
MITIGATING INFORMATION MANIPULATION

A Thesis
Presented to

The Academic Faculty

by

Xinyu Xing

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2015

Copyright c© 2015 by Xinyu Xing

MITIGATING INFORMATION MANIPULATION

Approved by:

Wenke Lee, Advisor
School of Computer Science
Georgia Institute of Technology

Hongyuan Zha
School of Computer Science
Georgia Institute of Technology

Nick Feamster
Department of Computer Science
Princeton University

Michael Bailey
Department of Electrical and
Computer Engineering
University of Illinois at Urbana-
Champaign

Mustaque Ahamad
School of Computer Science
Georgia Institute of Technology

Date Approved: 21 August 2015

Dedicated to my lord

Without you, I cannot reach this stage.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Wenke Lee, and my co-advisor Nick Feam-

ster, for their understandings, support, and encouragement throughout my graduate

studies in the program of information security. I have been amazingly fortunate to

have them as my advisors. Without their constructive criticism, rapport and limitless

capacity for knowledge, such an accomplishment would have been impossible for me

to achieve.

I am also deeply grateful to Dr. Roberto Perdisci for his insights and more impor-

tantly, the opportunities to work with him, from which I learned tremendously. His

encouragements and belief in students warmed my heart even when I was disheart-

ened. To my colleagues and friends, Wei Meng, Byoungyoung Lee, Yunhui Zheng,

Anmol Sheth and Udi Weinsberg, thank you all for your support, kindness and com-

forting throughout the ups and downs of my graduate studies. To my family back in

China, I thank you for your unconditional love and support. To my dear wife, Sui

Huang, I could not thank you enough for your support, patience and encouragements.

Having you in my life is God’s biggest blessing.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

1.1 Thesis Overview . 1

1.2 Pollution Attack: Manipulating Personal Input 3

1.3 Mitigating Pollution Attack . 3

1.4 Mitigating Direct Information Manipulation 4

II RELATED WORK . 5

2.1 Controlling Publicly Available Data 5

2.2 Controlling Data Access . 6

III POLLUTION ATTACKS: MANIPULATING PERSONAL INFOR-
MATION . 7

3.1 Overview and Attack Model . 10

3.1.1 Personalization . 10

3.1.2 Pollution Attacks . 11

3.2 Pollution Attacks on YouTube . 12

3.2.1 YouTube Personalization . 12

3.2.2 Preparing Seed Videos . 13

3.2.3 Injecting Seed Videos . 15

3.2.4 Experimental Design . 15

3.2.5 Evaluation . 17

3.3 Google Personalized Search . 20

3.3.1 How Personalized Search Works 20

v

3.3.2 Identifying Search Terms . 21

3.3.3 Injecting Search Terms . 22

3.3.4 Experimental Design . 23

3.3.5 Evaluation . 25

3.4 Pollution Attacks on Amazon . 28

3.4.1 Amazon Recommendations 28

3.4.2 Identifying Seed Products and Terms 29

3.4.3 Injecting Views/Searches . 30

3.4.4 Experimental Design . 30

3.4.5 Evaluation . 31

3.5 Discussion . 33

3.6 Conclusion . 34

IV MITIGATING PERSONAL INFORMATION MANIPULATION 40

4.1 Defense Strategies . 41

4.1.1 Strategy 1 . 42

4.1.2 Strategy 2 . 43

4.2 Prejudice Mitigation on Google Personalized Search 44

4.3 Analysing Sentiment in Search Results 45

4.3.1 Technical Challenges . 46

4.3.2 Sentiment Analysis . 46

4.4 Generating Personas . 52

4.4.1 Technical Challenges . 52

4.4.2 Persona Generation . 53

4.5 Implementation . 54

4.6 Evaluation . 54

4.6.1 Data Set . 55

4.6.2 Performance of Sentiment Analysis 55

4.6.3 Feasibility of Persona Generation 57

vi

4.7 Conclusion . 58

V MITIGATING DIRECT INFORMATION MANIPULATION . 59

5.1 Background and Motivation . 62

5.1.1 Ad Injection Practices . 63

5.1.2 Ad Injection JavaScript Libraries 65

5.1.3 Goal and Challenges . 65

5.2 Expector Design and Implementation 66

5.2.1 Design Overview . 67

5.2.2 Pre-Parser . 68

5.2.3 DOM Tree Comparator . 68

5.2.4 Event Trigger . 70

5.2.5 Verifier . 70

5.2.6 Implementation . 71

5.3 Evaluation . 71

5.3.1 Datasets . 72

5.3.2 False Positives . 73

5.3.3 False Negatives . 74

5.3.4 Deploying Expector . 74

5.3.5 Characterizing Adware . 75

5.4 Case Studies . 79

5.4.1 Dataset . 79

5.4.2 Click Stealing . 81

5.4.3 Impression Fraud . 82

5.4.4 Additional Ad Injection Practices 82

5.5 Discussion . 85

5.6 Related Work . 86

5.7 Conclusions . 88

VI CONCLUSION AND FUTURE WORK 90

vii

REFERENCES . 92

viii

LIST OF TABLES

1 The top-10 adware developers. 75

2 The top-10 ad networks that adware contact. 76

3 The distribution of adware across the number of network domains that
they contact. 76

4 33 Chrome extensions that Google took down due to ad injection bundle. 78

5 The HTTP request patterns originated from adware for each ad net-
work. The table shows the purpose of the request (fetch an ad or
report that a user clicked on an ad), the field used to identify the af-
filiate (adware), and the method used by the ad network to track the
user. 80

6 Statistics regarding the four domains used by adware for ad injections,
showing the percentage of unique IPs (out of the 20 million IPs in the
DNS dataset) that resolve each domain, the total ad requests and the
average daily ad requests per user from each domain in the HTTP
dataset. 81

7 Superfish cost per click per geographic region and the corresponding
Internet user population. 83

8 Statistics of observed traffic to superfish.com across 4 browsers. . . . 83

9 Superfish affiliate overlap between Chrome and other browsers. 84

ix

LIST OF FIGURES

1 The target of information manipulators: 1© the input data to the in-
formation service, and 2© the output from the information service. . . 2

2 Websites with personalized services (personalized services tailor the
data in the red rectangles). 35

3 Overview of how history pollution can ultimately affect the user’s
choice set. 36

4 The promotion rate for each of the 25 target videos in channel lady16makeup.
Two videos were recommended in each of the 114 trials. 36

5 Distribution of the suggestion slots occupied by each of the two suc-
cessfully promoted target videos. 36

6 Suggestion lists before (left) and after (right) a pollution attack against
a fresh YouTube user account. The video highlighted in red is our
uploaded video. 37

7 Promotion success rates for 10 real YouTube user accounts with varying
watch history lengths. 37

8 Google’s original rank distribution for the 2,136 webpages whose rank-
ing we attempt to improve with contextual search history pollution. . 37

9 Promotion rates of promoted Google search rankings for successful
contextual history pollution attacks. 38

10 Promotion rates of promoted Google search rankings for successful
persistent history pollution attacks. 38

11 Promotion rates across Amazon categories. 39

12 Cumulative promotion rates across varying product ranks for different
Amazon pollution attacks. 39

13 Inconsistent search results before and after pollution attacks. 41

14 Search results with sentiment. 42

15 Identifying possibly invalid data items using a search persona. 44

16 The search results that may leave negative impressions to searchers. . 47

17 Informative content blocks and their corresponding HTML tags. . . . 48

18 The ROC plot of three classification approaches. 56

19 The ROC plots of other binary classifiers. 57

x

20 A Google search injected with ads from “Translate Selection” Chrome
extension. 63

21 Expector design and process flow. The Expector contains four pri-
mary components: Pre-Parser, DOM Tree Comparator, Event Trigger,
and Verifier. Given an extension, Expector determines if the extension
is adware. 67

22 The distribution of Chrome extensions across different categories. All
Extensions span the 18,030 extensions we crawled from the Chrome
store, and Adware span the 292 extensions identified as adware by
Expector. 72

xi

SUMMARY

The advent of information services introduces many advantages, for example,

in trade, production and services. While making important decisions today, people

increasingly rely on the information gleaned from such services. Presumably, as such,

information from these services has become a target of manipulation.

During the past decade, we have already observed many forms of information

manipulation that misrepresents or alters reality. Some popular manipulation – we

have ever witnessed on the Internet – include using black hat SEO techniques to

drive up the ranking of a disreputable business, creating disinformative campaigns to

conceal political dissidence, and employing less-than-honest product assessments to

paint a rosy picture for inferior wares. Today, emerging web services and technologies

greatly facilitated and enhanced people’s lives. However, these innovations also enrich

the arsenal of manipulators.

The sheer amount of online information available today can threaten to overwhelm

any user. To help ensure that users do not drown in the flood of information, modern

web services are increasing relying upon personalization to improve the quality of

their customers’ experience. At the same time, personalization also represents new

ammunition for all manipulators seeking to steer user eyeballs, regardless of their

intents. In this thesis, I demonstrate a new unforeseen manipulation that exploits

the mechanisms and algorithms underlying personalization. To undermine the effect

of such manipulation, this thesis also introduces two effective, efficient mitigation

strategies that can be applied to a number of personalization services.

In addition to aforementioned personalization, increasingly prevalent browser ex-

tensions augment the ability to distort online information. In this thesis, I unveil an

xii

overlooked but widespread manipulation phenomenon in which miscreants abuse the

privilege of browser extensions to tamper with the online advertisement presented to

users. Considering that online advertising business is one of the primary approaches

used to monetize free online services and applications available to users, and reckless

ad manipulation may significantly roil advertising ecosystem, this thesis scrutinizes

the potential effect of ad manipulation, and develops a technical approach to detect

those browser extensions that falsify the ads presented to end users.

Although the thesis merely discusses several manipulation examples in the context

of the Internet, the findings and technologies presented in this thesis introduce broad

impacts. First, my research findings raise Internet users’ awareness about pervasive

information manipulation. Second, the proposed technologies help users alleviate the

pernicious effects of existing information manipulation. Finally, accompanying the

findings and technologies is publicly available open-source software and tools that will

help an increasing number of users battle against the growing threat of information

manipulation.

xiii

CHAPTER I

INTRODUCTION

1.1 Thesis Overview

Information services permeated almost every aspect of people’s lives. With the help

of information services, we share information, establish relationships, exchange ideas,

and even conduct business on the Internet. The wide adoption of these information

services has also attracted malicious parties who seek to use the services as entry

points to gain unlawful benefits. Information manipulation is a new emerging frontier

in cyber security. It denotes all attempts by adversaries to distort information with

the goal to influence opinion, thought, or action.

Information manipulation can take many shapes and forms. Indeed, we have

already observed many forms of information manipulation on the Internet. For ex-

ample, scammers have long used cloaking as a technique to drive up search engine

rankings of disreputable businesses or products, leading users to make a poor eco-

nomic decision. Similarly, public relation companies leverage massive disinformation

campaigns to directly influence customer purchase decisions.

Unlike most traditional attacks, which typically aim to take control of compu-

tational resources or sensitive data, information manipulation targets human minds

and their ideas. Given an information service, manipulators can control informa-

tion presented to users in a variety of ways. As is shown in Figure 1, attackers can

manipulate the input data to an information service, in order to control the output

presented to users with the goal of influencing the users to make decisions and take

actions that benefit the attackers at the expense of the users. In addition, manipula-

tors can directly control what Internet content users are able to see and how they see

1

Information Service
(search engine, ad

network etc.)

Input data
(personal data,

Internet data etc.)

Output
Manipulator

❶

❷

Figure 1: The target of information manipulators: 1© the input data to the information
service, and 2© the output from the information service.

them in order to influence the users’ minds and actions. Left untackled, information

manipulation can result in serious consequences.

In this thesis, my work aims to counter information manipulation on the Internet.

In achieving this goal, I rely on the following approaches:

• identifying and understanding unforeseen information manipulation schemes;

• building infrastructure to quantify and evaluate the potential influence of infor-

mation manipulation;

• applying the resulting insights to the invention and design of mitigation ap-

proaches and

• building system prototype to overcome information manipulation.

More specifically, this thesis focuses on two types of unforeseen information ma-

nipulation. In one type of manipulation, manipulators control the input data to an

information service. To be more specific, attackers manipulate the personal data

that personalization systems rely upon and thus alter the output of these systems

in predictable ways. Another type of manipulation directly targets the output from

information services. In particular, attackers abuse the privilege of browser extension

to manipulate the advertisement presented to users. In this thesis, I quantify the

2

potential influence of both manipulation schemes. To mitigate the first type of ma-

nipulation, I built BobbleX, a client side tool that creates multiple user personas and

leverages sentiment analysis techniques to expose distorted or incomplete information.

In attempt to overcome the second type of manipulation, I developed Expector, a

system that automatically identifies browser extension with advertisement manipula-

tion activities. In the following sections, I summarize the main contributions of this

thesis in turn.

1.2 Pollution Attack: Manipulating Personal Input

Modern Web services routinely personalize content to appeal to the specific interests,

viewpoints, and contexts of individual users. Ideally, personalization allows sites

to highlight information uniquely relevant to each of their users, thereby increasing

user satisfaction—and, eventually, the service’s bottom line. Unfortunately, as I

demonstrate in Chapter 3, the personalization mechanisms currently employed by

popular services have not been hardened against attack. I show that third parties can

launch pollution attack that manipulates them to increase the visibility of arbitrary

content—whether it be a new YouTube video, unpopular product on Amazon, or

low-ranking website in Google search returns. I demonstrate that attackers can inject

information into individual users’ profiles on these services, thereby perturbing the

results of the services’ personalization algorithms. While the details of my exploits

are tailored to each service, the general approach is likely to apply quite broadly. By

demonstrating the attack against three popular Web services, I highlight a new class

of vulnerability, whereby an attacker can significantly affect a user’s experience for

that service without the user’s knowledge.

1.3 Mitigating Pollution Attack

Guided by the understanding of pollution attack, Chapter 4 introduces two mitiga-

tion strategies that aim to disclose information prejudices attributable to pollution

3

attack. These two strategies leverage sentiment analysis to raise users’ awareness

about information prejudices. Using different user personas to scrutinize the output

of an information service, one mitigation strategy can also facilitate users to identify

possibly invalid input data. I demonstrate these two strategies on Google personal-

ized search. In particular, I developed BobbleX, a client side tool that (1) allows users

to see how Google returns to them differ from the results that are returned to other

users; (2) raises users’ awareness about information prejudices hidden behind search

results; (3) facilitates users to identify invalid searches.

1.4 Mitigating Direct Information Manipulation

In Chapter 5, the thesis switches the gear to the second type of information ma-

nipulation. In particular, this chapter discusses browser extension that increasingly

abuses its privilege to manipulate the ad presented to users. I present Expector, a

system that automatically inspects and identifies browser extensions that abuse their

privileges and inject ads in webpages that a user browses. Expector is designed to be

scalable and accurate. I evaluate Expector across more than 18,000 Chrome browser

extensions and are successfully able to detect 292 extensions that inject ads with a 4%

false positive and 3% false negative rate. I present a detailed study of the ad injecting

practices and find that many of these extensions violate the store policies, participate

in fraudulent activities, and degrade their users’ trust. Finally, using HTTP and

DNS traces collected from large enterprises and ISP networks, I provide a detailed

operation and revenue estimation of the ad networks that participate in delivering

ads to these extensions.

4

CHAPTER II

RELATED WORK

In the past decades, there are many information manipulation attacks. Though shar-

ing the same goal with the aforementioned manipulation, they take different measures,

such as controlling publicly available information or its access. In this chapter, we

summarize these information manipulation attacks and analyze their detection or

mitigation mechanisms.

2.1 Controlling Publicly Available Data

Information services typically gather and process publicly available information across

the Internet. For example, search engines hunt for text in publicly accessible docu-

ments offered by web servers, and rank these documents that match a given search

string using various ranking algorithms. Blackhat SEO (bSEO) is one typical ma-

nipulation attack, which targets publicly accessible documents and influences their

presentation to searchers. More specifically, it utilizes a huge amount of spam web-

pages to promote the ranking of certain target webpages in search engines [48, 58].

Another manipulation attack is opinion spamming. In particular, manipulators post

a large number of fake comments and reviews on publicly available platforms with

the goal of altering users’ beliefs and influencing their decisions [51].

To detect the manipulation attacks above, the most common solution is to harness

graph-based methods and relational modeling to identify manipulated information.

In the case of pinpointing spam webpages [27,33,67,98,99], one typical approach is to

analyze link dependencies among webpages. Regarding weeding out phony reviews,

technical endeavors [51, 55, 63, 64, 68, 69, 87] primarily focus on developing effective

5

anomaly detection approaches by using complex relationships among reviewers, re-

views, and entities. The aforementioned personalization manipulation does not need a

massive spam campaign. Thus, techniques that address bSEO and opinion spamming

are unlikely to be effective against this new class of manipulation.

2.2 Controlling Data Access

In another form of information manipulation, manipulators compromise infrastruc-

tures underlying information services and thus control the access to information.

Internet censorship is such an attack [23, 93]. In particular, it controls what can be

accessed, published or viewed on the Internet. Internet censorship is typically carried

out by government for the purpose of suppressing politically incorrect information. In

some cases, individuals and organizations could also engage censorship for religious or

business reasons. In general, Internet censorship happens in the communication layer,

where manipulators block the access to certain information. A similar manipulation

attack is communication hijacking. Different from Internet censorship, manipulators

do not block content access but hijack and manipulate information as it propagates

to users. One typical example of such manipulation is to insert additional adver-

tisements on the webpages served to end users [88]. Another example is to remove

unwanted search results from a user’s set of results.

Past studies on mitigating these manipulation attacks focus on solutions that pro-

vide computational trust, e.g., establishing encrypted tunnels or proxies to circumvent

Internet censorship [45, 50, 60, 89, 90]. In personalization manipulation, manipulators

do not need to take the control of the infrastructure underlying information services.

Thus, techniques that provide computation trust are not applicable to the new prob-

lem space. In this thesis, I invent a new type of mechanism to provide behavioral

trust, i.e., a scheme that will ensure the content that a user receives satisfy the user’s

utility function or expectation.

6

CHAPTER III

POLLUTION ATTACKS: MANIPULATING PERSONAL

INFORMATION

The economics of the Web ecosystem are all about clicks and eyeballs. The business

model of many Web services depends on advertisement: they charge for prime screen

real estate, and focus a great deal of effort on developing mechanisms that make sure

that the information displayed most prominently is likely to create revenue for the ser-

vice, either through a direct ad buy, commission, or, at the very least, improving the

user’s experience. Not surprisingly, malfeasants and upstanding business operators

alike have long sought to reverse engineer and exploit these mechanisms to cheaply

and effectively place their own content—whether it be items for sale, malicious con-

tent, or affiliate marketing schemes. Search engine optimization (SEO), which seeks

to impact the placement of individual Web pages in the results provided by search

engines, is perhaps the most widely understood example of this practice.

Modern Web services are increasingly relying upon personalization to improve

the quality of their customers’ experience. For example, popular websites tailor their

front pages based upon a user’s previous browsing history at the site; video-sharing

websites such as YouTube recommend related videos based upon a user’s watch his-

tory; shopping portals like Amazon make suggestions based upon a user’s history at

the site; and search engines such as Google return customized results based upon a

wide variety of user-specific factors. As the Web becomes increasingly personal, the

effectiveness of broad-brush techniques like SEO will wane. In its place will rise a new

class of schemes and outright attacks that exploit the mechanisms and algorithms un-

derlying this personalization. In other words, personalization represents a new attack

7

surface for all those seeking to steer user eyeballs, regardless of their intents.

