

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Roope Kallio

TOWARDS TEST SUITE OPTIMIZATION IN SOFTWARE

COMPONENT TESTING BY FINDING AND ANALYSING

REPEATS IN TEST TRACE

Master’s Thesis

Degree Programme in Computer Science and Engineering

May 2015

Kallio R. (2015) Towards Test Suite Optimization in Software Component

Testing by Finding and Analysing Repeats in Test Trace. University of Oulu,

Department of Computer Science and Engineering. Master’s Thesis, 54 p.

ABSTRACT

Regression testing is often a very resource and time consuming activity with

large scale software. However, regression tests may be run in continuous

integration where everything should run fast in order to get quick feedback.

This thesis reviews the existing solutions to optimize regression test suites and

test suites in general by looking at various existing heuristic, computational

intelligence and other methods. In most cases, these methods are based on the

fact that test suites may contain redundant test cases. They also require code

coverage, fault detection capability or requirement coverage information of

each test case in order to be implemented.

Additionally, the thesis studies ways to detect redundancy in test trace. It is

also discussed whether or not this kind of redundancy information can be used

for test suite optimization instead. A new concept, pair-wise supermaximal

repeats is presented.

A case study is conducted in software component continuous integration

testing environment in Nokia Networks. Main methods include looking for

patterns in test trace manually in a plot representing the test trace as well as

finding pair-wise supermaximal repeats in the test trace with an enhanced suffix

array implementation developed in test driven development method. A new

application was developed, MRS Finder. The repeats are then analyzed.

The study shows that the there can be found huge amount of repetition which

makes analyzing all of it hard by hand. The repeats also tend to occur more in

the setup or teardown phase of a test case rather than in the action or assertion

phase of the test cases. The study shows that MRS Finder offers different

optimization possibilities than originally was thought.

Keywords: continuous integration, redundancy, suffix array, heuristics,

computational intelligence, regression testing

Kallio R. (2015) Kohti testisarjan optimointia ohjelmiston

komponenttitestauksessa etsien ja analysoiden toistoja testien jäljissä. Oulun

yliopisto, tietotekniikan osasto. Diplomityö, 54 s.

TIIVISTELMÄ

Regressiotestaus on usein hyvin resursseja ja aikaa kuluttavaa suurten

ohjelmistojen kanssa. Regressiotestejä voidaan kuitenkin ajaa jatkuvassa

integroinnissa, jossa senkin tulisi suoriutua nopeasti, jotta palauteaika pysyy

lyhyenä.

Tämä diplomityö käy läpi olemassa olevia ratkaisuja regressiotestien ja

yleisestikin testisarjojen optimointia. Näistä käsitellään muun muassa

heuristisia ja laskennallisen älykkyyden menetelmiä. Useimmissa tapauksissa

nämä metodit perustuvat siihen, että testisarjat voivat sisältää testitapauksia,

joissa on keskinäistä redundanssia. Menetelmät vaativat myös tietoa jokaisen

testitapauksen koodikattavuudesta, virheiden paljastuskyvystä tai

vaatimuskattavuudesta, jotta ne voidaan toteuttaa käytännössä.

Tämä työ tutkii myös tapoja löytää redundanssia testien jäljistä. Työ pohtii,

voitaisiinko tätä tietoa käyttää testisarjojen optimointiin edellä mainittujen

tietojen sijaan. Tämä työ esittelee uuden käsitteen, parittaisen

supermaksimaalisen toiston.

Tapaustutkimus suoritettiin Nokia Networksin systeemikomponenttitason

jatkuvan integroinnin järjestelmässä. Tapaustutkimuksessa kehitettiin

testivetoisella kehityksellä MRS Finder -ohjelmisto, joka etsii toistoja

parannetusta suffiksitaulusta ja tuottaa diagrammin, joka edustaa testien

jälkiä. Diagrammista etsitään toistoja manuaalisesti ja suffiksitaulusta

löydettyjä toistoja analysoidaan.

Tutkimus näyttää, että testien jäljistä voidaan löytää suuri määrä toistoja,

joka tekee analysoinnista vaikeaa käsin. Toistot esiintyvät useammin testi

tapauksien alkuasetus (setup) ja poiskorjaus (teardown) –vaiheissa kuin

toiminta- tai vakuutusvaiheissa (assertion). Tutkimus näyttää myös, että MRS

Finderilla löydetään erilaisia testi tapauksien optimointimahdollisuuksia kuin

aluksi ajateltiin.

Avainsanat: jatkuva integrointi, redundanssi, regressiotestaus, suffiksitaulu,

heuristiikka, laskennallinen älykkyys

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION ... 8
1.1. Motivation, research questions, scope and structure 8

1.2. Background .. 8
2. TEST SUITE OPTIMIZATION BY DETECTING REDUNDANCY 10

2.1. Overview .. 10

2.2. Test suite optimization .. 12
2.2.1. Heuristic methods .. 12
2.2.2. Computational intelligence methods .. 14

2.2.3. Trace analysis methods .. 15
2.3. Detecting redundancy .. 16

2.3.1. Overview .. 16

2.3.2. Exact string matching .. 16
2.3.3. Longest common substring problem... 17
2.3.4. Longest common subsequence problem 17

2.3.5. Dynamic programming .. 17
2.3.6. Sequence alignment methods .. 18

3. METHODS ... 20

3.1. Relevant methods .. 20
3.1.1. Supermaximal repeats .. 20
3.1.2. Suffix tree ... 20

3.1.3. Suffix array ... 21
3.2. Selected methods ... 23

3.2.1. Full sequence plot .. 23

3.2.2. Supermaximal repeats via enhanced suffix array 23
3.2.3. Filtering detected repeats ... 24
3.2.4. Test driven development ... 24

4. EXPERIMENTS .. 26
4.1. Case study environment .. 26

4.1.1. Jenkins .. 26

4.1.2. Robot Framework .. 26
4.1.3. Case study continuous integration .. 28
4.1.4. Command line tool of MRS Finder .. 29

4.1.5. Results browser of MRS Finder .. 31
4.1.6. Analysis of repeats ... 32
4.1.7. Implementation statistics measuring ... 33

4.2. Results .. 33
4.2.1. Implementation statistics ... 33
4.2.2. Message ID plot ... 36

4.2.3. Overview of found repeats .. 38
4.2.4. Analysis of specific repeats ... 40

5. DISCUSSION .. 45

5.1. Problems of MRS Finder .. 45
5.2. Discovered repeats ... 45

5.3. Trace repeat detection compatibility with test suite optimization 46
5.4. Future work .. 46

6. CONCLUSION .. 48

7. REFERENCES ... 49

FOREWORD

I would like to thank Nokia Networks for the opportunity to conduct this study as an

employee with thesis worker status. I look forward to possibilities to continue the

study onwards.

I would also like to thank Jorma Taramaa, my line manager at Nokia Networks,

and Jaakko Jokela, scrum master of our scrum team. They gave me assistance and

guidance for the topics of the thesis. I would also like to thank Nokia Networks

employee Janne Kohvakka for coming up with the main topic for the thesis. He also

pointed me in the right from the beginning and provided the basic XML-parser for

output.xml which I later on extended. Another employee of Nokia Networks, Mikko

Tikkakoski helped me with the analyzing the results of the develop tool, MRS

Finder, with his knowledge of the case study software application and SCT. I would

also like to thank him and the rest of the case study software development team who

have helped me along the way.

I would also like to thank my supervisor at Oulu University, Dr. Tech. Mika

Rautiainen for overall scientific guidance on the thesis as well as evaluating the

thesis. Dr. Tech. Professor Tapio Seppänen acted as the the second examiner for the

thesis.

Oulu, 11.5.2015

Roope Kallio

ABBREVIATIONS

RTS Regression test selection

CI Continuous integration

SCT System/software component testing

RTO Regression test optimization

NP-complete Both non-deterministic polynomial-time complex and non-

deterministic polynomial-time hard

HGS A heuristic test suite minimization algorithm developed by Harrold,

Gupta and Soffa

PSO Particle swarm optimization

LCS Longest common sequence

CS Common sequence

LCP Longest common prefix

BWT Burrows and Wheeler transform

MRS Finder Maximal Repeat Sequence Finder

OOP Object-oriented programming

JSON JavaScript Object Notation

XML Extensible Markup Language

CSS Cascading Style Sheets

SCSS Sassy CSS

Sass Syntastically Awesome StyleSheets

jQuery JavaScript library for easier event handling, animations etc.

QUnit JavaScript unit testing library

AJAX Asynchronous JavaScript And XML

UI User interface

CLI Command-line interface

1. INTRODUCTION

1.1. Motivation, research questions, scope and structure

In continuous integration, tests are run after each commit to verify the changes in the

developed application. Often all functionalities are re-tested which we call regression

testing. This kind of testing may take quite a lot of time and resources to run. The

aim of this thesis was to study ways how we could go around this problem. It was

suggested that test case traces should be investigated and looked for any redundancy.

If there were any redundancy, some test cases can be removed. In order to find the

answers to these questions I investigated several methods of test suite optimization

and redundancy detection algorithms. In short, the main research question was: could

a test suite be optimized using test trace sequence repetition detection and analysis.

During the literature research, an application, MRS Finder (Maximal Repeated

Sequence Finder), was developed to find supermaximal and pair-wise supermaximal

repeats in the test trace. The considered repeats are traced message sequences which

were sent and received during the tests. To browse the results, an HTML5

application was developed into the MRS Finder. These were developed with test

driven development method.

To set the scope of this thesis it was decided that different variations and specifics

of the commonly used test suite optimization methods would be left out and we

would concentrate on overviewing the methods. In addition, different redundancy

detection algorithms were investigated but the study concentrates mainly on the

suffix array method which was used in the python application. Other key points that

this thesis reviews are optimization problems of the algorithms and their time and

space complexity. All of this was done in order to find a well suited representation of

the problem and an efficient algorithm to solve it. Different software testing methods

and case study software application specific concepts are considered out of the scope

of this thesis.

The thesis begins with a more detailed view of the problem and some background

information on related software testing concepts in chapter 1.2. In chapters 2.1 and

2.2 an overview of test suite optimization is described with special grip on methods

and objective functions that have been used before. In chapter 2.3, repetition

detection methods are described along with the problems that are solved with them.

In chapter 3 the scientific background of the relevant methods to the application,

namely suffix array and supermaximal repeats, are described. Additionally, new

concept, pair-wise supermaximal repeat is introduced. In chapter 4.1 the case study

is described in such detail that the optimization problem and application development

can be understood. In chapter 4.2 the results are represented along with analysis on

them. In chapter 5, implementation problems, it’s compatibility to test suite

optimization and future work are discussed. Finally, the thesis is concluded in

chapter 6.

1.2. Background

In continuous integration (CI), a change in the software triggers a build. In the build,

tests are run to check if the change broke anything. These tests should be run fully

automatically and all of them should pass in order for the build to be successful. [1

9

p.40] One of the key points is that everyone commits their work daily into the same

repository so integration of the work can be verified. [2]

There are many benefits of CI. In its core, it removes the hard integration phase

that is done to fix integration errors and makes it a simple every day activity.

However, there has been some discussion about the scalability of CI. It has been

stated that integration build will take longer as the code base grows. [2] One reason

for this is that large code base increases the size of the test suites [3]. Increased build

time leads to longer feedback time for developers who wait for results from CI. From

a manager’s point of view, waiting for results before proceeding with work means

spending unproductive time. [2] However, the problem is not just the waiting, it is

also the exhaustive use of computing resources which are often limited [3]. Bringing

in more developers to a project can amplify the problem. First of all, the code base is

expected to grow faster with more developers. Secondly, more people are waiting for

the results of CI. [2]

Regression testing is defined as retesting of software. It is run when the software is

modified. The main benefit of regression testing is the ensuring that the functionality

of the software has not changed in the tested parts. [4] Affections to unmodified code

that are caused by modified code are called regression errors which are what one

wants to find in regression testing. [5] Test suites for regression testing are often

maintained for the whole lifetime of an application, even after the original

development process [3]. The simplest approach in regression testing is to re-execute

all test cases. However, due to this approach being very expensive and resource

consuming with large test suites, one often has to limit the number of test cases in the

regression test. This process is called regression test selection (RTS). [4] Regression

testing is increasingly hard in CI because of its time constraints [6].

10

2. TEST SUITE OPTIMIZATION BY DETECTING

REDUNDANCY

2.1. Overview

A test suite consists of tests which work together in a natural way. Tests in a test

suite share often same high-level objectives. Often there is also some data that is

shared between the tests. Thus, test suite can be called a logical collection of tests

and they should be created for efficient test case execution. [1 p.24]

System component testing, software component testing or often just component

testing (SCT) is used to verify the functionality of a software component. Other main

objective is to search for defects in components. A component can be defined as a

part of software that is separately testable in component testing. [1 p.37]

The following specification can be considered as a good starting point for the

structure of a test case: IEEE 829 Standard: Test Case Specification Template [1

p.80]

 Test case specification identifier

 Output specification

 Test items

 Environmental needs

 Input specifications

 Special procedural requirements

 Intercase dependencies

IEEE 829 standard has been used as a basis of recent ISO 29119 standard.

