied extensively with several solutions proposed to verify the publisher of the con-

tent and enforce access rights on the content as it executes. Jaeger, et al. [43] and Islam,

et al. [41] developed systems based on public key cryptography to verify the publisher of

dynamically downloadable executable content. They both then go on to propose solutions

for the enforcement of access controls on the code as it executes.

Security policies have been developed to address whether COM objects should be loaded

by Internet Explorer. The killbit list attempts to prevent the instantiation of known bad

controls [59]. As documented by Loscocco et al., ActiveX controls can be signed similar

to the way that was proposed for Java [52]. Additionally, ActiveX supports the concept of

�Safe for Scripting� [54]. This allows a control to tell Internet Explorer whether it can be

safely loaded by the script engine. Microsoft has implemented additional security policies

governing the instantiation of COM objects in other applications including the MS O�ce

suite [66]. However, policies governing the instantiation of COM objects are implemented

12

by the COM container itself.

Security retro�ts to well-established software infrastructures such as COM generally re-

quire signi�cant e�ort. A number of researchers have investigated the problem of retro�tting

legacy systems with security infrastructure. These e�orts use a range of approaches including

static analysis of code [13, 93, 71, 89, 31] and the monitoring of program behavior to deter-

mine security sensitive operations [42, 34]. The work by Ganapathy, et al. demonstrates the

injection of authorization policy enforcement code into existing legacy applications including

web and proxy servers [33] and the Linux Security Module infrastructure [32]. Fraser, et

al. perform a similar deployment of authorization hooks in MINIX [31]. This builds on the

concept of inlined reference monitoring as described by Bauer, et al. [7], Erlingsson [26], and

Evans and Twyman [28]. Each of these demonstrates how an existing application can be

modi�ed to perform functions not originally designed into the code. The closed nature of

the COM architecture requires that our solution rely on binary rewriting techniques rather

than those used on source code.

Each of the vulnerability classes discussed in this work is introduced into an application

from a higher-level language construct or framework. The elevation of context from the

binary level to one commensurate with the language or framework in question is required

to properly analyze applications for security issues and enforce their behavior at runtime.

13

Chapter III

BACKGROUND

3.1 Complex Types Built on a Primitive Language

The security issues described throughout this dissertation all have one thing in common �

they are issues present in higher-level language constructs that are built on top of a primitive

language (in this case, C). In many ways, the overlay of these complex concepts on top of

a primitive language is the cause of the security issues. By building complex datatypes

on top of a primitive language, there is no opportunity for type veri�cation which leads to

problems like type confusion as described in Chapter 5. Since C does not natively provide for

reference counting of variables, the only method for self-policing the allocation of memory

is by tracking scope. This is insu�cient for object-oriented programming where objects

most often must live beyond the scope of a single function. With that, memory allocation

and reference counting are implemented on top of the primitive language and allow for

opportunities to make mistakes. This leads to conditions like memory leaks, use-after-free

conditions, and null pointer dereferences. To better understand the low-level details of the

complex types we will be exploring, the following section cover how objects are created,

used, and deleted in C++, and how COM objects span the same lifecycle.

3.2 C++ Background

3.2.1 De�ning a Class

C++ builds on the C struct data type. It allows developers to create class de�nitions

by adding additional functionality to what is traditionally o�ered in a struct. A short

summary of the additions to the C struct are enumerated below:

1. Namespaces - Namespaces allow a developer to avoid naming collisions by speci-

fying a higher-level scope for each variable declaration. Namespaces can be de�ned

by using the namespace keyword, but are also implicitly de�ned by a class de�ni-

tion. For example consider the code below. Here we can see three declarations of

14

the variable referenceCount and two declarations of the type Class1. Namespaces

allow the developer to disambiguate between all of these de�nitions. In this example,

example::Class1 is di�erent than Class1, and example::Class1::referenceCount,

Class1::referenceCount, and referenceCount are all di�erent from one another.

namespace example {

class Class1 {

int referenceCount;

};

}

class Class1 {

int referenceCount;

};

int referenceCount;

Figure 1: Example use of namespaces

2. Constructors - A constructor is a function that is automatically called when an object

is instantiated. The constructor is de�ned by creating a function of the same name

of the class type. For example, consider the code below. Here we can see and object

of type Class1 the constructor is de�ned as the method named Class1::Class1().

This is where the developer would insert code required to properly initialize an object.

15

class Class1 {

Class1 ();

};

Class1 :: Class1 ()

{

//do all of the object initialization here

}

Figure 2: Example constructor declaration

3. Destructors - Destructors are the counterpart to constructors. This is where a

developer would insert code that is necessary to clean up just prior to an object being

deleted. Destructors are speci�ed by declaring an object method with the same name

as the class and prefacing the name with a tilde (~). An example of a destructor can

be seen in the code below.

class Class1 {

Class1 ();

~Class1 ();

};

Class1 :: Class1 ()

{

//do all of the object initialization here

}

Class1 ::~ Class1 ()

{

//do any object clean up here

}

Figure 3: Example destructor declaration

16

4. Inheritance - Inheritance allows a class to adopt the properties and methods of a

parent class. In the code below, the developer has declared a class of type Class1.

Then, a second class of type Class2 has been declared that inherits from Class1.

With this inheritance, Class2 will have a class method named Method1() in addition

to the method Method2() that is speci�ed in the Class2 de�nition.

class Class1 {

Class1 ();

Method1 ();

};

class Class2 : Class1 {

Class2 ();

Method2 ();

};

Figure 4: Example of inheritance

5. public and private Operators - C++ o�ers the public and private keywords in

class de�nitions. These keywords declare which properties and methods are accessible

from anywhere in the program, and those that are only accessible from within the class

itself. In the code example below, Class1 has a public method named PublicMethod()

and a public property called publicProperty. In these cases, from anywhere in a

program, a developer can directly call PublicMethod() on an instance of the object.

Additionally, the developer could directly access the property publicProperty. The

code in Figure 6 shows a case where a developer has instantiated an object of type

Class1 called my_class1. Here we can see a call to the public method and an access

to the public property. On the contrary, the code in Figure 7 shows similar code where

the develop attempts to access a private method and private property. This code will

fail compilation with an error. The code in Figure 8 shows how the private methods

and properties can be accessed from within the class itself. It is important to note that

17

the enforcement of public and private is a compile-time check. There is no runtime

enforcement of these modi�ers.

class Class1 {

Class1 ();

public:

PublicMethod ();

private:

PrivateMethod ();

public:

int publicProperty;

private:

int privateProperty;

};

Figure 5: Examples of use of public and private keywords

int main(int argc , char **argv)

{

Class1 my_class1;

my_class1.PublicMethod ();

int local_var = my_class1.publicProperty;

}

Figure 6: Examples of accessing public properties and methods

18

int main(char **argv , int argc)

{

Class1 my_class1;

my_class1.PrivateMethod ();

int local_var = my_class1.privateProperty;

}

Figure 7: Examples of attempting to access private methods and properties. This code will

fail compilation with an error.

class Class1 {

Class1 ();

public:

PublicMethod ()

{

PrivateMethod ();

privateProperty = 1;

};

private:

PrivateMethod ();

public:

int publicProperty;

private:

int privateProperty;

};

Figure 8: Examples of properly accessing private methods and properties.

6. virtual Operator - The virtual keyword is what declares a class method as being

overridable. In the code below we see a case where a class of type Class2 inherits

from Class1. However, Class2 overrides the de�nition of Method2() with its own

19

de�nition.

class Class1 {

Class1 ();

int Method1 ();

virtual int Method2 ();

};

class Class2 : Class1 {

Class2 ();

int Method2 ();

};

Figure 9: Examples of virtual methods

3.2.2 Object Lifetime

3.2.2.1 Creating an Object

There are two ways for a developer to instantiate an object. The �rst is to declare the object

as a stack variable just as any other type of variable. For example, the code in Figure 10

shows three variables declared on the stack: an integer, a character array length 32, and an

object of type class1. For this code to be valid, class1 would have to be de�ned as shown

in Figure 2.

int main(int argc , char **argv)

{

int i;

char some_string [32];

class1 my_class;

. . .

}

Figure 10: Example of stack-declared variables

20

When an object is declared on the stack, the class constructor is called immediately

upon declaration.

The second way to instantiate an object is to declare the object on the heap. To do this,

a developer uses the new operator. Behind the scenes, new automatically allocates enough

memory to store the object. The exact structure of what is contained in memory is covered in

detail in Section 3.2.3. The implied memory allocation occurs through a call to a compiler-

inserted function called YAPAXI(). This is basically just a wrapper for malloc(). After

allocating the proper amount of memory, new automatically calls the object's constructor

passing the pointer returned from YAPAXI() as the this pointer. The return from the

constructor is the same this pointer, but now it points to a complete object. Much like the

use of malloc(), it is up to the developer to manually free the memory used by the object

after it is no longer in use. There is no implicit deletion like in the case of a stack-declared

object.

3.2.2.2 Deleting an Object

In the case of a stack-declared object, the object is automatically deleted, and the destructor

is implicitly called when the variable goes out of scope. In the case of a heap-declared object,

the developer must manually delete the object when it is no longer needed. This is done

by using the delete operator. Behind the scenes, the compiler inserts a call to the object's

destructor and frees the allocated memory. To free the memory, the compiler inserts a call

to a function called YAXPAX(). This is basically just a wrapper for free(). Because freeing

the object is at the discretion of the developer, one can envision how memory leaks and use-

after-free conditions may occur. Use-after-free conditions are covered in detail in Chapter

6.

3.2.3 Structure of an Object After Compilation

An important distinction is how methods are inserted into the code when they are declared

virtual and when they are not. When a method is not declared virtual, calls to that method

are dispatched exactly the same way that function calls are made in C. For example, consider

the code shown in Figure 11a. In the corresponding Figure, 11b, we can see the compiled

21

class class1 {
public:

class1();
˜class1();
void addRef();
void print();
virtual void voidFunc1() ;
virtual void debug();

private:
int refCount;

};

int _tmain(int argc, _TCHAR* argv[])
{

class1 C1;
class2 C2;

C1.print();
C2.print();

return 0;
}

(a) Original source

.text:00401120 wmain proc near

.text:00401120

.text:00401120 var_1C = byte ptr -1Ch

.text:00401120 var_14 = dword ptr -14h

.text:00401120 var_10 = byte ptr -10h

.text:00401120 var_C = dword ptr -0Ch

.text:00401120 var_4 = dword ptr -4

.text:00401120

.text:00401120 push ebp

.text:00401121 mov ebp, esp

.text:00401123 push 0FFFFFFFFh

.text:00401125 push offset loc_401B30

.text:0040112A mov eax, large fs:0

.text:00401130 push eax

.text:00401131 sub esp, 10h

.text:00401134 mov eax, __security_cookie

.text:00401139 xor eax, ebp

.text:0040113B push eax

.text:0040113C lea eax, [ebp+var_C]

.text:0040113F mov large fs:0, eax

.text:00401145 lea ecx, [ebp+var_1C]

.text:00401148 call class1__class1

.text:0040114D mov [ebp+var_4], 0

.text:00401154 lea ecx, [ebp+var_10]

.text:00401157 call class2__class2

.text:0040115C mov byte ptr [ebp+var_4], 1

.text:00401160 lea ecx, [ebp+var_1C]

.text:00401163 call class1__print

.text:00401168 lea ecx, [ebp+var_10]

.text:0040116B call class2__print

.text:00401170 mov [ebp+var_14], 0

.text:00401177 mov byte ptr [ebp+var_4], 0

.text:0040117B lea ecx, [ebp+var_10]

.text:0040117E call class2___class2

.text:00401183 mov [ebp+var_4], 0FFFFFFFFh

.text:0040118A lea ecx, [ebp+var_1C]

.text:0040118D call class1___class1

.text:00401192 mov eax, [ebp+var_14]

.text:00401195 mov ecx, [ebp+var_C]

.text:00401198 mov large fs:0, ecx

.text:0040119F pop ecx

.text:004011A0 mov esp, ebp

.text:004011A2 pop ebp

.text:004011A3 retn

.text:004011A3 wmain endp

(b) Corresponding binary

Figure 11: Example use of non-virtual class methods

version of the code. In the source code, we can see a call to the class method print() at

line 18, we can see this is simply translated into a normal call in the compiled code (the call

is located at line 0x401163). The only di�erence between this call, and a standard C call is

the calling convention. Speci�cally, in C++, the this pointer for the object is automatically

passed to the method in the ecx register.

In the case of methods that are declared virtual, a table of function pointers is created.

One function pointer is included for each virtual function declared in the class. This table

� known as the vtable � contains a function pointer for each virtual function in the order in

which they are declared. A pointer to the vtable is stored as the �rst element in the object's

structure in memory. This layout can been seen in more detail in Figure 12. When a call

is made to a virtual function, the vtable is consulted to �nd the location of the associated

function. It is this method of dynamic dispatch that allows classes to override method

de�nitions of parent classes. When a class overrides a method, the compiler inserts the child

class's de�nition of the method into the vtable in place of the parent class's de�nition.

22

Class1

ptr to VTable

prop1

prop2

…

VTable

void (Class1::*AddRef)()

void (Class1::*print)()

void (Class1::*voidFunc1)()

void (Class1::*debug)()

void Class1::AddRef()

{

prop1++;

return;

}

void Class1::print()

{

cout << “I’m in

Class1” <<

endl;

return;

}

void Class1::voidFunc1()

{

return;

}

void Class1::debug()

{

cout<<“In

debug”<<endl;

return;

}

Figure 12: Memory layout of a C++ object after compilation

Consider the code in Figure 13a. This is very similar to the code we used in the non-

virtual example. However, in this case, a call is made to the virtual method debug(). In

the corresponding binary in Figure 13b, we can see a call to a dereferenced pointer at line

0x401179. This where the code is referencing the vtable for class1 to �nd the pointer to

the debug() method.

3.3 COM Background

3.3.1 COM Overview

COM is an architectural standard that mandates a language agnostic representation of

objects, and facilitates interaction between these objects. Microsoft uses COM as a funda-

mental building block in many of their premier technologies. It is pervasive in their �agship

Windows Operating System, and also utilized extensively by many other peripheral prod-

ucts, such as Internet Explorer and O�ce. In the �rst section entitled Variants, we will

discuss the fundamental, language agnostic data types that COM uses to communicate and

the APIs used to manipulate them. Variants will be explored in order to provide the reader

with more context for the types of vulnerabilities that are the focus of this work. Following

variants is a section entitled COM Automation, which discusses the subset of COM objects

that can be readily exposed to scripting runtime environments, collectively known as Ac-

tiveX controls. Finally, in the section entitled COM Persistence Overview, we will discuss

23

class class1 {
public:

class1();
˜class1();
void addRef();
void print();
virtual void voidFunc1() ;
virtual void debug();

private:
int refCount;

};

int _tmain(int argc, _TCHAR* argv[])
{

class1 C1;
class2 C2;

C1.print();
C2.print();
C1.debug();

return 0;
}

(a) Original source

.text:00401120 wmain proc near

.text:00401120

.text:00401120 var_20 = byte ptr -20h

.text:00401120 var_18 = dword ptr -18h

.text:00401120 var_14 = dword ptr -14h

.text:00401120 var_10 = byte ptr -10h

.text:00401120 var_C = dword ptr -0Ch

.text:00401120 var_4 = dword ptr -4

.text:00401120

.text:00401120 push ebp

.text:00401121 mov ebp, esp

.text:00401123 push 0FFFFFFFFh

.text:00401125 push offset loc_401B40

.text:0040112A mov eax, large fs:0

.text:00401130 push eax

.text:00401131 sub esp, 14h

.text:00401134 mov eax, __security_cookie

.text:00401139 xor eax, ebp

.text:0040113B push eax

.text:0040113C lea eax, [ebp+var_C]

.text:0040113F mov large fs:0, eax

.text:00401145 lea ecx, [ebp+var_20]

.text:00401148 call class1__class1

.text:0040114D mov [ebp+var_4], 0

.text:00401154 lea ecx, [ebp+var_10]

.text:00401157 call class2__class2

.text:0040115C mov byte ptr [ebp+var_4], 1

.text:00401160 lea eax, [ebp+var_10]

.text:00401163 mov [ebp+var_18], eax

.text:00401166 lea ecx, [ebp+var_20]

.text:00401169 call class1__print

.text:0040116E lea ecx, [ebp+var_10]

.text:00401171 call class2__print

.text:00401173 lea eax, [ebp+var_20]

.text:00401176 lea ecx, [ebp+var_20]

.text:00401179 call dword ptr [eax+0ch]

.text:0040117E mov [ebp+var_14], 0

.text:00401185 mov byte ptr [ebp+var_4], 0

.text:00401189 lea ecx, [ebp+var_10]

.text:0040118C call class2___class2

.text:00401191 mov [ebp+var_4], 0FFFFFFFFh

.text:00401198 lea ecx, [ebp+var_20]

.text:0040119B call class1___class1

.text:004011A0 mov eax, [ebp+var_14]

.text:004011A3 mov ecx, [ebp+var_C]

.text:004011A6 mov large fs:0, ecx

.text:004011AD pop ecx

.text:004011AE mov esp, ebp

.text:004011B0 pop ebp

.text:004011B1 retn

.text:004011B1 wmain endp

(b) Corresponding binary

Figure 13: Example use of virtual class methods

24

struct __tagVARIANT {

VARTYPE vt;

WORD wReserved1;

WORD wReserved2;

WORD wReserved3;

union {

BYTE bVal;

SHORT iVal;

FLOAT fltVal;

DOUBLE dblVal;

VARIANT_BOOL boolVal;

... more elements ...

BSTR bstrVal;

IUnknown *punkVal;

IDispatch *pdispVal;

SAFEARRAY *parray;

VARIANT_BOOL *pboolVal;

_VARIANT_BOOL *pbool;

SCODE *pscode;

CY *pcyVal;

DATE *pdate;

BSTR *pbstrVal;

VARIANT *pvarVal;

PVOID byref;

} __VARIANT_NAME_1;

};

Figure 14: Type de�nition for __tagVARIANT

the concept of persistence - the ability to serialize the current state of a COM object and

subsequently resurrect that object at a later time. The use of persistence will be explored in

the context of potentially hostile environments, where the serialized objects may originate

from untrusted sources (such as malicious web pages or o�ce documents).

3.3.1.1 Variants

VARIANTs are one of the key data structures utilized throughout the Windows platform for

representing arbitrary data types in a standardized format. In particular, they are an integral

part of COM, and are employed to exchange data between two or more communicating

objects. The VARIANT data structure is a relatively simple one � it is composed of a type

and a value, and is de�ned in OAIdl.h in the Windows SDK as shown in Figure 14.

The value contained by a VARIANT can be one of a variety of di�erent types, and so only

has meaning when given context by the vt member, which indicates the type. There are

25

Table 1: VARIANT Basic Types

Type Name Value Union Contains

VT_EMPTY 0x0000 Unde�ned

VT_NULL 0x0001 NULL value

VT_I2 0x0002 Signed (2-byte) short

VT_I4 0x0003 Signed (4-byte) integer

VT_R4 0x0004 Signed (4-byte) real (�oat)

VT_R8 0x0005 Signed large (8-byte) real (double)

VT_BSTR 0x0008 String; Pointer to a BSTR

VT_DISPATCH 0x0009 Pointer to an IDispatch interface
(automation object)

VT_ERROR 0x000A Error code (4-byte integer)

VT_BOOL 0x000B Boolean (2-byte short)

VT_VARIANT 0x000C Pointer to another VARIANT

VT_UNKNOWN 0x000D Pointer to an IUnknown interface (any COM
object)

VT_I1 0x0010 Signed (1-byte) char

VT_UI1 0x0011 Unsigned (1-byte) char

VT_UI2 0x0012 Unsigned (2-byte) short

VT_UI4 0x0013 Unsigned (4-byte) integer

VT_RECORD 0x0024 Pointer to an IRecordInfo interface (used to
represent user-de�ned data types)

quite a large number of basic types that can be represented by a VARIANT. Some of the more

common ones are shown in Table ??.

As can be seen in Table ??, all of the basic data types can be represented as a variant,

in addition to a variety of COM interface types such as IUnknown and IDispatch interfaces.

Furthermore, user-de�ned types are supported through the use of the IRecordInfo COM

interface. This interface provides functions to de�ne custom object sizes and marshallers so

that any arbitrary data structure can be represented. The listed types are only a subset of

all the supported VARIANT types. A complete list of all of the available types can be found

in wtypes.h located within the Windows SDK. In addition to basic variant types, there are

several modi�ers that, when used in conjunction with a basic type, alter the meaning of

what is contained within the __VARIANT_NAME_1 union. Modi�ers cannot be used on their

own; they are speci�cally designed to provide additional context to a basic type. They are

used by combining the modi�er value (or values) with that of the basic type. The modi�ers

and their respective meanings are summarized in Table 2.

26

Table 2: VARIANT Modi�er Types

Modi�er Name Modi�er Value Value

VT_VECTOR 0x1000 Value points to a simple counted array
(Rarely used)

VT_ARRAY 0x2000 Value points to a SAFEARRAY structure

VT_BYREF 0x4000 Value points to base type, instead of
containing a literal of the base type

As can be seen in the tables, basic types are all below 0x0FFF, and modi�ers are single-

bit values larger than 0x0FFF. So, by augmenting a basic type with a modi�er using simple

bit-masking operations, a new, complex type is formed. For example, a VARIANT containing

an array of strings would have the type VT_ARRAY|VT_BSTR, and the value member would

point to a SAFEARRAY where each member was a BSTR. (SAFEARRAYs will be examined in more

depth momentarily.) A VARIANT could represent a pointer to a signed integer by having the

type VT_BYREF|VT_I4. The VT_BYREF modi�er may also be used in conjunction with one of

the other modi�ers, so a VARIANT could have the type (VT_BYREF|VT_ARRAY|VT_BSTR). In

this case, the value member would point to a SAFEARRAY pointer, whose members are all of

type BSTR.

3.3.1.2 Safe Arrays

Arrays are a common data construct utilized by COM, and are present in VARIANTs that

contain the VT_ARRAYmodi�er in the vt �eld. In this case, a SAFEARRAY is used to encapsulate

a series of elements of the same data type, and can be manipulated through the SafeArray

API for safely accessing the members of the array without needing to worry about boundaries

and other administrative problems associated with array access. Although they are most

often used to represent an array with just a single dimension, SAFEARRAYs are also capable of

representing mulch-dimensional arrays of potentially di�ering dimension sizes (often referred

to as �jagged arrays�). The SAFEARRAY structure de�nition is de�ned in OAIdl.h in the

Windows SDK, and is shown below.

Elements contained within a SAFEARRAY are cbElements in size, and are stored contigu-

ously in an area of memory, pointed to by the pvData member. An array of SAFEARRAYBOUND

structures follows the SAFEARRAY descriptor in memory, with each SAFEARRAYBOUND structure

27

typedef struct tagSAFEARRAY {

USHORT cDims;

USHORT fFeatures;

ULONG cbElements;

ULONG cLocks;

PVOID pvData;

SAFEARRAYBOUND rgsabound[1];

} SAFEARRAY;

Figure 15: Type de�nition for tagSAFEARRAY

typedef struct tagSAFEARRAYBOUND {

ULONG cElements;

LONG lLbound;

} SAFEARRAYBOUND;

Figure 16: Type de�nition for tagSAFEARRAYBOUND

describing a single dimension of the array. The SAFEARRAYBOUND structure is constructed as

follows:

Simply put, the lLbound member indicates the lower bound of the described dimension,

and the cElements member indicates how many members exist within that dimension. The

SAFEARRAY API is relatively extensive, so we will consider the most common API functions

required for manipulation of these structures. The �rst two functions are for initialization

and destruction, and are the complement of each other:

SAFEARRAY *SafeArrayCreate(VARTYPE vt,

UINT cDims , SAFEARRAYBOUND * rgsabound);

HRESULT SafeArrayDestroy(SAFEARRAY * psa);

These functions are used to create and destroy an array respectively. When the array

is created, the data type of each array member is designated, as well as the number of the

dimensions of the array. These properties are both immutable; a SAFEARRAY's type and

number of dimensions cannot be modi�ed after creation. There are two di�erent ways of

accessing data in arrays. The �rst way is to get a pointer to the memory where all of the

elements reside, and is done using the following functions:

HRESULT SafeArrayAccessData(SAFEARRAY * psa ,

28

void HUGEP** ppvData);

HRESULT SafeArrayUnaccessData(SAFEARRAY * psa);

This is often the preferred method when accessing elements in a loop, in the form:

BSTR *pString;

if(FAILED(SafeArrayAccessData(psa , &pString))

return -1;

for(i = 0; i < psa ->rgsabound [0]. cElements; i++) {

... operate on string ...

}

SafeArrayUnaccessData(psa);

The second way to access data is by accessing an individual element using the following

functions:

SafeArrayGetElement(SAFEARRAY * psa , LONG * rgIndices ,

void * pv);

SafeArrayPutElement(SAFEARRAY * psa , LONG * rgIndices ,

void * pv);

Each of these functions takes an array of indices and will either return or store the

speci�c value in question. Note that internally, both functions verify the validity of the

supplied indices to ensure that each array access is within bounds. Lastly, we should mention

that SAFEARRAYs have locking mechanisms to ensure exclusive thread access to array data,

accessed by the following two functions:

HRESULT SafeArrayLock(SAFEARRAY * psa);

HRESULT SafeArrayUnlock(SAFEARRAY * psa);

29

3.3.1.3 VARIANT versus VARIANTARG

Many of the VARIANT API functions take either a VARIANT or a VARIANTARG. Microsoft

documentation suggests that the di�erence between these two values is that VARIANTs always

contain direct values (i.e., they can't have the modi�er VT_BYREF), whereas VARIANTARGs can.

In fact, you will notice in the discussion of the VARIANT API further on that most of the

Variant* functions take VARIANTARGs. In reality, these structures are actually equivalent

and can be used interchangeably despite documentation indicating otherwise. Furthermore,

a compiler error is not generated when they are used interchangeably.

3.3.1.4 VARIANT API

The API for manipulating VARIANTs is quite extensive, however only a few of the functions

are relevant for the purposes of this dissertation, and they are discussed in this section.

3.3.1.5 Variant Initialization and Destruction

VARIANTs are initialized using the VariantInit() function, which has the following proto-

type:

HRESULT VariantInit(VARIANTARG *pvarg);

This function does nothing except to set the type member of the VARIANT, vt, to

VT_EMPTY, indicating that the VARIANT holds no value. The VARIANT is later cleaned up

using the reciprocal function VariantClear():

HRESULT VariantClear(VARIANTARG *pvarg);

The VariantClear() function will also clear the vt member, as well as free any data as-

sociated with the VARIANT. For example, if the VARIANT contains an IDispatch or IUnknown

interface (type VT_DISPATCH or VT_UNKNOWN respectively), then the interface will be released

by VariantClear(). If the VARIANT is a string (VT_BSTR), it will be de-allocated, and so on.

3.3.1.6 Variant Manipulation

The two primary types of operations one may perform on a VARIANT using the API are

conversion and duplication. There are a large variety of speci�c conversion functions of the

30

HRESULT VariantCopy(VARIANTARG *pvargDest ,

VARIANTARG *pvargSrc);

HRESULT VariantCopyInd(VARIANTARG *pvargDest ,

VARIANTARG *pvargSrc);

form VarXXFromYY(), where XX is the destination VARIANT type and YY is the source type.

There are also generic functions for converting between any two VARIANT types, which are

shown below.

