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Εκτεταμένη ελληνική περίληψη 

Ο καρκίνος του στήθους είναι ο κακοήθης όγκος ο οποίος σχηματίζεται από τον 

ταχύ και ανεξέλεγκτο πολλαπλασιασμό κυττάρων του αδένα του μαστού τα οποία 

έχουν εκτραπεί από τη φυσιολογική λειτουργία τους και αναπτύσσονται σε βάρος του 

φυσιολογικού ιστού (Φύσσας, 2006).  

Ο καρκίνος του μαστού θεωρείται ένας από τους πιο συχνούς τύπους καρκίνου 

και μία από τις σημαντικότερες αιτίες θανάτου παγκοσμίως (Stewart et al, 2003). Στις 

ΗΠΑ τα κρούσματα ξεπερνούν τα 200,000 ετησίως ενώ στην Ελλάδα διαγιγνώσκονται 

περίπου 4,500 γυναίκες με καρκίνο του μαστού κάθε χρόνο (Eucan, 2014).  

Είναι αξιοσημείωτο το γεγονός ότι στην Ευρώπη το 60% των κρουσμάτων 

καρκίνου διαγιγνώσκεται σε πρώιμο στάδιο ενώ στην Ελλάδα το ποσοστό μετά βίας 

αγγίζει το 5% (Karkinos, 2014). Τα στοιχεία αυτά καταδεικνύουν πόσο ελλιπής είναι η 

σχετική ενημέρωση μεταξύ των Ελληνίδων, γεγονός εξαιρετικά λυπηρό, αν λάβουμε 

υπόψη τις δυνατότητες πλήρους ίασης που παρέχει μία έγκαιρη διάγνωση. 

Το πενταετές ποσοστό επιβίωσης σε περιπτώσεις διάγνωσης σε πρώιμο στάδιο 

φθάνει ως και το 95%, γεγονός που υποδηλώνει πως ο καρκίνος του μαστού μπορεί να 

αντιμετωπιστεί επιτυχώς για την πλειονότητα των γυναικών που φροντίζουν να τον 

εντοπίσουν έγκαιρα, μέσω συχνών προληπτικών ελέγχων και εξετάσεων. 

Για το σκοπό αυτό έχουν αναπτυχθεί πολλαπλές απεικονιστικοί μέθοδοι μεταξύ 

των οποίων η μαστογραφία, ο γενετικός έλεγχος, ο υπέρηχος και η μαγνητική 

τομογραφία. Η μαστογραφία είναι η κύρια μέθοδος απεικόνισης του στήθους. 

Πρόκειται για ακτινολογική μέθοδο δυο διαστάσεων η οποία επιτρέπει την απεικόνιση 

της μορφολογίας και της δομής των ανατομικών στοιχείων του μαστού. Ανάμεσα στα 

ευρήματα των μαστογραφιών οι μικροασβεστώσεις είναι ιδιαίτερα σημαντικές. Οι 

ασβεστώσεις είναι μικρά αποθέματα ασβεστίου στον μαστικό αδένα. Διακρίνονται σε 

μικροασβεστώσεις και μακροασβεστώσεις με βάση το εάν η διάμετρος τους είναι 

μικρότερη ή μεγαλύτερη από 1 mm (Karahaliou et al., 2012).  

Οι μικροασβεστώσεις είναι ιδιαίτερα σημαντικές διότι επιτρέπουν την έγκαιρη 

διάγνωση. Έχει καταγραφεί ότι περίπου 30-40% των καρκίνων του στήθους 

ανιχνεύονται αποκλειστικά από την παρουσία τους. Επίσης, το 70-80% της 
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ιστοπαθολογικής εξέτασης μαστικών βιοψιών απέδειξε την παρουσία 

μικροασβεστώσεων (Wilde 1999). 

Ωστόσο, δεν υποδεικνύουν όλες οι μικροασβεστώσεις κακοήθεια: είναι 

παρούσες και στις υγιείς γυναίκες. Για τον χαρακτηρισμό τους ως καλοήθεις ή 

κακοήθεις υπάρχουν πολλοί παράγοντες οι οποίοι πρέπει να λαμβάνονται υπόψη: το 

σχήμα, το αν σχηματίζουν συμπλέγματα, η θέση στο μαστό, η συχνότητα και η 

κατανομή τους (Andreadis et al., 2011; Karahaliou et al., 2012; Sickles, 1984; 

Willekens et al., 2014).  

Το σχήμα είναι ένας από τους σημαντικότερους παράγοντες ο οποίος βοηθάει 

στη διάκριση ανάμεσα σε καλοήθεις και κακοήθεις μικροασβεστώσεις (Sickles, 1984), 

δηλαδή ασβεστώσεις οι οποίες είναι παρούσες σε καλοήθεις και κακοήθεις αλλοιώσεις 

αντίστοιχα. Λεπτά, γραμμικά, καμπυλόγραμμα σχήματα καθώς και σχήματα με 

διακλαδώσεις μπορούν να υποδεικνύουν κακοήθεια. Αντίθετα, στρογγυλά, οβάλ και 

καλά καθορισμένα σχήματα μπορούν να υποδεικνύουν καλοήθεια.  

Ωστόσο, το σχήμα των μικροασβεστώσεων δεν μπορεί να απεικονιστεί σωστά 

στην μαστογραφία καθώς η ανάλυση ειναι πολύ χαμηλή και λόγω του ότι η 

μαστογραφία αποτελεί την δισδιάστατη προβολή ενός τρισδιάστατου αντικειμένου. Ως 

εκ τούτου, η υπέρθεση ιστού ιστών συχνά δημιουργεί μοτίβα τα οποία φαίνονται ως 

κακοήθη ή αλλάζουν την μορφή των πραγματικών (Elter et al., 2009). 

Σε περίπτωση υποψίας κακοήθειας, διεξάγεται βιοψία. Η βιοψία περιλαμβάνει 

την παρακέντηση του μαστού με σκοπό την απομάκρυνση ιστού και κυττάρων από μια 

ύποπτη περιοχή. Εν συνεχεία, οι ιστοί που εξήχθησαν εξετάζονται ανατομοπαθολογικά, 

δηλαδή τοποθεντούνται κάτω από το μικροσκόπιο για περαιτέρω ανάλυση από τον 

παθολόγο. Αυτός είναι ο μοναδικός ασφαλής τρόπος για σαφή και αλάνθαστη διάγνωση 

καρκίνου. Αξίζει να τονιστεί ότι το 65-80% των βιοψιών αποδεικνύονται ότι είναι 

καλοήθεις όγκοι και άλλα ευρήματα άσχετα με τον καρκίνο. Ο μεγάλος αριθμός των μη 

απαραίτητων βιοψιών προκαλεί μεγάλο αίσθημα δυσφορίας τόσο ψυχολογικό όσο και 

σωματικό για τις ασθενείς καθώς και επιπλέον μη απαραίτητα έξοδα για την ίδια την 

ασθενή και για το σύστημα υγείας. Επίσης, οι μικροασβεστώσεις αυτές καθ’ εαυτές δεν 

αναλύονται. Ως εκ τούτου, έχει τεθεί το ερώτημα εάν οι μη απαραίτητες βιοψίες 

μπορούν να αποφευχθούν εάν το σχήμα των μικροασβεστώσεων μπορούσε να 

μελετηθεί πιο λεπτομερώς.  
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Για το σκοπό αυτό έχουν πραγματοποιηθεί έρευνες (Temmermans et al., 2013; 

Temmermans 2014; Willekens et al., 2014) για την ανάλυση του σχήματος των 

μικροασβεστώσεων με χρήση μικροτομογραφίας (μCT), μιας μη επεμβατικής 

απεικονιστική μεθόδου υψηλής ανάλυσης με την οποία το τρισδιάστατο σχήμα των 

αντικειμένων ανακατασκευάζεται. Το σύνολο των δεδομένων που χρησιμοποίηθηκε σε 

αυτή την εργασία προέρχεται από αυτές τις πηγές (Temmermans et al., 2013; 

Temmermans, 2014; Willekens et al., 2014). Συγκεκριμένα, σε γυναίκες των οποίων η 

μαστογραφία έδειχνε υποψία κακοήθειας πραγματοποίηθηκε βιοψία και μετά από 

ανατομοπαθολογική εξέταση προέκυψαν 50 καλοήθη και 50 κακοήθη δείγματα. Από τα 

κακοήθη δείγματα εξήχθησαν 2034 μικροασβεστώσεις και από τα καλοήθη 1651 

(Temmermans, 2014). Η ταξινόμηση αυτή των μικροασβεστώσεων σε καλοήθεις και 

κακοήθεις γίνεται αποκλειστικά με βάση το δείγμα στο οποίο βρέθηκαν. Το γεγονός ότι 

καλοήθεις μικροασβεστώσεις μπορούν να υπάρχουν σε κακοήθη δείγματα και το 

αντίστροφο δεν λαμβάνεται υπόψη. Ως εκ τούτου, δεν υπάρχει μια βάση αναφοράς 

(ground truth) για τις ίδιες τις μικροασβεστώσεις, γεγονός που προκαλεί προβλήματα 

κατά την εισαγωγή των μικροασβεστώσεων σε έναν ταξινομητή. 

Για την καλύτερη κατανόηση του συγκεκριμένου προβλήματος παρατίθεται το 

ακόλουθο παράδειγμα. Δυο μικροασβεστώσεις δίνονται ως παραδείγματα εκπαίδευσης 

σε ένα ταξινομητή. Η μια απο αυτές τις μικροασβεστώσεις είναι καλοήθης αλλά 

βρέθηκε μέσα σε κακοήθες δείγμα και άρα εσφαλμένα χαρακτηρίστηκε ως κακοήθης 

και η άλλη είναι όντως κακοήθης. Και οι δύο μικροασβεστώσεις χαρακτηρίζονται από 

συγκεκριμένα χαρακτηριστικά σχήματος (shape features) που υποδεικνύουν 

αντιστοίχως καλοήθεια και κακοήθεια. Κατά την εισαγωγή των δυο 

μικροασβεστώσεων στην διαδικασία εκπαίδευσης του ταξινομητή, αυτός θα «μάθει», 

ότι δυο μικροασβεστώσεις με διαφορετικά χαρακτηριστικά σχήματος αντιστοιχούν 

στην ίδια τάξη, την «κακοήθεια». Ως εκ τούτου, θα υπάρχει ασάφεια όταν ο 

εκπαιδευμένος πια ταξινομητής θα χρειαστεί να ταξινομήσει μια νέα άγνωστη 

μικροασβέστωση (Papavasileiou et al., 2015) .  

Τα προβλήματα αυτά θα μπορούσαν να εάν οι μικροασβεστώσεις ταξινομηθούν 

πρώτα με βάση το σχήμα τους. Για το σκοπό αυτό, πριν την είσοδο των 

μικροασβεστώσεων στον ταξινομητή, εισάγεται ένα βήμα ομαδοποίησης (clustering): 

μια κατηγορία αλγορίθμων μη επιβλεπόμενης μηχανικής μάθησης (Papavasileiou et al., 
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2015). Με αυτό τον τρόπο ο ταξινομητής εκπαιδεύεται να ταξινομεί μικροασβεστώσεις 

στο σωστό σύμπλεγμα (cluster) χωρίς να χρειάζεται να γνωρίζει την «ετικέτα» που είχε 

ανατεθεί στις μικροασβεστώσεις σύμφωνα με την ανατομοπαθολογική εξέταση. 

Ως clustering ορίζεται η διαδικασία ομαδοποίησης όμοιων αντικειμένων 

(Hartigan, 1975). Κάθε ομάδα, η οποία ονομάζεται σύμπλεγμα, αποτελείται από 

αντικείμενα τα όποια είναι όμοια μεταξύ τους με βάση κάποιο μέτρο, που είναι η 

συνάρτηση απόστασης και ανόμοια με τα αντικείμενα άλλων συμπλεγμάτων. 

Υπάρχουν πολλοί διαθέσιμοι αλγόριθμοι ομαδοποίησης. Στην παρούσα εργασία 

χρησιμοποίθηκε ο αλγόριθμος K-means για δύο διαφορετικές αποστάσεις (τετραγωνική 

ευκλίδεια και cityblock) καθώς και ο αλγόριθμος Minkowski Weighted K-means 

(MWK-means). 

Για την περιγραφή των μικροασβεστώσεων χρησιμοποιήθηκαν 20 

χαρακτηριστικά σχήματος. Ανάμεσα σε αυτά υπάρχουν 8 παραδοσιακά 

χρησιμοποιούμενα χαρακτηριστικά σχήματος τα οποία περιλαμβάνουν: τον όγκο, την 

επιφάνεια, τον λόγο επιφάνεια ανα όγκο, την μέγιστη και την ελάχιστη διάμετρο του 

περικλειόμενου ελλειψοειδούς ελαχίστου όγκου, δύο διαφορετικούς ορισμούς της 

συμπαγότητας (compactness) και την επιμήκυνση (elongation). Επιπλέον, 

χρησιμοποιήθηκαν 12 νέα χαρακτηριστικά τα οποία περιγράφουν τις ιδαιτερότητες της 

συνοριακής ζώνης των μικροασβεστώσεων με το φόντο και ονομάζονται συνοριακά 

χαρακτηριστικά (boundary zone features).  

Ένα από τα σημαντικότερα προβλήματα στους αλγόριθμους ομαδοποίησης, 

είναι ο εκ των προτέρων ορισμός του αριθμού των συμπλεγμάτων τα οποία θα 

δημιουργηθούν. Στην παρούσα εργασία, ο αριθμός των συμπλεγμάτων μεταβάλλεται 

από 2 σε 10 και τελικά ως «ιδανικός αριθμός» συμπλεγμάτων επιλέγεται αυτός για τον 

οποίο η μέση «εντροπία» παίρνει πολύ χαμηλές τιμές. Ως «εντροπία» ορίστηκε μια 

συνάρτηση η οποία δείχνει την κατανομή καλοηθών και κακοηθών μικροασβεστώσεων 

μέσα στο σύμπλεγμα. Χαμηλές τιμές εντροπίας αντιστοιχούν σε συμπλέγματα στα 

οποία ο χαρακτηρισμός ενός συμπλέγματος ως καλοήθες ή κακοήθες είναι πιο καθαρός. 

Κάθε σύμπλεγμα χαρακτηρίζεται ως καλοήθες ή κακοήθες με μια συγκεκριμενη 

πιθανότητα η οποία βασίζεται σε αυτή την «εντροπία». Η αντίστοιχη πιθανότητα 

ανατίθεται σε κάθε μικροασβέστωση που βρίσκεται μέσα στο σύμπλεγμα.  
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Στη συνέχεια οι μικροασβεστώσεις δίνονται ως είσοδοι σε έναν ταξινομητή. Ως 

ταξινομητής επιλέγεται ένα τεχνητό νευρωνικό δίκτυο (ΑΝΝ) και μια μηχανή 

διανυσμάτων υποστήριξης (SVM). Ο ταξινομητής εκπαιδεύεται να ταξινομεί κάθε 

μικροασβέστωση στο σωστό σύμπλεγμα δηλαδή σε κάποιο συγκεκριμένο σχήμα. Αφού 

κάθε σύμπλεγμα χαρακτηρίζεται ως καλοήθες ή κακοήθες με μια συγκεκριμένη 

πιθανότητα, κάθε μικροασβέστωση ταξινομημένη σε αυτό χαρακτηρίζεται αντίστοιχα 

ως καλοήθης ή κακοήθης με αντίστοιχη πιθανότητα. Αυτή η ταξινόμηση αποτελεί ένα 

ενδιάμεσο βήμα ταξινόμησης στο επίπεδο των μικροασβεστώσεων το οποίο θα 

χρησιμοποιηθεί εν συνεχεία για την ταξινόμηση του δειγματος. Επιπλέον, αυτή η 

προσέγγιση ταξινόμησης αποτελεί εξέλιξη της μέχρι στιγμής δυαδικής ταξινόμησης της 

μικροασβέστωσης ως καλοήθης ή κακοήθης. Τέλος, το δείγμα χαρακτηρίζεται ως 

καλοήθες ή κακοήθες ορίζοντας ένα όριο στον αριθμό των κακοηθών 

μικροασβεστώσεων οι οποίες απαιτούνται για τον χαρακτηρισμό του δείγματος. Για το 

σκοπό αυτό, υιοθετούνται τα αποτελέσματα της ταξινόμησης των μικροασβεστώσεων 

του προηγούμενου βήματος και ακολουθούνται δυο προσεγγίσεις μια σταθμισμένη και 

μια μη σταθμισμένη. Στην πρώτη περίπτωση οι πιθανότητες των μικροασβεστώσεων 

που υπολογίστηκαν στο προηγούμενο βήμα χρησιμοποιούνται για τον χαρακτηρισμό 

του δειγματος. Το τελικό αποτέλεσμα ταξινόμησης του δείγματος συγκρίνεται με το 

αποτέλεσμα της ανατομοπαθολογικής εξέτασης και έτσι υπολογίζονται η ακρίβεια 

(accuracy), η ευαισθησία(sensitivity) και η ειδικότητα (specificity). 