In this chapter, we demonstrate that contemporary personalization mechanisms

are vulnerable to exploit. In particular, we show that YouTube, Amazon, and Google

are all vulnerable to the same general form of cross-site scripting attack that allows

third-party websites to alter the customized content the services return to users who

have visited a page containing the exploit. We do not claim that this attack is either

the most powerful—although we demonstrate it is quite effective—broadly applicable,

or hard to defeat. Rather, we offer it as a first example of an entire class of attacks

that we believe will soon—if they are not already—be launched against the relatively

unprotected underbelly of personalization services.

Our attack exploits the fact that a service employing personalization incorpo-

rates a user’s past history (including browsing, searching and purchasing activities)

to customize the content that it presents to the user. Importantly, many services

with personalized content log their users’ Web activities whenever they are logged in

regardless of the site they are currently visiting; other services track user activities

on the site even if the user is logged out (e.g., through a session cookie). We use

both mechanisms to pollute users’ service profiles, thereby impacting the customized

content returned to the users in predictable ways. Given the increasing portfolio of

services provided by major players like Google and Amazon, it seems reasonable to

expect that a large fraction of users will either be directly using the service or at least

logged in while browsing elsewhere the Web.

We show that our class of attack, which we call pollution attacks, can be extremely

effective on three popular platforms: YouTube, Google, and Amazon. A distinguish-

ing feature of our attack is that it does not exploit any vulnerability in the user’s

Web browser. Rather, it leverages these services’ own personalization mechanisms to

alter the user’s experience. While our particular implementation employs a form of

cross-site request forgery (XSRF) [22], other mechanisms are possible.

8

The ability to trivially launch such an attack is especially worrisome because it

indicates the current approach to Web security is ill-equipped to address the vulner-

abilities likely to exist in personalization mechanisms. In particular, today’s Web

browsers prevent exploits like cross-site scripting and request forging by enforcing

boundaries between domains though “same origin” policies. The limitations of these

approaches are well known, but our attack represents a class of exploits that cannot

be stopped by client-side enforcement: in an attempt to increase the footprint of its

personalization engine (e.g., Google recording search queries that a user enters on

a third-party page), a service with personalized services is providing the cross-site

vector itself. Hence, only the service can defend itself from such attacks on its per-

sonalization. Moreover, enforcing isolation between independent Web sessions seems

antithetical to the goal of personalization, which seeks to increase the amount of

information upon which to base customization attempts.

This chapter makes the following contributions:

• We describe pollution attacks against three platforms—YouTube, Google, and

Amazon—that allow a third party to alter the personalized content these ser-

vices present to users who previously visited a Web page containing the exploit.

• We study the effectiveness of our attack on each of these platforms and demon-

strate that it (1) can increase the visibility of almost any YouTube channel; (2)

dramatically increase the ranking of most websites in the short term, and even

have lasting impacts on the personalized rankings of a smaller set of sites, and

(3) cause Amazon to recommend reasonably popular products of the attacker’s

choosing.

• More broadly, our attack and its effectiveness illustrates the importance of se-

curing personalization mechanisms in general. We discuss a number of implica-

tions of our study and the ways in which websites can attempt to avoid similar

vulnerabilities in the future.

9

The rest of the chapter is organized as follows. Section 4.2 provides a general overview

of pollution attacks on personalized services. Sections 3.2, 3.3, and 3.4 introduce

specific attacks that can be launched against YouTube, Google, and Amazon, respec-

tively, and report on our success. We discuss limitations of our work and possible

defenses in Section 3.5 before concluding in Section 5.7.

3.1 Overview and Attack Model

In this section, we present a brief overview of personalization as it is employed by

popular Web services. We then present a model of pollution attacks, which we apply

to three different scenarios later in the chapter – YouTube, Amazon, and Google.

3.1.1 Personalization

Online services are increasingly using personalization to deliver information to users

that is tailored to their interests and preferences. Personalization potentially creates

a situation where both the service provider and the user benefit: the user sees content

that more closely matches preferences, and the service provider presents products that

the user is more likely to purchase (or links that the user is more likely to click on),

thus potentially resulting in higher revenues for the service provider.

The main instrument that a service provider can use to affect the content that a

user sees is modifying the choice set, the set of results that a user sees on a particular

screen in response to a particular query. The size of a choice set differs for different

services. For example, YouTube shows the user anywhere from 12–40 videos; Amazon

may show the user up to five sets of recommended products; Google’s initial search

results page shows the top ten results. Figure 2 shows several examples of choice sets

on different sites.

A service’s personalization algorithm affects the user’s choice set, in response to a

query. The choice set that a personalization algorithm produces depends on a user

query, as well as a number of auxiliary factors, including the universe of all possible

10

content and the user’s search history. Previous work has claimed that many factors,

ranging from geography to time of day, may affect the choice set that a user sees.

For the purposes of the attacks in this chapter, we focus on how changes to a user’s

search history can affect the choice set, holding other factors fixed. In particular,

we focus how an attacker can pollute the user’s search history by generating false

clicks through cross-site request forgery (XSRF). We describe these attacks in the

next section.

3.1.2 Pollution Attacks

The objective of a pollution attack is to affect a user’s choice set, given a particular

input. In some cases, a user’s choice set appears before the user enters any input (e.g.,

upon an initial visit to the page). In this case, the attacker’s goal may be to affect

a default choice set. Figure 3 shows an overview of the attacker’s goal: in summary,

the attacker aims to affect the resulting choice set by altering the user’s history with

false clicks, using cross-site request forgery as the attack vector. This attack requires

three steps:

1. Model the service’s personalization algorithm. We assume that the attacker

has some ability to model the personalization algorithm that the site uses to

affect the user’s choice set. In particular, the attacker must have some idea

of how the user’s past history affects the user’s choice set. This information

is often available in published white papers, but in some cases it may require

experimentation.

2. Create a “seed” with which to pollute the user’s search history. Given some

knowledge of the personalization algorithm and a goal for how to affect the

choice set, the attacker must design the seed with which to affect the user’s

choice set. Depending on the service, the seed may be queries, clicks, pur-

chases, or any other activity that might go into the user’s search history. The

11

optimal seed is one that can maximally affect the user’s choice set with minimal

overhead.

3. Inject the seed with a vector of false clicks. To pollute a user’s history, in

most cases we require that the user be signed in to the site. (For some services,

pollution can take place even when the user is not signed in.) Then, the attacker

can use a mechanism to make it appear as though the user is taking action on

the Web site for a particular service (e.g., clicking on links) using a particular

attack vector.

In the following sections, we explore how an attacker can apply this same procedure to

attack the personalization algorithms of three different services: YouTube, Amazon,

and Google search.

3.2 Pollution Attacks on YouTube

In this section, we demonstrate our attack on YouTube. Following the aforementioned

attack steps, we first understand how YouTube uses the watch history of a YouTube

user account to recommend videos by reviewing the literature [38]. Second, we discuss

how to prepare seed data (seed videos) to promote target data (target videos belonging

to a specific channel). Third, we introduce how to inject the seed videos to a YouTube

user account. Finally, we design experiments and validate the effectiveness of our

attack.

3.2.1 YouTube Personalization

YouTube constructs a personalized list of recommended videos based upon the videos

a user has previously viewed [38]. In particular, YouTube attempts to identify the

subset of previously viewed videos that the user enjoyed by considering only those

videos that the user watched for a long period of time. Typically, YouTube rec-

ommends videos that other users with similar watching histories have also enjoyed.

12

In particular, YouTube tracks the co-visitation relationship between pairs of videos;

namely, how likely is a user who watched and enjoyed (i.e., watched a substantial

portion of) video X to watch and enjoy video Y . In general, there may be more

videos with co-visitation relationships (which we term “recommendable”) to a user’s

history than there is display area, so YouTube selects those recommendable videos

with high rankings. YouTube will not, however, recommend a video the user has

already watched.

YouTube displays recommended videos in the suggestion list placed alongside with

a playing video (e.g., Figure 6) and in the main portion of the screen at the end of a

video (Figure 2(a)). A suggestion list appearing alongside a video typically contains

20–40 suggested videos, 2 of which are recommended based upon personalization. At

the end of a video, YouTube shows an even more concise version of the suggestion

list containing only 12 of the video from the full list; these may or may not contain

the personal recommendations.

3.2.2 Preparing Seed Videos

YouTube organizes videos into channels, where each channel corresponds to the set

of uploads from a particular user. In our attack, we seek to promote a set of target

videos (ΩT), all belonging to the same YouTube channel, C. To do so, we will use

an additional set of seed videos (ΩS) that have a co-visitation relationship with the

target videos. By polluting a user’s watch history with videos in ΩS, we can coerce

YouTube into recommending videos in ΩT . There are two ways to obtain ΩS: we can

identify videos with pre-existing co-visitation relationships to the target videos, or we

can create the relationships ourselves.

Existing Relationships. In the simplest version of the attack, the attacker iden-

tifies existing videos to use as the seed set. For example, given a target video set

(ΩT) belonging to channel C, the attacker could consider all the other videos in the

13

channel, C − ΩT , as candidate seeds. For every candidate video, the attacker checks

which videos YouTube recommends when a fresh YouTube account (a YouTube ac-

count with no history) watches it. Note that YouTube allows its users to view their

recommended videos at http://www.youtube.com/feed/recommended. If the can-

didate video triggers YouTube to recommend a video in ΩT , then the attacker adds

the injected video to seed video set ΩS.

In general, this process can be used to identify seed videos for every target video in

ΩT . The attacker is not yet ready, however, to launch the attack because a YouTube

video in ΩS may trigger YouTube to also recommend videos not in ΩT . To address

this issue, the attacker can simply add these unwanted videos to the seed video set

ΩS because YouTube does not recommend videos that the user has already watched.

(As we show later, the attacker will convince YouTube that the user watched, but did

not enjoy, these unwanted videos, so their inclusion in ΩS will not lead to additional

recommendations.)

Fabricating Relationships. For some videos, it may be difficult to identify a

seed set ΩS that recommends all of the elements of ΩT due to lack of co-visitation

relationships for some of the target elements. Instead, an attacker that is willing

to upload her own content to use as the seed set can simply create co-visitation

relationships between this content and the target set. In particular, an attacker

uploads a set of videos (Ω0) and establishes co-visitation relationships between Ω0

and ΩT through crowd-sourcing (e.g., Mechanical Turk or a botnet): YouTube visitors

need only watch a video in Ω0 followed by a video in ΩT . After a sufficient number

of viewing pairs (we show in Section 3.2.4.1 it doesn’t take many), the attacker can

use videos in Ω0 as the seed set.

14

3.2.3 Injecting Seed Videos

To actually launch the attack and inject seed videos into a victim’s YouTube watch

history, an attacker can harness XSRF to forge the following two HTTP requests

for each video in the seed set: (1) http://www.youtube.com/user_watch?plid=

<value>&video_id=<value>, and (2) http://www.youtube.com/set_awesome?plid=

<value>&video_id=<value>, where plid and video_id correspond to the values

found in the source code of the seed video’s YouTube page. The first HTTP request

spoofs a request from the victim to start watching the seed video, and the second

convinces YouTube that the victim watched the video for a long period of time. Note

that both HTTP requests are required in order for videos in ΩS to trigger the recom-

mendation of videos in ΩT , but only the first HTTP request is needed to prevent the

recommendation of unwanted videos.

3.2.4 Experimental Design

We wish to evaluate the effectiveness of our attack both in controlled environments

and against real YouTube users. We start by validating the effectiveness of our

approach in the simplest scenario where our attack is launched to promote pre-existing

YouTube channels through existing co-visitation relationships. We then consider the

scenario where an attack seems to upload and promote content from her own channel.

Finally, we conduct a small-scale experiment to demonstrate the attack works against

a volunteer set of real YouTube users.

3.2.4.1 New Accounts

We first promote existing YouTube channels by launching our attack against victims

with fresh YouTube user accounts. Fresh YouTube user accounts allow us to confirm

the effectiveness of our approach in the absence of other, potentially countervailing

influences, i.e., other personalized recommendations based on a user’s existing history.

We begin by selecting 100 existing YouTube channels at random from among the

15

list of the top 2,000 most-subscribed channels published by VidStatsX [86]. For each

of the selected YouTube channels, we randomly select 25 videos from the channel as

the target video set, used the method described in the previous section to identify a

seed video set, and then injected the seed videos to a fresh YouTube account.

Secondly, we consider promoting new content by creating our own YouTube chan-

nel and similarly attacking fresh YouTube accounts. Our YouTube channel contains

two 3-minute videos. We select one of the videos as a one-element target video set and

used the other as the seed set. We created a co-visitation relationship by embed both

videos on a Web page and recruiting volunteers to watch both videos sequentially.

We obtained 65 and 68 views by existing YouTube users for our seed and target video

respectively.

3.2.4.2 Existing Accounts

Finally, we study the effectiveness of our pollution attack against real YouTube user

accounts. We recruit 22 volunteers with extensive pre-existing YouTube watch his-

tories. In order to limit the inconvenience to our volunteers, we limit our study to

attempting to promote one moderately popular YouTube channel based upon existing

co-visitation relationships. We select a moderately popular account for two reasons:

first, a wildly popular channel is likely to be recommended anyway, so extracts lit-

tle benefit from our attack. Conversely, an entirely new channel requires a certain

amount of effort to establish the co-visitation relationships as described above and

we have limited volunteer resources.

Based on these parameters, we arbitrarily selecte channel OnlyyouHappycamp.

We believe this selection is a reasonable candidate to be promoted using our attack

due to the following reasons. First, compared to popular channels, most videos in

OnlyyouHappycamp have low view counts (about 2,000 view counts per video on

average) and the number of subscribers to the channel is a similarly modest 3,552.

16

Both of these are easily achievable by an attacker at fairly low cost1. Second, most

videos in OnlyyouHappycamp are 22 minutes long, which makes them well suited

for promotion. As we explain in Section 3.2.5.1, the length of a target video plays

a significant role in its likelihood of being selected from among the recommendable

videos.

Similar to the experiments with new accounts, we randomly select 15 target videos

from channel OnlyyouHappycamp, identified a seed set, and injected the seed videos

into the volunteers’ YouTube accounts. After pollution, the volunteers are asked to

use their accounts to watch three videos of their choice and report the suggestion list

displaying alongside each of their three videos.

3.2.5 Evaluation

We evaluated effectiveness of our pollution attacks by logging in as the victim user

and viewing 114 representative videos2. We measure the effectiveness of our attack

in terms of promotion rate: the fraction of the 114 viewings when at least one of

the target videos was contained within the video suggestion list. Recall that the list

contains at most two personalized recommendations; we call it a success if one or

both of these videos are among the target set.

3.2.5.1 New Accounts

Our attacks are universally successful in promoting target videos from each of the 100

selected existing channels. In other words, each time we target a fresh account by

injecting seed videos targeting a particular channel, we observe the target videos in

the suggestion list for each of the 114 videos. Because these are fresh accounts, there

is no other history, so our targeted videos always occupy both of the personalized

1According to the prices in underground markets such as freelancer.com and fiverr.com,
40,000 view counts and 10,000 subscribers cost $15 and $30 US dollars, respectively.

2We actually attempted to view 150 videos drawn at random from a trace of YouTube usage at
our institution over the course of several months. Unfortunately 36 of the videos were no longer
available at the time of our experiment.

17

recommendation slots.

In addition, we observe the the particular target videos shown in the suggestion

video list varies, even when we viewing the same video using the same victim YouTube

account. In other words, every target video has a chance to be promoted and shown

on the suggestion video list no matter which video a victim plays. Figure 4 shows

the frequency with which each of the 25 target videos for a representative channel,

lady16makeup. In an attempt to explain this variation, we compute (1) the Pearson

correlation between the showing frequencies and the lengths of the target videos for

each channel (ρt); (2) the Pearson correlation between the showing frequencies and the

view counts of these target videos for each channel (ρcnt). We find the average Pearson

correlation values are medium (ρt = 0.54) and moderate (ρcnt = 0.23), respectively.

This suggests that both the length and view count of a target video influence its

recommendation frequency, but the length of a target video is a more significant

factor.

Because screen real estate is precious, and users typically focus on the first few

items of a list, we report on the position within the suggested video lists that our

targeted videos occupy when they are promoted. We observe that the two target

videos are usually placed back-to-back on the suggestion list. Moreover, as shown

in Figure 5, YouTube usually places our target videos among the top few spots of a

victim’s suggestion list: In our tests with new accounts, the target videos are always

recommended and placed on the top 12, which means they also appear at the end of

viewed videos. This is particularly significant, as it implies that our target videos are

shown even if a victim finishes watching a YouTube video on a third-party Website

(which typically embeds only the view-screen portion of the YouTube page, and not

the full suggestion list).

Our attacks were similarly completely successful in promoting newly uploaded

content. As a control, we also signed in as non-polluted fresh YouTube accounts

18

and, unsurprisingly, did not find any of our new content among the videos in the

suggestion list. In other words, the videos were recommended exclusively because of

our attacks; our experiments were sufficiently small that we did not lead YouTube

to conclude that our content was, in fact, universally popular. Figure 6 shows a

sample screenshot comparing the suggestion lists from a victim account and another,

non-exploited fresh account. Finally, while we omit the full distribution due to space

constraints, we find that one of our target videos occupies the top suggestion slot

while viewing 80 out of the 114 test videos.

3.2.5.2 Existing Accounts

Unsurprisingly, our attacks were somewhat less successful on real YouTube accounts.

14 out of the 22 volunteer YouTube users report that at least one of our target videos

from channel OnlyyouHappycamp appeared in the suggestion list during each of their

three video viewings, a 64% promotion rate.

To understand why we were able to exploit some accounts and not others, we asked

our volunteers to share their YouTube watch histories. Ten of our volunteers shared

their histories with us and allowed us to sign in to their YouTube accounts to conduct

a further study. The number of videos in the watch histories of the 10 volunteers

ranged from a few hundred to ten thousand. Figure 7 shows the relationship between

the number of watched videos in a watch history and the number of times that at

least one of our target videos is displayed along with a playing video. While there

appears to be an intuitive decreasing trend (i.e., the longer the history an account

has the more resistant it is to pollution), there are obvious outliers. For example, one

account with almost 3,500 previous viewings in its history succumbed to our attacks

almost 80% of the time.

Consistent with the Pearson coefficients reported earlier, we find that the success

of our attacks depends on the rankings and lengths of the videos that are otherwise

19

suggested based upon a user’s history. In particular, we observe that the majority of

the videos recommended to users for whom our attacks have low promotion rates have

longer lengths and more view counts than our target videos, while the videos that

YouTube recommends based on the watch history of the user with 3,500 previous

viewings have shorter lengths than our target videos (though they generally have

higher view counts than our targets).

While we believe our attack clearly demonstrates that YouTube’s personalization

mechanism is subject to exploit, it is not clear how long lasting such exploits would

be, nor how easy they are to defend against. In our experiments, volunteers watch

arbitrary YouTube videos right after being attacked, but we believe our pollution

attacks on YouTube are likely to last for a significant period of time. While YouTube

does not explicitly disclose how time factors into their recommendation system (if

at all) [38], analysis of volunteers’ watch histories indicates that a YouTube video

that was watched as long as two weeks prior is still used for generating recommended

videos.

3.3 Google Personalized Search

In this section, show how history pollution attacks can be launched against Google’s

search engine. The goal of our attack is to promote a target webpage’s rank in the

personalized results Google returns for an arbitrary search term by injecting seed

search terms into a victim’s search history.