HRESULT VariantChangeType(VARIANTARG *pvargDest ,

VARIANTARG *pvargSrc , unsigned short wFlags , VARTYPE vt);

HRESULT VariantChangeTypeEx(VARIANTARG *pvargDest ,

VARIANTARG *pvargSrc , LCID lcid ,

unsigned short wFlags , VARTYPE vt);

These two functions both perform essentially the same task � converting pvargSrc to

the type speci�ed by vt, and placing the result in pvargDest. The other functions worth

mentioning are those responsible for copying a VARIANT value from one VARIANT to another:

These functions both clear the destination VARIANT, and then copy in the source VARIANT.

They do a deep copy; that is, if a COM interface is copied, the reference count is incremented,

and so on. The di�erence between the two functions is that VariantCopyInd() will follow

an indirect reference for a copy (i.e., if the VARIANT has the VT_BYREF modi�er, the value will

be dereferenced and then modi�ed), whereas VariantCopy() will not. VariantCopyInd()

is also recursive; if a VARIANT is received that has the type (VT_BYREF|VT_VARIANT), the

destination VARIANT will be examined further. If it is also a (VT_BYREF|VT_VARIANT), an

error is signaled. If it has a VT_BYREF modi�er but is not a VT_VARIANT, this VARIANT will

be passed to VariantCopyInd() again, thus retrieving the value being stored.

3.3.1.7 COM Automation

As mentioned previously, COM Automation facilitates the integration of pluggable com-

ponents into scripting environments. This is primarily achieved by creating objects that

31

/*** IDispatch methods ***/

HRESULT (STDMETHODCALLTYPE *GetTypeInfoCount)(IDispatch* This ,

UINT* pctinfo);

HRESULT (STDMETHODCALLTYPE *GetTypeInfo)(IDispatch* This , UINT iTInfo ,

LCID lcid , ITypeInfo ** ppTInfo);

HRESULT (STDMETHODCALLTYPE *GetIDsOfNames)(IDispatch* This , REFIID riid ,

LPOLESTR* rgszNames , UINT cNames , LCID lcid , DISPID* rgDispId);

HRESULT (STDMETHODCALLTYPE *Invoke)(IDispatch* This , DISPID dispIdMember ,

REFIID riid , LCID lcid , WORD wFlags , DISPPARAMS* pDispParams ,

VARIANT* pVarResult , EXCEPINFO* pExcepInfo , UINT* puArgErr);

Figure 17: List of IDispatch methods

implement one or both of the automation interfaces: IDispatch and IDispatchEx. The

IDispatch interface exposes functions that are designed to achieve the following directives:

1. Allow an object to be self-publishing (i.e., advertise its properties and methods)

2. Allow methods to be called or properties to be manipulated by name, rather than

direct vtable / memory manipulation.

3. Provide a uni�ed marshaling interface for objects being passed to methods or proper-

ties, as well as objects being returned to the scripting host.

By implementing IDispatch, objects can be loaded at runtime by a host application and

subsequently manipulated without the host having to know any compile time details about

the objects it is. This capability is particularly useful for scripting interfaces which re-

quire extensibility. The IDispatch interface is derived from IUnknown (both documented at

MSDN), adding four methods as shown:

If an application would like to call any of the methods or modify any of the properties

exposed by the object, it �rst needs to determine the dispatch ID associated with the

method it would like to call. To determine this information, the application �rst needs to

call GetIdsOfNames(). The return value is an integer that maps to the actual method that

will be executed through the Invoke() method. The Invoke() method takes the ID of the

member to be executed, the arguments to the method, and some other information about

locale, etc as arguments. The wFlags argument passed to Invoke() de�nes whether the

dispatch ID references a method exposed by the object or a property value that it should

32

typedef struct FARSTRUCT tagDISPPARAMS{

VARIANTARG FAR* rgvarg; // Array of arguments.

DISPID FAR* rgdispidNamedArgs; // Dispatch IDs of named arguments.

unsigned int cArgs; // Number of arguments.

unsigned int cNamedArgs; // Number of named arguments.

} DISPPARAMS;

Figure 18: Type de�nition for tagDISPPARAMS

either get or set. The arguments to the method that will be executed are passed in a

DISPPARAMS structure. The DISPPARAMS structure is de�ned below:

As you can see, this structure passes the arguments to the method in an array of VARIANTs

(See the section on VARIANTs for more detail). This array must be unmarshalled by the called

method. In some cases, this can be a bit of a daunting task given the complexity of some of

the VARIANT types that may be present in the array. The IDispatch interface is useful for

creating automation objects whose behavior is immutable - the properties and methods must

be known at compile time and they don't change. However, in some cases, it is desirable to

have objects whose behavior could be modi�ed at runtime, and the IDispatchEx interface

extends IDispatch to allow this additional functionality. With IDispatchEx objects, it is

possible to add or remove properties or methods at runtime. This is functionality that is

commonly required by more dynamic late-bound languages such as scripting languages (e.g.

JavaScript). The IDispatchEx interface is also derived from the IUnknown interface, adding

eight methods as follows:

HRESULT DeleteMemberByDispID(DISPID id);

HRESULT DeleteMemberByName(BSTR bstrName ,

DWORD grfdex);

HRESULT GetDispID(BSTR bstrName ,

DWORD grfdex , DISPID *pid);

HRESULT GetMemberName(DISPID id,

BSTR *pbstrName);

33

HRESULT GetMemberProperties(DISPID id,

DWORD grfdexFetch , DWORD *pgrfdex);

HRESULT GetNameSpaceParent(IUnknown **ppunk);

HRESULT GetNextDispID(DWORD grfdex ,

DISPID id, DISPID *pid);

HRESULT InvokeEx(DISPID id, LCID lcid ,

WORD wFlags , DISPARAMS *pdp ,

VARIANT *pVarRes , EXCEPINFO *pei ,

IServiceProvider *pspCaller);

While there are some di�erences in the way dispatch IDs are retrieved, the main changes

to IDispatchEx are those that allow for the creation and deletion of object properties and

methods. GetDispID(), for example, di�ers from GetIdsOfNames() in that it can be told to

create a new name and dispatch ID for a new property or method. Additionally, you can see

the methods DeleteMemberByName() and DeleteMemberByDispID() have been added. In

ActiveX controls that extend the IDispatchEx interface, the dynamic creation and deletion

of members is accessible through JavaScript. Interestingly, JavaScript (for Internet Explorer)

itself is implemented using a modi�ed IDispatchEx interface exposed by the Microsoft script

engine. Conceptually, this implementation makes sense because JavaScript will need to be

able to create objects and add and delete members all without any preconceived notion of

what the object may look like. So, for example, when JavaScript creates a new object:

obj = new Object ();

Internet Explorer will �rst call the GetDispID() method for Obj � ensuring the

fdexNameEnsure �ag is set to create the member. It will then call its own internal version

of Invoke() to call the Object() method. The value returned from the call to Invoke()

will then become assigned to the obj member.

34

Figure 19: Diagram representing various media that can contain the IStream data.

3.3.1.8 COM Persistence Overview

COM provides two primary interfaces for manipulating an object's persistence data. The

�rst interface, IStream, represents a data stream that is used to store a single object's

persisted data. It supports standard �le operations including reading, writing, and seeking

using the interface methods. The IStream interface abstracts the underlying storage details

from the consumer of the stream. This abstraction allows for COM objects to implement

serialization functionality without explicit knowledge of the underlying backing store. This

abstraction is visually depicted in Figure 19.

The second interface, IStorage, is employed when a program or COM object requires

the persistence of multiple objects. IStorage represents a storage �le, which can hold

logically separate binary streams inside a single �le using unique names to identify each

stream. Additionally, a storage �le can contain logically separate subordinate storage �les,

also accessed by unique names, thus allowing for recursion if it is required. The IStorage

interface provides methods that allow the programmer to access each of the constituent

streams and subordinate storage �les. Figure 20 depicts an example of a typical storage �le.

In addition to IStream and IStorage, there are several other interfaces that can be used

for manipulating COM persistence data, depending on the medium that contains the data.

The following is a list of interfaces that can store persistent object data:

� IMoniker

� IFile

35

Figure 20: An example of a storage �le's contents.

MIDL_INTERFACE ("0000010c-0000 -0000 -C000 -000000000046")

Persist : public IUnknown

{

public:

virtual HRESULT STDMETHODCALLTYPE GetClassID(

/* [out] */ __RPC__out CLSID *pClassID) = 0;

};

� IPropertyBag

� IPropertyBag2

COM objects support serialization by implementing one of several well-known persistence

interfaces. Each of these persistence interfaces are specializations of the IPersist interface,

which has the following de�nition:

Each subclass of IPersist has methods named Load() and Save(), which serialize the

data and resurrect the data, respectively. The di�erentiator between these subclasses is the

type of interface that holds the persisted data. Table ?? lists the persistence interfaces, and

the argument type that each respective interface uses to hold the data. Figure 21 visually

depicts the inheritance hierarchy of these interfaces.

When a host program wishes to serialize an object, it will query that object for a per-

sistence interface. If successful, the application will then call the Save() method, passing

a pointer to one of the previously-discussed storage interfaces (IStream, IStorage, IFile,

etc). Later, when a host program wishes to resurrect the object from its persistent state, it

36

Table 3: Persistence Interfaces correlated to Data Interfaces

Persistence Interface Argument that Holds the Data

IPersistFile An LPCOLESTR that designates a standard �le path

IPersistMemory An LPVOID that is a �xed-size memory bu�er

IPersistMoniker An IMoniker interface

IPersistPropertyBag An IPropertyBag interface

IPersistPropertyBag2 An IPropertyBag2 interface

IPersistStorage An IStorage interface

IPersistStream An IStream interface

IPersistStreamInit An LPSTREAM interface

will once again retrieve the object's persistence interface, and call the Load() method. The

object resurrected from the persistence data should be equivalent to the object that was

previously saved.

3.3.1.9 Implementing COM Persistence in the ATL

Developers of COM objects are free to implement their own persistence interfaces. If these

developers choose to write their own code for the interface, they would manipulate the

interface that stores the persistence data by reading and writing data in an arbitrary format.

However, most developers choose to use template classes provided in the Microsoft ATL,

when there is template code to do so, avoiding the extra work it would require to implement

these interfaces. Version nine of the Microsoft ATL has template classes for the following

persistence interfaces:

� IPersist

� IPersistPropertyBag

� IPersistStorage

� IPersistStreamInit

The template code requires a programmer to de�ne a series of properties, known as a prop-

erty map, which the persistence interface will use as a boiler plate for serializing and resur-

recting the object in question. This property map is a terminated array of structures that

list the properties for the control that must be serialized and resurrected, and should be

37

Figure 21: The inheritance hierarchy of persistence interfaces.

made explicit enough to guarantee that the object, once serialized, will be equivalent to an

object that is resurrected from the data. Version nine of the ATL includes various macros

to aid a programmer when de�ning these properties and include macros from the following

list.

� BEGIN_PROPERTY_MAP

� BEGIN_PROP_MAP

� PROP_ENTRY

� PROP_ENTRY_EX

� PROP_ENTRY_TYPE

� PROP_ENTRY_TYPE_EX

� PROP_PAGE

38

struct ATL_PROPMAP_ENTRY {

LPCOLESTR szDesc;

DISPID dispid;

const CLSID* pclsidPropPage;

const IID* piidDispatch;

DWORD dwOffsetData;

DWORD dwSizeData;

VARTYPE vt;

};

Figure 22: Type de�nition of ATL_PROPMAP_ENTRY

� PROP_DATA_ENTRY

� END_PROPERTY_MAP

� END_PROP_MAP

Each of the previously mentioned macro functions take various arguments and use them

to de�ne an ATL_PROPMAP_ENTRY structure. The following code is the structure de�nition

taken from version nine of the ATL.

The elements in the ATL_PROPMAP_ENTRY structure are all quite important to understand,

and are summarized in Table ??.

The macro functions for de�ning properties use arguments supplied to the function to

set certain ATL_PROPMAP_ENTRY elements, and will set others to a default state. Depend-

ing on the elements that have non-default values, the template code responsible for the

persistence operations will use slightly di�ering strategies when serializing and resurrecting

the data. Both BEGIN_PROPERTY_MAP and BEGIN_PROP_MAP will include code that starts

to de�ne the structure; however, the former will automatically include X and Y position

information within the property map. END_PROP_MAP and END_PROPERTY_MAP are macro

functions that will include a terminating ATL_PROPMAP_ENTRY element and end the struc-

ture de�nition. Between BEGIN_PROPERTY_MAP or BEGIN_PROP_MAP, and END_PROP_MAP or

END_PROPERTY_MAP, are ATL_PROPMAP_ENTRY instances that describe the properties of a COM

object. PROP_ENTRY and PROP_ENTRY_EX both de�ne a property using the property's name,

display id, and a property page that can be used to set the property. PROP_ENTRY_TYPE

and PROP_ENTRY_TYPE_EX de�ne the same information as PROP_ENTRY and PROP_ENTRY_EX;

39

Table 4: A listing of the elements of the ATL_PROPMAP_ENTRY structure and the
purpose they serve.

Element Name Element Purpose

szDesc Unicode string that uniquely identi�es the
property name

dispid 32-bit integer that uniquely identi�es the
property within the object

pclsidPropPage Pointer to a COM class id that identi�es a
COM class that o�ers a GUI interface to set
and retrieve the property within the control

piidDispatch Pointer to a COM interface id that describes
an interface that inherits from IDispatch,
which can be used to set the property

through the Invoke method of the interface

dwOffsetData 32-bit value that speci�es the property's
memory o�set from the beginning of the

object

dwSizeData 32-bit value that speci�es the number of
bytes that have been allocated in the object

to hold the property's data

vt 16-bit value that speci�es the property's type

however they also require an explicit variant type that is expected when dealing with the

property. The �_EX� su�x designates that the macro function also expects an explicit dis-

patch interface id that should be used when setting or getting the property's value. The

PROP_DATA_ENTRY macro requires a unique string identi�er for the property, the name of the

class's member that will be used to store the property, and the type of variant that's ex-

pected for the property. Internally, the PROP_DATA_ENTRY macro uses the o�setof and sizeof

structure to explicitly de�ne dwOffsetData and dwSizeData within the ATL_PROPMAP_ENTRY

structure. PROP_PAGE is used to specify a COM class id that o�ers a GUI interface, which

can manipulate the properties of an object. To help illustrate the use of property maps in

C code and how properties are read from a persisted state, we'll brie�y present an example

COM object called HelloCom. HelloCom is a simple ActiveX control that can store a per-

son's �rst and last names. The properties will have the names NameFirst and NameLast.

The following C++ code snippet shows portions of code for the HelloCom control that are

relevant for implementing persistence.

40

class HelloCom :

public IPersistStreamInitImpl <HelloCom >,

public IPersistStorageImpl <HelloCom >,

public IPersistPropertyBagImpl <HelloCom >

{

public:

BEGIN_PROP_MAP(HelloCom)

PROP_DATA_ENTRY ("_cx", m_sizeExtent.cx, VT_UI4)

PROP_DATA_ENTRY ("_cy", m_sizeExtent.cy, VT_UI4)

PROP_ENTRY (" NameFirst", 1, CLSID_HelloComCtrl)

PROP_ENTRY_TYPE (" NameLast", 2, CLSID_HelloComCtrl , VT_BSTR)

END_PROP_MAP ()

};

Figure 23: Class de�nition for HelloCom

If the application is loading the persistence data from a binary stream, then the applica-

tion would query for the IPersistStreamInit interface and would receive a vtable pointing

to the IPersistStreamInitImpl template class. Next, the application will call the Load()

method, passing in an IStream object that will be used to read the persistence data. Prior

to any of the serialized data in a stream, a version number is stored in order to deal with

backwards compatibility issues. So, the �rst four bytes in the stream will be a little-endian

representation of the ATL version that was used to compile the control. In Visual Studio

2008, this value is 0x00000900. As long as the value is less-than or equal-to the version of

the ATL used to compile the control, processing can resume, otherwise, an error is signaled.

After the versioning information has been processed, the properties themselves can then be

retrieved from the stream. The bytes immediately after the version number in the stream

in this case would be two 4-byte little-endian representations of the _cx and _cy elements.

Since these elements were declared with the PROP_DATA_ENTRY macro, these 32-bit values

will be written directly to the memory o�set in the class where the m_sizeExtent.cx and

m_sizeExtent.cy values reside. Following these values, we will encounter the serialized

representation of NameFirst. Since NameFirst is declared in the property map using the

PROP_ENTRY() macro, which contains no data type, the type information needs to be re-

trieved from the stream. Therefore, the �rst two bytes in the stream would be an unsigned

16-bit value of 0x0008, representing the variant type VT_BSTR. Next would come an un-

signed 32-bit value specifying the length of the string. If the name were "Example", then

41

O�set Hexadecimal representation of bytes Description

0x00 00 09 00 00 Version nine of the ATL

0x04 00 01 00 00 The _cx value is 256

0x08 00 01 00 00 The _cy value is 256

0x0C 08 00 NameFirst is stored as a VT_BSTR

0x0E 0C 00 00 00 NameFirst is 12 characters long

0x12 46 00 69 00 72 00 73 00 74 00 00 00 NameFirst is equivalent to "First"

0x1E 0A 00 00 00 NameLast is 10 bytes long

0x22 4C 00 61 00 73 00 74 00 00 00 NameLast is equivalent to "Last"

Figure 24: A listing of the elements contained in a stream for the �ctitious HelloCom example

the value of this 32-bit integer specifying the size would equal 0x10; seven 2-byte characters

plus a terminating null. The next values would be the characters that represent the name,

followed by a terminating 16-bit value of 0x0000. NameLast would come next, and would

be speci�ed identically to NameFirst, except that the 16-bit variant type speci�er would

be absent in the stream, since the type is explicitly declared in the property map using

the PROP_ENTRY_TYPE() macro. Table 24 shows an example of the stream described in the

previous paragraphs, with hexadecimal values representing the value in the stream, an o�set

showing the position of the value in the stream, and a description of how the values should

be interpreted.

3.3.1.10 COM Persistence in Microsoft Internet Explorer

Microsoft Internet Explorer uses persistence when assigning values to properties of ActiveX

objects. The six main interfaces used by Internet Explorer, ordered by preference, are

IPersistPropertyBag, IPersistMoniker, IPersistFile, IPersistStreamInit,

IPersistStream, and IPersistStorage. The browser will attempt to retrieve an interface

pointer to each persistence interface in sequence until it is successful, or no interfaces have

been found, at which point the operation fails. The �rst, and most familiar, persistence

interface is IPersistPropertyBag. IPersistPropertyBag has been speci�cally designed to

allow persistent objects to be embedded within HTML. Take, as an example, the following

HTML code that embeds Microsoft Media Player within a web page.

<OBJECT id="VIDEO" CLASSID=

42

"CLSID:6BF52A52 -394A-11d3-B153 -00 C04F79FAA6" >

<PARAM NAME="URL" VALUE=" MyVideo.wmv">

<PARAM NAME=" enabled" VALUE="True">

<PARAM NAME=" AutoStart" VALUE="False">

<PARAM name=" PlayCount" value ="3">

<PARAM name=" Volume" value ="50">

<PARAM NAME=" balance" VALUE ="0">

<PARAM NAME="Rate" VALUE ="1.0" >

<PARAM NAME="Mute" VALUE="False">

<PARAM NAME=" fullScreen" VALUE="False">

<PARAM name=" uiMode" value="full">

</OBJECT >

The <PARAM> tags that appear within the <OBJECT> tag represent the COM object's prop-

erty names and persisted values. When Internet Explorer parses a web page and encounters

these <PARAM> tags, it �rst creates a PropertyBag class and queries for the IPropertyBag

interface. Next, it will parse the name and value parameters of the <PARAM> HTML tag

and call the Write() method on the IPropertyBag interface, supplying the name and a

string representation of the value for the property it has parsed. Once Internet Explorer

has loaded all of the <PARAM> tags into a property bag, it will query the COM object (In

the above example, a Media Player object) for an IPersistPropertyBag interface. Internet

Explorer will then call the Load() method of the IPersistPropertyBag interface, passing

the PropertyBag that was parsed from the HTML. The Load() method of the COM ob-

ject will then convert the properties from a string representation into the object's preferred

representation, and subsequently save the converted representation within the COM object.

This strategy is employed by Internet Explorer to resurrect the object from a persistent

state when it encounters the above HTML. The reciprocal operation to the resurrection op-

eration, serialization, is most commonly encountered when using the innerHTML attribute

of an object. Consider the following JavaScript code, used in the same web page as the

43

above HTML.

<script language =" JavaScript"> alert(VIDEO.innerHTML); </script >

Upon processing the previous JavaScript, the web page will alert the user with a message

box with HTML formatted text similar to the following example:

<PARAM NAME="URL" VALUE ="./ MyVideo.wmv">

<PARAM NAME="rate" VALUE ="1">

<PARAM NAME=" balance" VALUE ="0">

<PARAM NAME=" currentPosition" VALUE ="0">

<PARAM NAME=" defaultFrame" VALUE="">

<PARAM NAME=" playCount" VALUE ="3">

<PARAM NAME=" autoStart" VALUE ="0">

<PARAM NAME="_cx" VALUE ="6482" >

<PARAM NAME="_cy" VALUE ="6350" >

When Internet Explorer serializes an object using a PropertyBag, it �rst creates an

instance of the PropertyBag class. Next, it queries the object to be persisted for the

IPersistPropertyBag interface. Once the interface is retrieved, Internet Explorer calls

the Save() method, passing the PropertyBag class instance. Finally, Internet Explorer will

serialize the PropertyBag class into a format that is compatible with HTML standards. The

second, less common, way of inserting persistence data into a control over Internet Explorer

is through the use of the data parameter of the <OBJECT> tag. An example of this type of

persistence is shown in the following HTML.

<OBJECT

id="VIDEO"

CLASSID ="CLSID:6BF52A52 -394A-11d3-B153 -00 C04F79FAA6"

data ="./ persistence_data"

type=" application/x-oleobject"

/>

44

In the example above, instead of using <PARAM> tags, the persistence data is communi-

cated through the data parameter of the object tag. When Internet Explorer encounters an

object tag in this format, it follows a complex strategy to resurrect the object from the seri-

alized data. Internet Explorer will �rst check the �le name speci�ed in the data parameter

to see if the �le name extension is equal to ".ica", ".stm", or ".ods". If the extension is one

of these, then it creates an IStream that can read binary data from the supplied �le URL.

Internet Explorer will then create an instance of the object speci�ed in the �rst sixteen

bytes of the �le, or, if those sixteen bytes are zero, the CLASSID parameter in the object

tag and query for the IPersistStream interface. If the interface is successfully retrieved,

Internet Explorer will then call the Load() method of the interface, passing in the IStream.

Next, the COM object will parse the stream and convert the binary data into the preferred

representation of each property. Once these operations are �nished, Internet Explorer will

have a fully resurrected COM object. If the �lename does not match one of the well-known

extensions, Internet Explorer does some extra work to determine what type of persistence

interface to use for the COM object and corresponding persistence data. First, Internet

Explorer will query the COM object for an IPersistFile interface. If the interface is suc-

cessfully retrieved, it will call the Load() method of the COM object's interface, passing in

a �le path. It is then the COM object's responsibility to open the �le and parse the data.

If the object does not support the IPersistFile interface, Internet Explorer will use the

URL in the data value, and create an IStream object. Next, it will query the COM object

for an IPersistStreamInit interface. If this operation is successful, then Internet Explorer

will call the Load() method of the IPersistStreamInit interface, passing in the IStream

object. If the COM object doesn't support the IPersistStreamInit interface, it will then

attempt to query the object for an IPersistStream interface. If the object implements this

interface, then Internet Explorer will call the Load() method of the IPersistStream in-

terface, passing in the IStream object. If these operations are successful, then the COM

object's IPersistStreamInit or IPersistStream interface is charged with resurrecting the

properties from the given persistence data. If the COM object does not implement either

IPersistStreamInit, or IPersistStream, or the Load() method returns with a failure,

45

then Internet Explorer will attempt to load the URL as a compound OLE document by call-

ing StgOpenStorage() from OLE32. If StgOpenStorage() returns with a successful value,

then Internet Explorer will query the COM object for an IPersistStorage interface. If the

COM object indeed implements the IPersistStorage interface, then Internet Explorer will

call the Load() method of the interface, passing in an IStorage object. From here it is,

again, the responsibility of the COM object to parse the data contained in the IStorage

object.

3.3.2 Microsoft ActiveX

ActiveX is a technology derived from Microsoft's COM technology. It is utilized to create

plugins that can be exposed to runtime engines (such as JavaScript and VBScript) to provide

additional capabilities to the host application. Understanding the types of vulnerabilities

that will be explored later in this dissertation requires an in-depth understanding of some of

the COM / Automation architecture. As such, we will present an overview of the relevant

technologies in this section. We will also explore the concept of �persistent objects�, which are

serialized COM objects that can be optionally embedded within web pages. It will be shown

in section three how persistent COM objects can be used to not only target vulnerabilities

in various COM marshaling components, but also undermine browser security features in

certain scenarios.

3.3.2.1 Plugin Registration

ActiveX controls are a specialization of COM objects, and as such have an entry within

the system registry describing the relevant instantiation information. Like any other COM

object, each ActiveX object is identi�ed by a globally unique Class ID (CLSID), and is

located in the registry at HKEY_CLASSES_ROOT\CLSID\{<CLSID>}. Objects can

also be installed on a per-user basis, using the HKEY_CURRENT_USER portion of the

registry. Since COM objects are used so pervasively throughout the Windows OS, Internet

Explorer (IE) needs a way of restricting which COM objects are allowed to be launched

through the web browser. The semantics of the safety mechanisms have gradually become

more granular over time, and will brie�y be described here.

46

Figure 25: ActiveX control marked as �Safe for Initialization� (SFI) and �Safe For Scripting�
(SFS)

3.3.2.2 ActiveX Plugins: Safety Controls

IE has several mechanisms for determining whether an ActiveX object has permission to

run. Safety permissions for controls are divided into two categories: initialization and script-

ing. Initialization safety refers to whether or not the control is allowed to be instantiated

based on data from a persistent COM stream (discussed in depth shortly). Scripting safety

refers to whether the control may be manipulated via scripting APIs exposed at runtime.

Registry Controls The �rst and most well-known method to mark a control as Safe For

Scripting (SFS) or Safe For Initialization (SFI) is to add speci�c subkeys below the entry for

the control in the registry. Two values can be added under the �Implemented Categories�

subkey to mark the control SFS and SFI respectively. These values are 7DD95801-9882-

11CF-9FA9-00AA006C42C4 (CATID_SafeForScripting) and 7DD95802-9882-11CF-9FA9-

00AA006C42C4 (CATID_SafeForInitialization) respectively. Figure 25 shows an example

of a control using these categories.

Controls may programmatically register themselves for these categories using the

StdComponentCategoriesMgr object. The ICatRegister interface contains a

RegisterClassImplCategories() method, which can be used to manipulate the category

registration information for any given COM object. Internally, the

StdComponentCategoriesMgr updates the registry with the above information. Internet

Explorer utilizes the StdComponentCategoriesMgr object as well, but for enumeration rather

than registration. The ICatInformation interface provides a function named

IsClassOfCategories(), which IE can call to determine if a control is SFS or SFI. Again,

47

this operation internally queries the above mentioned registry location to determine which

controls the object implements.