However, ISO 29119 has created a lot of controversy and is therefore not used in this

thesis. [7, 8]

To simplify IEEE 829, it can be said that test cases have a certain structure which

basically consists of input and output specification. We get an output from an action

with certain input specification. This output is then asserted against the expected

output specification. [1 p.77-80]

Like in the IEEE standard, test cases have to set the environment correctly. This is

usually done before the actual test in a test setup [1 p.23]. On the other hand, test

teardown is done after the test case to clean up the environment. Suite setups and

teardowns can also be run before the setup of each test case and after the teardown of

each test case correspondingly. [9]

By putting this simplified structure together, a single test case execution can be

defined like this:

1. Suite setup

2. Test setup

3. Action

4. Assertion (output against the output specification)

5. Test teardown

6. Suite teardown

In this thesis, let’s define test case tracing and test tracing how tracing is defined in

Robot Framework 2.8.7 documentation. Trace is a detailed debugging level and

tracing is used to log what test libraries are doing internally. [9] Thus, in the context

of test cases, test case tracing means logging of test case execution. (Execution)

traces can be defined as low-level output data of tracing as in (Amiar, A. et al 2013)

11

[10]. In the case study of this thesis, we consider traced messages as our test trace.

These are explained in more detail in chapter 4.1.3.

In software development, debugging has been said to be a very time-consuming

activity which requires a lot of work especially with embedded software [10]. This is

caused by the difficulty of finding faults in software. In literature we talk about fault

localization. Execution traces have been used to locate these faults either manually or

even automatically. [11] However, because of the great amount of low level data,

traces are often very large. This problem can be amplified in embedded software.

[10]

Black-box testing is defined as testing software with some known input and output

specification without knowing what happens in the actual code of the software.

Black-box testing can be therefore referred to as functional testing. On the other

hand, white-box testing is about structural testing where the implementation is

known. For example in white-box testing, a loop in the software can be tested by

running it variable amount of times. [1 p. 84-86]

In this thesis we are going to need some notations for sequences. Assume we have

a -length sequence and 3-length sequence

 . An th prefix of is a sequence [12 p.392], in other

words, a beginning of . Similarly, an th suffix of is a sequence
[12 p.986], an ending of . A trivial case, empty sequence is considered both a suffix

and prefix of all sequences [12 p.986]. To differentiate sequences from sets we will

represent sequences as strings, for example . Then, th letter of

string can be represented with and for example and

 .

Typically in optimization, the problem is about finding the shortest distance

between two points on a surface. Commonly there are also multiple objectives which

cannot be achieved together. In order to perform better towards an objective one

must sacrifice the performance towards another. Because of this, optimization is

usually about decision making, treating nonlinear constraints and minimizing the

objective function. [13] A solution to optimization problems can be sometimes called

an optimal solution rather than the optimal solution because there may be multiple

solutions that achieve the optimal value [12 p.359].

Test suites change over time as the application changes [14]. New test cases are

added to a test suite in order to test a new feature that existing test suite did not test

previously. This causes issues when old test cases are not removed from the test suite

because they may have become obsolete or redundant after the addition. [15]

Redundant test cases satisfy same requirements as other tests. Because the software

is constantly retested, test suite sizes and running costs should be kept in control.

[16] Retesting all tests that have ever been created for an application can be

impossible in reality, which is why it has been stated that creating a small scale and

near optimal test suite is a hot topic in software testing [17].

Test suite optimization can be referred as regression test suite optimization (RTO)

when optimizing a regression suite. RTO is done to save time and resources but it is

also possible to identify other objective functions for test suite optimization. They

vary a little bit depending on if one is doing white-box testing or black-box testing.

In Figure 1, we can see what objectives have been used previously. It has been stated

that RTO is not safe if used with a single objective, because it will ignore vital test

cases. Therefore it has to have multiple objectives. [18]

12

Objective White-box based RTO Black-box based RTO

Increase defect/faults detection rate X X

Increase defect detection capability X

Increase cost effectiveness X

Increase code coverage X

Increase function coverage X

Increase statement coverage X

Decrease execution time X X

Implementation complexity X X

Changes in class diagram X

Decision trees X

Decrease cost X X

Requirement change X

Test case behavior in previous release X

Architecture changes X

Configuration files changes X

Database files changes X

User session X

Customer priority X

Requirement traceability X

Fault impact of requirement X

Figure 1. Black-box and white-box based RTO objectives [18]

Mathematically, RTO problem is NP-complete [18] which means that it is not

known to have a polynomial time or in other words efficient algorithm [19]. But this

does not mean that it could not have. In fact, if an efficient algorithm exists for an

NP-complete problem, efficient algorithms would exist for all of them. [12 p.9-10]

The models of solving RTO problem are selection, prioritization and minimization

[18].

The terms used for test suite optimization are in my opinion a little bit confusing

because there are many names used for test suite optimization in literature: RTO

[18], RTS [2] and test suite reduction [20]. While the definition of these may differ to

some extent, from now on, things are kept simple and we only talk about test suite

optimization. Reduced test suite is the output of the test suite optimization, similarly

to (Jeffrey, D. et al. 2005) [20].

2.2. Test suite optimization

2.2.1. Heuristic methods

Heuristic methods can be used to approximate the optimal solution of test suite

optimization. [15]

Heuristic methods of test suite optimization can be divided to minimization and

prioritization [18]. Test suite minimization can be defined as finding a minimal

subset of test cases so that certain required coverage can be still achieved. On the

other hand in test suite prioritization, test cases are sorted based on their cost per

additional coverage so that the ones with the cheapest additional coverage are on the

top of the list. After the sorting, a certain constant number of the top cases can be

selected for the reduced test suite. [21] The other way to look at prioritizing is that it

13

can provide quicker fault detection if test cases with coverage on modified and

affected area of code are run first [22].

There are variations on minimization and prioritization in practice. We can use

different criteria for both. [18] For example, one could use a technique where given

that one knows the modified and deleted lines of a modified source code as well as

the corresponding line numbers and the test case line coverage history (lines that

each test case executes), one can prioritize test cases so that they execute at least

once the modified lines and the lines after the deleted lines [4].

However, according to a recent study, code coverage may not be strongly

connected to test suite effectiveness with only a low to moderate correlation between

these two when the size of the test suite is controlled. The strength of this correlation

has been found to vary between software systems, which is one of the major reasons

why the strong correlation cannot be assumed. This can be said for most code

coverage types. That said, code coverage is a good tool to find the under tested parts

of the software but possibly not the overly tested. [23]

Similarly to coverage, software requirements can be used in test suite

minimization. Given that we have a test suite of test cases and

requirements we must cover the same requirements as with a

minimal subset of . However, because this is a NP complete problem, we need to

use heuristics. [24]

A simple solution is a greedy heuristic algorithm which is based on classical

approximation. It is run in iterations until all requirements have been covered. In

each iteration, it selects a test case that satisfies the most requirements and throws

away the satisfied requirements. In case of a tie, the test case is selected randomly

among the tied test cases. The problem is that this method will lead to some

redundant test cases. [24] We can improve the solution with HGS (Harold, Gupta and

Soffa) algorithm. In HGS, a test case subset of consists of test cases that satisfy

requirement ri. Thus, the reduced test suite must contain one test case from each in

order to satisfy all R. The algorithm begins by considering subsets of cardinality

one , in other words, subsets that consists of one test case. These test

cases are included in the reduced test suite and the :s that contain these tests are

marked. Next, s of cardinality two to the maximum are considered sequentially. In

a particular cardinality iteration, a test case with maximum number of occurrences

in unmarked s is chosen for each unmarked of cardinality . For tie braking,

further cardinality occurrences are considered. This solution is not perfect either

because it also selects some redundant test cases. [15] Additional improvements can

be made by, for example, introducing context tables and reducing the sizes of them

by applying object and attribute reductions [24].

Due to test suite minimization leading to possible compromises in fault detection,

there have been studies on test suite minimization with selective redundancy [20,

25]. One of the ways this could be done is by modifying existing heuristics such as

HGS and creating a secondary criterion for selecting test cases. Definition use pair

coverage can be used for this secondary criterion, meaning that test cases which

contributed to this kind of coverage are also added to the reduced test suite. [20]

Another way of keeping more redundant test cases in reduced test suite is to use

multiple criteria. If a test case is selected for the reduced test suite with certain

criterion and some other cases are other cases are redundant based on that criterion,

other criteria are considered. If those other cases satisfy additional requirements with

some other criterion, they are added to the reduced test suite. [25]

14

It has been pointed out that non-code changes should affect test suite minimization

as well as the code changes. Examples of non-code changes would be changes to

configuration files and databases. These components impact on the behavior of the

software. As a result, affected test cases should be retested in case of these changes.

By first gathering the needed information from test cases and their traces, test suite

minimization can be done with heuristic methods. [26]

In the field of conservative regression testing, the inputs and region of a failure are

recorded as well as the necessary steps to repeat it. By using this information, it is

possible use a constraint-based test case minimization method. A test constraint, in

this case, describes the ways how a certain failure can be detected. Moving away

from requirements and code coverage, one is able to use these constrains for

heuristics in order to select test cases for the reduced test suite by searching for a

subset of test cases that detect all known failures. This can be done by constructing a

constraint hierarchy using the steps of the constraints. [27]

Another hierarchical heuristic method is claimed to be able to minimize a suite

with even million test cases in adequate time. The method starts by creating a

mapping of test cases to functions by function coverage of each test case.

Afterwards, it partitions test cases with similar set of function calls in same clusters.

In practice, the criterion for clustering can be a threshold of mismatching function

calls. In following steps, test cases are compared by their functional flow, line

coverage and branch coverage one cluster at a time. [3]

2.2.2. Computational intelligence methods

The claimed successor of artificial intelligence, computational intelligence is inspired

by biology and nature [18, 28]. Computational intelligence can be used to solve very

difficult problems that may be considerably nonlinear, discontinuous, correlated or

complex [28]. With test suite optimization computation intelligence can be identified

to appear in form of genetic algorithms, swarm algorithms and fuzzy logic [18].

Genetic algorithms belong to a higher class called evolutionary computation.

Evolutionary computation involves natural evolution where “survival of the fittest”

applies. [28] Genetic algorithms can be divided into three phases: initializing a

population of randomly generated individuals, evaluating individuals and selecting

individuals which are combined and mutated to generate new individuals. The last

two phases are repeated until some condition is met. The individuals represent a

possible solution. [29] From the objective function point of view, test suite

optimization with genetic algorithms can rely on code coverage or run time among

others. This information is used on the fitness value when evaluating individuals for

next generation. [18] Probabilities for each individual to be selected for next

generation are computed from the fitness values. One way to do this is to use the

strategy of roulette wheel where probability is in direct proportion to the fitness. [30]

Swarm algorithms are the methods of swarm intelligence. These algorithms are

based on decentralized co-operation of simple individuals which are usually

unintelligent. Swarm intelligence has been researched with inspirations from

biological observations of, for example, ant colonies. The pros of swarm algorithms

are good fault tolerance and simplicity of the individuals which may simplify the

development process as well. [31] The individuals in a swarm can be considered as

particles. Hence, we can talk about particle swarm optimization (PSO). In PSO, a

single particle represents a candidate solution to the optimization problem. The

15

particle flies in the search space according to its current velocity which is based on

its memory and the memory of its neighbors. The search space represents all the

possible solutions. [32]

PSO can be used in multi-objective test suite optimization [32]. Let’s look at an

example algorithm. First, a swarm with particles of random velocity and position is

initialized. Second, the particles are evaluated according to the objective functions

and the best particles are selected. Third, particle velocity and positions are updated

according to the best particle in the population. Fourth, the population is crossed over

two by two to create off-spring. Fifth, new off-spring is evaluated and the best one is

selected. If the stopping criteria are met, the selected particle will be the final

solution. If not, the algorithm continues from the third step. One can see the

similarities of this algorithm to genetic algorithms. In fact, this is called a hybrid

prioritized algorithm since it uses both PSO and a genetic algorithm. [33]

Moving on to fuzzy logic, there are a couple of capabilities it provides which can

be seen as attempts at formalizing human decision making and reasoning. First,

humans make decisions in situations where the information can be uncertain,

imprecise, incomplete and conflicted. Secondly, these decisions can be done

rationally without any measurements or computations. [34] Unlike bivalent logic and

crisp set theory of zeroes and ones, in fuzzy logic, fuzzy sets are characterized with

continuous range from zero to one [35]. Thus, fuzzy logic maps input vector into a

scalar output. Fuzzy logic can handle simultaneously both numerical data and

linguistic knowledge. [36]

In the context of test suite optimization, fuzzy logic can be used for example to

make a decision in a tradeoff triangle. In a tradeoff triangle by going towards one

corner (representing an objective) of the triangle, one goes farther from the others.

Due to this being a problem in continuous domain, fuzzy logic suites it well. The

idea is to first compute the membership value for test cases by each objective, which

could be for instance performance, throughput and code coverage. The used fuzzy

sets can be named as not suited, suited and best suited. After this one can determine

the final crisp suitability of each test case with a method in which the center of

‘mass’ is calculated. [37]

2.2.3. Trace analysis methods

Test suite optimization based on URL traces has been demonstrated to be successful

in an environment where user sessions have been traced to generate test cases

automatically. In that environment, each user session starts when a new user, who is

detected by a new IP-address, makes an HTTP request for an URL. The session ends

when the user either leaves the website or the session times out. The HTTP requests

for the URLs are logged for each user session. Thus, a test case consists of a

sequence of HTTP requests i.e. a sequence of URL traces. The number of sessions is

large and contains a vast amount of redundant traces. The similarity of two test cases

is measured by the length of the longest common prefix of their traces [30]

First, a user session is redundant and can be removed if its trace is a prefix of

another sessions’ trace because the functionality of the first one is tested in second

one. This is said to reduce the number of user sessions greatly while meeting the

same requirements as the original complete set of user sessions. [30]

Second, elementary programming can be applied to group and prioritize the

reduced set of user sessions. By grouping user sessions based on their similarity

16

several test cases can be eventually run in parallel. The sessions with the length of

the longest common prefix in the same predefined threshold value range are grouped

together, forming four test suites in the study. To prioritize the test cases, the ones

with the least similarity i.e. suite with the lowest threshold range are prioritized to be

executed first. Inside the suite, test cases with the longest URL trace are prioritized

first. [30]

Third however, a genetic algorithm can be applied to improve the prioritization

because elementary prioritizing does not provide a very good approximation of the

best solution. It is suggested that fitness values are based on the length of the longest

common prefixes where a short longest common prefix results in a good fitness

value. In the cross-over phase new user sessions can be created which include

requests from various user sessions. [30]

2.3. Detecting redundancy

2.3.1. Overview

It can be easily seen in chapter 2.2 that the methods of test suite optimization require

information of what test cases share same requirements, coverage or something else

with each other. In other words, they require the information of what is redundant in

order to select the cheapest test cases. This information is not available straight away.