Τα πειράματα χωρίστηκαν σε τρεις κατηγορίες ανάλογα με τα χαρακτηριστικά 

τα οποία χρησιμοποιούνται για την ομαδοποίηση και την ταξινόμηση των 

μικροασβεστώσεων: μονο τα 8 παραδοσιακά χρησιμοποιούμενα χαρακτηριστικά, μόνο 

τα 12 συνοριακά χαρακτηριστικά και το σύνολο των δύο μαζί (20 χαρακτηριστικά).  

Από τα αποτελέσματα των πειραμάτων για την ταξινόμηση στο επίπεδο των 

μικροασβεστώσεων οι δύο ταξινομητές (ANNs & SVMs) παρουσίασαν πολύ κοινή 

απόδοση παρόλο που τα ANNs είναι κατά πολύ πιο απαιτητικά όσον αφορά τους 

επεξεργαστικούς πόρους και χρόνους. Επίσης, τα παραδοσιακά χρησιμοποιούμενα 

χαρακτηριστικά σχήματος παρουσιάζουν καλύτερη απόδοση από τα χαρακτηριστικά 

συνοριακής ζώνης και από το σύνολο των δύο χαρακτηριστικών μαζί. Αυτά τα 

αποτελέσματα ωστόσο πρέπει να ερμηνεύονται προσεκτικά λόγω των προβλημάτων 
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έλλειψης βάσης αναφοράς. Επίσης, η ταξινόμηση στο επίπεδο των μικροασβεστώσεων 

αποτελεί ένα ενδιάμεσο βήμα για την τελική ταξινόμηση του δείγματος.  

Στο επιπεδο ταξινόμησης του δείγματος, ο κύριος στόχος είναι η μεγιστοποίηση 

της ευαισθησίας, καθώς είναι σημαντικότερο να μπορούν να ανιχνεύονται σωστά όλες 

οι κακοήθεις περιπτώσεις σε σχέση με την ακρίβεια, με ταυτόχρονα υψηλά ποσοστά 

ειδικότητας και ακρίβειας. Τόσο στην σταθμισμένη όσο και στη μη σταθμισμένη 

περίπτωση τα οχτώ παραδοσιακά χαρακτηριστικά σχήματος παρουσιάζουν καλύτερη 

απόδοση σε σχέση με τις δυο αλλες κατηγορίες. Το καλύτερο αποτέλεσμα 

επιτυγχάνεται, στην σταθμισμένη περίπτωση με χρήση του K-means αλγορίθμου, τα 8 

χαρακτηριστικά σχήματος, την απόσταση cityblock και 9 συμπλέγματα. Με αυτή την 

προσέγγιση επιτυγχάνεται ευαισθησία 100%, ειδικότητα 42.6% και ακρίβεια 72.7% και 

αποτελούν βελτίωση αντίστοιχα 2%, 2.6% και 2.7% σε σχέση με την βιβλιογραφία 

(Temmermans et al., 2013; Temmermans, 2014; Willekens et al., 2014). 

Η επίτευξη 100% ευαισθησίας επιτρέπει να αποφευγονται οι περιπτώσεις 

παράλειψης κάποιων κακοηθών δειγμάτων. Αυτή η βελτίωση είναι αποτέλεσμα της 

αποφυγής των προβλημάτων που προκαλεί η έλλειψη βάσης αναφοράς. Ο αλγόριθμος 

που προτείνει η παρούσα διπλωματική εργασία μπορεί να χρησιμοποιηθεί για να 

αποφεύγονται ορισμένες μη απαραίτητες ανατομοπαθολογικές εξετάσεις. Επιπλέον, η 

τρισδιάτατη απεικόνιση υψηλής ανάλυσης μπορεί στο μέλλον να χρησιμοποιηθεί 

απευθείας στην ασθενή (in vivo) αυτό θα σήμαινε την αποφυγή σημαντικού αριθμού μη 

απαραίτητων βιοψιών.  

Κλείνοντας, η παρούσα εργασία εισάγει δύο καινοτομίες: αποφεύγονται τα 

προβλήματα που δημιουργεί η έλλειψη βάσης αναφοράς και υπάρχει μια μετατόπιση 

από δυαδική ταξιμόμηση σε μια σταθμισμένη με πιθανότητες ταξινόμηση. Η μεγάλη 

πληθώρα διαθέσιμων αλγορίθμων ομαδοποίησης και ταξινομητών καθώς και η χρήση 

εναλλακτικών προσεγγίσεων για την ενσωμάτωση των πιθανότητων στην διαδικασία 

χαρακτηρισμού του δείγματος αποτελούν ένα προσοδοφόρο χώρο για την περαιτέρω 

βελτίωση των αποτελέσματων.  
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Summary 

This Master Thesis presents a novel classification approach for 

microcalcifications (MCs) extracted from core biopsy tissue samples digitized using 

micro-CT, a high-resolution 3D imaging modality. MCs are tiny spots of calcium that 

may occur in the female breast. Although they are common in healthy woman, they are 

often an early sign of breast cancer. In case of suspiciousness, a biopsy is conducted and 

the extracted tissue is pathologically analysed for the presence of cancer cells. However, 

the MCs themselves are mostly not analysed. As a result, there is a ground truth for the 

tissue samples but not for the individual MCs. 

This ground truth problem can be bypassed if the MCs are first grouped 

explicitly based on their shape. By clustering MCs according to their shape-features, 

similar shapes are grouped together in clusters. This way, the classifier is trained to 

classify MCs in the correct cluster, i.e. it learns to distinguish among different shapes of 

MCs, independently of their original class labels. This thesis investigates whether the 

use of a clustering method as a preprocessing step before training the classifier would 

improve the obtained classification results. 

In cluster analysis one of the biggest difficulties is the a priori definition of the 

number of clusters. For this reason, the number of generated clusters is varied from 2 to 

10 and as the ideal number of clusters is selected the one for which the mean entropy is 

lowest, because the lower the entropy of a cluster, the clearer the designation of a 

cluster as benign or malignant. Each of the clusters is characterized as benign or 

malignant with a certain probability based on this entropy and thus each object of this 

cluster is assigned a corresponding label with the same probability. Next, the objects are 

introduced to a classifier that learns to classify them to the correct cluster, i.e. to the 

correct shape. In the final step, the sample is classified as benign or malignant by setting 

a threshold on the percentage of MCs classified as malignant and the result is compared 

with the outcome of the anatomopathological examination. In addition, the MC's cluster 

probability can now be used as a weight when determining the sample's class. 

At the sample level, this approach delivers a sensitivity of 100%, a specificity of 

42,6% and an accuracy of 72,7% which is respectively an improvement of 2%, 2,6% 

and 2,7% percent compared to the state of the art.  
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This approach introduces two novelties; the ground truth issues concerning each 

MC's class are avoided and there is a shift from binary classification to a probability-

weighted classification. The vast amount of clustering algorithms and classifiers as well 

as the use of various approaches for incorporating the cluster probabilities in the 

classification of the sample hold the potential to further improve these results. 

The results of this master thesis have been accepted to be presented as an oral 

paper in the 6th European Conference of the International Federation for Medical and 

Biological Engineering (MBEC), in Dubrovnik, Croatia; ‘Papavasileiou, E., 

Temmermans, F., Jansen, B., Willekens, I., Van de Casteele, E., De Mey, J., Deklerck 

R. & Hostens, J. (2015, January). Shape-Based Clustering and Classification of Breast 

Microcalcifications in Micro-CT Images. In 6th European Conference of the 

International Federation for Medical and Biological Engineering (pp. 160-163), 

Dubrovnik, Croatia’ 
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1. Chapter: Introduction 

1.1 Introduction 

Breast cancer is considered to be one of the most frequent types of cancer and 

one of the most significant causes of death worldwide (Stewart et al., 2003). In the 

United States, more than 200,000 cases of breast cancer occur every year, while in 

Greece 4,500 women are diagnosed with breast cancer annually (Eucan, 2014). 

Breast cancer’s early detection has a key role in survival. Many breast imaging 

modalities exist that assist in detecting suspicious lesions that otherwise would have 

been noticeable in no less than five years, leading to reduction in mortality from breast 

cancer. It is very remarkable that in Europe 60% of the breast cancer cases are 

diagnosed in early stage, while in Greece this percentage barely reaches 5% (Eucan, 

2014). These facts reveal how insufficient the briefing of Greek women about breast 

cancer is, especially if we take into consideration the high chances of full recovery for 

the early diagnosed cases.  

 

1.2 Problem Statement 

Breast imaging has a key role in the early detection of breast cancer. 

Mammography is the standard of care in breast screening. An important early indicator 

of potential presence of breast cancer is the appearance of microcalcifications (MCs). 

MCs are tiny spots of calcium deposit that may occur in the breast. Although MCs are 

associated with breast cancer, they are common in healthy woman as well. Among 

others, the shape of the MCs is an important factor used to discriminate between benign 

and malignant abnormalities. However, their characterization as benign or malignant 

based on their appearance in mammograms is a difficult task even for expert 

radiologists. Due to the fact that a mammogram is a 2D image of a 3D object, 

superposition of breast tissue often produces patterns that appear like suspicious masses 

to a radiologist or alters the appearance of real mammographic lesions, thus 

underestimating the importance of the findings (Elter et al., 2009; Karahaliou et al., 

2012; Temmermans et al., 2013; Willekens et al., 2014).  
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In case the radiologist considers a region suspicious, a biopsy is conducted. The 

extracted tissue is then anotomopathologically investigated for the presence of cancer 

cells. The MCs themselves however are mostly not analyzed. Many biopsies are 

conducted that turn out to be negative. As such, the question has been raised whether 

some biopsies might have been avoided if the shape of the MCs could be analyzed in 

more detail (Papavasileiou et al., 2015). 

Therefore, studies have been presented to analyze the shape of calcifications 

using high-resolution 3D imaging (Temmermans et al., 2013; Willekens et al., 2014). 

Based upon extracted shape features, automated classification techniques have been 

presented (Temmermans et al., 2013). Typically, these classifiers learn to assign a 

benign or malignant label to individual calcifications based upon the nature of the 

sample they originate from. The fact that benign calcifications may occur in malignant 

samples and vice versa is not taken into account. As a consequence, a bias in the 

training process is introduced. This thesis presents a methodology that aims to avoid 

this predicament. 

 

1.3 Thesis Purpose  

The dataset consists of 3685 microcalcifications (MCs) extracted from 50 benign 

and 50 malignant samples. It is not possible to assign the label "benign" or "malignant" 

for each MC. Instead, the label is assigned to each MC depending on whether it was 

found in a benign or a malignant sample, after anatomopathological examination. This 

means that no ground truth exists for the actual MCs. As a consequence, benign MCs 

may exist in malignant samples, and in this case they may be incorrectly classified as 

malignant. Similarly, malignant MCs may exist in benign samples.  

This problem can be overcome if the MCs are first grouped explicitly based on 

their shape. By clustering MCs according to their shape-features, similar shapes are 

grouped together in clusters. In this way, the classifier is trained to classify MCs in the 

correct cluster, i.e. it learns to distinguish among different shapes of MCs, 

independently of their original class labels. So, the classifier classifies objects 

exclusively based on their shape features and without any knowledge of the class label 

that was assigned during the histopathological examination. In general, the question that 
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this thesis is trying to answer is the following; are the shape features an objective 

characterisation of the shape of microcalcifications so that benign and malignant shapes 

could be distinguished?  

1.4 Thesis Structure 

The presented thesis consists of 9 chapters, including the current introduction 

chapter. In Chapter 2, the basic aspects of breast anatomy, breast cancer, breast imaging 

techniques and biopsy are discussed. Chapter 3 provides information on CADe and 

CADx systems and on the categories of features that are used in CAD systems. Chapter 

4 is focused on the classification methods and Chapter 5 on cluster analysis. Chapter 6 

provides the features that were adopted in this thesis. Chapter 7 presents the approach 

that is implemented in the current thesis and Chapter 8 presents the obtained results. 

This thesis closes with Chapter 9, where the main conclusions are discussed. 

 

1.5 Publications 

Papavasileiou, E., Temmermans, F., Jansen, B., Willekens, I., Van de Casteele, 

E., De Mey, J., Deklerck R. & Hostens, J. (2015, January). Shape-Based Clustering and 

Classification of Breast Microcalcifications in Micro-CT Images. In 6th European 

Conference of the International Federation for Medical and Biological 

Engineering (pp. 160-163). Springer International Publishing 
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2. Chapter: Breast Cancer 

2.1 Breast Anatomy 

Each breast lies over the pecoral muscle of the chest wall and extends from the 

2nd to the 7th rib and across the sternum to the anterior axillary line (Δημητρόπουλος, 

2000). (Figure 2.1). The mammary gland has a discoid shape except for a projection that 

is formed in the upper outer quadrant, the so- called Spence’s tail. The mammary gland 

is surrounded by fat and skin and consists of 15-20 lobes. Each of these lobes ends with 

its main duct in the nipple. The main ducts branch and eventually end in lobules. The 

lobules are again a tree like structure where the branches are called ductules and the 

leaves aveoli or Terminal Ductal Lobulo- alveolar Units (TDLUs) (Figure 2.2). The 

alveoli are responsible for breast milk production. They are surrounded by tiny muscles 

that squeeze them to push milk out into the ductules (Δημητρόπουλος, 2000).  

The breasts of women in their 20s differ hormonally and biologically from the 

breasts of women in their 50s who gradually enter into menopause. During the 

reproductive age the high levels of oestrogens in conjunction with progesterone 

maintain dense breasts, while the breasts of older women generally contain a larger 

proportion of fat. Using radiographic imaging, abnormalities are more difficult to detect 

in dense breast than in fat breasts.  

 

Figure 2.1: The breast and the surrounding tissues 

 

Figure 2.2: Breast anatomy 
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2.2 Breast Cancer 

Breast cancer is the leading type of cancer in women and the second most 

important cause of death, after colon cancer. It is a malignant tumour caused by the 

uncontrolled proliferation of abnormal cells of the mammary gland which have diverted 

from their normal function and grow at the expense of normal tissue. It originates from 

the breast tissue, most commonly from the inner lining of milk ducts or the lobules that 

supply the ducts with milk and can be invasive or not (Φύσσας, 2006). Cancers 

originating from ducts are known as ductal carcinomas, while those originating from 

lobules are known as lobular carcinomas. If the cancer infilters adjoining parts of the 

breast it is said to be invasive. The most common types of breast cancer are: 

 Ductal Carcinoma in Situ (DCIS) 

 Lobular Carcinoma in Situ  (LCIS) 

 Invasive Ductal Carcinoma (IDC) 

 Invasive Lobular Carcinoma (ILC) 

The frequency of the cases that are diagnosed with these types of breast cancer 

are 2.5%, 2.5%, 85%, and 10% respectively (Breast Cancer, 2014).  

Intraductal or ductal carcinoma in situ is the proliferation of malignant epithelial 

cells confined to ducts, with no evidence of invasion through the basement membrane, 

as illustrated in Figure 2.3. 

 

Figure 2.3: Ductal Carcinoma in Situ (DCIS) 

 

2.3 Breast Cancer’s risk factors 

The causes of breast cancer are unknown. However, there are some risk factors 

that are considered to influence the possibility of developing a malignant mass in the 

breast (Φύσσας, 2006). 
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Inheritance: It is estimated that only 5-10 % of the breast cancer’s cases are 

associated with heredity factors. The majority of the cases result from impairment to 

breast cells’ genetic material that are caused by various factors during the life of a 

person. 