3.3.2.3 IObjectSafety Control

An alternative method exists to mark a control as SFS or SFI. An ActiveX control can

provide support for either of these safety restrictions by implementing the IObjectSafety

interface. In this scenario, the security capabilities for the control can be obtained by call-

ing the IObjectSafety::GetInterfaceSafetyOptions() method, which has the following

prototype:

HRESULT IObjectSafety :: GetInterfaceSafetyOptions(

REFIID riid , DWORD *pdwSupportedOptions ,

DWORD *pdwEnabledOptions);

This function will be called by IE to determine the supported set of safety options. If

the interface appears to support the security options, IE will then call the

SetInterfaceSafetyOptions() method of the IObjectSafety interface with the options

that it would like the object to enforce. SetInterfaceSafetyOptions has the following

prototype:

HRESULT IObjectSafety :: SetInterfaceSafetyOptions(

REFIID riid , DWORD dwOptionSetMask ,

DWORD dwEnabledOptions);

If SetInterfaceSafetyOptions() returns successfully, then the application can use the

COM object knowing that the object intends to use the security options requested. The

added value of this API over COM categories is that a control can o�er more granular control

over how it is used, since it is able to specify di�erent security settings for di�erent interfaces,

based on which interface id was speci�ed in the riid parameter for the method calls. Also,

the IObjectSafety interface can execute native code to determine if the application that is

creating the object can do so safely. A speci�c example of this type of functionality is the

SiteLock template code provided by Microsoft. This template code allows the programmer

to restrict ActiveX controls to a pre-determined list of URLs.

48

Figure 26: ActiveX Killbits in IE

3.3.2.4 ActiveX Killbits

IE also implements an override to the standard safety features, allowing administrators to

speci�cally ban the instantiation of selected controls within the browser. This is achieved

by adding a subkey into the HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Ex-

plorer\ActiveX Compatibility registry location. The subkey added must have the CLSID

of the control in question, and contain the DWORD value �Compatibility Flags�, which has

the �killbit� set (value 0x400). Figure 26 shows an example of a control with the killbit set.

When an application wishes to determine if the killbit is set, it will call the

CompatFlagsFromClsid() function, which is exported from urlmon.dll.

CompatFlagsFromClsid() has the following prototype:

HRESULT CompatFlagsFromClsid(CLSID *pclsid ,

LPDWORD pdwCompatFlags , LPDWORD pdwMiscStatusFlags);

When the application calls this function, it will pass in the CLSID of the COM object

it is interested in, and two DWORD pointers whose value will be equal to the compatibility

and miscellaneous OLE �ags for the object upon the successful return of the function. The

application will then test to see if the 0x400 bit is set to determine if the control has the

killbit set. If the killbit is set, then an entry may appear in the registry for an alternate

class id. This alternate class id will be used in lieu of the original class id within Internet

Explorer. Figure 27 shows a registry entry for a class id that uses an alternate class id. When

dealing with the control in Figure 27, Internet Explorer will transparently translate requests

for COM objects with a class id of {41B23C28-488E-4E5C-ACE2-BB0BBABE99E8} to the

49

Figure 27: COM object with an alternate CLSID

Figure 28: Excerpt of the preapproved list

class id of {52A2AAAE-085D-4187-97EA-8C30DB990436}.

3.3.2.5 Preapproved List / ActiveX Opt-In

Microsoft introduced a feature called ActiveX Opt-In with Internet Explorer 7. ActiveX

Opt-In is designed to reduce the attack surface of the browser by prompting the user before

a web page is allowed to instantiate an object that hasn't been loaded before in Internet

Explorer, or wasn't installed by the user through Internet Explorer. Figure 28 shows the

relevant area of the registry: HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows\CurrentVersion\Ext\PreApproved.

In a base installation of Windows there are a number of controls already on the preap-

proved list. However, there are far more controls that are safe for scripting or initialization

that do not appear on this list. This functionality makes it more desirable to �nd �aws in

controls on this list, rather than �aws in other controls.

50

Figure 29: Example of a control restricted from a single user

3.3.2.6 Per-User ActiveX Security

IE8 introduced a series of additional security capabilities related to secure browsing, includ-

ing some re�nements to ActiveX. Before these capabilities were added, control permissions

that could be con�gured were con�gured on a per-machine basis. The new capabilities ex-

tend the per-machine killbit to a per-user level of granularity, and expand upon ActiveX

opt-in by allowing Opt-In functionality based on the user and the domain. Traditionally,

killbits have been used to e�ectively ban the instantiation of a control system-wide. This

model is problematic in scenarios where a single user on a system of many users required

the use of a particular control, but no others required it. Microsoft expanded upon killbits

by introducing the registry key HKEY_CURRENT_USER\Software\Microsoft\

Windows\CurrentVersion\Ext\Settings\{CLSID}, where CLSID is the class id of the Ac-

tiveX control to restrict. By setting the Flags value of this key to �1�, a control will be

restricted for a single user. Figure 29 shows the Tabular Data Control disabled in this area

of the registry.

Restricting ActiveX controls to certain domains allows the user to have more gran-

ular control over ActiveX security. Originally, SiteLock was the only method that al-

lowed domain restriction, which was not con�gurable by the end user. This new per-

domain restriction is managed in the registry by adding keys for speci�c allowed domains

51

Figure 30: Example of a control approved to be run from the Microsoft.com domain

to HKEY_CURRENT_USER\Software\Microsoft\Windows\

CurrentVersion\Ext\Stats\{CLSID}\iexplore\AllowedDomains. A key for all domains can

be added here by using the name �*�, as opposed to a speci�c domain. Per-Domain opt-in

controls reduce the attack surface by requiring the user to approve the use of an ActiveX

control before it is ran in the context of an unfamiliar domain. In e�ect, this would require

an attacker to insert malicious web content onto a trusted domain in order to surreptitiously

exploit the ActiveX control. Figure 30 shows the Tabular Data Control con�gured to run

within the microsoft.com domain without prompting.

3.3.2.7 Internet Explorer Permission GUI

In addition to providing restriction capabilities, Microsoft enhanced the Internet Explorer UI

by adding an interface that allows the user to easily con�gure ActiveX control permissions

without having to modify the registry. Figure 31 shows how to access the Add-on Manager

interface, and Figure 32 shows how to �nd DLLs that are allowed to run in the browser

without permission.

3.3.2.8 ActiveX Safety Wrap-Up

ActiveX has many methods to restrict which controls may load, and how they can be acted

upon under a given context. One reason may very well be that, as interoperability has

52

Figure 31: Navigating to the Add-on Manager

Figure 32: Operations to display controls that will run without permission

53

increased in applications, so too has opportunities for attackers. Under this premise, ActiveX

security has evolved in an attack-response fashion and has led to a somewhat fractured

security architecture. In later sections, we will show an attack that allows some of these

restrictions to be bypassed, mostly as a result of Microsoft adding security features to the

browser in an ad-hoc fashion rather than having established a robust security architecture

from the outset.

54

Chapter IV

INSTANTIATION PROBLEMS

As discussed in Chapter 1, problems with derived types can occur at all stages of their

lifecycle. This chapter discusses the issues associated with the instantiation of objects.

4.1 C++ Constructor Failure

One of the shortcomings of C++ is there is no way to return an error code from a construc-

tor. In fact, using a return statement anywhere in a constructor will cause at a minimum a

warning during compilation, and in the worse case an error. In any case, the return state-

ment is useless since the only thing that can be returned from a constructor is an instantiated

object. Under certain conditions, constructors have to perform some pretty complex opera-

tions. Consider the code in Figure 33, for example. Here we can see the constructor makes

a call to a web service to retrieve a value for some_property. If that web service request

fails, the value of some_property will be invalid.

There are cases where the developer instantiating the object may not know what a valid

value for the property might be. For example, in the code in Figure 33, if the web service

were to return an integer, and any integer value was valid, there would be no clear way

to determine whether the value was valid. The correct way to handle this situation would

be to catch the exception thrown by curlpp, or to pass the exception to the code that is

instantiating the object. The code in Figure 34 shows how this could be done.

4.1.1 Detecting C++ Constructor Failure With Static Analysis

Detecting constructor failure is an area for future research. This is a very di�cult problem

as there are many ways that a constructor can fail. The example in the previous subsection

is only one such type of failure.

55

#include <curlpp/cURLpp.hpp >

#include <curlpp/Options.hpp >

class Class1 {

std:: string some_property;

Class1 ();

~Class1 () { };

};

Class1 :: Class1 ()

{

some_property << curlpp :: options ::Url(

std:: string(

"http ://my -rest -interface.com/some_property "));

}

Figure 33: Example C++ code with a failure in the constructor

#include <curlpp/cURLpp.hpp >

#include <curlpp/Options.hpp >

class Class1 {

std:: string some_property;

Class1 ();

~Class1 () { };

};

Class1 :: Class1 ()

{

try

{

some_property << curlpp :: options ::Url(

std:: string(

"http ://my -rest -interface.com/some_property "));

}

catch(curlpp :: RuntimeError & e)

{

std::cout << e.what() << std::endl;

}

}

Figure 34: Example C++ code with a failure in the constructor with proper exception
handling

56

4.2 COM Retention Failure

The Microsoft plugin architecture makes extensive use of COM objects and VARIANTs to de-

�ne and pass objects between the various components within the browser. Indeed, JavaScript

objects are represented natively in the language runtime as COM objects, whereas VBScript

objects are represented as VARIANTs. A method or property exposed by an ActiveX object

is accessed by calling the IDispatch::Invoke() method of the object, which receives pa-

rameters to the destination function as an array of VARIANTs. (Note that with ActiveX

controls, properties are actually exposed as a pair of method calls that have names of the

form get_XXX() and put_XXX(), where XXX is the name of the property. These two func-

tions retrieve and set the property respectively.) Objects contained within the VARIANTs can

really be any type and value, but most commonly they are either primitive types (such as

integers or strings), or COM interfaces that represent complex objects. Since JavaScript rep-

resents objects internally as IDispatch (or more accurately, IDispatchEx) COM interfaces,

VT_DISPATCH VARIANTs will be the most common COM-based VARIANTs passed to typical

controls, in the context of a browser. COM objects maintain an internal reference count,

and it is manipulated externally by the IUnknown::AddRef() and IUnknown::Release()

methods, which increment and decrement the reference count respectively. Once the refer-

ence count reaches 0, the object will delete itself from memory. Object retention errors in

ActiveX controls are a result of mismanagement of the object's reference count. This section

describes the typical mistakes made by developers when dealing with objects whose lifespan

is greater than the scope of a single function call.

4.2.1 ActiveX Object Retention Attacks I: No Retention

The most obvious mistake a control can make with regard to object retention is to ne-

glect to add to the reference count of a COM object that it intends to retain. When an

ActiveX function takes a COM object as a parameter, the marshaling layer has already

called IUnknown::AddRef() on the received object to ensure that it will not be deleted by

competing threads. However, the marshaller will also release the interface after the plugin

function has returned. Therefore, a plugin object wishing to retain an instance of a COM

57

HRESULT CMyObject :: put_MyProperty(IDispatch *pCallback)

{

m_pCallback = pCallback;

return S_OK;

}

HRESULT CMyObject :: get_MyProperty(IDispatch **out)

{

if(out == NULL || *out == NULL || m_pCallback == NULL)

return E_INVALIDARG;

*out = m_pCallback;

return S_OK;

}

Figure 35: Code demonstrating the failure to call AddRef()

object beyond the scope of a method must call the IUnknown::AddRef() function before the

method returns. Calling IUnknown::QueryInterface() is also su�cient, as this function

will (or at least, should) call IUnknown::AddRef() for the object as well. Failure to call

either of these functions can result in potential stale pointer vulnerabilities. The code in

Figure 35 shows an example of such a problem. The put_MyProperty() function in this code

stores an IDispatch pointer which can later be retrieved by the client application using the

get_MyProperty() function. However, since AddRef() is never used, there is no guarantee

that the pCallback function will still exist when the property is read back by the client.

If every other reference to the object is removed, the object will be de-allocated, leaving

m_pCallback pointing to stale memory.

4.2.2 Detecting COM Retention Failures With Static Analysis

Detecting COM retention failures is an opportunity for future research. There is a direct

correlation to the Automatic Reference Counting technology employed by Apple's Xcode to

prevent retention failures of objective-C objects[16]. While this solution is not perfect, it has

greatly reduced the number of app stability issues introduced by dangling object pointers.

4.3 COM Initialization Failure

Despite being a relatively simple data structure to manipulate, VARIANTs lend themselves

to misuse in certain scenarios due to the deceptive nature of parts of the API. One of the

58

key mistakes the authors uncovered when researching VARIANT usage for this work is the

mismatching of VarintInit() and VariantClear() calls. As we mentioned earlier in the

paper, the VariantInit() function is used to initialize a VARIANT structure by setting the

vt member to VT_EMPTY. Conversely, VariantClear() will free the data associated with a

VARIANT, taking into account what type of data is being stored there. It will subsequently set

the type value of the VARIANTs to VT_EMPTY. The important thing to notice here is that any

code path that exists where VariantClear() is called on a VARIANT that has not been ini-

tialized correctly can lead to potential security problems. This is because VariantClear()

will read the uninitialized vt member of the VARIANT and use that to decide how to oper-

ate on the uninitialized VARIANT value. For example, if the vt member was VT_DISPATCH

(0x0009), VariantClear() would take the data member from the VARIANT and dereference

it to make an indirect call, since the process of deleting an IDispatch object involves calling

the IDispatch::Release() function. Omission of the VariantInit() function creates a

condition not unlike the memory management analog of freeing a block of memory without

�rst allocating it, with two key di�erences: 1. Double VariantClear() is not the same

as double free() � since VariantClear() sets the VARIANT type to VT_EMPTY, any subse-

quent calls to VariantClear() for the same VARIANT will have no e�ect, and 2. Omission

of VariantInit() is more likely than free() without malloc(), because the code will still

seemingly work correctly most of the time, even if the vulnerable code is exercised. This class

of mistakes is really an uninitialized variable problem, with the additional caveat that the

attacker needs to prime the appropriate memory area with useful data rather than specifying

it directly. That is, the exploitability of these problems is very dependent on the residual

data contained in the memory where the VARIANT was allocated. Under some conditions,

this data is under the control of the attacker, while in other cases, the attacker simply needs

to get lucky. An example VariantInit() omission vulnerability is shown in Figure 36.

As can be seen, a VARIANT located on the stack is manually initialized with the type

VT_DISPATCH, and is presumably �lled out with a pointer to an IDispatch interface after

data has been successfully read from the source stream. However, if the IStream::Read()

operation fails, the VARIANT is cleared, resulting in manipulating uninitialized stack data as

59

HRESULT MyFunc(IStream* pStream)

{

VARIANT var;

IDispatch* pDisp;

HRESULT hr;

var.vt = VT_DISPATCH;

hr = pStream ->Read(pDisp , sizeof(IDispatch *), NULL);

if(FAILED(hr)) {

VariantClear (&var);

return hr;

}

. . .

return hr;

}

Figure 36: Code sample demonstrating the omission of VariantInit()

if it pointed to an IDispatch interface. Although this seems like a relatively unlikely mis-

take to make, there are sometimes variations of the vulnerable code path that are slightly

more subtle. One such example occurs when copying data between VARIANTs using the

VariantCopy() function. The VariantCopy() function clears the destination VARIANT pa-

rameter before copying anything to it. Therefore, the destination parameter passed to

VariantCopy() must be cleared �rst as well. The code in Figure 37demonstrates a vulner-

able condition with the same exploitability constraints as the previous example.

Similar problems also exist in other VARIANT API functions, most notably the

VariantChangeType()/VariantChangeTypeEx() functions. These functions will use

VariantClear() in some but not all conversion cases. The rules for when VariantClear()

is called on the destination value are for the most part intuitive; they occur when: An in-

valid conversion attempt is not encountered (i.e., not converting between two incompatible

types), and The VariantClear() will not cause problems when the source and destination

VARIANT are the same, such as converting from a VT_UNKNOWN to a VT_DISPATCH. In terms of

auditing for vulnerabilities, any conversion where the destination parameter is uninitialized

should be viewed critically.

For example, consider the code in Figure 38. Here we see a similar construct to the pre-

vious examples, except this time using VariantChangeType(). The following requirements

60

HRESULT MyFunc(IStream* pStream)

{

VARIANT srcVar;

VARIANT dstVar;

IDispatch* pDisp;

HRESULT hr;

srcVar.vt = VT_DISPATCH;

dstVar.vt = VT_DISPATCH;

hr = pStream ->Read(pDisp , sizeof(IDispatch *), NULL);

if(FAILED(hr)) {

// VariantClear (&var);

return hr;

}

else {

srcVar.pdispVal = pDisp;

hr = VariantCopy (&dstVar , &srcVar);

}

return hr;

}

Figure 37: Code demonstrating a subtle initialization failure

BSTR *ExtractStringFromVariant(VARIANT *var)

{

VARIANT dstVar;

HRESULT hr;

BSTR *res;

if(var ->vt == VT_BSTR)

return SysAllocString(var ->bstrVal);

else {

hr = VariantChangeType (&dstVar , var , 0, VT_BSTR);

if(FAILED(hr))

return NULL;

}

res = SysAllocString(dstVar.bstrVal);

VariantClear (& dstVar);

return res;

}

Figure 38: Code sample demonstrating initialization failure with VariantChangeType()

61

for exploitation exist: 1. The destination VARIANT is uninitialized, and 2. A conversion from

a regular type to VT_BSTR will result in VariantClear() on the destination VARIANT (such

as VT_I4 to VT_BSTR). As mentioned previously, successful exploitation of the above vulner-

ability would require the attacker to be able to in�uence the stack so that the uninitialized

destination VARIANT had useful data in it, such as having a type of VT_DISPATCH and some

sort of valid pointer as the value.

4.3.1 Detecting COM Initialization Failure With Static Analysis

Much like detecting failures in the instantiation of C++ objects is a di�cult problem, so too

is detecting failures in the instantiation of COM objects. This is an area for future research.

62

Chapter V

OBJECT LIFETIME PROBLEMS

In the previous chapter, we discussed the sorts of security issues that can arise with complex

object types during the instantiation of those objects. In this chapter, we will discuss the

sorts of security issues that can arise during the lifetime of the object. We will leave the

issues associated with deleting the object to the next chapter.

5.1 C++ Type Confusion

The C++ additions to C create new ways for developers to introduce software vulnerabil-

ities into their code. Some of these extensions introduce safety conditions, including the

type confusion error leading to vtable escape vulnerabilities, that compilers cannot identify

during code generation. In this section, we discuss these issues, the complexities that C++

introduces into reverse engineering process, and the assumptions that underlie our analyses

of Section 5.1.4.

5.1.1 Silent Type Confusion

A number of C++ code-level defects do not present the developer with any sort of compile-

time warning. For example, the static_cast operator (a) converts a pointer to a base class

into a pointer to a derived class, or (b) converts a pointer to or from a void pointer. There

is no check for object congruence; this is not a language error but an deliberate design

choice to allow developers to insert unsafe casts into their software [84]. Casts through

void pointers clearly deactivate all compiler type-checking for the pointer, but common

developer documentation of static_cast omits this behavior, presenting only operation (a)

[87, 55]. Both cast types (a) and (b) violate type safety, and uses of static_cast without

additional safety checks by the developer can result in type confusion. Neither Microsoft

Visual Studio nor g++ warn of unsafe static casts because to do so would violate the very

purpose of the operator. Consider the example code shown in Figure 39a. A human analyst

63

can see that the method debug should never be called on an object of type class1. The

static_cast operation deliberately permits this type of error in software, and both Visual

Studio and g++ build the code without warning or error. Running the compiled code will

crash, perhaps in an exploitable way. At a low-level, when this code executes, it attempts to

dereference the fourth entry in the vtable for class1. Class1, however, only has two entries

in its vtable causing this dereference to read arbitrary memory�a vtable escape bug. This

class of vulnerability has impacted widely deployed proprietary software. For example, in

March 2010, Microsoft patched a vulnerability in Excel that was the result of C++ object

type confusion [65]. In April 2011, Adobe announced a 0-day type confusion vulnerability

in their Flash Player [2] after exploits appeared in the wild. Another actively exploited type

confusion vulnerability occurred in the Microsoft ATL [64], a set of C++ template code that

ships with Visual Studio. Developers were inadvertently including the vulnerable code in

their own projects.

5.1.2 Reverse Engineering C++ Software

When C++ code is compiled more high-level information is lost than with what is expe-

rienced in C, leading to many unsolved problems in C++ reverse engineering. Dynamic

dispatch is one of the most signi�cant challenges: C++ developers can optionally create

objects in such a way that the methods of an object are called through indirection. In

object-oriented design, polymorphism can be achieved by constructing objects that imple-

ment dynamic dispatch. This allows for the substitution of a method's implementation using

the same interface. In C++, this is accomplished by declaring a member function virtual.

All of the virtual functions have a corresponding pointer to the function's implementation

in the vtable of the object. They are each stored in the order that that are declared in the

object and referenced as an o�set from the base of the vtable. For example, consider the

code shown in Figure 39a. In this case, there are four virtual member functions in class2.

When this code is compiled, these four functions appear in the vtable as shown in Figure

40b, and as calls are made to those member functions, they will appear as an indirect call

to the base of the vtable plus the o�set coresponding to the correct member function.

64

class class1 {
public:

class1();
˜class1();
virtual void addRef();
virtual void print();
virtual void voidFunc1() ;
virtual void debug();

private:
int refCount;

};

class class2 {
public:

class2();
˜class2();
virtual void addRef();
virtual void print();

private:
int refCount;

};

int _tmain(int argc, _TCHAR* argv[])
{

class1 C1;
class2 C2;

void *pv = &C2;

C1.addRef();
C1.print();

C2.addRef();
C2.print();

static_cast<class1*>(pv)->debug();

return 0;
}

(a) Excerpt of original source (member function imple-
mentations omitted)

.text:00401000 wmain proc near

.text:00401000

.text:00401000 var_20 = dword ptr -20h

.text:00401000 var_18 = byte ptr -18h

.text:00401000 var_C = dword ptr -0Ch

.text:00401000 var_4 = dword ptr -4

.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 and esp, 0FFFFFFF8h

.text:00401006 push 0FFFFFFFFh

.text:00401008 push offset loc_401A80

.text:0040100D mov eax, large fs:0

.text:00401013 push eax

.text:00401014 sub esp, 14h

.text:00401017 mov eax, __security_cookie

.text:0040101C xor eax, esp

.text:0040101E push eax

.text:0040101F lea eax, [esp+24h+var_C]

.text:00401023 mov large fs:0, eax

.text:00401029 lea ecx, [esp+24h+var_18]

.text:0040102D call class1__class1

.text:00401032 lea ecx, [esp+24h+var_20]

.text:00401036 mov [esp+24h+var_4], 0

.text:0040103E call class2__class2

.text:00401043 lea ecx, [esp+24h+var_18]

.text:00401047 mov byte ptr [esp+24h+var_4], 1

.text:0040104C call class1__addRef

.text:00401051 lea ecx, [esp+24h+var_18]

.text:00401055 call class1__print

.text:0040105A lea ecx, [esp+24h+var_20]

.text:0040105E call class1__addRef

.text:00401063 lea ecx, [esp+24h+var_20]

.text:00401067 call class2__print

.text:0040106C mov eax, [esp+24h+var_20]

.text:00401070 lea ecx, [esp+24h+var_20]

.text:00401074 call dword ptr [eax+0Ch]

.text:00401077 xor eax, eax

.text:00401079 mov ecx, [esp+24h+var_C]

.text:0040107D mov large fs:0, ecx

.text:00401084 pop ecx

.text:00401085 mov esp, ebp

.text:00401087 pop ebp

.text:00401088 retn

.text:00401088 wmain endp

(b) Compiled Binary

Figure 39: C++ code with a type-safety violation

.rdata:00402138 off 402138 dd offset sub 4010D0

.rdata:0040213C dd offset sub 4010A0

.rdata:00402140 dd offset nullsub 1

.rdata:00402144 dd offset sub 4010B0

.rdata:00402148 dd offset dword 402274

.rdata:0040214C off 40214C dd offset sub 4010D0

.rdata:00402150 dd offset sub 4010E0

.rdata:00402154 align 8

.rdata:00402158 db 48h ; H

.rdata:00402159 db 0

.rdata:0040215A db 0

.rdata:0040215B db 0

.rdata:0040215C db 0

(a) Disassembly of the vtables for class2 and class1

Class1

ptr to VTable

prop1

prop2

…

VTable

void (Class1::*AddRef)()

void (Class1::*print)()

void (Class1::*voidFunc1)()

void (Class1::*debug)()

void Class1::AddRef()

{

prop1++;

return;

}

void Class1::print()

{

cout << “I’m in

Class1” <<

endl;

return;

}

void Class1::voidFunc1()

{

return;

}

void Class1::debug()

{

cout<<“In

debug”<<endl;

return;

}

(b) Structure of a C++ object after compilation

Figure 40: Compiled objects in binary code

65

5.1.3 Assumptions

Our analyses and implementation provide automated tools that reduce the manual labor a

reverse engineer must employ to better understand commercially available software. This

may be needed to evaluate the security of a given program or to try to inter-operate with

closed source software (e.g., creating a Microsoft Word rendering engine). The techniques

presented in this dissertation are designed to analyze legitimate applications like these ex-

amples, and they may not have applicability to malware or other obfuscated programs.

From a security perspective, legitimate, closed-source applications often require similar lev-

els of analysis as required for malware because attackers will very often leverage software

vulnerabilities in legitimate applications as a way to deliver malware payloads. Hence, un-

derstanding these vulnerabilities is also extremely important. The binaries that we analyze

throughout the paper were all compiled using Microsoft Visual Studio. We chose this as the

target compiler for our analysis because most Windows programs that require reverse engi-

neering are built in this environment. In contrast, applications that are built with the GNU

developer tools are also usually open source and do not require the complex binary analyses

we present here. However, all of the compiler-based issues we discuss are also present in

g++, and our analyses could be extended to other platforms. The basis for the issues we

discuss are rooted in the C++ standard rather than the implementation of that standard

by the various compilers. The analyses presented in this work do not make use of any sort

of Runtime Type Information (RTTI). As RTTI is only optionally compiled into the binary,

we wanted to ensure our analysis would work in its absence.

5.1.4 Detecting C++ Type Confusion With Static Analysis

In this section we introduce a static data �ow analysis known as Object Reaching De�ni-

tion Analysis. This analysis allows for the identi�caiton of vtable escape vulnerabilities by

statically analyzing compiled code. The analysis scans through the compiled binary looking

for uses of C++ objects, and comparing those uses to the type of object that is pointed to

at the use point.

66

5.1.4.1 Object Reaching De�nition Analysis

As C++ code is compiled, it introduces constructs into the binary that make reverse engi-

neering di�cult. Notably, object methods declared as virtual introduce layers of indirection

that can be nearly impossible to manually traverse. To assist in the analysis of C++ com-

piled code, we have created a data-�ow analysis called Object Reaching De�nition Analysis.

The goal of this analysis is to resolve the indirect virtual function calls present in binary

code. With this resolution in place, analysts can now much more easily navigate the com-

piled code. Additionally, many automated analyses require a complete static call graph. In

resolving the virtual function calls, the static call graph becomes more accurate. Object

Reaching De�nition Analysis is detailed in the following subsections.