Thus, this chapter considers the different ways of telling how different and similar a

sequence is from the others.

In the case study, test traces are strings but to simplify our problem for this

literature review, let’s consider that each trace in a test case can be represented as a

letter instead of a full string.

2.3.2. Exact string matching

Exact string matching problem is about finding all occurrences of a pattern i.e. string

in larger amount of text [12 p.985]. To divide it into more specific problems, let’s

consider the fact that when the strings are known. First, both the pattern and the text

are known at the same time. Second, the text is known for some time and then some

patterns are searched from it. Third and a reverse of second, the pattern is known for

some time and some texts are then searched with the pattern. [38 p.122-123] In a

typical situation, the problem at hand is the second one: there is a text available

where a reader wants to find the occurrences of a pattern [12 p.985]. Determining

which string is kept fixed is important because that string can be preprocessed to

make the matching more efficient [38 p.122-123].

In worst case, naïve brute-force algorithm for the second case has matching time

complexity without any preprocessing. But currently using

Knuth-Morris-Pratt algorithm, both the preprocessing and matching can be done in

linear time and respectively. [12 p.986]

17

2.3.3. Longest common substring problem

Longest common substring problem should not be confused with the longest

common subsequence problem which is presented in 2.3.4. The problems are

different. [38 p.125] Longest common substring can be abbreviated to LCS [39] but

for clarity, LCS is used only for longest common subsequence in this thesis.

Suppose we have a set of strings and an integer . In

longest common substring problem the goal is to find the longest string that is a

substring of at least strings in . [39]

The problem can be solved using a suffix array which will be presented later in

chapter 3.1.3. The key point in the solution is the fact that a longest common

substring for two strings is the maximum longest common prefix of their suffixes.

[39]

2.3.4. Longest common subsequence problem

Longest common subsequence (LCS) is used often in DNA comparisons. A DNA

strand consists of strings of molecules. There are four possible molecules which can

be represented with a capital letter in comparisons: adenine (A), guanine (G),

cytosine (C) and thymine (T). One objective in the comparison is to find out how

similar two or more strings are. In LCS, this is expressed by finding a common string

with maximum length that appears in all the compared strings in the same order but

not necessarily consecutively. Thus, a subsequence of a given sequence is the given

sequence where some elements may or may not have been removed. [12 p.390-391]

Let’s look at an example. Assume, we have two strings and

 . For instance with a length of three is a common

subsequence (CS) to both and but not a longest one. Instead, a LCS would be

 with a length of four. But it would not be the only one because

 would be also length four of and a LCS.

To calculate LCS for and by a brute-force algorithm, one would have to first

enumerate all subsequences of . Secondly, each subsequnces would have to be

checked if it is a subsequence of while keeping the currently longest common

subsequence in memory. If has elements it can be proven to have

subsequences. Because of this, brute-force algorithm has exponential time

complexity. [12 p.392]

2.3.5. Dynamic programming

Review of dynamic programming is included in this thesis because it is usually

applied to optimization problems and can be used to solve the LCS problem.

Dynamic programming can be used to solve problems by dividing them into multiple

problems, subproblems. There may be some overlapping in the subproblems.

However, all subproblems are solved only once even if they occur multiple times.

This is done by saving the solution of each subproblem to a table after the

subproblem is solved. To generalize, dynamic programming can be divided into four

steps: [12 p.359-360]

1. Characterization of the structure of an optimal solution.

2. Recursively defining the value of an optimal solution

18

3. Computation of the value of an optimal solution, generally from bottom to

up

4. Construction of an optimal solution from the computed data

Step 4 can be skipped if only an optimal value is needed and not the solution. When

also step 4 is included, one usually will have to retain some additional data in step 3

to compute the corresponding solution efficiently. [12 p.359]

Dynamic programming may be applied when the problem at hand exhibits optimal

substructure and consists of many overlapping subproblems. Time- and resource-

wise, many overlapping subproblems should be obvious here because it will enable

the algorithm to run faster and not compute solutions to new subproblems time and

time again. On the other hand, optimal substructure in a problem means that an

optimal solution contains the optimal solutions to its subproblems. This is valuable in

dynamic programming because an optimal solution to a problem is built from the

optimal solution of the subproblems. [12 p.379-384]

To solve LCS problem with dynamic programming, a score matrix [40] ,
which contains the lengths of LCS of and , must be calculated with (2.1) [12

p.390-393]. In addition to the matched positions, the score matrix also contains the

unmatched positions. By matched positions, we mean the occurrences of LCS. [40]

(2.1)

In the formula, we can see that it calls itself recursively and the if-statements define

which subproblems are covered [12 p. 393]. The formula can be improved. For

example, it can be proven that the non-occurrences of LCS do not have to be

calculated in order to save computation time. [40]

2.3.6. Sequence alignment methods

Sequence alignment methods can be divided to global and local alignment methods.

In global alignment, the goal is to compare similarities of two or more sequences

from end to end and. In local alignment, the aim is to compare most similar regions

within the sequences. [41] Another division can be made on the number of sequences

on the alignment. In the simplest case, pair-wise sequence alignment considers two

sequences at a time while multiple sequence alignment (MSA) considers three or

more at a time. [42] Like LCS, sequence alignment has been proven useful in DNA

and protein sequence analysis [41].

The optimization problem in sequence alignment algorithms is to maximize the

number of positions of matching characters in the strings while minimizing number

of mismatches. This can be done by adding gaps (denoted by ‘-’) in to the strings to

move characters to the right for better matching. Alignment is assessed with a score

function and penalties. The simplest way is to assign a score or penalty for three

possible cases: matching character, mismatching character and gap. [42] Normalized

LCS can also be used to calculate the score of sequence alignment by calculating the

matching characters and dividing it by the length of the alignment [43]. However in

biology, scorings are usually considerably more complicated because there are

19

usually more specific cases where more than just one character has to be taken in

account and the location of a difference is important [42]. On the other hand, a

difference has to be noted between biology and normal texts. In biology, the

motivation of sequence comparison arises from the fact that organisms are all related

by evolution which leads to sequences having a lot of similarities. The same cannot

be said for normal text [44].

Like with LCS, dynamic programming algorithms can be used to calculate pair-

wise sequence alignment and produce the optimal alignment [44]. Let’s look at

Needleman and Wunsch’s full-matrix algorithm. One sequence corresponds to the

columns and the other to the rows. Cells in the matrix are computed left to right and

top to bottom with the optimal score in the bottom-right corner. A path between the

top-left and bottom-right corner represents an alignment. Moving horizontally or

vertically represents inserting a gap in the opposing sequence. To compute optimal

solutions, one has to start from the bottom-right corner and fall back to the top-left

corner along an optimal path. [42]

Pair-wise alignment Matches Mismatches Gaps Norm. LCS

T A G A T A C G A

6 1 2

C A G - T A C - A

 T A G A - T A C G A

5 2 3

C - G A T T A - G C

 C - A G T A - C A

5 1 3

C G A T T A G C -

Figure 2. Example pair-wise sequence alignments of strings TAGATACGA,

CAGTACA and CGATTAGC

Computations in each cell are very light. Thus, the time complexity does

not really matter even with large sequences. However, the same space complexity

does because the matrix gets very large quite fast. The algorithm can be applied also

to MSA. In this case, the time and space complexity is where is the number

of sequences. This is quite bad memory-wise. However the memory requirements

have been reduced with, for example, Hirsberg’s algorithm and FastLSA algorithm

which do not store more than couple of rows at a time and do some recomputations

of the cells instead. [42] Nevertheless, the amount of sequences is nowadays very

large and there are problems when aligning many long sequences together. It can

also be proven that MSA is an NP-complete problem as well. [45]

To go even more efficiently, there have been uses of heuristic and probabilistic

methods. As we know, these are approximation methods and may not provide

optimal but a sort of “best guess” alignment. Currently, one of the most popular

heuristic MSA methods is progressive alignment. As the name suggests, the full

alignment is built progressively by first computing pair-wise alignments. After that

the sequences are clustered together by their similarity scores in order to see the

relationships between them. From the similarity scores one can compute distance

scores and afterwards a guide tree based on the distance scores. According to the

guide tree, the sequences are then added one by one to the alignment and thus

forming a MSA. [45]

20

3. METHODS

3.1. Relevant methods

The relevant methods to the case study are supermaximal repeats, suffix tree and

suffix array. All of the methods are applied to a test trace consisting of a traced

message sequence. We consider a repeat in a test trace as a sequence of traced

messages which appears two or more times in the test trace. Supermaximal repeats

are relevant because they were used as the starting point for the pair-wise

supermaximal repeats which are presented in the selected methods. Similarly, suffix

array acted as the solid building block for the selected enhanced suffix array method.

Suffix tree is presented here for comparison to the suffix array method because of its

importance on string processing [46].

3.1.1. Supermaximal repeats

Let us once again consider a string and an example string . If and

only if
 for set , R

is a repeated pair. Thus, in an example repeated pair is: because

 . Other repeats would be , , ,
and . [46]

Secondly, a repeated pair R is left maximal if and right

maximal if . It is left maximal and right maximal if the pair

cannot be extended to either direction and still be a repeated pair. In repeated pair

 would be considered right maximal but not left maximal because
 and . A repeated pair is maximal if it is both left and

right maximal. In , string would be maximal repeat because
 and . [46]

A maximal repeat that never occurs as a substring of any other maximal repeat is

called a supermaximal repeat [46]. In , the only supermaximal repeat would be the

only maximal repeat . However, in the only

supermaximal repeat would be .

3.1.2. Suffix tree

In string processing, suffix tree has been stated as one of the most important data

structures. Suffix tree has advantages in scenarios where the sequences to be

analyzed are very large and stationary. Suffix trees have been used a lot in the field

of bioinformatics where whole genomes are studied. Genomes, as we know, are very

large.

Suffix tree could have become popular due to its linear time and space complexity

 in storage and computation. However, suffix tree suffers from large space

consumption because, in the worst case scenario, the construction of it requires 20

bytes per input character. Another problem related to memory is that in many cases

the memory references are not good in terms of locality which causes performance

losses in cached processor architectures. [46]

21

Figure 3. Suffix tree of string

Suffix tree is a rooted directed tree. It has exactly leaves that are numbered

from to , where is the number of characters in the string. The numbering

represents the start position of a suffix. The extra character at the end of the string is

a terminal character $ which is considered to be greater than any other character in

the string. Concatenating edge-labels from root to a leaf forms a suffix of the string.

And for example, to answer a question: “Is string a substring of string
 ?” walk the tree in the order of the characters in the word starting

from the root. If all letters are found, the answer is yes. In this case, you should end

up in leaf labeled with 2 and yes is the correct answer. [46]

Moreover, following rules apply to suffix trees [46]:

 Every internal node has at least two children, except for the root

 Each edge has to be labeled with a non-empty substring of the string

 No edges beginning from a node can have same beginning characters

To find the supermaximal repeats from suffix tree, one must consider a couple of

things. Let’s define a left character as the left most character in an edge label to a

node. Let’s also define a left diverse node as a node that has in its subtree at least

two leaves with distinct left characters. Now, a supermaximal repeat is a left diverse

node whose children are all leaves and each child has a distinct left character. [47] In

the example string , it is easy to see that string is a supermaximal

repeat.

3.1.3. Suffix array

Suffix array requires less bytes per input characters than suffix tree, to be exact

[46]. The currently fastest parallel suffix tree construction algorithm requires the

construction of suffix array and LCP array which is defined later in this chapter [50].

The drawback of the simplest and earliest suffix arrays was that in the worst case

scenario a suffix array could be constructed in . However this was a

special case where the alphabet was small [48] and has since been improved to be

able to be constructed in . Also the queries to suffix array seemed to suffer from

similar problems and took in the worst case, which has been improved

to . [46]

22

Let us consider a string . Suffix array of in its simplest form is a sorted list of

all suffixes of [48] and suffix table (suftab) which is an array of integers from to

 signifying the lexicographical order of the suffixes [49]. Lexicographical order in

this case means that the suftab is ordered as the suffixes are ordered so that each

integer is still on the same row as the corresponding suffix. [49]

But there has been development in the field of suffix arrays and recently enhanced

suffix arrays have become very popular data structure for example biological data

indexing. In enhanced suffix arrays, the basic suffix array is extended with various

tables that vary depending on the problem at hand. [49] Very often suffix array are

used with longest common prefix (LCP) information in LCP table (lcptab) [46] or

LCP array [50]. This lcptab information is the LCP value between two adjacent

elements in the suffix array [48].