Age: The risk of developing a breast cancer is increasing with age. A woman in 

her 60s is 100 times more likely to develop breast cancer than a woman in her early 20s. 

More specifically, for women at the age of 15-39 years old the percentage of breast 

cancer cases is 0.5%, for women at the age of 40-59 years old the percentage is 

increased to 4% and for women over 60 years old, the percentage is calculated at 7%. 

Disorders of menstruation and pregnancy: There are several facts that suggest 

that women with early start of menstruation or late menopause have an increased risk of 

breast cancer. Also, the lifetime exposure to oestrogen plays a fundamental role in the 

development of breast cancer. A similar correlation has also emerged for women who 

remained childless or did not have complete pregnancies. 

Weight Gain: Studies indicate that weight gain after the age of 20 may increase 

the risk of breast cancer. In particular, the risk triplicates if the body mass index is at 

peak levels after the age of 50 years old. 

Alcohol and smoking: Recent studies have shown that alcohol and smoking can 

increase the risk of breast cancer up to 25% and 50-60%, respectively. 

 

2.4 Breast Cancer’s Diagnosis Systems 

Breast screening is the medical screening of asymptomatic women for breast 

cancer in an attempt to achieve an early diagnosis. This is based on the assumption that 

early detection of breast cancer can improve the cancer's outcomes and increase the 

survival rates. A number of screening modalities have been developed over the years in 

order to assist in finding a lesion at a very primitive form, including clinical and self 

breast examinations, mammography, genetic screening, ultrasound and magnetic 

resonance imaging.  

 



 Automatic Detection of Suspicious Microcalcifications in high Resolution 3-D Breast Imaging  

34 
Evgenia Papavasileiou 

2.4.1 Clinical and Self Breast Examination 

Clinical and self-breast examination are considered the easiest and most painless 

screening methods of breast examination that involve feeling of the breasts for lumps, 

distortions and swelling. Clinical breast examination is performed by physicians in 

annual base while breast self-examination (Figure 2.4) is done by the woman herself 

once in a month. However, after the age of 40 it is an accompanying method and cannot 

replace mammography.  

 

Figure 2.4: Self-Breast Examination 

 

2.4.2 Mammography 

Mammography is a low-energy 2-D X-ray breast imaging modality which 

allows visualisation of the morphology and structure of the anatomical data of the 

human breast and of pathological lesions. The value of mammography against breast 

cancer is invaluable as it can detect growing tumours that otherwise would become 

perceptible and palpable by the patient or the doctor, not earlier than two years later 

(Cady et al., 2004).  

Several types of mammography exist depending on the technology used 

(analogue, digital, magnetic mammography) and the reason for which the 

mammography is conducted (screening or confirmation of previous diagnosis). 
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2.4.2.1 The process of mammography 

The analogue and digital mammographies are performed with the use of a 

special radiodiagnostic machine, known as the mammography unit, which may be 

analogue or digital, respectively (Κανδαράκης, 2004). In order to obtain a mammogram, 

each breast is placed between two plates that are known as compression paddle (Figure 

2.5). The compression paddle pushes the breast so as to achieve the same thickness 

throughout the whole breast as well as maximum resolution.  

 

Figure 2.5: compression paddle 

 

Then, the X ray tube emits ionizing radiation of low intensity, which penetrates 

the breast and weakens unevenly as it passes from different types of tissue. This 

heterogeneous attenuation is recorded by the image formation system lying underneath 

the breast.  

The image formation system may be analogue or digital. In the first case an 

analogue film is placed underneath the compression paddle together with reinforcing 

plates, while in the second case a Flat Panel Active Matrix is used, where the image is 

formed digitally using pixels (Charge-Coupled Device- CCD) (Hyoung-Koo). 

The picture that is formed by these two methods consists of different scales of 

grey as shown in Figure 2.6. Each shade of grey represents a certain amount of X ray 

radiation that falls on the analogue film or on the digital image detector. This quantity 

depends on the attenuation of the initial radiation during its passage through the human 

breast. The black colour and the shades of gray indicate very little attenuation of the 

initial radiation. On the other hand, white and open shades of gray correspond to total or 

very high attenuation of the initial radiation (Κανδαράκης, 2004).  
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Figure 2.6: Left: mammogram. Right: analogue mammogram 

 

During the procedure of a mammography two images are taken from each breast 

from two different angles. The one irradiation of the breast is performed with the 

compression paddle being in a parallel position in relation to the floor (Craniocaudal-

CC). The other irradiation is performed at 4 degrees in relation to the floor 

(Mediolateral oblique-MLO).  

 

2.4.2.2 Findings on mammograms 

Distinguishing breast cancer on a mammogram is not always easy. The 

American College of Radiology (ACR, 2014) defines the main signs of breast cancer on 

a mammogram as: 

 Masses  

 Clusters of microcalcifications (MCs) 

 Deterioration of the structure of adjacent tissues (architectural  

  distortions)  

 

2.4.2.2.1 Nodular shadows (Masses) 

The nodular shadows can occur with distinct boundaries (circumscribed lesions), 

sharp limits with spikes (spiculated masses) and with less distinct boundaries (ill-

defined masses). In general, radiation impermeable nodular shadows are basically 

malignant, while radiation permeable masses are usually benign.  
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In general, when examining mammograms contour, density, shape, orientation 

and size of the shadings should be taken into consideration for discriminating between 

benign and malignant.  

 

2.4.2.2.2 Calcifications 

In many cases it is possible that a lesion may be displayed in a mammogram in 

the form of microcalcifications with or without shading. Calcifications are small 

deposits of calcium in the mammary gland. They appear in a mammogram as bright 

structures of high Signal to Noise Ratio (SNR) due to the large attenuation coefficient 

of calcium (Figure 2.7). If the calcifications have a diameter less than 1mm they are 

characterized as microcalcifications (MCs), whereas if their diameter is more than 1 

mm, they are characterised as macrocalcifications (Karahaliou et al., 2012). A group of 

calcifications is considered as a cluster if more than 5 calcifications appear in an area of 

1 cm2. 

 

Figure 2.7: Microcalcifications. (Α) Malignant and (Β) Benign. 

 

Since Salomon’s radiographs of mastectomy specimens in 1913 (Salomon, 

1913) it has been reported that MCs are associated with breast cancer (Gershon – Cohen 

et al., 1962) were the first to report that the irregular, clustered appearance of 

calcifications was associated with breast cancer in 1962.  

MCs allow for early diagnosis. It has been reported that approximately 30-40% 

of breast cancers are detected exclusively by the presence of MCs. E.g. 85% of DCIS 

cases are discovered exclusively by the appearance of MCs. Also, 70-80% of breast 

cancers’ histopathological examination revealed the presence of microcalcifications (De 

Wilde, 1999). 
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However, MCs do not always indicate malignancy; they are also common in 

healthy women. There are several factors that have to be taken into consideration such 

as shape, size, clustering, location, frequency and distribution (Andreadis et al., 2011; 

Karahaliou et al., 2012; Sickles, 1984; Willekens et al., 2014). 

Shape is an important factor that aids to distinguish between benign and 

malignant MCs (Sickles, 1984), i.e. calcifications present in a benign or a malignant 

lesion respectively. In (Lanyi, 1983) Lanyi classified 5641 MCs according to their 

shape, categorising them as punctate, bean-shaped, linear or branching. In 95% of cases, 

the MCs had more than two configurations within individual clusters (polymorphy). 

Thin, linear, curvilinear, branching shapes may suggest malignancy while round, oval 

and well delineated shapes may indicate benign lesions (Sickles, 1984).  

Malignant calcifications have a wide variation in shape. In general, three basic 

forms can be distinguished (Tabár, 2011); casting type, granular type and powderish 

calcifications. 

Casting type calcifications have linear, fragmented, occasionally branching 

calcifications with irregular contours. These calcifications are typically formed within 

ducts affected by ductal carcinoma. 

Granular type calcifications are individually discernible particles that resemble 

granulated sugar or crushed stone.  

Powederish calcifications are very small particles of calcium. On a mammogram 

they are only visible if they are grouped together.  

In practice, the resolution of a mammogram is too low for clear shape 

differentiation. Therefore, another important discriminator is the distribution of the 

calcifications. According to the BI-RADS atlas (Tabár, 2011) the distributions of 

calcifications are defined as (Figure 2.8): 

Diffuse or Scattered: diffuse calcifications may be scattered calcifications or 

multiple similar appearing clusters of calcifications throughout the whole breast. 

Regional: scattered in a larger volume (> 2 cc) of breast tissue and not in the 

expected ductal distribution. 

Clustered: at least 5 calcifications occupy a small volume of tissue 
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Linear: calcifications arrayed in a line, which suggests deposits in a duct. 

Segmental: calcium deposits in ducts and branches of a segment or lobe 

 

Figure 2.8: Distribution of Microcalcifications 

 

2.4.2.2.3 Architectural Distortions 

Architectural distortion is defined as a rupture of the normal architecture with no 

visible mass (Karahaliou, 2009). Parenchymal asymmetry between the two breasts may 

indicate the presence of breast cancer.  

 

2.5 Biopsy 

A biopsy is the examination that rejects or confirms the diagnosis of breast 

cancer on a mammogram or on other examination. The breast biopsy involves the 

aspiration of the breast in order to remove tissue/cells from a suspicious region. 

Subsequently, the tissues are anatomopathologically investigated, i.e. they are placed 

under a microscope for observation and further analysis by a pathologist. Several types 

of biopsy procedures exist. The most common types include Fine Needle Aspiration 

Biopsy, Core Needle Biopsy, Stereotactic Core Needle Biopsy, Vacuum Assisted Core 

Biopsy and Surgical Biopsy (ACS, 2014; NHS, 2009; Λάππας, 2014. The type of 

biopsy used for each case depends on many factors, such as lesion’s suspiciousness, size 

and location, as well as patient’s other medical problems and personal preferences. 
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2.5.1 Fine Needle Aspiration Biopsy 

In fine needle aspiration biopsy (FNAB), a very thin needle (thinner than the 

needles used for blood tests) is used in order to aspirate a small amount of tissue from 

the suspicious area. The use of local anaesthetic is optional, as it has been noticed that 

the administration of the numbing medicine may be more painful than the biopsy itself.  

The area to be biopsied can be located by various means. If it can be felt, the 

doctor locates the lump and guides the needle there. If the suspicious area cannot be felt 

then two methods for guiding the needle can be used; ultrasound guided biopsy or 

stereotactic needle biopsy. In the first technique the doctor uses ultrasound imaging to 

watch the needle on the screen as he moves it towards the mass. In the second one, the 

exact position of the mass is mapped with the aid of computers that use mammograms 

taken from two angles.  

Once the needle is in place, fluid or tissue is drawn out. If clear fluid is 

withdrawn, the lump is more likely a benign cyst. Bloody or cloudy fluid can mean 

either a benign cyst or, less often, cancer. If the lump is solid, small pieces of tissue are 

drawn out.  

Nevertheless, FNAB may miss cancer if the needle does not get a tissue sample 

from the cancer cells (Lieske et al., 2006). 

 

2.5.2 Core Needle biopsy 

Core needle biopsy (CNB) can provide increased sensitivity and specificity 

compared to FNAC (Perry et al., 2008). It is a similar procedure compared to FNAB 

with the exceptions that it uses a slightly larger, hollow needle and that local anaesthesia 

is usually required.  

During CNB the doctor guides the needle to the suspicious area either by feeling 

a palpable lump or with the aid of imaging (ultrasound or X- ray). Then the needle is 

used to withdraw small cylinders (or cores) from the abnormal area. Core biopsy is 

preferred for lesions of architectural distortion and MCs. If MCs are extracted during 

the core biopsy, it is essential that specimen radiography is applied in order to verify the 

presence of calcifications. 
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2.5.2.1  Stereotactic Core Needle Biopsy 

A stereotactic core needle biopsy uses x-ray equipment and a computer to map 

the area where the needle will be located. It is a type of biopsy recommended for 

suspicious cases where MCs are found and no mass can be felt or seen on ultrasound 

(ACS, 2014; Λάππας, 2014).  

 

2.5.2.2 Vacuum-assisted core biopsy 

Vacuum-assisted biopsies can be conducted with systems like the 

Mammotome®. For this type of biopsy the skin is numbed and a small cut (less than 0.6 

cm) is made (ACS, 2014; Λάππας, 2014).  A hollow probe is put in through the cut and 

guided into the abnormal area of breast tissue using x-rays, ultrasound, or MRI. A 

cylinder of tissue is then pulled into the probe through a hole in its side, and a rotating 

knife inside the probe cuts the tissue sample from the rest of the breast. 

The advantages of this method is that it allows multiple tissue samples to be 

removed through one small opening, with very little scarring and without the need of 

stitches.  

 

2.5.3 Surgical Biopsy 

When needle biopsy is insufficient to conclude about the malignancy of a 

suspicious area, surgical biopsy may be recommended (ACS, 2014). A surgical biopsy, 

also known as open biopsy, is done in an operating room. During a surgical biopsy a cut 

is made in the breast to remove all or part of the lump for further examination. Apart 

from local anaesthesia, sedation through a line in the patient’s arm may also be used to 

help the patient relax during the procedure. In some cases, general anaesthesia may also 

be used. Surgical biopsies usually last an hour and the recovery period is less than two 

hours.  

An open biopsy that removes only part of a lump of suspicious tissue is called an 

incisional biopsy, while one that removes the entire lump is called excisional biopsy. An 

incisional biopsy is usually done when the lump is quite large. However, if the tissue is 

proven to be malignant the remaining portion of the lump will be removed surgically, 

during a second surgery.  
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When a breast mass or an area of calcifications is not palpable, but it looks 

suspicious on the mammogram, the surgeon may use a procedure called “wire 

localisation” to help identify the tissue for later surgical biopsy. For this procedure, the 

breast is numbed with local anaesthetic and a thin, hollow needle is inserted into the 

breast guided by ultrasound’s or mammography’s support. Next, a very thin wire with a 

small hook at the end is placed to pinpoint the suspicious area. The needle is then 

removed leaving the wire in order to help the surgeon find the part of the breast tissue 

that will be removed.  

Following a surgical breast biopsy, stitches are often needed and a short scar in 

the shape of a line is left. In addition, bleeding, soreness and swelling are also expected 

for a few days. Finally, depending on the size of the extracted tissue, this procedure can 

affect the shape of the breast. 

 

2.6 Anatomical pathological investigation 

The tissue samples extracted during biopsy are placed in formol tubes, from 

which they are taken out later and placed on a glass plate in order to be radiographically 

scanned. During this procedure, it is validated if the target MCs were correctly extracted 

from the suspicious region. Following this scan the tissues are divided into two blocks 

and are conserved in paraffin. One block includes the samples with calcifications, and 

the other block comprises the samples without calcifications. During the anatomo - 

pathological investigation, the anatomical pathologist cuts slices from these blocks 

which are investigated under a microscope. Typically, one third of the blocks is 

analysed and the pathologist will then make a diagnosis based upon the identified cells. 

 

2.7 Diagnostic classification 

According to European guidelines for quality assurance in breast cancer 

screening and diagnosis (Perry et al, 2008) a simple five-point classification system 

should be used as described below;  
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Radiology 

 R1 Normal/benign 

 R2 A lesion having benign characteristics 

 R3 An abnormality present of indeterminate significance 

 R4 Features suspicious of malignancy 

 R5 Malignant features 

While this system is sufficient for most working purposes, if desired, the ACR 

BIRADS system can be used which is more complex but more precise classification in 

terms of percentage likelihood (ACR, 2003).  