Object Identi�cation In the data �ow analyses that will be introduced in the following

subsections, we will need to be able to identify all of the new objects that are instantiated in

a given basic block. When working directly with source code, identifying the instantiation

of objects is rather easy. They are either declared on the stack as with any other sort of

variable, or they are instantiated on the heap using the new operator. When analyzing

binary code, we do not have access to these obvious identi�ers and must �nd other ways

to locate the instantiation of new objects. Here we present four heuristics to detect the

four ways an object can appear in binary code. Consider the code in Figure 39a. In this

code, the objects C1 and C2 are declared on the stack. Additionally, Visual Studio is set to

aggressively inline functions, so the constructors are inlined as shown in Figure 39b. In this

case, we make the assumption that if we encounter a structure where the �rst element is a

pointer to an array of function pointers that we are dealing with an object. In the example

in Figure 39b, the �rst element of a structure is being initialized to a pointer to an array

of function pointers at 0x02A. We now assume that this is an object and we will track this

unique type throughout the rest of the program. The next sort of object instantiation we

have to handle is when the object is declared on the heap using the new operator and the

constructor is inlined. In this case, we can be more precise in our determination that we are

dealing with an object and not just a generic structure. We gain this precision because of

67

the fact that Visual Studio always applies the mangled name YAPAXI() to the new operator.

g++ similarly always applies the mangled name Znwjxxx() (where xxx may vary) to the

new operator. Now we can apply the same logic as above, but only in cases where the pointer

to an array of function pointers is being assigned to the value returned by one of the known

new operators. The third and fourth types of object instantiation that we must be concerned

with are when the objects are declared on the stack or heap, and the constructors are not

inlined. In this case, we must employ an inter-procedural analysis to determine that we

are dealing with an object. For this analysis, we make another assumption. Compilers will

nearly always make the call to an object's constructor immediately after the call to new.

With that, we assume that the next call we encounter after a call to new is a constructor,

and can validate that assumption with the heuristics mentioned regarding the pointer to a

table of function pointers.

Constructor Analysis In the previous section, we loosely covered the hueristic that we

use to determine that we are dealing with a constructor. To properly track an object's use

throughout the control �ow of a program, we need to know more details about that object.

These details can be gleaned from the constructor. Speci�cally, we need to know the size of

the vtable, and which function pointers it stores. Additionally, we need to know the number

and size of the properties stored within the object. To gain a full understanding of the

vtable, we follow the pointer that is assigned to the �rst element of the object's structure.

Figure 40a shows the vtable for an object of type class1 as referenced in Figure 39a. We

can see in the code in Figure 39b that the vtable starting at 0x138 is being referenced by

the constructor for class1. In order to perform our later analyses, we need to understand

the precise size of the vtable and the function pointers contained in that table. Here we

will implement some more hueristics. First we need to determine the length of the vtable.

We use a few hints to �nd the end of a vtable for a given object. The �rst is that if a data

element is pointed to by another program point, it is likely the start of some other data

structure (i.e., the next element past the end of our vtable). The element at 0x14C is an

example of this case. The second hint is that if a pointer in the table does not point to

68

a function, we assume that it is the next element past the end of the table. The element

at o�set 0x148 is an example of this case. The thrid hint is zero padding. Compilers will

often pad the end of a data structure with zeros. Beginning at o�set 0x154, we can see zero

padding past the vtable for class2.

5.1.4.2 Reaching De�nition Analysis Algorithm

Now that all of the object instantiations have been identi�ed, we can begin our analysis. The

basis of the analyses we will conduct is what we call Object Reaching De�nition Analysis. In

short, we perform a �xed-point inter-procedural reaching de�nition analysis for each object

de�nition we encountered during the previous step. The data-�ow equations used in Object

Reaching De�nition Analysis are de�ned below. for each basic block:

REACHIN [S] =
⋃

p∈pred[S]
REACHOUT [p] (1)

REACHOUT [S] = GEN [S] ∪ (REACHIN [S]−KILL[S]) (2)

where GEN is the set of objects that were identi�ed as being instantiated using the

hueristics listed in Section 5.1.4.1 and KILL is the set of objects that are deleted. In our

analysis, objects must be tracked interprocedurally. In those cases, REACHIN at the entry

of a function F is equal to REACH[S] at the call site to F from a basic block S.

5.1.4.3 Virtual Function Resolution

Now that we have the sets of objects that reach a given program point, we can use that

information to resolve the virtual function calls that appear in the binary. There are several

cases that can occur when evaluating the reaching de�nitions. In the �rst case, only a single

object de�nition reaches. In the second case, a single object de�nition or NULL reaches.

In the third case, a decidable number of object de�nitions reach. In the �nal case, an

undecidable number of object de�nitions reach. We will discuss each of these cases below:

1. Single Object De�nition: In this case, we can make the safe assumption that only a

single object de�nition reaches a given program point. With this assumption, we can

69

.text:00401000 _wmain proc near

.text:00401000 push esi

.text:00401001 push edi

.text:00401002 push 8

.text:00401004 call ??2@YAPAXI@Z

.text:00401009 add esp, 4

.text:0040100C test eax, eax

.text:0040100E jz short loc_401019

.text:00401010 call sub_401070

.text:00401015 mov edi, eax

.text:00401017 jmp short loc_40101B

.text:00401019

.text:00401019 loc_401019:

.text:00401019 xor edi, edi

.text:0040101B

.text:0040101B loc_40101B:

.text:0040101B push 8

.text:0040101D call ??2@YAPAXI@Z

.text:00401022 add esp, 4

.text:00401025 test eax, eax

.text:00401027 jz short loc_401032

.text:00401029 call sub_4010A0

.text:0040102E mov esi, eax

.text:00401030 jmp short loc_401034

.text:00401032

.text:00401032 loc_401032:

.text:00401032 xor esi, esi

.text:00401034

.text:00401034 loc_401034:

.text:00401034 mov eax, [edi]

.text:00401036 mov edx, [eax]

.text:00401038 mov ecx, edi

.text:0040103A call edx

.text:0040103C mov eax, [edi]

.text:0040103E mov edx, [eax+4]

.text:00401041 mov ecx, edi

.text:00401043 call edx

.text:00401045 mov eax, [esi]

.text:00401047 mov edx, [eax]

.text:00401049 mov ecx, esi

.text:0040104B call edx

.text:0040104D mov eax, [esi]

.text:0040104F mov edx, [eax+4]

.text:00401052 mov ecx, esi

.text:00401054 call edx

.text:00401056 mov eax, [esi]

.text:00401058 mov edx, [eax+0Ch]

.text:0040105B mov ecx, esi

.text:0040105D call edx

.text:0040105F pop edi

.text:00401060 xor eax, eax

(a) Original Source

class class1 {
public:
class1();
˜class1();
virtual void addRef();
virtual void print();
virtual void voidFunc1() { };
virtual void debug();

};

class class2 {
public:
class2();
˜class2();
virtual void addRef();
virtual void print();

};

int internalFunction(void *pv) {

static_cast<class1*>(pv)->addRef();
static_cast<class1*>(pv)->print();
static_cast<class1*>(pv)->debug();

return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
class1 *C1 = new class1;
class2 *C2 = new class2;

internalFunction((void *)C1);
internalFunction((void *)C2);

return 0;
}

(b) Compiled Binary

Figure 41: C++ code with heap-declared objects

70

resolve the function calls made to methods of the object by simply indexing into the

vtable based on the o�set from the base. For example, in the code in Figure 39a, only a

single object de�nition reaches. In the compiled equivalent in Figure 39b, we can see at

line 0x078 there is a call to edx. Since we have reconstructed the vtable for the object,

we can tell that it is actually a call to debug(). When this situation is encountered, as

we resolve the virtual function calls, we can also check for �congruence.� The concept

of congruence is explained in detail in Section 5.1.4.4.

2. Single Object De�nition with NULL: Visual Studio commonly adds a check for the

return from the new operator and sets it to NULL in the case of failure. In these

instances, it is possible for a developer to end up with a NULL pointer dereference

even though they did not explicitly add this code. The code in Figure 41a at line 0x025

is an example of this check. In these cases, our analysis treats the object de�nition

exactly as in case 1. Futher work can be done here to determine the safety of this

check insertion.

3. Decidable Number of Object De�nitions: In this case, multiple object de�nitions reach

a given program point, but we are able to determine the exact number and type

of those objects. When this situation is encountered, we �rst check for congruence

between all of the objects that reach. If they are not all congruent, there is likely a

type safety condition. We trigger a warning to this condition. If they are congruent,

we continue the analysis to determine the safety of the use of the object as done in

case 1.

4. Undecidable Number of Object De�nitions: This case occurs when objects are instanti-

ated and stored in a manner that does not allow our hueristics to determine their type.

This scenario is typically encountered when a class pointer is stored in a collection of

some type. In other words, when a class pointer is stored and retrieved from the heap

in a manner other than direct variable assignment, our reaching de�nition analysis will

fail. An example of this would be instantiating an object and storing its pointer in a

std::map. Since this object can now be referenced by the key value, we cannot check

71

for congruence or resolve the virtual function calls.

5.1.4.4 Object Congruence

In addition to using object reaching de�nition analysis for virtual function resolution, we can

also test for �object congruence.� We de�ne two objects as being congruent when they are

made up of the same number of methods and properties. Additionally, the method at each

equivalent location in the two vtables must require the same number and type of arguments.

The properties of the two objects must also correspond in size and type at each o�set in

the property table. As binary code is analyzed in the manner described in Section 5.1.4.3,

when an object use is identi�ed, we implement a congruence check to make sure the object

is being referenced in a way that is safe with regard to the actual object type that reaches

that use. This becomes particularly important when more than one object de�nition reaches

a given use. We have to ensure that all of the object types are congruent, and that any

object, when referenced, will be done so safely. If even one of the possible reaching object

de�nitions is unsafe for use, the program point as a whole has to be marked unsafe. This

is because static analysis cannot guarantee which object de�nition will be actually used at

runtime.

5.1.4.5 Implementation

In order to test and verify the data �ow algorithms presented in Section 5.1.4.2, we created

a framework called llvm-decomp . This tool allows us to reverse x86 compiled binaries into

the intermediate representation used by the LLVM compiler framework. Then, we are able

to use the analysis capabilities in LLVM to implement the algorithms for Object Reaching

De�nition Analysis, virtual function resolution, and object congruence testing. This section

presents the details on how this system was built.

5.1.4.6 High-Level Architecture

As compiled binaries are translated into the LLVM IR and analyzed, the data traverses

several tools and formats. In this section we describe the high-level architecture of the

system as a whole. The diagram provided in Figure 42 shows the process described below.

72

IDA Pro

llvm-bcwriter

x86 Machine Code

Assembly

LLVM bitcode opt

ClassTracker

LLVM IR

Resolved Methods

Type Mismatches

Figure 42: High-Level Architecture of llvm-decomp: Representation of how data �ows from
x86 assembly through to the LLVM IR for analysis

The initial input into llvm-decomp is C++ compiled x86 machine code. We chose to perform

our analyses on compiled code to assist reverse engineers in understanding the complexities

that are introduced by C++. There are several commercially available and free tools for

disassembling machine code into its assembly equivalent. In llvm-decomp, we use IDA

Pro for this step. IDA Pro is a commercially available disassembler with an extensive

set of tools available for use by reverse engineers. It focuses almost entirely on analyzing

the assembly representation of the compiled code. IDA Pro o�ers a plugin infrastructure

whereby a developer can interoperate with the analysis framework. In llvm-decomp, we

created a plugin for IDA Pro called llvm-bcwriter. llvm-bcwriter traverses the assembly

code and translates it into the LLVM intermediate representation. The converted IR is

then written to LLVM's bitcode format to be consumed by their analysis framework in the

next step. This conversion process is described in detail below. With a completed bitcode

�le, we can now implement the analyses detailed in Section 5.1.4.1 using the tool suite

provided with LLVM. Speci�cally, we use a tool called opt that allows developers to test

custom code analyses. It provides the same infrastructure that would be available inside the

compiler without requiring compiled output. opt disassembles the bitcode into the LLVM

IR and provides interfaces for analysis. There are several bene�ts to operating with the

LLVM IR because it is a static single assignment form. One of which is the use-def chains

are implicit which greatly assists in the reaching de�nition analysis as described in Section

5.1.4.7. Much like IDA Pro, opt provides a plugin infrastructure for custom analysis. In

this phase of our framework, we created a plugin for opt called ClassTracker. ClassTracker

73

performs a reaching de�nition analysis on objects as they appear in the LLVM IR.With this

reaching de�nition analysis completed, we can resolve virtual function calls, and perform

type-safety checks on object usage. These processes are covered in detail in Section 5.1.4.9.

With the virtual function resolution performed by ClassTracker, we can now propogate that

information back into the LLVM IR or even the disassembly. With this information provided

in these lower-level formats, other analyses are now possible that were previously broken by

dynamic dispatch.

Phases of Decompilation The decompilation performed by llvm-decomp is completed

in multiple passes over the disassembly provided by IDA Pro. This is largely due to some

nuances in the LLVM framework as well as in IDA Pro. The phases required are:

1. Create a generic class object: We have to �rst create a generic class object that can be

used as a type speci�er for any object we encounter in later phases of decompilation.

This class is generated by creating an LLVM global variable consisting of a structure

with two pointers. The �rst points to an arbitrarily large array of function pointers.

This will hold the vtable for real objects that are discovered during decompilation.

The second points to an arbitrarily large array of unsigned integers. This is used to

hold the object properties. Types can be manipulated at a later time.

2. Collect all the functions in the module: In order to properly populate an LLVM

module, we have to �rst collect all of the functions that are contained in the compiled

binary. This information is provided to us by IDA Pro using the getnfunc() API.

This allows us to loop through all of the known functions in IDA Pro, and create the

equivalent in the LLVM module. During this process, we must also properly de�ne

the number and type of arguments and local variables used in each function. While

this information is conveyed graphically in IDA Pro, it is not readily available through

the API. As such, we developed a number of heuristics to uncover this information. In

the case of C++ compiled binaries, Visual Studio will make frequent use of thiscall

and fastcall calling conventions. This adds to the number of heuristics required to

properly de�ne the functions in the LLVM module.

74

3. Insert basic blocks into each function: Once the functions are de�ned in the LLVM

module, we can add the basic blocks to the function. Basic block information is not

provided through the base API in IDA Pro. As such, we implemented our own basic

block discovery algorithm based on the one by Moretti, et al [68].

4. Add instructions to basic blocks: Now that the basic blocks for each function are

de�ned, we can add the instructions. At this point we need to reduce the assembly

equivalent to the LLVM intermediate representation. This phase is where the majority

of the work is required to complete the binary translation. The following steps are

followed:

(a) Survey all available LLVM IR operations: First we need to know all of the oper-

ations that we may need to represent in the IR. The LLVM IR instruction set is

rather small and well documented.

(b) Enumerate collections of assembly instructions: We then enumerate all of the

collections of assembly instructions that map to the appropriate LLVM instruc-

tion. This again is represented as a �nite set of collections of instructions that

have the same functional meaning as one of the higher-level LLVM operations.

(c) Track processor state for a given basic block: During the binary translation

process, the processor state can di�er wildly depending on which branch of the

control �ow is taken. As such, a processor state object is maintained for each

basic block. In this object, we store the state of the registers and the stack, so

as data is referenced, we have an accurate representation of what data is held at

that program point.

(d) Insert phi nodes into the IR: We have to be able to account for conditions where

a register or memory location can di�er in value depending on the control �ow

leading to a given program point. To account for this condition, the LLVM IR

implements phi nodes. Phi nodes are operators that allow for a single variable to

represent two or more values. As phi nodes are encountered, the analysis proceeds

as if that variable is equal to more than one value at the same time.

75

(e) Complete instruction mapping: Now that we can track processor state, and han-

dle multiple control �ows, we can complete the mapping from x86 assembly to

LLVM IR. This is handled with a rather straightforward state machine in which

we track the known groups of instructions that match to the known LLVM oper-

ators. These groups of instructions can of course be interleaved in the assembly,

so often several instruction groups are tracked at once.

(f) Handle unknown instructions: It is unrealistic to plan for all possible collections

of instructions ahead of time. As such, there are times when the instruction col-

lection states get �lost.� In these cases, LLVM allows for the insertion of platform-

speci�c inline assembly. When llvm-bcwriter cannot �nd a mapping between a

collection of assembly instructions and an LLVM operation, it will emit the x86

assembly inline into the IR. The processor state object is updated to re�ect the

changes made in the assembly and the binary translation continues. Under some

circumstances, the binary translation is able to continue without any other errors.

In other cases, the remaining binary code was too dependent on the instructions

that were not understood and the rest of the translation fails.

5. Emit LLVM binary representation: Once the process listed above is complete, we

have an LLVMmodule which represents the binary equivalent. At this point, the

code can be written to the LLVM binary form which they call bitcode (note - not

bytecode). The LLVM module that has been created is written to bitcode using

the WriteBitcodeToFile() LLVM API. This will generate the LLVM version of a

compiled binary and write it to disk. This binary, however, is a binary representation

of the LLVM SSA-based intermediate representation; not a native executable. With a

completed LLVM intermediate representation of the code, we can now move on to use

the LLVM analysis tools to implement the analyses listed in Section 5.1.4.2. However,

it is worth noting that there is a bene�t for a reverse engineer at this point in the

framework. The SSA-based intermediate reprsentation used by LLVM is very easy

to read, and in many cases will represent vulnerable code more clearly than the x86

76

assembly equivalent. As such, in the llvm-decomp framework, we run llvm-dis to

generate the textual equivalent of the intermediate representation and write the results

to disk. We are then able to load this �le in a new view in IDA Pro to provide two

di�erent representations of the same binary to assist in analysis.

5.1.4.7 Analyzing the Intermediate Representation

The next phase of llvm-decomp is provide the bitcode �le that was generated by llvm-

bcwriter as input into the tool opt. opt allows us to create custom analyses while taking

advantage of all of the infrastructure available in the LLVM compiler.

5.1.4.8 Interoperating with LLVM

opt allows for the creating and testing of custom compiler analyses without the need for

generating compiled output (although it can do that too). This is done by loading a custom

library by passing the -load option to opt. This library then registers to be called at various

points in the analysis. It can be called at the module, function, basic block, or instruction

levels. At each of these points, the function being called can assert its placement in the

dependency tree. In other words, the custom analysis can be called before or after any of

the pre-existing analyses. At each of those analysis levels, a �nal hook point is available

called doFinalization. This allows for a set of �clean up� routines to be run after all of the

analysis is complete.

5.1.4.9 ClassTracker

In the llvm-decomp framework, we created a plugin for opt called ClassTracker. ClassTracker

performs all of the analysis that is described in Section 5.1.4.2. To accomplish each of these

analyses, it performs the following tasks:

1. Collect all constructors: ClassTracker �rst registers for a function-level analysis to

collect all of the constructors it can �nd in the IR. This is mostly important for the

cases where the constructor is not inlined. In cases where the constructor is inlined

it would be simple to combine this step with the next step. When the constructor is

explicitly called, this analysis works better with a known set of constructors ahead of

77

time. Each constructor is stored as an opaque value that we can later reference as the

object's type. Without any other sort of type identi�cation in the binary, this opaque

value will su�ce. An object is created of the stored type using the constructor analysis

techniques detailed in Section 5.1.4.1.

2. Identify all new objects: In the next pass over the code, ClassTracker again registers

for a functionlevel analysis and enumerates all of the instantiations of new objects.

This is done using the hueristics presented in Section 5.1.4.1. Information about the

object is stored for later use. This includes the instruction that instantiated the object,

and the opaque value that represents its type.

3. Identify object use: ClassTracker then registers for a doFinalization analysis at the

module level. In this analysis, the code is scanned looking for all object uses. This is

done by looking for dereferences from a base pointer. This rather loose heuristic works

just �ne for the reasons explained in the next point.

4. Perform reaching de�nition analysis: This analysis step is to perform a reaching def-

inition analysis on the object de�nitions that reach the program points identi�ed in

the previous step. In LLVM, this is extremely simple. Because the LLVM IR is an

SSA-based IR implementing phi nodes, the reaching de�nition analysis is basically

complete. In an SSA format, the use-point of a given object must chain directly back

to the de�nition-point of that object. Consider Appendix A, for example. Here we can

see the instruction call %35. Because of the SSA format, we can follow this de�nition

back to %34, %33, and so on until we hit the phi node at %11, and can determine

the class type. Additionally, if more than one de�nition reaches at the entry point

to a given basic block, this information would be captured in a phi node. Therefore

the phi node is actually REACHIN[S] from data �ow equation (1) in Section 5.1.4.2

So following each path back from this point will uncover the various de�nitions that

reach. In cases where step 3 incorrectly identi�ed an object use, there will be no object

de�nitions that reach, and this instruction is discarded.

5. Perform virtual function resolution: Now that we have collected all of the object use

78

points and their potential de�nitions, we can �x up the virtual function calls. This is

done by iterating over each of the instructions found in step 4. For each call instruction,

the o�set from the base of the object is determined and used to index into the vtable of

the object stored in step 2. This lookup provides the function name (or address) that

is actually being referenced for that object type. If more than one object de�nition

reaches, this lookup occurs for each object type.

6. Perform congruence check: As the function lookups are occuring the previous step, we

simultaneously check to make sure that there actually is a function at the dereferenced

o�set for the any and all object de�nitions that reach that instruction. In cases where

the code attempts to dereference a function pointer beyond the end of the vtable, the

analysis reports an error.

7. Propagate information back: Now that the virtual function calls have been resolved,

we can propagate that information back into IDA Pro and the LLVM IR. In both

cases, the function name (or address) is retreived using the procedure in step 5, and

inserted into the text of the assembly or IR as a comment next to its use. In the case

of IDA Pro, it recognizes this comment as being a function name (or address) and

allows the user to navigate to that function by highlighting the comment and pressing

enter.

5.1.4.10 Results

By employing the data �ow analysis techniques documented in this dissertation, we demon-

strate that we can increase the e�ectiveness of existing static analysis techniques on compiled

C++ code, as well as identify a class of vulnerability that is often overlooked by existing

techniques. Most importantly, all of this analysis can be performed on a compiled binary

with no access to the original source. This allows for third parties like software develop-

ers, security analysts, or a software consumer software looking to validate code quality to

gain a much better view into the code constructs embedded in a compiled binary. To test

our decompilation framework, we created test programs each representing one of the four

79

class class1 {

public:

class1 ();

~class1 ();

virtual void addRef ();

virtual void print ();

virtual void voidFunc1 () { };

virtual void debug ();

};

class class2 {

public:

class2 ();

~class2 ();

virtual void addRef ();

virtual void print ();

};

int _tmain(int argc , _TCHAR* argv []) {

class1 *C1 = new class1;

class2 *C2 = new class2;

void *pv = C2;

C1 ->addRef ();

C1 ->print ();

C2 ->addRef ();

C2 ->print ();

static_cast <class1*>(pv)->debug ();

return 0;

}

Figure 43: Original Source

80

.text :00401000 _wmain proc near

.text :00401000 push esi

.text :00401001 push edi

.text :00401002 push 8

.text :00401004 call ??2 @YAPAXI@Z

.text :00401009 add esp , 4

.text :0040100C test eax , eax

.text :0040100E jz short loc_401019

.text :00401010 call sub_401070

.text :00401015 mov edi , eax

.text :00401017 jmp short loc_40101B

.text :00401019

.text :00401019 loc_401019:

.text :00401019 xor edi , edi

.text :0040101B

.text :0040101B loc_40101B:

.text :0040101B push 8

.text :0040101D call ??2 @YAPAXI@Z

.text :00401022 add esp , 4

.text :00401025 test eax , eax

.text :00401027 jz short loc_401032

.text :00401029 call sub_4010A0

.text :0040102E mov esi , eax

.text :00401030 jmp short loc_401034

.text :00401032

.text :00401032 loc_401032:

.text :00401032 xor esi , esi

.text :00401034

.text :00401034 loc_401034:

.text :00401034 mov eax , [edi]

.text :00401036 mov edx , [eax]

.text :00401038 mov ecx , edi

.text :0040103A call edx

.text :0040103C mov eax , [edi]

.text :0040103E mov edx , [eax+4]

.text :00401041 mov ecx , edi

.text :00401043 call edx

.text :00401045 mov eax , [esi]

.text :00401047 mov edx , [eax]

.text :00401049 mov ecx , esi

.text :0040104B call edx

.text :0040104D mov eax , [esi]

.text :0040104F mov edx , [eax+4]

.text :00401052 mov ecx , esi

.text :00401054 call edx

.text :00401056 mov eax , [esi]

.text :00401058 mov edx , [eax+0Ch]

.text :0040105B mov ecx , esi

.text :0040105D call edx

.text :0040105F pop edi

.text :00401060 xor eax , eax

Figure 44: Corresponding Binary

81

"401034": ; preds = %"401032" , %"401029"

. . .

%25 = getelementptr %0* %24, i32 0, i32 0 ; <i32 (...)*** >

. . .

call void %29()

. . .

%31 = getelementptr %0* %30, i32 0, i32 0 ; <i32 (...)*** >

. . .

call void %35()

. . .

%37 = getelementptr inbounds %0* %36, i32 0, i32 0 ; <i32 (...)*** >

. . .

call void %41()

. . .

%43 = getelementptr inbounds %0* %42, i32 0, i32 0 ; <i32 (...)*** >

. . .

call void %47()

. . .

%49 = getelementptr inbounds %0* %48, i32 0, i32 0 ; <i32 (...)*** >

. . .

call void %53()

. . .

br label %return

Figure 45: Excerpt from LLVM bitcode �le generated by llvm-bcwriter

combinations of stack or heap object declaration and inline or explicit constructor. These

programs were compiled without symbols and were provided to IDA Pro as input. In each

case, the system was tested for its ability to resolve virtual function calls and to identify

instances of type confusion. An example of this process is detailed in Section 5.1.4.10. We

created a more complex test where an object is declared in one function and referenced in

another function, testing the ability of llvm-decomp to perform the analyses described in

Section 6.1.3.1 on an interprocedural basis. This test is detailed in Section 5.1.4.10.

Heap-Declared Object, Explicit Constructor Figure 43 shows an unsafe use of static

cast through a void pointer resulting in a vtable escape error. The source code shows two

heap-declared objects C1 and C2. In the disassembly of the code shown in Figure 44, we

see that the constructors for the two objects are explicitly called at lines 0x010 and 0x029

respectively. Additionally, we can see several calls to virtual functions. Lines 0x03A and

0x043 correspond to the calls to addRef() and print() for C1. Lines 0x04B and 0x054

correspond to the calls to addRef() and print() for C2. We can see the erroneous call to

debug at line 0x05D. After translating the code in Figure 44 to the LLVM IR, it appears as

82

shown in Figure 45. This is an excerpt of the full code that is emitted from llvm-bcwriter.

In the LLVM IR, we can see the virtual function calls just as in the disassembly, but it is

still just as unclear which function will actually get called. In the LLVM IR, we see the

instructions call void %29 and call void %35, which correspond to the calls to addRef()

and print() for C1. We also see the instructions call void %41 and call void %47,

corresponding to the same functions in C2. The �nal call, call void %53, corresponds to

the erroneous call to debug. When the Object Reaching De�nition analysis in ClassTracker

is applied to this code, the various function calls were resolved except for the call to debug.

In this case there was no corresponding method in the vtable, and ClassTracker returns a

vtable escape error. The detailed output from ClassTracker can be seen in Appendix B.

Interprocedural Analysis The previous example shows how llvm-decomp is able to

translate binary code into the LLVM IR and perform Object Reaching De�nition Analysis.