To find supermaximal repeats with suffix array, one can enhance suffix array with

Burrows and Wheeler transform. The output of Burrows and Wheeler transform

(BWT) is saved into an array, bwttab, with the suffix array. Each for

 can be calculated in linear time: . If

 , is undefined. [46]

The above tables were the ones that made it into the implementation in the case

study but there are many more tables that can be used to enhance suffix array [46].

Instead of LCP array one can use permuted longest common prefix array (PCLP

array) which is faster and more space efficient to construct. In PLCP array, the

values are stored in the positional order instead of lexicographical order. PCLP array

construction is a linear time algorithm. [51] However, in most applications PCLP

array is not usable in itself and the LCP array has to be constructed [52]. This is not a

problem because even combining LCP array construction from PLCP array and

construction of the actual PCLP array itself became the fastest known algorithm for

calculating the LCP array [51]. This was still the case at least in 2011 [52]. Also, by

using this method it is possible to make a different tradeoff between time and space

complexity [51]. The algorithm can be parallelized. Thus, one can expect 14.4–21.8

percent time savings in 40 core systems. [50]

i suftab lcptab plcptab bwttab Ssuftab[i]

0 4

1 d aabceabcd$

1 0 1 0

abcdaabceabcd$

2 9 4 0 e abcd$

3 5 3 0 a abceabcd$

4 1 0

a bcdaabceabcd$

5 10 3 3 a bcd$

6 6 2 2 a bceabcd$

7 2 0 0 b cdaabceabcd$

8 11 2 0 b cd$

9 7 0 4 b ceabcd$

10 3 0 3 c daabceabcd$

11 12 1 2 c d$

12 8 0 1 c eabcd$

13 13 0 0 d $

Figure 4. Enhanced suffix array of word abcdaabceabcd$

23

3.2. Selected methods

The selected methods are full sequence plot, supermaximal repeats via enhanced

suffix array, filtering detected repeats and test driven development. These methods

were chosen so that, first of all, we can get an overview of the sequences in the full

sequence plot and, secondly, get good amount of meaningful repeats to inspect with

supermaximal repeats. Enhanced suffix array seems to be the most efficient way to

find these repeats. Filtering repeats helps removing uninteresting repeats from the

results while browsing them. On the other hand, Test driven development provides

unit tests and allows continuous integration for the developed application.

3.2.1. Full sequence plot

To produce a plot of a full test trace, we assign a number for each traced message

and plot them in the same plot one at time. The assigned value is explained in the

case study. For the x-axis we use the position of each message in the sequence and

for the y-axis the assigned value of the traced message. In order to see where test

cases begin we plot straight lines to separate test cases from each other. We then try

to find repeating patterns from the plot.

3.2.2. Supermaximal repeats via enhanced suffix array

An LCP-interval is an interval of LCP value of if [46]:

 (3.1)

 (3.2)

 (3.3)

 (3.4)

An LCP-interval is a local maximum if [46]:

 (3.5)

If we combine (3.2), (3.3) and (3.5), we can clearly see that it is sufficient for

 to be a local maximum in the lcp-table if for any :

 (3.6)

 (3.7)

 (3.8)

It can be proven that an -interval and a local maximum is a supermaximal

repeat if all elements in are unique. The

correct string to report as supermaximal repeat is
 . [46]

Let’s introduce a new concept, pair-wise supermaximal repeats. If we have a string

that can be divided into substrings with some knowledge of that string, we can look

for supermaximal repeats in each of the combination of two substrings. To find

further information about the similarities of the substrings, let’s put a distinct

24

character between two substrings during the supermaximal repeat search.

Formally, let's define pair-wise supermaximal repeats as supermaximal repeats of

each concatenated two’s combination of some substrings of a string

where the concatenation of the substrings forms the string . The amount of

combinations of two is

 .

For example, consider a string . The supermaximal

repeats of this string would be and . Assume, we know that
 , and .

Then, there will be

 combinations of two. The combinations of , and

would be , and .
Then, the supermaximal repeats that we would find are , for
 and for , and respectively. Thus, the pair-wise

supermaximal repeats of would be .
In the above example, we can see that use of pair-wise supermaximal repeats

instead of plain supermaximal repeats may lead to reports of similarities where they

would not have been reported otherwise while leaving out repeats that always occur

inside another repeat.

In our case study, test trace messages consist of strings instead of single character.

Thus, when we apply a suffix array, we consider finding supermaximal repeats from

a set of strings instead of a string. This will lead to the fact that a suffix and a prefix

of the set contain set of strings as well, instead of a string. Thus, LCP value is

calculated by the longest common prefix of sets, in other words, most common

strings counting from the beginning. Similarly, BWT value will contain a string

instead of a single character. With pair-wise supermaximal repeats, there is a distinct

string instead of a distinct character between two set of strings. If we could assign a

single character for a test trace message, we could ignore these changes and run

suffix array normally. However, due to the unknown number of distinct messages,

this is not possible. Case study environment is discussed more specifically in chapter

4.1. The found pair-wise supermaximals repeats are compared in overview to found

supermaximal repeats in chapter 5.

3.2.3. Filtering detected repeats

Each repeat contains information about its length and how many times it occurs.

These values are used as maximum and minimum filters. Each repeat also contains

information of the sequence itself which is also used as a filter. In the case study, all

filters can be adjusted manually while browsing the results. A few results with

different filter settings are presented for the case study.

3.2.4. Test driven development

Most of the code for the case study of this thesis was written with Test driven

development (TDD) method. TDD follows a pattern where tests are written before

the production code. First step in development is to write a failing unit test. Second

step is to run all tests and see the test fail. Third step is to write only the amount of

production code that will make the failing test pass. No new production code should

be written if all unit tests pass. Similarly, no new unit tests should be written if a unit

25

test fails. Fourth step is to run the tests and see if all tests pass. Fifth step is to

refactor the code to remove duplicates etc. Both the unit tests and the production

code are refactored. After fifth step, the cycle is repeated starting from the first step:

writing a failing unit test. [53 p.1-14]

Mocks are objects that act as other objects by imitating their behavior and

therefore require Object-oriented programming (OOP). Mocks are often used in TDD

because sometimes the unit tests would take too long to run or might run

inconsistently otherwise. It is also possible that without mocking the tests may not be

run at all and the test scenario would be very hard to recreate because of long

dependency chains etc. With mocks, developer can test the interaction of an object to

its neighboring objects by tracking what parameters are used to call a method and

how many times certain method was called. In result, mocks make unit tests faster

and easier. [54]

Code coverage and running times of the unit tests are presented in the results.

26

4. EXPERIMENTS

4.1. Case study CI environment

4.1.1. Jenkins

Jenkins is an open source continuous integration server that can be used to run and

monitor repeated tasks automatically. These tasks include building and testing

software, but virtually, Jenkins can run any given task which can be automated.

Whenever a build or test fails an email or RSS can be sent. Because Jenkins can

distribute build loads to multiple computers, Jenkins is also a good tool for

monitoring the executions of externally run jobs like cron jobs. Jenkins is used in

various companies such as Atmel, Dell, eBay, Facebook, GitHub, NASA, Netflix,

Sony, Tumblr and Yahoo!. Total number of reported Jenkins installations is over

100 000. There are also many Jenkins servers publicly available and Jenkins is used

in some open source projects. [55]

Jenkins can be extended by using the various plugins that already exist or by

writing a new one. There are many plugins for source code management, build

triggers, build tools, build wrappers, build notifiers, slave launchers and controllers,

build reports, publishing, other post-build actions, UI, authentication and user

management, parameters and many other things. [55]

Every task in Jenkins is run in a job. Each execution of a job is referred to as a

build. Builds can have different outcomes. A few of the most common are

successful, unstable and failed. When a build is successful, it was built with no

errors. On the other hand, if some errors occur, for example failed test cases or some

other error is reported, the build is usually unstable. However, build is considered as

failed if during the build something broke and for example needed output files could

not be produced. There are also configuration options to set builds failed if for

instance some percentage of test cases failed. [55]

Jobs can launch other jobs depending on their status. For example, application can

be continuously published when certain jobs are successful. A job, which is launched

by other jobs, is called their downstream job. And in reverse, a job that launches

other jobs is called their upstream job. [55]

4.1.2. Robot Framework

Robot Framework is an open source python-based tool designed for test automation.

Nokia Networks supports the development of the core framework. [56] Robot

Framework can be extended on top of the built-in keywords. The key uses lie in the

field of acceptance testing. Robot Framework enables testing distributed and

heterogeneous applications that have to be verified using various interfaces and

technologies. This is possible because the core framework knows nothing about the

target system that is tested and the test libraries handle the interaction as can be seen

from the high-level architecture in Figure 5. Keywords in Robot Framework are

basically functions and can both accept arguments as well as return values. Each

high-level keyword consists of lower level keywords. Ultimately, a lowest level

27

keyword executes a simple action like transmitting a message. [9] In this thesis, we

will refer to the path from the highest to lowest level keyword as keyword path.

Figure 5. Robot Framework high-level architecture

Test suites in Robot Framework are directories and files. Because of the tabular

syntax and two spaces acting as a separator, test cases can be written to be read easily

because keywords and names allow one space between words. Keywords and test

cases can also be written in Python and in Java when running Robot Framework on

Jython. Writing libraries in C is also supported by the Python C API or through

Python’s ctypes module. [9]

Robot Framework also supports creating test templates which convert the common

keyword-driven test practice into data-driven tests. This allows creating test cases

with same keyword calls without specifying the keywords explicitly in each test case

with the same keyword pattern. In these “templated” test cases, only the used

template test case and arguments to the keywords are specified. [56]

In addition to test suites, tests to be run can be chosen by different parameters.

Simple way is to specify test names by using --test command line parameter but test

cases can be also tagged. This way it is possible to include test cases that contain a

certain tag and exclude test cases that contain another. Among these there are many

other test case selector parameters. One can include non-critical tests or critical tests.

Other possibility is to use .txt argument files to define test cases that should be run.

[9]

Robot Framework provides HTML reports and XML output files for the tests [9].

There is a Jenkins plugin for Robot Framework that can be used for collecting and

publishing the results in Jenkins [56]. The outputs can be post-processed using Rebot

tool [9].

There are five log levels in Robot Framework. In the ascending order of the

amount of detail, they are FAIL, WARN, INFO, DEBUG and TRACE. TRACE is

the most detailed level that logs even the keyword arguments, timestamps and return

values while FAIL can only be used by the Robot Framework itself. [9]

28

4.1.3. Case study software component testing

There are multiple CI systems in use for Nokia Networks but for this case study, we

are concentrating on only one of them and particularly on system component testing

part of it. For the remaining part of this thesis, let’s refer to this area as case study CI.

Let’s also define that the software application that this case study CI tests is called

case study software application and the testing itself is called case study SCT.

In the case study CI, the main tools for the running CI are Jenkins, Robot

Framework, Subversion (SVN), test servers, test PCs, cloud computers, test units

where the application being tested is run, Jenkins radiator PCs and reservation

system for test units. The developed case study software application along with case

study SCT tests lie in SVN version control repository where the code can be

checkout to test servers. These test servers are used by the developers and Jenkins

which runs tests automatically. The test servers mainly exist for developer and

Jenkins workspaces.

The test units can be reserved automatically when tests are run regardless of

whether the tester is a developer or Jenkins. Test PCs can be either virtual or physical

but they are connected to the test units and send messages between each other which

can be traced and will be referred to as case study test trace messages for the

remainder of the thesis.

Cloud computers can be used for compiling the case study software application

and for other tasks which do not require the test units. Jenkins radiator PCs show the

current status of the Jenkins builds to developers.

There are different regression tests run in Jenkins products. For the case study, we

choose one of the most actively run regression test job which takes for average 20.9

minutes to run while the standard deviation is 5.29 minutes. These numbers were

calculated from the last 247 builds. At the time of writing, the number of test cases in

the regression test is 645. The regression test is divided to 12 sections which run in

parallel. This means that 12 test cases can be in execution at a given time, dividing

the total execution time by 12 in theory. However in practice, sections tend to have

different durations, initial test environment setups have to be done for each section

and the results of each section have to be joined together. These all add to total

execution time.

The tests are run with Robot Framework with various custom Python and Robot

keywords to test different functionalities of the software. Basically, it setups the test

unit and gives actions to the test unit by sending messages and asserts the responses.

Most teardowns are also done by sending messages. Because of this, most of the test

sequence information is in the traced messages. The messages can be seen as an

application interface in Figure 5.

The messages in the test trace consist of a header and the rest of the message. In

the header, we can find two important parts for our case study. We have an ID

(msgId) and a corresponding type name for the message. Rest of the header

information is not relevant to the case study.

Test case durations and outcomes are saved in a database for longer period of time

than in Jenkins. From there one is able to look for test case execution history, for

example, when the test case has failed before etc.

29

4.1.4. Command line tool of MRS Finder

The developed application in this thesis, MRS Finder (Maximal Repeat Sequence

Finder), consists of two parts: Python command line tool and HTML results browser.

We are not going to discuss the whole implementation because that would take quite

a lot of pages. Instead, let’s consider what was implemented as well as what issues

that arose and how they were handled during the development. We start by looking at

the command line tool.

Let’s begin with the input and output specifications which are described in Figure

6. For input, we take in the output.xml that is generated by the Robot Framework

after tests have been run [9]. Other inputs are the command line parameters that can

be used to get different outputs. Main outputs are two JSON files. msgs.json file

which contains the messages in smaller format than the output.xml and seqs.json file

which contains the repeats that were found. Other output variant is a plot with the

msgId:s in decimal format on the y-axel and message index number on the x-axel. In

the plot, a line from the bottom to top separates test cases visually. Later on, we will

refer to this plot as msgId plot.

