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ABSTRACT 

Regression testing is often a very resource and time consuming activity with 

large scale software. However, regression tests may be run in continuous 

integration where everything should run fast in order to get quick feedback. 

This thesis reviews the existing solutions to optimize regression test suites and 

test suites in general by looking at various existing heuristic, computational 

intelligence and other methods. In most cases, these methods are based on the 

fact that test suites may contain redundant test cases. They also require code 

coverage, fault detection capability or requirement coverage information of 

each test case in order to be implemented. 

Additionally, the thesis studies ways to detect redundancy in test trace. It is 

also discussed whether or not this kind of redundancy information can be used 

for test suite optimization instead. A new concept, pair-wise supermaximal 

repeats is presented. 

A case study is conducted in software component continuous integration 

testing environment in Nokia Networks. Main methods include looking for 

patterns in test trace manually in a plot representing the test trace as well as 

finding pair-wise supermaximal repeats in the test trace with an enhanced suffix 

array implementation developed in test driven development method. A new 

application was developed, MRS Finder. The repeats are then analyzed. 

The study shows that the there can be found huge amount of repetition which 

makes analyzing all of it hard by hand. The repeats also tend to occur more in 

the setup or teardown phase of a test case rather than in the action or assertion 

phase of the test cases. The study shows that MRS Finder offers different 

optimization possibilities than originally was thought. 

 

Keywords: continuous integration, redundancy, suffix array, heuristics, 

computational intelligence, regression testing 



 

Kallio R. (2015) Kohti testisarjan optimointia ohjelmiston 

komponenttitestauksessa etsien ja analysoiden toistoja testien jäljissä. Oulun 

yliopisto, tietotekniikan osasto. Diplomityö, 54 s. 

TIIVISTELMÄ 

Regressiotestaus on usein hyvin resursseja ja aikaa kuluttavaa suurten 

ohjelmistojen kanssa. Regressiotestejä voidaan kuitenkin ajaa jatkuvassa 

integroinnissa, jossa senkin tulisi suoriutua nopeasti, jotta palauteaika pysyy 

lyhyenä. 

Tämä diplomityö käy läpi olemassa olevia ratkaisuja regressiotestien ja 

yleisestikin testisarjojen optimointia. Näistä käsitellään muun muassa 

heuristisia ja laskennallisen älykkyyden menetelmiä. Useimmissa tapauksissa 

nämä metodit perustuvat siihen, että testisarjat voivat sisältää testitapauksia, 

joissa on keskinäistä redundanssia. Menetelmät vaativat myös tietoa jokaisen 

testitapauksen koodikattavuudesta, virheiden paljastuskyvystä tai 

vaatimuskattavuudesta, jotta ne voidaan toteuttaa käytännössä. 

Tämä työ tutkii myös tapoja löytää redundanssia testien jäljistä. Työ pohtii, 

voitaisiinko tätä tietoa käyttää testisarjojen optimointiin edellä mainittujen 

tietojen sijaan. Tämä työ esittelee uuden käsitteen, parittaisen 

supermaksimaalisen toiston. 

Tapaustutkimus suoritettiin Nokia Networksin systeemikomponenttitason 

jatkuvan integroinnin järjestelmässä. Tapaustutkimuksessa kehitettiin 

testivetoisella kehityksellä MRS Finder -ohjelmisto, joka etsii toistoja 

parannetusta suffiksitaulusta ja tuottaa diagrammin, joka edustaa testien 

jälkiä. Diagrammista etsitään toistoja manuaalisesti ja suffiksitaulusta 

löydettyjä toistoja analysoidaan. 

Tutkimus näyttää, että testien jäljistä voidaan löytää suuri määrä toistoja, 

joka tekee analysoinnista vaikeaa käsin. Toistot esiintyvät useammin testi 

tapauksien alkuasetus (setup) ja poiskorjaus (teardown) –vaiheissa kuin 

toiminta- tai vakuutusvaiheissa (assertion). Tutkimus näyttää myös, että MRS 

Finderilla löydetään erilaisia testi tapauksien optimointimahdollisuuksia kuin 

aluksi ajateltiin. 

 

Avainsanat: jatkuva integrointi, redundanssi, regressiotestaus, suffiksitaulu, 

heuristiikka, laskennallinen älykkyys 
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ABBREVIATIONS 

RTS Regression test selection 

 

CI Continuous integration 

 

SCT System/software component testing 

 

RTO Regression test optimization 

 

NP-complete Both non-deterministic polynomial-time complex and non-

deterministic polynomial-time hard 

 

HGS A heuristic test suite minimization algorithm developed by Harrold, 

Gupta and Soffa 

 

PSO Particle swarm optimization 

 

LCS Longest common sequence 

 

CS Common sequence 

 

LCP Longest common prefix 

 

BWT Burrows and Wheeler transform 

 

MRS Finder Maximal Repeat Sequence Finder 

 

OOP Object-oriented programming 

 

JSON JavaScript Object Notation 

 

XML Extensible Markup Language 

 

CSS Cascading Style Sheets 

 

SCSS Sassy CSS 

 

Sass Syntastically Awesome StyleSheets 

 

jQuery JavaScript library for easier event handling, animations etc. 

 

QUnit JavaScript unit testing library 

 

AJAX Asynchronous JavaScript And XML 

 

UI User interface 

 

CLI Command-line interface



 

1. INTRODUCTION 

1.1. Motivation, research questions, scope and structure 

In continuous integration, tests are run after each commit to verify the changes in the 

developed application. Often all functionalities are re-tested which we call regression 

testing. This kind of testing may take quite a lot of time and resources to run. The 

aim of this thesis was to study ways how we could go around this problem. It was 

suggested that test case traces should be investigated and looked for any redundancy. 

If there were any redundancy, some test cases can be removed. In order to find the 

answers to these questions I investigated several methods of test suite optimization 

and redundancy detection algorithms. In short, the main research question was: could 

a test suite be optimized using test trace sequence repetition detection and analysis. 

During the literature research, an application, MRS Finder (Maximal Repeated 

Sequence Finder), was developed to find supermaximal and pair-wise supermaximal 

repeats in the test trace. The considered repeats are traced message sequences which 

were sent and received during the tests. To browse the results, an HTML5 

application was developed into the MRS Finder. These were developed with test 

driven development method. 

To set the scope of this thesis it was decided that different variations and specifics 

of the commonly used test suite optimization methods would be left out and we 

would concentrate on overviewing the methods. In addition, different redundancy 

detection algorithms were investigated but the study concentrates mainly on the 

suffix array method which was used in the python application. Other key points that 

this thesis reviews are optimization problems of the algorithms and their time and 

space complexity. All of this was done in order to find a well suited representation of 

the problem and an efficient algorithm to solve it. Different software testing methods 

and case study software application specific concepts are considered out of the scope 

of this thesis. 

The thesis begins with a more detailed view of the problem and some background 

information on related software testing concepts in chapter 1.2. In chapters 2.1 and 

2.2 an overview of test suite optimization is described with special grip on methods 

and objective functions that have been used before. In chapter 2.3, repetition 

detection methods are described along with the problems that are solved with them. 

In chapter 3 the scientific background of the relevant methods to the application, 

namely suffix array and supermaximal repeats, are described. Additionally, new 

concept, pair-wise supermaximal repeat is introduced.  In chapter 4.1 the case study 

is described in such detail that the optimization problem and application development 

can be understood. In chapter 4.2 the results are represented along with analysis on 

them. In chapter 5, implementation problems, it’s compatibility to test suite 

optimization and future work are discussed. Finally, the thesis is concluded in 

chapter 6. 

1.2. Background 

In continuous integration (CI), a change in the software triggers a build. In the build, 

tests are run to check if the change broke anything. These tests should be run fully 

automatically and all of them should pass in order for the build to be successful. [1 
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p.40] One of the key points is that everyone commits their work daily into the same 

repository so integration of the work can be verified. [2] 

There are many benefits of CI. In its core, it removes the hard integration phase 

that is done to fix integration errors and makes it a simple every day activity. 

However, there has been some discussion about the scalability of CI. It has been 

stated that integration build will take longer as the code base grows. [2] One reason 

for this is that large code base increases the size of the test suites [3]. Increased build 

time leads to longer feedback time for developers who wait for results from CI. From 

a manager’s point of view, waiting for results before proceeding with work means 

spending unproductive time. [2] However, the problem is not just the waiting, it is 

also the exhaustive use of computing resources which are often limited [3]. Bringing 

in more developers to a project can amplify the problem. First of all, the code base is 

expected to grow faster with more developers. Secondly, more people are waiting for 

the results of CI. [2] 

Regression testing is defined as retesting of software. It is run when the software is 

modified. The main benefit of regression testing is the ensuring that the functionality 

of the software has not changed in the tested parts. [4] Affections to unmodified code 

that are caused by modified code are called regression errors which are what one 

wants to find in regression testing. [5] Test suites for regression testing are often 

maintained for the whole lifetime of an application, even after the original 

development process [3]. The simplest approach in regression testing is to re-execute 

all test cases. However, due to this approach being very expensive and resource 

consuming with large test suites, one often has to limit the number of test cases in the 

regression test. This process is called regression test selection (RTS). [4] Regression 

testing is increasingly hard in CI because of its time constraints [6]. 
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2. TEST SUITE OPTIMIZATION BY DETECTING 

REDUNDANCY 

2.1. Overview 

A test suite consists of tests which work together in a natural way. Tests in a test 

suite share often same high-level objectives. Often there is also some data that is 

shared between the tests. Thus, test suite can be called a logical collection of tests 

and they should be created for efficient test case execution. [1 p.24] 

System component testing, software component testing or often just component 

testing (SCT) is used to verify the functionality of a software component. Other main 

objective is to search for defects in components. A component can be defined as a 

part of software that is separately testable in component testing. [1 p.37] 

The following specification can be considered as a good starting point for the 

structure of a test case: IEEE 829 Standard: Test Case Specification Template [1 

p.80] 

 Test case specification identifier 

 Output specification 

 Test items 

 Environmental needs 

 Input specifications 

 Special procedural requirements 

 Intercase dependencies 

IEEE 829 standard has been used as a basis of recent ISO 29119 standard. 

However, ISO 29119 has created a lot of controversy and is therefore not used in this 

thesis. [7, 8] 

To simplify IEEE 829, it can be said that test cases have a certain structure which 

basically consists of input and output specification. We get an output from an action 

with certain input specification. This output is then asserted against the expected 

output specification. [1 p.77-80] 

Like in the IEEE standard, test cases have to set the environment correctly. This is 

usually done before the actual test in a test setup [1 p.23]. On the other hand, test 

teardown is done after the test case to clean up the environment. Suite setups and 

teardowns can also be run before the setup of each test case and after the teardown of 

each test case correspondingly. [9] 

By putting this simplified structure together, a single test case execution can be 

defined like this: 

1. Suite setup 

2. Test setup 

3. Action 

4. Assertion (output against the output specification) 

5. Test teardown 

6. Suite teardown 

In this thesis, let’s define test case tracing and test tracing how tracing is defined in 

Robot Framework 2.8.7 documentation. Trace is a detailed debugging level and 

tracing is used to log what test libraries are doing internally. [9] Thus, in the context 

of test cases, test case tracing means logging of test case execution. (Execution) 

traces can be defined as low-level output data of tracing as in (Amiar, A. et al 2013) 
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[10]. In the case study of this thesis, we consider traced messages as our test trace.  

These are explained in more detail in chapter 4.1.3. 