However, the vulnerable code that it was able to identify is very unlikely to ever appear in

production code. We would hope that this sort of type-casting would be identi�ed through

simple code review. Consider the more complex example in Figure 46: an object is declared

in one function and referenced by another function. This code is much more realistic,

especially when we consider the possibility that the function internalFunction() could be

called from many di�erent places in the code, each passing in di�erent object types. In this

example, the source code shown in Figure 46 is compiled to the binary representation shown

in Figure 47.

Sub 401000 corresponds to the function internalFunction(). We can see in this sub-

routine that it makes three virtual function calls, corresponding to addRef(), print(), and

debug(). This binary is provided as input into llvm-bcwriter, which produces the LLVM

IR shown excerpted in Figure 45a. Here we can see the calls to the virtual functions ap-

pearing as call void %6, call void %13, and call void %20 respectively. When running

ClassTracker on the IR shown in Figure 46, the analysis made two passes over the function

internalFunction because it is called twice in this code. In the �rst pass, the virtual function

calls were resolved as they belong to class C1. In the second pass, we see a second function

83

class class1 {

public:

class1 ();

~class1 ();

virtual void addRef ();

virtual void print ();

virtual void voidFunc1 () { };

virtual void debug ();

};

class class2 {

public:

class2 ();

~class2 ();

virtual void addRef ();

virtual void print ();

};

int internalFunction(void *pv) {

static_cast <class1*>(pv)->addRef ();

static_cast <class1*>(pv)->print ();

static_cast <class1*>(pv)->debug (); return 0;

}

int _tmain(int argc , _TCHAR* argv []) {

class1 *C1 = new class1;

class2 *C2 = new class2;

internalFunction ((void *)C1);

internalFunction ((void *)C2);

return 0;

}

Figure 46: Original source for de�nition of class1

84

.text :00401000 sub_401000 proc near

.text :00401000

.text :00401000 mov eax , [esi]

.text :00401002 mov edx , [eax]

.text :00401004 mov ecx , esi

.text :00401006 call edx

.text :00401008 mov eax , [esi]

.text :0040100A mov edx , [eax+4]

.text :0040100D mov ecx , esi

.text :0040100F call edx

.text :00401011 mov eax , [esi]

.text :00401013 mov edx , [eax+0Ch]

.text :00401016 mov ecx , esi

.text :00401018 call edx

.text :0040101A xor eax , eax

.text :0040101C retn

.text :0040101C sub_401000 endp

.text :0040101C

.text :00401020 _wmain proc near

.text :00401020 push esi

.text :00401021 push edi

.text :00401022 push 8

.text :00401024 call ??2 @YAPAXI@Z

.text :00401029 add esp , 4

.text :0040102C test eax , eax

.text :0040102E jz short loc_401039

.text :00401030 call sub_401080

.text :00401035 mov esi , eax

.text :00401037 jmp short loc_40103B

.text :00401039

.text :00401039 loc_401039:

.text :00401039 xor esi , esi

.text :0040103B

.text :0040103B loc_40103B:

.text :0040103B push 8

.text :0040103D call ??2 @YAPAXI@Z

.text :00401042 add esp , 4

.text :00401045 test eax , eax

.text :00401047 jz short loc_401061

.text :00401049 call sub_4010C0

.text :0040104E mov edi , eax

.text :00401050 call sub_401000

.text :00401055 mov esi , edi

.text :00401057 call sub_401000

.text :0040105C pop edi

.text :0040105D xor eax , eax

.text :0040105F pop esi

.text :00401060 retn

.text :00401061

.text :00401061 loc_401061:

.text :00401061 xor edi , edi

Figure 47: Compiled binary for class1

85

pointer assigned to each call site. These are the methods belonging to class C2. Here again

ClassTracker reported for the erroneous call to debug.

5.2 COM Type Confusion

As we previously saw in the technology overview of this dissertation, the VARIANT data

structure is used extensively throughout Microsoft code as a standardized, language agnostic

method of representing a variety of data types. The API for manipulating VARIANT data

structures has been introduced in the overview section of this dissertation. We will now

explore how mismanagement of VARIANT structures either directly or through the well-de�ned

API can lead to a number of subtle type confusion scenarios.

5.2.1 VARIANT Type Confusion Attacks I: Permissive Property Maps

As was discussed earlier, Microsoft's ATL helps developers rapidly develop COM compo-

nents by distributing template code for a collection of interfaces. Microsoft has written

the template code in an abstract manner, which allows the template code to be used in a

large variety of situations; however, there are also subtle consequences of utilizing some of

the available code. Speci�cally, the manner in which the developer used to specify COM

object properties using property maps has some subtle nuances that could potentially lead

to opportunities for an attacker to perform type confusion attacks. Consider the follow-

ing macros available in version 9 of the Microsoft ATL, which can be used for specifying

individual properties within a property map.

It is important to note that neither PROP_ENTRY nor PROP_ENTRY_EX require a parameter

to specify the VARIANT type. Recall from our previous discussion about persistence that

when these functions are used, the persistence stream will contain two bytes that identify

the serialized type preceding the serialized data. Once the member being described has been

de-serialized, the ATL code will call the put property method of the IDispatch interface

that the property map speci�es in order to write the data to the COM object. In summary,

utilizing these macros provides a possible opportunity to provide any type of VARIANT to

the put method of the IDispatch interface without forcing coercion to a speci�c data type.

If the developer fails to take into consideration that the put method may be supplied with

86

struct ATL_PROPMAP_ENTRY {

LPCOLESTR szDesc;

DISPID dispid;

const CLSID* pclsidPropPage;

const IID* piidDispatch;

DWORD dwOffsetData;

DWORD dwSizeData;

VARTYPE vt;

};

#define PROP_DATA_ENTRY(szDesc , member , vt) \

{OLESTR(szDesc), 0, &CLSID_NULL , NULL , \

offsetof(_PropMapClass , member), \

sizeof (((_PropMapClass *)0)-> member), vt},

#define PROP_ENTRY(szDesc , dispid , clsid) \

{OLESTR(szDesc), dispid , &clsid , &__uuidof(IDispatch), \

0, 0, VT_EMPTY},

#define PROP_ENTRY_EX(szDesc , dispid , clsid , iidDispatch) \

{OLESTR(szDesc), dispid , &clsid , &iidDispatch , 0, 0, VT_EMPTY},

#define PROP_ENTRY_TYPE(szDesc , dispid , clsid , vt) \

{OLESTR(szDesc), dispid , &clsid , &__uuidof(IDispatch), 0, 0, vt},

#define PROP_ENTRY_TYPE_EX(szDesc , dispid , clsid , iidDispatch , vt) \

{OLESTR(szDesc), dispid , &clsid , &iidDispatch , 0, 0, vt}

Figure 48: Example COM property map

87

Figure 49: Di�erence between PROP_ENTRY_* macros and PROP_DATA_ENTRY

88

an arbitrary VARIANT type, then using this type of property declaration can lead to possible

type confusion problems. This type of vulnerability is more likely to be found in objects

that aren't used in Internet Explorer, or in interfaces that implement IDispatch that are

speci�ed in the property map, but are not accessible from Internet Explorer. Developers

may also elect to use PROP_DATA_ENTRY() instead of PROP_ENTRY(). The PROP_DATA_ENTRY

macro is unique, in that the data for that property is not �ltered by an IDispatch interface.

Instead, it is written directly to an o�set within the class memory that holds the property

data. If the variant type supplied to the macro is VT_EMPTY, then the persistence code will

read up to the number of bytes available for the property within the class. The process for

unpacking PROP_DATA_ENTRY properties versus PROP_ENTRY macros is illustrated in Figure

49. So, the use of the PROP_DATA_ENTRY() macro provides attackers with two interesting

opportunities:

1. The ability to create a property directly in the destination object's memory possibly

without having any typing requirements, and

2. The ability to provide properties that have undergone absolutely no validation If the

PROP_DATA_ENTRY macro is speci�ed in a type-less manager then these properties are

quite dangerous.

If they are constructed with the type speci�ed as VT_EMPTY, then code that subsequently

utilizes such properties will almost certainly contain type confusion vulnerabilities, since

it has no way to validate what type of data it is operating on. For example, consider a

case where a PROP_DATA_ENTRY property is intended to be a pointer to a string or some

other more complex object. By specifying an integer type instead of the intended object,

a type confusion vulnerability will be triggered, with the end result more than likely being

arbitrary execution. Conversely, there may be a situation where a property member is

expected to be an integer, but the attacker speci�es a pointer instead (by specifying a string

or something else). This example type confusion vulnerability will more than likely result in

an information leak, and ultimately disclose the value of a pointer. These types of problems

are becoming increasingly useful when attempting to bypass memory protection mechanisms

89

#ifndef VT_TYPEMASK

#define VT_TYPEMASK 0xfff

#endif

WXDLLEXPORT bool wxConvertOleToVariant(const VARIANTARG& oleVariant ,

wxVariant& variant) {

switch (oleVariant.vt & VT_TYPEMASK) {

case VT_BSTR: {

wxString str(wxConvertStringFromOle(oleVariant.bstrVal));

variant = str; break;

}

...

Figure 50: Code sample showing a subtle VARIANT type confusion vulnerability

found in contemporary Windows operating systems. Furthermore, it is worth considering

that PROP_DATA_ENTRY properties are set directly, and hence bypass any level of validation

that the put property of the IDispatch interface may enforce. This means there may be

cases where setting these properties directly may circumvent the sanitization process to

some degree, since it might be carried out in the put property method. Therefore, there are

potential opportunities for an attacker to exploit the object in question when the property

is utilized under the tenuous assumption that it is sanitized in a certain manner. VARIANT

5.2.2 Type Confusion Attacks II: Misinterpreting Types

One area that is prone to potential problems when dealing with VARIANT data structures

is correctly interpreting the vt member. In contrast to the NPAPI variant data structures,

recall that the type parameter in a VARIANT can be a basic type, or a complex type composed

of bits that represent a basic type and a modi�er (or two modi�ers, if one of them is

VT_BYREF). The misinterpretation of the vt member can occur when bit masking is performed

incorrectly, leading to subtle vulnerabilities where the VARIANTs value is utilized as one type

when it is in fact, another. To illustrate this point, consider the following code:

The astute reader will notice that this code has a very obvious �aw: a type check is

performed using a mask to obtain the basic type of the VARIANT. In the case of a BSTR, the

string is passed to a function which basically duplicates it. The problem here is that if a

modi�er is used, the VARIANT will not contain a BSTR as its value parameter. If the caller

90

SAFEARRAY *psa;

ULONG *pValue

// Test if object is an array of integers

VARTYPE baseType = pVarSrc ->vt & VT_TYPEMASK;

if((baseType != VT_I4 && baseType != VT_UI4) ||

((pVarSrc ->vt & VT_ARRAY) == 0))

return -1;

psa = pVarSrc ->parray;

// operate on SAFEARRAY

SafeArrayAccessData(psa , &pValues);

...

Figure 51: An attempt at �xing the vulnerable code

of this function were to supply a VARIANT with the type (VT_BYREF|VT_BSTR) for example,

it would cause a pointer to a BSTR to be placed within the VARIANT rather than a BSTR.

(A BSTR is really a WCHAR * with a 32-bit length preceding it, so a BSTR * is a WCHAR **.)

Therefore, utilization of any modi�ers on VARIANTs passed to this function will result in a

type confusion vulnerability. Consider this slightly more subtle example:

This code performs some checking to ensure that an input type is an array of either

signed, or unsigned integers. If it is not, then an error is signaled by returning the value -1.

However, there is also a problem in this code � the check for the variant type fails to take

into account that the type can have the VT_BYREF bits set. Since the VT_ARRAY modi�er is

not mutually exclusive with VT_BYREF, the above code has a type confusion vulnerability

when dealing with a VARIANT with the type (VT_BYREF|VT_ARRAY|VT_I4). In this case, a

SAFEARRAY ** will be incorrectly interpreted as a SAFEARRAY *, leading to out of bounds

memory accesses. The following code is a real-world example taken from IE (all present

versions). This example is part of the core marshalling code for the DOM. The code in

question is charged with verifying VARIANT parameters received from scripting hosts plugged

into the DOM are correct and, if necessary, converting those parameters into the expected

types. Although each DOM function takes di�erent types of parameters, most marshalling

routines, at their core, use the same function, VARIANTArgToCVar(), which takes a single

VARIANT and attempts to convert it to the expected type. The vulnerable code is shown

91

int VARIANTARGToCVar(VARIANT *pSrcVar , int *res ,

VARTYPE vt, PVOID outVar , IServiceProvider *pProvider ,

BOOL bAllocString)

{

VARIANT var;

VariantInit (&var);

if(!(vt & VT_BYREF)) {

// Type mismatch - attempt conversion

if((pSrcVar ->vt & (VT_BYREF|VT_TYPEMASK))

!= vt && vt != VT_VARIANT) {

hr = VariantChangeTypeSpecial (&var ,

pSrcVar , vt, pProvider , 0);

if(FAILED(hr))

return hr;

... more stuff ...

return hr;

}

switch(vt) {

case VT_I2:

*(PSHORT)outVar = pSrcVar ->iVal;

break;

case VT_I4:

*(PLONG)outVar = pSrcVar ->lVal;

break;

case VT_DISPATCH:

*(PDISPATCH)outVar = pSrcVar ->pdispVal;

break;

... more cases ...

}

}

}

Figure 52: Attempted �x that ignores the complete length of the type mask

below.

The code in question attempts to retrieve the value of an input parameter, pSrcVar,

performing a type conversion if the received VARIANT isn't of the expected type given in the

vt parameter. The problem in this code occurs when comparing the received input VARIANTs

type with the expected type. Speci�cally, a test is done by comparing the expected type

with the input type after the input type has been masked with (VT_BYREF|VT_TYPEMASK),

or 0x4FFF. Performing this mask loses signi�cant information, which in this case is the

VT_ARRAY (0x2000) and VT_VECTOR (0x1000) modi�ers. To illustrate the problem, consider

92

the case where this function is expecting a VT_DISPATCH input type (0x0009) and the input

VARIANT is an array of VT_DISPATCH types (VT_ARRAY|VT_DISPATCH, or 0x2009). Since

(0x2009 & 0x4FFF) produces the result 0x0009, or VT_DISPATCH, this code will incorrectly

assume it received an IDispatch object rather than an array of IDispatch objects. The

result is this function signals success and returns a pointer to a SAFEARRAY which it has

incorrectly evaluated as a pointer to an IDispatch interface. Thus, this code culminates to

a type confusion vulnerability. An assessor auditing for vulnerabilities in the use of VARIANT

type masks must pay close attention to how the vt member of the VARIANT is manipulated.

Speci�cally, the masking of input VARIANT types needs to be performed with caution to

ensure that information is not overlooked when performing any validation steps. VARIANT

5.2.3 Type Confusion Attacks III: Direct Type Manipulation

Another construct that can result in type confusion vulnerabilities is directly manipulating

the vt member of a VARIANT, rather than using the API functions. Although this should

be a fairly straightforward task in theory, subtle vulnerabilities can be introduced by either

not correctly enforcing data types, or not correctly ensuring that a type conversion was

successful. For example, the following code has been taken from Microsoft's internal version

of the ATL. This code is invoked when performing de-serialization of a COM object from

a persistence stream. Note that in this particular example, the VARIANT data structure is

wrapped in a C++ object, CComVariant. The class member vt in this code corresponds to

the vt type variable in a VARIANT structure. The example listed above is contrived; however,

the we have identi�ed a real-world scenario where this type of bug has occurred. Microsoft's

internal version of the ATL has special code to process variants in a persistence stream that

is similar to the following example.

The issue with the above code is that the return value of the ChangeType() function is

not checked before manually setting the variant type. This mistake allows an attacker to

make the program believe a BSTR value the attacker supplied is any type not handled in the

�xed width data types handler. In one scenario, an attacker can specify that a string that

he has supplied should be treated as an array of VT_DISPATCH objects. When this function

93

inline HRESULT CComVariant :: ReadFromStream(IStream* pStream)

{

ATLASSERT(pStream != NULL);

HRESULT hr;

hr = VariantClear(this);

if (FAILED(hr))

return hr;

VARTYPE vtRead;

hr = pStream ->Read(&vtRead , sizeof(VARTYPE), NULL);

if (hr == S_FALSE)

hr = E_FAIL;

if (FAILED(hr))

return hr;

vt = vtRead;

// Attempts to read fixed width data types here

CComBSTR bstrRead;

hr = bstrRead.ReadFromStream(pStream);

if (FAILED(hr))

return hr;

vt = VT_BSTR;

bstrVal = bstrRead.Detach ();

if (vtRead != VT_BSTR) {

hr = ChangeType(vtRead);

vt = vtRead;

}

return hr;

}

Figure 53: Code excerpt from Microsoft ATL

94

returns an error, the caller will attempt to free the string using the VariantClear() function.

This ends up causing the program to treat the attacker supplied string as an array of vtables,

a clear type confusion error, ultimately allowing for arbitrary code execution.

5.2.4 Detecting Type Confusion Attacks With Static Analysis

Detecting type confusion attacks against COM objects is an opportunity for future research.

A similar analysis could be developed to the one described in Section 5.1.4. While the

memory layout for a COM object is not identical to that of a C++ object, it is similar. The

concepts from Section 5.1.4 could be adapted to �t the memory layout for COM objects.

Further, because COM objects are self documenting, gathering information about the real

structure of the object is easier than in the case of C++.

5.3 VARIANT Shallow Copies

When a VARIANT object is duplicated, it is typically done with VariantCopy(), but just a

simple memcpy() is also used in many cases. VariantCopy() is the preferred method, since

it will do an object-aware copy � if the VARIANT being copied is a string, it will duplicate

the memory. If the object being copied is an object, it will add a reference count. In

contrast, memcpy() obviously performs a shallow copy � if the VARIANT contains any sort

of complex object, such as an IDispatch, a pointer to the object will be duplicated and

utilized without adding an additional reference to the object. If the result of this duplicated

VARIANT is retained, the object being pointed to could be deleted, if every other instance of

that object is released. The code in Figure 54 demonstrates this vulnerable construct.

There is also a more subtle variation on the attack � this time using VariantCopy(). In

some ways, VariantCopy() can be also be considered a shallow copy operation, in that any

VARIANT that has the VT_BYREF modi�er will not be deep-copied; just the pointer will be

copied.

Consider the code in Figure 55. This example shows a sample ActiveX property that

simply takes a VARIANT and stores it, and optionally returns it to the user. The problem

with this code is that VariantCopy() is used rather than VariantCopyInd(). If a VARIANT

is supplied that has the type (VT_BYREF|VT_DISPATCH) for example, a simple pointer copy is

95

HRESULT CMyObject :: put_MyProperty(VARIANT src)

{

HRESULT hr;

memcpy ((void *)& m_MyProperty , (void *)&src , sizeof(VARIANT));

return S_OK;

}

HRESULT CMyObject :: get_MyProperty(VARIANT *out)

{

HRESULT hr;

if(out == NULL)

return E_FAIL;

VariantInit(out);

memcpy(out , (void *)& m_MyProperty , sizeof(VARIANT));

return S_OK;

}

Figure 54: Code demonstrating a shallow copy of an object

HRESULT CMyObject :: put_MyProperty(VARIANT src)

{

HRESULT hr;

VariantInit (& m_MyProperty);

hr = VariantCopy (& m_MyProperty , &src);

if(FAILED(hr))

return hr;

return S_OK;

}

HRESULT CMyObject :: get_MyProperty(VARIANT *out)

{

HRESULT hr;

if(out == NULL)

return E_FAIL;

VariantInit(out);

hr = VariantCopy(out , &m_MyProperty);

if(FAILED(hr))

return hr;

return S_OK;

}

Figure 55: Code demonstrating the copy of a VT_BYREF

96

performed. If the VT_DISPATCH object being pointed to is subsequently deleted, then you are

left with a VARIANT pointing to an IDispatch object that no longer exists. If an attempt to

get this property is subsequently made, the user will retrieve a VARIANT with a stale pointer,

leading to the possibility of memory corruption.

5.3.1 The ActiveX Marshaller

In order to know the exact semantics of what happens to an object when it is passed as a

parameter to an ActiveX control, you need to pay careful attention to what types the target

function is expecting. When an ActiveX function expects a VARIANT as a parameter, the

marshalling code does not do any sort of deep copy - it uses neither VariantCopy() nor

VariantCopyInd(). So, receiving VARIANTs can be particularly dangerous if they contain

COM interfaces that are operated upon beyond the method's scope. Furthermore, if an

ActiveX function allows an indirect pointer to a COM object as a parameter - that is,

(VT_BYREF|VT_DISPATCH) or equivalent, the object being referenced will have its reference

count incremented by the marshaller (and released upon function returned). So if a VARIANT

value is passed to an ActiveX control of type (VT_BYREF|VT_DISPATCH), it will not have its

reference count incremented if the function takes a VARIANT, but it will have its reference

count incremented if the function takes a IDispatch ** (or even an IDispatch *). This

algorithm is somewhat counterintuitive, which increases the likelihood that mistakes will

occur as a result.

5.3.2 Detecting Shallow Copies with Static Analysis

Detecting shallow copies of COM objects is an opportunity for future research. This could

be done with a data �ow analysis similar to the ones described in Sections 5.1.4 and 6.1.3.1.

To detect a shallow copy, one could develop a data �ow algorithm that determines that a

COM object is being passed to one of the many primitive memory copying operations (e.g.,

memcpy()). The interesting challenges to solve in that research would be similar to that

which we did with C++. Performing the points-to analysis to determine that the source of

the copy operation points to a COM object is a di�cult task.

97

5.4 COM Trust Transitivity

The previous sections described type confusion vulnerabilities that can exist in C++ and

COM as well as problems that arise when improperly copying COM objects. In this section,

we desribe how the COM architecture can be used at runtime to subvert its own underlying

security architecture.

5.4.1 Architectural Weakness

Once a COM object is installed on a system, it is available for instantiation by any applica-

tion. There is no central policy governing which applications can load which COM objects.

As vulnerabilities are disclosed in individual COM objects, there is nothing preventing an

unknowing application from loading that potentially harmful control. Given that vulnerabil-

ities in COM objects are most often left unpatched, any application that loads COM objects

is a potential target an adversary. Speci�cally, an adversary can force an application to load

one of the previously installed and known �awed controls allowing for exploitation. This

allows adversaries to take advantage of controls that already exist on a system rather than

attempting to trick their victim into installing an intentionally malicious object. Because

many of the vulnerabilities that have gone unpatched allow for the execution of arbitrary

code, an adversary can exploit these loitering �aws as an initial infection vector to install

malware. Once they have installed their malware, they can gain complete control over the

system. Given this exposure, many applications have implemented their own discrete poli-

cies dictating which controls they deem to be safe or unsafe. The Internet Explorer killbit

list is an example of one such policy. These policies are only useful for determining which

COM objects will be directly loaded by an application. They cannot guarantee or enforce

the behavior of an object once it is instantiated. An application must therefore trust the

behavior of a COM object once it is loaded. If that COM object then loads other COM

objects, this trust is transitively extended. As shown in Figure 56, this trust transitivity

exposes a critical security weakness with regard to COM. If an application loads a COM

object that is within its security policy, it trusts that object to only load other objects that

are also in the security policy.

98

Browser Execution Environment

Authorized
Plugin

Unauthorized
Plugin

X

Authorized Plugin

Authorized Plugin
Loads

Other Plugins

Killbit Protected

Figure 56: Transitive trust between COM Objects allows normally unauthorized objects to
be loaded and executed.

There is no programmatic way for the application to ensure that an object it loads

extends its security policy to other objects. It is therefore theoretically possible to exploit

this transitive trust relationship in any application that loads COM objects. To complete

an attack exploiting this transitive trust, an adversary requires the following:

1. An application that will render adversary-controlled content.

2. An application that will load COM objects.

3. A COM object that will in turn load other COM objects.

4. A vulnerable object that can be exploited.

Each of these requirements is easily achievable under normal circumstances with an average

Windows installation. The following subsections address them in order.

99

5.4.1.1 Supplying Adversary-Controlled Content

The �rst requirement for accomplishing this sort of attack is that an adversary must per-

suade a target to render content under their control. This is easily accomplished through

applications like Internet Explorer and the Microsoft O�ce suite. End users can be tricked

into viewing malicious web pages through a number of means including phishing, cross-site

scripting, and content injection. Additionally, users can be emailed O�ce and other docu-

ments or the browser can be used to force the rendering of O�ce content through the use

of ActiveX.

5.4.2 Loading Adversary-Controlled COM Objects

COM objects can be loaded based on content in Internet Explorer, the Microsoft O�ce suite,

as well as any other applications and services commonly installed on Windows that make

use of this infrastructure including Flash and Adobe Reader. To force an application such

as Internet Explorer to load a COM object, an adversary can supply the CLSID parameter

of an <OBJECT> tag. In the case of the Microsoft O�ce suite, COM objects can be directly

embedded in documents using the GUI.

5.4.2.1 Transitive Trust Amongst COM Objects

The third requirement for the attack is to load a COM object that will in turn load other

objects. While this may seem rare, it is actually quite prevalent due to a feature of Microsoft

Visual Studio. Because of the complexity of developing COM objects, Microsoft has included

with Visual Studio a set of C++ templates called the Active Template Library (ATL). The

ATL provides methods for the saving and loading of persistence streams so a developer does

not have to understand the low-level details. To interact with these methods the developer

simply provides a property map, a template de�ning the order and type of data that is stored

in the persistence stream, for the object �elds they intend to save stream. This way, as the

control reads the persistence stream it understands to which properties it should apply the

data. One weakness of property maps is the ability to de�ne loose types. These are type

100

inline HRESULT CComVariant :: ReadFromStream(IStream* pStream)

{

ATLASSERT(pStream != NULL);

HRESULT hr;

hr = VariantClear(this);

if (FAILED(hr))

return hr;

VARTYPE vtRead;

hr = pStream ->Read(&vtRead , sizeof(VARTYPE), NULL);

if (hr == S_FALSE)

hr = E_FAIL;

if (FAILED(hr))

return hr;

vt = vtRead;

int cbRead = 0;

switch (vtRead)

{

case VT_UNKNOWN:

case VT_DISPATCH:

{

punkVal = NULL;

hr = OleLoadFromStream(pStream ,

(vtRead == VT_UNKNOWN) ? IID_IUnknown : IID_IDispatch ,

(void **)& punkVal);

if (hr == REGDB_E_CLASSNOTREG)

hr = S_OK;

return S_OK;

}

Figure 57: Source code for CComVariant::ReadFromStream()

101

HRESULT OleLoadFromStream(LPSTREAM pStm ,

const IID *const iidInterface , LPVOID *ppvObj) {

CLSID pclsid;

IID *riid;

HANDLE *ppvObj;

HANDLE *ppvStmObj;

HRESULT hr;

riid = iidInterface;

if (* ppvObj == 0)

return E_INVALIDARG;

. . .

if (! isValidInterface(pStm))

return E_INVALIDARG;

hr = ReadClassStm(pStm , &pclsid);

if (hr)

return hr;

hr = CoCreateInstance(pclsid , NULL , CLSCTX_NO_CODE_DOWNLOAD|

CLSCTX_REMOVE_SERVER|CLSCTX_LOCAL_SERVER|CLSCTX_INPROC_SERVER ,

riid , ppvObj);

if (hr)

return hr;

hr = ppvObj ->QueryInterface(IID_IPersistStream , ppvStmObj);

if (hr) {

ppvObj ->Release ();

return hr;

}

hr = ppvStmObj ->Load(pStm);

ppvObj ->Release ();

if (hr) {

ppvObj ->Release ();

return hr;

}

. . .

return hr;

}

Figure 58: Approximation of OleLoadFromStream()

102

speci�ers that do not directly map to one of the de�ned types. In other words, the prop-

erty map can de�ne that data exists in the persistence stream, but the COM object should

examine the data itself to determine its type. This is the functional equivalent of a void

pointer in the C programming language. By using the ATL, a COM developer can now easily

create a COM object which implements persistence without understanding the underlying

required methods or the COM-speci�c data types with which they are dealing. The critical

issue then becomes the handling of loose-typed variants by the ATL-provided methods for

loading a persistence stream. To read a persistence stream, the IPersistStream::Load()

method provided in the ATL will call the method CComVariant::ReadFromStream(). As

can be seen in the source code for CComVariant::ReadFromStream() in 57, there exist two

variant types, that if encountered in the stream, will be passed to OleLoadFromStream().