 

Fine Needle Aspiration Cytology 

 C1 Inadequate for diagnosis 

 C2 Benign epithelial cells 

 C3 Atypia probably benign 

 C4 Suspicious of malignancy 

 C5 Malignant 

 

Core Biopsy/Histology 

 B1 Unsatisfactory/normal breast tissue 

 B2 Benign 

 B3 Benign but of uncertain malignant potential 

 B4 Suspicious of malignancy 

 B5 Malignant 
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2.8 Targets of a Breast Assessment Unit 

According to European guidelines for quality assurance in breast cancer 

screening and diagnosis (Perry et al, 2008) the following percentages are standardized:  

Table 2-1: Percentage targets for quality assurance in breast diagnosis 

Percentage Minimum 

Standard 

Expected 

of image guided FNAC procedures with an 

insufficient result (C1) 

<25% <15% 

of image guided FNAC procedures from 

lesions subsequently proven to be malignant 

having an insufficient result (C1) 

< 10% < 5% 

of women with breast cancer having a non-

operative diagnosis of malignancy 

(FNAC/CB reported as definitely malignant) 

> 70% > 90% 

 

2.9 Cytology/histology quality assurance 

According to European guidelines the following percentages are standardize for 

quality assurance in breast cancer cytology/histology.  

Absolute sensitivity considers only the definitely malignant results (C5 or B5) 

Complete sensitivity considers all abnormal results (above and equal to B3, C3) 

Table 2-2: Suggested Thresholds for FNAC performance 

 Minimum  Preferred 

Absolute Sensitivity >60% >70% 

Complete Sensitivity >80% >90% 

Specificity >55% >65% 

Positive Predictive Value (C5) >98% >99% 

False Negative Rate <6% <4% 

False Positive Rate <1% <0.5% 

Table 2-3: Suggested Thresholds for Core Biopsy performance 

 Minimum  Preferred 

Absolute Sensitivity >70% >80% 

Complete Sensitivity >80% >90% 

Specificity >75% >85% 

Positive Predictive Value (C5) >99% >99.5% 

False Negative Rate <0.5% <0.1% 

False Positive Rate <15% <10% 
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3. Chapter: Computer Aided Diagnosis Systems 

(CAD) 

3.1 Introduction 

Early detection of breast cancer has a key role in addressing it. For this reason, 

many breast imaging modalities have been developed to assist in finding a lesion at a 

very primitive form. In conjunction with increased public awareness prompting for 

monthly self-breast examination and annual examination by physician, it yields a 

reduction in mortality from breast cancer (Karahaliou et al., 2012).  

Even though mammography is the current standard for breast screening, the 

characterization of lesions as benign or malignant based on their appearance in 

mammograms is a difficult task even for expert radiologists. Due to the fact that a 

mammogram is a 2D image of a 3D breast, superposition of breast tissue often produces 

patterns that appear like suspicious masses to a radiologist or alters the appearance of 

real mammographic lesions (Karahaliou et al., 2012; Elter et al., 2009).  

In general there are two categories of typical errors when examining 

mammograms; false positive and false negative results. False positive results occur 

when the radiologist recognises a lesion as malignant when it is actually benign. False 

negative errors occur when a malignant region is not recognised by the radiologist.  

The aforementioned errors have resulted in a percentage of omitted cancers of 

10-30%, necessitating the conduction of biopsies. However, it is reported that less than 

30% of all breast biopsies actually show a malignant pathology. The high number of 

unnecessary breast biopsies causes major mental and physical discomfort for the 

patients as well as unnecessary expenses (Elter et al., 2009; Kopans, 1992). 

Computer aided Detection (CADe) and Diagnosis Systems (CADx) systems 

have been proposed in the past years and they have a key role in detection and diagnosis 

of breast lesions. 
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3.2 Computer Aided Detection and Diagnosis 

Systems 

CADe and CADx systems aim to support radiologists in the discrimination of 

benign and malignant mammographic lesions and to increase the positive predictive 

value of mammographic interpretation. The term “CADe/x” refers to formulating the 

clinical detection or diagnosis problem into the context of quantitative image feature 

extraction and pattern classification with the goal of solving it automatically (Duncan et 

al., 2000). 

CADe systems have been developed to improve the ability of radiologists in 

detecting lesions through identification of suspicious regions of masses and MC clusters 

in an image. The input of the system is a mammographic image and the output is the 

location and the boundaries of a suspicious lesion, known as Region of Interest (ROI).  

CADx systems assist radiologists in the process of diagnosis and classification 

of lesions as malignant or benign, thus affecting the subsequent patient management 

(follow-up or biopsy). The input of a CADx system is the area containing the 

abnormality (ROI) and the output is a probability that the lesion is malignant 

 

Figure 3.1: CADe and CADx systems 
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Typical phases of a CAD system 

Most CADe and CADx systems include similar processing steps, such as 

segmentation, feature extraction, feature selection and classification.  

Starting from a digital or digitized mammogram the first operations are the 

processing ones. Here the breast is segmented and some filtering or normalisation is 

accomplished in order to improve the quality of the image and reduce the noise. Then a 

signal extraction step is performed. In this phase objects similar to the lesions are 

isolated by means of different techniques (Suri et al., 2006).  

After that a set of features is calculated on the extracted signal. A feature is an 

individual measurable heuristic property of a phenomenon being observed. The 

extracted features represent a mathematical description of characteristics that are helpful 

for isolating the lesion or for distinguishing malignant and benign lesions. It is probably 

the most important step for a characterisation of a Region of Interest (ROI) containing 

MCs. The set of features of a given data instance is often grouped into a feature vector 

in order to be treated mathematically. Basically, researchers have investigated two types 

of features; those traditionally used by radiologists: intensity based and geometric 

features and high order features that may be not as intuitive to radiologists: texture 

features. 

If the number of features is large compared to the number of training data, the 

generalisation ability of the conventional classifiers used in the following step may not 

be good. Therefore, to improve the generalisation ability, a small set of features is 

retained in an extra step known as Feature Selection step. It is difficult to predict which 

of the features’ combination will have more accurate results. The only way to ensure an 

optimal feature vector is through exhaustive search of all possible subsets of features. 

However, the search space to be explored is too big.  

Finally, a classification step is performed where the extracted features are 

provided as inputs to the classifier. This phase is known as false positive reductions. It 

is necessary to set up a classifier that hopefully maintains all the true detected signals 

and at the same time rejects almost all the false positive signal. 
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Figure 3.2: Flowchart of CADx system 

 

3.3 CADx systems for clusters of microcalcifications 

3.3.1 Morphology based CADx schemes 

In the clinical practice the diagnosis of MC clusters is based on their 

morphological properties (shape, size, intensity) and the distribution of individual 

particles within a cluster. In this context, shape and intensity features are mainly 

exploited for the characterisation of a suspicious lesion. More specifically, the features 

that are used are; area, perimeter, elongation, circularity compactness, eccentricity, 

moment ratio, axis ratio, concavity index, effective thickness, volume and mean 

intensity, background intensity, contrast and edge strength (Karahaliou et al., 2012).  

CADx schemes that classify MC clusters are based on two categories of cluster 

features (Karahaliou et al., 2012): 
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Category I: Cluster features based on descriptive statistics (e.g. average, standard 

deviation, coefficient of variation, maximum, median, range) of morphological 

properties of individual particles. 

Category II: Cluster features describing cluster morphology considering the 

cluster as an entire object (cluster area, diameter, perimeter, circularity, eccentricity, 

elongation, solidity and cluster background intensity). In this category the spatial 

distribution of individual particles within a cluster is also considered (number of MCs, 

structural index, proximity to the nearest MC, cluster density, as well as distance to 

pectoral and breast edge). 

 

3.3.2 Texture-based CADx schemes 

A malignancy usually changes the texture of the surrounding tissue. Based on 

this hypothesis, CADx schemes can also exploit textural features. The systems based on 

texture analysis seem to provide better results than those based on morphology 

(Karahaliou et al., 2007). CAD systems based on morphology quantify properties that 

are visible to the eye. In this way they imitate the radiologists’ assessments, but in an 

objective manner. Schemes based on texture analysis not only imitate the radiologists 

perception when visible lesions in the texture exist, but also enhance radiologists’ 

capabilities by extracting and quantifying properties that associate with the diagnosis 

but are not visible to the naked eye.  

 

3.4 Extracted Features 

In literature a vast variety of features for the analysis of a cluster containing 

MCs has been exploited. These features can be categorised into six main groups 

(Andreadis et al., 2011). 

1) Shape features of individual MCs 

According to BIRADS system, the morphology of MCs is an important factor 

for their discrimination. In general, round and oval particles with lucent centres are 

considered benign, while thin, linear and small particles are considered an important 

sign of malignancy. The shape features that are usually extracted are: area, perimeter, 

compactness, circularity, elongation, eccentricity, spread, F3_F1 metric. In addition, 
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statistics of each feature like mean value, median and standard deviation are calculated 

for the whole cluster.  

2) Cluster shape features 

Except for the morphology of individual particles the morphology of the whole 

cluster is also considered by radiologists. Features such as the number of MCs in the 

cluster, the calcification coverage, area, circularity, eccentricity and the perimeter of the 

cluster can be calculated  

3) Distribution features 

The characteristics of this category describe the distribution of particles of MCs 

within the cluster. According to the BIRADS system, the MCs that appear in clusters 

are considered less suspicious of malignancy as opposed to linear, partial and scattered 

ones. The distances among individual MCs and the distances to the centre of the cluster 

are examples of features belonging to this category. 

4) Optical density of individual MCs 

These features are related to the grey values of each individual particle. For each 

MC its brightness is measured and its contrast to the surrounding tissue is estimated. 

The features of this category are highly dependent on the segmentation phase of the 

CAD pipeline.  

5) Textural features 

First order statistics (FOS) and Grey Level Co-occurrence Matrixes (GLCMs) 

are the most popular features of this category.  

GLCMs: these features, proposed by Haralick et al (Haralick et al., 1973), are 

used for the characterisation of texture patterns and describe how often different pixel 

values occur in an image. They provide information concerning image texture 

heterogeneity and coarseness, which is not necessarily visually perceived. 

FOS: depend only on single pixel values and represent properties of the intensity 

histogram of the region of interest (i.e. energy, entropy and square root of the 

coefficients norm) extracted from wavelet or multiwavelet analysis. Statistics about the 

grey values of the ROI, kurtosis, skewness and statistics related to the distribution of the 

histogram all belong to this category. 
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6) BIRADS descriptors 

Features of this category involve the subtlety of an image, the radiologist’s 

assessment, the description of the shape of MCs within the cluster and the age of the 

patient. These features are coded into numerical values following a rank ordering 

system proposed by Lo et al (Lo et al., 2003). 
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4. Chapter: Classification 

4.1 Introduction 

In general, the recognition or the classification of an object (pattern) can be 

described as the process by which signals that correspond to an object are classified to 

one of a finite set of categories, known as classes (Δερματάς, 1997). These categories 

concern groups of objects with similar characteristics or properties. Pattern recognition 

can be defined as the classification of data based on knowledge already gained or on 

statistical information extracted from patterns and/or their representations (Murty et al., 

2011). Each object is described by properties known as features. The features constitute 

a description of all the known characteristics of the instance. In a classification problem 

every instance should be represented by the same set of features that are given in the 

form of a vector.  

In general, pattern recognition is categorised according to the type of the 

learning procedure that is used to generate the output value. In a supervised learning 

problem the classifier is able to predict a value for a given valid input, after its training 

with a set of training examples (Δερματάς, 1997). The training set consists of a set of 

instances that have been properly labelled with the correct output. Then, a learning 

procedure generates a model that attempts to perform as well as possible on the training 

data and generalise as well as possible to new data (Zhang, 2000). On the other hand, 

unsupervised learning assumes unlabeled training data and attempts to find inherent 

patterns in the data that can be used to determine the correct output value for the new 

data instances. Finally, in reinforcement learning the examples of desired outputs are 

not given to the algorithm, as in supervised learning, but instead they have to be 

discovered by a process of trial and error (Barto, 1998). 

Classification comprises the fourth step of a Computer Aided Diagnosis (CAD) 

procedure. In a CAD system designed for the classification of suspicious lesions, the 

characterisation of a lesion as benign or malignant is a supervised learning problem that 

has only two discrete output values; benignity and malignancy (Elter et al., 2009). For 

this reason, it is regarded as a two-class classification problem. There is a large number 

of techniques that have been developed for supervised classification based on Artificial 

Intelligence (Logical/Symbolic techniques), Perceptron-based techniques and Statistics 
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(Bayesian Networks, Instance-based techniques) (Kotsiantis, 2007). The most 

frequently used classifiers in CAD systems are K-Nearest Neighbours (KNN), Artificial 

Neural Networks (ANNs), Support Vector Machines (SVMs) and Linear Discriminant 

Analysis (LDA). Examples of classifiers that are less frequently applied in CADx 

systems include Bayes classification, generalized dynamic fuzzy neural networks, and 

rule-based expert systems (Elter et al., 2009). 

In general, KNN is one of the simplest and most popular classifiers and one of 

the most common classifiers used to categorize lesions and microcalcifications 

(Nakayama et al., 2007). The classifier can distinguish unknown patterns based on the 

similarity with known examples. In order to do that, it calculates the distances of the 

unknown pattern to every existing pattern and finds the K nearest patterns as a basis for 

classification. The unknown pattern is then classified to the class to which the majority 

of its k nearest neighbours belong. 

Artificial Neural Networks (ANNs) are inspired from the way the biological 

neural systems operate. ANNs simulate the human brain in the way by which 

knowledge is acquired and in the way by which the neurons are connected to each other 

with the aid of synapses bearing specific weights (Haykin, 1994). 

A Support Vector Machine (SVM) is a binary classifier which abstracts a 

decision boundary in a multi-dimensional space using an appropriate subset of the 

training set of vectors. These vectors are called support vectors and geometrically are 

those training patterns that are closest to the decision boundary (Murty et al., 2011). 

 

4.2 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a computational model inspired by the 

way the biological neural systems operate. It is a mathematical model which consists of 

a large number of independent computing elements, called neurons which are 

interconnected and organised in layers (Haykin, 1994). 

 

4.2.1 Characteristics of ANNs 

Artificial neural networks have the ability to learn from their environments and 

to improve their performance through learning. Learning is achieved through training; 
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an iterative process of gradual adjustments of the network’s parameters, usually of the 

weights and of the bias levels (Haykin, 1994). In order to give a more formal definition 

of learning, the definition adapted from Mendel and McClaren is cited next; “Learning 

is a process by which the free parameters of a neural network are adapted through a 

process of stimulation by the environment in which the network is embedded. The type 

of learning is determined by the manner in which the parameter changes take place” 

(Mendel et al, 1970).  

Training the neural network with pairs of known input patterns and their 

corresponding outputs, i.e. their corresponding classes, makes it possible to become 

specialised in this set of patterns. In this way, the outputs of unknown patterns of similar 

nature can be predicted next. In addition, ANNs are nonlinear models, which makes 

them flexible in modelling real world complex relationships. They have the ability to 

extract information from complex data, and learn from their environments in order to 

improve their performance. Also, they have the ability to organise themselves during 

the procedure of learning and they are able to operate in real time because of their 

parallel connection. Finally, ANNs are able to adapt their synaptic weights to changes in 

the surrounding environment which assures that a neural network that is trained to 

operate in a specific environment can be easily retrained to deal with minor changes in 

the operating environment conditions (Haykin, 1994).  

 

4.2.2 The model of the artificial neuron 

A neural network consists of interconnected computational units called neurons. 

The neuron is the basic information processing unit that transforms the input vector into 

a single output which is then connected to the inputs of the other neurons (Διαμαντάρας, 

2007). In analogy with a biological neuron, an artificial neuron consists of a set of 

connections called synapses. Each neuron consists of multiple inputs and one single 

output. Each synapse is characterised by a weight that gives different levels of 

importance to the inputs (figure 4.1). In this way, an input signal 𝑥𝑖 in the 𝑖𝑡ℎ input of 

the neuron is multiplied with the synaptic weight 𝑤𝑖. The weight can be positive or 

negative depending on whether the load that is released from the synapse stimulates the 

neuron to produce pulses with greater frequency or it suppresses it.  
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Figure 4.1: Non linear model of a neuron (Haykin, 1994) 

 

The body of the neuron consists of an adder for summing the weighted inputs 

and an activation function (𝜑(. )) for reducing the amplitude of the neuron’s output. 

The model also includes an externally applied bias 𝑏𝑘 which aims to reduce the 

influence of the input to the activation function.  