In software development, debugging has been said to be a very time-consuming 

activity which requires a lot of work especially with embedded software [10]. This is 

caused by the difficulty of finding faults in software. In literature we talk about fault 

localization. Execution traces have been used to locate these faults either manually or 

even automatically. [11] However, because of the great amount of low level data, 

traces are often very large. This problem can be amplified in embedded software.  

[10] 

Black-box testing is defined as testing software with some known input and output 

specification without knowing what happens in the actual code of the software. 

Black-box testing can be therefore referred to as functional testing. On the other 

hand, white-box testing is about structural testing where the implementation is 

known. For example in white-box testing, a loop in the software can be tested by 

running it variable amount of times. [1 p. 84-86] 

In this thesis we are going to need some notations for sequences. Assume we have 

a  -length sequence                and 3-length sequence          

             . An  th prefix of   is a sequence               [12 p.392], in other 

words, a beginning of  . Similarly, an  th suffix of   is a sequence               
[12 p.986], an ending of  . A trivial case, empty sequence is considered both a suffix 

and prefix of all sequences [12 p.986]. To differentiate sequences from sets we will 

represent sequences as strings, for example               . Then,  th letter of 

string   can be represented with      and for example                 and 

               . 

Typically in optimization, the problem is about finding the shortest distance 

between two points on a surface. Commonly there are also multiple objectives which 

cannot be achieved together. In order to perform better towards an objective one 

must sacrifice the performance towards another. Because of this, optimization is 

usually about decision making, treating nonlinear constraints and minimizing the 

objective function. [13] A solution to optimization problems can be sometimes called 

an optimal solution rather than the optimal solution because there may be multiple 

solutions that achieve the optimal value [12 p.359]. 

Test suites change over time as the application changes [14]. New test cases are 

added to a test suite in order to test a new feature that existing test suite did not test 

previously. This causes issues when old test cases are not removed from the test suite 

because they may have become obsolete or redundant after the addition. [15] 

Redundant test cases satisfy same requirements as other tests. Because the software 

is constantly retested, test suite sizes and running costs should be kept in control. 

[16] Retesting all tests that have ever been created for an application can be 

impossible in reality, which is why it has been stated that creating a small scale and 

near optimal test suite is a hot topic in software testing [17].  

Test suite optimization can be referred as regression test suite optimization (RTO) 

when optimizing a regression suite. RTO is done to save time and resources but it is 

also possible to identify other objective functions for test suite optimization. They 

vary a little bit depending on if one is doing white-box testing or black-box testing. 

In Figure 1, we can see what objectives have been used previously. It has been stated 

that RTO is not safe if used with a single objective, because it will ignore vital test 

cases. Therefore it has to have multiple objectives. [18] 
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Objective White-box based RTO Black-box based RTO 

Increase defect/faults detection rate X X 

Increase defect detection capability X  

Increase cost effectiveness X  

Increase code coverage X  

Increase function coverage X  

Increase statement coverage X  

Decrease execution time X X 

Implementation complexity X X 

Changes in class diagram X  

Decision trees X  

Decrease cost X X 

Requirement change  X 

Test case behavior in previous release  X 

Architecture changes  X 

Configuration files changes  X 

Database files changes  X 

User session  X 

Customer priority  X 

Requirement traceability  X 

Fault impact of requirement  X 

Figure 1. Black-box and white-box based RTO objectives [18] 

Mathematically, RTO problem is NP-complete [18] which means that it is not 

known to have a polynomial time or in other words efficient algorithm [19]. But this 

does not mean that it could not have. In fact, if an efficient algorithm exists for an 

NP-complete problem, efficient algorithms would exist for all of them. [12 p.9-10] 

The models of solving RTO problem are selection, prioritization and minimization 

[18]. 

The terms used for test suite optimization are in my opinion a little bit confusing 

because there are many names used for test suite optimization in literature: RTO 

[18], RTS [2] and test suite reduction [20]. While the definition of these may differ to 

some extent, from now on, things are kept simple and we only talk about test suite 

optimization. Reduced test suite is the output of the test suite optimization, similarly 

to (Jeffrey, D. et al. 2005) [20]. 

2.2. Test suite optimization 

2.2.1. Heuristic methods 

Heuristic methods can be used to approximate the optimal solution of test suite 

optimization. [15] 

Heuristic methods of test suite optimization can be divided to minimization and 

prioritization [18]. Test suite minimization can be defined as finding a minimal 

subset of test cases so that certain required coverage can be still achieved. On the 

other hand in test suite prioritization, test cases are sorted based on their cost per 

additional coverage so that the ones with the cheapest additional coverage are on the 

top of the list. After the sorting, a certain constant number of the top cases can be 

selected for the reduced test suite. [21] The other way to look at prioritizing is that it 
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can provide quicker fault detection if test cases with coverage on modified and 

affected area of code are run first [22]. 

There are variations on minimization and prioritization in practice. We can use 

different criteria for both. [18] For example, one could use a technique where given 

that one knows the modified and deleted lines of a modified source code as well as 

the corresponding line numbers and the test case line coverage history (lines that 

each test case executes), one can prioritize test cases so that they execute at least 

once the modified lines and the lines after the deleted lines [4]. 

However, according to a recent study, code coverage may not be strongly 

connected to test suite effectiveness with only a low to moderate correlation between 

these two when the size of the test suite is controlled. The strength of this correlation 

has been found to vary between software systems, which is one of the major reasons 

why the strong correlation cannot be assumed. This can be said for most code 

coverage types. That said, code coverage is a good tool to find the under tested parts 

of the software but possibly not the overly tested. [23] 

Similarly to coverage, software requirements can be used in test suite 

minimization. Given that we have a test suite   of test cases              and 

requirements                   we must cover the same requirements as   with a 

minimal subset    of  . However, because this is a NP complete problem, we need to 

use heuristics. [24] 

A simple solution is a greedy heuristic algorithm which is based on classical 

approximation. It is run in iterations until all requirements have been covered. In 

each iteration, it selects a test case that satisfies the most requirements and throws 

away the satisfied requirements. In case of a tie, the test case is selected randomly 

among the tied test cases. The problem is that this method will lead to some 

redundant test cases. [24] We can improve the solution with HGS (Harold, Gupta and 

Soffa) algorithm. In HGS, a test case subset    of   consists of test cases that satisfy 

requirement ri. Thus, the reduced test suite must contain one test case from each    in 

order to satisfy all R. The algorithm begins by considering subsets   of cardinality 

one               , in other words, subsets that consists of one test case. These test 

cases are included in the reduced test suite and the   :s that contain these tests are 

marked. Next,   s of cardinality two to the maximum are considered sequentially. In 

a particular cardinality   iteration, a test case with maximum number of occurrences 

in unmarked   s is chosen for each unmarked    of cardinality  . For tie braking, 

further cardinality occurrences are considered. This solution is not perfect either 

because it also selects some redundant test cases. [15] Additional improvements can 

be made by, for example, introducing context tables and reducing the sizes of them 

by applying object and attribute reductions [24]. 

Due to test suite minimization leading to possible compromises in fault detection, 

there have been studies on test suite minimization with selective redundancy [20, 

25]. One of the ways this could be done is by modifying existing heuristics such as 

HGS and creating a secondary criterion for selecting test cases. Definition use pair 

coverage can be used for this secondary criterion, meaning that test cases which 

contributed to this kind of coverage are also added to the reduced test suite. [20] 

Another way of keeping more redundant test cases in reduced test suite is to use 

multiple criteria. If a test case is selected for the reduced test suite with certain 

criterion and some other cases are other cases are redundant based on that criterion, 

other criteria are considered. If those other cases satisfy additional requirements with 

some other criterion, they are added to the reduced test suite. [25] 
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It has been pointed out that non-code changes should affect test suite minimization 

as well as the code changes. Examples of non-code changes would be changes to 

configuration files and databases. These components impact on the behavior of the 

software. As a result, affected test cases should be retested in case of these changes. 

By first gathering the needed information from test cases and their traces, test suite 

minimization can be done with heuristic methods. [26] 

In the field of conservative regression testing, the inputs and region of a failure are 

recorded as well as the necessary steps to repeat it. By using this information, it is 

possible use a constraint-based test case minimization method. A test constraint, in 

this case, describes the ways how a certain failure can be detected. Moving away 

from requirements and code coverage, one is able to use these constrains for 

heuristics in order to select test cases for the reduced test suite by searching for a 

subset of test cases that detect all known failures. This can be done by constructing a 

constraint hierarchy using the steps of the constraints. [27] 

Another hierarchical heuristic method is claimed to be able to minimize a suite 

with even million test cases in adequate time. The method starts by creating a 

mapping of test cases to functions by function coverage of each test case. 

Afterwards, it partitions test cases with similar set of function calls in same clusters. 

In practice, the criterion for clustering can be a threshold of mismatching function 

calls. In following steps, test cases are compared by their functional flow, line 

coverage and branch coverage one cluster at a time. [3] 

2.2.2. Computational intelligence methods 

The claimed successor of artificial intelligence, computational intelligence is inspired 

by biology and nature [18, 28]. Computational intelligence can be used to solve very 

difficult problems that may be considerably nonlinear, discontinuous, correlated or 

complex [28]. With test suite optimization computation intelligence can be identified 

to appear in form of genetic algorithms, swarm algorithms and fuzzy logic [18]. 

Genetic algorithms belong to a higher class called evolutionary computation. 

Evolutionary computation involves natural evolution where “survival of the fittest” 

applies. [28] Genetic algorithms can be divided into three phases: initializing a 

population of randomly generated individuals, evaluating individuals and selecting 

individuals which are combined and mutated to generate new individuals. The last 

two phases are repeated until some condition is met. The individuals represent a 

possible solution. [29] From the objective function point of view, test suite 

optimization with genetic algorithms can rely on code coverage or run time among 

others. This information is used on the fitness value when evaluating individuals for 

next generation. [18] Probabilities for each individual to be selected for next 

generation are computed from the fitness values. One way to do this is to use the 

strategy of roulette wheel where probability is in direct proportion to the fitness. [30] 

Swarm algorithms are the methods of swarm intelligence. These algorithms are 

based on decentralized co-operation of simple individuals which are usually 

unintelligent. Swarm intelligence has been researched with inspirations from 

biological observations of, for example, ant colonies. The pros of swarm algorithms 

are good fault tolerance and simplicity of the individuals which may simplify the 

development process as well. [31] The individuals in a swarm can be considered as 

particles. Hence, we can talk about particle swarm optimization (PSO). In PSO, a 

single particle represents a candidate solution to the optimization problem. The 
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particle flies in the search space according to its current velocity which is based on 

its memory and the memory of its neighbors. The search space represents all the 

possible solutions. [32] 

PSO can be used in multi-objective test suite optimization [32]. Let’s look at an 

example algorithm. First, a swarm with particles of random velocity and position is 

initialized. Second, the particles are evaluated according to the objective functions 

and the best particles are selected. Third, particle velocity and positions are updated 

according to the best particle in the population. Fourth, the population is crossed over 

two by two to create off-spring. Fifth, new off-spring is evaluated and the best one is 

selected. If the stopping criteria are met, the selected particle will be the final 

solution. If not, the algorithm continues from the third step. One can see the 

similarities of this algorithm to genetic algorithms. In fact, this is called a hybrid 

prioritized algorithm since it uses both PSO and a genetic algorithm. [33] 

Moving on to fuzzy logic, there are a couple of capabilities it provides which can 

be seen as attempts at formalizing human decision making and reasoning. First, 

humans make decisions in situations where the information can be uncertain, 

imprecise, incomplete and conflicted. Secondly, these decisions can be done 

rationally without any measurements or computations. [34] Unlike bivalent logic and 

crisp set theory of zeroes and ones, in fuzzy logic, fuzzy sets are characterized with 

continuous range from zero to one [35]. Thus, fuzzy logic maps input vector into a 

scalar output. Fuzzy logic can handle simultaneously both numerical data and 

linguistic knowledge. [36] 

In the context of test suite optimization, fuzzy logic can be used for example to 

make a decision in a tradeoff triangle. In a tradeoff triangle by going towards one 

corner (representing an objective) of the triangle, one goes farther from the others. 