An approximation of the source of OleLoadFromStream() obtained through reverse engi-

neering the binaries is provided in 58. Here we can see that a CLSID is read from the

data stream and passed to CoCreateInstance(). The remainder of the data stream is then

passed to the IPersistStream::Load() method exposed by the object that has just been

loaded. It is important to note that at no time was a security policy consulted before calling

OleLoadFromStream(). This code distributed with the ATL can clearly be used to bypass

the security policy of the parent application.

5.4.2.2 Finding a Known Flawed Control

The �nal requirement for this attack is to be able to load a vulnerable control. Given that

vulnerabilities in COM objects are generally left unpatched, several hundred known �awed

controls are resident on the average Windows installation. For example, on the system used

to write this dissertation, the killbit list for Internet Explorer is over 600 entries in size.

Each of those entries corresponds to known �awed control that is likely still unpatched.

5.4.3 Proof of Concept Attack

To demonstrate the severity of this attack, and the ease with which it can be accomplished

on an average Windows platform, a working example was created leveraging well-known

applications and commonly installed COM objects. The attack created for this proof of

103

Figure 59: The successful exploitation of a COM Object in Microsoft Word, demonstrated
by having Word open a socket on port 4444.

concept loads a trusted COM object in Microsoft Word, which then loads a known �awed

control that is still resident on most installations of Windows. The speci�c vulnerability used

in this example is a known �awed control in all Windows XP installations and results in

the execution of arbitrary code when triggered. We note that we tested di�erent vulnerable

controls on systems running Windows Vista and Windows 7 and were similarly able to

compromise those systems. In this example, the COM object executes shellcode causing

Word to listen on a TCP socket. Upon connection to this socket, the adversary is presented

with a command prompt. While this section only describes an attack against Microsoft

Word, the same attack was proven to be successful against several other COM containers

including Microsoft WordPad, Microsoft Excel, Microsoft Powerpoint and Adobe Reader.

To explain how the proof of concept attack was created, the following describes how each of

the requirements in Section 5.4.1 was met.

1. Microsoft Word was chosen as the parent application for our proof of concept attack.

Microsoft Word documents can be easily emailed to users. Additionally, the browser

can be used as an intermediary in this attack by providing a link to a .doc �le or using

ActiveX to force Word to open a document of the adversary's choosing.

2. Microsoft Word was chosen for the ease with which COM objects can be embedded

in documents. Object insertion is something that is done regularly in the course of

authoring a document. This typically comes in the form of inserting images, tables,

etc. In many cases these operations are actually embedding COM objects. This same

process can be used to insert objects of many di�erent types as long as they conform

104

Figure 60: Pop-up Warning from Microsoft Word When Attempting to Instantiate an Out-
of-Policy Control

to the Microsoft Word security policy.

3. The Microsoft Date and Time Picker control was chosen because it provides the func-

tionality to load subsequent COM objects by providing a CLSID in a persistence

stream.

4. The �nal requirement for constructing the attack is to have the COM object loaded in

the previous step then load a known vulnerable control. We selected Microsoft's Helper

Object for Java, which contains a long standing, unpatched, exploitable vulnerability

reachable by instantiating the control outside the Microsoft Java Virtual Machine.

To summarize, we create a working exploit by crafting a Microsoft Word document

containing the embedded benign Microsoft Date and Time Picker control. That COM

object in turn loads a known �awed control, thus circumventing Word's COM security

policy. Once the �awed control is loaded, it triggers the vulnerability, resulting in the

execution of arbitrary code. This attack, if executed in the real world, would easily enable

an adversary to take full control of a victim's workstation to install malware or use the

system for other arbitrarily malicious purposes. The known vulnerable COM object loaded

in this attack is listed in the Internet Explorer killbit list. As such, it is the policy of

Microsoft Word to not load this control. Had the attack simply tried to embed the control

directly in the Word document, the security policy would have been e�ective, and the user

would have been presented with the dialog shown in Figure 60. While the e�ectiveness

of such warning messages is debatable, our attack allows for the vulnerable control to be

loaded without providing the user with any indication that something is amiss. As shown

105

in Figure 59, by using a trusted COM object to load the known �awed control, the security

policy is bypassed, and the winword.exe process is now listening on TCP port 4444. This is

demonstrable evidence that Microsoft Word has been compromised. In our speci�c exploit,

upon connecting to the socket, the adversary is presented with a command prompt. This

allows for the execution of any command in the security context of the user viewing the

Word document. In a real attack scenario, an adversary would generally then go on to

install their malware � taking complete control of the system.

5.4.4 Breadth of Attack

The attack described above is not unique to Microsoft Word, the Microsoft Date and Time

Picker, and the Helper Object for Java. On the average Windows-based system, there are a

large number of applications that would meet the �rst and second criteria for exploitation.

In our testing, identi�ed dozens of COM objects that exist on an average system that were

either compiled with the ATL or expose functionally equivalent capability. As previously

mentioned, the Windows XP-based system used to write this dissertation has several hundred

known �awed controls still installed. This system is not unique. Given these numbers,

the permutations of application, trusted COM object, and untrusted COM object quickly

become unmanageably large. It is therefore unrealistic to require each application to attempt

to main-tain security policies that can reasonably deal with this threat. It is clear that

Windows requires an operating system-level security policy governing the instantiation of

COM objects.

5.4.5 Preventing COM Trust Transitvity With Runtime Enforcement

In this section, we describe a solution we developed known as COMBlocker. This is a runtime

enforcement system that provides a comprehensive view of COM instantiation allowing for

complete mediation as compared to the relatively limited killbit methodology.

5.4.5.1 Mitigation Architecture

The lack of a central security policy governing the instantiation of COM objects has been

identi�ed as a major source of vulnerability in this work. In this section, a prototype of a

106

mechanism which we call COMBlocker is proposed that introduces an operating system-level

security policy with reference monitor-like functionality. This system will be used to enforce

a security policy on the instantiation of all COM objects.

Design Goals and Assumptions The goal of COMBlocker is to provide a system-level

policy for the instantiation of all COM objects. If every instantiation is monitored by a

central policy, the issue of transitive trust can be remedied. The design of COMBlocker as-

sumes that it is attempting to prevent the initial infection vector described in the previous

section. It is not designed to secure a previously infected machine. Additionally, the preven-

tion mechanism is designed to secure the instantiation of COM objects by applications that

conform to Microsoft's design model. This is not intended to prevent intentionally malicious

applications from loading �awed controls. These assumptions follow a common theme: the

goal is to prevent the initial attack.

High Level Architecture COMBlocker is designed to interpose itself in the instan-

tiation of all COM objects. In terms of the attack described in Section 5.4.1, the COM

object loaded by Microsoft Word would be matched against a security policy and when that

COM object in turn attempts to load another COM object, that subsequent instantiation

would also be checked against the policy. To create such a policy enforcement system, the

instantiation logic must be injected into every process on the system. This can be accom-

plished by a number of methods with varying levels of complexity and completeness. For

reasons detailed later, COMBlocker injects a dynamically-linked library into every running

process. This library contains the logic required to enforce the security policy. Once the

COMBlocker library is injected into every process, calls to the COM instantiation APIs

need to be redirected to the library to verify any object being loaded. We accomplish this

through binary patching in our prototype. As the COMBlocker library is loaded, it locates

the four COM instantiation APIs and overwrites the function prolog with a jump to the

policy veri�cation code. With the binary hooks in place, any application that calls any of

the COM instantiation APIs is redirected to the security interface. This redirection will

take place regardless of the source of the call to the instantiation API. In other words, the

107

call to load a COM object could come from a base executable, a library, a di�erent COM

object, or any other type of executable code. Any call to any of the instantiation APIs is

veri�ed against our security policy. Once we can verify the instantiation of an object, a

suitable policy must be de�ned. For the sake of simplicity our proof of concept starts by

allowing the user to apply the Internet Explorer killbit list to all COM object instantiations.

From there, a user can create exceptions to the killbit list or add disallowed objects on a

per-application or system-wide basis.

5.4.5.2 Detailed Architecture

COMBlocker was developed as a third-party add-on for Microsoft Windows. It is not imple-

mented by changing the underlying COM architecture or by invoking any extended APIs. If

Microsoft were to implement a similar system, they could simply change the COM instanti-

ation APIs to always check a central policy. The proof of concept developed in this research

is a prototype of a system that a third-party could implement to provide a central COM

security policy. With that, the details of how the solution was implemented are covered for

completeness.

DLL Injection To introduce the security policy veri�cation code into every running

process, COMBlocker uses DLL injection. This is the process by which an application forces

another application to load a DLL of its choosing. There are several ways to inject a DLL

into another process, but since our solution requires injection into every process, we chose to

use the AppInit_DLLs registry key [56]. The operating system will load all DLL's speci�ed

in this key into every process, thereby providing comprehensive coverage for all applications.

Binary Hooking Once the library is injected into every process, control �ow from the

COM instantiation APIs must be redirected to the COMBlocker security policy. Our proof

of concept accomplishes this redirection through binary patching. The binary patching used

by COMBlocker is very similar to the Detours API created by Microsoft Research [40]. In

the case of COMBlocker, the function prolog of every COM instantiation API is overwritten

with code that will jump to the security policy veri�cation code in our library. As part of

108

Figure 61: Hooking Architecture for COMBlocker. Using binary rewriting, we force all
COM objects to be checked against the global policy at their instantiation. Note on the left
the policy check � call AlertCLSID; test eax, eax;

the DLLMain() function, our library will locate the four instantiation APIs and overwrite

the �rst �ve bytes of the function prolog with a jump to the code that implements the policy

veri�cation. Since the �rst �ve bytes of the function have been overwritten, the �rst few

instructions of the policy veri�cation code must reproduce the functionality of the original

API. Once these instructions are executed, the security policy enforcement can commence.

Figure 61 shows the interception of control �ow by COMBlocker to check against a global

policy.

Enforcement Logic Once the control �ow has been redirected from the instantiation

APIs to our own logic, we then have access to the arguments to those APIs. This provides us

with the necessary information to create an enforcement policy. Speci�cally, the CLSID of

the object being instantiated is passed to the instantiation APIs as the �rst argument. In our

enforcement logic, we retrieve a pointer to the CLSID from the stack of the instantiation API.

If the CLSID is speci�cally blocked by the security policy in the registry, the enforcement

logic simply returns the error REGDB_E_CLASSNOTREG to the calling application. This returns

an invalid handle that the calling application cannot use for interacting with the object. All

applications tested gracefully handled this error condition, but if one did not, it would crash

109

rather than allowing the exploit to continue.

Policy De�nition In COMBlocker, we wished to have a simple starting point to de�ne

the security policy. As such, the Internet Explorer killbit list can be applied to any applica-

tion on the system or to the system as a whole. This is accomplished by setting a value in

the registry in a location created by COMBlocker. The enforcement logic checks to see if this

value is set. If it is, the killbit list is read from its default location in the registry and used

for comparison against the CLSID the application is attempting to load. It is important to

note that this is di�erent than the security policy currently employed by Microsoft Word. In

Word, the policy is only applied to the objects instantiated by the base executable. In our

system, all instantiations are monitored. Once the killbit list is applied to an application,

exemptions or additions to the list can be manually entered. These modi�cations are also set

in the COMBlocker registry hive. For each application, subkeys in the registry are used to

de�ne by CLSID which objects are speci�- cally allowed or speci�cally denied. This allows

the user to create detailed white lists and black lists for every application or the system as

a whole. As mentioned in Section 5.4.4, it is unrealistic for a user to try to maintain lists of

controls that should be considered secure and insecure. As such, it is the vision for a system

like this to be implemented by Microsoft or a third party vendor. In these cases, Microsoft

(or the vendor) could keep track of the known �awed controls and ensure they cannot be

instantiated by any application except those speci�cally requiring them. Additionally, ap-

plications could be pro�led to enumerate only those controls that should be instantiated

under normal operation. In cases where this is possible, detailed white lists could also be

created.

5.4.5.3 Results and Discussion

Breadth of Vulnerability The �rst objective described in this dissertation was to deter-

mine the breadth of the vulnerability. The issue of transitive trust amongst COM objects was

hypothesized to exist in all COM containers which load content provided by a third party.

This proved to be true for every application that was tested. Throughout the research, the

attack described in Section 5.4.1 was reproduced in Microsoft WordPad, Microsoft Excel,

110

Figure 62: COMBlocker Successfully Stopping Instantiation

Microsoft Powerpoint and Adobe Reader. The question of how additional third party COM

containers might behave was also approximated. Microsoft Visual Studio 6 ships with a

utility called the ActiveX Control Test Container. This utility allows developers to test

the functionality of COM objects without having to create their own COM container. This

loosely represents how a generic COM container would behave under normal circumstances.

The attack from Section 5.4.1 was also successful in this tool, meaning that a signi�cant

number of other third-party applications are also vulnerable to these attacks. Each applica-

tion tested was coerced into loading a COM object that was in direct violation of its security

policy (where one exists). Generally speaking, these security policies are used to prevent the

instantiation of COM objects that are known to contain vulnerabilities. In many cases, these

security policies are used in lieu of �xing the vulnerabilities. With the research presented in

this work, each of the loitering vulnerabilities in those controls can be resurrected and used

for successful compromise.

111

E�ectiveness of the Solution We tested COMBlocker's e�ectiveness and measured the

overhead it imposes on a standard desktop system. The �rst step in testing the e�ectiveness

of the solution was to apply it to each of the applications that were found to be vulnerable

in the section above. For each application that was shown to be vulnerable, COMBlocker

presented the user with the dialog box shown in Figure 62. This dialog box shows that

the application attempted to load a control that is speci�cally denied by the de�ned policy.

It also indicates that the instantiation of the object was prevented. COMBlocker was suc-

cessfully able to prevent the attack described in Section 5.4.1 in Microsoft WordPad, Word,

Excel, and PowerPoint as well as the ActiveX Control Test Container. Demonstrating the

formal completeness of our solution is di�cult. Our mechanism is helped by the fact that

there are only a small number of publicly knownmeans by which COM objects can be in-

stantiated. Injecting COMBlocker at these points should logically prevent applications from

circumventing policy enforcement. However, if applications can instantiate COM objects

through other unknown means such as implementing their own APIs, these interfaces would

also need to be modi�ed and mediated.

Performance A version of COMBlocker was created that logged the time required for

each policy lookup encountered throughout the operation of an application. The test build

was installed on a typical development workstation and gathered information for all of the

COM object instantiations that occurred during a single day as part of a developer's normal

work. The test workstation was a Windows XP SP3 machine with O�ce 2007, Internet

Explorer 7, Firefox 3, Lotus Notes 8, Visual Studio 6, and several other commonly installed

applications. During the course of the day, the behavior of the developer caused over 65,000

COM instantiations. Each of these recorded an average policy lookup time of 554µs to

complete, with a 95% con�dence interval of ±104µs. The variation in lookup time is largely

due to the fact that consulting the killbit list in the registry is accomplished through a

linear scan of the subkeys; it is not indexed. Testing shows that an average application

incurs less than 10 policy lookups per user action. With that, each user action generates

less than 5ms of delay due to COMBlocker. Another data point gathered in this test is

112

that in general, O�ce applications and web browsers incurred a lower lookup time than core

operating system components. When the data set is reduced to only Of- �ce applications

and web browsers, the average lookup time drops to 104µs, with a 95% con�dence interval

of ±14.2µs. This indicates that if performance were an issue in implementing a system like

COMBlocker, the scope of the protection could be reduced to only those applications that

are more easily targeted in COM-based attacks.

Discussion on Policy Creation As mentioned in Section 5.4, the base policy for each

application (or the system as a whole) was the Internet Explorer killbit list. It appears

that over time, several COM objects required for the normal operation of many of the

applications tested have been killbitted. In other words, there exist several COM objects

that are critical to the operation of Microsoft Word, Excel, and even Internet Explorer

that are in the killbit list. The question arises: How can COM objects critical to Internet

Explorer end up in the killbit list? The answer is that the killbit list blocks the instantiation

of COM objects by the IE scripting engines, not the base IE executable. An example of

this occurred when COMBlocker applied the killbit list to Internet Explorer as a whole, the

navigation bar was prevented from being instantiated. The takeaway from this result of the

testing is that the killbit list cannot be blindly applied to every application or the system as

a whole. As policies are created, the killbit list can be used as a base, but modi�cations are

required for each application being monitored. Any entity choosing to provide a solution

like COMBlocker must take great care to ensure the security policies they de�ne will allow

for the normal operation of each monitored application while still providing a suitable level

of security.

Future Enhancements to COMBlocker As mentioned above, policy creation can be

quite complex. While the killbit list is a good starting point for a blacklist, it simply does not

apply as-is to every application on the system. A useful enhancement to COMBlocker (or an

accompanying tool) would be one that allows for the pro�ling of applications under normal

use. This would help to expedite the identi�cation of controls listed in the killbit list that

are critical to the operation of other applications. Additionally, more research is required

113

to determine the feasibility of runtime analysis of persistence streams. It could be possible

to analyze data contained in a persistence stream and �lter access to that data based on

policy. For example, one policy could be to ensure that COM objects may only load simple

data types and cannot load the more complex types, which could force the instantiation of

other objects.

Comparsion to Microsoft-Issued Patch On June 8, 2010, Microsoft released Security

Bulletin MS10-036 in response to our private disclosure of this vulnerability. This patch at-

tempts to prevent the attacks discovered and demonstrated in this dissertation. Speci�cally,

this patch extends the killbit list to nested COM instantiations made by Microsoft O�ce.

While this patch e�ectively prevents O�ce-generated �les from including these attacks, it

does not protect any other application that takes advantage of the COM infrastructure. Ac-

cordingly, this patch does not provide the security guarantees of COMBlocker, and therefore

means that Windows-based systems still remain vulnerable to such attacks through other

applications.

114

Chapter VI

DELETION PROBLEMS

In the previous two chapters, we discussed the sorts of security issues that can arise with

complex object types during the instantiation and lifetime of the object. In this chapter, we

discuss the sorts of issues that can arise as the objects are deleted.

6.1 C++ Use-After-Free Conditions

In this chapter, we present a static analysis technique to detect use-after-free conditions

in compiled binaries. Because the structure of how C++ objects are compiled and stored

in memory is crucial to both the understanding of use-after-free vulnerabilities as well as

analysis of C++ binaries, we give a brief description of how C++ objects are represented

after compilation. We then give a short description of how use-after-free vulnerabilities occur

in code and how they are exploited. We conclude this background section with a review of

available expression analysis from compiler theory.

6.1.1 C++ Objects in Memory

One of the tasks of a C++ compiler is to ensure the correct storage of C++ classes in

memory while providing both multiple inheritance and virtual functions. C++ compilers

store instantiated objects as contiguous structures in memory. This is fortunate because it

simpli�es the discovery of object instantiations in compiled binaries. Our discussion here is

focused on how Visual Studio compiles C++; other compilers represent C++ objects in a

similar manner. Classes without virtual functions are represented in memory like traditional

C structs. Simply, the properties (data members) of the object are placed in contiguous

memory in order of declaration in the code. The object's method calls are compiled as

direct calls to functions that take a pointer to the object as an argument (the this pointer).

When an object has one or more virtual functions, virtual function calls must be dispatched

at runtime through the use of a virtual function table (vtable). A vtable for an object

115

is a contiguous set of function pointers that point to the appropriate functions for that

object type. The virtual function can be called by �nding the correct function pointer in

the function pointer table. Objects with virtual methods are laid out in memory the same

way as objects without virtual methods, but have an initial member element: a pointer to

the class's vtable. This is a pointer to an array of function pointers (one for each virtual

funciton) stored in the read-only .data section of the binary. When a class inherits from

a single base class, the class instance begins with a vtable pointer, followed by the base

object properties and then the derived object properties. When a class inherits from more

than one class, the base class layouts are placed consecutively, with the derived class's data

members following. Classes that are the result of multiple inheritance have more than one

vtable�one for each base class. Virtual methods from the derived class will be appended

to the vtable for the �rst base class. The memory structures described above are created on

the stack or the heap by the class constructor depending on how the object is allocated in

the source code. The compiler may also choose to make the constructors inline or create a

sepa-

Note that the presence of a command line argument at line 18 causes object a to be

deleted, even though it is called again at line 26. rate function call for the constructor. In

Visual Studio, this is a con�gurable optimization that can be set by the developer.

6.1.2 Use-After-Free Vulnerabilities

Use-after-free (UAF) vulnerabilities are a class of software �aws that involve using a memory

resident object after it has been freed. While, use-after-free conditions are possible and

prevalent in C, they are reported as security vulnerabilities more frequently in C++. UAF

vulnerabilities most commonly occur when a C++ object that was allocated on the heap

is accessed after it is deleted, but stack-allocated objects can also be used after a free.

Developers can easily make this memory management error, especially in large and complex

codebases, and often in an attempt to prevent memory leaks. This creates a condition

where an object is deleted on some code paths, but not all. The code in Figure 63 provides

a simpli�ed example. In this example, the developer chose to delete the object if the �rst

116

class A {

private:

int reference;

public:

A();

~A() { };

virtual void addRef ();

virtual void print ();

};

int main(int argc , char* argv [])

{

A *a = new A;

a->addRef ();

a->print ();

if (atoi(argv [1]) == 1) {

delete a;

}

//. . .

// Memory allocation operations

//. . .

a->print ();

return 0;

}

Figure 63: Sample C++ code with a use-after-free vulnerability.

117

command line argument is �1�, but needed the object under all other conditions. If an

attacker can cause the program to take the �rst branch, the object is deleted, but then

is used later in the program. When an object is deleted, new data takes the place of the

previously deleted object's properties and/or vtable pointer. Later, if the deleted object's

property is accessed, this new data could be read or modi�ed, a�ecting the reliable operation

of the program. If a deleted object's virtual method is called, whatever data has been written

to the old vtable pointer will be dereferenced to locate the correct function pointer. This

can result in memory access violations or otherwise unstable execution. In addition to the

hazards of a normally functioning program with a use-after-free condition, it can also be

a path to software exploitation. While a use-after-free can result in an attacker with the

ability to write data to the stack or heap to in�uence decisions made based on an object's

properties, the greatest danger is if the use-after-free includes a virtual function call. In

that case, the attacker can write his own vtable containing pointers to shellcode and �ll

the deleted object's memory with references to that vtable. On the virtual function call,

execution will transfer to the attacker's injected code. Figure 64 demonstrates a use-after-

free exploit of the code shown in Figure 63. The left side of Figure 64 shows a fragment of the

compiled code from Figure 63. That fragment completes with a call to the virtual function

print() at line 413BC2. The object pointer is consulted to �nd the pointer to the vtable at

line 413BB9. At runtime, the object is stored on the heap � in this example, the object is

stored at address 11001000, and the class's vtable is located at address 416740. The function

pointer stored at o�set 4 represents the second virtual function declared in the class (since

function pointers are 4 bytes each). If this object were overwritten using a use-after-free

vulnerability, and the attacker could control the value of the data at the heap location where

the object was stored (which in many cases is not di�cult), the attacker could overwrite

the vtable pointer with a pointer to the attacker's own vtable. The bottom half of Figure

64 shows this scenario with gray boxes. In that example, the attacker has established a

vtable pointer of 12001000 (also heap data written by the attacker) and has preloaded

that location with function pointers to malicious functions (again, written by the attacker).

When the second function in the vtable is called, the processor will call address dd offset

118

.text:00413BB6,

.text:00413BB9,

.text:00413BBB,

.text:00413BBD,

.text:00413BC0,

.text:00413BC2

mov,eax,,[ebp+var_14]
mov,edx,,[eax]
mov,esi,,esp
mov,ecx,,[ebp+var_14]
mov,eax,,[edx+4]
call,eax

11001000,,,,,,,,,,,,,00416740,
11001004,,,,,,,,,,,,,<reference>

.rdata:00416740,;,,,,,,const,A::`vJable'

.rdata:00416740,,,,,,,,??_7A@@6B@,dd,offset,j_A__addRef,

..rdata:00416744,,,,,,,dd,offset,
j_A__print

.text:00413BB6,

.text:00413BB9,

.text:00413BBB,

.text:00413BBD,

.text:00413BC0,

.text:00413BC2

mov,eax,,[ebp+var_14
mov,edx,,[eax]
mov,esi,,esp
mov,ecx,,[ebp+var_14]
mov,eax,,[edx+4]
call,eax

11001000,,,,,,,,,,,,,12001000,
11001004,,,,,,,,,,,,,<garbage> 1200100,dd,offset,ATTACKER_FUNCTION_1,

1200104,dd,offset,ATTACKER_FUNCTION_2

Normal Object

Use-After Free Exploit

Figure 64: Memory layout of a valid object and after a use-after-free exploit

ATTACKER_FUNCTION_2 instead of address dd offset j_A_print. Unfortunately, compilers

fail to detect use-after-free vulnerabilities. Not only do they miss complex �aws that are the

result of interprocedural memory management, they also miss trivial examples like the one

in Figure 63. Visual Studio 2012, g++ 4.8.3, and clang++ 3.5 all fail to detect the �aw in

that exact code sample.

6.1.3 Detecting Use-After-Free Conditions With Static Analysis

6.1.3.1 Available Expression Analysis

Available expression analysis (abbreviated AVAIL) is a common compiler data �ow analysis

that enables common subexpression elimination. AVAIL takes as input a control �ow graph

consisting of basic blocks, and AVAIL identi�es, for each basic block, a set of expressions

that will always be computed before the entry of a given basic block. Knowing the set of

expressions that are always computed before a basic block allows a compiler to set aside re-

sults to avoid redundant computation (speci�cally, common subexpressions). While AVAIL

is usually presented as a local (within a single procedure) algorithm, interprocedural avail-

able expression analysis is also possible. More speci�cally, AVAIL computes four sets for

each basic block B: GEN [B], KILL[B], AV AILIN [B], and AV AILOUT [B]. AV AILIN

and AV AILOUT refer to the expressions that are available before and after each block (re-

spectively). GEN is the set of new expressions that are de�ned in the basic block, and

KILL is the set of expressions whose values have changed because a variable used in the

expression has changed. These sets are computed with the following two relations:

119

AV AILIN [B] =
⋂

p proceeds B

AV AILOUT [p] (3)

AV AILOUT [B] = GEN [B] ∪ (AV AILIN [B]−KILL[b]) (4)

where p is a basic block (that proceeds a block B). In our analysis, objects must be

tracked interprocedurally. In those cases, AV AILIN at the entry of a function F is equal

to AV AILOUT at the call site to F from a call site c. Within a basic block, we say that an

expression is in the �AV AILset� at an execution point a if it has been generated before a, or

if the expression is in AV AILIN and not killed before point a. These relations, when written

for every basic block, form a system of equations. Because the control �ow graph contains

back-edges (from loops and other control structures), and thus blocks can be a�ected by

both preceding and subsequent blocks, solving the system of equations requires a �xed-point

algorithm (that runs through each block iteratively until the four sets for every block do not

change). The recurrence relationship described above forms the basis of many other data

�ow analysis algorithms, with slightly di�erent de�nitions of IN , OUT , GEN , KILL, and

the socalled �meet� operator, which in the case of AV AIL is set union. In this work, we

de�ne a new data-�ow analysis algorithm in the following section. Our algorithm uses the

same recurrences above, but with new de�nitions of GEN and KILL that allow us to track

object instantiation and deletion rather than availability of expressions.