Using mathematics a 𝑘-neuron can be described with the following equations: 

 𝑢𝑘 =∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

  (4.1) 

 𝑦𝑘 = 𝜑(𝑢𝑘 − 𝑏𝑘) (4.2) 

The signal uk is also known as activation signal. 

The aforementioned equations can be altered in order to include the external bias 

as an additional synapse with input 𝑥0 = −1 and synaptic weight 𝑤𝑘0 = 𝑏𝑘.  

 𝑣𝑘 =∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=0

  (4.3) 

 𝑦𝑘 = 𝜑(𝑣𝑘)   (4.4) 

Then the model of the neuron k is reformulated as in figure 4.2. Although the 

models in figures 4.1 and 4.2 differ in appearance, mathematically they are equivalent. 
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Figure 4.2: linear model of a neuron (another form) (Haykin, 1994) 

 

Every neuron is in an internal state that is called ‘activation level’ and it 

constitutes the exit of the neuron. The neuron’s activation depends on its inputs and on 

its activation function. So, the output of the neuron is defined by the activation function 

in terms of the induced input signal. The most frequently used activation functions are 

the following: 

 

Threshold function 

 𝜑(𝑣) = {
1, 𝑣 ≥ 0
0, 𝑣 < 0

  (4.5) 

 

Figure 4.3: Threshold function 

 

 

φ(.) 
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Piecewise-Linear Function 

 𝜑(𝑣) =

{
 
 

 
 1, 𝑣 ≥

1

2

𝑣,−
1

2
≤ 𝑥 ≤

1

2

0, 𝑣 ≤ −
1

2

  (4.6) 

 

Figure 4.4: Piecewise-Linear Function 

 

Sigmoid function 

The sigmoid function is by far the most common form of activation function that 

is used in building artificial neural networks. An example of a sigmoid function is the 

logisti function defined by: 

 𝜑(𝑣) =
1

1 + 𝑒−𝑎𝑣
  (4.7) 

Parameter “𝛼” is the slope parameter of the sigmoid function. By varying the 

parameter 𝛼, sigmoid functions of different slopes are acquired as illustrated in figure 

4.5. 

 

Figure 4.5: Sigmoid function 
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4.2.3 Neural Network Architectures 

The way by which the neurons of the neural network are structured is closely 

linked to the learning algorithm that is used to train the network. As far as the 

architecture of the neural networks is concerned, two types of neural networks can be 

distinguished (Haykin, 1994): 

 Feedforward or acyclic neural networks, where there are not any repetitive 

loops 

 Recurrent neural networks, where there are repetitive loops through feedback 

connections  

 

4.2.3.1 Feedforward networks 

Two types of feedforward networks can be distinguished; single layer and 

multilayer networks. In a layered neural network the neurons are organised in layers. A 

simple single layer neural network consists of one input layer of source nodes and one 

output layer of neurons. The input layer does not count as a layer, because no 

computation is performed in that one.  

 

Figure 4.6: Single layer feedforward network (Haykin, 1994) 

 

On the other hand, in a multilayer network there may be one or more 

intermediate layers of neurons, between the input nodes and the output layer, called 

hidden layers. By adding more hidden layers, the network is enabled to extract higher - 
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order statistics, a property particularly useful when the size of the input layer is large 

(Haykin, 1994). In feedforward networks, the information from the input signals flows 

in one direction, from the input layer to the output layer. Typically, the inputs of one 

hidden layer are the outputs of the preceding hidden layer.  

In the following figure (figure 4.7), a multilayer feedforward network is 

illustrated. This network is said to be fully connected, in the sense that every node in 

each layer is connected to every other node in the adjacent forward network. However, 

there are networks in which the nodes of a layer are not connected to all the neurons of 

the following layer. This type of network is called partially connected, since some of the 

synaptic connections are missing.  

 

Figure 4.7: Fully connected feedforward multilayer network 

 

4.2.3.2 Recurrent networks 

Recurrent networks are different from feedforward networks in the sense that 

they have at least one feedback loop. In this type of networks, the output signals of one 

or more neurons from the output and/or the hidden layers, feed the inputs of other 

neurons. Also, it is possible that the signal of a neuron feeds its own input. This type of 

loops are called self-feedback loops. In the following figures (figure 4.8 and 4.9), two 

examples of recurrent networks are depicted. The network of figure 4.8 is a single layer 

network, with each neuron feeding its output signal back to the inputs of all the other 

neurons. Figure 4.9 illustrates another type of a recurrent network with hidden neurons, 

where the feedback connections originate both from hidden and output neurons.  
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Figure 4.8: Recurrent network with no self-feedback loops and no hidden layers of 

neurons (Haykin, 1994) 

 

Figure 4.9: Recurrent network with feedbacks originating from hidden and output 

neurons (Haykin, 1994) 

 

4.2.4 Training Neural Networks 

One of the most important properties of a neural network is its ability to learn 

from its environment and improve its performance through learning. A neural network 

learns about its environment through an interactive process of adjusting its synaptic 

weights and bias levels that takes place ideally after each iteration of the learning 

process (Haykin, 1994). Two types of neural networks' learning algorithms (also known 

as training algorithms) can be distinguished;  

 Supervised learning 
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 Unsupervised learning 

 Reinforcement learning 

 

4.2.4.1  Supervised Learning 

In general neural networks are not aware of their surrounding environment. 

However, in supervised learning, there is an external “teacher” who has knowledge of 

the environment that is represented in form of a set of input-output examples. When a 

training vector is given as input to the neural network, the teacher provides the network 

with the desired output for that input which represents the network’s optimum response. 

Then, the network’s parameters (weights and bias levels) are adjusted under the 

influence of the training vector and the error signal. The error signal results from the 

difference between the network’s actual and desired output. This adjustment is repeated 

iteratively in a step by step manner with the purpose of eventually making the neural 

network to emulate the teacher in the best possible way. In this way, the knowledge of 

the environment, known to the teacher, is transfered to the neural network through the 

training procedure as fully as possible. Next, the teacher is removed and the network is 

able to deal with the environment by itself. 

This type of supervised learning is the error correction learning described in the 

next subsection (4.2.4.1.1). It is a closed loop feedback system, where the environment 

is not included in the loop. The mean square error, or the sum of squared errors over the 

training samples can be considered as the performance measures of the system.  

 

Figure 4.10: Block diagram of supervised learning (Haykin, 1994) 
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Examples of this type of training algorithms are the least-mean-square (LMS) 

algorithm of Widrow and Hoff (Widrow et al., 1960) and its generalisation known as 

back propagation (BP) (Werbos P.J. 1974). The LMS algorithm consists of only one 

neuron, while BP consists of a number of connected neurons in layers.  

 

4.2.4.1.1 Error-Correction Learning 

To illustrate this type of learning, a multilayer feedforward network is 

considered which consists of one input layer, one or more layers of hidden neurons and 

one output layer consisting of only one neuron. 

 

Figure 4.11: Multilayer feedforward network with one or more layers of hidden neurons 

and one neuron at the output layer (Haykin, 1994) 

 

Neuron 𝑘 is driven by a signal vector 𝑥(𝑛) produced by the hidden neurons 

which are driven by an input vector applied to the input layer of the neural network. The 

output signal of the neuron 𝑘 is denoted by 𝑦𝑘(𝑛). This output signal, which is the only 

output of the neural network, is then compared to a desired response (target output) 

 𝑑𝑘(𝑛) and thus an error signal 𝑒𝑘(𝑛) is produced. 

   𝑒𝑘(𝑛) =  𝑑𝑘(𝑛) − 𝑦𝑘(𝑛)   (4.8) 

This error signal motivates a control mechanism whose purpose is to apply a 

series of corrective adjustments to the synaptic weights of neuron 𝑘 in order to make the 

output signal 𝑦𝑘(𝑛)  come closer to the desired response 𝑑𝑘(𝑛) in a step-by-step 

iterative procedure until the synaptic weights are essentially stabilized. This objective is 

achieved by minimizing a cost function ℰ(𝑛),that is the instantaneous value of the error 

energy: 
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   ℰ(𝑛) =
1

2
∑𝑒𝑘

2(𝑛)

𝑘∈𝐶

  (4.9) 

Where the set 𝐶 includes all the neurons of the output layer. Let N be the total 

number of patterns in the training set. Then the average squared error energy is defined 

as follows: 

   ℰ𝑎𝑣 =
1

𝑁
∑ℰ(𝑛)

𝑁

𝑛=1

  (4.10) 

The instaneous error energy ℰ(𝑛) and the average error energy ℰ𝑎𝑣 are functions 

of the synaptic weights and the bias levels of the ANN. For a given training set, the 

fucntion ℰ𝑎𝑣 represents the cost function, as the measure of the efficiency of the 

learning process. The purpose of the learning process is the adjustment of the free 

parameters of the ANN (synaptic weights and bias levels) in order to minimize the 

average error energy ℰ𝑎𝑣. The weights are updated on a pattern-by-pattern basis, i.e. the 

adjustments of the weights are done according to the errors that are calculated for each 

pattern presented to the network.  

Assuming a neuron 𝑗, and a set of function signals 𝑦𝑖(𝑛) produced by a layer of 

neurons to its input. Then the induced local field produced at the input of the activation 

function is as follows: 

   𝜐𝑗(𝑛) =∑𝑤𝑗𝑖

𝑚

𝑖=0

(n)𝑦𝑖(n)   (4.11) 

Then the function signal at the output of the 𝑗𝑡ℎ neuron at iteration 𝑛 is 

   𝑦𝑗(𝑛) = 𝜑(𝜐𝑗(𝑛))   (4.12) 

The backpropagation algorithm applies a correction 𝛥𝑤𝑗𝑖(𝑛) to the synaptic 

weight 𝑤𝑗𝑖(𝑛) which is proportional to the partial derivative 
𝜕ℰ(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
. It can be shown 

that the applied correction is given by: 

   𝛥𝑤𝑗𝑖(𝑛) = −𝜂
𝜕ℰ(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
  (4.13) 
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Where 𝜂 is called the learning rate parameter.  

4.2.4.2 Learning without a teacher 

Learning without a teacher does not include a “teacher” supervising the learning 

process. This means that there are not any labeled examples to be learned by the 

network. This type of learning includes two subtypes; 

 Reinforcement learning 

 Unsupervised learning 

 

4.2.4.2.1 Reinforcement learning 

In reinforcement learning, the learning of an input-output mapping is performed 

through continued interaction with the environment in order to minimize a scalar index 

of performance (Haykin, 1994). In figure 4.12, the block diagram of one form of 

reinforcement learning system is shown. The system is built around a critic that 

converts a primary reinforcement signal received from the environment into a 

reinforcement signal of higher quality called the heuristic reinforcement signal, both of 

which are scalar inputs (Barto, 1998). The system is designed to learn under delayed 

reinforcement, which means that the system observes a temporal sequence of stimuli 

also received from the environment, which eventually results in the generation of the 

heuristic reinforcement signal. The goal of learning is to minimize a cost-to-go function 

defined as the expectation of the aggregated cost of actions taken over a sequence of 

steps instead of simply the immedicate cost (Haykin, 1994). The function of the 

learning machine, which constitutes the second component of the system is to discover 

these actions and to feed them back to the environment.  
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Figure 4.12: Block diagram of reinforcement learning (Haykin, 1994) 

 

4.2.4.2.2 Unsupervised learning 

In unsupervised learning also known as self-organized learning there is no 

external teacher or critic to oversee the learning process as shown in figure 4.13. Rather, 

a task-independent measure of the quality of representation that the network is required 

to learn is provided and the network’s parameters are optimized with respect to it. Once 

the network becomes tuned to the statistical regularities of the input data, it develops the 

ability to form internal representations for encoding features of the input and thereby to 

automatically create new classes (Becker, 1991).  

 

    

Figure 4.13: Block diagram of unsupervised learning (Haykin, 1994) 

 

4.3 Support Vector Machines 

4.3.1 Introduction 

Support vector machines (SVMs) are a supervised learning-based method, 

primarily used for binary and multi-class classification (Vapnik, 2000). Given a set of 

training examples, each marked as belonging to one of two classes, an SVM training 

Learning System Environment 

Vector describing 

state of the 

environment 
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algorithm builds a model in order to assign new examples into one of these classes. An 

SVM builds a hyperplane (or a set of hyperplanes) in a high or infinite dimensional 

space that can be used for classification and regression. SVMs revolve around the 

notion of “margin”, which is the distance of a hyperplane to the nearest training data 

point of any class (Nakayama et al., 2007). A good separation is achieved by the 

hyperplane that has the largest margin, because the larger the margin, the better the 

separation of the instances and thus the lower the generalization error of the classifier 

(Nakayama et al., 2007). 

Two types of Support Vector Machines can be distinguished; hard and soft 

partitioning SVMs, depending on whether the training data in the input space are 

linearly separable or not (Abe, 2010).  

 

4.3.2 Hard-Margin Support Vector Machines 

A set of patterns is said to be linearly separable if a hyperplane can be found so 

that patterns of different classes fall on different sides of the hyperplane. In the 

following figure (Figure 4.14), for simplicity reasons, two-dimensional data is 

considered, where each pattern is represented by a point in the two-dimensional space. 

Assuming five patterns that belong to class labelled as 𝑋 and four patterns of class 𝑂, a 

line e.g. 𝑥1 = 𝑥2 can be found so that all the 𝑋 patterns fall on the left side of the line 

and all the 𝑂 patterns on the right side (Murty et al., 2011). 

 

Figure 4.14: Linearly seperable 2D data (Murty et al., 2011) 
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Another way of separating the patterns of the two classes is the following: 

 all the patterns of class 𝑋 satisfy the property that 𝑥1 < 𝑥2or 𝑥1 − 𝑥2 < 0 

and equivalently  

 all the patterns of class 𝑂 satisfy the property 𝑥1 > 𝑥2 or 𝑥1 − 𝑥2 > 0. 

There are infinite ways of realising the decision boundary. All the lines can be 

written in the following form: 

   𝑓(𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0   (4.14) 

In the multidimensional space, the linear decision boundary becomes a 

hyperplane and it can be represented by the following equation: 

   𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0   (4.15) 

where 𝑤 and 𝑥 are 𝑚-dimensional vectors (Murty et al., 2011). 

Let 𝑀 m-dimensional training inputs 𝑥𝑖  (𝑖 = 1,… ,𝑀) belong to Class 1 or 

Class 2 with the associated labels be 𝑦𝑖 = 1 for Class 1 and 𝑦𝑖 = −1 for Class 2. For the 

linearly separable data, the decision function for the classification of an unknown 

pattern is defined as follows:  

   𝐷(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏)   (4.16) 

where 𝑤 is an 𝑚−dimensional vector, 𝑏 is a bias term (the term-b is called 

threshold) 

Equivalently the decision function can be written as shown in equations 4.13 and 

4.14:  

   𝐷(𝑥) = 𝑤𝑇𝑥 + 𝑏   (4.17) 

and 

   𝑤𝑇𝑥𝑖 + 𝑏 {
> 1      𝑓𝑜𝑟 𝑦𝑖 = 1 
< −1 𝑓𝑜𝑟 𝑦𝑖 = −1

 for 𝑖 = 1,… ,𝑀   (4.18) 

 

 



  Chapter 4: Classification 

69 
 

Here, 1 and −1  on the right-hand sides of the inequalities of equation 4.14 can 

also be constants 𝑎 > 0 and −𝑎, respectively (Abe, 2010). Equation 4.14 is equivalent 

to 

   𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 for 𝑖 = 1, … , 𝑀  (4.19) 

The hyperplane  

   𝐷(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 𝑐 for −1 < 𝑐 < 1  (4.20) 

forms a separating hyperplane that separates 𝑥𝑖 (𝑖 = 1, … , 𝑀). When c = 0, the 

separating hyperplane is in the middle of the two hyperplanes with 𝑐 = 1 and 𝑐 = −1. 

The distance between the separating hyperplane and the training data sample nearest to 

the hyperplane is called the margin. Assuming that the hyperplanes 𝐷(𝑥) = 1 and 

𝐷(𝑥) = −1  include at least one training data sample, the hyperplane 𝐷(𝑥) = 0 has the 

maximal margin for −1 < 𝑐 < 1. The region {𝑥| − 1 ≤ 𝐷(𝑥) ≤ 1} is the generalization 

region for the decision function (Abe, 2010). 