Due to this being a problem in continuous domain, fuzzy logic suites it well. The 

idea is to first compute the membership value for test cases by each objective, which 

could be for instance performance, throughput and code coverage.  The used fuzzy 

sets can be named as not suited, suited and best suited. After this one can determine 

the final crisp suitability of each test case with a method in which the center of 

‘mass’ is calculated. [37] 

2.2.3. Trace analysis methods 

Test suite optimization based on URL traces has been demonstrated to be successful 

in an environment where user sessions have been traced to generate test cases 

automatically. In that environment, each user session starts when a new user, who is 

detected by a new IP-address, makes an HTTP request for an URL. The session ends 

when the user either leaves the website or the session times out. The HTTP requests 

for the URLs are logged for each user session. Thus, a test case consists of a 

sequence of HTTP requests i.e. a sequence of URL traces. The number of sessions is 

large and contains a vast amount of redundant traces. The similarity of two test cases 

is measured by the length of the longest common prefix of their traces [30] 

First, a user session is redundant and can be removed if its trace is a prefix of 

another sessions’ trace because the functionality of the first one is tested in second 

one. This is said to reduce the number of user sessions greatly while meeting the 

same requirements as the original complete set of user sessions. [30] 

Second, elementary programming can be applied to group and prioritize the 

reduced set of user sessions. By grouping user sessions based on their similarity 
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several test cases can be eventually run in parallel. The sessions with the length of 

the longest common prefix in the same predefined threshold value range are grouped 

together, forming four test suites in the study. To prioritize the test cases, the ones 

with the least similarity i.e. suite with the lowest threshold range are prioritized to be 

executed first. Inside the suite, test cases with the longest URL trace are prioritized 

first. [30] 

Third however, a genetic algorithm can be applied to improve the prioritization 

because elementary prioritizing does not provide a very good approximation of the 

best solution. It is suggested that fitness values are based on the length of the longest 

common prefixes where a short longest common prefix results in a good fitness 

value. In the cross-over phase new user sessions can be created which include 

requests from various user sessions. [30] 

2.3. Detecting redundancy 

2.3.1. Overview 

It can be easily seen in chapter 2.2 that the methods of test suite optimization require 

information of what test cases share same requirements, coverage or something else 

with each other. In other words, they require the information of what is redundant in 

order to select the cheapest test cases. This information is not available straight away. 

Thus, this chapter considers the different ways of telling how different and similar a 

sequence is from the others. 

In the case study, test traces are strings but to simplify our problem for this 

literature review, let’s consider that each trace in a test case can be represented as a 

letter instead of a full string. 

2.3.2. Exact string matching 

Exact string matching problem is about finding all occurrences of a pattern i.e. string 

in larger amount of text [12 p.985]. To divide it into more specific problems, let’s 

consider the fact that when the strings are known. First, both the pattern and the text 

are known at the same time. Second, the text is known for some time and then some 

patterns are searched from it. Third and a reverse of second, the pattern is known for 

some time and some texts are then searched with the pattern. [38 p.122-123] In a 

typical situation, the problem at hand is the second one: there is a text available 

where a reader wants to find the occurrences of a pattern [12 p.985]. Determining 

which string is kept fixed is important because that string can be preprocessed to 

make the matching more efficient [38 p.122-123]. 

In worst case, naïve brute-force algorithm for the second case has matching time 

complexity             without any preprocessing. But currently using 

Knuth-Morris-Pratt algorithm, both the preprocessing and matching can be done in 

linear time      and      respectively. [12 p.986]  
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2.3.3. Longest common substring problem 

Longest common substring problem should not be confused with the longest 

common subsequence problem which is presented in 2.3.4. The problems are 

different. [38 p.125] Longest common substring can be abbreviated to LCS [39] but 

for clarity, LCS is used only for longest common subsequence in this thesis. 

Suppose we have a set of strings              and an integer      . In 

longest common substring problem the goal is to find the longest string that is a 

substring of at least   strings in  . [39] 

The problem can be solved using a suffix array which will be presented later in 

chapter 3.1.3. The key point in the solution is the fact that a longest common 

substring for two strings is the maximum longest common prefix of their suffixes.  

[39] 

2.3.4. Longest common subsequence problem 

Longest common subsequence (LCS) is used often in DNA comparisons. A DNA 

strand consists of strings of molecules. There are four possible molecules which can 

be represented with a capital letter in comparisons: adenine (A), guanine (G), 

cytosine (C) and thymine (T). One objective in the comparison is to find out how 

similar two or more strings are. In LCS, this is expressed by finding a common string 

with maximum length that appears in all the compared strings in the same order but 

not necessarily consecutively. Thus, a subsequence of a given sequence is the given 

sequence where some elements may or may not have been removed. [12 p.390-391] 

Let’s look at an example. Assume, we have two strings             and 

           . For instance          with a length of three is a common 

subsequence (CS) to both    and    but not a longest one. Instead, a LCS would be 

          with a length of four. But it would not be the only one because 

          would be also length four of and a LCS. 

To calculate LCS for    and    by a brute-force algorithm, one would have to first 

enumerate all subsequences of   . Secondly, each subsequnces would have to be 

checked if it is a subsequence of    while keeping the currently longest common 

subsequence in memory. If    has   elements it can be proven to have    

subsequences. Because of this, brute-force algorithm has exponential time 

complexity. [12 p.392] 

2.3.5. Dynamic programming 

Review of dynamic programming is included in this thesis because it is usually 

applied to optimization problems and can be used to solve the LCS problem. 

Dynamic programming can be used to solve problems by dividing them into multiple 

problems, subproblems. There may be some overlapping in the subproblems. 

However, all subproblems are solved only once even if they occur multiple times. 

This is done by saving the solution of each subproblem to a table after the 

subproblem is solved. To generalize, dynamic programming can be divided into four 

steps: [12 p.359-360] 

1. Characterization of the structure of an optimal solution. 

2. Recursively defining the value of an optimal solution 
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3. Computation of the value of an optimal solution, generally from bottom to 

up 

4. Construction of an optimal solution from the computed data 

Step 4 can be skipped if only an optimal value is needed and not the solution. When 

also step 4 is included, one usually will have to retain some additional data in step 3 

to compute the corresponding solution efficiently. [12 p.359] 

Dynamic programming may be applied when the problem at hand exhibits optimal 

substructure and consists of many overlapping subproblems. Time- and resource-

wise, many overlapping subproblems should be obvious here because it will enable 

the algorithm to run faster and not compute solutions to new subproblems time and 

time again. On the other hand, optimal substructure in a problem means that an 

optimal solution contains the optimal solutions to its subproblems. This is valuable in 

dynamic programming because an optimal solution to a problem is built from the 

optimal solution of the subproblems. [12 p.379-384] 

To solve LCS problem with dynamic programming, a score matrix [40]       , 
which contains the lengths of LCS of    and   , must be calculated with (2.1) [12 

p.390-393]. In addition to the matched positions, the score matrix also contains the 

unmatched positions. By matched positions, we mean the occurrences of LCS. [40] 

 

        

                                               

                                                            

                                                    

     

(2.1) 

 

  

In the formula, we can see that it calls itself recursively and the if-statements define 

which subproblems are covered [12 p. 393]. The formula can be improved. For 

example, it can be proven that the non-occurrences of LCS do not have to be 

calculated in order to save computation time. [40] 

2.3.6. Sequence alignment methods 

Sequence alignment methods can be divided to global and local alignment methods. 

In global alignment, the goal is to compare similarities of two or more sequences 

from end to end and. In local alignment, the aim is to compare most similar regions 

within the sequences. [41] Another division can be made on the number of sequences 

on the alignment. In the simplest case, pair-wise sequence alignment considers two 

sequences at a time while multiple sequence alignment (MSA) considers three or 

more at a time. [42] Like LCS, sequence alignment has been proven useful in DNA 

and protein sequence analysis [41]. 

The optimization problem in sequence alignment algorithms is to maximize the 

number of positions of matching characters in the strings while minimizing number 

of mismatches. This can be done by adding gaps (denoted by ‘-’) in to the strings to 

move characters to the right for better matching. Alignment is assessed with a score 

function and penalties. The simplest way is to assign a score or penalty for three 

possible cases: matching character, mismatching character and gap. [42] Normalized 

LCS can also be used to calculate the score of sequence alignment by calculating the 

matching characters and dividing it by the length of the alignment [43]. However in 

biology, scorings are usually considerably more complicated because there are 
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usually more specific cases where more than just one character has to be taken in 

account and the location of a difference is important [42]. On the other hand, a 

difference has to be noted between biology and normal texts. In biology, the 

motivation of sequence comparison arises from the fact that organisms are all related 

by evolution which leads to sequences having a lot of similarities. The same cannot 

be said for normal text [44]. 

Like with LCS, dynamic programming algorithms can be used to calculate pair-

wise sequence alignment and produce the optimal alignment [44]. Let’s look at 

Needleman and Wunsch’s full-matrix algorithm. One sequence corresponds to the 

columns and the other to the rows. Cells in the matrix are computed left to right and 

top to bottom with the optimal score in the bottom-right corner. A path between the 

top-left and bottom-right corner represents an alignment. Moving horizontally or 

vertically represents inserting a gap in the opposing sequence. To compute optimal 

solutions, one has to start from the bottom-right corner and fall back to the top-left 

corner along an optimal path. [42] 

 

Pair-wise alignment Matches Mismatches Gaps Norm.  LCS 

T A G A T A C G A 

  
6 1 2 

 

 
 
 

 
 

C A G - T A C - A 

  T A G A - T A C G A 

 
5 2 3 

 

  
 
 

 
 

C - G A T T A - G C 

 C - A G T A - C A 

  
5 1 3 

 

 
 

C G A T T A G C - 

  
Figure 2. Example pair-wise sequence alignments of strings TAGATACGA, 

CAGTACA and CGATTAGC 

Computations in each cell are very light. Thus, the time complexity       does 

not really matter even with large sequences. However, the same space complexity 

does because the matrix gets very large quite fast. The algorithm can be applied also 

to MSA. In this case, the time and space complexity is       where   is the number 

of sequences. This is quite bad memory-wise. However the memory requirements 

have been reduced with, for example, Hirsberg’s algorithm and FastLSA algorithm 

which do not store more than couple of rows at a time and do some recomputations 

of the cells instead. [42] Nevertheless, the amount of sequences is nowadays very 

large and there are problems when aligning many long sequences together. It can 

also be proven that MSA is an NP-complete problem as well. [45] 

To go even more efficiently, there have been uses of heuristic and probabilistic 

methods. As we know, these are approximation methods and may not provide 

optimal but a sort of “best guess” alignment. Currently, one of the most popular 

heuristic MSA methods is progressive alignment. As the name suggests, the full 

alignment is built progressively by first computing pair-wise alignments. After that 

the sequences are clustered together by their similarity scores in order to see the 

relationships between them. From the similarity scores one can compute distance 

scores and afterwards a guide tree based on the distance scores. According to the 

guide tree, the sequences are then added one by one to the alignment and thus 

forming a MSA. [45] 
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3. METHODS 

3.1. Relevant methods 

The relevant methods to the case study are supermaximal repeats, suffix tree and 

suffix array. All of the methods are applied to a test trace consisting of a traced 

message sequence. We consider a repeat in a test trace as a sequence of traced 

messages which appears two or more times in the test trace. Supermaximal repeats 

are relevant because they were used as the starting point for the pair-wise 

supermaximal repeats which are presented in the selected methods. Similarly, suffix 

array acted as the solid building block for the selected enhanced suffix array method. 