Figure 6. Input and output variants of command-line interface (CLI). Different

command line parameters yield either JSON files or msgId plot.

Command line tool was developed with test driven development (TDD). In this

project, unittests were written using Python’s “de facto” standard unit testing

framework, unittest library [57]. A Jenkins job was also configured to continuously

run the unit tests while commits to the repository of the application were made.

Moving on to XML-parsing, there was already code available for printing all the

traced messages and the corresponding keyword path from the Robot Framework’s

output.xml. However, we needed to store them instead of printing to construct suffix

arrays. To store long messages more memory efficiently, we hash the message after

the header with MD5 hash function. This leads to a message containing a header and

a checksum of the remainder of the message. We store only the messages sent to the

test unit because two sequences with same sent messages should have also same

received messages application-wise in theory. Robot Framework keyword

timestamps, msgId:s and test case names were also stored for each message. Test

case start indexes were also stored for easier combination creation when searching

for pair-wise supermaximal repeats. If a keyword failed in a test or message cannot

be parsed from the trace, it is skipped.

Computation of maximal, supermaximal repeats and pair-wise supermaximal

repeats are described in chapter 3.2.2. The only addition that should be mentioned

here is that sorting the list of suffixes was done without any distinct character or

30

string at the end of the suffix. Instead, if two lists were the same until the end but

either was shorter, the shorter list would be considered greater and therefore act as it

had a distinct greatest character or string at the end. Sorting the suffix array is done

by using Python’s built-in sort() method for lists where an item in the list is a suffix

and a suffix contains messages i.e. strings.

Like mentioned in chapter 4.1.3, a regression test build contains 645 test cases,

which means that for pair-wise supermaximal repeats we would have to consider

 combinations of two. However, we also have 12 section setups

which raises our number of combinations of two to

 . However,

some cases execute teardowns outside the actual test case. Therefore, there are

actually even more combinations of two, to be exact. To counter the

amount of suffix arrays, the supermaximal repeats for the each combination can be

computed in parallel threads. The number of threads is configurable in the input

parameters. The workload is divided to threads so that each thread gets same amount

of pseudo-randomly selected combinations to calculate. Duplicate pair-wise

supermaximal repeats that appear in one thread can be removed inside the thread.

However, because we may get duplicate repeats between threads, we have to remove

those in the main thread.

Python library Library description [58] Reason of use

datetime Handles date and time operations Converting Robot Framework

timestamps to more familiar format.

glob Unix style pathname pattern

expansion

Finding files that match a pattern in

unit tests

hashlib Interface to many secure hash and

message digest algorithms

MD5 hashing of messages while

parsing output.xml

itertools Functions creating iterators for

efficient looping

Iterating over combinations

json JSON API for Python Creating test cases. Creating output

in JSON format.

matplotlib 2D plotting library. pyplot module
provides MATLAB-like interface

[59]

Showing and interacting with msgId
plots.

multiprocessing Supports spawning processes to get

around Global Interperter Lock

Parallel processing

os Miscellaneous operating system

interfaces

Enable writing and reading files in

different directories.

random Pseudo-random number generators Pseudo-randomly dividing workload

for threads

re Regular expression operations Finding traced messages in the

output.xml

shutil High-level file operations Recursively deleting testing directory

in unit test teardowns

subprocess Allows spawning new processes Unit testing command line

parameters of the implementation.

sys System-specific parameters and

functions

Finding Python version in use

time Various time-related functions Measuring durations of

functionalities

unittest Python unit test framework Creating and running unit tests

xml.etree.cElementTree C implementation of XML API for

Python.

Reading output.xml.

Figure 7. Python implementation dependencies

31

Although we are talking about threads, Python’s threading library is not used but

Python’s multiprocessing library. This is because the threading.Thread object cannot

utilize multiple processor cores because of CPython’s global interpreter lock [58].

However, multiprocessing.Process object can utilize all cores because it uses

subprocesses to run the threads [60]. When multiprocessing.Process object’s start

method is called it actually starts a subprocess [60]. All Python implementation

dependencies are presented in Figure 7.

The command line tool is run on a cloud computer with 30 cores and 2 TB of

RAM. In the case study CI, tests are not normally traced because the output files

sizes are then considerably larger and the results should be kept for a while. When

tests are run with traces, output.xml can be over 1.9 GB in file size. However, if

tracing is not used and some passed keywords are removed from output.xml, the file

size is around 30 MB. This is why traced tests are run only once a day by a different

Jenkins job. The implementation itself is run in a downstream Jenkins job of the

tracing job.

4.1.5. Results browser of MRS Finder

Figure 8. An overview of the results browser

The result browser was built with using HTML, SCSS (Sassy CSS), CSS (Cascading

Style Sheets), javascript and jQuery. Sass (Syntastically Awesome StyleSheets) can

be used to extend CSS with variables and imports among others. SCSS, the language

of Sass, can be compiled to CSS. [61] jQuery is a JavaScript library which has been

designed to make HTML object reading and writing, event handling, animations and

AJAX (Asynchronous JavaScript And XML) operations simpler. Another advantage

of jQuery is that it works on multiple browsers. [62]

The result browser was also developed using TDD. JavaScript library QUnit was

selected as the testing framework because it provides reasonably good

documentation and setting it up is quite easy. Tests can also be run quite fast and

interactions can be tested automatically. [63] As an example of interaction testing,

we have tests where clicking a certain object should set the class of another object

correctly. Because the JavaScript for the results browser is written in object-oriented

32

way, code can also be mocked quite easily by overriding methods to only save the

parameters that they were called with.

In Figure 8, we can see that there are three main objects in the results browser. On

the left there are a filtering tool and all the reported results that match the filters. By

default, all repeats are visible. The filters include a maximum and minimum filters

for length and repetition times (amount) of the repeats as well as msgId filter for

removing repeats that contain certain msgId. There is also a reverse tool, search tool,

in the filter tool for looking only repeats that contain certain msgIds. Filter tool is by

default minimized and can be collapsed and minimized while retaining the data in it.

Repeats that pass filters are shown below the filtering tool in a table. The repeats

can be sorted based on their length, repetition times (amount), average (AVG)

duration and standard deviation (SD) of their durations. Each repeat is represented by

the sequence of the msgIds in hexadecimal format in the message sequence.

Clicking on a repeat opens up “Specs view” object on the right where one can

examine the repetition in more detail. In the Specs view, there are two objects:

occurrences list and comparison tool. Each occurrence of the repeat is represented in

the occurrence list. When first opening the Specs view, the comparison tool is hidden

before two occurrences are selected from the occurrences list. In the comparison tool,

both selected occurrences can be compared message by message. The same messages

in each of the two occurrences are represented side by side.

All messages are minimized when the comparison tool is opened. Messages can be

collapsed and minimized at will. A minimized message only shows the index of the

message in the whole test run. Collapsed message shows the test case name, message

name, msgId, keyword path and time delta () of the message. Time delta is the

time taken since the first message in the occurrence. Therefore, for the first message

in an occurrence, the following is always true: .

4.1.6. Analysis of repeats

As a basis of our case study analysis, we use a traced regression test run with 645 test

cases where eight of them failed and rest of them passed. Four of the twelve sections

contain failed tests cases and all tests passed in the other eight sections.

To get an overview of the results all supermaximal and pair-wise supermaximal

repeats reported by the MRS Finder are copied to Microsoft Excel to make graphs

about the amount of repeats and occurrences as well as average durations etc. We

compare the results of supermaximal and pair-wise supermaximal repeats.

We also take a look at some specific pair-wise supermaximal repeats and analyze

their occurrences with help from a case study software and SCT specialist. We start

by sorting the results by decreasing average repeat duration in order to try to find the

repeats that cost most to run. In this phase, we consider four filtering scenarios:

A. Minimum repeat amount 30

B. Minimum repeat amount 10 and minimum repeat length 30

C. Minimum repeat amount 10 and ignore some previously appeared msgIds

D. Ignore some previously appeared msgIds

For comparison, we continue the analysis by filtering out repeats that are only one

message long and sorting the results by each field one at a time, thus considering top

repeats in four sorting scenarios:

A. Sort by amount in decreasing order

B. Sort by length in decreasing order

33

C. Sort by average duration in decreasing order

D. Sort by duration standard deviation in decreasing order

For filtering scenarios, we pick repeats randomly from the top of the list for

analysis, but for each sorting scenario, we pick the top five. We make notes about the

repeats that are considered and present their characteristics in the results. The

characteristics are tied into regression testing, test suite optimization, test case

structure and mocking.

4.1.7. Implementation statistics measuring

Class and line coverage of Python unit tests among others can be measured using a

tool called nose which can be installed using standard Python package installer, pip

[64]. In this thesis, nose was used in a our continuous integration testing job to run

the test, produce a coverage report and measure execution time of each unit test.

Additionally, a Jenkins plugin called Cobertura Plugin was used to publish the results

in readable format. From there, the results were copied to Microsoft Excel and

formatted for more thesis suitable format. The continuous integration testing job was

run on a machine with Intel Core 2 Duo and 4GB of RAM.

Suffix array creation is measured with 5730 messages long sequence. This

sequence is assumed to be quite a bad case scenario with lot of repeats. We measure

suffix array creation algorithm by measuring time it takes with the first 10, 100, 200,

300, 400, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250,

3500, 3750, 4000, 4250, 4500, 4750, 5000, 5250, 5500 and 5738 messages from the

sequence. We run this experiment on a laptop with Intel Core i5 and 4GB of RAM.

For the normal use case scenario, statistics are measured by running MRS Finder

command line tool with 25, 30, 40, 50 and 70 threads with same data to find pair-

wise supermaximal repeats as we use in the analysis. For comparison, we also run

MRS Finder to find supermaximal repeats in one thread. These measures were run on

the cloud computer with 30 cores and 2 TB of RAM.

4.2. Results

4.2.1. Implementation statistics

Figure 9 shows the line and class coverage of unit tests that were created during the

development of the command line tool part of MRS Finder. It can be seen from the

figure that the total class coverage is 100 percent while the total line coverage is over

90 percent.

The least covered module, msgid_plotter.py, is covered only 60 percent due to the

fact that most functionality for the msgId plot is implemented in there. The

remaining 40 percent of code include, for example, mocked parts of the UI that were

tested manually.

The main module find_same_message_sequences.py has only 83 percent line

coverage due to some parts being tested by launching the application in a subprocess.

Code covered in a subprocess is not tracked in nose. This kind of testing is used

mainly for command line option parsing and print outputs testing. This occurs also in

msg_parsing.py.

34

Figure 9. Line and class coverage of command line tool unit tests.

By considering all of the facts mentioned here, the total line coverage is actually

even higher and probably quite close to 100%.

All 119 unit tests pass in the continuous integration job in 2 minutes and 9

seconds. This gives the average of one second per unit test. However, most of the

time is spent on a one and half minute suffix array creation performance test which

can be skipped during development by setting one boolean value to true if

performance information is not required at the moment. Also it should be noted that

99 unit tests run under 10 milliseconds each.

Figure 10. Duration measurements of suffix array creation algorithm with different

amount of messages.

Suffix array creation measurements can be seen in Figure 10. The figure suggests

that the implemented suffix array creation algorithm is not time linear but

exponential. This is probably caused by the fact that suffixes are sorted with an

100 % 100 % 100 % 100 % 100 % 100 %

83 %

99 %
93 %

60 %

100 %

91 %

0 %

20 %

40 %

60 %

80 %

100 %

Class coverage

Line coverage

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000

T
im

e
[s

]

Number of messages

35

algorithm where decision about which of two suffixes is larger is done by comparing

messages one at a time in two suffixes and one character at a time in messages.

Another factor is that a time linear suffix array creation algorithm was not used as a

basis in the implementation.

Figure 11. Duration measurements with different thread settings for pair-wise

supermaximal repeats finding compared to duration measurements of supermaximal

repeats finding. Note that XML-parse, duplicate removal and finishing up are

actually not run in threads.

Figure 11 shows time measurements from the whole implementation. However,

there are some notes that should be made before drawing any conclusions from it.

First, the XML-parse, final duplicate removal and finishing up phases are always

done in one thread, the main thread. XML-parse is not affected by threads at all but

the inputs of final duplicate removal and finishing up phases are. From the graph we

can see that removing duplicates in the main thread gets slower as we add threads.

This is probably because more duplicates are found between threads when there are

more of them.

Finishing up phase should always get same input but it may be in different order

with different amount threads because the workload is distributed pseudo-randomly.

What finishing up phase does is that it formats the output in the correct format and

writes the output files.

Second, supermaximal repeats are run only on the main thread due to technical

reasons and cannot produce duplicates. Therefore, final duplicate removal phase is

not applied to supemaximal repeats.

XML-

parse

Threads/

Suffix

arrays

Final

duplicate

removal

Finishing

up
Total

Threads

AVG

Threads

SD

25 threads 0:01:45 2:41:59 0:00:10 0:08:13 2:52:07 2:08:45 0:12:44

30 threads 0:01:55 2:32:16 0:00:12 0:08:13 2:42:36 2:08:09 0:08:41

40 threads 0:01:49 2:27:24 0:00:16 0:08:11 2:37:40 2:06:47 0:09:15

50 threads 0:02:19 2:33:25 0:00:19 0:08:23 2:44:26 2:15:27 0:10:52

70 threads 0:01:54 2:31:29 0:00:27 0:08:19 2:42:09 2:11:07 0:11:09

Supermaximals 0:01:49 0:07:35 0:01:56 0:11:20

0:00:00

0:30:00

1:00:00

1:30:00

2:00:00

2:30:00

3:00:00
D

u
ra

ti
o

n
 [
h

h
:m

m
:s

s]

36

The first and most noticeable fact that can be seen in the figure is that the

supermaximal repeats are tremendously cheaper to calculate than pair-wise

supermaximals time-wise. It is faster to create one large suffix array of all messages

than couple hundred thousand smaller suffix arrays with 30 of them in parallel at a

given time. Another big factor is that the suffix arrays in thread take about two and a

half hours even when run 30 in parallel.