The optimal separating hyperplane can be found by minimizing the squared 

norm of the separating hyperplane. The minimization can be set up as a convex 

quadratic programming problem (Kotsiantis, 2007): 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏𝛷(𝒘) =
1

2
‖𝒘2‖  (4.21) 

Subject to 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 for 𝑖 = 1,… , 𝑙 

In general, there is an infinite number of decision functions which are separating 

hyperplanes and satisfy equation 4.15. Figure 4.15 shows two decision functions that 

satisfy equation 4.15. The generalization ability depends on the location of the 

separating hyperplane, and the hyperplane with the maximal margin is called the 

optimal separating hyperplane.  
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Figure 4.15: Optimal separating hyperplane in a two-dimensional space (Abe, 2010) 

Once the optimal separating hyperplane is found, data points that lie on its 

margin are known as support vector points and the plane can be represented as a linear 

combination of only these points. Other data points are ignored. Therefore, the model 

complexity of an SVM is unaffected by the number of features encountered in the 

training data (the number of support vectors selected by the SVM learning algorithm is 

usually small). For this reason, SVMS are well suited to deal with learning tasks where 

the number of features is large with respect to the number of training instances 

(Kotsiantis, 2007).  

 

4.3.3 Soft-Margin Support Vector Machines 

When the training data is not linearly separable, the SVM may not be able to 

find any separating hyperplane. The problem can be addressed by using a soft margin 

that accepts some misclassification of the training instances (Veropoulos et al., 1999). 

This can be done by introducing non negative slack variables 𝜉𝑖, 𝑖 = 1,… ,𝑀 into 

equation.4.15 which then becomes: 

   

𝑤𝑥𝑖 − 𝑏 ≥ +1 − 𝜉, for 𝑦𝑖 = +1 

𝑤𝑥𝑖 − 𝑏 ≤ −1 + 𝜉 for 𝑦𝑖 = −1 

𝜉 ≥ 0  

(4.22) 
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In most real-world problems, the training data is non-separable, thus no 

hyperplane fullfilling all conditions of equation 4.15 exists and thus the generalization 

ability is degraded. One solution to the inseparability problem is to map the data onto a 

higher dimensional space and define a separating hyperplane there. This higher-

dimensional space is called the feature space (Kotsiantis, 2007). With an appropriately 

chosen transformed feature space of sufficient dimensionality, any consistent training 

set can be made separable. A linear separation in transformed feature space corresponds 

to a non-linear separation in the original input space (Abe, 2010).  

Using the nonlinear vector function 𝜑(𝑥) = (𝜑1(𝑥),… , 𝜑𝑙(𝑥)) that maps the 𝑚-

dimensional input vector 𝑥 into the 𝑙 -dimensional feature space, the linear decision 

function in the feature space is given by  

   𝐷(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏 (4.23) 

where 𝑤 is an 𝑙 -dimensional vector and 𝑏 is a bias term (Abe, 2010).  

In order to avoid mappings, a kernel function can be defined in order to allow 

inner products to be calculated directly in feature space without performing mappings. 

Once a hyperplane has been created, the kernel function is used to map new points into 

the feature space for classification. The selection of an appropriate kernel function is 

important, since the kernel function defines the transformed feature space in which the 

training set instances will be classified (Kotsiantis, 2007). Some popular kernels are the 

following: 

   𝐾(𝑥, 𝑦) = (𝑥 ∙ 𝑦 + 1)𝑝 (4.24) 

   
𝐾(𝑥, 𝑦) = 𝑒

−‖𝑥−𝑦‖2

2𝜎2  
(4.25) 

   𝐾(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝑘𝑥 ∙ 𝑦 − 𝛿)𝑝 (4.26) 
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5. Chapter: Cluster analysis  

5.1 Introduction 

Clustering or cluster analysis is the process of grouping similar objects 

(Hartigan, 1975; Duda, et al., 1973). Each group, called cluster, consists of objects 

(patterns) that are similar between themselves and dissimilar to objects of other groups. 

This brings up the notion of similarity. Similarity is quantified using a distance measure 

in a way so that the distance between objects of the same cluster (intra-cluster distance) 

is low and the distance between objects of different clusters (inter-cluster distance) is 

high (Murty et al, 2011). In the following figure (figure 5.1) an example of 3 clusters is 

provided to assist in the illustration of this notion. For simplicity reasons two 

dimensional data are considered, where each pattern is represented by a point in the two 

dimensional space. 

 

Figure 5.1: Example of 3 clusters in the 2D space (Murty et al, 2011) 

 

In contrast to the supervised learning problem, where the labels of the data are 

known, clustering is an unsupervised learning problem. This means that it does not 

require the objects to be labeled in order to assign a new object to a cluster. Clustering 

has applications in many areas; biometrics, bioinformatics, document analysis and 

recognition, information retrieval, remote data analysis, target recognition and data 

mining (Murty et al, 2011). 
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5.2 Basic Steps in Clustering 

The basic steps of the clustering procedure are illustrated in the Figure 5.2:  

           

Figure 5.2: The basic stages in clustering 

 

1. Feature Extraction/Feature Selection: As in supervised learning an object 

is represented by a set of features. A pattern is the representation of an object by the 

values taken by the features. Features must be properly selected in order to encode as 

much information as possible depending on the classification problem.  

2. Definition of an appropriate similarity measure: A distance measure is 

the metric used to compute the similarity between pattern representations. Patterns that 

are more similar are closer to each other and thus they have smaller distance. Some of 

the most commonly used distance measures are presented in section 5.3.1. 

3 Selection of the clustering algorithm and using it in order to generate a 

partition of the clusters. The most common clustering algorithms are described in 

section 5.3 

 

5.3 Clustering algorithms 

A clustering algorithm is a learning procedure that tries to identify the specific 

characteristics of the clusters underlying the data set (Theodoridis et al, 2009). There is 

a wide variety of clustering algorithms. A common distinction between clustering 

algorithms is based on whether the partitions that are generated are overlapping or not. 

In this context, there is the distinction between hard and soft clustering paradigms. 

Examples of hard clustering algorithms are the “hierarchical clustering algorithms”, 

where a nested sequence of partitions is generated, and the “partitional clustering 

algorithms” where a partition of the given data is generated. Soft clustering algorithms 

are based on fuzzy sets, rough sets, artificial neural networks, or evolutionary 
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algorithms, specifically genetic algorithms (Murty et al, 2011). In soft clustering, each 

object belongs to a cluster with some probability, whereas in hard clustering an object 

either belongs to a cluster or not.  

5.3.1 Distance measures 

The results of the clustering algorithms may depend on the distance measure that 

is used. A distance measure should have the following properties (Murty et al, 2011): 

 Positive reflexivity 𝑑(𝑥, 𝑥) = 0 

 Symmetry 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

 Triangular inequality 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

The most common distance measure that is used in clustering algorithms is the 

squared Euclidean distance. Assuming two M-dimensional points 𝑥 = (𝑥𝑘) and 𝑦 =

(𝑦𝑘), the squared Euclidean distance can be defined as follows: 

 𝑑(𝑥, 𝑦) = ∑|𝑥𝑘 − 𝑦𝑘|
2

𝑀

𝑘=1

  (5.8) 

Another common distance measure, the Euclidean distance is defined by the 

equation 5.2: 

 𝑑2(𝑥, 𝑦) = √∑|𝑥𝑘 − 𝑦𝑘|
2

𝑀

𝑘=1

  (5.9) 

The Cityblock distance, also known as the Manhattan distance, is commonly 

used as well and is defined by the equation 5.3: 

 𝑑1(𝑥, 𝑦) = ∑|𝑥𝑘 − 𝑦𝑘|

𝑀

𝑘=1

  (5.10) 
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The Minkowski p-metric is a generalisation of the aforementioned distances and 

it is defined as in the equation 5.4 (De Amorim and Mirkin., 2012): 

 𝑑𝑝(𝑥, 𝑦) = (∑|𝑥𝑘 − 𝑦𝑘|
𝑝

𝑀

𝑘=1

)

1
𝑝

  (5.11) 

From this equation (Eq. 5.4), it is obvious that the Minkowski p-metric is 

equivalent to the Cityblock distance, if p=1 and to the Euclidean distance if p=2. For 

p∞;the distance metric is called Chebyshev or Maximum metric and it takes the 

following form (Eq. 5.5): 

 𝑑∞(𝑥, 𝑦) = 𝑚𝑎𝑥𝑘=1,…𝑀|𝑥𝑘 − 𝑦𝑘|   (5.12) 

 

5.3.2 Hierarchical Clustering 

Hierarchical Clustering algorithms build a hierarchy of data partitions that is 

represented using a tree structure, called dendrogram. These tree structures allow a root 

cluster having branch clusters each of which may later become a root cluster and 

generate more branches. Hierarchical algorithms are further subdivided into 

agglomerative and divisive (Murty et al, 2011; Theodoridis et al, 2009). 

Agglomerative algorithms: these algorithms produce a sequence of clusterings of 

decreasing number of clusters at each step using a bottom-up approach. They start with 

having 𝑛 singleton clusters, each one containing one of the 𝑛 patterns of the input data 

set. At each step, the most similar pair of clusters is merged to reduce the size of the 

partition by one. An important property of agglomerative algorithms is that once two 

patterns are placed in the same cluster at a level, they remain in the same cluster at all 

subsequent levels.  

Divisive algorithms: they use a top-down strategy for generating the partitions of 

the data. They start with a single cluster having all the 𝑛 patterns and at each successive 

step, a cluster is split. This process continues until there is only one pattern in a cluster 

or a collection of singleton clusters. Similarly with the agglomerative algorithms, once 
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two patterns are placed in two different clusters at a level, they remain in different 

clusters at all subsequent levels. 

Decisions concerning which clusters should be combined or whether a cluster 

should be split require a measure of similarity between patterns. This is achieved by 

using an appropriate distance measure and a linkage criterion. The former is used in 

order to specify the similarity between two patterns and so creating the clusters. The 

later specifies the similarity between pairs of patterns in order to merge or split clusters 

in the second place, i.e. it constitutes a distance measure between clusters. 

The most commonly used linkage criteria between two sets of observations A 

and B are the following (De Amorim, 2011): 

Single linkage clustering: it defines the distance between two clusters as the 

minimum possible. This method finds the two patterns, one of each cluster, that are 

closest to each other. The following equation gives the distance between clusters X and 

Y that is given by the distance between the two closest entities 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌  in the two 

clusters. 

 𝐷(𝑋, 𝑌) = 𝑚𝑖𝑛
𝑥 ∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)   (5.13) 

Maximum or full linkage clustering: This method finds two entities 𝑥 ∈ 𝑋, 𝑦 ∈

𝑌 that are the farthest from each other.  

 𝐷(𝑋, 𝑌) = 𝑚𝑎𝑥
𝑥 ∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)   (5.14) 

 

5.3.3 Partitional Clustering  

Partitional clustering algorithms are based on the optimisation of an objective 

function 𝐽. This is usually done in an iterative way until a local optimum of 𝐽 is 

determined. A major advantage of partitional clustering is the fact that iterative 

optimisation may gradually improve clusters (Berkhin, 2006). 
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This category includes probabilistic algorithms, like the Expectation–

maximization algorithm as well as centroid-based algorithms like the k-means 

algorithm and all its variations, e.g. k-medoids, Fuzzy c-means and k-means++. 

5.4 K-means Clustering 

K-means originated independently in the works of MacQueen (MacQueen,. 

1967) and Ball and Hall (Ball et al, 1967) and it is the most popular clustering algorithm 

that produces non-overlapping clusters. It is said to be more efficient than the 

hierarchical algorithms (Manning et al., 2008). 

K-means partitions a dataset of N objects Y = {y1, y2, … , yN}, each represented 

by M features, into K non-empty and non-overlapping clusters S = {S1, S2, … , SK}. Each 

cluster is represented by its gravity centre; an M-dimensional vector called centroid; 

 ck ∈ C = {c1, c2, … , cK}.  

The algorithm iteratively minimizes the following criterion, which represents the 

sum of the within-cluster distances to centroids.  

 𝑊(𝑆, 𝐶) = ∑∑ 𝑑(𝑦𝑖, 𝑐𝑘)

𝑖∈𝑆𝑘

𝐾

𝑘=1

  (5.15) 

where d(yi, ck) is the dissimilarity metric between yi and its respective centroid 

ck.  

This criterion can also be written as follows: 

 𝑊(𝑆, 𝐶) = ∑∑∑𝑠𝑖𝑘

𝑀

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

𝑑(𝑦𝑖𝑗, 𝑐𝑘𝑗)   (5.16) 

where yij is the value of the 𝑗th feature at entity i and 𝑠𝑖𝑘 is a variable 

representing the binary cluster membership such that 𝑠𝑖𝑘 = 1 if i ∈ sik and sik = 0 

otherwise. 
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In most cases the dissimilarity measure is chosen to be the Euclidean distance. 

Then the aforementioned criterion can be rewritten as follows: 

 𝑊(𝑆, 𝐶) = ∑∑∑𝑠𝑖𝑘

𝑀

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

(𝑦𝑖𝑗 − 𝑐𝑘𝑗)
2   (5.17) 

In other words, the goal is to find values for the {𝑠𝑖𝑘} and the {𝑐𝑘𝑗} so as to 

minimise the cost function 𝑊. This can be done through an iterative procedure in which 

each iteration involves two successive steps corresponding to successive optimisations 

with respect to the {𝑠𝑖𝑘} and the {𝑐𝑘𝑗}. At first, some initial values for the centroids 

{𝑐1, 𝑐2, … , 𝑐𝐾} are chosen. Then in the first step, the cost function 𝑊 is minimised with 

respect to the {𝑠𝑖𝑘}, keeping the centroids {𝑐1, 𝑐2, … , 𝑐𝐾} fixed. In the second step, 𝑊 is 

minimised with respect to the centroids {𝑐1, 𝑐2, … , 𝑐𝐾} keeping {𝑠𝑖𝑘}, fixed. This two-

stage optimisation is repeated until convergence (Bishop, 2006).  

The K-means algorithm can be defined more formally in four steps (Mirkin, 

2005): 

1. Initialization: Define the value of the number of clusters K and initialize 

randomly the centroids {c1, c2, … , cK} also referred as seeds. 

2. Cluster update: Given the K centroids, assign the N entities to their respective 

centroid using the minimum distance rule. 

3. Stop condition: Check whether there is a change in the formation of the clusters. 

If there are changes then go to step 4, else, the clustering task is assumed to be 

finished and the generated partitions of clusters S = {S1, S2, … , SK} are final. 

Other possible stop conditions are a limitation in the number of iterations or a 

threshold for the objective function.  

4. Centroids update: Update the centroids of each cluster to the centre of gravity of 

the cluster. If the squared Euclidean distance is used as distance metric, the 

centroids are set equal to the means of their clusters.  
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5.5 Finding the initial centroids 

Finding the initial centroids and the number of clusters 𝐾 automatically are 

among the most desirable properties of clustering algorithms (Callan, 2003). The 

problem of finding the number of clusters 𝐾 and the centroids has been widely 

addressed in literature, with the “intelligent K-means” (iK-means) method (Mirkin, 

2005; Callan, 2003) being one of the most popular.  

Intelligent K-Means utilizes the so-called anomalous clusters that are found 

before running the K-Means itself. Anomalous clusters are extracted one-by-one until 

no unclustered patterns remain. At the end, the centroids of the largest anomalous 

clusters are used to initialize K-Means. Each of the anomalous clusters is built by 

taking, as its initial centroid, the entity that is farthest away from a pre-specified 

‘‘reference point’’. Then the anomalous cluster is filled in by the entities that are nearer 

to it than to the reference point, which is iteratively updated by updating the centre of 

the anomalous cluster in the manner of K-Means itself, until the cluster stops changing. 

The resulting anomalous cluster is removed from the dataset, and the procedure is 

repeated with the reference point unmoved. When all entities have been clustered in this 

way, the centroids of the non-singleton anomalous clusters are used to both set 𝐾 and 

initialize K-Means. If there is no information regarding the reference point then it is set 

to be the central point of the dataset that minimizes the summary distance to all the data 

entities. 