Suffix tree is presented here for comparison to the suffix array method because of its 

importance on string processing [46]. 

3.1.1. Supermaximal repeats 

Let us once again consider a string   and an example string              . If and 

only if                                        
   for set                    , R 

is a repeated pair. Thus, in    an example repeated pair is:               because 

                                  . Other repeats would be    ,    ,    ,      
and      . [46] 

Secondly, a repeated pair R is left maximal if                   and right 

maximal if                . It is left maximal and right maximal if the pair 

cannot be extended to either direction and still be a repeated pair. In    repeated pair 

     would be considered right maximal but not left maximal because            
          and                . A repeated pair is maximal if it is both left and 

right maximal. In   , string       would be maximal repeat because            
          and                    . [46] 

A maximal repeat that never occurs as a substring of any other maximal repeat is 

called a supermaximal repeat [46]. In   , the only supermaximal repeat would be the 

only maximal repeat       . However, in                    the only 

supermaximal repeat would be       . 

3.1.2. Suffix tree 

In string processing, suffix tree has been stated as one of the most important data 

structures. Suffix tree has advantages in scenarios where the sequences to be 

analyzed are very large and stationary. Suffix trees have been used a lot in the field 

of bioinformatics where whole genomes are studied. Genomes, as we know, are very 

large. 

Suffix tree could have become popular due to its linear time and space complexity 

     in storage and computation. However, suffix tree suffers from large space 

consumption because, in the worst case scenario, the construction of it requires 20 

bytes per input character. Another problem related to memory is that in many cases 

the memory references are not good in terms of locality which causes performance 

losses in cached processor architectures. [46] 



 

 

 

21 

 

Figure 3. Suffix tree of string            

Suffix tree is a rooted directed tree. It has exactly      leaves that are numbered 

from   to  , where   is the number of characters in the string. The numbering 

represents the start position of a suffix. The extra character at the end of the string is 

a terminal character $ which is considered to be greater than any other character in 

the string. Concatenating edge-labels from root to a leaf forms a suffix of the string. 

And for example, to answer a question: “Is string       a substring of string   
        ?” walk the tree in the order of the characters in the word       starting 

from the root. If all letters are found, the answer is yes. In this case, you should end 

up in leaf labeled with 2 and yes is the correct answer. [46] 

Moreover, following rules apply to suffix trees [46]: 

 Every internal node has at least two children, except for the root 

 Each edge has to be labeled with a non-empty substring of the string 

 No edges beginning from a node can have same beginning characters 

To find the supermaximal repeats from suffix tree, one must consider a couple of 

things. Let’s define a left character as the left most character in an edge label to a 

node. Let’s also define a left diverse node   as a node that has in its subtree at least 

two leaves with distinct left characters. Now, a supermaximal repeat is a left diverse 

node whose children are all leaves and each child has a distinct left character. [47] In 

the example string           , it is easy to see that string     is a supermaximal 

repeat. 

3.1.3. Suffix array 

Suffix array requires less bytes per input characters than suffix tree,    to be exact 

[46]. The currently fastest parallel suffix tree construction algorithm requires the 

construction of suffix array and LCP array which is defined later in this chapter [50]. 

The drawback of the simplest and earliest suffix arrays was that in the worst case 

scenario a suffix array could be constructed in         . However this was a 

special case where the alphabet was small [48] and has since been improved to be 

able to be constructed in     . Also the queries to suffix array seemed to suffer from 

similar problems and took           in the worst case, which has been improved 

to     . [46] 
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Let us consider a string  . Suffix array   of   in its simplest form is a sorted list of 

all suffixes of   [48] and suffix table (suftab) which is an array of integers from   to 

  signifying the lexicographical order of the suffixes [49]. Lexicographical order in 

this case means that the suftab is ordered as the suffixes are ordered so that each 

integer is still on the same row as the corresponding suffix. [49] 

But there has been development in the field of suffix arrays and recently enhanced 

suffix arrays have become very popular data structure for example biological data 

indexing. In enhanced suffix arrays, the basic suffix array is extended with various 

tables that vary depending on the problem at hand. [49] Very often suffix array are 

used with longest common prefix (LCP) information in LCP table (lcptab) [46] or 

LCP array [50]. This lcptab information is the LCP value between two adjacent 

elements in the suffix array [48]. 

To find supermaximal repeats with suffix array, one can enhance suffix array with 

Burrows and Wheeler transform. The output of Burrows and Wheeler transform 

(BWT) is saved into an array, bwttab, with the suffix array. Each            for 

            can be calculated in linear time:                         . If 

           ,           is undefined. [46] 

The above tables were the ones that made it into the implementation in the case 

study but there are many more tables that can be used to enhance suffix array [46]. 

Instead of LCP array one can use permuted longest common prefix array (PCLP 

array) which is faster and more space efficient to construct. In PLCP array, the 

values are stored in the positional order instead of lexicographical order. PCLP array 

construction is a linear time algorithm. [51] However, in most applications PCLP 

array is not usable in itself and the LCP array has to be constructed [52]. This is not a 

problem because even combining LCP array construction from PLCP array and 

construction of the actual PCLP array itself became the fastest known algorithm for 

calculating the LCP array [51]. This was still the case at least in 2011 [52]. Also, by 

using this method it is possible to make a different tradeoff between time and space 

complexity [51]. The algorithm can be parallelized. Thus, one can expect 14.4–21.8 

percent time savings in 40 core systems. [50] 

 
i suftab lcptab plcptab bwttab Ssuftab[i] 

0 4 
 

1 d aabceabcd$ 

1 0 1 0 
 

abcdaabceabcd$ 

2 9 4 0 e abcd$ 

3 5 3 0 a abceabcd$ 

4 1 0 
 

a bcdaabceabcd$ 

5 10 3 3 a bcd$ 

6 6 2 2 a bceabcd$ 

7 2 0 0 b cdaabceabcd$ 

8 11 2 0 b cd$ 

9 7 0 4 b ceabcd$ 

10 3 0 3 c daabceabcd$ 

11 12 1 2 c d$ 

12 8 0 1 c eabcd$ 

13 13 0 0 d $ 

Figure 4. Enhanced suffix array of word abcdaabceabcd$ 
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3.2. Selected methods 

The selected methods are full sequence plot, supermaximal repeats via enhanced 

suffix array, filtering detected repeats and test driven development. These methods 

were chosen so that, first of all, we can get an overview of the sequences in the full 

sequence plot and, secondly, get good amount of meaningful repeats to inspect with 

supermaximal repeats. Enhanced suffix array seems to be the most efficient way to 

find these repeats. Filtering repeats helps removing uninteresting repeats from the 

results while browsing them. On the other hand, Test driven development provides 

unit tests and allows continuous integration for the developed application. 

3.2.1. Full sequence plot 

To produce a plot of a full test trace, we assign a number for each traced message 

and plot them in the same plot one at time. The assigned value is explained in the 

case study. For the x-axis we use the position of each message in the sequence and 

for the y-axis the assigned value of the traced message. In order to see where test 

cases begin we plot straight lines to separate test cases from each other. We then try 

to find repeating patterns from the plot. 

3.2.2. Supermaximal repeats via enhanced suffix array 

An LCP-interval is an interval        of LCP value of   if [46]: 

 

                                                     (3.1) 

                                                                  (3.2) 

                                                                  (3.3) 

                                                       (3.4) 

  

An LCP-interval is a local maximum if [46]: 

 

                                                                 (3.5) 

 

If we combine (3.2), (3.3) and (3.5), we can clearly see that it is sufficient for 

        to be a local maximum in the lcp-table if for any  : 

 

                                           (3.6) 

                                                       (3.7) 

                                             (3.8) 

 

It can be proven that an  -interval and a local maximum         is a supermaximal 

repeat if all elements in                                      are unique. The 

correct string to report as supermaximal repeat is                           
    . [46] 

Let’s introduce a new concept, pair-wise supermaximal repeats. If we have a string 

that can be divided into substrings with some knowledge of that string, we can look 

for supermaximal repeats in each of the combination of two substrings. To find 

further information about the similarities of the substrings, let’s put a distinct 
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character     between two substrings during the supermaximal repeat search.  

Formally, let's define pair-wise supermaximal repeats as supermaximal repeats of 

each concatenated two’s combination of some substrings           of a string   

where the concatenation of the substrings forms the string  . The amount of 

combinations of two is   
 
   

  

        
 

  

       
 . 

For example, consider a string                    . The supermaximal 

repeats of this string would be        and    . Assume, we know that    
                ,                       and                     . 

Then, there will be   
 
    combinations of two. The combinations of   ,    and    

would be                  ,                 and                 . 
Then, the supermaximal repeats that we would find are            , for     
            and                for   ,    and    respectively. Thus, the pair-wise 

supermaximal repeats of   would be                       . 
In the above example, we can see that use of pair-wise supermaximal repeats 

instead of plain supermaximal repeats may lead to reports of similarities where they 

would not have been reported otherwise while leaving out repeats that always occur 

inside another repeat. 

In our case study, test trace messages consist of strings instead of single character. 

Thus, when we apply a suffix array, we consider finding supermaximal repeats from 

a set of strings instead of a string. This will lead to the fact that a suffix and a prefix 

of the set contain set of strings as well, instead of a string. Thus, LCP value is 

calculated by the longest common prefix of sets, in other words, most common 

strings counting from the beginning. Similarly, BWT value will contain a string 

instead of a single character. With pair-wise supermaximal repeats, there is a distinct 

string instead of a distinct character between two set of strings. If we could assign a 

single character for a test trace message, we could ignore these changes and run 

suffix array normally. However, due to the unknown number of distinct messages, 

this is not possible. Case study environment is discussed more specifically in chapter 

4.1. The found pair-wise supermaximals repeats are compared in overview to found 

supermaximal repeats in chapter 5. 

3.2.3. Filtering detected repeats 

Each repeat contains information about its length and how many times it occurs. 

These values are used as maximum and minimum filters. Each repeat also contains 

information of the sequence itself which is also used as a filter. In the case study, all 

filters can be adjusted manually while browsing the results. A few results with 

different filter settings are presented for the case study. 

3.2.4. Test driven development 

Most of the code for the case study of this thesis was written with Test driven 

development (TDD) method. TDD follows a pattern where tests are written before 

the production code. First step in development is to write a failing unit test. Second 

step is to run all tests and see the test fail. Third step is to write only the amount of 

production code that will make the failing test pass. No new production code should 

be written if all unit tests pass. Similarly, no new unit tests should be written if a unit 
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test fails. Fourth step is to run the tests and see if all tests pass. Fifth step is to 

refactor the code to remove duplicates etc. Both the unit tests and the production 

code are refactored. After fifth step, the cycle is repeated starting from the first step: 

writing a failing unit test. [53 p.1-14] 

Mocks are objects that act as other objects by imitating their behavior and 

therefore require Object-oriented programming (OOP). Mocks are often used in TDD 

because sometimes the unit tests would take too long to run or might run 

inconsistently otherwise. It is also possible that without mocking the tests may not be 

run at all and the test scenario would be very hard to recreate because of long 

dependency chains etc. With mocks, developer can test the interaction of an object to 

its neighboring objects by tracking what parameters are used to call a method and 

how many times certain method was called. In result, mocks make unit tests faster 

and easier. [54] 

Code coverage and running times of the unit tests are presented in the results. 
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4. EXPERIMENTS 

4.1. Case study CI environment 

4.1.1. Jenkins 

Jenkins is an open source continuous integration server that can be used to run and 

monitor repeated tasks automatically. These tasks include building and testing 

software, but virtually, Jenkins can run any given task which can be automated. 