3.3.1 How Personalized Search Works

Search personalization uses information about users including their previous query

terms, click-through data and previously visited websites to customize results. The

details of Google’s personalization algorithms are not public, but many previous stud-

ies have explored aspects of personalized search [28,36,41,56,59,71,76,78,80–82]. We

describe two classes of personalization algorithms: contextual personalization and

20

persistent personalization. According to recent reports [73, 74], many search engines

including Google, Bing, and Yahoo! apply both types of personalization.

Contextual personalization constructs a short-term user profile based on recent

searches and click-throughs [36, 80]. When a user searches for “inexpensive furni-

ture” followed by “maternity clothes,” Google’s contextual personalization algorithm

typically promotes search results that relate to “inexpensive maternity clothes” for

the next few searches. In contrast, persistent personalization uses the entire search

history—as opposed to only recent searches—to develop a user profile [59, 78]. Per-

sonalization that occurs over the longer term may not affect a user’s search results as

dramatically, but can have longer-lasting effects for the results that a user sees. For

example, searching for “Egypt” using different accounts may result in two distinct

result sets: one about tourism in Egypt and the other related to the Arab Spring.

3.3.2 Identifying Search Terms

Given the differing underlying algorithsm that govern contextual and persistent per-

sonalization, an attacker needs to select different sets of seed search terms depending

on the type of attack she hopes to launch.

Contextual Personalization. For the contextual personalization attack, the key-

words injected into a user’s search history should be both relevant to the promoting

keyword and unique to the website being promoted. In particular, the keywords

should be distinct with respect to other websites with close ranking positions so that

the only website promoted is the target website and no other closely-related web-

sites. Presumably, an attacker promoting a specific website will be familiar with the

website and know what keywords best meet these criteria. However, good candidate

keywords can be obtained using automation by examining a website’s meta keyword

tag. While Google no longer incorporates meta tags into their ranking function [97],

the keywords listed in the meta keyword tag provide a good summary of the page’s

21

content.

Persistent Personalization. Carrying out a persistent personalization attack re-

quires a different method of obtaining keywords to inject. In this case, the size of

the keyword set should be larger than that used for a contextual attack in order to

have a greater impact on the user’s search history. Recall that contextual attacks

only impact a user’s current session, while persistent attacks pollute a user’s search

history in order to have a lasting impact on the user’s search results. Good candidate

keywords are found using the Google AdWords tool, which takes as an input a search

term and URL and produces a list of about one hundred related keywords. Ideally,

an attacker would pollute a user’s search history with each of these terms. Doing

so takes time, however. We determined that an attacker can safely inject roughly

50 keywords a minute using cross-site request forgery; more rapid search queries are

flagged by Google as a screen-scraping attack. For this study we assume an attacker

can inject a maximum of 25 keywords into a user’s profile, but the number of key-

words can increase if the user stays on a webpage longer than 30 seconds. Not all

keyword lists return by the AdWords tool actually promote the target website, how-

ever. The effectiveness of this attack likely depends on several factors, including the

user’s current search history, time, etc. In Section 3.3.5, we evaluate the effectiveness

of this attack under different conditions.

3.3.3 Injecting Search Terms

Similar to the attacks on YouTube, the attack on Google’s personalized search also

harnesses XSRF to inject the seeds. For example, an attacker can forge a Google

search by embedding https://www.google.com/search?hl=en&site=&q=usenix+

security+2013 into an invisible iframe. Injecting search terms into a Google user’s

account affects the search results of the user’s subsequent searches. The exact number

and set of search terms to inject differs depending on whether an attacker carries out

22

a contextual or persistent personalization attack.

3.3.4 Experimental Design

To cleanly study the effects of our proposed attacks on contextual and persistent

search personalization, we conduct most of our experiments using Google accounts

with no search history. To validate whether our results apply to real users, we also

conduct a limited number of tests using accounts that we construct to mimic the

personae of real users.

To quantify the effectiveness of our attack in general, we must select an unbiased

set of target Web pages whose rankings we wish to improve. We build two test cor-

pora, one for attacks on contextual personalization, and one for attacks on persistent

personalization. We attempt to promote existing Websites using only their current

content and link structure; we do not perform any SEO—white or black hat—on

Websites before conducting our attacks. We believe this represents a conservative

lower bound on the effectiveness of the attack, as any individual Website owner could

engineer the content of their site to tailor it for promotion through search history

pollution.

3.3.4.1 Contextual Pollution

We start by scraping 5,671 shopping-related keywords from made-in-china.com to

use as search terms. We then enter each of these terms into Google one-by-one to

obtain the top 30 (un-personalized) search results for each. Because some of our search

terms are related, not all of these URLs are unique. Additionally, we cannot hope

to improve the URLs that are already top-ranked for each of the search terms. This

leaves us with a corpus of 151,363 URLs whose ranking we could hope to improve.

Because we could not manually inspect each of these Websites to determine ap-

propriate seed search terms, we instead focus on the subset of them that include a

meta keyword tag. For the approximately 90,000 such sites, we extract the provided

23

keywords or phrases, exactly as provided by the Website. Clearly many of these

keywords are generic and will appear in a wide variety of Websites—to launch the

attack, we require keywords that are unique to the Website we wish to promote (at

least relative to the other URLs returned in response to the same query). Hence, we

ignore any keywords that are associated with multiple URLs in the same set of search

results.

After this procedure, we end up with 2,136 target URLs spanning 1,739 different

search terms for which we have a set of 1–3 seed keywords to try to launch a contextual

pollution attack. The average search term has 1.23 results whose ranking we will

try to improve. Figure 8 shows the distribution of the original rankings for each of

these target Webpages; the distribution is skewed toward highly ranked sites, perhaps

because these sites take care in selecting their meta tag keywords.

3.3.4.2 Persistent Pollution

Once again, we begin by selecting 551 shopping-related search terms and perform

Google searches with each of the search terms to retrieve the top 30 search results.

As opposed to the contextual attack, where we searched for keywords that differentiate

the results from one another, we aim to find search terms that will be associated with

the Website and search-term pair for the long term.

As described in Section 3.3.2, we use a tool provided by Google AdWords to

obtain a list of keywords that Google associates with the given URL and search term.

Constructing related keyword lists for each of the 29 search returns (again excluding

the top hit, which we cannot hope to improve) and 551 search terms yields 15,979

distinct URLs with associated lists of keywords.

For each URL, we select 25 random keywords from the AdWords list for 25 distinct

trials. If a trial improves a URL’s ranking, we then test the persistence of the attack

by performing 20 subsequent queries, each with a randomly chosen set of Google

24

trending keywords. These subsequent queries help us verify that the URL promotion

is not just contextual, but does not vanish when a user searches other content. If,

after all 25 trials, we find no keyword sets that promote the URL’s ranking and keep

it there for 20 subsequent searchers, we deem this URL attempt a failure. If multiple

keyword sets succeed, we select the most effective (i.e., the set of 25 keywords that

induces the largest ranking improvement) trial to include in the test set.

3.3.5 Evaluation

In this section, we seek to quantify the effectiveness of search history pollution by

simulating attacks that seek to promote the target Websites identified in the previous

section. To scope our measurements, we consider the effectiveness of the attacks only

for the set of search terms that we identified; it is quite possible, of course, that our

pollution attacks also affect the rankings of the targeted URLs for other search terms.

When measuring the effectiveness of our attack, we use two different criteria,

depending upon a Website’s original position in the search results. In the case of

URLs that are already on the front page of search results (i.e., results 2–10), we

consider the pollution attack successful if it increases the ranking of a URL at all.

For the case of URLs that are on subsequent pages, however, we consider the attack

successful only if the attack moves the URL to the first page of search results, since

improved ranking on any page that is not the first page is not likely to have any real

utility.

3.3.5.1 Top-Ranked Sites

For our 2,136-page contextual attack test corpus, of the 846 pages that appeared

on the front page prior to our attack, we improved the ranking of 371 (44%). The

persistent attack was markedly less effective, as only 851 (17%) of the 4,959 test

cases that originally appeared on the first page of the search results survived the

persistence test (i.e., they remained promoted after 20 random subsequent queries).

25

In both cases, however, the probability of success depends greatly on the original

ranking of the targeted URL. For example, moving a second-ranked URL to the top-

ranked position for contextual personalization succeeded 1.1% of the time, whereas

moving a tenth-ranked URL up by at least one position succeeded 62.8% of the time.

Similarly, for attacks on persistent personalization, moving a second-ranked URL to

the top succeeded 4.3% of the time, and moving a tenth-ranked URL to a higher-

ranked position succeeded 22.7% of the time. These results make sense, because

second-ranked sites can only move into the top-ranked position, whereas sites that

are ranked tenth can move into any one of nine higher spots.

To illustrate this effect, and illuminate how far each webpage is promoted, Figure 9

shows the PDF of an improved webpage’s rank after contextual history pollution,

based upon its position in the non-personalized search results. We observe that most

webpages are promoted 1 to 2 spots via our contextual pollution attack. However,

there also exist many left tails, meaning that some webpages are promoted to very

high ranks even if they are originally ranked very low. Similarly, Figure 10 shows the

distributions for each result ranking for those websites whose rankings were improved

by a persistent history pollution attack. Here, the distributions appear roughly similar

(although the absolute probability of success is much lower), but it is hard to draw

any strong conclusions due to the small number of promoted sites of each rank for

either class of attack.

3.3.5.2 The Next Tier

The remaining 1,290 of our test websites for the contextual attack started on the

second or third page of search results. By polluting a user’s search history with the

unique meta tag keywords associated with each site, we promoted 358 of them (28%)

to the front page. Interestingly enough, Figure 9(j) shows that these websites have

a higher chance of ending up at the very top of the results than those pages that

26

started at the bottom of the first page in our data set. We suspect this phenomenon

results from the choice of keywords used in pollution: because their original rankings

were low, it will take a distinguishing keyword to move one of the webpages to the

front page at all. If such a keyword is capable of doing so, it may be more likely to

be sufficiently distinguished to move the page nearly to the top of the results.

Here, the results from the persistent test set are markedly different. Figure 10(j)

shows that sites starting on the second or third page are extremely unlikely to end up

at the very top of the result list due to a persistent history attack. Indeed, only 80

(less than 1%) of the 11,020 attacks that attempted to promote a website appearing

on the 2nd or 3rd page of results was successful in moving it to the front page (and

keeping it there). From this result we can clearly see that persistent search history

attacks are generally best launched for sites that are already highly ranked, as opposed

to contextual attacks, which can help even lower-ranked sites.

3.3.5.3 Real Users

Finally, we further evaluate the effectiveness of our successful attacks on ten volun-

teers’ accounts with extensive pre-existing search histories. We find that, on average,

97.1% of our 729 previously successful contextual attacks remain successful, while

only 77.78% of the persistent pollution attacks that worked on fresh accounts achieve

similar success. Presumably the remainder are counter-acted by biases in the user’s

own search histories. The disparity between the test sets is likely due to the increased

noise in the long-term search history. Contextualized attacks rely only on a small set

of recent search terms to alter the personalized search results, which is unlikely to be

affected by a user’s search history. In contract, persistent poisoning relies on a much

larger portion of a user’s search history. If relevant keywords are already present in

a user’s search history, it may render some poisoning search terms ineffective. In any

event, both class of attacks are relatively robust even when launched against users

27

with long search histories.

3.4 Pollution Attacks on Amazon

Of the three services, Amazon’s personalization is perhaps the most direct and obvious

to the end user. On the one hand, it makes pollution-based attacks less insidious, as

they will be plainly visible to the observant user. On the other, of the three services,

Amazon has the most direct monetization of its screen real estate—users may directly

purchase the goods from Amazon—so it is possible that any exploitation of Amazon’s

personalization can be profitable to an enterprising attacker.

Amazon tailors a customer’s homepage based upon the previous purchase, brows-

ing and searching behavior of the user. Amazon product recommendations consider

each of these three activities individually, and explicitly labels its recommendations

according to the aspect of the user’s history it used to generate them. For our pur-

poses, we focus on the personalized recommendations Amazon generates based upon

the browsing and searching activities of a customer because manipulating the previous

purchase history of a customer may have unintended consequences.

3.4.1 Amazon Recommendations

In general, Amazon displays on a customer’s homepage five separate recommendation

lists that are ostensibly computed based on the customer’s searching and browsing

history. Among the lists, four of them are computed based on the products that

the customer has viewed lately (view-based recommendation lists) and the last is

computed based upon the latest search term the customer entered (a search-based

recommendation list). For each of the view-based recommendation lists, Amazon uses

co-visitation relationships between products to compute corresponding recommended

products (here the co-visitation relationship between a product pair on Amazon means

how often two products are purchased together). In other words, Amazon uses each

of the four most recently viewed products to compute a personalized view-based

28

recommendation list. For the recommendation list that is computed based on the

latest search term of a customer, the recommended products are the top-ranked results

for the latest search term.

A key distinction between the operation of Amazon’s personalization and the

other two services is that, aside from purchase-based personalization, Amazon’s per-

sonalization is controlled by the user’s Web browser as opposed to the service itself.

Because customers frequently do not sign into their accounts when browsing on Ama-

zon, both the latest viewed products and search term of the customer are stored in

session cookies on the user’s browser rather than in profiles on Amazon servers.

3.4.2 Identifying Seed Products and Terms

Because Amazon computes the view and search-based recommendation lists sepa-

rately, the seed data needed to exploit each is necessarily different.

Visit-based pollution. To promote a targeted product in a view-based recommen-

dation list, an attacker needs to identify a seed product as follows. Given a targeted

product that an attacker wishes to promote, the attacker visits the Amazon page of

the product and retrieves the related products that are shown on Amazon page of the

targeted product. To test the suitability of these related products, the attacker can

visit the Amazon page of that product and then check the contents of the Amazon

home page. If the targeted product is shown in a recommendation list, the URL of

the candidate related product can be used as a seed to promote the targeted product.

Search based. To promote a targeted product in a search-based recommendation

list it suffices to identify an appropriate search term. If automation is desired, an

attacker could use a natural language toolkit to automatically extract a candidate

keyword set from the targeted product’s name. Any combination of these keywords

that successfully isolates the targeted product can be used as the seed search term

29

for promoting the targeted product. For example, to promote product “Breville

BJE200XL Compact Juice Fountain 700-Watt Juice Extractor", an attacker for ex-

ample can inject search term “Breville BJE200XL" to replace an Amazon customer’s

latest search term through XSRF.

3.4.3 Injecting Views/Searches

As with attacks on the previous two services, the attacker embeds the Amazon

URLs of her desired seed items or search queries in her own website. For exam-

ple, if one seed search terms is “Coffee Maker”, the seed URL would be something

like http://www.amazon.com/s/?field-keywords=Coffee+Maker. Similarly, an at-

tacker could embed the URL of a seed product into an invisible img tag as the src

of the image. Once a victim visits the attacker’s website, Amazon would believe that

she has made that search query (viewed that item) and, unless the victim clears her

cookies, customize her Amazon homepage based upon this search. In particular, these

will be the most recent activities the next time the victim visits Amazon, so they will

be shown first among the recommendation lists.

3.4.4 Experimental Design

To evaluate the effectiveness of our attack, we conduct two experiments. Our first

experiment measures the effectiveness of our attack when targeted toward popular

items across different categories of Amazon products. The second quantifies the

effectiveness of our attack on randomly selected, mostly unpopular Amazon products.

3.4.4.1 Popular Products

Amazon categorizes sellers’ products into 32 root categories. To select products from

each category, we scrape the top 100 best-selling products in each category in January

2013, and launch a separate attack targeting each of these 3,200 items.

30

3.4.4.2 Random Products

To evaluate the effectiveness of attempting to promote arbitrary products, we also

select products randomly. In particular, we download a list of Amazon Standard

Identification Number (ASIN) [25] that includes 75,115,473 ASIN records. Since each

ASIN represents a Amazon product, we randomly sample ASINs from the list and

construct a set of 3,000 products currently available for sale. For every randomly

selected product in the list, we also record the sale ranking of that product in its

corresponding category.

3.4.5 Evaluation

Because Amazon computes search and visit-based recommendations based entirely

upon the most recent history, there is no need to experiment with real user’s Amazon

accounts. Hence, we measure the effectiveness of our attack by studying the success

rate of promoting our targeted products for fresh Amazon accounts.

3.4.5.1 Promoting Products in Different Categories

To validate the success of our attack on each targeted product, we check whether the

ASIN of the targeted product matches the ASIN of an item in the recommendation

lists on the user’s customized Amazon homepage.

Figure 11 illustrates the promotion rate of target products in each category. The

view-based and search-based attacks produce similar promotion rates across all cate-

gories (about 78% on average). Two categories stand out as yielding markedly lower

promotion rates than the rest: Gift-Cards-Store and Movies-TV (achieving 5% and

25%, respectively).

In order to understand why these categories yield lower promotion rates, we ana-

lyze the top 100 best selling products for each category. For Gift-Cards-Store, we find

that there are two factors that distinguish gift cards from other product types. First,

the gift cards all have very similar names; therefore, using the keywords derived from

31

the product name results in only a small number of specific gift cards being recom-

mended. Second, we find that searching for any combination of keywords extracted

from the product names always causes a promotion of Amazon’s own gift cards, which

may imply that it is more difficult to promote product types that Amazon competes

with directly.

Further investigation into the Movies-TV category reveals that Amazon recom-

mends TV episodes in a different way. In our attempts to promote specific TV

episodes, we find that Amazon recommends instead the first or latest episode of the

corresponding TV series or the entire series. Because we declare a promotion suc-

cessful only if the exact ASIN appears in the recommendation lists, these alternate

recommendations are considered failures. However, we argue that these cases should

be counted as successful because the attack caused the promotion of very similar

products. Therefore, we believe that for all categories except for Gift-Cards-Store,

an attacker has a very high chance of successfully promoting best selling products.

3.4.5.2 Promoting Randomly Selected Products

We launch pollution attacks on 3,000 randomly selected products. We calculate the

Cumulative Success Rate of products with respect to their rankings. The Cumulative

Success Rate for a given range of product rankings is defined as the ratio of the

number of successfully promoted products to the number of target products in that

range.

Figure 12 shows the cumulative promotion rate for varying product rankings for

the two different types of pollution attacks. As the target product decrease in pop-

ularity (i.e., have a higher ranking position within their category) pollution attacks

become less effective. However, this is a limitation of Amazon recommendation al-

gorithms, not our attack. For products with very low rankings, there is little chance

that they have been bought by many users. Hence, they may have very few and

32

weak co-visit and co-purchase relationships with other products. It is difficult to say

precisely without further study, but it appears that products ranking 2,000 or higher

within their category have at least a 50% chance of being promoted by a visit-based

pollution attack, and products with rankings 10,000 and higher have at least a 30%

chance to be promoted using search-based attacks.

3.5 Discussion

There are several limitations with our current study. Most notably, the scale of our

experiments is modest. However, since in most instances we randomly selected the

target items, we believe that the results of our experiments are representative, and

they illustrate the substantial potential impacts of pollution attacks. Similarly, our

specific attacks are fragile; there are a number of steps each service could take to

defend themselves.

A possible defense against our pollution attacks is that cross-site request forgery

can be stopped by requiring that requests to a website carry tokens issued by the

site. However, the result is that cross-site user information and behaviors cannot

be harvested for personalization. This goes against the current trend of constantly

increasing the scope of data collection by websites. Thus, a positive impact of our

work may be that (some) websites will begin to consider the trade-offs between the

security and benefits of personalization.