 

Figure 5.3: Anomalous pattern clustering (Mirkin, 2005) 
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Formally the anomalous pattern algorithm can be defined in the following stages 

(Mirkin, 2005): 

1. Pre-processing: Specify a reference point 𝑎. If there is no information regarding 

the reference point, it is set to be the central point of the dataset that minimizes 

the summary distance to all the data entities.  

2. Initial Setting: Take as initial centroid 𝑐, the entity that is farthest away from the 

pre-specified reference point.  

3. Cluster update: Create a cluster S, of entities that are closer to 𝑐 than to 𝑎. An 

entity 𝑦𝑖 should be assigned to S if 𝑑(𝑦𝑖, 𝑐) < 𝑑(𝑦𝑖, 𝑎) . 

4. Centroid update: Calculate the central point of the cluster S, 𝑐′ and check 

whether it differs from the previous centroid c. If 𝑐′ and 𝑐 differ update the 

centroid by assigning 𝑐 ← 𝑐′and return to step 3. 

5. Output: Return the list S of entities and centroid s.  

Like K-Means itself, the Anomalous pattern alternately minimizes a criterion, 

 
𝑊(𝑆, 𝑐) =∑𝑑(𝑦𝑖

𝑖∈𝑆

, 𝑐) + ∑ 𝑑(𝑦𝑖 , 𝑎)  (5.18) 

The intelligent K-means algorithm uses an anomalous pattern iteratively to get 

one cluster at a time and can be formally defined in the following steps (Mirkin, 2005): 

1. Setting: Specify the cluster discarding threshold used to remove all anomalous 

clusters whose size is less than the threshold, and standardize the dataset. 

2. Anomalous pattern: Apply the anomalous pattern algorithm using the centre of 

gravity of the whole dataset as a reference point. The position of this centre is 

not changed during any part of the algorithm. 

3. Control: Stop if all entities are clustered, otherwise remove the anomalous 

cluster found in the previous step from the dataset, and return to step 2. Other 

possible stopping conditions exist, like the reach of a pre-specified number of 
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clusters. 

4. Discard of small clusters: Remove these clusters that are smaller than the pre-

specified threshold, defined in the first step. If there are clusters with only one 

element (singletons), there may be errors in the data, possibly data entry 

mistakes.  

5. K-Means: Run K-Means using the found centroids, and the full original dataset.  

 

5.6 Feature Weighting in K-means 

One of the basic drawbacks of the K-means algorithm is that it treats all features 

equally and thus it may have difficulties in clustering data with irrelevant, or noise 

features. This is not desirable in many applications, such as data mining, where data 

often contains a large number of diverse variables. In this section some feature 

weighting algorithms based on K-means are described.  

 

5.6.1 Weighted K-means 

Chan, Huang and their colleagues (Chan et al., 2004; Huang et al, 2005; Huang 

et al, 2008) developed the Weighted K-means algorithm (WK-means) by modifying Eq. 

5.9 in order to assign weights to features based on their importance in clustering.  

The criterion of the K-means algorithm is altered as follows:  

 𝑊(𝑆, 𝐶, 𝑤) = ∑∑∑𝑠𝑖𝑘

𝑀

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

𝑤𝑗
𝛽
(𝑦𝑖𝑗 − 𝑐𝑘𝑗)

2   (5.19) 

The weights 𝑤𝑗 are non-negative and they sum to unity, such as ∑ 𝑤𝑗 = 1𝑀
𝑗=1 . 

The exponent β is a parameter defined by the user and expresses the degree of the 

weights' contribution to the distance. Thus, the real values of the weights depend on the 
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parameter β which can take values such that 𝛽 < 0 or 𝛽 > 1 (Chan et al., 2004; Huang 

et al, 2005; Huang et al, 2008).  

WK-means adds an extra step to the standard K-means algorithm in order to 

update the feature weights based on the current partition of the data. The weights are 

updated according to the following equation: 

 
𝑤𝑗 =

1

∑ [
𝐷𝑗
𝐷𝑢
]

1
(𝛽−1)⁄

ℎ
𝑢=1

  
(5.20) 

where 

 𝐷𝑗 =∑∑𝑠𝑖𝑘(𝑦𝑖𝑗 − 𝑐𝑘𝑗)
2

𝑁

𝑖=1

𝐾

𝑘=1

  (5.21) 

is the sum of the within-cluster distances of feature j and h is the number of 

features for which 𝐷𝑗 ≠ 0.  

Lower weights are assigned to features that have larger 𝐷𝑗 , thus reducing the 

impact of noisy or insignificant features in the clustering process.  

The distance measure is altered in order to take into consideration the weights 

introduced in this algorithm. The distance between the 𝑗𝑡ℎ feature of an entity 𝑦𝑖𝑗 and 

the centroid 𝑐𝑘 is given by; 

 𝑑(𝑦𝑖, 𝑐𝑘) =∑𝑤𝑗
𝛽
|𝑦𝑖𝑗 − 𝑐𝑘𝑗|

2
𝑀

𝑗=1

  (5.22) 

The equation 5.13 is not applicable in two cases: 

i) When 𝐷𝑢 = 0 for  𝑢 ∈ [1,𝑀]. To solve the issue of dividing by zero it is 

suggested adding a non-negative constant to each item in the definition of Du. Such a 
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constant might be the average dispersion of all features in the dataset (Chan et al., 2004; 

Huang et al, 2005; Huang et al, 2008). 

ii) When 𝛽 = 1. In this case the WK-means criterion of equation 5.12 is 

minimised by setting 𝑤𝑗∗ = 1 where 𝑗∗ represents the feature with the smallest sum of 

the within cluster variance. All other feature weights are set equal to 0.  

Huang et al. (Chan et al., 2004; Huang et al, 2005; Huang et al, 2008) noticed 

that a feature may have greater relevance within one cluster, than within another one. 

For this reason they extended the criterion of Eq. 5.12 so that the feature weights 

become cluster-specific. For this purpose, some small modifications should take place 

to 𝑤𝑗  and 𝐷𝑗  These are changed to 𝑤𝑘𝑗 and 𝐷𝑘𝑗, such as 

 
𝑤𝑘𝑗 =

1

∑ [
𝐷𝑘𝑗
𝐷𝑘𝑢

]

1
(𝛽−1)⁄

ℎ
𝑢=1

  
(5.23) 

and 

 𝐷𝑘𝑗 =∑𝑠𝑖𝑘(𝑦𝑖𝑗 − 𝑐𝑘𝑗)
2

𝑁

𝑖=1

  (5.24) 

where k=1,...K  

WK-means algorithm inherits some of the insufficiencies of the K-means 

algorithm. These include the random initialisation of the centroids that do not guarantee 

an optimal solution as well as the random selection of the initial weights, that may not 

represent well the true significance of the features. 

 

5.6.2 Intelligent Weighted K-means 

One of the first approaches in extending WK-means was the integration of the 

anomalous cluster initialisation approach (Mirkin, 2005). De Amorim suggested that the 
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initialization step can be further extended to find initial weights for the features (De 

Amorim, 2011). The new algorithm is called intelligent Weighted K-means (iWK-

means). The differences in the initialisation part of the iWK-means, compared to the IK-

means algorithm, are: 

 in the initialisation step the feature weights are set equal to 1 𝑀⁄ , ensuring 

that they sum up to unity. 

 the distance measure that is used is the weighted distance metric (eq. 5.15) 

 in the cluster update step there is an extra step of weight updating using eq. 

5.13 

After the initial clusters, centroids and weights have been found, the WK-means 

algorithm is ran.  

 

5.6.3 Minkowski Weighted K-means 

The WK-means algorithm was further extended by De Amorim and Mirkin in 

(De Amorim and Mirkin., 2012) by changing the distance measure from the squared 

Euclidean distance to the Minkowski 𝛽-metric. 

 𝑑𝛽(𝑦𝑖, 𝑐𝑘) =∑𝑤𝑗
𝛽
|𝑦𝑖𝑗 − 𝑐𝑘𝑗|

𝛽
𝑀

𝑗=1

  (5.25) 

In this way, the criterion of Equation 5.12 is modified to the Minkowski 

Weighted K-means (MWK-means) criterion: 

 

𝑊𝛽(𝑆, 𝐶, 𝑤)     = ∑∑∑𝑠𝑖𝑘

𝑀

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

𝑤𝑗
𝛽
|𝑦𝑖𝑗 − 𝑐𝑘𝑗|

𝛽
   

= ∑∑∑𝑠𝑖𝑘

𝑀

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

|𝑤𝑗𝑦𝑖𝑗 − 𝑤𝑗𝑐𝑘𝑗|
𝛽
  

(5.26) 
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The difference between the criterions (5.12) and (5.19) is the change of the 

distance exponent from 2 to 𝛽, thus referring to the 𝛽-power of the Minkowski 𝛽-metric 

between the rescaled points 𝑤𝑗𝑦𝑖𝑗 and rescaled centroids 𝑤𝑗𝑐𝑘𝑗.  

The differences of MWK-means algorithm compared to the WK-means 

algorithm are: 

 in the initialisation step the value of the Minkowski exponent 𝛽 is also 

selected, such as 𝛽 ≥ 1 

 the distance measure used is the 𝛽-power of the Minkowski 𝛽-metric (eq. 

5.18) 

 the centroid that is calculated as the average of the cluster, it is called "the 

Minkowski centre". The new centroid is found by finding a real value 𝑐 that 

minimizes the 𝛽-power of the Minkowski distance to the cluster's entities 

according to the equation: 

 𝑑(𝑐) = ∑ 𝑤𝑗
𝛽
|𝑦𝑖𝑗 − 𝑐|

𝛽

𝑖∈𝑆𝑘

  (5.27) 

This problem is solved with the use of a steepest descent algorithm and it 

is described below.  

 in the weight update step the feature weights are computed according to the 

equation: 

 
𝑤𝑗 =

1

∑ [
𝐷𝑗𝛽
𝐷𝑢𝛽

]

1
(𝛽−1)⁄

ℎ
𝑢=1

  
(5.28) 

where 

 𝐷𝑗𝛽 =∑∑𝑠𝑖𝑘|𝑦𝑖𝑗 − 𝑐𝑘𝑗|
𝛽

𝑁

𝑖=1

𝐾

𝑘=1

  (5.29) 
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and ℎ the number of features where 𝐷𝑗 ≠ 0.  

The algorithm proposed by De Amorim (De Amorim, 2011) in computing the 

Minkowski centre is illustrated in the following paragraphs. First, it is noted that each 

feature is a set of reals 𝑦𝑖, 𝑖 = 1,2, … ,𝑁𝑘, where 𝑁𝑘 is the number of entities in the 

cluster 𝑘. Also, the Minkowski centre is a convex function of 𝑐 in the space of 𝛽 ≥ 1 

and thus it can be minimised using a steepest-descent procedure. For 𝛽 = 1, the 

minimum of equation 5.20 is known to be the median of 𝑦𝑖, and thus the minimisation 

method only needs to be applied in cases where 𝛽 > 1. 

The steepest-descent algorithm used to find the Minkowski's centre of a set {𝑦𝑖} 

of reals so that 𝑦1 ≤ 𝑦2… ≤ 𝑦𝑁𝑘.  

1. Initialisation: Initialise with 𝑐0 = 𝑦𝑖∗ , the minimiser of 𝑑(𝑐) on the set {𝑦𝑖} and a 

positive learning rate 𝜆 that can be taken, as approximately 10% of the 

difference 𝑦𝛮𝜅 − 𝑦1. 

2. Update 𝑐1: Compute 𝑐0 − 𝜆𝑑′(𝑐0)  and take it as 𝑐1 if it falls within the interval 

[𝑦𝑖′,𝑦𝑖′′]. Otherwise, decrease λ by approximately 10%, and repeat the step. 

3. Stop condition: Test whether 𝑐1 and 𝑐0 coincide with a pre-specified threshold. 

If they do, halt the process and output 𝑐1 as the optimal value of c. If not, move 

on to the next step. 

4. Update 𝑐0: Test whether 𝑑(𝑐1) ≤ 𝑑(𝑐0). If it is, set 𝑐0 = 𝑐1 and 𝑑(𝑐0) = 𝑑(𝑐1) 

and go to step 2. If not, decrease 𝜆 a by approximately 10%, and go to step 2 

without changing 𝑐0. 

Finally, the MWK-means can be further extended so that features are cluster 

specific as in (Chan et al., 2004; Huang et al, 2005; Huang et al, 2008). Similarly to the 

WK-means, 𝑤𝑗  and 𝐷𝑗𝛽  are changed to 𝑤𝑘𝑗  (Eq. 5.16) and 𝐷𝑘𝑗𝛽,  

where 
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 𝐷𝑘𝑗𝛽 =∑𝑠𝑖𝑘|𝑦𝑖𝑗 − 𝑐𝑘𝑗|
𝛽

𝑁

𝑖=1

  (5.30) 

and k=1,...K 

5.6.4 Intelligent Minkowski Weighted K-means 

Intelligent Minkowski Weighted K-means (iMWK-means) is an algorithm 

developed by De Amorim and Mirkin. (De Amorim and Mirkin., 2012) resulting by the 

use of the iK-means in the Minkowski space. The iMWK-means algorithm uses the 

Intelligent K-means to find the anomalous clusters and the Minkowski distance to find 

the initial centroids and weights (De Amorim and Komisarczuk, 2012). The difference, 

compared to the iK-means, in the initialisation step is that the origin is now the 

Minkowski centre of the dataset. 
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6. Chapter: Dataset and Feature Extraction 

6.1 Dataset 

The dataset used in this thesis comes from the research of (Temmermans et al., 

2013; Temmermans, 2014; Willekens et al., 2013) and it consists of 50 benign and 50 

malignant biopsy samples. 2034 calcifications were extracted from the malignant 

samples and 1651 calcifications from the benign samples (Temmermans, 2014).  

For the extraction of biopsy samples minimally invasive vacuum-assisted 

stereotactic breast biopsies were performed in the Radiology department of Brussels' 

university hospital (UZ Brussel) with the Mammotome Biopsy Stem (Ethicon Endo-

Surgery (EES), Inc., Johnson & Johnson, Langhorne PA, Pennsylvania, USA) 

(Temmermans et al., 2013; Temmermans, 2014; Willekens et al., 2013; Papavasileiou 

et al., 2015). 

 

Figure 6.1: Example of extracted tissue samples from a mammotome core biopsy 

(HCMA,2014) 

After the biopsy, the samples were radiographically scanned in order to 

confirm the extraction of some of the target microcalcifications (MCs) (Liberman et 

al., 1994). Subsequently, the calcifications were stored in blocks of paraffin and they 

were anatomopathologically investigated. During the anatomopathological 

investigation, the pathologist cuts slices from these blocks and makes a diagnosis 

based on the nature of the identified cells. Then the blocks were scanned using X-ray 

micro-computed tomography (micro-CT) (Temmermans, 2014). Micro-CT is a non-

invasive high-resolution imaging method, which has been primarily used for bone 
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imaging studies and material analysis.  

The 3D images that were generated (Temmermans et al., 2013; Temmermans, 

2014; Willekens et al., 2013) had a voxel-width of 8.66 μm. Some examples of the 

created 3D renderings are shown in the figures below (6.2-6.4): 

 

Figure 6.2: Typical sphere-like benign calcifications (Temmermans, 2014) 

 

 

Figure 6.3: Typical roughly shaped malignant calcifications (Temmermans, 2014) 

 

 

Figure 6.4: Pyramidal crystal shape calcifications (Temmermans, 2014) 
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6.2 Features 

The features used in this thesis come from the work of (Temmermans et al., 

2013; Temmermans, 2014; Willekens et al., 2013). The first step of feature extraction 

is the extraction of MCs from the background tissue. MCs can be extracted by using a 

thresholding operation since they are very distinguishable because of their higher 

attenuation compared to the background and the paraffin in which they are stored. 

Thresholding is followed by a connected component extraction using a 3D voxel 

connectivity of 6. Only the connected components with a size larger than 10 voxels 

are retained. In addition, an upper threshold is set corresponding with the size of a 

sphere with a diameter of 1mm which is the maximum size of a MC (Temmermans, 

2014; Papavasileiou et al., 2015).  