Whenever a build or test fails an email or RSS can be sent. Because Jenkins can 

distribute build loads to multiple computers, Jenkins is also a good tool for 

monitoring the executions of externally run jobs like cron jobs. Jenkins is used in 

various companies such as Atmel, Dell, eBay, Facebook, GitHub, NASA, Netflix, 

Sony, Tumblr and Yahoo!. Total number of reported Jenkins installations is over 

100 000. There are also many Jenkins servers publicly available and Jenkins is used 

in some open source projects. [55] 

Jenkins can be extended by using the various plugins that already exist or by 

writing a new one. There are many plugins for source code management, build 

triggers, build tools, build wrappers, build notifiers, slave launchers and controllers, 

build reports, publishing, other post-build actions, UI, authentication and user 

management, parameters and many other things. [55] 

Every task in Jenkins is run in a job. Each execution of a job is referred to as a 

build. Builds can have different outcomes. A few of the most common are 

successful, unstable and failed. When a build is successful, it was built with no 

errors. On the other hand, if some errors occur, for example failed test cases or some 

other error is reported, the build is usually unstable. However, build is considered as 

failed if during the build something broke and for example needed output files could 

not be produced. There are also configuration options to set builds failed if for 

instance some percentage of test cases failed. [55] 

Jobs can launch other jobs depending on their status. For example, application can 

be continuously published when certain jobs are successful. A job, which is launched 

by other jobs, is called their downstream job. And in reverse, a job that launches 

other jobs is called their upstream job. [55] 

4.1.2. Robot Framework 

Robot Framework is an open source python-based tool designed for test automation. 

Nokia Networks supports the development of the core framework. [56] Robot 

Framework can be extended on top of the built-in keywords. The key uses lie in the 

field of acceptance testing. Robot Framework enables testing distributed and 

heterogeneous applications that have to be verified using various interfaces and 

technologies. This is possible because the core framework knows nothing about the 

target system that is tested and the test libraries handle the interaction as can be seen 

from the high-level architecture in Figure 5. Keywords in Robot Framework are 

basically functions and can both accept arguments as well as return values. Each 

high-level keyword consists of lower level keywords. Ultimately, a lowest level 
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keyword executes a simple action like transmitting a message. [9] In this thesis, we 

will refer to the path from the highest to lowest level keyword as keyword path. 

 

 

Figure 5. Robot Framework high-level architecture 

Test suites in Robot Framework are directories and files. Because of the tabular 

syntax and two spaces acting as a separator, test cases can be written to be read easily 

because keywords and names allow one space between words. Keywords and test 

cases can also be written in Python and in Java when running Robot Framework on 

Jython. Writing libraries in C is also supported by the Python C API or through 

Python’s ctypes module. [9] 

Robot Framework also supports creating test templates which convert the common 

keyword-driven test practice into data-driven tests. This allows creating test cases 

with same keyword calls without specifying the keywords explicitly in each test case 

with the same keyword pattern. In these “templated” test cases, only the used 

template test case and arguments to the keywords are specified. [56] 

In addition to test suites, tests to be run can be chosen by different parameters. 

Simple way is to specify test names by using --test command line parameter but test 

cases can be also tagged. This way it is possible to include test cases that contain a 

certain tag and exclude test cases that contain another. Among these there are many 

other test case selector parameters. One can include non-critical tests or critical tests. 

Other possibility is to use .txt argument files to define test cases that should be run. 

[9] 

Robot Framework provides HTML reports and XML output files for the tests [9]. 

There is a Jenkins plugin for Robot Framework that can be used for collecting and 

publishing the results in Jenkins [56]. The outputs can be post-processed using Rebot 

tool [9]. 

There are five log levels in Robot Framework. In the ascending order of the 

amount of detail, they are FAIL, WARN, INFO, DEBUG and TRACE. TRACE is 

the most detailed level that logs even the keyword arguments, timestamps and return 

values while FAIL can only be used by the Robot Framework itself. [9] 
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4.1.3. Case study software component testing 

There are multiple CI systems in use for Nokia Networks but for this case study, we 

are concentrating on only one of them and particularly on system component testing 

part of it. For the remaining part of this thesis, let’s refer to this area as case study CI. 

Let’s also define that the software application that this case study CI tests is called 

case study software application and the testing itself is called case study SCT. 

In the case study CI, the main tools for the running CI are Jenkins, Robot 

Framework, Subversion (SVN), test servers, test PCs, cloud computers, test units 

where the application being tested is run, Jenkins radiator PCs and reservation 

system for test units. The developed case study software application along with case 

study SCT tests lie in SVN version control repository where the code can be 

checkout to test servers. These test servers are used by the developers and Jenkins 

which runs tests automatically. The test servers mainly exist for developer and 

Jenkins workspaces. 

The test units can be reserved automatically when tests are run regardless of 

whether the tester is a developer or Jenkins. Test PCs can be either virtual or physical 

but they are connected to the test units and send messages between each other which 

can be traced and will be referred to as case study test trace messages for the 

remainder of the thesis. 

Cloud computers can be used for compiling the case study software application 

and for other tasks which do not require the test units. Jenkins radiator PCs show the 

current status of the Jenkins builds to developers. 

There are different regression tests run in Jenkins products. For the case study, we 

choose one of the most actively run regression test job which takes for average 20.9 

minutes to run while the standard deviation is 5.29 minutes. These numbers were 

calculated from the last 247 builds. At the time of writing, the number of test cases in 

the regression test is 645. The regression test is divided to 12 sections which run in 

parallel. This means that 12 test cases can be in execution at a given time, dividing 

the total execution time by 12 in theory. However in practice, sections tend to have 

different durations, initial test environment setups have to be done for each section 

and the results of each section have to be joined together. These all add to total 

execution time. 

The tests are run with Robot Framework with various custom Python and Robot 

keywords to test different functionalities of the software. Basically, it setups the test 

unit and gives actions to the test unit by sending messages and asserts the responses. 

Most teardowns are also done by sending messages. Because of this, most of the test 

sequence information is in the traced messages. The messages can be seen as an 

application interface in Figure 5. 

The messages in the test trace consist of a header and the rest of the message. In 

the header, we can find two important parts for our case study. We have an ID 

(msgId) and a corresponding type name for the message. Rest of the header 

information is not relevant to the case study. 

Test case durations and outcomes are saved in a database for longer period of time 

than in Jenkins. From there one is able to look for test case execution history, for 

example, when the test case has failed before etc. 
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4.1.4. Command line tool of MRS Finder 

The developed application in this thesis, MRS Finder (Maximal Repeat Sequence 

Finder), consists of two parts: Python command line tool and HTML results browser. 

We are not going to discuss the whole implementation because that would take quite 

a lot of pages. Instead, let’s consider what was implemented as well as what issues 

that arose and how they were handled during the development. We start by looking at 

the command line tool. 

Let’s begin with the input and output specifications which are described in Figure 

6. For input, we take in the output.xml that is generated by the Robot Framework 

after tests have been run [9]. Other inputs are the command line parameters that can 

be used to get different outputs. Main outputs are two JSON files. msgs.json file 

which contains the messages in smaller format than the output.xml and seqs.json file 

which contains the repeats that were found. Other output variant is a plot with the 

msgId:s in decimal format on the y-axel and message index number on the x-axel. In 

the plot, a line from the bottom to top separates test cases visually. Later on, we will 

refer to this plot as msgId plot. 

 

Figure 6. Input and output variants of command-line interface (CLI). Different 

command line parameters yield either JSON files or msgId plot. 

Command line tool was developed with test driven development (TDD). In this 

project, unittests were written using Python’s “de facto” standard unit testing 

framework, unittest library [57]. A Jenkins job was also configured to continuously 

run the unit tests while commits to the repository of the application were made. 

Moving on to XML-parsing, there was already code available for printing all the 

traced messages and the corresponding keyword path from the Robot Framework’s 

output.xml. However, we needed to store them instead of printing to construct suffix 

arrays. To store long messages more memory efficiently, we hash the message after 

the header with MD5 hash function. This leads to a message containing a header and 

a checksum of the remainder of the message. We store only the messages sent to the 

test unit because two sequences with same sent messages should have also same 

received messages application-wise in theory. Robot Framework keyword 

timestamps, msgId:s and test case names were also stored for each message. Test 

case start indexes were also stored for easier combination creation when searching 

for pair-wise supermaximal repeats. If a keyword failed in a test or message cannot 

be parsed from the trace, it is skipped. 

Computation of maximal, supermaximal repeats and pair-wise supermaximal 

repeats are described in chapter 3.2.2. The only addition that should be mentioned 

here is that sorting the list of suffixes was done without any distinct character or 
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string at the end of the suffix. Instead, if two lists were the same until the end but 

either was shorter, the shorter list would be considered greater and therefore act as it 

had a distinct greatest character or string at the end. Sorting the suffix array is done 

by using Python’s built-in sort() method for lists where an item in the list is a suffix 

and a suffix contains messages i.e. strings. 

Like mentioned in chapter 4.1.3, a regression test build contains 645 test cases, 

which means that for pair-wise supermaximal repeats we would have to consider 

    
 
          combinations of two. However, we also have 12 section setups 

which raises our number of combinations of two to     
 
         . However, 

some cases execute teardowns outside the actual test case. Therefore, there are 

actually even more combinations of two,         to be exact. To counter the 

amount of suffix arrays, the supermaximal repeats for the each combination can be 

computed in parallel threads. The number of threads is configurable in the input 

parameters. The workload is divided to threads so that each thread gets same amount 

of pseudo-randomly selected combinations to calculate. Duplicate pair-wise 

supermaximal repeats that appear in one thread can be removed inside the thread. 

However, because we may get duplicate repeats between threads, we have to remove 

those in the main thread. 

 
Python library Library description [58] Reason of use 

datetime Handles date and time operations Converting Robot Framework 

timestamps to more familiar format. 

glob Unix style pathname pattern 

expansion 

Finding files that match a pattern in 

unit tests 

hashlib Interface to many secure hash and 

message digest algorithms 

MD5 hashing of messages while 

parsing output.xml 

itertools Functions creating iterators for 

efficient looping 

Iterating over combinations 

json JSON API for Python Creating test cases. Creating output 

in JSON format. 

matplotlib 2D plotting library. pyplot module 
provides MATLAB-like interface 

[59] 

Showing and interacting with msgId 
plots. 

multiprocessing Supports spawning processes to get 

around Global Interperter Lock 

Parallel processing 

os Miscellaneous operating system 

interfaces 

Enable writing and reading files in 

different directories. 

random Pseudo-random number generators Pseudo-randomly dividing workload 

for threads 

re Regular expression operations Finding traced messages in the 

output.xml 

shutil High-level file operations Recursively deleting testing directory 

in unit test teardowns 

subprocess Allows spawning new processes Unit testing command line 

parameters of the implementation. 

sys System-specific parameters and 

functions 

Finding Python version in use 

time Various time-related functions Measuring durations of 

functionalities 

unittest Python unit test framework Creating and running unit tests 

xml.etree.cElementTree C implementation of  XML API for 

Python. 

Reading output.xml. 

Figure 7. Python implementation dependencies 
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Although we are talking about threads, Python’s threading library is not used but 

Python’s multiprocessing library. This is because the threading.Thread object cannot 

utilize multiple processor cores because of CPython’s global interpreter lock [58]. 