YouTube in particular uses two separate HTTP requests to track a YouTube’s

user watching activity, and these are entirely independent from the actual streaming

of the video. One straightforward defense mechanism against our pollution attacks

is to monitor the time between the arrivals of the two HTTP requests. If YouTube

finds the interval is substantially less than the length of the video, it could ignore the

signal. However, an attacker can always inject a short video or control the timing of

the HTTP requests in an effort to bypass such a defense mechanism. Anecdotally,

33

we find that an injected short video can be used to promote multiple longer videos.

For example, watching one 2-second video [75] causes YouTube to recommend several

long videos.

3.6 Conclusion

In this chapter, we present a new attack on personalized services that exploits the

fact that personalized services use a user’s past history to customize content that

they present to the user. Our attack pollutes a user’s history by using cross-site

request forgery to stealthily inject and execute a set of targeted browsing activities

in the user’s browser, so that when the user subsequently accesses the associated

service specific content is promoted. We illustrate how an attacker can pollute a

user’s history to promote certain content across three platforms. While our attack is

simple, its impact can be significant if enough users’ histories are compromised.

As personalization algorithms and mechanisms increasingly control our interac-

tions with the Internet, it is inevitable that they will become the targets of financially

motivated attacks. While we demonstrate pollution attacks only on YouTube, Google,

and Amazon, we believe that our methods are general and can be widely applied to

services that leverage personalization technologies, such as Facebook, Twitter, Net-

flix, Pandora, etc. The attacks we present here are just (the first) few examples

of potentially many possible attacks on personalization. With increasingly complex

algorithms and data collection mechanisms aiming for ever higher financial stakes,

there are bound to be more vulnerabilities that will be exploited by motivated at-

tackers. The age of innocence for personalization is over; we must now take up this

new challenge.

34

(a) Customized YouTube.

(b) Customized Amazon.

(c) Customized Google.

Figure 2: Websites with personalized services (personalized services tailor the data in the
red rectangles).

35

Figure 3: Overview of how history pollution can ultimately affect the user’s choice set.

1 3 5 7 9 11 14 17 20 23

Target video ID

P
ro

m
ot

io
n

ra
te

0.
0

0.
1

0.
2

0.
3

Figure 4: The promotion rate for each of the 25 target videos in channel lady16makeup.
Two videos were recommended in each of the 114 trials.

1 2 3 4 5 6 7 8 9
Target video rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(a) Higher ranked video

1 2 3 4 5 6 7 8 9 11
Target video rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(b) Lower ranked video

Figure 5: Distribution of the suggestion slots occupied by each of the two successfully
promoted target videos.

36

Figure 6: Suggestion lists before (left) and after (right) a pollution attack against a fresh
YouTube user account. The video highlighted in red is our uploaded video.

●

●

●

●

●

●

●

●

●

●

200 500 1000 2000 5000 10000

0.
2

0.
4

0.
6

0.
8

1.
0

Watch history

P
ro

m
ot

io
n

ra
te

Figure 7: Promotion success rates for 10 real YouTube user accounts with varying watch
history lengths.

2 4 6 8 11 14 17 20 23 26 29

Non−personalized rank

N
um

be
r

of
 w

eb
pa

ge
s

0
40

80
12

0

Figure 8: Google’s original rank distribution for the 2,136 webpages whose ranking we
attempt to improve with contextual search history pollution.

37

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(a) Non-
personalized
rank = 2

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(b) Non-
personalized
rank = 3

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(c) Non-
personalized
rank = 4

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(d) Non-
personalized
rank = 5

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(e) Non-
personalized
rank = 6

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(f) Non-
personalized
rank = 7

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(g) Non-
personalized
rank = 8

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(h) Non-
personalized
rank = 9

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(i) Non-
personalized
rank = 10

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(j) Non-
personalized
rank > 10

Figure 9: Promotion rates of promoted Google search rankings for successful contextual
history pollution attacks.

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(a) Non-
personalized
rank = 2

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(b) Non-
personalized
rank = 3

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(c) Non-
personalized
rank = 4

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(d) Non-
personalized
rank = 5

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(e) Non-
personalized
rank = 6

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(f) Non-
personalized
rank = 7

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(g) Non-
personalized
rank = 8

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(h) Non-
personalized
rank = 9

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(i) Non-
personalized
rank = 10

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(j) Non-
personalized
rank > 10

Figure 10: Promotion rates of promoted Google search rankings for successful persistent
history pollution attacks.

38

ns
trGar
de

n

e

G

t.F

.P
ro

d
enoo

d

P
ro

m
ot

io
n

ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Pat
io.

La
wn.

M
us

ica
l.I

um
en

ts

Hom
e.

Kitc
h

ro
ce

ry
.G

ou
rm

e

Offic

uc
ts
Bab

y

App
lia

nc
es

Bea
ut

y

Kitc
he

n.
Dini

ng

Hom
e.

Im
pr

ov
em

en
t

Arts
.C

ra
fts

.S
ew

ing

Pet
.S

up
pli

es

Je
welr

y

W
at

ch
es

Cam
er

a.
Pho

to

Sho
es

Spo
rts

.O
ut

do
or

s

To
ys

.G
am

es

In
du

str
ial

.S
cie

nt
ific

Elec
tro

nic
s

Com
pu

te
rs

.A
cc

es
so

rie
s

Clot
hin

g

Hea
lth

.P
er

so
na

l.C
ar

e

Aut
om

ot
ive

Vide
o.G

am
es

M
us

ic.
Albu

m
s

Sof
tw

ar
e

Cell
.P

ho
ne

s.A
cc

es
so

rie
s

M
ag

az
ine

s

Boo
ks

M
ov

ies
.T

V

Gift.
Car

ds
.S

to
re

Search based View based

Figure 11: Promotion rates across Amazon categories.

102 103 104 105 106 107 108

Product ranking
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cu
m

ul
at

iv
e

pr
om

ot
io

n
ra

te Search based
View based

Figure 12: Cumulative promotion rates across varying product ranks for different Amazon
pollution attacks.

39

CHAPTER IV

MITIGATING PERSONAL INFORMATION

MANIPULATION

Given the ever-expanding user base, personalization is a key weapon for many web

services. For example, each search engine seeks to tailor search results not only to

the query term, but the end user herself [28, 31, 46, 56, 59, 71, 76, 78, 82, 83], based

upon the user’s past search history, clicks, geographic location, device type, and

other features that may help identify the user’s preferences and predispositions [46].

Ideally, personalization identifies results that closely match the user’s preferences and

intent, and, therefore improve user satisfaction and, ultimately, increase revenue for

the service providers.

In practice, web personalization can hide certain important information from

users, and distort their perception of content on the web. As is discussed in Chap-

ter 3, personalization services can be exploited by pollution attack to deliver contents

intended by attackers [92]. In particular, this new form of attack uses the general

form of cross-site scripting attack to contaminate users’ profile and alter the cus-

tomized content in predictable ways. Therefore, we can imagine that an adversary

may leverage this attack to impact a user’s mind and action. As is shown in Figure 13,

inconsistent search results arise when a user searches for “a victorian lady inn” before

and after her search history gets contaminated. In this example, we observe that

pollution attack results in the negative information about the victorian lady inn to

be suppressed from the user’s search results. Our intuition suggests this may sway

the user’s perception concerning this business.

In this chapter, our goal is to put aside aforementioned information prejudices. We

40

Figure 13: Inconsistent search results before and after pollution attacks.

approach this goal by two different strategies. As pollution attack is typically against

individual users and at a high cost when carried out against a large number of users,

our first strategy seeks to use a crowdsourcing approach to undermine the influence

of pollution attack. In particular, this approach aggregates information from multiple

users and presents information with different viewpoints to the victim. Different from

the first strategy, our second strategy copes with information prejudices by facilitating

users to strip away invalid data items from their profiles. In particular, this strategy

leverages a wider variety of personas to identify the data items possibly contaminated

and make them visbile to the point where a victim can determine their validity.

We demonstrate the aforementioned strategies on Google personalized search. In

particular, we prototyped BobbleX – a client side tool that helps users to undermine

the impact of information prejudices. The evaluation of BobbleX shows that it has a

false positive rate of 0.02 when it remains its true positive rate at 0.8.

4.1 Defense Strategies

In this section, we describe and discuss the aforementioned strategies in detail.

41

Positive

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

(a) Search results customized to a user.

Neutral

Neutral

Neutral

Negative

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

(b) Search results crowdsourced from others.

Figure 14: Search results with sentiment.

4.1.1 Strategy 1

The first strategy is accomplished by a crowdsourcing approach. When a user submits

a query to a personalization service, this approach catches her query and distributes

it to other participants. The participants then pass the user’s query to the same

service along with their own profiles. Due to the difference in profiles, the person-

alization service tailors and returns different output to the participants who then

forward them to the user. After retrieving information from multiple participants,

the user obtains not only a set of information tailored to herself but also a set of

information crowdsourced. Using an opinion mining technique, the crowdsourcing

approach further analyses information in each set and compares viewpoints between

the sets. When detecting a significant difference in opinions, this approach raises the

user’s awareness by showing information with different opinions. To illustrate this

viewpoint comparison, Figure 14 shows an example where we attach sentiment to

each search result. From Figure 14(a), we can observe that the result set expresses

a mostly neutral and slightly positve proposition, while the overall sentiment in the

42

another set is mostly neutral and slightly negative. In this case, the result with a nega-

tive label is absent from the user’s results, and therefore, the crowdsourcing approach

automatically presents this missing result to the user.

Intuition suggests that the crowdsourcing approach could undermine information

prejudices influenced by pollution attack because an attacker would need to contam-

inate the profiles of many participants in order to bypass this mitigation strategy.

However, this approach may exhibit some false positives because personalization al-

gorithms themselves can over-customize a user’s output and narrow her perspectives

even though no attacker exploits personalization services. In this work, such false pos-

itives neither indicate the ineffectiveness of the crowdsourcing approach nor threaten

to overwhelem users because the users needs to stay mindful of information prejudices

regardless of the attribution behind the prejudices.

4.1.2 Strategy 2

As pollution attack inserts invalid data to user profiles, our second strategy aims to

facilitate users to strip away invalid data. It utilizes a data correlation mechanism to

identify possibly invalid data in a user’s profile and then makes these possibly invalid

data visible to the point where the user can easily verify their validity. Given cus-

tomized output with an extreme viewpoint, in particular, the correlation mechanism

cultivates a wider variety of personas, each of which is an account containing a data

subset in the user’s profile. As each persona consists of similar but not identical data

subset, the correlation mechanism can query the personalization service with differ-

ent personas and obtain different output. By comparing each of these output with

the one that the personalization service tailors to the user herself, the correlation

mechanism can identify the data items that attribute to the output with the extreme

viewpoint. For example, assuming a user observes customized output with an ex-

treme viewpoint, but never seen it in one persona, those disjoint data items should

43

S1

S2

.

.

Sk-1

Sk

Sk+1

.

.

Sn

S1

S2

.

.

Sk-2

Sk+1

.

.

Sn

Overall sentiment
[neutral, positive]

Overall sentiment
[negative, neutral]

Sentiment difference between sets

Possibly invalid data: {Sk-1 , Sk}

Figure 15: Identifying possibly invalid data items using a search persona.

hold such output to account. Similar to the first strategy, customized output with an

extreme viewpoint may not be necesarily attributed to pollution attack. Instead of

correcting one’s profile automatically, this strategy therefore presents suspicious data

items and leaves the data validation to the end users.

4.2 Prejudice Mitigation on Google Personalized Search

In this section, we demonstrate our prejudice mitigation strategies on Google person-

alized search. In particular, we build a client side tool – BobbleX which accomplishes

the aforementioned two strategies as follows.

To accomplish the first strategy, BobbleX crowdsources search results by distribut-

ing a user’s query to other participants, who then use their own search profiles (i.e.,

search accounts) to perform the same search and return their results to the user.

Then, BobbleX uses a sentiment analysis approach to assign sentiments to search

results. These results include the user’s own results as well as the corresponding re-

sults crowdsourced. Based on the sentiments assigned, BobbleX compares the overall

viewpoints in the two result sets and presents to the user the results with different

sentiments. In particular, BobbleX intersects distinct sentiments included in each set

44

and outputs the results with disjoint sentiments. Take Figure 14 for example again.

In this specific case, BobbleX outputs the result with the negative sentiment because

it is absent in the user’s result set where the distinct sentiments include neutral and

positive.

BobbleX accomplishes the second strategy by first assigning sentiment to the

results in the set tailored to the user. Then, it examines the overall sentiment of

that set. If the results in that set are not distributed across the entire spectrums of

sentiment, it means the results express an extreme viewpoint and may sway the user’s

perception. Thus, BobbleX further performs the same search using predetermined

personas, and compares the overall sentiment of each result set with that of the

user’s result set. When detecting difference in sentiment between two sets, BobbleX

intersects the data items in the search persona and profile, and eventually outputs

disjoint data items. The disjoint data items are responsible for the extreme viewpoint

presented to the user and might be inserted by attackers for influencing the user’s

decision. As a result, BobbleX presents these disjoint data items to the user who can

then examine and even discard them if they are indeed invalid. Figure 15 illustrates

an example of identifying possibly invalid data in a user’s profile by using a search

persona.

4.3 Analysing Sentiment in Search Results

As is discussed in the section above, both of the prejudice mitigation strategies rely on

sentiment analysis to assign sentiment to search results. In this section, we introduce

a sentiment analysis approach. In particular, I begin with describing the challenges

of sentiment analysis in the context of prejudice mitgiation. Following that, we then

propose a sentiment analysis approach.

45

4.3.1 Technical Challenges

Since users usually navigate to landing pages quickly from their search pages, BobbleX

needs to examine prejudices in search results in advance of their navigation. Or put

it in another way, BobbleX needs to perform sentiment analysis efficiently.

In general, the sentiment of a search result may lay beneath its landing page. To

pull it to the surface, a sentiment analysis approach needs to examine the landing

pages of search results, and then apply sentiment-based classification to catgorize the

pages into positive, neutral or negative.

Many prior classification approaches can be used to categorize pages into senti-

ment [32,34]. However, they are typically time intensive and not applicable to infor-

mation prejudice mitigation. Given a page, the prior approaches refine information

from its neighboring pages, which usually follows a long spell.

4.3.2 Sentiment Analysis

Considering the challenge mentioned above, we propose a sentiment-based classifica-

tion approach that does not rely on any neighboring pages. Instead, our approach

works as follows. First, it distills informative text from search results and their landing

pages. Based on the informative text distilled, it then extracts and selects features.

Using these features, our approach utilizes a supervised machine learning method to

build classifiers for sentiment categorization.

4.3.2.1 Distilling Informative Text

As is shown in Figure 16, a search result consists mainly of three segments - a page

title, a landing page URL and a snippet. The generation of the page title and snippet

is completely automated and takes into account the content of the landing page.

Therefore, they represent not only the summary of a landing page but sometimes

reflect the proposition hidden behind the landing page. For example, the highlighted

search result in Figure 16 can quickly lead users to draw a negative impression on

46

Title URL Snippet

Figure 16: The search results that may leave negative impressions to searchers.

AT&T. In this work, we therefore distill text from both the page title and snippet

in a search result. In addition, the domain name shown in a landing page URL

occasionally reflects the sentiment of a search result. For example, the search result of

a commercial product from scambook.com or ripoffreport.com can leave a negative

impression to its potential customers. As a result, we also extract domain names from

landing page URLs.

To categorize search results, we further examine and extract content from landing

pages because they carry the opinions that page editors intend to convey. Considering

most landing pages are structured in an HTML format, where useful information

is often accompanied by a large amount of noise such as banner advertisement or

navigation bars, we develop the following approach that discards noisy information

items and only extracts informative content from landing pages.

In general, the landing page of a search result is structured in either a PDF

or an HTML format. Empirically, PDF-formatted landing pages do not contain

aforementioned nosiy information. As a result, we retrieve text in PDF-formatted

landing pages without refining. In particular, we retrieve text by using PDF extractor

slate 0.4 [77]. For any PDF page formatted as an image, we utilize an OCR (optical

character recognition) technique [61] to convert it into editable docuemtn and then

47

<h1>

<body>

<p> <p> <p>

<div>

<button> … …

<div> … …

<head>

<title>

<html>

<p> <p>

Figure 17: Informative content blocks and their corresponding HTML tags.

retrieve text from it.

For landing pages in HTML, we refine their content by following a heuristic ap-

proach. A landing page in HTML corresponds to a DOM tree where tags are internal

nodes and detailed text, images or hyperlinks are the leaf nodes. Given an HTML-

formatted landing page, there is no straighforward approach that can get rid of inter-

nal nodes representing noisy information items. Fortunately, we observe that noisy

information items - such as navigation bars or advertisement banners - are usually

structured in <div> and tags while informative items typically correspond

to the following tags.

• <p> tag defines a paragraph of an article;

• <h1>· · ·<h6> tags define the headings of an article, where <h1> defines the

most important heading and <h6> defines the least important one;

• <title> tag is required in all HTML pages and defines the title of an article;

• <meta name="description"> tag specifies a short description of an HTML page.

We therefore extract text from these tags. Figure 17 shows a webpage where the

information corresponding to these tags are highlighted. As we can observe in the

48

figure, some noisy information items (e.g., the navigation bar and advertisement

banners) are successfully excluded.

Following the information extraction above, we could obtain the text with infor-

mative content. However, the extracted text still contain some noisy information

which may hamper sentiment analysis. In Figure 17, we discover some hightlighted

text (such as the editing information about the article) are not useful for sentiment

analysis. To eliminate such text, we futher use a statistical language model [72] which

outputs a probability for each text block base on how likely that text block is to be

a sentence in English. In particular, we set up a probability threshold to further

get rid of less informative content. Taking the two information blocks highlighted

in Figure 17, for example, a statistical language model outputs a higher probabil-

ity for information block “And at least on vote, prosecutor said Wednesday, was for

sale" than information block “By STEPHANIE CLIFFORD and MATT APUZZO

May 27, 2015". Using the predetermined threshold, we can easily exclude the second

information block.

Using the aforementioned information extraction approach, we can accurately dis-

till informative text from most landing pages. However, we discover such an approach

sometimes is not effective for some pages whose editors use other HTML tags to lay

out their informative content. Rather than using <p> tags to structure paragraphs of

an article, for example, an HTML page editor could utilize <table> and even <div>

tags to lay out the article. So, we further examine and retrieve the detailed text under

these tags.

HTML tags like <div> can be used for structuring noisy and informative text

blocks. To filter out informative text block from these tags, we extend our afore-

mentioned heuristic approach. In particular, we compare the class attributes in these

tags with those in tags that we have already selected as informative. Using the

aforemented heuristic approach, for example, we have already extracted informative

49

text from tag <p class=“story-body-text story-content"> ... </p>. We can extract

its class attribute “story-body-text story-content" and search similar strings in other

tags1. The reason is that page editors usually use class attribute to describe the type

of an information block and we can use their descriptions about informative text

blocks to find more informative text under other HTML tags. For example, string

story-body-text story-content indicates that the text under this <p> tag is the body

text of a story which includes the opinion of the story and can be useful for sentiment

analysis. So, a similar string in other HTML tag indicates the text under the tag is

also useful for sentiment analysis, e.g., text in tag <div class=“body-text">...</div>.

4.3.2.2 Extracting Features

Having the informative text from search results and corresponding landing pages,

we now explore the features that are likely to have a positive impact on sentiment

analysis.