6.1.3.2 Available Object De�nition Analysis

As discussed in the previous section, use-after-free vulnerabilities occur when an object is

accessed after being freed. Frequently, the object is freed along some code paths, but not

others. Accordingly, use-after-free errors can be detected by �nding every access where

the object may have been deleted on some proceeding code path. Thus, an analysis that

determines if all code paths to an access contain a valid object de�nition will detect use-

after-free conditions. In this section, we de�ne such an analysis and term it Available

Object De�nition Analysis (AODA). Our crucial insight is that the recurrence relations

120

from AV AIL can be used to track the availability of instantiated objects to detect use-

after-free errors. To track instantiated objects, we simply need to rede�ne how the GEN

and KILL sets are populated during the analysis. We will use the same notation for these

sets, but note their alternative meanings in AODA. In AODA, GEN is the set of objects

that are instantiated in a basic block, while KILL is the set of objects that are freed in a

basic block. AV AILIN is simply the set of objects that are instantiated (and thus, available)

along all code paths before a basic block, while AV AILOUT are the objects that are available

after a basic block has executed. Tracking all instantiated class pointers is signi�cantly more

di�cult than tracking expressions. The following section details how we reliably compute

the GEN and KILL sets. Given GEN and KILL, computing AV AILIN and AV AILOUT

requires a straightforward application of iteration over the control �ow graph. We rely on

the Recall framework to compute the control �ow graph, and identify object instantiations

and deletions. Although in this work we evaluate AODA on compiled binaries, as a data

�ow algorithm it can also be implemented within a compiler or within a stand-alone static

analysis tool.

6.1.3.3 Implementation

In this section, we describe how we extended the Recall binary analysis framework to

implement AODA. This section includes the technical details involved in identifying object

instantiation, usage, and deletion. In the following section, we use this implementation to

detect use-after-free conditions in several test applications adapted from pubilcly available

projects as well as 652 MicrosoftWindows libaries and a previously disclosed use-after-free

vulnerability.

Assumptions This research focuses on the common and important problem of identify-

ing software vulnerabilities in compiled code. Because we focus on commercially available,

release-build code, we make no claims about the applicability of our algorithms or imple-

mentation to malware or other hardened, obfuscated code. We chose to focus on Windows

binaries compiled to x86 by Microsoft Visual Studio for this work. We chose this platform

121

because the majority of closed-source software (which requires binary analysis) is imple-

mented for that platform. While our platform choice in�uences our implementation and

choice of experimental targets, the techniques we present will be applicable to any x86 bi-

nary format and compiler choice. For the sake of generality, we assume that Runtime Type

Information (RTTI) is unavailable to the analysis. If this information is available, it can

only make object detection (and our subsequent analysis) more accurate.

Identifying object instantiation and deletion To compute GEN for AODA, we must

identify every object instantiation, and to compute KILL for AODA we must identify every

object deletion. When C++ code is compiled, the clear type de�nitions in the source code

become calls to relevant constructors that create the memory objects described in Section

6.1.1, and accordingly are non-trivial to identify. We rely on Recall's ClassTracker to

identify C++ object creation and deletion with high reliability. Recall uses four simple,

reliable heuristics to identify C++ objects that re�ect all possible ways a C++ object can

be instantiated at runtime: Stack-allocated object with in-line constructor Heap-allocated

object with in-line constructor Stack-allocated object with called constructor Heap-allocated

object with called constructor The heuristics for detecting heap objects rely on the com-

piler's use of a speci�c function for the new operator. In the case of Visual Studio, after

compilation this function is referred to as YAPAXI. Once an object instantiation is located,

Recall discovers an object's type by tracing the size of the new vtable and set of funtion

pointers as well as the number and size of the properties of the object. When a new object

is encountered, the virtual address of the constructor of the object is used as an opaque

identi�er for that object type. We extend Recall to also detect object deletion. Deletion

detection also di�ers between stack and heap declared objects. Stack-alloocated objects are

deleted by �rst calling the object's destructor, then calling a delete operator (named YAXPAX

Visual Studio after compilation). The compiler automatically deletes stack-declared objects

when they fall out of scope. Heap-allocated objects are deleted only when the developer

makes an explicit call to delete. When this occurs, Visual Studio creates a helper function

that calls the object's destructor and the delete function YAXPAX. The name of the helper

122

function will include the string scalar deleting destructor or vector deleting destructor de-

pending on whether the developer calls delete or delete[], respectively. In the case of

heap-allocated objects, to ensure correctness Recall traverses into the helper function to

ensure that the class destructor is called and that there is an explicit call to YAXPAX. Recall

detects deletion of both types of object. In particular, because heap object deletion is so

distinctive, we are highly con�dent in our ability to detect deleted objects on the heap.

Complex Real-World Scenarios While the basic concept of how AODA is able to

identify object instantiations and deletions is covered above, in practice, developers employ

many variations on this concept that complicate the analysis. The details of some of the

more complex, real-world scenarios we identi�ed are covered in the following subsections.

Virtual Destructors A developer may choose to declare the destructor for a class as

virtual. This is important if the developer encounters a scenario where they wish to delete

an instance of a derived class through a pointer to a base class. This however, introduces

complexity for AODA. The problem is that when performing the data �ow analysis, there is

no clear call to the destructor for the object. Rather, an indirect function call is inserted into

the binary. The structure of the object must be fully recovered to gain an understanding

of what that indirect function call is doing. We use the Recall framework to reconstruct

the vtable of the object. Then, any indirect function call encountered during the data �ow

analysis is reconciled to its actual function, and further analyzed to determine whether it

is actually the destructor for the object. Of course, following every indirect function call

during the analysis can cause the runtime of the analysis to grow exponentially. To combat

this issue, AODA takes a con�guration parameter to de�ne how deeply it should follow the

indirect calls to look for the destructor. In practice, we found that a depth of one is su�cient

to �nd virtual destructors. To further limit the impact of following indirect function calls,

this traversal only occurs for functions which employ the thiscall calling convention (i.e.,

one that passes the this pointer as an argument in the ecx register). This ensures that

the indirect function call is, in fact, a call to a class method and not some other arbitrary

function.

123

Factory Design Pattern Much like virtual destructors require AODA to traverse func-

tion calls to identify a destructor, the factory design pattern requires AODA to traverse

function calls to identify the instantiation of new objects. The factory design pattern is a

common object-oriented design construct in which the developer creates a method which will

instantiate di�ering objects based on the arguments speci�ed. When this design pattern is

used, the constructor for the object is not directly encountered during the data �ow analysis.

Rather, AODA must follow function calls to determine whether the returned value is a class

pointer. In the same way AODA takes an argument to specify the depth to which it should

traverse indirect calls to �nd destructors, the depth of function calls to be traversed to �nd

constructors is con�gurable. Again, in practice, a depth of one was found to be su�cient.

However, it is more di�cult to limit the functions that will be traversed to �nd instanti-

ated objects. When the constructor depth is set to one, it will follow every function call

encountered during the data �ow analysis to determine whether a class pointer is returned.

Computing AODA and Finding Use-After- Free vulnerabilities The second pass

made by Recall over the intermediate representation performs the �xed point availability

analysis algorithm described in Section 6.1.3.1. In this pass, it performs a forward analysis

iterating over each basic block. As object instantiation points are identi�ed, the virtual

address of the constructor is added to the GEN set for the given basic block. As object

deletion points are identi�ed, objects are added to the KILL set. The analysis identi�es

which particular object is deleted by following the use-def chain to locate its instantation. As

Recall iterates to the next basic block, the objects in all the AV AILOUT sets of the block's

predecessors are added to the AV AILIN set for the current block. This process is repeated

in a �xed-point algorithm until AV AILIN and AV AILOUT sets have been generated for

each basic block. In the third pass over the code, Recall identi�es usage points of binary

objects by using a forward analysis that iterates over each basic block in the IR. In each

basic block, Recall looks for indirect function calls � calls to function pointers that are

dereferenced from a larger containing data structure (i.e., a vtable). When Recall identi�es

this condition, it traverses the use-def chain of the function pointer backwards to identify

124

the instantiation point of the containing structure. If the instantiation point can be traced

back to an object instantiation detected in the �rst pass, Recall then determines whether

the virtual address of the call to that object's constructor is present in the AV AIL set for

the basic block at the program point where the usage occurs. If the call to the object's

constructor is not present in the AV AIL set for the basic block where the usage occurs, a

potential use-after-free condition has been discovered.

6.1.3.4 Results

After implementing the Availabile Object De�nition Analysis described in Section 6.1.3.1, we

tested the framework on a series of simple examples to ensure the algorithm was operating

correctly. The process used for testing and the results of the tests are detailed in Section

6.1.3.4. Then, use-after-free conditions were injected into several publicly available projects

as detailed in Section 6.1.3.4. By scanning these projects, we ensure that our analysis

is correct for real-world applications. To ensure the analysis would work on a real-world

vulnerability, it was run against a library with a known use-afterfree vulnerability. Section

6.1.3.4 details how the results of the analysis were veri�ed. Once we veri�ed the results on

a control set of binaries, the framework was run over a substantial subset of the .dll's in the

system32 directory on a default install ofWindows 7. Section 6.1.3.4 details the number of

use-after-free conditions that exist unpatched on one of the world's most popular operating

systems.

Control Set Results The �rst step in verifying the Available Object De�nition Analysis

was to test it on a series of simple examples and manually verify the results. An example of

one of the simple examples can be found in Figure 63. This example code was compiled and

then run through RECALL, which generated an LLVM bitcode �le. The control �ow graph

of the resulting bitcode can be seen in Figure 65 (some code is omitted). Here we can see

the object a is instantiated in basic block 413b20 (denoted as �1� in Figure 65). We can then

see that the object is deleted in basic block 413c0b (denoted as �2� in Figure 65). Then the

object is used in basic block 413c2a (denoted as �3� in Figure 65). However, since there is a

path to 413c2a whereby the object is deleted, we have a potential use-afterfree vulnerability.

125

413b20:

%5 = call i32 @"j_??2@YAPAXI@Z_0"()
store i32 %5, i32* %this
store i32 0, i32* %var_4
%6 = load i32* %this

13b7d:

%58 = load i32* %this
%59 = call i32 @"j_?0A@@QAE@XZ"()
store i32 %59, i32* %var_10C

413b90:

store i32 0, i32* %var_10C
br label %"413b9a"

413b9a:

%9 = load i32* %var_10C
store i32 %9, i32* %var_104
store i32 -1, i32* %var_4
%10 = load i32* %var_104
store i32 %10, i32* %a
%19 = inttoptr i32 %18 to i32 ()*
%20 = call i32 %19()

413c2a:

%42 = load i32* %a
%43 = inttoptr i32 8 to i32*
%44 = getelementptr i32* %43, i32 %41
%45 = load i32* %44
%46 = inttoptr i32 %45 to i32 ()*
%47 = call i32 %46()

413bed:

%51 = load i32* %a
store i32 %51, i32* %var_E0
%52 = load i32* %var_E0
store i32 %52, i32* %var_EC

413c20:

store i32 0, i32* %var_10C
br label %"413c2a"

413c0b:

%56 = load i32* %var_EC
%57 = call i32 @"j_??_GA@@QAEPAXI@Z"()
store i32 %57, i32* %var_10C

1

2
3

Figure 65: Control �ow graph of code from Figure 63. At point 1, the object a is declared.
At point 2, the object is deleted. At point 3, a->print() is called again. Note that because
point 3 is reachable via point 2, a use-after-free vulnerability is possible.

126

Processing Function: _main(i32 , i*)

Processing Basic Block: 413 b20

Avail_in = {}

Avail_out = {j_??0 A@@QAE@X} ## 1 ##

Processing Basic Block: 413 b7d

Avail_in = {j_??0 A@@QAE@X}

Avail_out = {j_??0 A@@QAE@X}

Processing Basic Block: 413 c2a

Avail_in = {} ## 3 ##

Avail_out = {}

Processing Basic Block: 413 bed

Avail_in = {j_??0 A@@QAE@X}

Avail_out = {j_??0 A@@QAE@X}

Processing Basic Block: 413 c0b

Avail_in = {j_??0 A@@QAE@X} ## 2 ##

Avail_out = {}

Processing Basic Block: return

Avail_in = {}

Avail_out = {}

Avail sets complete ...

Processing Basic Block: 413 b90

Processing Basic Block: 413 b9a

Found use of: j_??0 A@@QAE@X

In Avail Set...

Found use of: j_??0 A@@QAE@X

In Avail Set...

Processing Basic Block: 413 c2a

Found use of: j_??0 A@@QAE@X

ERROR - Not in Avail Set ...

Potential Use After Free Condition

Processing Basic Block: 413 bed

Processing Basic Block: return

Figure 66: AODA results show that compiled code of Figure 63 contains a use-after-free
vulnerability

Avail sets complete ...

Processing Basic Block: ed0c85e

Processing Basic Block: ed0c877

Processing Basic Block: ed0c881

Processing Basic Block: ed0c887

Processing Basic Block: ed0c883

Processing Basic Block: ed0c8aa

Processing Basic Block: ed0c8b6

Processing Basic Block: ed0c8f5

Processing Basic Block: ed0c8ff

Processing Basic Block: ed0c902

Processing Basic Block: ed0c8f9

Found use of: ??0 CEditSession@@QAE@P6GJKPAV0@@Z@Z

ERROR - Not in Avail Set ...

Potential Use After Free Condition

Figure 67: AODA results detect use of an object that is not in the AV AIL set in a previously-
disclosed vulnerability

127

Table 5: Github projects with injected vulnerabilities

Project Injected Vulns Discovered Vulns

Leanify 1 1

libwebm 2 2

lifespan 1 1

MAPIEx 2 2

MonaServer 2 2

557-animator 2 2

BarsWF 1 1

easyrtc_ie_pluging 1 1

ElasticTabstopsForScintilla 1 1

When AODA is run on the control �ow graph in Figure 65, it automates the detection

logic described above. It does this in two passes over the code. The �rst pass identi�es the

AV AIL sets as shown in Figure 66. The most notable points of the �rst pass are where

the analysis detects the generation of a new object in basic block 413b20 (denoted as �1� in

Figure 66), and where it detects an object being killed in basic block 413c0b (denoted as

�2� in Figure 66). Then, since basic block 413c2a has three predecessors, and the required

object is not in the AV AILOUT sets for all of the preceding basic blocks, it is not added

to the AV AILIN set (denoted as �3� in Figure 66). The second pass over the code looks

for uses of objects. It checks to make sure that the class pointer that is referenced is in fact

in the AV AILIN set of the containing basic block. In the case of the code in Figure 65,

the statement %47 = call i32 %46() makes use of an object that is not contained in the

AV AILIN set (denoted as ERROR in Figure 66). Since, there exists a control �ow path

where the object is not available, a use-after-free condition exists at this program point.

In addition to the code in Figure 63, we tested six other test cases involving use-after-free

with various control structures. These tested if-else statements, switch statements, goto

statements, and switches combined with if-else and goto, and a switch with an �accidental

fall through.�

Manually Generated Vulnerabilities To further test the detection capabilities of

Available Object De�nition Analysis, it was tested on a series of publicly available projects.

128

To �nd suitable projects, we used a script to identify projects on Github that included Vi-

sual Studio project �les and made use of heap-allocated objects. Of the �rst 1000 projects

found on Github, 66 met both of those conditions. We selected the �rst nine projects that

would build with minimal modi�cation and injected vulnerabilities into the source. The

vulnerabilities were injected using one of two methods. The �rst is by freeing objects that

had been allocated by the original author. By using objects that were de�ned by the original

author, and only injecting deletions of those objects, we encountered several real-world sce-

narios that were not seen in our control set tests described above. For example, the Leanify1

project makes use of the factory design pattern and virtual destructors. As described in

Section 6.1.3.3, these conditions make detection of use-after-free conditions more di�cult.

The second method for injecting use-after-free conditions is by deleting return statements

that would cause the use of a freed object to be unreachable. After injecting the vulnera-

bilities into the nine test projects, they were each run through AODA. The results of those

tests can be seen in Table ??. In short, AODA was able to detect every one of the thirteen

use-after-free conditions that were injected into the nine Github projects without a single

instance of a false positive.

Real-World Vulnerability In addition to verifying AODA with simple examples, we also

con�rm that AODA can detect previously-disclosed vulnerabilities. In particular, we analyze

a vulnerability in Microsoft Internet Explorer (located in tiptsf.dll) that was disclosed as

MS13-069 and CVE-2013-3205. In Figure 67, we can see the AV AIL sets as they were

generated during analysis (some basic blocks omitted). Later we see a use of an object

of type ??0CEditSession@@QAE@P6GJKPAV0@@Z@Z that is not in the AV AILIN set

of the basic block containing the use point. This indicates the presence of a use-after-free

vulnerability. The preceding example represents an interesting case that was caught by

the automated analysis. In this case, there was a use of a class pointer before it was ever

initialized. While this is not strictly use-after-free vulnerability in the textbook sense2, the

1https://github.com/JayXon/Leanify
2From the perspective of an adversary, this is exactly the same - a portion of improperly allocated memory

is accessed by the program.

129

Table 6: DLLs containing use-after-free vulnerabilities

Library Potential Use-after-free Conditions

ActionCenterCPL.dll 5

AdmTmpl.dll 16

bidispl.dll 3

cabview.dll 12

certcli.dll 1

cewmdm.dll 8

cnvfat.dll 1

comdlg32.dll 1

comsnap.dll 9

credui.dll 6

cscapi.dll 2

dataclen.dll 2

devenum.dll 3

devmgr.dll 2

eapp3hst.dll 2

eappcfg.dll 4

Faultrep.dll 2

FirewallAPI.dll 1

fontext.dll 5

fundisc.dll 4

gpprnext.dll 1

gpedit.dll 3

iasrad.dll 1

icsigd.dll 1

imagehlp.dll 1

ipsmsnap.dll 23

itss.dll 8

analysis was able to detect it. This is because there was a program point where class type

was used, but not in the AV AILIN set for the containing basic block. Since there is a code

path in which the class pointer was not instantiated, it was not included in the AV AILIN

set.

System32 Directory Results To estimate the extent of use-after-free vulnerabilities

in production operating systems, we ran AODA on 652 binaries found in the system32

directory on a default install of Windows 7. The analysis revealed 127 potential use-after-

free conditions. Table ?? shows the results of the scan of the binaries. These libraries are

often used by popular applications (and are thus popular targets for attackers) like Microsoft

130

HRESULT CMyObject :: put_MyProperty(IDispatch *pCallback)

{

if(pCallback == NULL)

return E_INVALIDARG;

pCallback ->AddRef ();

m_pCallback = pCallback;

return S_OK;

}

HRESULT CMyObject :: get_MyProperty(IDispatch **out)

{

if(out == NULL || *out == NULL || m_pCallback == NULL)

return E_INVALIDARG;

*out = m_pCallback;

return S_OK;

}

Figure 68: Sample code showing a reference counting over�ow

O�ce and Internet Explorer.

6.2 COM Release Failure

Failure to release an object essentially amounts to a memory leak. These failures occur when

a COM interface is referenced through IUnknown::AddRef() or IUnknown::QueryInterface(),

and are later discarded without calling the corresponding IUnknown::Release() function.

Triggering code paths that operate this way can allow an attacker to consume arbitrary

amounts of memory, but more usefully increment the reference count of an object an un-

limited number of times. On a 32-bit machine, by executing the vulnerable code path

0xFFFFFFFF times, an integer over�ow can be triggered in the object's reference count.

Following that, any call to IUnknown::Release() will cause the object to be de-allocated,

which, again, can lead to stale pointer problems. The code in Figure 68 is based on an

example we previously used; however, it has been modi�ed to demonstrate problems with

failing to release an object.

This example correctly adds a reference to the new callback object when it is set. How-

ever, the previous value held in m_pCallback, if one existed, is overwritten without being

released. Therefore, an attacker can set this property a large number of times and eventually

131

HRESULT CMyObject :: put_MyProperty(IDispatch *pCallback)

{

if(pCallback == NULL)

return E_INVALIDARG;

pCallback ->AddRef ();

if(m_pCallback != NULL)

m_pCallback ->Release ();

m_pCallback = pCallback;

return S_OK;

}

HRESULT CMyObject :: get_MyProperty(IDispatch **out)

{

if(out == NULL || *out == NULL || m_pCallback == NULL)

return E_INVALIDARG;

*out = m_pCallback;

return S_OK;

}

Figure 69: A �x for the code shown in Figure 68

axObject.MyProperty = new Object ();

var x = axObject.MyProperty ();

axObject.MyProperty = new Object ();

Figure 70: JavaScript example with a release failure

trigger an integer over�ow in the reference count variable. Let's try �xing it in the following

example:

The above example adds a Release() call to correctly release any previously held objects,

and so no memory leak occurs. Astute readers will notice that this code actually still has

a stale pointer problem. The get_MyProperty() function doesn't add a reference to the

interface being distributed back to the scripting engine. This can be problematic if the only

reference to that interface is held by the plugin, and the plugin releases it. Consider the

following JavaScript snippet:

This JavaScript code results in the following actions taking place:

1. put_MyProperty() retains the only reference to the object we created.

132

2. The x variable receives the IDispatch pointer, still there is only one copy of it

3. Setting MyProperty will cause the old object to be deleted, even though x still points

to it.

6.2.1 Detecting COM Release Failures With Static Analysis

Detecting COM release failures is an opportunity for future research. There is a direct

correlation to the Automatic Reference Counting technology employed by Apple's Xcode to

prevent release failures of objective-C objects[16]. While this solution is not perfect, it has

greatly reduced the number of memory leaks present in iPhone apps.

133

Chapter VII

CONCLUSION

This dissertation describes a number of vulnerabilities that arise due to the practice of

building complex programming language constructs and frameworks on top of a primitive

language that was never intended to support such complexity. Speci�cally, we focus on the

adaptation of the C language by C++ and Microsoft's Component Object Model (COM) to

support object orientation. The vulnerabilities that were identi�ed are grouped into three

categories: those that occur during object instantiation, those that occur during the lifetime

of the object, and those that occur during the deletion of an object.

We demonstrated that when C++ objects are instantiated, security issues can occur

when the object's constructor fails. It is di�cult to check whether a C++ object was cre-

ated properly since many of the elements of the object are unveri�able. As such, developers

are forced to work with objects whose correctness cannot be guaranteed. We also demon-

strated two issues that can occur during the instantiation of COM objects. The �rst is

when a developer fails to explicitly increment the reference counter for the object. Because

COM attempts to automatically reference count objects, it can �nd itself in a state where it

improperly decrements the reference count. In this case, if the developer had not explicitly

handled the reference counting, the object could be implicitly deleted without their knowl-

edge. The second issue is similar to that which was show in C++. when a developer fails

to call VariantInit() on a COM object, they later end up operating on an object that has

not been properly initialized, resulting in serious security issues.

Throughout the lifetime of an object, there are security issues that can be encountered as

well. Both C++ and COM su�er from design decisions that can easily lead to type confusion

problems. In the case of C++, there is no runtime enforcement of type. With that, objects

are treated as whatever the developer thought they were operating on at a given program

point. Since there are many ways that a class pointer can be manipulated throughout the

134

lifetime of the object, there is no way for the developer to guarantee the type of object they

are using at any point. COM does attempt to implement type enforcement, but because this

is built on a foundation that does not support it, what exists is highly imperfect. Developers

(or attackers) can directly in�uence the type speci�ers for a COM object, as well as other

easily confused situations where developers can inadvertently treat one object as the wrong

type. In both C++ and COM, type confusion can lead to exploitation as severe as arbitrary

code execution.

COM su�ers from additional security issues that can arise during the objects lifetime.

First, copying objects at runtime is far more of a complex operation than it may seem on

the surface. Failures to copy COM objects correctly can lead to developers operating on

incomplete objects, or worse, vulnerabilities leading to arbitrary code execution. Second,

the underlying security model for the loading of COM objects by applications is inherently

�awed and easily bypassed.

As objects are deleted, yet further security issues may be encountered. Because C++

objects are build on C, the allocation and freeing of memory to contain objects is at the

discretion of the developer. Developers will often aggressively try to free memory to avoid

memory leaks. This, however, can lead to use-after-free conditions. In Section 6.1, we

showed how this can be exploited. COM, on the other hand, attempts to automatically

reference count and automatically release objects that are no longer in use. As described

above, there are some fundamental �aws in this reference counting infrastructure since it is

built on a platform that does not actually support it. With that, developers may aggressively

increment the reference counter which can lead to integer wrapping, and thus unpredictable

deletion of the object.

7.1 Summary of Results

In this section we summarize the results of the solutions that were developed to detect their

corresponding security issues. In these cases, the solution was developed and tested for

e�ectiveness. Each of the following subsections summarizes those results.

135

In Section 5.1.4, we describe a solution to detect C++ type confusion using static anal-

ysis. By employing the data �ow analysis techniques documented in Section 5.1.4.2, we

demonstrate that we can increase the e�ectiveness of existing static analysis techniques on

compiled C++ code, as well as identify a class of vulnerability that is often overlooked by

existing techniques. To test our decompilation framework, we created test programs each

representing one of the four combinations of stack or heap object declaration and inline or

explicit constructor. These programs were compiled without symbols and were provided

to IDA Pro as input. In each case, the system was tested for its ability to resolve virtual

function calls and to identify instances of type confusion. In all test cases, ORDA was

able to resolve the virtual function calls correctly and identify cases where the indirect call

referenced a function pointer outside the object's vtable.

In Section 5.4.5, we describe a solution for preventing trust transitivity problems in

COM objects using runtime enforcement. We tested COMBlocker's e�ectiveness and mea-

sured the overhead it imposes on a standard desktop system. The �rst step in testing the

e�ectiveness of the solution was to apply it to each of the applications that were found to

be vulnerable in the section above. For each application that was shown to be vulnerable,

COMBlocker presented the user with the appropriate dialog. This dialog box shows that

the application attempted to load a control that is speci�cally denied by the de�ned policy.

It also indicates that the instantiation of the object was prevented. COMBlocker was suc-

cessfully able to prevent the attack described in Section 5.4.1 in Microsoft WordPad, Word,

Excel, and PowerPoint as well as the ActiveX Control Test Container. Demonstrating the

formal completeness of our solution is di�cult. Our mechanism is helped by the fact that

there are only a small number of publicly known means by which COM objects can be in-

stantiated. Injecting COMBlocker at these points should logically prevent applications from

circumventing policy enforcement. However, if applications can instantiate COM objects

through other unknown means such as implementing their own APIs, these interfaces would

also need to be modi�ed and mediated.

A version of COMBlocker was created that logged the time required for each policy

136

lookup encountered throughout the operation of an application. The test build was in-

stalled on a typical development workstation and gathered information for all of the COM

object instantiations that occurred during a single day as part of a developer's normal work.