However, multiprocessing.Process object can utilize all cores because it uses 

subprocesses to run the threads [60]. When multiprocessing.Process object’s start 

method is called it actually starts a subprocess [60]. All Python implementation 

dependencies are presented in Figure 7. 

The command line tool is run on a cloud computer with 30 cores and 2 TB of 

RAM. In the case study CI, tests are not normally traced because the output files 

sizes are then considerably larger and the results should be kept for a while. When 

tests are run with traces, output.xml can be over 1.9 GB in file size. However, if 

tracing is not used and some passed keywords are removed from output.xml, the file 

size is around 30 MB. This is why traced tests are run only once a day by a different 

Jenkins job. The implementation itself is run in a downstream Jenkins job of the 

tracing job. 

4.1.5. Results browser of MRS Finder 

 

Figure 8. An overview of the results browser 

The result browser was built with using HTML, SCSS (Sassy CSS), CSS (Cascading 

Style Sheets), javascript and jQuery. Sass (Syntastically Awesome StyleSheets) can 

be used to extend CSS with variables and imports among others. SCSS, the language 

of Sass, can be compiled to CSS. [61] jQuery is a JavaScript library which has been 

designed to make HTML object reading and writing, event handling, animations and 

AJAX (Asynchronous JavaScript And XML) operations simpler. Another advantage 

of jQuery is that it works on multiple browsers. [62] 

The result browser was also developed using TDD. JavaScript library QUnit was 

selected as the testing framework because it provides reasonably good 

documentation and setting it up is quite easy. Tests can also be run quite fast and 

interactions can be tested automatically. [63] As an example of interaction testing, 

we have tests where clicking a certain object should set the class of another object 

correctly. Because the JavaScript for the results browser is written in object-oriented 
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way, code can also be mocked quite easily by overriding methods to only save the 

parameters that they were called with. 

In Figure 8, we can see that there are three main objects in the results browser. On 

the left there are a filtering tool and all the reported results that match the filters. By 

default, all repeats are visible. The filters include a maximum and minimum filters 

for length and repetition times (amount) of the repeats as well as msgId filter for 

removing repeats that contain certain msgId. There is also a reverse tool, search tool, 

in the filter tool for looking only repeats that contain certain msgIds. Filter tool is by 

default minimized and can be collapsed and minimized while retaining the data in it. 

Repeats that pass filters are shown below the filtering tool in a table. The repeats 

can be sorted based on their length, repetition times (amount), average (AVG) 

duration and standard deviation (SD) of their durations. Each repeat is represented by 

the sequence of the msgIds in hexadecimal format in the message sequence. 

Clicking on a repeat opens up “Specs view” object on the right where one can 

examine the repetition in more detail. In the Specs view, there are two objects: 

occurrences list and comparison tool. Each occurrence of the repeat is represented in 

the occurrence list. When first opening the Specs view, the comparison tool is hidden 

before two occurrences are selected from the occurrences list. In the comparison tool, 

both selected occurrences can be compared message by message. The same messages 

in each of the two occurrences are represented side by side. 

All messages are minimized when the comparison tool is opened. Messages can be 

collapsed and minimized at will. A minimized message only shows the index of the 

message in the whole test run. Collapsed message shows the test case name, message 

name, msgId, keyword path and time delta (  ) of the message. Time delta is the 

time taken since the first message in the occurrence. Therefore, for the first message 

in an occurrence, the following is always true:     . 

4.1.6. Analysis of repeats 

As a basis of our case study analysis, we use a traced regression test run with 645 test 

cases where eight of them failed and rest of them passed. Four of the twelve sections 

contain failed tests cases and all tests passed in the other eight sections. 

To get an overview of the results all supermaximal and pair-wise supermaximal 

repeats reported by the MRS Finder are copied to Microsoft Excel to make graphs 

about the amount of repeats and occurrences as well as average durations etc. We 

compare the results of supermaximal and pair-wise supermaximal repeats. 

We also take a look at some specific pair-wise supermaximal repeats and analyze 

their occurrences with help from a case study software and SCT specialist. We start 

by sorting the results by decreasing average repeat duration in order to try to find the 

repeats that cost most to run. In this phase, we consider four filtering scenarios: 

A. Minimum repeat amount 30 

B. Minimum repeat amount 10 and minimum repeat length 30 

C. Minimum repeat amount 10 and ignore some previously appeared msgIds 

D. Ignore some previously appeared msgIds 

For comparison, we continue the analysis by filtering out repeats that are only one 

message long and sorting the results by each field one at a time, thus considering top 

repeats in four sorting scenarios: 

A. Sort by amount in decreasing order 

B. Sort by length in decreasing order 
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C. Sort by average duration in decreasing order 

D. Sort by duration standard deviation in decreasing order 

For filtering scenarios, we pick repeats randomly from the top of the list for 

analysis, but for each sorting scenario, we pick the top five. We make notes about the 

repeats that are considered and present their characteristics in the results. The 

characteristics are tied into regression testing, test suite optimization, test case 

structure and mocking. 

4.1.7. Implementation statistics measuring 

Class and line coverage of Python unit tests among others can be measured using a 

tool called nose which can be installed using standard Python package installer, pip 

[64]. In this thesis, nose was used in a our continuous integration testing job to run 

the test, produce a coverage report and measure execution time of each unit test. 

Additionally, a Jenkins plugin called Cobertura Plugin was used to publish the results 

in readable format. From there, the results were copied to Microsoft Excel and 

formatted for more thesis suitable format. The continuous integration testing job was 

run on a machine with Intel Core 2 Duo and 4GB of RAM. 

Suffix array creation is measured with 5730 messages long sequence. This 

sequence is assumed to be quite a bad case scenario with lot of repeats. We measure 

suffix array creation algorithm by measuring time it takes with the first 10, 100, 200, 

300, 400, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 

3500, 3750, 4000, 4250, 4500, 4750, 5000, 5250, 5500 and 5738 messages from the 

sequence. We run this experiment on a laptop with Intel Core i5 and 4GB of RAM. 

For the normal use case scenario, statistics are measured by running MRS Finder 

command line tool with 25, 30, 40, 50 and 70 threads with same data to find pair-

wise supermaximal repeats as we use in the analysis. For comparison, we also run 

MRS Finder to find supermaximal repeats in one thread. These measures were run on 

the cloud computer with 30 cores and 2 TB of RAM. 

4.2. Results 

4.2.1. Implementation statistics 

Figure 9 shows the line and class coverage of unit tests that were created during the 

development of the command line tool part of MRS Finder. It can be seen from the 

figure that the total class coverage is 100 percent while the total line coverage is over 

90 percent. 

The least covered module, msgid_plotter.py, is covered only 60 percent due to the 

fact that most functionality for the msgId plot is implemented in there. The 

remaining 40 percent of code include, for example, mocked parts of the UI that were 

tested manually. 

The main module find_same_message_sequences.py has only 83 percent line 

coverage due to some parts being tested by launching the application in a subprocess. 

Code covered in a subprocess is not tracked in nose. This kind of testing is used 

mainly for command line option parsing and print outputs testing. This occurs also in 

msg_parsing.py. 
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Figure 9. Line and class coverage of command line tool unit tests. 

By considering all of the facts mentioned here, the total line coverage is actually 

even higher and probably quite close to 100%. 

All 119 unit tests pass in the continuous integration job in 2 minutes and 9 

seconds. This gives the average of one second per unit test. However, most of the 

time is spent on a one and half minute suffix array creation performance test which 

can be skipped during development by setting one boolean value to true if 

performance information is not required at the moment. Also it should be noted that 

99 unit tests run under 10 milliseconds each. 

 

Figure 10. Duration measurements of suffix array creation algorithm with different 

amount of messages. 

Suffix array creation measurements can be seen in Figure 10. The figure suggests 

that the implemented suffix array creation algorithm is not time linear but 

exponential. This is probably caused by the fact that suffixes are sorted with an 
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algorithm where decision about which of two suffixes is larger is done by comparing 

messages one at a time in two suffixes and one character at a time in messages.  

Another factor is that a time linear suffix array creation algorithm was not used as a 

basis in the implementation. 

 

 

Figure 11. Duration measurements with different thread settings for pair-wise 

supermaximal repeats finding compared to duration measurements of supermaximal 

repeats finding. Note that XML-parse, duplicate removal and finishing up are 

actually not run in threads. 

 

Figure 11 shows time measurements from the whole implementation. However, 

there are some notes that should be made before drawing any conclusions from it. 

First, the XML-parse, final duplicate removal and finishing up phases are always 

done in one thread, the main thread. XML-parse is not affected by threads at all but 

the inputs of final duplicate removal and finishing up phases are. From the graph we 

can see that removing duplicates in the main thread gets slower as we add threads. 

This is probably because more duplicates are found between threads when there are 

more of them.  

Finishing up phase should always get same input but it may be in different order 

with different amount threads because the workload is distributed pseudo-randomly. 

What finishing up phase does is that it formats the output in the correct format and 

writes the output files. 

Second, supermaximal repeats are run only on the main thread due to technical 

reasons and cannot produce duplicates. Therefore, final duplicate removal phase is 

not applied to supemaximal repeats. 
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The first and most noticeable fact that can be seen in the figure is that the 

supermaximal repeats are tremendously cheaper to calculate than pair-wise 

supermaximals time-wise. It is faster to create one large suffix array of all messages 

than couple hundred thousand smaller suffix arrays with 30 of them in parallel at a 

given time. Another big factor is that the suffix arrays in thread take about two and a 

half hours even when run 30 in parallel. 

Secondly, it can be seen that the time spent does not decrease much after 30 

threads are reached because then the CPU will have to start scheduling the processes 

on its 30 cores. However, small improvements are possible with some extra threads 

because threads seem to end at different times. For example, when first thread of 30 

threads ends then that core is not utilized any more. With 40 threads, 11 threads have 

to end before a core is not in full use. Therefore 40 seems to be the optimal amount 

of threads out of the measured thread amounts. The small increase in standard 

deviation of thread duration from 30 to 40 threads supports this. 

 

 

Figure 12. Distribution of thread durations with 50 threads on 30 cores. Average 

duration is 2:08:09 and standard deviation is 0:08:41. 

The phenomenon of threads not ending at the same time is probably an effect of 

threads having different workloads because some suffix arrays are harder to create 

than others. The distribution of thread durations is visualized in Figure 12 for 30 

threads. It seems that the last thread may end even almost an hour later than the first. 

The total output file sizes of the command line part are 62.98 MB for 

supermaximal repeats and 63.56 MB for pair-wise supermaximal repeats. Most of the 

total file size consists of messages (62.56 MB) which is same for both. 

4.2.2. Message ID plot 

Message ID plot, which we refer to as msgId plot, shows the all traced messages as 

red balls in the order they appear in output.xml. The x-axis represents their ordinal 

number i.e. index and y-axis represents their msgIds in decimal format. A line from 

the bottom to top in the plot represents a beginning of a test case. Thus, a space 

between two lines represents one test case. The wider the space for the test case the 
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more messages it has. The figure can be zoomed to any range. A full msgId plot is 

shown in Figure 13 and a couple of zoomed plots in Figure 14 and Figure 15. 

The balls are interactive in the plot. Clicking on a ball shows the corresponding 

msgId and test case name on top of the plot. The click also produces a print in the 

console terminal where the MRS Finder was run from. In the print, there is additional 

information about the keyword path and the full message along with the information 

that appears also on top of the plot. 

In Figure 13, the last ball is in x-axis at index 68010 which means that there are 

68009 traced sent messages in this regression test because the first message has an 

index of zero. The msgIds range from 2139 to 60970. 