Given a sentiment-based classification problem. one instinctive solution is to ap-

ply existing text categorization approaches [85, 94, 95] which represent documents

– in our case, search results and their landing pages – as a native feature space

consisting of the unique words that occur in documents. As we will show in Sec-

tion 5.3, this solution cannot provide us with optimal classification performance be-

cause the words that occur in different parts of search results and landing pages may

contribute differently to classification. Consider word “complaint” appearing in the

domain domain in one URL (e.g., http://www.complaintsboard.com/complaints/

macy039s-furniture-and-bedding-c56442.html), and in the text of a landing page

(e.g., ... Questions? Comments? Complaints? We’ll quickly get back to you with the

information you need.). In the first case, we know the site includes consumer news

and database of rated complaints submitted by users. So, the content from the site

1In this work, we compute the similarity of two strings using the Levenshtein distance [65].

50

is highly likely to discuss a disreputable business and any search results linking to

the site are likely to leave negative impressions to searchers. In the second case, the

landing page is for customer services. Though it contains a word with a negative

sentiment, the landing page does not convey a negative message to searchers when

they visit the page. As a result, distinguishing where words occur may improve the

accuracy of sentiment analysis.

We create word features that indicate which part the word comes from. In partic-

ular, we begin with filtering out stop words – the most common words in a language

such as the, to, that, etc. Then, we take each of the remaining words from informative

text and attach its corresponding HTML tag because the combination of word and its

HTML tag indicates the origin of the word. Given a <p> tag with informative text

“And at least one vote, prosecutor said, was for sale”, for example, we extract word

features including <p>least, <p>vote, <p>prosecutor, <p>sale. For search results

(that we do not extract informative text based on their HTML tags), we attach tag

<search-title> and <search-snippet> to the correpsonding segments of each search

result. Finally, we extract the domain name of each URL, partition it into meaning-

ful word units and attach tag <url> to each word unit. For example, URL http://

www.complaintsboard.com/complaints/park-west-gallery-c68078.html can be

segmented into feature <url>complaints and <url>board.

4.3.2.3 Feature Selection and Classification

Using word features extracted above, we can create a feature space with tens or

hundreds of thousands of word and HTML tag combinations. According to a prior

study [96], such a high dimensionality of feature space can hinder many learning al-

gorithms. Therefore, we use a term frequency-inverse document frequency (tf-idf)

to reduce the dimenionality of our feature space. In particular, we compute term

frequency (tf) and inverse document frequency (idf) for each unique aforementioned

51

word feature in our training corpus and remove from the feature space those word

features whose tf and idf product is less than some predetermined threshold. We

represent each search result using the reduced feature space and then apply an Sup-

port Vector Machine (SVM) learning algorithm to train a classification model. In

Section 5.3, we will provide detailed evaluation for our sentiment-based classification

approach.

4.4 Generating Personas

As is discussed in Section 4.2, one of our prejudice mitigation strategies uses prede-

termined personas to identify possibly invalid data in one’s search profile. In this

section, we discuss the technical challenges of persona generation, and then describe

a practical approach to address these challenges.

4.4.1 Technical Challenges

A search persona is a subset of the past searches in a user’s search profile. Ideally,

it needs to be generated in a dynamic way. For example, BobbleX detects prejudices

in search results when the user performs a search. To identify the past searches

attributed to the bias, one solution is to build a persona “petri dish” – by duplicating

all the searches in the user’s search profile except searches that might be relevant to

the user’s outcome – and then cultivate new personas from it.

However, such an approach is not practical. According to our observation and

prior studies [29, 49], search personalization relies on many signals to tailor one’s

search results. Some important signals include search terms, user clicks, geographic

region and timing. When duplicating searches from one’s profile, a persona generation

approach can easily copy past search terms and maybe user clicks by repeating the

searches and clicking their results in a new search account. However, this process

follows a long spell because the data needed in a persona should be dynamically

determined and generating one persona needs to duplicate a sheer number of searches.

52

In addition, generating a persona in this dynamic way neglects the timing factor

that search personalization relies on, which jeopardizes the effectiveness of identifying

invalid data.

4.4.2 Persona Generation

To address the challenge above, we introduce a practical approach that builds per-

sonas by sacrificing the dynamics of persona generation.

Pollution attack inserts invalid searches to a victim’s search profile through cross-

site scripting. One crucial characteristic of such searches is that they are performed

through third party websites. As a result, we can identify possibly invalid searches

by building personas in the following ways.

Our persona generation approach first creates multiple accounts and synchronizes

the user’s search activities whenever performed. In this way, we obtain multiple copies

of a user’s profile. When identifying possibly invalid data in the user’s profile, our

persona generation approach pinpoints those searches performed through third party

websites, and creates all possible personas by removing them accordingly. Given

a search profile (T ∈ {s1, s2, · · · , si, · · · , sj, · · · }) containing 2 searches (si and sj)

performed on third party websites, for example, our approach creates three possible

personas including T − {si}, T − {sj} and T − {si, sj}. Using this approach, we

successfully create personas without ignoring the timing factor because the persona

generation follows search activity synchronization and discards unwanted searches

accordingly.

It is worth of noticing that the number of profile copies needed depends on the

amount of searches performed through third party websites. That would suggest

an exponential number of copies. As we will show later in Section 5.3, however,

users seldom perform searches through third party websites in their everyday lives,

which indicates personas are needed only when pollution attack happens. Considering

53

pollution attack has not been pervasive on the Internet, we only need to create a fixed

amount of personas in practice.

4.5 Implementation

In this section, we present the design and implementation of our BobbleX as follows.

When a user executes a search query for another with his own profile (i.e., Google

history), Google search adds that query to his profile. As adding query in such a way

incurs profile contamination, we design BobbleX in a non-intrusive manner. By non-

intrusiveness, we meant BobbleX does not incur any changes to one’s search profile

when performing searches for others. To accomplish this, we modify PhantomJS [70]

- a scripted web browser that can automate web page interactions. In particular,

we augment PhantomJS with the ability to automatically access one’s Google search

profile and pause Google logging when BobbleX needs to perform searches for others.

BobbleX needs to distribute a user’s searches to other partcipants, who then use

their own Google search accounts to perform the same searches and return their

results to the user. To do this, we develop a Chrome browser extension. It passively

collects search queries and forwards them to a central server. The central server then

coordinates other participants to execute the queries contemporaneously.

To analyse search results and their landing pages, we implement BobbleX by fur-

ther extending PhantomJS. In particular, our extended PhantomJS fetches landing

pages and extracts necessary information in the background. Last but not the least,

we implement persona generation by augmenting PhantomJS with an ability to se-

lectively duplicate a user’s searches.

4.6 Evaluation

The effectiveness of BobbleX relies upon two parts - the sentiment analysis approach

and persona generation. In this section, we evaluate BobbleX by exploring the perfor-

mance of our proposed sentiment analysis approach and the feasibility of our persona

54

generation approach.

4.6.1 Data Set

We use two different data sets to evaluate BobbleX. One data set is used for evaluating

sentiment analysis, while the other is for examining the feasibility of our persona

generation.

To evaluate our sentiment analysis approach, we randomly sampled 1,350 Google

searches in the category of business from a large dataset collected by Bobble [91].

From a crowdsourced platform – Mechanic Turk [62], we recruit volunteers to label

the results of these searches. In particular, each search result is manually categorized

into positive, neutral or negative based on their sentiment. Eventually, we obtain a

data set including 15% results with a negative opinion, 5% results with a positve

opinion and the rest with a neutral opinion. We evenly splitted this data set into two

subsets, one half of them for classifier trainning and the rest for its testing.

To evaluate our persona generation approach, we collected 1,259,949 searches from

6,482 Google users and recorded how these searches are performed. From a public

available seach engine NerdyData [66], we also obtained a webpage corpus including

40,144,820 webpages.

4.6.2 Performance of Sentiment Analysis

We evaluate our sentiment-based classification approach by comparing it with a few

other classification approaches. We apply these approaches to categorize search results

with a negative viewpoint, and show their performance in Figure 18. As is shown

in the figure, we present their performance in a Receiver Operating Characteristic

(ROC) plot. We observe our sentiment-based classification approach has an extremely

low false positive rate (approximately 0.02) when it remains a true positive rate of

0.8. This low false positive indicates that our BobbleX can accurately detect search

prejudice. In other words, users can rely on BobbleX to identify the biases hidden

55

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Classification approach (using search result and landing page)

Classification approach (using search result)

Our classification approach

Figure 18: The ROC plot of three classification approaches.

behind his or her search results.

In addition, Figure 18 shows the classification performance of two other ap-

proaches. In one approach, we build a baseline classifer. It uses the text in search

results only. As is shown in the figure, this baseline approach has lower classifcation

performance in terms of false positive and true positive rates. The reason behind this

low performance is simply that the text in search results alone only provide limited

distinguishable information for sentiment classification. To further verify this argu-

ment, we rebuild this baseline classifer. In particular, the improved classifer uses both

the text in search results and the text in their landing pages. As is shown in Figure 18,

we observe that this improved classifer shows better classification performance than

the baseline classifer. This further indicates that the information in landing pages

can be used for boosting classification performance. However, we also observe that

our sentiment-based classification approach outperforms this improved classifier. This

indicates that information in landing pages are typically noisy and removing informa-

tion nosie from landing pages can significantly improve the performance in sentiment

56

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

SVM classifier

(a) Classifier for positive sentiment analysis.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

SVM classifier

(b) Classifier for neutral sentiment analysis.

Figure 19: The ROC plots of other binary classifiers.

classification.

As is mentioned in Section 4.3, we use three binary classifiers to categorize search

results into positve, neutral or negative. As a result, we also evaluate our sentiment

analysis approach per classifier. Figure 19 shows the classification performance of

the other two binary classifiers. Comparing with the classification performance for

negative sentiment analysis shown in Figure 18, we observe the other two classifers

perform in lower performance. One reason is that search results with a negative opin-

ion contain higly distinguishable words which we can use to generate distinguishable

features and benefit this classifer for negative opinion categorization. Another reason

is that the search results with neutral and positive opinions share many common

words and we cannot select highly distinguishable features from them for classifying

search results in these two opinions.

4.6.3 Feasibility of Persona Generation

As is discussed in Section 4.4, the effectiveness of persona generation relies on the

number of searches made through third party websites. Intuition suggests that our

persona generation approach may not be a feasible solution if users typically perform

many searches through third party websites. So, we evaluate our persona generation

by examining how frequent a user performs searches on third party websites and how

many webpages allow a user to perform searches through them.

57

We answer these two questions by using the aforementioned large-scale data set.

Our measurement shows only 0.0367% (462 out of 1,259,949) searches are performed

through third party websites and only 0.1068% (42,888 out of 40,144,820) webpages

allow users to perform searches. These two percentages in low values indicate that

users rarely perform searches through third party websites and our persona generation

approach does not need to create many personas when pollution attack does not

happen.

4.7 Conclusion

In this chapter, we introduce two mitigation strategies that undermine the impact

of information prejudices. We show that an effective and efficient sentiment anal-

ysis technique can facilitate information prejudice mitigation. By integtrating it

to our crowdsourcing and persona correlation strategies, the impact of information

prejudices can be significantly undermined. Though we demonstrate our mitigation

strategies on Google personalization search, they can be applied to a variety of per-

sonalization services. Our proposed mitigation strategies do not require server side

modification and can be implemented as client-side software.

58

CHAPTER V

MITIGATING DIRECT INFORMATION

MANIPULATION

Browser extensions (or “add-ons”) have became a significant driving force behind web

browsers, often offering much needed missing functionalities to their users. Extensions

are available for all modern browsers, including Chrome, Firefox, Internet Explorer,

Safari and Opera, and are now beginning to appear in mobile browsers [9]. Extension

“stores” usually contain tens of thousands of different offerings, with some extensions

reaching a user base in the millions.

To monetize their work, extension developers may decide to display ads to their

users, thus producing revenue through ad impressions and clicks. Naturally, mis-

creants have found ways to heavily abuse this practice. For example, a “shady”

advertisement network may attempt to purchase a popular extension from its devel-

opers. Once the extension has been acquired, a (silent) update containing ad-injection

code can be pushed to the extension users, thus inflating (often fraudulently) the ad

revenue for the ad network [4].

One of the main challenges is that some of these extensions try to operate in the

“grey area” of extension development policies, to reduce the risk of being removed

from the extension stores while increasing their revenues. This seems to be one

of the driving factors that urged Google to update their Chrome extension policies

in December 2013, making them more strict with regards to ads [14]. According

to [6], developers are not allowed to build a Chrome extension “that requires users to

accept bundles of unrelated functionality...for example, display product ratings and

reviews, but also injects ads into web pages”. This policy implies that the ad-injection

59

functionality must be implemented as a separate extension, enabling users to clearly

identify the developer’s intention and to install that functionality only with explicit

consent.

Unfortunately, with tens of thousands of extensions and a constant stream of

updates, enforcing such policies without introducing a significant delay is challenging.

Currently, extension stores (e.g., Google’s Chrome extensions store) set a low bar for

introducing new extensions, and for providing updates to existing extensions. Instead,

they adopt a crowdsourced approach, relying on their users to identify misbehaving

extensions – users can rate extensions, review them, and report abusive extensions.

For example, some of these reports recently led to the removal of extensions from the

Chrome store [13]. Similarly, there exist other third-party websites (e.g., Extension

Defender [8]) that keep track of the “reputation” of browser extensions, again relying

on users to report different types of misbehaviors.

These crowdsourced manual efforts are slow and limited, and react to violations

only after they have already affected many users. Furthermore, this process does not

scale well, as extension stores grow and are expected to expand to mobile browsers [5].

Therefore, the implications of misbehaving extensions with respect to user trust,

privacy and security may become even more severe in the near future.

An alternative solution employed by extension stores, e.g., Firefox add-ons [11], is

a rigorous process in which editors manually inspect various aspects of the extension.

The problem is that this process is extremely slow (Firefox addon approval process

can take up to 10 days [3]), and obviously it does not scale with the increase in

the number of extensions. Furthermore, as we later show, we identified ad-injecting

Chrome extensions that appear also in the FireFox add-on store, indicating that even

this rigorous process is not sufficient.

To address these issues, we introduce Expector (Extension Inspector), a system

60

that automatically inspects browser extensions looking for signs of ad injection capa-

bilities. Our main goal is to quickly sift through thousands of extensions to identify

those that are most likely in violation of the advertisement practices policies set by

browser vendors. Expector operates using both static and dynamic analysis tech-

niques. It first identifies domains and events that trigger the ad injections, and then

compares the DOM structure resulting from visiting websites with and without the

analyzed extension. It identifies DOM elements introduced or altered by the extension

that is suspicious as containing ads and examines network traffic to identify patterns

associated with ad networks.

Unlike the current manual efforts, Expector is highly scalable and operates with-

out human intervention. By integrating Expector in the extension approval process,

a browser vendor can better prioritize further analysis for extensions that are sus-

pected to violate the policies. In turns, this can help to significantly improve the

quality of their extensions, and to potentially prevent abusive extensions from ever

reaching the users.

The main contributions of this chapter are as follows:

• We present Expector, a novel system that automatically identifies browser ex-

tensions capable of injecting ads on webpages. Expector works by installing an

instrumented extension within a virtual browser. By correlating the network

traffic generated by the browser with changes that the extension performs over

the DOM elements of various HTML pages, Expector is able to identify various

forms of ad injection.

• Our current implementation of Expector enables the automatic analysis of

Chrome extensions. We ran Expector on all extensions (almost 18,000) avail-

able on the Chrome extension store, and identified 292 extensions that embed

ad-injection capabilities, installed and used by millions of users. Expector is

accurate, with low 3.6% false-positives and 3% false-negatives.

61

• We present a detailed study of the ad-injection ecosystem from browser exten-

sions. Specifically, we select 223 very popular extensions from those identified

by Expector, and detail their behavior, malpractices, and revenue structure.

We show that by participating in various fraudulent activities, the ad networks

can generate large revenues, in par with many legitimate ad networks.

The reminder of this chapter is structured as follows. In Section 5.1 we pro-

vide essential background and terminology. We detail the design of Expector in

Section 5.2, and show the results from applying it to the Google Chrome extension

store in Section 5.3. We then perform a detailed case study for a few popular exten-

sions identified by Expector in Section 5.4, discuss potential future improvements in

Section 5.5, related work in Section 5.6 and conclude the chapter in Section 5.7.

5.1 Background and Motivation

Browser extensions are programs that enhance the functionalities of the browser.

These programs are written in HTML, JavaScript and CSS and are hosted in online

stores like the Chrome web store [12] and Mozilla Ad-Ons store [11]. Extensions in-

teract with the current webpage loaded in the browser by injecting JavaScript to read

or modify the DOM structure of the webpage, communicating with external servers

outside of the origin using XMLHttpRequest objects, and leveraging the browser APIs

and features. The permissions requested by the extension are listed in a manifest

file that is reviewed by the user at installation time. As is evident from this de-

scription, browser extensions hold significant privileges which leaves the door open to

malpractices with security and privacy risks.

Browser extension developers often user advertising as way to monetize the “free”

extension provided on the web store. While this practice is legitimate, there has been

a growing number of incidents where extension developers abuse the privileges and

the policies of the online stores by injecting ads on webpages that users browse. These

62

Figure 20: A Google search injected with ads from “Translate Selection” Chrome exten-
sion.

practices impact end-users (popup ads, intrusive and inappropriate ads), publishers

(decrease in ad revenue), and other ad-networks (ads replaced with other ads). In the

rest of the section we describe the three primary type of ad injection malpractices we

observed through our study of Chrome browser extensions.

5.1.1 Ad Injection Practices

Ad Injection on Search Result Pages. Consider the screenshot in Figure 20,

showing the result page of a Google search for the query “bags”. The user has in-

stalled the “Translate Selection” Chrome extension whose primary purpose is to help

users quickly translate the selected text between different languages. However, this

extension bundles with it the functionality to inject ads in the search results returned

63

to the user. The top highlighted region in Figure 20 shows the standard Google spon-

sored ads. The bottom highlighted region shows another set of ads of bags with links

to online stores. In this case, the extension clearly violates the Chrome extension

policy as it bundles its core functionality with injecting – the Chrome policy states

that “if two pieces of functionality are clearly separate, they should be put into two

different extensions”. Furthermore, the organic search results returned by Google are

pushed further down the screen, and potentially not visible all together on smaller

screen sizes.

Ad Injection on Retail Websites. Another type of ad injection practice is related

to injecting ads on webpages related to online retail (amazon.com, ebay.com, etc.).

When a potential shopper browses a product on an online retail website, the extension

sends the context of a browsing session to a third-party advertisement service, which

retrieves similar or related products. These products are shown in the form of an ad

to the user, overlayed on the existing website content. As we shall see in Section 5.3,

these ads are injected by extensions that are not related to online shopping (e.g.

News and Weather, Sports, Developer Tools, etc.) which again violates the above

stated Google Chrome extension policy. Additionally, these extensions potentially

also impact the revenue of the online retailer by showing users ads from competing

or similar products.

Ad Injection on Unrelated Websites. The third type of ad injection practice

consists of extensions that aggressively insert ads on almost every webpage that the

user browses. This practice can often degrade the user’s experience by having ads

pop up or annoying ads. Furthermore, it can potentially reduce the ad revenue of

publishers as users may end up clicking on the injected ads or the injected ads may

be overlaid on top of the publisher’s ad slots.

64

5.1.2 Ad Injection JavaScript Libraries

It is relatively straightforward for extension developers to monetize their extension

through ad injection. Similar to existing ad networks and ad exchanges, there exists

a thriving market of ad networks that provide JavaScript ad injection libraries for

extension developers to integrate with their applications. These libraries inject ads

on webpages by modifying the DOM structure of the HTML and inserting additional

HTML iframes that contain the injected ad content. The ad provider may trigger the

ad injection only on websites that are related (e.g., retail websites) and/or inject ads

when a user performs a specific operation on this websites (e.g., hover on a product

image).