The test workstation was a Windows XP SP3 machine with O�ce 2007, Internet Explorer

7, Firefox 3, Lotus Notes 8, Visual Studio 6, and several other commonly installed applica-

tions. During the course of the day, the behavior of the developer caused over 65,000 COM

instantiations. Each of these recorded an average policy lookup time of 554µs to complete,

with a 95% con�dence interval of ±104µs. The variation in lookup time is largely due to

the fact that consulting the killbit list in the registry is accomplished through a linear scan

of the subkeys; it is not indexed. Testing shows that an average application incurs less than

10 policy lookups per user action. With that, each user action generates less than 5ms of

delay due to COMBlocker. Another data point gathered in this test is that in general, Of-

�ce applications and web browsers incurred a lower lookup time than core operating system

components. When the data set is reduced to only O�ce applications and web browsers,

the average lookup time drops to 104µs, with a 95% con�dence interval of ±14.2µs. This

indicates that if performance were an issue in implementing a system like COMBlocker, the

scope of the protection could be reduced to only those applications that are more easily

targeted in COM-based attacks.

In Section 6.1.3, we describe a solution for detecting C++ use-after-free conditions using

static analysis. After implementing the Available Object De�nition Analysis described in

Section 6.1.3.1, we tested the framework in four ways. First, we tested it against a series

of simple examples. These examples were used to �rst ensure the analysis was functioning

correctly, and allowed for debugging in cases where something was missed. Details on the

steps used can be found in Section 6.1.3.4. The second test was to inject vulnerabilities into

into publicly available projects found on Github. By scanning these projects, we ensure that

our analysis is able to function on real-world applications. The details of how vulnerabilities

were injected into code and tested are covered in detail in Section 6.1.3.4. The results

of these test are summarized in Table ??. The third test was to determine whether the

framework could identify a publicly disclosed vulnerability. We ran the analysis on tiptsf.dll

137

Table 7: Github projects with injected vulnerabilities

Project Injected Vulns Discovered Vulns

Leanify 1 1

libwebm 2 2

lifespan 1 1

MAPIEx 2 2

MonaServer 2 2

557-animator 2 2

BarsWF 1 1

easyrtc_ie_plugin 1 1

ElasticTabstopsForScintilla 1 1

and successfully identi�ed the vulnerability disclosed as MS13-069 and CVE-2013-3205. The

exact details of how this test was run and the results can be found in Section 6.1.3.4. The

fourth and �nal test was to scan the System32 directory of an up-to-date installation of

Windows 7 to see how many use-after-free conditions could be identi�ed. In scanning 652

libraries, we were able to identify 127 use-after-free conditions. Section 6.1.3.4 provides

details on how this test was run. Table ?? summarizes the results.

7.2 Future Work

In this section we summarize those portions of the dissertation which propose new solutions,

but have not been thoroughly developed or tested. Sections 4.1.1 and 4.3.1 discuss future

research that is focused on identifying failures in the instantiation of C++ and COM objects.

Sections 4.2.2 and 6.2.1 discuss potential solutions for detecting failure to retain and release

COM objects. Here we propose researching opportunities similar to Automatic Reference

Counting used in Apple's Xcode. Sections 5.2.4 and 5.3.2 discuss areas of future research

for detecting security issues that arise during the lifetime of COM objects.

7.3 Final Thoughts

In this dissertation, we have shown how building high-level programming constructs on a

primitive language has led to security issues. Previous attempts to analyze binary code that

was developed at these higher-levels have proven to struggle. This is due to the fact that

they still operate at the lowest levels of context. By elevating the context of the analyses

138

Table 8: DLLs containing use-after-free vulnerabilities

Library Potential Use-after-free Conditions

ActionCenterCPL.dll 5

AdmTmpl.dll 16

bidispl.dll 3

cabview.dll 12

certcli.dll 1

cewmdm.dll 8

cnvfat.dll 1

comdlg32.dll 1

comsnap.dll 9

credui.dll 6

cscapi.dll 2

dataclen.dll 2

devenum.dll 3

devmgr.dll 2

eapp3hst.dll 2

eappcfg.dll 4

Faultrep.dll 2

FirewallAPI.dll 1

fontext.dll 5

fundisc.dll 4

gpprnext.dll 1

gpedit.dll 3

iasrad.dll 1

icsigd.dll 1

imagehlp.dll 1

ipsmsnap.dll 23

itss.dll 8

139

closer to that of the original language, we have been able to address the higher-level security

issues. We have shown that these analyses can be highly e�ective in detecting and remedying

security issues that would not have been addressable at a lower level of context. With this

work, we expect that security analysts will be able to identify security issues in existing

applications that were previously undetectable.

140

Appendix A

The following code is the LLVM intermediate representation generated for the binary code

shown in Figure 39b.

; ModuleID = 'classbug2.bc'

%0 = type { i32 (...)** , i32 }

@dummyClass = weak_odr constant [100 x i32 (...)*] [i32 (...)*

@dummyFunc , i32 (...)* @dummyFunc , i32 (...)* @dummyFunc , i32 (...)*

@dummyFunc , i32 (...)* @dummyFunc , i32 (...)* @dummyFunc , i32 (...)*

@dummyFunc , i32 (...)* @dummyFunc] ; <[100 x i32 (...)*]* > [#uses =0]

@off_402138 = weak_odr constant [4 x i32 (...)*] [i32 (...)* bitcast

(i32 (i32)* @sub_4010B0 to i32 (...)*) , i32 (...)* bitcast (i32 ()*

@sub_401080 to i32 (...)*) , i32 (...)* bitcast (i32 ()* @nullsub_1 to

i32 (...)*) , i32 (...)* bitcast (i32 ()* @sub_401090 to i32 (...)*)] ;

<[4 x i32 (...)*]* > [#uses =1]

@off_40214C = weak_odr constant [2 x i32 (...)*] [i32 (...)* bitcast (i32

(i32)* @sub_4010B0 to i32 (...)*) , i32 (...)* bitcast (i32 ()*

@sub_4010C0 to i32 (...)*)] ; <[2 x i32 (...)*]* > [#uses =1]

declare i32 @dummyFunc (...)

define i32 @_wmain(i32 %Arg_esi) {

"401000":

%0 = call i8* @"??2 @YAPAXI@Z "() ; <i8*> [#uses =2]

%Class1 = alloca %0* ; <%0**> [#uses =2]

%Class0 = alloca %0* ; <%0**> [#uses =2]

%1 = ptrtoint i8* %0 to i32 ; <i32 > [#uses =1]

%2 = icmp eq i32 %1, 0 ; <i1> [#uses =1]

br i1 %2, label %"401019" , label %"401010"

141

"401010": ; preds = %"401000"

%3 = call i32 @sub_401070 () ; <i32 > [#uses =1]

%4 = inttoptr i32 %3 to %0** ; <%0**> [#uses =2]

%5 = bitcast %0** %4 to i8* ; <i8*> [#uses =1]

%6 = load %0** %4 ; <%0*> [#uses =1]

store %0* %6, %0** %Class0

br label %"40101b"

"401019": ; preds = %"401000"

%7 = alloca i32 ; <i32*> [#uses =2]

store i32 0, i32* %7

%8 = load i32* %7, align 4 ; <i32 > [#uses =1]

%9 = inttoptr i32 %8 to %0** ; <%0**> [#uses =1]

br label %"40101b"

"40101b": ; preds = %"401019" , %"401010"

%10 = phi i8* [%0, %"401019"], [%5, %"401010"] ; <i8*> [#uses =0]

%11 = phi %0** [%9, %"401019"], [%Class0 , %"401010"] ;

<%0**> [#uses =2]

%12 = call i8* @"??2 @YAPAXI@Z "() ; <i8*> [#uses =2]

%13 = ptrtoint i8* %12 to i32 ; <i32 > [#uses =1]

%14 = icmp eq i32 %13, 0 ; <i1 > [#uses =1]

br i1 %14, label %"401032" , label %"401029"

"401029": ; preds = %"40101b"

%15 = call i32 @sub_4010A0 () ; <i32 > [#uses =1]

%16 = inttoptr i32 %15 to %0** ; <%0**> [#uses =2]

%17 = bitcast %0** %16 to i8* ; <i8*> [#uses =1]

%18 = load %0** %16 ; <%0*> [#uses =1]

store %0* %18, %0** %Class1

br label %"401034"

"401032": ; preds = %"40101b"

%19 = alloca i32 ; <i32*> [#uses =2]

store i32 0, i32* %19, align 4

142

%20 = load i32* %19, align 4 ; <i32 > [#uses =1]

%21 = inttoptr i32 %20 to %0** ; <%0**> [#uses =1]

br label %"401034"

"401034": ; preds = %"401032" , %"401029"

%22 = phi i8* [%12, %"401032"], [%17, %"401029"] ;

<i8*> [#uses =0]

%23 = phi %0** [%21, %"401032"], [%Class1 , %"401029"] ;

<%0**> [#uses =3]

%24 = load %0** %11, align 4 ; <%0*> [#uses =1]

%25 = getelementptr %0* %24, i32 0, i32 0 ; <i32 (...)*** > [#uses =1]

%26 = load i32 (...)*** %25, align 4 ; <i32 (...)** > [#uses =1]

%27 = getelementptr i32 (...)** %26, i32 0 ; <i32 (...)** > [#uses =1]

%28 = load i32 (...)** %27 ; <i32 (...)* > [#uses =1]

%29 = bitcast i32 (...)* %28 to void ()* ; <void ()*> [#uses =1]

call void %29()

%30 = load %0** %11, align 4 ; <%0*> [#uses =1]

%31 = getelementptr %0* %30, i32 0, i32 0 ; <i32 (...)*** > [#uses =1]

%32 = load i32 (...)*** %31, align 4 ; <i32 (...)** > [#uses =1]

%33 = getelementptr i32 (...)** %32, i32 1 ; <i32 (...)** > [#uses =1]

%34 = load i32 (...)** %33 ; <i32 (...)* > [#uses =1]

%35 = bitcast i32 (...)* %34 to void ()* ; <void ()*> [#uses =1]

call void %35()

%36 = load %0** %23, align 4 ; <%0*> [#uses =1]

%37 = getelementptr inbounds %0* %36, i32 0, i32 0 ;

<i32 (...)*** > [#uses =1]

%38 = load i32 (...)*** %37, align 4 ; <i32 (...)** > [#uses =1]

%39 = getelementptr i32 (...)** %38, i32 0 ; <i32 (...)** > [#uses =1]

%40 = load i32 (...)** %39 ; <i32 (...)* > [#uses =1]

%41 = bitcast i32 (...)* %40 to void ()* ; <void ()*> [#uses =1]

call void %41()

%42 = load %0** %23, align 4 ; <%0*> [#uses =1]

%43 = getelementptr inbounds %0* %42, i32 0, i32 0 ;

<i32 (...)*** > [#uses =1]

%44 = load i32 (...)*** %43, align 4 ; <i32 (...)** > [#uses =1]

143

%45 = getelementptr i32 (...)** %44, i32 1 ; <i32 (...)** > [#uses =1]

%46 = load i32 (...)** %45 ; <i32 (...)* > [#uses =1]

%47 = bitcast i32 (...)* %46 to void ()* ; <void ()*> [#uses =1]

call void %47()

%48 = load %0** %23, align 4 ; <%0*> [#uses =1]

%49 = getelementptr inbounds %0* %48, i32 0, i32 0 ;

<i32 (...)*** > [#uses =1]

%50 = load i32 (...)*** %49, align 4 ; <i32 (...)** > [#uses =1]

%51 = getelementptr i32 (...)** %50, i32 3 ; <i32 (...)** > [#uses =1]

%52 = load i32 (...)** %51 ; <i32 (...)* > [#uses =1]

%53 = bitcast i32 (...)* %52 to void ()* ; <void ()*> [#uses =1]

call void %53()

%54 = alloca i32 ; <i32*> [#uses =2]

store i32 0, i32* %54, align 4

%55 = load i32* %54, align 4 ; <i32 > [#uses =0]

br label %return

return: ; preds = %"401034"

ret i32 0

}

define i32 @sub_401070 () {

"401070":

%0 = alloca %0* ; <%0**> [#uses =2]

%1 = load %0** %0, align 4 ; <%0*> [#uses =1]

%2 = getelementptr inbounds %0* %1, i32 0, i32 0 ;

<i32 (...)*** > [#uses =1]

%3 = getelementptr inbounds [4 x i32 (...)*]*

@off_402138 , i32 0, i32 0 ; <i32 (...)** > [#uses =1]

store i32 (...)** %3, i32 (...)*** %2

%4 = load %0** %0, align 4 ; <%0*> [#uses =1]

%5 = getelementptr inbounds %0* %4, i32 0, i32 1 ;

<i32*> [#uses =1]

store i32 0, i32* %5, align 4

br label %return

144

return: ; preds = %"401070"

ret i32 0

}

define i32 @sub_4010A0 () {

"4010a0":

%0 = alloca %0* ; <%0**> [#uses =2]

%1 = load %0** %0, align 4 ; <%0*> [#uses =1]

%2 = getelementptr inbounds %0* %1, i32 0, i32 0 ;

<i32 (...)*** > [#uses =1]

%3 = getelementptr inbounds [2 x i32 (...)*]*

@off_40214C , i32 0, i32 0 ; <i32 (...)** > [#uses =1]

store i32 (...)** %3, i32 (...)*** %2

%4 = load %0** %0, align 4 ; <%0*> [#uses =1]

%5 = getelementptr inbounds %0* %4, i32 0, i32 1 ; <i32*> [#uses =1]

store i32 0, i32* %5, align 4

br label %return

return: ; preds = %"4010 a0"

ret i32 0

}

145

REFERENCES

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-�ow integrity.

In Proceedings of the 12th ACM conference on Computer and communications security,

pages 340�353. ACM, 2005.

[2] Adobe. Security update available for Adobe Flash Player. http://www.adobe.com/

support/security/bulletins/apsb11-07.html, April 2011.

[3] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In USENIX

Security Symposium, pages 177�192, 2010.

[4] Vinod Anupam and Alain Mayer. Security of web browser scripting languages: Vul-

nerabilities, attacks, and remedies. In Proceedings of the USENIX Security Symposium,

1998.

[5] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. E�cient detection of all

pointer and array access errors. SIGPLAN Not., 29:290�301, June 1994.

[6] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls.

In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), 1996.

[7] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In

ACM Conference on Programming Language Design and Implementation, June 2005.

[8] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory safety for

unsafe languages. In in PLDI 06, pages 158�168. ACM Press, 2006.

[9] Bugscam. Bugscam IDC Package. http://bugscam.sourceforge.net/.

[10] William R. Bush, Jonathan D. Pincus, and David J. Siela�. A static analyzer for �nding

dynamic programming errors. Softw. Pract. Exper., 30:775�802, June 2000.

146

[11] Juan Caballero, Gustavo Greico, Mark Marron, and Antonio Nappa. Undangle: early

detection of dangling pointers in use-after-free and double-free vulnerabilities. In Pro-

ceedings of the 2012 International Symposium on Software Testing and Analysis, pages

133�143, 2012.

[12] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in C++

programs. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), Portland, Oregon, 1994.

[13] Hao Chen and David Wagner. MOPS: An Infrastructure for Examining Security Prop-

erties of Software. In Proceedings of the ACM Conference on Computer and Commu-

nications Security (CCS), 2002.

[14] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. Non-

control-data attacks are realistic threats. In Usenix Security, volume 5, 2005.

[15] Clang. http://clang.llvm.org/.

[16] Clang. "automatic reference counting". Clang 3.8 Documentation. http://clang.

llvm.org/docs/AutomaticReferenceCounting.html.

[17] George E Collins. A method for overlapping and erasure of lists. Communications of

the ACM, 3(12):655�657, 1960.

[18] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C. Necula.

Dependent types for low-level programming. In In European Symposium on Program-

ming, 2007.

[19] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice model

for static analysis of programs by construction or approximation of �xpoints. In Pro-

ceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL), Los Angeles, California, 1977.

147

[20] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for data

structures. In Proceedings of the 8th USENIX Conference on Operating Systems Design

and Implementation (OSDI), 2008.

[21] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode: Enforcing alias anal-

ysis for weakly typed languages. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2006.

[22] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. Memory safety

without runtime checks or garbage collection. In In ACM SIGPLAN 2003 Conference

on Languages, Compilers, and Tools for Embedded Systems (LCTES 2003, pages 69�80.

ACM Press, 2003.

[23] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Gi�n. Ro-

bust signatures for kernel data structures. In Proceedings of the 16th ACM Conference

on Computer and Communications Security (CCS), Chicago, Illinois, 2009.

[24] Mark Dowd, Ryan Smith, and David Dewey. Attacking Interoperability. Proceedings of

Black Hat 2009, July 2009. https://media.blackhat.com/bh-usa-09/video/DOWD/

BHUSA09-Dowd-AtkInterop-VIDEO.mov.

[25] Thomas Dullien and Sebastian Porst. REIL: A platform-independent intermediate

representation of disassembled code for static code analysis. In CanSecWest, 2009.

[26] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.

PhD thesis, Cornell University, January 2004.

[27] D. Evans and D. Larochelle. Improving security using extensible lightweight static

analysis. IEEE Software, 19(1):42�51, Jan/Feb 2002.

[28] D. Evans and A. Twyman. Flexible policy-directed code safety. In Proceedings of the

IEEE Symposium on Security and Privacy (OAKLAND), May 1999.

148

[29] David Evans. Static detection of dynamic memory errors. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

1996.

[30] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Statically detecting use after

free on binary code. Journal of Computer Virology and Hacking Techniques, 10(3):211�

217, 2014.

[31] Timothy Fraser, Nick L Petroni, and William A Arbaugh. Applying �ow-sensitive

CQUAL to verify MINIX authorization check placement. In Proceedings of the Work-

shop on Programming Languages and Analysis for Security, 2006.

[32] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Automatic placement of autho-

rization hooks in the Linux security modules framework. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS), 2005.

[33] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Retro�tting legacy code for autho-

rization policy enforcement. In Proceedings of the IEEE Symposium on Security and

Privacy (OAKLAND), 2006.

[34] Vinod Ganapathy, David King, Trent Jaeger, and Somesh Jha. Mining security-sensitive

operations in legacy code using concept analysis. In Proceedings of the Internation

Conference on Software Engineering (ICSE), 2007.

[35] Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out of

control: Overcoming control-�ow integrity. In Security and Privacy (SP), 2014 IEEE

Symposium on, pages 575�589. IEEE, 2014.

[36] Google. Gcc vtable security hardening proposal. http://gcc.gnu.org/ml/

gcc-patches/2012-11/txt00001.txt.

[37] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors.

In In Proc. of the Winter 1992 USENIX Conference, pages 125�138, 1991.

149

[38] S. Heelan. Vulnerability detection systems: Think cyborg, not robot. IEEE Security &

Privacy, 9(3):74�77, May-June 2011.

[39] Hey-Rays. http://www.hex-rays.com/.

[40] Galen Hunt and Doug Brubacher. Detours: binary interception of win32 functions. In

WINSYM'99: Proceedings of the 3rd conference on USENIX Windows NT Symposium,

pages 14�14, Berkeley, CA, USA, 1999. USENIX Association.

[41] Nayeem Islam, Rangachari Anand, Trent Jaeger, and Josyula R. Rao. A �exible security

system for using internet content. IEEE Software, 14:52�59, 1997.

[42] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. Consistency Analysis of Authoriza-

tion Hook Placement in the Linux Security Modules Framework. ACM Transactions

on Information and System Security (TISSEC), 7(2), 2004.

[43] Trent Jaeger, Aviel D. Rubin, and Atul Prakash. Building systems that �exibly control

downloaded executable context. In Proceedings of the USENIX Security Symposium

(SECURITY), 1996.

[44] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Safedispatch: Securing c++ virtual

calls from memory corruption attacks.

[45] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling

Wang. Cyclone: A safe dialect of c.

[46] Stephen Johnson. Lint, a C program checker. Technical Report 65, Bell Laboratories,

1977.

[47] Richard W M Jones, Paul H J Kelly, Most C, and Uncaught Errors. Backwards-

compatible bounds checking for arrays and pointers in c programs. In in Distributed

Enterprise Applications. HP Labs Tech Report, pages 255�283, 1997.

[48] David Larochelle and David Evans. Statically detecting likely bu�er over�ow vulnera-

bilities. In Proceedings of the 10th USENIX Security Symposium, 2001.

150

[49] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long

Lu, and Wenke Lee. Preventing use-after-free with dangling pointers nulli�cation. In

Proceedings of the 2015 Annual Network and Distributed System Security Symposium,

2015.

[50] Yossi Levanoni and Erez Petrank. An on-the-�y reference counting garbage collector

for java. ACM SIGPLAN Notices, 36(11):367�380, 2001.

[51] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic runtime error re-

pair and containment via recovery shepherding. In ACM SIGPLAN Notices, volume 49,

pages 227�238. ACM, 2014.

[52] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, and Ruth C. Taylor.

The inevitability of failure: The �awed assumption of security in modern computing

environments. In Proceedings of the National Information Systems Security Conference,

1998.

[53] Dahlia Malkhi and Michael Reiter. Secure execution of java applets using a remote

playground. IEEE Transactions on Software Engineering, 27(12):1197�1209, 2000.

[54] Microsoft. Safe Initialization and Scripting for ActiveX Controls. Microsoft Developer

Network. http://msdn.microsoft.com/en-us/library/aa751977(VS.85).aspx.

[55] Microsoft. static_cast Operator. Microsoft Developer Network. http://msdn.

microsoft.com/en-us/library/c36yw7x9%28v=vs.80%29.aspx.

[56] Microsoft. Working with the AppInitDLLs registry value. Microsoft Support, November

2006. http://support.microsoft.com/kb/197571.

[57] Microsoft. Microsoft Security Advisory (953839). Microsoft TechNet, August 2008.

http://www.microsoft.com/technet/security/advisory/953839.mspx.

[58] Microsoft. Microsoft Security Advisory (956391). Microsoft TechNet, October 2008.

http://www.microsoft.com/technet/security/advisory/956391.mspx.

151

[59] Microsoft. How to stop an ActiveX control from running in Internet Explorer. Microsoft

Support Center, August 2009. http://support.microsoft.com/kb/240797.

[60] Microsoft. Microsoft Security Advisory (960715). Microsoft TechNet, February 2009.

http://www.microsoft.com/technet/security/advisory/960715.mspx.

[61] Microsoft. Microsoft Security Advisory (969898). Microsoft TechNet, June 2009. http:

//www.microsoft.com/technet/security/advisory/969898.mspx.

[62] Microsoft. Microsoft Security Bulletin MS09-032. Microsoft TechNet, July 2009. http:

//www.microsoft.com/technet/security/bulletin/ms09-032.mspx.

[63] Microsoft. Microsoft Security Bulletin MS09-034. http://www.microsoft.com/

technet/security/bulletin/ms09-034.mspx, July 2009.

[64] Microsoft. Microsoft Security Bulletin MS09-035. Microsoft TechNet, July 2009. http:

//www.microsoft.com/technet/security/bulletin/Ms09-035.mspx.

[65] Microsoft. Microsoft Security Bulletin MS10-017. http://www.microsoft.com/

technet/security/bulletin/MS10-017.mspx, March 2010.

[66] Microsoft Support. You are prompted to grant permission for ActiveX Controls when

you open an O�ce XP or O�ce 2003 document. Microsoft Support Center, October

2007. http://support.microsoft.com/default.aspx?scid=kb;en-us;827742.

[67] Matthew R Miller, Kenneth D Johnson, and Timothy William Burrell. Using vir-

tual table protections to prevent the exploitation of object corruption vulnerabilities,

March 25 2014. US Patent 8,683,583.

[68] Eric Moretti, Gilles Chanteperdrix, and Angel Osorio. New algorithms for control-

�ow graph structuring. In Proceedings of the Fifth European Conference on Software

Maintenance and Reengineering, CSMR '01, pages 184�, Washington, DC, USA, 2001.

IEEE Computer Society.

152

[69] George C. Necula, Jeremy Condit, Matthew Harren, Scott Mcpeak, and Westley

Weimer. Ccured: Type-safe retro�tting of legacy software. ACM Transactions on

Programming Languages and Systems, 27:2005, 2005.

[70] George C. Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe retro�tting

of legacy code, 2002.

[71] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe Retro�tting

of Legacy Code. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, 2002.

[72] Gene Novark and Emery D Berger. Dieharder: securing the heap. In Proceedings of

the 17th ACM conference on Computer and communications security, pages 573�584.

ACM, 2010.

[73] Hemant Pande and Barbara Ryder. Data-�ow-based virtual function resolution. In

Proceedings of the Third International Symposium on Static Analysis (SAS), 1996.

[74] Hemant D. Pande and Barbara G. Ryder. Static type determination for C++. In

Proceedings of the 6th USENIX C++ Technical Conference, 1994.

[75] Pete Becker. Working Draft, Standard for Programming Language C++. http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1905.pdf.

[76] David J. Roth and David S. Wise. One-bit counts between unique and sticky. In ACM

SIGPLAN Notices, pages 49�56. ACM Press, 1998.

[77] Paul Sabanal and Mark Yason. Reversing C++. In Proceedings of BlackHat DC, 2007.

[78] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.

Addresssanitizer: A fast address sanity checker. In USENIX Annual Technical Confer-

ence, pages 309�318, 2012.

[79] Umesh Shankar, Kunal Talwar, Je�rey S. Foster, and David Wagner. Detecting format

string vulnerabilities with type quali�ers. In Proceedings of the 10th USENIX Security

Symposium, 2001.

153

[80] Asia Slowinska, Traiain Stancescu, and Herbert Bos. Howard: A dynamic excavator

for reverse engineering data structures. In Proceedings of the Network and Distributed

Systems Security Symposium (NDSS), 2011.

[81] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Kang, Zhenkai

Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. BitBlaze: A new

approach to computer security via binary analysis. In International Conference on

Information Systems Security, 2008.

[82] Sparse. https://sparse.wiki.kernel.org/index.php/Main_Page.

[83] Splint. http://splint.org/.

[84] Bjarne Stroustrup. The Design and Evolution of C++. Pearson Education, 1994.

[85] Caroline Tice. Extended Abstract: Improving Function Pointer Security for Virtual

Method Dispatches. GNU Tools Cauldron Workshop, 2012.

[86] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A static vulnerability scanner

for C and C++ code. In Proceedings of the 16th Annual Computer Security Applications

Conference (ACSAC), 2000.

[87] Wikipedia. static_cast. http://en.wikipedia.org/wiki/Static_cast.

[88] Yichen Xie, Andy Chou, and Dawson Engler. Archer: Using symbolic, path-sensitive

analysis to detect memory access errors. In Proceedings of the European Software En-

gineering Conference (ESEC), 2003.

[89] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson Engler. MECA: An Extensi-

ble, Expressive System and Language for Statically Checking Security Properties. In

Proceedings of the ACM Conference on Computer and Communications Security, 2003.

[90] Bin Zeng, Gang Tan, and Greg Morrisett. Combining control�ow integrity and static

analysis for e�cient and validated data sandboxing. In In Proceedings of the 18th ACM

Conference on Computer and Communications Security (CCS) (2011, page 29.

154

[91] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Stephen Mccamant, Dawn Song, and

Wei Zou. Practical control �ow integrity and randomization for binary executables. In

in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pages 559�573.

[92] Mingwei Zhang and R. Sekar. Control �ow integrity for cots binaries.

[93] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQUAL for Static Analysis

of Authorization Hook Placement. In Proceedings of the USENIX Security Symposium

(SECURITY), 2002.

155