 

 

Figure 13. Full msgId plot of sent messages. 

In Figure 14, the plot is zoomed so that the x-axis (indexes) now ranges from 

58970 to 64461. In Figure 15, the range for x-axis is kept the same but the y-axis 

(msgIds) is also zoomed to range from 39403 to 40223. Thus, in the shown test 

cases, some of the messages that were visible in Figure 14 are not visible in Figure 

15 because they are above or below the range. 

 

 

Figure 14. Zoomed msgId plot ranging from 58970 to 64461 in the x-axis. 
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Looking at the Figure 13 we see that some test cases have more traced messages 

than others and there are big ranges in y-axis where there are no messages. We can 

also see that there is couple of test cases that have more messages than others. Some 

small ranges in the y-axis seem to be used often, almost constantly, while other 

ranges are not used at all. 

We see that there seems to be some repetition in the patterns of msgIds by looking 

at Figure 14. The same figure also indicates that one test case trace may contain 

messages with both very high and low value of msgId. 

By looking at the Figure 15, we can see that msgIds, that appeared the same in 

Figure 14, may not be the same in fact. However, we can still see that there may be 

some repeated patterns. 

 

 

Figure 15. Zoomed msgId plot ranging from 58970 to 64461 in the x-axis and 

from 39403 to 40223 in the y-axis. 

4.2.3. Overview of found repeats 

 
Figure 16. Comparison of pair-wise supermaximal repeats and supermaximal repeats  
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Figure 16 shows that overall that there are 
    

    
     times more pair-wise 

supermaximal repeats than supermaximal repeats in the test trace. By average, there 

are also 
    

   
     times more occurrences of a single repeat and, in total, 

     

    
 

     times more occurrences. Average repeat length is greater for supermaximal 

repeats by 
    

    
     times. Average duration for a repeat cannot be measured for 

supermaximal repeats reliably because the supermaximal repeats may occur between 

sections, but for pair-wise supermaximal repeats, it is about one second. 

 

 

 

Figure 17. Amount of occurrences of pair-wise supermaximal repeats by their 

length. In total: 52370 

In Figure 17, we can see the length distribution of occurrences for pair-wise 

supermaximal repeats. It seems that there are many occurrences that are quite short. 

Almost 75 percent of occurrences seem to have length of 4 or lower. However, there 

are thousands of occurrences that have length of over ten and hundreds of 

occurrences whose length is measured in tens, hundreds or even thousands. 

 

 

Figure 18.  Average duration of pair-wise supermaximal repeats by their length 
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As the average length of the pair-wise supermaximal repeats is only 15.5, it can be 

quite hard to make linear plot of how a repeat length corresponds to duration. Either 

way, in Figure 18, we see that Microsoft Excel gives us a trend line that suggests that 

a longer repeat usually yields to a longer duration. However, we can see that there 

are many measurements that do not quite agree with the line. It should be noticed 

that the longest duration is not around 135 seconds because there are four repeats 

found for the length of 61 and the average of them is around 135 seconds. The 

longest average duration of a repeat is actually 531.310 seconds. 

Figure 19 shows that there are less occurrences of supermaximal repeats than 

occurrences of pair-wise supermaximal repeats. It also shows that occurrences are 

distributed more on the longer end but there are not many very long occurrences. 

 

 

Figure 19. Amount of occurrences of supermaximal repeats by their length. In 

total: 2214 

 

4.2.4. Analysis of specific repeats 

In filtering scenario A, we find 261 pair-wise supermaximal repeats. Out of these 

repeats we find out that 28 of them contain one same msgId that is related to 

requesting a CPU load measurement from the test unit. Let’s refer to this msgId later 

on as α. The repeat with the longest average duration (2.1 seconds) occurs in 

teardowns of 32 different test cases. For the case study SCT, this request is needed 

for checking some kernel errors in the test unit. This kind of measurement is usually 

also done in test cases that test capacity of the application. By looking at the other 

repeats that contain the same msgId it seems that there are over 300 test cases that do 

this check in their teardown. 

Another sequence that is near the top of the list relates to checking status of 

resources and setting up test case environment in the test unit. This happens in 

hundreds of test cases. The repeat takes from half a second to three seconds every 

time to execute. In the case study SCT, it may be possible that these setups can be 

run only once at the start of a test suite instead of running it before each test case. 

Following these two, there is a repeated sequence that relates to assertion phase of 

test cases and is about verifying correct data transmission. However the amount of 

data seems to be varying from test case to another, which may indicate that the 
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message that is received could be varying too. There are also some near duplicates of 

this msgId sequence where the length is either longer or shorter. 

Next up, there is a repeated sequence consisting of a test case setup which is used 

in multiple test cases that test same feature in different scenarios. This includes 

setting up mocks, measuring the CPU loads and setting some variables. This repeat 

occurs in 66 test cases and takes 0.773 seconds by average which means that the total 

time spent repeating it is about 51 seconds. This setup sequence is mandatory for 

some test cases but it should be investigated if it is used where it is not needed. Some 

optimizations for the repeat execution can also be possible. These settings may also 

be possible to set as default settings in initialization phase of a test suite rather than 

before each test case. 

We also find a repeat which runs quite fast with duration of just over 0.1 seconds. 

The repeat is run on the action part of a test case. Any optimization benefits would be 

quite small with this repeat. 

By looking quickly at the rest of the repeated sequences in scenario A, it is hard 

not to notice that most of the repeats are about setups or teardowns. There is also a 

lot of mock configuration which could probably be avoided by setting the mocks in 

the initialization phase with some default parameters of a test suite rather than setting 

them up every time in each test case setup, similarly to a repeat mentioned before. 

Moving on to filtering scenario B, we only find 15 repeats and some of them seem 

to share same subsequences. First, we have a repeat that consists of regression test 

initialization phase in each section. Naturally, it occurs 12 times because of the 12 

sections. By average it takes about a minute with a couple seconds of standard 

deviation. This part consists of more than sending messages and is often optimized in 

other ways in case study SCT. 

Second, we have a repeat that contains previously mentioned msgId α again 

among others. The repeat occurs in a capacity test setup. The repeat takes 22.198 

seconds in average and occurs in 12 test cases, which means that the total time spent 

in the repeat is well over four minutes. Some of the capacity test cases are requested 

by the customer of the developed product but a hypothesis is that some of the other 

capacity test cases may be redundant and can be removed. However, this information 

is not found in here. Either way, this should be looked into more closely. 

Third, we have yet another test setup related repeat. The repeat consists of smaller 

capacity test scenario setup and some CPU load measurement initialization. 

However, the occurrences of the repeat are not in the same test suite as the previous 

capacity tests. The repeat is 47 messages long, takes 3.357 seconds by average and 

occurs in 10 test cases yielding to 33.57 second total cost in the regression test. 

Fourth, we notice a shorter version of the previous repeat which occurs in five 

more test cases and takes by average 2.577 seconds. That costs 38.655 seconds in 

total in the regression test. This repeat does not contain some of the CPU load 

measurement initialization and is only 32 messages long. 

Rest of the repeats found in filtering scenario B are mostly about testing a certain 

feature in the case study software application. The feature is tested in multiple 

scenarios and the average duration of the repeat is about one second. Occurrences are 

within 10 to 18. 

In filtering scenario C, we get quite short repeats in terms of average duration but 

we do get a lot of them, 371 to be more specific. The longest average duration is only 

0.642 seconds and it is again about setting up the environment even though in the 

SCT Robot keyword it is explicitly said in the actual test part of each test case 



 

 

 

42 

instead of their setup. Otherwise, the test cases seem different and should not be 

redundant with each other. Because the amount of occurrences is 11, the total time 

spent in the repeat is about 7 seconds. 

Next, we have a repeat that is overlapping with itself in two test cases and 

therefore reported as 122 occurrences with a length of 42 messages. An example of 

two occurrences in comparison is presented in Figure 20. The test case in the figure 

is reported to have 120 occurrences where actually two different messages are 

repeated 262 times after each other. In the other test case the repeat is reported to 

occur two times meaning that the two messages are occur 22 times each. 

 

 

Figure 20. Overlapping occurrences of a repeat. Occurrence on the left contains 

messages #623 and #624 which are same as #625 and #626 as well as #627 and #628 
respectively and so on. 

After the overlapping repeat, we find four repeats more that are related to setting 

up test environment. Two of the repeats are almost the same with each other but 

differ by length of one message and the one with less messages appears in two test 

cases more. These four repeats occur 11 to 13 times and last less than half a second. 

Next, we have a repeat of a teardown that occurs for all test cases in a certain suite 

but there are test cases in other suites where it occurs. The keyword name of the 

teardown changes between suites, which indicates that it has been implemented 

multiple times. 

Then there is a repeat that occurs 27 times with length of 17 messages and average 

duration of 0.404 seconds, which adds to 10.908 seconds in total. The test cases 

where the repeat occurs are created with a test case template. The repeat occurs at 

setup phase of the test cases. 

For the rest of the repeats in filtering scenario C, there are various repeats that 

seem familiar to the already inspected but are bit shorter. Most of them also seem to 

relate to test case setup at first glance. 

On the final filtering scenario D, we get even more repeats (1707) by removing the 

minimum amount filter. First up, there is an overlapping repeat where a two message 

long repeat occurs only in one test case. The repeat happens in the action part of the 

test case. The test case tests data transferring and the same data being sent over and 

over is visible here. 

Next from the top, we have a repeat that occurs three times and is 1678 messages 

long with an average duration of 30.846 seconds. This means that more than a 

minute and a half is consumed in total. The repeat consists of deleting users from the 

application in teardown phase. This is done with a certain Robot Framework 

keyword in a loop but in the case study software application there is a faster way for 
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deleting users. Thus this repeat can be optimized. Two repeats after it are about the 

same repeat but in different versions appearing in longer and shorter versions where 

they have one less and one more occurrences respectively. The one with four 

occurrences takes one minute and 45 seconds in total. 

Moving forward, we have an overlapping repeat in a test case where 20 messages 

are repeated over and over. It is a logging level test. In case study CI, a lot of tests 

use logging information and therefore they should fail if logging breaks. The same 

msgIds as in the repeat can also be found in numerous other repeats by using the 

search tool. The bad thing is that the logging test takes about 25 seconds to execute 

and in the actual Robot test case it literally reads: repeat a keyword 100 times. From 

the test result database, we can see that the test has not been broken in a while. 

Next up, there is another overlapping repeat that occurs in one test case. This time 

though, 353 messages are repeated over and over. The repeat resides in the action 

part of the test case where data is transmitted between the couple of mocks and the 

test unit. The repeat is reported to have duration of about 18 seconds. 

The sorting scenario A is very hard to analyze because the amount of occurrences 

is quite high and it would take very long to go through each occurrence. However, 

the common factor for the top five repeats seems to be that they are quite short and 

occur in many different teardowns and setups. The top five is shown in Figure 21. 

 

 
Amount Length Duration AVG Duration SD 

1
st
 739 6 0.033 0.004 

2
nd

 688 6 0.032 0.005 

3
rd

 613 2 0.158 0.072 

4
th
 609 2 0.014 0.003 

5
th
 414 2 0.117 0.060 

Figure 21. Top five repeats with most occurrences (amount) that are longer than 

one (sorting scenario A) 

Now in the sorting scenario B, we see that there are a few quite long repeats that 

consist of thousands of messages. However the first, second and fifth are overlapping 

repeats that only occur in one test case. The first repeat occurs in the logging test an 

the repeat was already mentioned previously. The second one occurs in a stability 

test that does the same thing 800 times. The third, fourth and fifth have already been 

analyzed previously. The top five is presented in Figure 22. 