5.1.3 Goal and Challenges

Our primary goal is to develop a system that automatically detects extensions that

participate in ad injection practices out of the several thousand extensions that exist

in online stores. Unlike existing approaches that rely on crowdsourced feedback and

manual code inspection approaches, we seek to reduce the extent of human inter-

vention required to analyze the ad injection practices of extensions by providing the

extension store operators sufficient insight into the ad injection practices of the ex-

tension. In some cases compliance checking can be fully automated (e.g., ads served

through invisible iframes, pop-unders or out of screen positioning), while others might

require further manual inspection (e.g., camouflaging ads in order to trick users to

click on them).

Achieving the above described goals requires addressing the following key chal-

lenges that we identified by manually inspecting a large set of extensions.

Identifying Triggering Websites As previously described, some extensions ubiq-

uitously inject ads on every website that the user visits, while others are contextual

and operate only on specific websites, e.g., Google search results. In order minimize

65

the search space of possible webpages that the ad injection is triggered, it is important

for the system to directly identify the domains on which the ad injection is triggered.

Identifying Injected Ads Injected ads alter the DOM structure of the website.

Although identifying these changes is relatively easy, attributing the changes to an

extension is not trivial, mainly because websites often have some logic that changes

their DOM structure upon consecutive reloads. For example, a news website can

decide to show (or not show) a Stocks Price bar based on the time of day. Furthermore,

an extension can alter the DOM structure as part of its core functionality, which often

not ads related.

Identifying Triggering Events In order to provide better user experience, or alter-

natively, make ad injection less intrusive and detectable, some extensions are activated

based on user interactions, e.g., hovering over a product photo. This logic is encoded

in the JavaScript library or be fetched in runtime from the third-party ad network.

Our system needs to identify these triggering events, and simulate them so that the

extension performs its ad-injection functionality.

5.2 Expector Design and Implementation

In this section we present the design and implementation of Expector, a system

that can automatically detect and characterize ad injection practices used by browser

extensions. The design of Expector addresses the challenges listed earlier in a way

that enables scalable and lightweight checking of browser extensions. Expector’s

current design is able to detect a wide range of ad injection practices with high

accuracy. As we show in Section 5.3, Expector has a false positive and negative rate

of 3.6% and 3.0%, respectively. We implement Expector for the Chrome browser and

describe the implementation below.

66

Figure 21: Expector design and process flow. The Expector contains four primary
components: Pre-Parser, DOM Tree Comparator, Event Trigger, and Verifier. Given an
extension, Expector determines if the extension is adware.

5.2.1 Design Overview

Figure 21 provides an overview of Expector which consists of four primary compo-

nents – Pre-Parser, DOM Tree Comparator, Event Trigger, and Verifier. Expector

operates by processing one extension at a time (though multiple instances can run

in parallel). The Pre-Parser loads the extension into a browser and extracts all the

JavaScript code that is loaded at runtime. It performs static analysis of the code

to extract the potential triggering domains. Then, Expector launches two browser

configurations; one without any extension and the another with the extension being

investigated. For both configurations, Expector loads the domains detected by the

pre-parser. After each page is fully loaded, the DOM Tree Comparator outputs a set

of DOM elements that only exist in the webpage loaded by browser with the exten-

sion installed. These DOM elements are flagged as the potential elements used by the

extension to inject ads. The Event Trigger identifies all events associated with these

elements (e.g., onClick, onMouseOver, and onMouseMove, etc.) and triggers these

events. Triggering these events could potentially result in new DOM elements being

injected. Expector clicks on every new DOM element, while the Verifier monitors all

HTTP requests made by the Event Trigger, and detects patterns that are commonly

used by ad networks. We now describe each component in detail.

67

5.2.2 Pre-Parser

The primary goal of the pre-parser is to identify the potential domains that trigger the

extension to inject ads, minimizing the need for exhaustively testing many domains.

The pre-parser spawns a browser instance with the extension installed. In addition,

it installs a virtual proxy between the browser’s JavaScript engine and the extension.

Using the remote debugging protocols supported by browsers (e.g., Chrome [17]), the

virtual proxy intercepts all the function invocations related to JavaScript executions.

Once the pre-parser obtains the JavaScript code executed by the extension, it searches

for references to one of the top-10 top-level domain names [21] (e.g., .com, .net,

.org). We limit the search to these top-10 top-level domains because we assume

that extensions that are triggered by specific websites will most likely target popular

websites, almost all of which are included in the top-10 domains.

5.2.3 DOM Tree Comparator

The goal of the DOM Tree Comparator is to identify the suspicious DOM elements

that are potentially inserted by the extension for ad injection. A naive approach is

to directly compare the HTML source of two different pages – one with the extension

loaded, and another one without. However this approach will result in a large number

of false positives as most webpages load a large amount of dynamic content that can

be served by different hosts on each reload of the webpage. For example, each reload

of a webpage can potentially result in ads served from different ad providers.

To address this, the DOM tree comparator uses both the DOM structure as well

as the content of the DOM elements to identify potential elements injected elements.

This is achieved by the following steps:

1. We assume that all hosts that serve content on the webpage without the exten-

sion installed are trusted and generate a list of trusted host names by loading

the webpage multiple times without the extension.

68

2. We load the webpage using two instances of the browser (with and without the

extension loaded) and record the DOM tree.

3. The DOM tree structure is flattened into a list of elements by performing a

pre-order traversal over the corresponding DOM tree, i.e., for each node in

the list, its descendants are located at its right side and its ancestors are at

the left side of the node. Each item in the list consists of the tag name of

the DOM element and the domain associated with the DOM element (if such

domain exists). For example, an iframe tag like <iframe src=‘http://www.

amazon.com/product/B00BWYQ9YE/’/> is encoded as a two tuple (‘iframe’,

‘www.amazon.com’) after transformation.

4. In order to compute the difference between the two lists, we used a variant of

the longest common subsequence (LCS) problem algorithm, which is used by

the well-known diff command. The modified LCS algorithm outputs nodes

that are present only in the webpage loaded with the extension installed.

5. Finally, these elements are further processed and only the elements whose host

name is not presented in the trusted list are used as input to the event trigger

component.

Overall, we find that the above process yields very few false positive and false

negative and enables us to identify DOM elements that are only added by the exten-

sion. The one caveat for this process is that we cannot identify DOM elements that

are dynamically generated, e.g., create an iframe containing ads and inject it to the

DOM only after the user hovers on a product photo. However, in our experiments we

did not find extensions that use this behavior, probably since dynamically creating

elements upon user interactions might create a visual lag, whereas simply having the

DOM element already injected, and then simply controlling its visibility in code is

immediate.

69

5.2.4 Event Trigger

The primary goal of the event trigger is to visit the ad landing pages potentially

associated with the identified DOM elements through redirects. To this end, the event

trigger process the suspicious DOM elements as follows. For all DOM elements that

have a JavaScript event handler to process user events, like onClick, onMouseOver,

etc., we instruct the browser to execute the corresponding JavaScript function. For

all events that have a URL associated with the DOM element, we instruct the browser

to visit the URL. Note that we ignore iframes as the URL points to the source of the

iframe. Finally, for all the remaining elements (elements with no URLs or iframes),

we instruct the browser to trigger a click event to emulate a user clicking inside the

element. For all the above cases, if the element contains an ad, the advertiser’s website

will be loaded usually through a series of redirects, first to one or more ad networks

and then to the ad landing page.

A caveat to the above described event trigger mechanism is that some extensions

inject ads only after some time has elapsed since the user installed the extension.

We assume these practices are used to reduce user dissatisfaction from the injected

ads. We manually inspected these extensions and found that they mostly retrieve

timing information using the system APIs. We therefore “tricked” these extensions

by setting the system clock before we install an extension to one year backwards, then

install the extension, launch the browser and then set the system clock to one day in

the future.

5.2.5 Verifier

Finally, the verifier validates that the triggered DOM elements are indeed associated

with ads. A unique characteristic of an ad element is that after an ad is clicked

there is a redirection pattern, oftentimes to multiple websites. These redirections

enable ad networks to monitor ad clicking for analytics and billing purposes. This

70

redirection pattern is unique to ads and simply detecting it is sufficient to identify

that the corresponding DOM element injects ads.

To detect such redirection patterns, we implemented a lightweight Chrome exten-

sion, which is loaded before the extension is installed, that logs all HTTP requests

made by the browser. HTTP requests issued as a result of the Event Trigger actions

are analyzed by the verifier which searches for redirections. A redirection is detected

when an event results in more than one domain in the traffic trace, and the last

domain (e.g., the ad landing page) is not the same as the original web site (i.e., the

one that contains the DOM element). If such redirection is identified, the extension

is marked as an adware.

5.2.6 Implementation

We implement Expector using Node.js [15] and Selenium [19], a tool that enables

browser automation (the entire setup is executed without human intervention). We

use Node.js to spawn a Chrome instance and load a Chrome extension for pre-parsing.

Using the remote debugging protocol of Chrome, we configure a virtual proxy working

as a Chrome Developer Tool that intercepts all the JavaScript function invocations.

Specifically, we listen on all Debugger.scriptParsed events and log all the JavaScript

code parsed by the V8 JavaScript engine. The rest of the components of Expector

are implemented with Selenium and the LCS algorithm is implemented in Python.

To ensure fast and scalable processing of a large number of Chrome extensions,

we deploy Expector across 60 Linux Debian 7 virtual machines running on a 32 core

server with 128 GB RAM. This setup enabled us to process all 18,030 extensions in

the Chrome webstore in less than three days.

5.3 Evaluation

In this section, we provide a detailed evaluation of Expector. We evaluate the ac-

curacy of Expector to detect ad injecting extensions (adware) by characterizing the

71

A
cc

e
ss

ib
ili

ty

B
lo

g
g
in

g

D
e
v
e
lo

p
e
r

T
o
o
ls

E
x
te

n
si

o
n
s

F
u
n

N
e
w

s
&

 W
e
a
th

e
r

P
h
o
to

s

P
ro

d
u
ct

iv
it

y

S
e
a
rc

h
 T

o
o
ls

S
h
o
p
p
in

g

S
o
ci

a
l
&

 C
o
m

m
u
n
ic

a
ti

o
n

S
p
o
rt

s0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

P
D

F

Adware

All Extensions

Figure 22: The distribution of Chrome extensions across different categories. All Exten-
sions span the 18,030 extensions we crawled from the Chrome store, and Adware span the
292 extensions identified as adware by Expector.

false positive and negative rates using two different datasets. Using metadata asso-

ciated with the extensions, we further characterize the ad networks and extension

developers that publish such extensions. Finally, we discuss the adware takedown

strategy that Google probably relies upon.

5.3.1 Datasets

Dataset to characterize false positives. We evaluate the false positive rate of

Expector by testing all the available extensions on the Chrome web store followed

by manual verification. To this end, we developed a crawler that downloads all ex-

tensions that are listed on the Chrome Web Store [12] along with the extension’s

meta data, i.e., developer account, extension category, number of active users, rating,

description, and user reviews. We ran our crawler during March 2014, and obtained

18,030 Chrome extensions. Figure 22 shows the distribution of these Chrome exten-

sions across different categories, with the top three categories being “Productivity”,

72

“Social & Communication and “Fun”.

Dataset to characterize false negatives. In order to study the false negative

rate of Expector we use a crowdsourced list of Chrome extensions that are tagged

as adware. This list is provided by Extension Defender [1] that enables users to

submit extensions as potential adware which are reviewed and verified manually by

the curators of this list. In March 2014, this Extension Defender had 78 Chrome

extensions that were tagged as adware.

5.3.2 False Positives

Out of the 18,030 extensions downloaded from the Chrome web store, 108 extensions

(0.6%) failed to be processed by Expector. By inspecting the code of these extensions

we found that these extensions utilize native binary code [18] that was not ported

by the extension developer to Linux. All other 17,922 extensions were successfully

evaluated by Expector using the setup within three days highlighting the ability of

Expector to scale to a large number of extensions.

Expector reported 303 extensions as adware, which accounts for 1.7% extensions

on Google Chrome store. We manually installed each of these and inspected their

source code, and found that 292 of these are indeed adware. This indicates a very

low false positive rate of 3.6%. We further analyzed the 11 extensions that Expector

incorrectly identified and find that Expector flagged them as users were re-directed

to webpages controlled by the extension developer that contained ads. For example,

parental control extensions like Anti-Porn Pro and No Xvideos maintain a blacklist

of websites. When users navigate to these webpages, the extension re-directs the

user to a webpage hosted by the extension developer showing a warning message.

This webpage hosts ads which are detected by Expector and consequently flags the

extension as adware.

73

5.3.3 False Negatives

We begin the analysis of false negative rate by first manually verifying the crowd-

sourced list of extensions tagged as adware. Surprisingly, we find that out of the 78

extensions only 34 of them were manually verified as adware. This initial analysis

highlights the limitations of the crowdsourced approach where curators cannot man-

ually check every update to the extension source code and verify user complaints.

Consequently, we postulate that these 44 extensions may have disabled the ad in-

jection functionality after being flagged as adware, and Extension Defender failed to

remove them from their list.

Out of the 34 manually verified adware extensions, Expector was able to correctly

detect 32 of these. We further analyzed the two extensions that Expector missed.

The first one uses a Windows DLL file, which is not compatible on Linux, but could

have been processed if Expector was deployed on Windows. We do not count this

as a false negative. The second extension operates on Facebook, and uses a more

sophisticated triggering method. It requires the user to visit Facebook.com, scroll to

the bottom of the page, and wait for a 10 seconds before injecting ads. Expector

correctly identified the triggering website and the timeout event, but failed detecting

the scroll event. These complex triggering events are difficult to identify, however, as

our analysis shows, they are quite rare as they target a very specific user interaction,

thus reducing the number of ads the extension injects (and lowering their revenue).

Consequently, Expector has a low false negative rate of 3.0% (1/33).

5.3.4 Deploying Expector

Expector identified 292 adware extensions in the Chrome store, which is notably

higher (9×) than the crowd-sourced approach used by Extension Defender. Consid-

ering a 3% false negative rate, deploying Expector in the online approval process of

uploading extensions to the webstore will almost mitigate adware from entering the

74

Developer id Adware Total Ext.
brandthunder.com 142 172
everplexmedia.com 7 8
Chrome 6 65
extensions.czechian.net 5 7
www.extensions-for-chrome.com 4 9
itworks 4 7
professional-extensions.czechian.net 3 4
–Monster– 3 4
Ext 2 2
bionic 2 4

Table 1: The top-10 adware developers.

Chrome webstore, thereby greatly improving its quality, while incorrectly rejecting

only 3.6% of the submitted extensions. Developers of these incorrectly flagged ex-

tensions can appeal and request a manual verification, requiring a small amount of

human intervention by the webstore operators.

5.3.5 Characterizing Adware

In this section we characterize the 292 adware that our system correctly reports

to understand their category distribution, developers authoring such extensions and

usage of ad networks.

Extension Categories. Intuitively, we expect the adware extensions to belong to

the “Shopping” category in order minimize the risk of violating Google’s policies that

prohibits the bundling of different functionalities. For example, a shopping related

extension could potentially inject ads on webpages with the goal of improving the

user’s online shopping experience. Figure 22 shows the fraction of all extensions and

adware extensions in each category. Surprisingly, we find that only 14% of the adware

extensions are categorized as “Shopping”. The remaining span different categories,

with “Sports” holding the largest percentage of adware (40% of the extensions we

identified as adware).

Adware Developers. We study the developers of the adware extensions. Overall,

75

Domain Extensions User base
www.superfish.com 199 1,235,379
fastestjs.info 1 1,235,379
txtsrving.info 11 594,565
secure.demand-go.com 3 594,565
o.yieldsquare.com 9 488,043
www.imgclck.com 14 344,821
go.redirectingat.com 23 332,694
service.pricegong.com 2 308,084
mc.yandex.ru 147 125,860
xtensionplus.com 7 97,250

Table 2: The top-10 ad networks that adware contact.

Number of Number of Adware (%)
Ad Networks Adware

1 74 27.21
2 40 14.71
3 12 4.41
4 145 53.31
5 0 0
6 1 0.37

Table 3: The distribution of adware across the number of network domains that they
contact.

there are 11,738 distinct developers that publish extensions on the Chrome store.

Out of these, 118 are developers of one or more of the 292 adware extensions. Only

16 of them (13.6%) publish more than one adware extension (determined by the de-

veloper ids). Table 1 shows the top 10 developers of adware along with the number

of extensions that are flagged as adware. We observe that not all of the developer’s

extensions are adware. This is because, ad networks for extensions require a min-

imum number of users to actively use the extension (e.g., superfish.com requires

a minimum of 50,000 active users) and not all the developer’s extensions may have

these many active users. This effectively makes it difficult for the webstore operators

to directly ban the developer as not all the extensions may be adware.

Ad Networks. In order to study the ad networks used to deliver ads, we processed

76

the network logs stored by the Verifier module, and extracted the domains used by

adware for fetching ads. We found 67 unique ad network (domains) in total. We

further want to assess the user-base of each ad network, i.e., how many users each

ad networks serves ads to. We use the following simple heuristic that provides a

conservative estimate of the number of users; among all the adware extensions that

fetch ads from a given ad network domain, we assign the ad-network the maximum

user-base among these extensions (making the assumption that all users overlap).

Table 2 shows the top-10 ad networks that adware contact. We observe that a majority

of the ad networks are used by multiple extensions, with superfish.com and yandex.ru

leading with 199 and 147 adware extensions, respectively. Finally, Table 3 shows the

number of ad networks used by adware. The table shows that more than 50% of the

adware contact at least three ad networks, the vast majority (145 extensions) contact

four networks, and one extension, TrustedShopper, partners with 6 different networks.

We attribute this to the developers’ attempt to maximize their financial gains and

reduce their reliance on a single ad network.

5.3.5.1 Extension Removal

We now characterize the extent to which Google purges adware extensions from the

webstore. We crawled the Chrome store again in May 2014 (roughly 6 weeks after our

initial crawl), and checked the availability of the adware identified by Expector. We

found that out of the 292 adware detected only 33 (11.3%) are no longer available for

download (see Table 4). Finding the root cause behind these extension removals is

not trivial – the extensions may have been removed by the developer or Google could

have removed these extensions due to policy violations related to ad injection or other

malicious activity. By manually verifying these extensions we do not find any explicit

malicious behavior. We also observed that 15 of the 33 extensions belonged to the

same developer. Given these observations we hypothesize that these extensions likely

77

Extension id # of users Developer
hnmhpjbejpnnaffkpmebeagdiidibjfa 40775 almond.foier
dgkodfmpfeankonfpmeiecfcdnnplfoh 6 brandthunder.com
npfginbbkdjnoomjoipnafkgaclcipdc 3 brandthunder.com
dkdjknkhdfkcjdkfgfdlhglfeheefkgc 61 brandthunder.com
kgechjpjeifpccomemjclcndpfhebgph 2 brandthunder.com
flcgogbgmgihhcjgakodpgkndoefjikl 9 brandthunder.com
ahmbpbdpkcknchhlbhehkhgddeebjbaa 3 brandthunder.com
mcienhknfimilomfokgenohgephcmpnh 3 brandthunder.com
jklamffdbhkmijgiimpkdnihbmicomml 19 brandthunder.com
elgiklnblmlckpkmigdmlmcmjfpiekgc 8 brandthunder.com
gcoeaodmmobklbpcajdiohbfgedafobe 25 brandthunder.com
fdnepimfkhmamfefpagkplhbjflogjmo 43 brandthunder.com
inchelgepobcoidngomhcljobbjdhmok 35 brandthunder.com
egghpghdddlhclmmiaaihmgnggeaeehb 2 brandthunder.com
hddfbbleodlbkcgbonkfoknoodnknifo 3 brandthunder.com
nghobmofokaoniogeeoglgkghcppbkfo 0 brandthunder.com
hlcpjandbihelclgoinjineogmpifpdl 1299 Chrome
adgebcppjdjaoinhpiacddeokhiammkl 198 Chrome
anniokiiijccmdokaojcjocfjigdncjp 16 Chrome
fggbmkfalaofcfdmidbjphgjcmaafkgh 61 Chrome
hhffdhobhcodehjbdkgnmopbaifcaecl 64 Chrome
gngecdocapndgkmopgklkiafoeoinlpl 81 Chrome
ocafaidocnigmmhbhffbhidhedgckcfd 384 everplexmedia.com
dlbblkmidojcmjafbeddanofmckfbmbb 6 hotelo
ignkobhlkpgjcpkfgfohhdgdaldfaoni 48357 leon.munifield
jieojmaflakccpfnjiibbkajdplbhhcc 681 ownweather.com
gbmkfanjlljhcfcnejpecajlpkfmckpi 18 peoplesbankal.eversave.com
dblpdenjapnbppelpaflghkfblfhgobo 8385 professional-extensions.czechian.net
lgbmknmpendafnnkibphfmeeljfdomgk 6644 weatherww.com
akmlaclbbenlpkimkhbmgpfampphciab 216 www.bizrate.com
cdfjbkbddpfnoplfhceolpopfoepleco 70774 xnotifier.tobwithu.com
cpofbbgoaeoiiagmlfkkipjmggkedgic 7446 xtensionplus.com
gnpkfejhbjbfidphpdfeokopdigeinkf 164 xtensionplus.com

Table 4: 33 Chrome extensions that Google took down due to ad injection bundle.