Secondly, it can be seen that the time spent does not decrease much after 30

threads are reached because then the CPU will have to start scheduling the processes

on its 30 cores. However, small improvements are possible with some extra threads

because threads seem to end at different times. For example, when first thread of 30

threads ends then that core is not utilized any more. With 40 threads, 11 threads have

to end before a core is not in full use. Therefore 40 seems to be the optimal amount

of threads out of the measured thread amounts. The small increase in standard

deviation of thread duration from 30 to 40 threads supports this.

Figure 12. Distribution of thread durations with 50 threads on 30 cores. Average

duration is 2:08:09 and standard deviation is 0:08:41.

The phenomenon of threads not ending at the same time is probably an effect of

threads having different workloads because some suffix arrays are harder to create

than others. The distribution of thread durations is visualized in Figure 12 for 30

threads. It seems that the last thread may end even almost an hour later than the first.

The total output file sizes of the command line part are 62.98 MB for

supermaximal repeats and 63.56 MB for pair-wise supermaximal repeats. Most of the

total file size consists of messages (62.56 MB) which is same for both.

4.2.2. Message ID plot

Message ID plot, which we refer to as msgId plot, shows the all traced messages as

red balls in the order they appear in output.xml. The x-axis represents their ordinal

number i.e. index and y-axis represents their msgIds in decimal format. A line from

the bottom to top in the plot represents a beginning of a test case. Thus, a space

between two lines represents one test case. The wider the space for the test case the

0 0 0

1

0

1

2 2

4

2

7

1

3

0

3

0

1 1 1

0 0 0

1

0

1

2

3

4

5

6

7

8

1
:4

6
:2

6

1
:4

8
:3

7

1
:5

0
:4

7

1
:5

2
:5

7

1
:5

5
:0

7

1
:5

7
:1

8

1
:5

9
:2

8

2
:0

1
:3

8

2
:0

3
:4

9

2
:0

5
:5

9

2
:0

8
:0

9

2
:1

0
:1

9

2
:1

2
:3

0

2
:1

4
:4

0

2
:1

6
:5

0

2
:1

9
:0

1

2
:2

1
:1

1

2
:2

3
:2

1

2
:2

5
:3

1

2
:2

7
:4

2

2
:2

9
:5

2

2
:3

2
:0

2

2
:3

4
:1

3

A
m

o
u

n
t
o

f
th

re
ad

s

End time

37

more messages it has. The figure can be zoomed to any range. A full msgId plot is

shown in Figure 13 and a couple of zoomed plots in Figure 14 and Figure 15.

The balls are interactive in the plot. Clicking on a ball shows the corresponding

msgId and test case name on top of the plot. The click also produces a print in the

console terminal where the MRS Finder was run from. In the print, there is additional

information about the keyword path and the full message along with the information

that appears also on top of the plot.

In Figure 13, the last ball is in x-axis at index 68010 which means that there are

68009 traced sent messages in this regression test because the first message has an

index of zero. The msgIds range from 2139 to 60970.

Figure 13. Full msgId plot of sent messages.

In Figure 14, the plot is zoomed so that the x-axis (indexes) now ranges from

58970 to 64461. In Figure 15, the range for x-axis is kept the same but the y-axis

(msgIds) is also zoomed to range from 39403 to 40223. Thus, in the shown test

cases, some of the messages that were visible in Figure 14 are not visible in Figure

15 because they are above or below the range.

Figure 14. Zoomed msgId plot ranging from 58970 to 64461 in the x-axis.

38

Looking at the Figure 13 we see that some test cases have more traced messages

than others and there are big ranges in y-axis where there are no messages. We can

also see that there is couple of test cases that have more messages than others. Some

small ranges in the y-axis seem to be used often, almost constantly, while other

ranges are not used at all.

We see that there seems to be some repetition in the patterns of msgIds by looking

at Figure 14. The same figure also indicates that one test case trace may contain

messages with both very high and low value of msgId.

By looking at the Figure 15, we can see that msgIds, that appeared the same in

Figure 14, may not be the same in fact. However, we can still see that there may be

some repeated patterns.

Figure 15. Zoomed msgId plot ranging from 58970 to 64461 in the x-axis and

from 39403 to 40223 in the y-axis.

4.2.3. Overview of found repeats

Figure 16. Comparison of pair-wise supermaximal repeats and supermaximal repeats

2823

52370

1015 2214

0

10000

20000

30000

40000

50000

60000

Total repeats Total

occurrences

Pair-wise supermaximal repeats

18.6
15.5

1.02 2.2

32.8

0

5

10

15

20

25

30

35

AVG

occurrences

AVG length AVG

duration

Supermaximal repeats

39

Figure 16 shows that overall that there are

 times more pair-wise

supermaximal repeats than supermaximal repeats in the test trace. By average, there

are also

 times more occurrences of a single repeat and, in total,

 times more occurrences. Average repeat length is greater for supermaximal

repeats by

 times. Average duration for a repeat cannot be measured for

supermaximal repeats reliably because the supermaximal repeats may occur between

sections, but for pair-wise supermaximal repeats, it is about one second.

Figure 17. Amount of occurrences of pair-wise supermaximal repeats by their

length. In total: 52370

In Figure 17, we can see the length distribution of occurrences for pair-wise

supermaximal repeats. It seems that there are many occurrences that are quite short.

Almost 75 percent of occurrences seem to have length of 4 or lower. However, there

are thousands of occurrences that have length of over ten and hundreds of

occurrences whose length is measured in tens, hundreds or even thousands.

Figure 18. Average duration of pair-wise supermaximal repeats by their length

4

13
28

139

824 1034

4509 8638

6871

7947 22363

2000 - 4000

1000 - 2000

100 - 1000

50 - 100

30 - 50

20 - 30

10 - 20

5 - 10

3 - 5

2 - 3

1 - 2

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
[s

]

Length

40

As the average length of the pair-wise supermaximal repeats is only 15.5, it can be

quite hard to make linear plot of how a repeat length corresponds to duration. Either

way, in Figure 18, we see that Microsoft Excel gives us a trend line that suggests that

a longer repeat usually yields to a longer duration. However, we can see that there

are many measurements that do not quite agree with the line. It should be noticed

that the longest duration is not around 135 seconds because there are four repeats

found for the length of 61 and the average of them is around 135 seconds. The

longest average duration of a repeat is actually 531.310 seconds.

Figure 19 shows that there are less occurrences of supermaximal repeats than

occurrences of pair-wise supermaximal repeats. It also shows that occurrences are

distributed more on the longer end but there are not many very long occurrences.

Figure 19. Amount of occurrences of supermaximal repeats by their length. In

total: 2214

4.2.4. Analysis of specific repeats

In filtering scenario A, we find 261 pair-wise supermaximal repeats. Out of these

repeats we find out that 28 of them contain one same msgId that is related to

requesting a CPU load measurement from the test unit. Let’s refer to this msgId later

on as α. The repeat with the longest average duration (2.1 seconds) occurs in

teardowns of 32 different test cases. For the case study SCT, this request is needed

for checking some kernel errors in the test unit. This kind of measurement is usually

also done in test cases that test capacity of the application. By looking at the other

repeats that contain the same msgId it seems that there are over 300 test cases that do

this check in their teardown.

Another sequence that is near the top of the list relates to checking status of

resources and setting up test case environment in the test unit. This happens in

hundreds of test cases. The repeat takes from half a second to three seconds every

time to execute. In the case study SCT, it may be possible that these setups can be

run only once at the start of a test suite instead of running it before each test case.

Following these two, there is a repeated sequence that relates to assertion phase of

test cases and is about verifying correct data transmission. However the amount of

data seems to be varying from test case to another, which may indicate that the

4

6 31

230 317

213

279

155
434

331

214

2000 - 4000

1000 - 2000

100 - 1000

50 - 100

30 - 50

20 - 30

10 - 20

5 - 10

3 - 5

2 - 3

1 - 2

41

message that is received could be varying too. There are also some near duplicates of

this msgId sequence where the length is either longer or shorter.

Next up, there is a repeated sequence consisting of a test case setup which is used

in multiple test cases that test same feature in different scenarios. This includes

setting up mocks, measuring the CPU loads and setting some variables. This repeat

occurs in 66 test cases and takes 0.773 seconds by average which means that the total

time spent repeating it is about 51 seconds. This setup sequence is mandatory for

some test cases but it should be investigated if it is used where it is not needed. Some

optimizations for the repeat execution can also be possible. These settings may also

be possible to set as default settings in initialization phase of a test suite rather than

before each test case.

We also find a repeat which runs quite fast with duration of just over 0.1 seconds.

The repeat is run on the action part of a test case. Any optimization benefits would be

quite small with this repeat.

By looking quickly at the rest of the repeated sequences in scenario A, it is hard

not to notice that most of the repeats are about setups or teardowns. There is also a

lot of mock configuration which could probably be avoided by setting the mocks in

the initialization phase with some default parameters of a test suite rather than setting

them up every time in each test case setup, similarly to a repeat mentioned before.

Moving on to filtering scenario B, we only find 15 repeats and some of them seem

to share same subsequences. First, we have a repeat that consists of regression test

initialization phase in each section. Naturally, it occurs 12 times because of the 12

sections. By average it takes about a minute with a couple seconds of standard

deviation. This part consists of more than sending messages and is often optimized in

other ways in case study SCT.

Second, we have a repeat that contains previously mentioned msgId α again

among others. The repeat occurs in a capacity test setup. The repeat takes 22.198

seconds in average and occurs in 12 test cases, which means that the total time spent

in the repeat is well over four minutes. Some of the capacity test cases are requested

by the customer of the developed product but a hypothesis is that some of the other

capacity test cases may be redundant and can be removed. However, this information

is not found in here. Either way, this should be looked into more closely.

Third, we have yet another test setup related repeat. The repeat consists of smaller

capacity test scenario setup and some CPU load measurement initialization.

However, the occurrences of the repeat are not in the same test suite as the previous

capacity tests. The repeat is 47 messages long, takes 3.357 seconds by average and

occurs in 10 test cases yielding to 33.57 second total cost in the regression test.

Fourth, we notice a shorter version of the previous repeat which occurs in five

more test cases and takes by average 2.577 seconds. That costs 38.655 seconds in

total in the regression test. This repeat does not contain some of the CPU load

measurement initialization and is only 32 messages long.

Rest of the repeats found in filtering scenario B are mostly about testing a certain

feature in the case study software application. The feature is tested in multiple

scenarios and the average duration of the repeat is about one second. Occurrences are

within 10 to 18.

In filtering scenario C, we get quite short repeats in terms of average duration but

we do get a lot of them, 371 to be more specific. The longest average duration is only

0.642 seconds and it is again about setting up the environment even though in the

SCT Robot keyword it is explicitly said in the actual test part of each test case

42

instead of their setup. Otherwise, the test cases seem different and should not be

redundant with each other. Because the amount of occurrences is 11, the total time

spent in the repeat is about 7 seconds.

Next, we have a repeat that is overlapping with itself in two test cases and

therefore reported as 122 occurrences with a length of 42 messages. An example of

two occurrences in comparison is presented in Figure 20. The test case in the figure

is reported to have 120 occurrences where actually two different messages are

repeated 262 times after each other. In the other test case the repeat is reported to

occur two times meaning that the two messages are occur 22 times each.

Figure 20. Overlapping occurrences of a repeat. Occurrence on the left contains

messages #623 and #624 which are same as #625 and #626 as well as #627 and #628
respectively and so on.

After the overlapping repeat, we find four repeats more that are related to setting

up test environment. Two of the repeats are almost the same with each other but

differ by length of one message and the one with less messages appears in two test

cases more. These four repeats occur 11 to 13 times and last less than half a second.

Next, we have a repeat of a teardown that occurs for all test cases in a certain suite

but there are test cases in other suites where it occurs. The keyword name of the

teardown changes between suites, which indicates that it has been implemented

multiple times.

Then there is a repeat that occurs 27 times with length of 17 messages and average

duration of 0.404 seconds, which adds to 10.908 seconds in total. The test cases

where the repeat occurs are created with a test case template. The repeat occurs at

setup phase of the test cases.

For the rest of the repeats in filtering scenario C, there are various repeats that

seem familiar to the already inspected but are bit shorter. Most of them also seem to

relate to test case setup at first glance.

On the final filtering scenario D, we get even more repeats (1707) by removing the

minimum amount filter. First up, there is an overlapping repeat where a two message

long repeat occurs only in one test case. The repeat happens in the action part of the

test case. The test case tests data transferring and the same data being sent over and

over is visible here.

Next from the top, we have a repeat that occurs three times and is 1678 messages

long with an average duration of 30.846 seconds. This means that more than a

minute and a half is consumed in total. The repeat consists of deleting users from the

application in teardown phase. This is done with a certain Robot Framework

keyword in a loop but in the case study software application there is a faster way for

43

deleting users. Thus this repeat can be optimized. Two repeats after it are about the

same repeat but in different versions appearing in longer and shorter versions where

they have one less and one more occurrences respectively. The one with four

occurrences takes one minute and 45 seconds in total.