 

 
Amount Length Duration AVG Duration SD 

1
st
 2 3960 25.861 0.021 

2
nd

 2 2793 86.068 0.005 

3
rd

 2 1682 29.703 0.180 

4
th
 3 1678 30.846 2.108 

5
th
 2 1416 18.127 0.057 

Figure 22. Top five longest repeats by length (sorting scenario B) 

Figure 23 shows the top five test cases in sorting scenario C. We see that the 

longest maximal repeat by average duration is over 8 minutest long. However this 

repeat is a section suite initialization and section suite teardown combined. The last 

message in the repeat is the last message in the section which appears in the Robot 

Framework output.xml before the actual tests appear. For this reason, an occurrence 
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of the repeat has the duration of a whole section but does not include any of the 

messages in the test cases of the section. This repeat appears only eight times 

because different section teardown is run if all tests pass in a section. We can see that 

this repeat occurs in sections where all tests passed. 

The second on the list is the same repeat as in the sorting scenario B. Third and 

fourth occur in all section initializations but the fourth also appears in a test case 

where a crash of the case study software application is made to happen and the test 

unit is then retrieved back up with section initialization. The retrieving part of the test 

case matches a part of the section initialization. 

The fifth repeat occurs in two capacity test cases. The repeat starts almost at the 

beginning keywords of the test cases and ends in teardown. This is the first analyzed 

repeat that seems to cover almost in full two test cases from start to beginning. 

However the repeat does not cover test case setup phases of the test cases. 

 

 
Amount Length Duration AVG Duration SD 

1
st
 8 61 531.310 115.270 

2
nd

 2 2793 86.068 0.005 

3
rd

 12 60 60.691 2.019 

4
th
 13 24 58.512 1.807 

5
th
 2 135 42.683 0.037 

Figure 23. Top five longest repeats by average duration with length more than one 

(sorting scenario C) 

The top five repeats in sorting scenario D are shown in Figure 24. In the very top 

of the table, we have the same repeat as in the sorting scenario C. Second, third and 

fourth repeat occur in capacity cases where the CPU loads are measured. Such 

repeats have been analyzed before in the filtering scenarios. The fifth repeat occurs 

in test cases using a same data transfer template. However, the data has been sent 

before the repeat starts. Based on this evidence, the test cases do not seem to send 

same data and are not redundant in this matter. 

 

 
Amount Length Duration AVG Duration SD 

1
st
 8 61 531.310 115.270 

2
nd

 13 32 22.426 5.791 

3
rd

 12 33 25.198 4.455 

4
th
 9 33 25.555 4.331 

5
th
 3 7 7.375 4.113 

Figure 24. Top five repeats by duration standard deviation with length more than 

one (sorting scenario D) 
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5. DISCUSSION 

5.1. Challenges of MRS Finder 

During the analysis, it was found that msgId plot is quite hard to use. First of all, 

before zooming in, it shows a plot with a lot of data in it. UI-wise, it seems just too 

much at first glance. Secondly, when viewing the full plot, it seems that there are a 

lot of traced messages in a row which have the same msgId. However, when we 

zoom in, it can be seen that this is not the case. This is due to the fact that msgIds 

seem to cover only small areas of the available msgId space. They are concentrated 

on some smaller ranges. Thirdly, even if two msgIds were the same, it does not 

necessarily mean that the two corresponding messages would be the same as stated in 

chapter 4.1.3. All in all, the main benefit of msgId plot seems to be that it gives hope 

that there may be redundancy in the traces. 

The command line tool of MRS Finder has some performance issues and requires 

a cloud computer with many cores and a lot of RAM when searching for pair-wise 

supermaximal repeats. In chapter 4.2.1, it was presented that the algorithm does not 

have linear time complexity. However, in the case study CI, this is acceptable 

because MRS Finder can be run during the night. However, it would be more ideal if 

it could be run after each regression test so that every regression test could be 

analyzed. One of the bright things about the application is the execution time of 

supermaximal repeats search. However, the main point was to look for pair-wise 

supermaximal repeats which was now only done for sent messages mainly because 

of the performance issues. 

The results browser part works fluently performance-wise when the results have 

been loaded into browsers memory which is not a problem in the internal network of 

the case study company. However, UI-wise there is room for improvement. During 

the analysis of the results, we had to go look at the Robot keyword code to see at 

which point in the test case the repeat occurs. Straight from the result browser, it was 

not immediately clear in some cases. It was also not clear if the repeat covered the 

whole test case or not. The question was that did the test case contain some messages 

before the first message in the repeat or after the last message. Another problem was 

that the already analyzed repeats kept polluting the results by appearing again in 

different filter and sorting settings. 

5.2. Discovered repeats 

It was discovered that there are quite a low amount of occurrences of each 

supermaximal repeat. It is also evident that supermaximal repeats are long and may 

overlap each other, which makes the analysis harder. In the results it was also shown 

that we get much more repeats and occurrences of pair-wise supermaximal repeats 

than supermaximal repeats. Some of them are also quite long but there are many 

more occurrences of repeats with medium and long length. We had some good finds 

which probably would not have found with supermaximal repeats because 

supermaximal repeats do not, first of all, occur so many times. 

One problem with pair-wise supermaximal repeats was that we also found many 

repeats that were near duplicates of each other having mutations of changed, 

removed or added messages. These repeats polluted the results and made finding 



 

 

 

46 

other repeats harder. On the other hand, it was also a good feature because we could 

see that the same repeat appeared in multiple test cases and varied just a little in 

them, pointing out the difference. 

Another problem was that we were not able to find a repeat that would cover a full 

test case. At least we were not able to prove it. The repeats also tended to occur 

mostly in setup and teardown phases of the test cases, which actually makes sense 

because test suites are a logical collection of tests and therefore often share same test 

case setup and teardown. 

Overlapping was also another problem as with supermaximal repeats. We may 

have still not found all repeats that we would have liked because message sequence 

appearing over and over is reported as only two occurrences. When comparing this 

kind of repeat with smaller repeat of the same sequence, only the larger and 

overlapping is reported. 

Overall, the found repeats provide good overview on where there is repetition in 

the test trace. The repeats also revealed some badly coded and slow tests which can 

now be refactored. The refactoring process can also be prioritized by the average 

duration of the found repeats. 

5.3. Trace repeat detection compatibility with test suite optimization 

In my opinion, the results of the command line part of MRS Finder enable test suite 

optimization in theory because we can now link test cases by their similarities. 

However in practice, I do believe that no matter which method was used, the results 

of test suite optimization would not be good for numerous reasons. We have mostly 

repeats that only occur in setups and teardowns. Also there are many repeats that are 

mostly the same and link to the same requirement. Because of this some kind 

filtering system would have to be implemented to remove some of the repeats. They 

cannot be filtered manually because there is so much repetition. 

Actually, MRS Finder seems to be better tool for another kind of optimization with 

its results browser. It is now possible to see what sequences are repeated a lot and 

which repeats take time. It is possible to optimize these repeats to take less time 

manually and move some test setups to higher level to run only once if they take so 

much time. Overall, the MRS Finder makes some bad code more visible. 

Nevertheless, the result of this study is negative in the matter of trace repeat 

detection compatibility with test suite optimization 

In the CI process, the tool suites well to a situation where the regression test suite 

should be optimized but no-one knows the tested functionality of each regression test 

case. The tool can then be run to inspect what functionality is repeated often and 

which of the repeats take the most time to execute. The tool should be used manually 

by developers who are familiar with the functionality of the tested application. On 

the other hand, execution of MRS Finder should be automatic. The tool should be 

run as often as possible after new regression test results are available. This would 

keep the results of MRS Finder up-to-date. 

5.4. Future work 

MRS Finder needs performance improvements in future because the amount of test 

cases grows with the time and so does the amount of traced messages. The 



 

 

 

47 

performance can possibly be increased by improving suffix array creation algorithm. 

The literature shows that the implemented sorting method is not the fastest and it can 

possibly be done in linear time. It also may not be possible because in the case study, 

we have complete strings instead of single characters. It can be looked into, however. 

Another performance increase would be creating a PLCP table in order to compute 

the LCP table faster. Other improvement methods should be investigated as well like 

writing the algorithm in C. 

More analysis should be also done from the results of MRS Finder. We only 

looked at very small percentage of the reported repeats and there may still be more 

good and interesting finds. We also run MRS Finder against a trace of a single 

regression test run and the results can be quite different with other regression tests. 

Improvement possibilities to the results browser UI include adding more filters, 

creating better links to Robot Framework keyword code and showing messages in 

teardown and setups different color, for example, in order to differentiate them from 

the repeat. Filters could be created for already analyzed repeats, minimum and 

maximum duration as well as for resource files. With a resource file filter, a 

developer optimizing a Robot keyword resource file could see what part of it is used 

heavily and see if the repeats are improved over time. 

New aspects that could be investigated and would interest me include showing the 

messages that differ in the results browser, a sequence alignment of test cases and 

categorizing repeats. Repeats could be categorized if they share some threshold 

volume of same messages. This could either be shown in the results browser or used 

in possible future test suite optimization. Different type of repeats could be also tried. 

Finally, the method of removing test cases with their complete trace occurring in a 

prefix of another test case could be tried. This method was presented in chapter 2.2.3. 

However, based on our results, it seems that no such test case would be found where 

this would happen. 
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6. CONCLUSION 
 

Large scale continuous integration and regression testing can be rather problematic 

because the testing tends to take time and resources which are often limited. 

Complete re-test all tests method becomes impossible because the feedback time 

from the commits increases. 

This thesis studied many test suite optimization methods that have been used to 

reduce the test suite by removing tests and automatically creating new tests. All of 

them need the knowledge of which test case overlaps which one. This information is 

usually either code coverage or requirement coverage of a single test case. It was 

suggested that test cases that share same coverage as other test cases do not have to 

be run. And the test cases that have maximum coverage with smallest amount of cost 

should be run first. 

This thesis presented something new. We looked into several methods of finding 

repeats on strings. It turned out that the field of finding repeats and comparing strings 

has many problems and solutions. It was not found that anyone had tried to find 

supermaximal repeats their test trace before. The concept of pair-wise supermaximal 

repeat was also introduced. We considered a new suffix array method where a suffix 

was considered as a list of strings instead of just a string. 

In our case study, we had traced messages in test cases which often repeated 

themselves. A custom enhanced suffix array algorithm was implemented to search 

for pair-wise supermaximal repeats, supermaximal repeats that occur in a 

concatenation of two test case traces. A new application was developed: MRS 

Finder. MRS Finder can use multiple cores at the same time to compare to create 

suffix arrays and find pair-wise supermaximal repeats in them. However, MRS 

Finder struggles with suffix array creation with long message sequences and leaves 

room for optimization in the application. 

To analyze the findings of MRS Finder, the pair-wise supermaximal repeats that 

were found from a regression test were compared to supermaximal repeats which can 

also be found with the same implementation. Some interesting individual repeats 

were also picked and analyzed further. 

It turned out that most pair-wise supermaximal repeats occur in test setup or 

teardown phases of the test cases. No test case was proven to be completely 

redundant to another. However, a huge amount of repetition was found on the test 

trace and MRS Finder turned out to be a good test optimization tool for searching 

parts in test code that could be optimized while maybe not being a good tool for test 

suite optimization. For the case study CI process, this means that developers now 

have a new tool for refactoring their tests to make them run faster in CI. The tool also 

makes bad code more visible and shows that there are plenty of ways to improve test 

code. 

There is also a lot of room for more work in this field. Sequence alignment of test 

case traces, categorizing repeats, different type of repeats and filters should be tried. 
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