78

violated Google’s policies related to ad injection.

In addition to the above analysis, we uploaded an extension to the Chrome store

that contains almost the same code as one of the extensions that were taken down by

Google that performed ad injection – NASA. Though we reported our uploaded ex-

tension to Google on 10 May, at the time of the writing this extension is still available

for download on Chrome store. Overall, this further implies that the current manual

approach to identify adware is not sufficient, resulting in many adware extensions and

developers that fraudulently generate ad revenue.

5.4 Case Studies

In this section, we seek to characterize the ad metrics (CTR and number of impres-

sions) of the ad networks that deliver ads to adware extensions. As shown in Sec-

tion 5.3, these ad networks are not among the major ad networks (e.g., DoubleClick,

Yahoo!, etc.) and hence not well studied. We focus on 4 popular ad networks that were

contacted by 223 extensions identified as adware by Expector– i.txtsrving.info,

superfish.com, imgclck.com and xtensionplus.com.

5.4.1 Dataset

In order to perform this study we use two datasets provided to us by a large ISP,

a security company and two universities, all of which monitor their users’ network

traffic.

HTTP Traffic. We collected the HTTP traffic log of tens of thousands of users from

two university networks and tens of enterprises. For each request we obtained the

source and destination IP address, and the complete HTTP request header including

the user’s cookie identifier (if present), requested URL path and referer. This dataset

spans 2 weeks in April 2014.

DNS Traffic. A large ISP provided us the DNS queries performed during 2 weeks

79

Ad Network Request pattern Request type Affiliate ID User
field identifier

TxtSrving
cdncache1-a.akamaihd.net/loader/...pid=... fetch ad pid Cookie
i.txtsrving.info/kwdu?...subid=... fetch ad subid Cookie
p.txtsrving.info/click?..subid=... click subid Cookie

SuperFish www.superfish.com/ws/findByUrl.action?...userid=...dlsource=... fetch ad dlsource userid
www.superfish.com/ws/offerURL.action?...userid=...dlsource=... click dlsource userid

ImgClck www.imgclck.com/supp0rt/www/delivery/afr.php?...&beacon=... fetch ad beacon Cookie
XtensionPlus xtensionplus.com/display.htm?...&pi=... fetch ad pi Cookie

Table 5: The HTTP request patterns originated from adware for each ad network. The
table shows the purpose of the request (fetch an ad or report that a user clicked on an ad),
the field used to identify the affiliate (adware), and the method used by the ad network to
track the user.

in April 2014 against the domains of the 4 ad-networks we study. The DNS traffic

log contains A-type DNS records from around 20 million daily users located in the

US. Each DNS query contains the IP address of the requesting host (user) and the

requested domain. We note that the ISP has a very low DHCP churn rate on a daily

basis, thus it is very unlikely that a single host will have more than a single IP on a

daily basis.

Mapping Adware to Traffic Logs. Our first task is to associate the traffic logs to

specific adware extensions. To this end, we need to identify the URL patterns issued

by the extensions we study, and locate these patterns in the traffic logs.

We identify patterns in the URLs that each adware generates by inspecting the

source code, and extract the affiliate IDs which are unique IDs issued by the ad

networks to their customers. Table 5 lists some of the traffic patterns used by the

adware extensions, along with the fields we use to identify the affiliate IDs (leading

us to the corresponding adware) contained in the HTTP requests. Additionally, the

Table also shows the method used to associate unique users to the requests. Using

these patterns, we filtered our datasets to only include traffic that matches the adware

we study. To further validate that these requests originate from the adware and not

from users visiting pages that make similar requests to the ad networks, we inspected

the HTTP referrer field and found that none of the referres were from the domains

that adware contacts. This implies that the requests are generated by the adware

80

www.imgclck.com xtensionplus.com superfish.com txtsrving.info

% of IPs 0.003 0.017 0.168 0.008
Total ad requests 22,935 3,983 9,741 2,342
Avg Daily requests / user 102.30 54.71 8.19 8.44

Table 6: Statistics regarding the four domains used by adware for ad injections, showing
the percentage of unique IPs (out of the 20 million IPs in the DNS dataset) that resolve
each domain, the total ad requests and the average daily ad requests per user from each
domain in the HTTP dataset.

extensions rather than other user browsing activity.

In order to draw broader conclusions on the reach of these ad networks, i.e.,

number of users they serve, we correlate the IP address of hosts that contact ad

networks in the HTTP dataset with the DNS logs. We found that all enterprise IP

addresses that exhibit adware network patterns in the HTTP dataset also appear to

query the ad networks domains in the DNS logs (the university hosts use a different

DNS server). Together with the observation that these domains do not serve any

regular content, leads us to believe that DNS queries to these 4 ad networks is indeed

the result of an adware and not a user explicitly visiting their domain. This enables

us to use the large DNS logs and estimate the user-base of these ad networks.

5.4.2 Click Stealing

We first study the adware extensions that contact the ad network txtsrving.info

for fetching ads. As shown in Table 2, we identified 11 such adware, the most popular

of which has 594,565 active users. TxtSrving injects ads into a page by adding <a>

tags to various text elements in the original HTML. These tags are used as hyperlinks,

usually placed in pages to connect it with other relevant content. However, TxtSrving

connects the text with their ads, so an unwary user that clicks on the links, probably

expecting some related content, actually clicks on an ad. This form of ad injection

can be seen as a “click stealing”, essentially tricking users into clicking ads despite

lack of intent [37], potentially leading to a clickthrough that is substantially higher

than that obtained by more legitimate practices.

81

To further study the clickthrough rate of such ads, we measured the number of ad

requests made to the domain txtsrving.info. As shown in Table 6, we identified

2,342 distinct ad requests, all originating from 11 different extensions (identified by

their unique affiliate IDs). Out of these, we found 149 clicks on injected ads (identified

by an HTTP request to the domain of the ad with the referrer being the ad network).

This yields a 6.36% clickthrough rate, which is significantly higher than the average

0.22% clickthrough rate reported by Google’s Double Click [7].

5.4.3 Impression Fraud

Next, we study the adware that serve ads delivered from xtensionplus.com. These

adware fetch ads and display them in 13 invisible iframes every time a user visits a

page. This kind of injection strategy is a clear form of impression fraud [79], essentially

causing advertisers to pay for ads that were never seen by real users.

As shown in Table 6, we found 3,983 ad requests to xtensionplus.com, 3,701

(91%) of which originate from Chrome browsers and the rest from Firefox, all using

3 unique affiliate IDs.

5.4.4 Additional Ad Injection Practices

Finally, we discuss two examples of adware that seem to violate extension policies

in a more subtle ways. While we may not have enough evidence to categorize the

ad injection practices of these extensions as clearly fraudulent, they do present some

“shady” traits that we believe are worth highlighting.

5.4.4.1 www.imgclck.com

Extensions that use ImgClck www.imgclck.com typically place a banner ad at the

bottom of a user page. Many webpages are very long and oftentimes implement some

method of “infinite” scroll (e.g., Facebook, Pinterest, etc.), therefore a user might

never really reach the bottom of the page [20]. This means that an ad positioned in

82

Regions CPC Internet users
US & Canada $0.22 284,056,300
UK, FR, Germany $0.16 177,631,638
Italy, Spain $0.10 69,402,475
Austria, Belgium, Switzer-
land, Denmark, Ireland,
Netherlands, Norway, Sweden

$0.12 59,444,750

Brazil $0.08 99,357,737
Australia, New Zealand $0.12 22,003,709

Table 7: Superfish cost per click per geographic region and the corresponding Internet
user population.

Chrome Firefox IE Safari Total
Ad display 4,169 4,700 861 11 9,741
Affiliate ids 56 37 27 3 76
User ids 264 187 85 7 543

Table 8: Statistics of observed traffic to superfish.com across 4 browsers.

the bottom of the page is counted as an impression, but might never be seen by a real

user, thus might also be considered a type of impression fraud. As shown in Table 2,

there are 14 adware contacting domain www.imgclck.com, the most popular of them

being used by 344,821 users.

Although positioning a banner in the bottom of a page is not necessarily fraud-

ulent, we found that ImgClck embeds DoubleClick ads into the iframe they provide

to the extension. The iframe with the DoubleClick ads is then injected to arbitrary

pages, which is in direct violation to DoubleClick’s policy that strictly prohibit placing

ads by anyone other than the page owner [2].

5.4.4.2 superfish.com

Superfish is an ad-network that shows ads for products based on visual similarity to

other products. Extension developers use them on e-commerce websites (e.g., Amazon.

com and eBay.com), so that users that shop for a product get ads to similar-looking

products. Superfish styles the ads so that they blend well with various websites.

Figure. 20 shows an example of Superfish ads injected into Google search result,

83

Browsers # of overlapped affiliate ids
Chrome & Firefox 22
Chrome & IE 20
Chrome & Safari 2
Chrome & Firefox & IE 18
All 4 browsers 1

Table 9: Superfish affiliate overlap between Chrome and other browsers.

when the user issues a search for women handbags. As shown in Table 2, we identified

199 adware that use Superfish to display ads, with the most popular extension being

used by 1,235,379 users. Using our DNS dataset, we found that roughly 0.2% of

the 20 million unique IP addresses resolve superfish.com. Similar to the other ad

network domains, this domain has no content to offer to regular Internet users and

there is a one-to-one mapping between adware and DNS traffic, thus we assume that

these DNS queries can be attributed to adware extensions.

Since Superfish is a popular provider of ads, we seek to estimate the revenue it

generates from delivering ads to extensions. Using our HTTP traffic dataset, we

found 9,741 requests to fetch ads from superfish.com, issued by 543 distinct users.

Of the 9,741 ad injections, 107 were clicked, implying a clickthrough rate of 1.098%

(not as high as the click fraud performed by TxtSrving, but still significantly higher

than DoubleClick’s). We found 76 unique affiliate IDs from these requests, and out

of those originating from Chrome browsers, we found 56 affiliate IDs that are present

in the source code of the adware identified by Expector. Table 8 and 9 summarize

our findings.

Table 6 shows the number of unique IP addresses resolving the domain superfish.

com, and our user-base estimates of the adware that uses Superfish. Using these esti-

mates and the aforementioned data, we can estimate the annual revenue of Superfish-

based adware. We contacted Superfish and obtained their CPC rates, which are pre-

sented in Table 7. We limit our estimates to the Internet population that reside in the

84

regions for which we have CPC data. Using the HTTP requests to superfish.com,

we estimate that on a daily average, 19.69% of the 543 users we identified receive on

average 8.19 ads from Superfish. Overall, based on the above DNS dataset analysis,

assuming that 0.2% of each region’s Internet population is using an extension with

Superfish ads, we estimate that the total annual amount Superfish pays to the adware

developers is approximately $1.5 million.

This indicates that although we are only able to ballpark the revenue adware

developers make from ad networks like Superfish, we find that this practice is indeed

prevalent and fosters a large and profitable ecosystem of ad networks and extension

developers.

5.5 Discussion

To the best of our knowledge, Expector is the first system that automatically detects

browser extensions that utilize ad injections. As most other automated detection

systems, Expector has some limitations, which we discuss below along with possible

directions for future work.

Native Code. Extension developers that want to improve the performance of their

code, or hide specific implementation details, can use the NPAPI to embed native

code into their extensions. In our current implementation, Expector runs on Linux,

therefore extensions that use native code for non-Linux OSes cannot be executed.

However, note that due to portability concerns NPAPI is being phased out [16],

which will not impact Expector in the long run.

Evading Detection. Once a tool like Expector is adopted, adware developers may

use various evasion techniques to avoid being detected. These practices are already

used by malware, for example to detect dynamic analysis environments [24]. Simi-

larly, we showed in Section 5.3 that an adware targeting Facebook evades automated

detection by requiring complex user interaction. Obviously, Expector will have to

85

evolve and keep track of these evasion techniques.

Obfuscation. Expector analyzes the JavaScript code of an extension to extract the

domain names that trigger the adware. Therefore, adware developers may obfuscate

their JavaScript code to prevent detection. However, since the end-goal of adware

developers is to maximize their revenue, most of these extensions operate on popular

websites. Therefore, an alternative approach to our Pre-Parser, is to exhaustively try

a large list of popular websites, and see if any of these triggers the extension. All of

the adware we studied, either operated on all websites, or were triggered in extremely

popular websites, such as Google, Amazon and Facebook.

Replacing Publisher IDs. Expector operates by looking for DOM changes intro-

duced by an extension. Therefore, a sophisticated adware can detect DOM elements

with existing tags and change the publisher ID into their own publisher ID, thereby

diverting the profits from the original publisher to themselves. However, such a trick

is difficult to implement and easily detected by the ad networks themselves (mismatch

between the referred domain and the publisher ID).

5.6 Related Work

In this section, we discuss three lines of work most related to ours – (1) adware

analysis, (2) detection of malicious JavaScript, and (3) detection and mitigation of

malicious browser extensions.

Adware. Edelman et al. [42] provide an overview of the adware ecosystem, study-

ing the ad networks, exchanges, and practices used by ad injectors. In a more recent

work [43], the same authors study fraud in online affiliate marketing, and how ad-

ware takes part of such frauds. Both works focus more on the business aspects of the

ecosystem, and unlike our work, they do not attempt to provide a system for auto-

matic detection of adware, but instead extract the participants of manually selected

adware extensions.

86

Several tools have been recently developed to assist users remove adware from

Chrome [8, 10]. These tools operate by comparing extensions installed by a user

against a list, oftentimes crowd-sourced, of known adware, and alerting the user if

such extensions are found. Such detection approach is limited by the accuracy and

completeness of its list, and cannot handle new adware that was not yet reported.

Expector does not rely on manually curated lists, making it highly suitable for ana-

lyzing extensions in the approval process, before they ever reach users.

Malicious JavaScript Detection. Several works proposed generic methods for

detecting of malicious code [26,26,35,39,40]. Chugh et al. [35] present an information

flow based approach for inferring the impact that the JavaScript code has on the

website, using both static and dynamic analysis.. In [26], the authors introduce VEX,

a framework that performs static taint analysis to track explicit leaks resulting from

potential privilege escalations in browser extensions. A different form of static analysis

was recently proposed by Kashyap and Hardekopf [52] for creating security signatures

of extensions, which describe the usage of critical APIs and information flows of an

extension. A recent dynamic information flow analysis was presented by Bichhawat et

al. [30], tracking both explicit data and implicit control flows of JavaScript bytecode

in WebKit with moderate overheads.

Despite great improvements of JavaScript code analysis, adware typically do not

use sensitive APIs or specific coding practices, thus simple ad-hoc methods, such as

those used by Expector, are likely to be more suited to the problem domain.

Browser Extension. A series of security issues in browser extensions have been

studied for years, mostly focusing on preventing user data leakage through malicious

extensions [44,53,54,57,84] and protecting against privilege abuse of extensions [47].

The security model of Chrome extensions was criticized in [57]. The authors showed

that extensions introduce attacks on the Chrome browser itself, and proposed a en-

forcing micro-privileges at the DOM element level. Egele et al. [44, 53] proposed

87

several detection solutions to spyware that silently steals user information. By lever-

aging both static and dynamic analysis techniques the authors show that it is possible

to track the flow of sensitive information as it is processed by the web browser and

any extension installed. [47] showed that many Chrome extensions are over-privileged,

which can potentially cause security risks. To address the shortcomings of existing

extension mechanisms, the authors propose a comprehensive new model for extension

security.

Although the security model of browsers with respect to extensions has improved

over the years, creating a security model that mitigates adware while maintaining a

decent user experience is extremely difficult. This is mostly because adware do not

typically require more privileges than other non-adware extensions, namely accessing

the DOM of visited pages and network access. In addition, adware often start as a

non-adware extension, and then, when the user-base is sufficiently large morph into

adware. Enforcing fine-grained control on every update is doable, but will significantly

hurt user experience of the vast majority of non-adware extensions.

5.7 Conclusions

In this chapter we present Expector, a system that automatically inspects and iden-

tifies browser extensions that perform ad injection. We implemented Expector for

Chrome, ran it on the entire 17,931 extensions in the Chrome store and identified

292 extensions that inject ads, a detection rate that significantly outperforms the

current crowd-sourced detection process. Through rigorous evaluation, we found that

Expector is capable of identifying various forms of ad injection practices with low

3.6% false positive rate and 3% false negative rate. Using an indepth study of the

practices employed by the ad injecting extensions we detected, we found that many

of these extensions violate the browser policies, participate in fraudulent activities

and abuse their users’ trust. As part of future work we plan on extending Expector

88

beyond Chrome, so that it can process extensions of other popular browsers. Fur-

thermore, our study lays the foundations to analyze web apps, which are very similar

to extensions for increasingly popular browser-based OSes, such as Chrome OS and

FireFox OS.

89

CHAPTER VI

CONCLUSION AND FUTURE WORK

This thesis explores information manipulation in the context of the Internet. It shows

that, with the advent of new services and technologies, Internet-scale information

manipulation has been pervasive and rampant. Motivated by this finding, the thesis

further introduces some technical approaches that help users raise awareness about

information manipulation and – more important – undermine their pernicious effects.

This thesis is pioneering research about information manipulation in the context of

the Internet. In addition to the proposed technologies that empower users against ad-

versarial information manipuluation, my findings have been guiding service providers

to revamp their services for better defending against malicious information control.

The information manipulation schemes discussed in the thesis represent only the

tip of the iceberg. As emerging technologies spread both online and offline, a in-

creasing number of manipulators would add a growing list of attempts to misuse

or exploit the mechanisms and algorithms underlying new technologies regardless of

their intents. For example, the availability of Internet-connected telematics devices

has brought personalization into traditional automobile insurance industry, where

mainstream insurers use a telematics device to track driving habits of people and

customize their insurance rates. Intuition suggests presenting low-risk driving habits

to an insurance provider would allow a customer to enjoy significant saving on in-

surance. As a result, it is highly likely that car insurance providers become the

next target of manipulators who attempts to tamper with driving habits and deceive

insurers with the goal of exchanging potential savings on insurance.