Moving forward, we have an overlapping repeat in a test case where 20 messages

are repeated over and over. It is a logging level test. In case study CI, a lot of tests

use logging information and therefore they should fail if logging breaks. The same

msgIds as in the repeat can also be found in numerous other repeats by using the

search tool. The bad thing is that the logging test takes about 25 seconds to execute

and in the actual Robot test case it literally reads: repeat a keyword 100 times. From

the test result database, we can see that the test has not been broken in a while.

Next up, there is another overlapping repeat that occurs in one test case. This time

though, 353 messages are repeated over and over. The repeat resides in the action

part of the test case where data is transmitted between the couple of mocks and the

test unit. The repeat is reported to have duration of about 18 seconds.

The sorting scenario A is very hard to analyze because the amount of occurrences

is quite high and it would take very long to go through each occurrence. However,

the common factor for the top five repeats seems to be that they are quite short and

occur in many different teardowns and setups. The top five is shown in Figure 21.

Amount Length Duration AVG Duration SD

1
st
 739 6 0.033 0.004

2
nd

 688 6 0.032 0.005

3
rd

 613 2 0.158 0.072

4
th
 609 2 0.014 0.003

5
th
 414 2 0.117 0.060

Figure 21. Top five repeats with most occurrences (amount) that are longer than

one (sorting scenario A)

Now in the sorting scenario B, we see that there are a few quite long repeats that

consist of thousands of messages. However the first, second and fifth are overlapping

repeats that only occur in one test case. The first repeat occurs in the logging test an

the repeat was already mentioned previously. The second one occurs in a stability

test that does the same thing 800 times. The third, fourth and fifth have already been

analyzed previously. The top five is presented in Figure 22.

Amount Length Duration AVG Duration SD

1
st
 2 3960 25.861 0.021

2
nd

 2 2793 86.068 0.005

3
rd

 2 1682 29.703 0.180

4
th
 3 1678 30.846 2.108

5
th
 2 1416 18.127 0.057

Figure 22. Top five longest repeats by length (sorting scenario B)

Figure 23 shows the top five test cases in sorting scenario C. We see that the

longest maximal repeat by average duration is over 8 minutest long. However this

repeat is a section suite initialization and section suite teardown combined. The last

message in the repeat is the last message in the section which appears in the Robot

Framework output.xml before the actual tests appear. For this reason, an occurrence

44

of the repeat has the duration of a whole section but does not include any of the

messages in the test cases of the section. This repeat appears only eight times

because different section teardown is run if all tests pass in a section. We can see that

this repeat occurs in sections where all tests passed.

The second on the list is the same repeat as in the sorting scenario B. Third and

fourth occur in all section initializations but the fourth also appears in a test case

where a crash of the case study software application is made to happen and the test

unit is then retrieved back up with section initialization. The retrieving part of the test

case matches a part of the section initialization.

The fifth repeat occurs in two capacity test cases. The repeat starts almost at the

beginning keywords of the test cases and ends in teardown. This is the first analyzed

repeat that seems to cover almost in full two test cases from start to beginning.

However the repeat does not cover test case setup phases of the test cases.

Amount Length Duration AVG Duration SD

1
st
 8 61 531.310 115.270

2
nd

 2 2793 86.068 0.005

3
rd

 12 60 60.691 2.019

4
th
 13 24 58.512 1.807

5
th
 2 135 42.683 0.037

Figure 23. Top five longest repeats by average duration with length more than one

(sorting scenario C)

The top five repeats in sorting scenario D are shown in Figure 24. In the very top

of the table, we have the same repeat as in the sorting scenario C. Second, third and

fourth repeat occur in capacity cases where the CPU loads are measured. Such

repeats have been analyzed before in the filtering scenarios. The fifth repeat occurs

in test cases using a same data transfer template. However, the data has been sent

before the repeat starts. Based on this evidence, the test cases do not seem to send

same data and are not redundant in this matter.

Amount Length Duration AVG Duration SD

1
st
 8 61 531.310 115.270

2
nd

 13 32 22.426 5.791

3
rd

 12 33 25.198 4.455

4
th
 9 33 25.555 4.331

5
th
 3 7 7.375 4.113

Figure 24. Top five repeats by duration standard deviation with length more than

one (sorting scenario D)

45

5. DISCUSSION

5.1. Challenges of MRS Finder

During the analysis, it was found that msgId plot is quite hard to use. First of all,

before zooming in, it shows a plot with a lot of data in it. UI-wise, it seems just too

much at first glance. Secondly, when viewing the full plot, it seems that there are a

lot of traced messages in a row which have the same msgId. However, when we

zoom in, it can be seen that this is not the case. This is due to the fact that msgIds

seem to cover only small areas of the available msgId space. They are concentrated

on some smaller ranges. Thirdly, even if two msgIds were the same, it does not

necessarily mean that the two corresponding messages would be the same as stated in

chapter 4.1.3. All in all, the main benefit of msgId plot seems to be that it gives hope

that there may be redundancy in the traces.

The command line tool of MRS Finder has some performance issues and requires

a cloud computer with many cores and a lot of RAM when searching for pair-wise

supermaximal repeats. In chapter 4.2.1, it was presented that the algorithm does not

have linear time complexity. However, in the case study CI, this is acceptable

because MRS Finder can be run during the night. However, it would be more ideal if

it could be run after each regression test so that every regression test could be

analyzed. One of the bright things about the application is the execution time of

supermaximal repeats search. However, the main point was to look for pair-wise

supermaximal repeats which was now only done for sent messages mainly because

of the performance issues.

The results browser part works fluently performance-wise when the results have

been loaded into browsers memory which is not a problem in the internal network of

the case study company. However, UI-wise there is room for improvement. During

the analysis of the results, we had to go look at the Robot keyword code to see at

which point in the test case the repeat occurs. Straight from the result browser, it was

not immediately clear in some cases. It was also not clear if the repeat covered the

whole test case or not. The question was that did the test case contain some messages

before the first message in the repeat or after the last message. Another problem was

that the already analyzed repeats kept polluting the results by appearing again in

different filter and sorting settings.

5.2. Discovered repeats

It was discovered that there are quite a low amount of occurrences of each

supermaximal repeat. It is also evident that supermaximal repeats are long and may

overlap each other, which makes the analysis harder. In the results it was also shown

that we get much more repeats and occurrences of pair-wise supermaximal repeats

than supermaximal repeats. Some of them are also quite long but there are many

more occurrences of repeats with medium and long length. We had some good finds

which probably would not have found with supermaximal repeats because

supermaximal repeats do not, first of all, occur so many times.

One problem with pair-wise supermaximal repeats was that we also found many

repeats that were near duplicates of each other having mutations of changed,

removed or added messages. These repeats polluted the results and made finding

46

other repeats harder. On the other hand, it was also a good feature because we could

see that the same repeat appeared in multiple test cases and varied just a little in

them, pointing out the difference.

Another problem was that we were not able to find a repeat that would cover a full

test case. At least we were not able to prove it. The repeats also tended to occur

mostly in setup and teardown phases of the test cases, which actually makes sense

because test suites are a logical collection of tests and therefore often share same test

case setup and teardown.

Overlapping was also another problem as with supermaximal repeats. We may

have still not found all repeats that we would have liked because message sequence

appearing over and over is reported as only two occurrences. When comparing this

kind of repeat with smaller repeat of the same sequence, only the larger and

overlapping is reported.

Overall, the found repeats provide good overview on where there is repetition in

the test trace. The repeats also revealed some badly coded and slow tests which can

now be refactored. The refactoring process can also be prioritized by the average

duration of the found repeats.

5.3. Trace repeat detection compatibility with test suite optimization

In my opinion, the results of the command line part of MRS Finder enable test suite

optimization in theory because we can now link test cases by their similarities.

However in practice, I do believe that no matter which method was used, the results

of test suite optimization would not be good for numerous reasons. We have mostly

repeats that only occur in setups and teardowns. Also there are many repeats that are

mostly the same and link to the same requirement. Because of this some kind

filtering system would have to be implemented to remove some of the repeats. They

cannot be filtered manually because there is so much repetition.

Actually, MRS Finder seems to be better tool for another kind of optimization with

its results browser. It is now possible to see what sequences are repeated a lot and

which repeats take time. It is possible to optimize these repeats to take less time

manually and move some test setups to higher level to run only once if they take so

much time. Overall, the MRS Finder makes some bad code more visible.

Nevertheless, the result of this study is negative in the matter of trace repeat

detection compatibility with test suite optimization

In the CI process, the tool suites well to a situation where the regression test suite

should be optimized but no-one knows the tested functionality of each regression test

case. The tool can then be run to inspect what functionality is repeated often and

which of the repeats take the most time to execute. The tool should be used manually

by developers who are familiar with the functionality of the tested application. On

the other hand, execution of MRS Finder should be automatic. The tool should be

run as often as possible after new regression test results are available. This would

keep the results of MRS Finder up-to-date.

5.4. Future work

MRS Finder needs performance improvements in future because the amount of test

cases grows with the time and so does the amount of traced messages. The

47

performance can possibly be increased by improving suffix array creation algorithm.

The literature shows that the implemented sorting method is not the fastest and it can

possibly be done in linear time. It also may not be possible because in the case study,

we have complete strings instead of single characters. It can be looked into, however.

Another performance increase would be creating a PLCP table in order to compute

the LCP table faster. Other improvement methods should be investigated as well like

writing the algorithm in C.

More analysis should be also done from the results of MRS Finder. We only

looked at very small percentage of the reported repeats and there may still be more

good and interesting finds. We also run MRS Finder against a trace of a single

regression test run and the results can be quite different with other regression tests.

Improvement possibilities to the results browser UI include adding more filters,

creating better links to Robot Framework keyword code and showing messages in

teardown and setups different color, for example, in order to differentiate them from

the repeat. Filters could be created for already analyzed repeats, minimum and

maximum duration as well as for resource files. With a resource file filter, a

developer optimizing a Robot keyword resource file could see what part of it is used

heavily and see if the repeats are improved over time.

New aspects that could be investigated and would interest me include showing the

messages that differ in the results browser, a sequence alignment of test cases and

categorizing repeats. Repeats could be categorized if they share some threshold

volume of same messages. This could either be shown in the results browser or used

in possible future test suite optimization. Different type of repeats could be also tried.

Finally, the method of removing test cases with their complete trace occurring in a

prefix of another test case could be tried. This method was presented in chapter 2.2.3.

However, based on our results, it seems that no such test case would be found where

this would happen.

48

6. CONCLUSION

Large scale continuous integration and regression testing can be rather problematic

because the testing tends to take time and resources which are often limited.

Complete re-test all tests method becomes impossible because the feedback time

from the commits increases.

This thesis studied many test suite optimization methods that have been used to

reduce the test suite by removing tests and automatically creating new tests. All of

them need the knowledge of which test case overlaps which one. This information is

usually either code coverage or requirement coverage of a single test case. It was

suggested that test cases that share same coverage as other test cases do not have to

be run. And the test cases that have maximum coverage with smallest amount of cost

should be run first.

This thesis presented something new. We looked into several methods of finding

repeats on strings. It turned out that the field of finding repeats and comparing strings

has many problems and solutions. It was not found that anyone had tried to find

supermaximal repeats their test trace before. The concept of pair-wise supermaximal

repeat was also introduced. We considered a new suffix array method where a suffix

was considered as a list of strings instead of just a string.

In our case study, we had traced messages in test cases which often repeated

themselves. A custom enhanced suffix array algorithm was implemented to search

for pair-wise supermaximal repeats, supermaximal repeats that occur in a

concatenation of two test case traces. A new application was developed: MRS

Finder. MRS Finder can use multiple cores at the same time to compare to create

suffix arrays and find pair-wise supermaximal repeats in them. However, MRS

Finder struggles with suffix array creation with long message sequences and leaves

room for optimization in the application.

To analyze the findings of MRS Finder, the pair-wise supermaximal repeats that

were found from a regression test were compared to supermaximal repeats which can

also be found with the same implementation. Some interesting individual repeats

were also picked and analyzed further.

It turned out that most pair-wise supermaximal repeats occur in test setup or

teardown phases of the test cases. No test case was proven to be completely

redundant to another. However, a huge amount of repetition was found on the test

trace and MRS Finder turned out to be a good test optimization tool for searching

parts in test code that could be optimized while maybe not being a good tool for test

suite optimization. For the case study CI process, this means that developers now

have a new tool for refactoring their tests to make them run faster in CI. The tool also

makes bad code more visible and shows that there are plenty of ways to improve test

code.

There is also a lot of room for more work in this field. Sequence alignment of test

case traces, categorizing repeats, different type of repeats and filters should be tried.

49

7. REFERENCES

[1] Graham D., van Veenendaal E., Evans I. & Black R. (2008) Foundations of

Software Testing: ISTQB Certification. Cengage Learning EMEA,

London, UK.

[2] Rogers, R.O. (-p) Scaling Continuous Integration. None: 68-76.

DOI:http://dx.doi.org/10.1007/978-3-540-24853-8_8.

[3] Prasad, S., Jain, M., Singh, S. & Patvardhan, C. (2012) Regression

Optimizer A Multi Coverage Criteria Test Suite Minimization Technique.

International Journal of Applied Information Systems 1(8): 5-11.

DOI:http://dx.doi.org/10.5120/ijais12-450215.

[4] Malhotra, R., Kaur, A. & Singh, Y. (2010) A Regression Test Selection

and Prioritization Technique. Journal of Information Processing Systems

6(2): 235-252. DOI:http://dx.doi.org/10.3745/JIPS.2010.6.2.235.