To cope with unforeseen manipulation, in the future, there is a need for developing

90

new detection and mitigation solutions. The nature of information manipulation is

that, attackers compromise the integrity of data that end users or service providers

consume. As a result, future efforts may focus on developing a variety of sophisticated

mitigation solutions to verify data integrity. One possible solution is to correlate those

vulnerable data points with additional data that end users or service providers cannot

directly consume but can leverge to assess data integrity. Take the manipulation of

car insurance rates for example. Insurers may integrate additional sensors – such as

MEMS gyroscope and accelerometers – to their telematics devices for the purpose of

gathering additional data that attackers cannot easily falsify. Although sensing data

are typically too noisy to divine driving habits, insurers may use them to assess the

validity of other data items.

91

REFERENCES

[1] “Abusive extension submission.” http://extensiondefender.com/submit.php.

[2] “Ad placement policies.” https://support.google.com/adsense/answer/
1346295#Ads_on_the_same_page_or_site_as_another_publisher.

[3] “Add-on policies - review process.” https://addons.mozilla.org/en-US/
developers/docs/policies/reviews.

[4] “Adware vendors buy Chrome Extensions to send ad- and malware-
filled updates.” http://arstechnica.com/security/2014/01/
malware-vendors-buy-chrome-extensions-to-send-adware-filled-updates/.

[5] “Android add-ons.” https://addons.mozilla.org/en-US/android/.

[6] “Developer Program Policies.” https://developer.chrome.com/webstore/
program_policies#extensions.

[7] “Display Benchmarks.” http://www.richmediagallery.com/resources/
benchmarks/.

[8] “Extension defender.” http://extensiondefender.com/.

[9] “Extensions for firefox for android.” https://developer.mozilla.org/en-US/
Add-ons/Firefox_for_Android.

[10] “Extshield notifies you if you’re running an adware extension.” http://
lifehacker.com/chrome-protector-notifies-you-if-youre-running-an-adwa-1505371480.

[11] “Firefox add-ons.” https://addons.mozilla.org/en-US/firefox/.

[12] “Google Chrome Web Store.” https://chrome.google.com/webstore/.

[13] “Google Removes Two Chrome Extensions Amid Ad
Uproar.” http://blogs.wsj.com/digits/2014/01/19/
google-removes-two-chrome-extensions-amid-ad-uproar/?mod=WSJBlog&
utm_source=twitterfeed&utm_medium=twitter.

[14] “Keeping Chrome Extensions Simple.” http://blog.chromium.org/2013/12/
keeping-chrome-extensions-simple.html.

[15] “Node.js.” http://nodejs.org/.

[16] “Npapi plugins.” https://developer.chrome.com/extensions/npapi.

92

[17] “Remote Debuggin Protocol, Google Developers.” https://developers.
google.com/chrome-developer-tools/docs/debugger-protocol.

[18] “Saying goodbye to our old friend npapi.” http://blog.chromium.org/2013/
09/saying-goodbye-to-our-old-friend-npapi.html.

[19] “Selenium automates browsers.” http://docs.seleniumhq.org/.

[20] “Unfolding the fold (insights into webpage scroll).” http://blog.clicktale.
com/2006/12/23/unfolding-the-fold/.

[21] “Web Technology Surveys.” http://w3techs.com/technologies/overview/
top_level_domain/all.

[22] “Cross-site request forgeries.” http://shiflett.org/articles/
cross-site-request-forgeries, 2004.

[23] “Conceptdoppler: A weather tracker for internet censorship,” in Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS ’07,
(New York, NY, USA), pp. 352–365, ACM, 2007.

[24] “Invasion of malware evading the behavior-based analysis,” AhnLab MDS
Whitepaper, February 2014.

[25] “Amazon.com product identifiers.” http://archive.org/details/asin_
listing.

[26] Bandhakavi, S., King, S. T., Madhusudan, P., and Winslett, M., “Vex:
Vetting browser extensions for security vulnerabilities,” in Proceedings of the 19th
USENIX Conference on Security, USENIX Security’10, (Berkeley, CA, USA),
pp. 22–22, USENIX Association, 2010.

[27] Becchetti, L., Castillo, C., Donato, D., Baeza-YATES, R., and
Leonardi, S., “Link analysis for web spam detection,” ACM Trans. Web, vol. 2,
pp. 2:1–2:42, Mar. 2008.

[28] Bennett, P. N., Radlinski, F., White, R. W., and Yilmaz, E., “Inferring
and using location metadata to personalize web search,” in The 34th Annual
ACM SIGIR Conference, SIGIR ’11, ACM, 2011.

[29] Bennett, P. N., White, R. W., Chu, W., Dumais, S. T., Bailey, P.,
Borisyuk, F., and Cui, X., “Modeling the impact of short- and long-term
behavior on search personalization,” in Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’12, (New York, NY, USA), pp. 185–194, ACM, 2012.

[30] Bichhawat, A., Rajani, V., Garg, D., and Hammer, C., “Information flow
control in webkit’s javascript bytecode,” in Principles of Security and Trust,
vol. 8414 of Lecture Notes in Computer Science, pp. 159–178, Springer Berlin
Heidelberg, 2014.

93

[31] “More personalization on bing with adaptive search.” http://www.youtube.
com/watch?v=CgrzhyHCnfw.

[32] Calado, P., Cristo, M., Moura, E., Ziviani, N., Ribeiro-Neto, B., and
Gonçalves, M. A., “Combining link-based and content-based methods for web
document classification,” in Proceedings of the Twelfth International Conference
on Information and Knowledge Management, CIKM ’03, (New York, NY, USA),
pp. 394–401, ACM, 2003.

[33] Castillo, C., Donato, D., Gionis, A., Murdock, V., and Silvestri, F.,
“Know your neighbors: Web spam detection using the web topology,” in Pro-
ceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’07, (New York, NY, USA),
pp. 423–430, ACM, 2007.

[34] Chakrabarti, S., “Data mining for hypertext: A tutorial survey,” SIGKDD
Explor. Newsl., vol. 1, pp. 1–11, Jan. 2000.

[35] Chugh, R., Meister, J. A., Jhala, R., and Lerner, S., “Staged information
flow for javascript,” in Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, (New York, NY,
USA), pp. 50–62, ACM, 2009.

[36] Daoud, M., Tamine-Lechani, L., and Boughanem, M., “A session based
personalized search using an ontological user profile,” in The 24th Annual ACM
Symposium on Applied Computing, SAC ’09, ACM, 2009.

[37] Dave, V., Guha, S., and Zhang, Y., “Viceroi: catching click-spam in search
ad networks,” in Proceedings of the 2013 ACM SIGSAC conference on Computer
and communications security, CCS ’13, (New York, NY, USA), pp. 765–776,
ACM, 2013.

[38] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi,
U., Gupta, S., He, Y., Lambert, M., Livingston, B., and Sampath,
D., “The YouTube video recommendation system,” in Proceedings of the 4th
ACM conference on Recommender Systems, RecSys ’10, (New York, NY, USA),
pp. 293–296, ACM, 2010.

[39] Dhawan, M. and Ganapathy, V., “Analyzing information flow in javascript-
based browser extensions,” in Proceedings of the 2009 Annual Computer Security
Applications Conference, ACSAC ’09, (Washington, DC, USA), pp. 382–391,
IEEE Computer Society, 2009.

[40] Djeric, V. and Goel, A., “Securing script-based extensibility in web
browsers,” in Proceedings of the 19th USENIX Conference on Security, USENIX
Security’10, (Berkeley, CA, USA), pp. 23–23, USENIX Association, 2010.

94

[41] Dou, Z., Song, R., and Wen, J.-R., “A large-scale evaluation and analysis of
personalized search strategies,” in The 16th International Conference on World
Wide Web, WWW ’07, ACM, 2007.

[42] Edelman, B. and Brandi, W., “The ad networks and advertisers that fund
ad injectors,” in http: // www. benedelman. org/ injectors/ , 2013.

[43] Edelman, B. and Brandi, W., “Information and incentives in online affiliate
marketing,” in HBS Working Paper, 2013.

[44] Egele, M., Kruegel, C., Kirda, E., Yin, H., and Song, D., “Dynamic
spyware analysis,” in 2007 USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference, ATC’07, (Berkeley, CA, USA),
pp. 18:1–18:14, USENIX Association, 2007.

[45] Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., and
Karger, D., “Infranet: Circumventing web censorship and surveillance,” in
Proceedings of the 11th USENIX Security Symposium, (Berkeley, CA, USA),
pp. 247–262, USENIX Association, 2002.

[46] “Making search more relevant.” http://www.google.com/goodtoknow/
data-on-google/more-relevant/.

[47] Guha, A., Fredrikson, M., Livshits, B., and Swamy, N., “Verified security
for browser extensions,” in Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP ’11, (Washington, DC, USA), pp. 115–130, IEEE Computer
Society, 2011.

[48] Gyöngyi, Z. and Garcia-Molina, H., “Link spam alliances,” in Proceed-
ings of the 31st International Conference on Very Large Data Bases, VLDB ’05,
pp. 517–528, VLDB Endowment, 2005.

[49] Ho, S. Y., Bodoff, D., and Tam, K. Y., “Timing of adaptive web personal-
ization and its effects on online consumer behavior,” Info. Sys. Research, vol. 22,
pp. 660–679, Sept. 2011.

[50] Houmansadr, A., Nguyen, G. T., Caesar, M., and Borisov, N., “Cirri-
pede: Circumvention infrastructure using router redirection with plausible deni-
ability,” in Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, CCS ’11, (New York, NY, USA), pp. 187–200, ACM, 2011.

[51] Jindal, N. and Liu, B., “Opinion spam and analysis,” in Proceedings of the
2008 International Conference on Web Search and Data Mining, WSDM ’08,
(New York, NY, USA), pp. 219–230, ACM, 2008.

[52] Kashyap, V. and Hardekopf, B., “Security signature inference for javascript-
based browser addons,” in Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO ’14, (New York, NY, USA),
pp. 219:219–219:229, ACM, 2014.

95

[53] Kirda, E., Kruegel, C., Banks, G., Vigna, G., and Kemmerer, R. A.,
“Behavior-based spyware detection,” in Proceedings of the 15th Conference on
USENIX Security Symposium - Volume 15, USENIX-SS’06, (Berkeley, CA,
USA), USENIX Association, 2006.

[54] Li, Z., Wang, X., and Choi, J. Y., “Spyshield: Preserving privacy from
spy add-ons,” in Proceedings of the 10th International Conference on Recent
Advances in Intrusion Detection, RAID’07, (Berlin, Heidelberg), pp. 296–316,
Springer-Verlag, 2007.

[55] Lim, E.-P., Nguyen, V.-A., Jindal, N., Liu, B., and Lauw, H. W., “De-
tecting product review spammers using rating behaviors,” in Proceedings of the
19th ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’10, (New York, NY, USA), pp. 939–948, ACM, 2010.

[56] Liu, F., Yu, C., and Meng, W., “Personalized web search by mapping user
queries to categories,” in Proceedings of the eleventh international conference on
Information and knowledge management, CIKM ’02, ACM, 2002.

[57] Liu, L., Zhang, X., Inc, V., Yan, G., and Chen, S., “Chrome extensions:
Threat analysis and countermeasures,” in NDSS.

[58] Lu, L., Perdisci, R., and Lee, W., “Surf: detecting and measuring search
poisoning,” in Proceedings of the 18th ACM conference on Computer and com-
munications security, CCS ’11, (New York, NY, USA), pp. 467–476, ACM, 2011.

[59] Matthijs, N. and Radlinski, F., “Personalizing web search using long term
browsing history,” in The Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, ACM, 2011.

[60] Mohajeri Moghaddam, H., Li, B., Derakhshani, M., and Goldberg, I.,
“Skypemorph: Protocol obfuscation for tor bridges,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS ’12, (New
York, NY, USA), pp. 97–108, ACM, 2012.

[61] Mori, S., Nishida, H., and Yamada, H., Optical Character Recognition. New
York, NY, USA: John Wiley & Sons, Inc., 1st ed., 1999.

[62] “Mechanic turk.” https://www.mturk.com/mturk/welcome.

[63] Mukherjee, A., Liu, B., and Glance, N., “Spotting fake reviewer groups in
consumer reviews,” in Proceedings of the 21st International Conference on World
Wide Web, WWW ’12, (New York, NY, USA), pp. 191–200, ACM, 2012.

[64] Mukherjee, A., Liu, B., Wang, J., Glance, N., and Jindal, N., “De-
tecting group review spam,” in Proceedings of the 20th International Conference
Companion on World Wide Web, WWW ’11, (New York, NY, USA), pp. 93–94,
ACM, 2011.

96

[65] Navarro, G., “A guided tour to approximate string matching,” ACM Comput.
Surv., vol. 33, pp. 31–88, Mar. 2001.

[66] “Nerdydata.” http://nerdydata.com/.

[67] Ntoulas, A., Najork, M., Manasse, M., and Fetterly, D., “Detecting
spam web pages through content analysis,” in Proceedings of the 15th Inter-
national Conference on World Wide Web, WWW ’06, (New York, NY, USA),
pp. 83–92, ACM, 2006.

[68] Ott, M., Choi, Y., Cardie, C., and Hancock, J. T., “Finding deceptive
opinion spam by any stretch of the imagination,” in Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, (Stroudsburg, PA, USA), pp. 309–319,
Association for Computational Linguistics, 2011.

[69] Pang, B. and Lee, L., “Opinion mining and sentiment analysis,” Found. Trends
Inf. Retr., vol. 2, pp. 1–135, Jan. 2008.

[70] “Phantomjs website.” http://phantomjs.org/.

[71] Qiu, F. and Cho, J., “Automatic identification of user interest for personalized
search,” in The 15th International Conference on World Wide Web, WWW ’06,
ACM, 2006.

[72] Rosenfeld, R., “Two decades of statistical language modeling: Where do we
go from here,” in Proceedings of the IEEE, 2000.

[73] “Bing results get localized & personalized.” http://searchengineland.com/
bing-results-get-localized-personalized-64284.

[74] “Google now personalizes everyone’s search results.” http://
searchengineland.com/google-now-personalizes-everyones-search-results-31195.

[75] “A 2-second video.” http://www.youtube.com/watch?v=UPXK3AeRvKE.

[76] Sieg, A., Mobasher, B., and Burke, R., “Web search personalization with
ontological user profiles,” in Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, CIKM ’07, ACM, 2007.

[77] “slate 0.4 : Python package index.” https://pypi.python.org/pypi/slate.

[78] Sontag, D., Collins-Thompson, K., Bennett, P. N., White, R. W.,
Dumais, S., and Billerbeck, B., “Probabilistic models for personalizing web
search,” in The Fifth ACM International Conference on Web Search and Data
Mining, WSDM ’12, ACM, 2012.

97

[79] Springborn, K. and Barford, P., “Impression fraud in online advertising
via pay-per-view networks,” in Proceedings of the 22Nd USENIX Conference
on Security, SEC’13, (Berkeley, CA, USA), pp. 211–226, USENIX Association,
2013.

[80] Sriram, S., Shen, X., and Zhai, C., “A session-based search engine,” in The
27th Annual International ACM SIGIR Conference, SIGIR ’04, ACM, 2004.

[81] Tan, C., Gabrilovich, E., and Pang, B., “To each his own: personalized con-
tent selection based on text comprehensibility,” in Proceedings of the fifth ACM
international conference on Web search and data mining, WSDM ’12, ACM,
2012.

[82] Teevan, J., Dumais, S. T., and Horvitz, E., “Personalizing search via au-
tomated analysis of interests and activities,” in Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in informa-
tion retrieval, SIGIR ’05, ACM, 2005.

[83] Teevan, J., Liebling, D. J., and Geetha, G. R., “Understanding and pre-
dicting personal navigation,” in Proceedings of the 4th ACM International Con-
ference on Web Search and Data Mining, WSDM ’11, ACM, 2011.

[84] Ter Louw, M., Lim, J., and Venkatakrishnan, V., “Enhancing web
browser security against malware extensions,” Journal in Computer Virology,
vol. 4, no. 3, pp. 179–195, 2008.

[85] Tzeras, K. and Hartmann, S., “Automatic indexing based on bayesian in-
ference networks,” in Proceedings of the 16th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’93,
(New York, NY, USA), pp. 22–35, ACM, 1993.

[86] “Youtube channel, subscriber, & video statistics.” http://vidstatsx.com/.

[87] Wang, G., Xie, S., Liu, B., and Yu, P. S., “Review graph based online store
review spammer detection,” in Proceedings of the 2011 IEEE 11th International
Conference on Data Mining, ICDM ’11, (Washington, DC, USA), pp. 1242–1247,
IEEE Computer Society, 2011.

[88] Weaver, N., Kreibich, C., Dam, M., and Paxson, V., “Here Be Web
Proxies,” in Passive and Active Measurements Conference (PAM), (Los Angeles,
CA, USA), March 2014.

[89] Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Che-
ung, S., Wang, F., and Boneh, D., “Stegotorus: A camouflage proxy for the
tor anonymity system,” in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, (New York, NY, USA), pp. 109–120,
ACM, 2012.

98

[90] Wustrow, E., Wolchok, S., Goldberg, I., and Halderman, J. A.,
“Telex: Anticensorship in the network infrastructure,” in Proceedings of the
20th USENIX Conference on Security, SEC’11, (Berkeley, CA, USA), pp. 30–30,
USENIX Association, 2011.

[91] Xing, X., Meng, W., Doozan, D., Feamster, N., Lee, W., and Snoeren,
A. C., “Exposing inconsistent web search results with bobble,” in Passive and
Active Measurement, (Los Angeles, CA), pp. 131–140, September 2014.

[92] Xing, X., Meng, W., Doozan, D., Snoeren, A. C., Feamster, N., and
Lee, W., “Take this personally: pollution attacks on personalized services,” in
Proceedings of the 22nd USENIX conference on Security, pp. 671–686, USENIX
Association, 2013.

[93] Xu, X., Mao, Z. M., and Halderman, J. A., “Internet censorship in china:
Where does the filtering occur?,” in Proceedings of the 12th International Con-
ference on Passive and Active Measurement, PAM’11, (Berlin, Heidelberg),
pp. 133–142, Springer-Verlag, 2011.

[94] Yang, Y., “Expert network: Effective and efficient learning from human de-
cisions in text categorization and retrieval,” in Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’94, (New York, NY, USA), pp. 13–22, Springer-Verlag
New York, Inc., 1994.

[95] Yang, Y. and Chute, C. G., “An example-based mapping method for text
categorization and retrieval,” ACM Trans. Inf. Syst., vol. 12, pp. 252–277, July
1994.

[96] Yang, Y. and Pedersen, J. O., “A comparative study on feature selection
in text categorization,” in Proceedings of the Fourteenth International Confer-
ence on Machine Learning, ICML ’97, (San Francisco, CA, USA), pp. 412–420,
Morgan Kaufmann Publishers Inc., 1997.

[97] “Google does not use the keywords meta tag in web ranking.” http://www.
youtube.com/watch?v=jK7IPbnmvVU.

[98] Zhang, J. and Gu, G., “Neighborwatcher: A content-agnostic comment spam
inference system,” in Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS’13), February 2013.

[99] Zhou, D., Burges, C. J. C., and Tao, T., “Transductive link spam detec-
tion,” in Proceedings of the 3rd International Workshop on Adversarial Infor-
mation Retrieval on the Web, AIRWeb ’07, (New York, NY, USA), pp. 21–28,
ACM, 2007.

99