[5] Kim, J-M. & Porter, A. (2002) A history-based test prioritization technique

for regression testing in resource constrained environments. Proceedings of

the 24th International Conference on Software Engineering: 119-129.

DOI:http://dx.doi.org/10.1145/581339.581357.

[6] Marijan, D., Gotlieb, A. & Sen, S. (2013) Test Case Prioritization for

Continuous Regression Testing: An Industrial Case Study. 29th IEEE

International Conference on Software Maintenance: 540-543.

DOI:http://dx.doi.org/10.1109/ICSM.2013.91.

[7] Response to Stop 29119 Petition (2014) URL:

http://www.softwaretestingstandard.org/29119petitionresponse.php.

Accessed: 10.4.2015.

[8] Stop 29119 (2014) URL: http://commonsensetesting.org/stop29119/.

Accessed: 10.4.2015.

[9] Robot Framework User Guide 2.8.7 (2015)

URL:http://robotframework.org/robotframework/2.8.7/RobotFrameworkU

serGuide.html. Accessed 8.4.2015.

[10] Amiar, A., Delahaye, M., Falcone, Y. & du Bousquet, L. (2013) Fault

localization in embedded software based on a single cyclic trace. 24th

International Symposium on Software Reliability Engineering: 148-157.

DOI:http://dx.doi.org/10.1109/ISSRE.2013.6698914.

[11] Gang, Y., Xianjun, L. & Zhongwen, L. (2011) Fault localization with

intersection of control-flow based execution traces. 3rd International

Conference on Computer Research and Development: 430-434.

DOI:http://dx.doi.org/10.1109/ICCRD.2011.5764051.

50

[12] Cormen, T.H., Leiserson, C.E., Rivest, R.L. & Stein, C.(2009) Introduction

to algorithms, third edition. Cambridge, MA.

[13] Russenschuck, S. (1994) Techniques and applications of mathematical

optimization and synthesis. IEE Colloquium on Optimisation and

Synthesis of Electromagnetic Fields: 1-3

[14] Leandro, S.P., Saurabh, S. & Alessandro, O. (2012) Understanding myths

and realities of test-suite evolution. Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software

Engineering: 33:1-33:11. DOI:http://dx.doi.org/10.1145/2393596.2393634.

[15] Harrold, M.J., Gupta, R. & Soffa, M.L. (1990) A methodology for

controlling the size of a test suite. Proceedings of Conference on Software

Maintenance: 302-310. DOI:http://dx.doi.org/10.1109/ICSM.1990.131378.

[16] Xu, S., Miao, H. & Gao, H. (2012) Test Suite Reduction Using Weighted

Set Covering Techniques. 13th ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and Parallel &

Distributed Computing : 307-312.

DOI:http://dx.doi.org/10.1109/SNPD.2012.87.

[17] Zhang, Y., Liu, J., Cui, Y. & Hei, X. (2011) An improved quantum genetic

algorithm for test suite reduction. IEEE International Conference on

Computer Science and Automation Engineering 2: 149-153.

DOI:http://dx.doi.org/10.1109/CSAE.2011.5952443.

[18] Anwar, Z. & Ahsan, A. (2014) Exploration and analysis of regression test

suite optimization. ACM SIGSOFT Software Engineering Notes 39(1): 1-5

[19] Garey, M.R. & Johnson, D.S. (1976) Some simplified NP-complete graph

problems. Theoretical Computer Science 1(3): 237–267.

DOI:http://dx.doi.org/10.1016/0304-3975(76)90059-1 .

[20] Jeffrey, D. & Gupta, R. (2005) Test suite reduction with selective

redundancy. Proceedings of the 21st IEEE International Conference on

Software Maintenance: 549-558.

DOI:http://dx.doi.org/10.1109/ICSM.2005.88.

[21] Wong, W.E., Horgan, J.R., London, S. & Agrawal, H. (1997) A study of

effective regression testing in practice. Proceedings of the 8th IEEE

International Symposium on Software Reliability Engineering: 264-274.

DOI:http://dx.doi.org/10.1109/ISSRE.1997.630875.

[22] Mansour, N. & Statieh, W. (2009) Regression test selection for c#

programs. Advances in Software Engineering: 1:1-1:16.

DOI:http://dx.doi.org/10.1155/2009/535708.

[23] Inozemtseva, L. & Holmes, R. (2014) Coverage is not strongly correlated

with test suite effectiveness. Proceedings of the 36th International

51

Conference on Software Engineering: 435-445.

DOI:http://dx.doi.org/10.1145/2568225.2568271.

[24] Tallam, S. & Gupta, N. (2005) A concept analysis inspired greedy

algorithm for test suite minimization. Proceedings of the 6th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering: 35-42. DOI:http://dx.doi.org/10.1145/1108792.1108802.

[25] Jeffrey, D. & Gupta, R. (2007) Improving Fault Detection Capability by

Selectively Retaining Test Cases during Test Suite Reduction. IEEE

Transactions on Software Engineering 33(2): 108-123.

DOI:http://dx.doi.org/10.1109/TSE.2007.18.

[26] Nanda, A., Mani, S., Sinha, S., Harrold, M.J. & Orso, A. (2011)

Regression testing in the presence of non-code changes. IEEE Fourth

International Conference on Software Testing, Verification and Validation:

21-30. DOI:http://dx.doi.org/10.1109/ICST.2011.60.

[27] Sun, C. (2011) A Constraint-based Test Suite Reduction Method for

Conservative Regression Testing. Journal of Software 6(2): 314-321.

DOI:http://dx.doi.org/10.4304/jsw.6.2.314-321.

[28] Benala, T.R., Dehuri, S. & Mall, R. (2012) Computational intelligence in

software cost estimation: an emerging paradigm. ACM SIGSOFT Software

Engineering Notes 37(3): 1-7.

DOI:http://dx.doi.org/10.1145/180921.2180932.

[29] Zheng Li., Harman, M. & Hierons, R.M. (2007) Search Algorithms for

Regression Test Case Prioritization. IEEE Transactions on Software

Engineering: 225-237. DOI:http://dx.doi.org/10.1109/TSE.2007.38.

[30] Qian, Z. (2010) Test Case Generation and Optimization for User Session-

based Web Application Testing. Journal of Computers 5(11): 1655-1662.

DOI:http://dx.doi.org/10.4304/jcp.5.11.1655-1662.

[31] Hamer, M. & Ortega-Sanchez, C. (2010) Simulation platform for the

evaluation of robotic swarm algorithms. IEEE Region 10 Conference:

1583-1588. DOI:http://dx.doi.org/10.1109/TENCON.2010.5686044.

[32] De Souza, L.S., de Miranda, P.B.C., Prudencio, R.B.C. & de Barros, F.A.

(2011) A Multi-objective Particle Swarm Optimization for Test Case

Selection Based on Functional Requirements Coverage and Execution

Effort. 23rd IEEE International Conference on Tools with Artificial

Intelligence: 245-252. DOI:http://dx.doi.org/10.1109/ICTAI.2011.45.

[33] Kaur, A. & Bhatt, D. (2011) Particle Swarm Optimization with Cross-Over

Operator for Prioritization in Regression Testing. 27(10): 27-34.

DOI:http://dx.doi.org/10.5120/3336-4589.

52

[34] Zadeh, L.A. . (2008) Is there a need for fuzzy logic?. Annual Meeting of

the North American Fuzzy Information Processing Society: 1-3.

DOI:http://dx.doi.org/10.1109/NAFIPS.2008.4531354.

[35] Ramot, D., Friedman, M., Langholz, G. & Kandel, A. (2003) Complex

fuzzy logic. IEEE Transactions on Fuzzy Systems 11(4): 450-461.

DOI:http://dx.doi.org/10.1109/TFUZZ.2003.814832.

[36] Mendel, J.M. (1995) Fuzzy logic systems for engineering: a tutorial.

Proceedings of the IEEE : 345-377.

DOI:http://dx.doi.org/10.1109/5.364485.

[37] Haider, A.A., Rafiq, S. & Nadeem, A. (2012) Test suite optimization using

fuzzy logic. International Conference on Emerging Technologies: 1-6.

DOI:http://dx.doi.org/10.1109/ICET.2012.6375440.

[38] Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences:

Computer Science and Computational Biology. Cambridge University

Press. New York, NY.

[39] Babenko, M.A. & Starikovskaya, T.A. (2008) Computing Longest

Common Substrings Via Suffix Arrays. Computer Science – Theory and

Applications: 64-75. DOI:http://dx.doi.org/10.1007/978-3-540-79709-

8_10.

[40] Rubi, R.D. & Arockiam, L. (2012) Positional_LCS: A position based

algorithm to find Longest Common Subsequence (LCS) in Sequence

Database (SDB). IEEE International Conference on Computational

Intelligence & Computing Research: 1-4.

DOI:http://dx.doi.org/10.1109/ICCIC.2012.6510271.

[41] Huang, X. & Chao, K.M. (2003) A generalized global alignment

algorithm. Bioinformatics 19(2): 228-233.

DOI:http://dx.doi.org/10.1093/bioinformatics/19.2.228.

[42] Davidson, A. (2001) A fast pruning algorithm for optimal sequence

alignment. Proceedings of the IEEE 2nd International Symposium on

Bioinformatics and Bioengineering Conference: 49-56.

DOI:http://dx.doi.org/10.1109/BIBE.2001.974411.

[43] Elhadi, M. & Al-Tobi, A. (2009) Webpage Duplicate Detection Using

Combined POS and Sequence Alignment Algorithm. WRI World Congress

on Computer Science and Information Engineering: 630-634.

DOI:http://dx.doi.org/10.1109/CSIE.2009.771.

[44] Rashid, N.A.A., Abdullah, R., Talib, A.Z.H. & Ali, Z. (-p) Fast Dynamic

Programming Based Sequence Alignment Algorithm. None: 1-7.

DOI:http://dx.doi.org/10.1109/DFMA.2006.296909.

[45] Daugelaite, J., O' Driscoll, A. & Sleator, R.D. (2013) An Overview of

Multiple Sequence Alignments and Cloud Computing in Bioinformatics.

53

International Scholarly Research Notices Biomathematics 2013: 615630:1-

615630:14. DOI:http://dx.doi.org/10.1155/2013/615630.

[46] Abouelhodaa, M.I., Kurtzb, S. & Ohlebuscha, E. (2004) Replacing suffix

trees with enhanced suffix arrays. Journal of Discrete Algorithms 2(1): 53–

86. DOI:http://dx.doi.org/10.1016/S1570-8667(03)00065-0.

[47] Applications of Suffix Trees (2004) URL:

http://www.cs.ucf.edu/courses/cap5937/fall2004/Applications%20of%20su

ffix%20tree2.ppt. Accessed: 10.4.2015.

[48] Manber, U. & Myers, G. (1990) Suffix arrays: a new method for on-line

string searches. Proceedings of the first annual ACM-SIAM symposium on

Discrete algorithms: 319-327

[49] Abouelhoda, M.I. & Dawood, A. (2008) Fine Tuning the Enhanced Suffix

Array. Cairo International Biomedical Engineering Conference: 1-4.

DOI:http://dx.doi.org/10.1109/CIBEC.2008.4786047.

[50] Shun, J. (2014) Fast Parallel Computation of Longest Common Prefixes.

International Conference for High Performance Computing, Networking,

Storage and Analysis: 387-398. DOI:http://dx.doi.org/10.1109/SC.2014.37.

[51] Kärkkäinen, J., Manzini, G. & Puglisi S.J. (2009) Permuted Longest-

Common-Prefix Array. Combinatorial Pattern Matching, Lecture Notes in

Computer Science 5577: 181-192. DOI:http://dx.doi.org/10.1007/978-3-

642-02441-2_17.

[52] Gog, S. & Ohlebusch, E. (2011) Fast and Lightweight LCP-Array

Construction Algorithms. Proceedings of the Thirteenth Workshop on

Algorithm Engineering and Experiments: 25-34.

DOI:http://dx.doi.org/10.1137/1.9781611972917.3.

[53] Beck, K. (2003) Test-driven Development: by Example. Addison-Wesley

Longman.

[54] Kim, T., Park, C. & Wu, C. (-p) Mock Object Models for Test Driven

Development. None: 221-228.

DOI:http://dx.doi.org/10.1109/SERA.2006.49.

[55] Jenkins Wiki (2014) URL: https://wiki.jenkins-ci.org/. Accessed:

27.3.2015.

[56] Robot Framework (2015) URL: http://robotframework.org/. Accessed:

10.4.2015.

[57] Unittest - Python 2.7.10rc0 documentation(2015) URL:

https://docs.python.org/2/library/unittest.html. Accessed: 10.4.2015.

[58] Python 2.7.10rc0 documentation (2015) URL: https://docs.python.org/2/.

Accessed: 10.4.2015.

54

[59] Matplotlib 1.4.3 documentation (2015) URL: http://matplotlib.org/.

Accessed: 10.4.2015.

[60] Multiprocessing - Python 2.7.10rc0 documentation (2015) URL:

https://docs.python.org/2/library/multiprocessing.html. Accessed:

10.4.2015.

[61] Sass Documentation (2015) URL: http://www.sass-

lang.com/documentation/file.SASS_REFERENCE.html. Accessed:

10.4.2015.

[62] jQuery API Documentation (2015) URL: http://api.jquery.com/. Accessed:

10.4.2015.

[63] Introduction to Unit Testing - QUnit (2012) URL: http://qunitjs.com/intro/.

Accessed: 10.4.2015.

[64] Nose 1.3.6 documentation (2015) URL:

https://nose.readthedocs.org/en/latest/. Accessed: 10.4.2015.