Assuming that the set of MCs is the following; {𝑐𝑐1, 𝑐𝑐2, … 𝑐𝑐𝑁}. Then, for 

each MC 𝑐𝑐𝑖 a volume of interest 𝛺𝑐𝑐𝑖 is determined as the bounding cuboid with an 

additional margin of 30 voxels in each direction. Subsequently, the binary mask 𝛭𝑖 

and the gray-value sub image 𝐶𝑖 are formulated as follows (Temmermans, 2014; 

Papavasileiou et al., 2015): 

 𝐶𝑖(𝑥) = 𝐼(𝑥) with 𝑥 ∈  𝛺𝑐𝑐𝑖   
(6.1) 

 𝑀𝑖(𝑥) = {
1 𝑖𝑓 𝑥 ∈  𝛺𝑐𝑐𝑖  

        0 𝑖𝑓 𝑥 ∈  𝛺𝑐𝑐𝑖/𝑐𝑐𝑖
  (6.2) 

The next step is the calculation of shape features on the MCs. Many of these 

features are based on the associated minimum volume-enclosing ellipsoid which is 

calculated using the Kachiyan algorithm (Khachiyan, 1996) and it is uniquely defined 

by its three principal axes{𝑑𝑖
(1), 𝑑𝑖

(2), 𝑑𝑖
(3)
}. 

The feature set (Temmermans, 2014; Papavasileiou et al., 2015) incorporates 

the traditionally used shape features including volume, minimum and maximum 

diameter, compactness and elongation. 

Volume  

Volume of the calcification is defined as the total amount of voxels of the 

calcification: 
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 𝐹𝑖
(1)
= ∑ Mi(x)

𝑥∈Ωcci

  (6.3) 

Surface 

Surface is defined as the number of perimeter voxels: 

 𝐹𝑖
(2)
= ∑ Si(x)

𝑥∈Ωcci

  (6.4) 

where Si is the binary mask that contains the perimeter pixel of Mi with a 3D 

connectivity of six. 

 

Surface over volume 

 𝐹𝑖
(3)
=
𝐹𝑖
(2)

𝐹𝑖
(1)

  (6.5) 

Maximum Diameter 

The maximum diameter of the minimum volume enclosing ellipsoid is 

calculated using the Kachiyan algorithm (Khachiyan, 1996): 

 𝐹𝑖
(4)
= 𝑚𝑎𝑥[𝑑𝑖

(1)
, 𝑑𝑖

(2)
, 𝑑𝑖

(3)
]   (6.6) 

Minimum Diameter 

The minimum diameter of the minimum volume enclosing ellipsoid calculated 

using the Kachiyan algorithm (Khachiyan, 1996): 

 𝐹𝑖
(5)
= 𝑚𝑖𝑛[𝑑𝑖

(1)
, 𝑑𝑖

(2)
, 𝑑𝑖

(3)
] (6.7) 

Compactness 

This feature calculates how compact a microcalcification is. The definition by 

Murphy et al is adopted (Murphy et al., 2009).  

 𝐹𝑖
(6)
=

𝐹𝑖
(1)

(𝐹𝑖
(4)
)
3 (6.8) 
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Compactness 

The feature compactness as defined by Kyongtae Bae et al (Bae et al., 2005):  

 𝐹𝑖
(7)
=

𝐹𝑖
(1)

∏ 𝑑𝑖
(𝑗)3

𝑗=1

 (6.9) 

Elongation 

The feature elongation as defined by Kyongtae Bae et al (Bae et al., 2005):  

 𝐹𝑖
(8)
=
𝐹𝑖
(4)

𝐹𝑖
(5)

 (6.10) 

In addition to these 8 shape features, 12 novel features were introduced by 

(Temmermans et al., 2013; Temmermans, 2014; Willekens et al., 2013) that capture 

the specifics of the boundary zone of the calcification. Benign calcifications are 

expected to be clearly delineated, while malignant calcifications are expected to have 

more spiculated shapes. When a calcification is clearly delineated, there will be a 

clear border between calcification and background. However, when the calcification 

is not clearly delineated, there will be a more smooth transition from calcification to 

background. Therefore, some new features were proposed by (Temmermans et al., 

2013; Temmermans, 2014; Willekens et al., 2013) that help to discriminate based 

upon this aspect. The basic idea is the comparison of the gray levels in the kernel 

region with the grey levels in the surrounding tissue. 

For this purpose, for each MC 𝑐𝑐𝑖 a distance image 𝐷𝑖 is created using the 

volume of interest 𝛺𝑐𝑐𝑖 as follows: 

 𝐷𝑖(𝑥) = 𝑚𝑖𝑛
𝑦 ∈ 𝑐𝑐𝑖

[𝑑(𝑥, 𝑦)] (6.11) 

where 𝑑(𝑥, 𝑦) represents the Euclidean distance between the voxels 𝑥 and 𝑦. 

Hence, the following boundary zones are obtained:  

 𝐵𝑖
(𝑗)
= {𝑥|𝑚𝑎𝑥[(𝑗 − 1) ∗ 𝑇, 1] ≤ 𝐷𝑖(𝑥) < 𝑗 ∗ 𝑇} 

(6.12) 

where 𝑇 represents the width of the boundary zone, and 𝑗 ∈ {1,2, … ,𝑁} is the 

index of the boundary zone. Both 𝑇 and 𝑁 were determined heuristically and set to 5 

and 3 respectively. For generalization purposes, the zone corresponding to the 
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segmented kernel of MC 𝑐𝑐𝑖 shall be denoted by 𝐵𝑖
(0)

. For each zone, 𝐵𝑖
(0)

to 𝐵𝑖
(3)

, the 

mean and standard deviation of the grey values were included as a feature. Both the 

mean and the standard deviation were expected to be higher in borders that contain 

spikes.  

 𝐹𝑖
(9)
=
∑ 𝐶𝑖(𝑥)𝑥∈𝐵

𝑖
(0)

∑ 1
𝑥∈𝐵

𝑖
(0)

= 𝜇𝑖
(0)

 (6.13) 

 
𝐹𝑖
(10)

= √
∑ (𝐶𝑖(𝑥) − 𝐹𝑖

(9)
)
2

𝑥∈𝐵
𝑖
(0)

∑ 1
𝑥∈𝐵

𝑖
(0)

= 𝜎𝑖
(0)

 
(6.14) 

 𝐹𝑖
(11) =

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(1)

∑ 1
𝑥∈𝐵

𝑖
(1)

= 𝜇𝑖
(1)

 (6.15) 

 
𝐹𝑖
(12) = √

∑ (𝐶𝑖(𝑥) − 𝐹𝑖
(9)
)
2

𝑥∈𝐵
𝑖
(1)

∑ 1
𝑥∈𝐵

𝑖
(1)

= 𝜎𝑖
(1)

 
(6.16) 

 𝐹𝑖
(13) =

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(2)

∑ 1
𝑥∈𝐵

𝑖
(2)

= 𝜇𝑖
(2)

 (6.17) 

 
𝐹𝑖
(14) = √

∑ (𝐶𝑖(𝑥) − 𝐹𝑖
(9)
)
2

𝑥∈𝐵
𝑖
(2)

∑ 1
𝑥∈𝐵

𝑖
(2)

= 𝜎𝑖
(2)

  
(6.18) 

 𝐹𝑖
(15) =

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(3)

∑ 1
𝑥∈𝐵

𝑖
(3)

= 𝜇𝑖
(3)

  (6.18) 

 
𝐹𝑖
(16) = √

∑ (𝐶𝑖(𝑥) − 𝐹𝑖
(9)
)
2

𝑥∈𝐵
𝑖
(3)

∑ 1
𝑥∈𝐵

𝑖
(3)

= 𝜎𝑖
(3)

  
(6.19) 
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 𝐹𝑖
(17) =

𝜇𝑖
(0)

𝜇𝑖
(1)
=

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(0)

∑ 1
𝑥∈𝐵

𝑖
(0)

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(1)

∑ 1
𝑥∈𝐵

𝑖
(1)

  (6.20) 

 𝐹𝑖
(18) =

𝜇𝑖
(1)

𝜇𝑖
(2)
=

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(1)

∑ 1
𝑥∈𝐵

𝑖
(1)

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(2)

∑ 1
𝑥∈𝐵

𝑖
(2)

  (6.21) 

 𝐹𝑖
(19) =

𝜇𝑖
(2)

𝜇𝑖
(3)
=

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(2)

∑ 1
𝑥∈𝐵

𝑖
(2)

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(3)

∑ 1
𝑥∈𝐵

𝑖
(3)

  (6.22) 

 𝐹𝑖
(20) =

𝜇𝑖
(0)

𝜇𝑖
(3)
=

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(0)

∑ 1
𝑥∈𝐵

𝑖
(0)

∑ 𝐶𝑖(𝑥)𝑥∈𝐵
𝑖
(3)

∑ 1
𝑥∈𝐵

𝑖
(3)

  (6.23) 
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7. Chapter: Experimental Procedure 

7.1 Ground Truth Issues 

The label "benign" or "malignant" cannot be assigned to an individual 

microcalcification (MC). Instead, the label is assigned to a MC depending on whether 

it was found in a benign or a malignant sample, after anatomopathological 

examination (Temmermans, 2014). This means that no ground truth exists for the 

actual microcalcifications (MCs). As a consequence, benign MCs may exist in 

malignant samples, and incorrectly labelled as malignant. Since the blocks are not 

analysed completely, there is a low chance that malignant cells exist in the unanalysed 

part and therefore there is a low chance of false-negatives (Grimes et al., 2001).  

In order to understand the ground truth issues that motivated in the devising of 

the algorithm described in this thesis, the following problem is illustrated. Two MCs 

are given as training examples to a classifier. One of these MCs is benign and was 

incorrectly classified as malignant and the other one is malignant. The MCs are 

characterized by shape features indicating benignity and malignancy, respectively. By 

introducing these training examples to a classifier, the latter learns that two different 

sets of shape features, with benign and malignant characteristics, correspond to the 

same class. As a result, there is degree of ambiguity when the classifier is asked to 

label a new instance (Papavasileiou et al., 2015). 

Figures 7.1 and 7.2 show examples of benign MCs with malignant 

characteristics and malignant MCs with benign characteristics, respectively.  

 

Figure 7.1: Benign MCs incorrectly classified as malignant (Temmermans, 2014) 
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Figure 7.2: Malignant MCs incorrectly classified as benign (Temmermans, 2014) 

 

7.2 Proposed Approach  

The ground truth problem can be bypassed if the MCs are firstly grouped 

explicitly based on their shape. By clustering MCs according to their shape-features, 

similar shapes are grouped together in clusters. This way, the classifier is trained to 

classify MCs in the correct cluster, i.e. it learns to distinguish among different shapes 

of MCs, independently of their original class labels (Papavasileiou et al., 2015). So, 

the classifier classifies objects exclusively based on their shape features and without 

any knowledge of the class label that was assigned during the histopathological 

examination. 

In order to do this an intermediate step of Clustering is introduced in the 

pipeline of the CAD system between the Feature Extraction and Classification steps. 

The CAD system's first steps of pre-processing, signal extraction and feature 

extraction remain the same as described in chapter 3. 
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Figure 7.3: Proposed approach of the CAD system 

 

7.3 Experiments  

The dataset consists of 3685 MCs, each represented by the 20 features 

described in the 6th chapter. The performance of the proposed approach is 

investigated on three sets of features: 

 the 8 shape features, 𝐹𝑖
(1)
− 𝐹𝑖

(8)
 

 the 12 boundary zone features, 𝐹𝑖
(9)
− 𝐹𝑖

(20)
and  

 the combination of both groups of features, 𝐹𝑖
(1)
− 𝐹𝑖

(20)
. 

For each of the aforementioned cases, the first step is to apply 10-fold cross 
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validation to the data. In general, in k-fold cross-validation, the original sample is 

randomly partitioned into k subsamples. One of these subsamples is used as the 

validation data for testing the model, and the remaining k − 1 subsamples are used as 

training data. The cross-validation process is then repeated k times, known as k folds, 

where each of the k subsamples are used once as data for testing. So, in the case of 10 

fold cross validation, 10 partitions of data are generated. Each partition consists of 

one set on which training is going to be applied (training set) and one set on which the 

model is going to be tested (testing set).  

Next, the training set of each of the 10 partitions is grouped in clusters. The 

following algorithms are used as clustering algorithms: 

 K-means 

 Weighted K-means 

 Intelligent Weighted K-means 

 Minkowski Weighted K-means 

 Intelligent Minkowski Weighted K-means 

In cluster analysis one of the biggest difficulties is the definition of the number 

of clusters a priori. This cannot be done in an effective way since knowing the number 

of clusters before performing the clustering itself would require knowing the structure 

of the data, which is actually the goal of the cluster analysis. From the algorithms 

described in the 5th Chapter only the IWK-means and IMWK-means algorithms 

define a way to find the ideal number of clusters. For the other clustering algorithms, 

the number of generated clusters is varied from 2 to 10, thus resulting in 9 different 

cases of clustered data. Then, in order to decide which of these sets of clusters should 

be kept, a new measure is introduced that was named “entropy”. 

This “entropy” illustrates the distribution of the number of objects belonging 

to class “Benignity” and class “Malignancy” in each cluster. Let “a” be the number of 

objects belonging to class “Benignity” and “b” the number of objects belonging to 

class “Malignancy” in a cluster. Then the entropy is defined as: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝑚𝑖𝑛(𝑎, 𝑏)

𝑚𝑎𝑥(𝑎, 𝑏)
 (7.1) 

Entropy can take values between 0 and 1. The maximum value of entropy 

(maxentropy=1) is achieved when a=b, i.e. when the numbers of objects belonging to 
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these two classes are equal. The minimum value of entropy (minentropy=0) is achieved 

when a=0 or b=0, i.e. when all the objects in this cluster belong to class “M” or class 

“B” respectively. The following figure illustrates an approximation of the way the 

entropy is distributed. 

 

Figure 7.4: Entropy's distribution 

 

Subsequently, for each of the 9 different cases of clustered data the mean 

entropy over its 10 folds is calculated. Finally, as ideal number of clusters is selected 

the clustering partition whose mean entropy is the lowest, because the lower the 

entropy of a cluster, the clearer the designation of a cluster as benign or malignant.  

Each of the clusters is characterized as benign or malignant with a certain 

probability based on this entropy and thus each object of a cluster is assigned a 

corresponding label with the same probability.  

Following in the classification step, the clustered objects are introduced to a 

classifier, either to an Artificial Neural Network or a Support Vector Machine. The 

classifier is trained based on the clustered training set to classify the objects to the 

correct cluster, i.e. to the correct shape. Next, the classifier is asked to predict the 

output cluster for each of the 10 testing sets.  

After classification, an intermediate step of binary classification is performed. 

Each of the 3685 MCs have been classified to a cluster for which the label benign or 

malignant is known. Thus each MC is assigned a corresponding label. Then, this label 

is compared to the original ground truth and the percentage of "correctly" classified 

objects is calculated.  

a=0 or  

b=0 

a=3685 or  

b=3685 
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The final aim is the characterization of a sample as benign or malignant. For 

this purpose, the binary classification results for individual MCs are adopted and a 

threshold on the amount of objects classified as malignant is defined. Therefore, a 

sample is classified as malignant if the number of MCs that have been characterized 

as malignant exceeds a threshold. Otherwise, the sample is considered benign. By 

varying the threshold, a higher sensitivity can be achieved in return of a lower 

specificity and vice versa (Temmermans, 2014).  

Another approach for the characterization of the sample is by weighting each 

MC with a weight linear to the probability of the cluster to which the MC belongs. 

Since each MC is assigned a cluster label and each cluster has a probability of being 

malignant, the MC's cluster probability can now be used as a weight when 

determining the sample's class (Papavasileiou et al., 2015). In this way, the MCs that 

belong to a cluster with a high probability of being benign or malignant (low entropy) 

will be assigned a higher weight compared to the MCs of clusters with lower 

probability. Thus, the MCs that belong to clusters which are clearer characterized as 

benign or malignant will contribute more in the characterization of the sample. Then, 

the threshold technique is used as described previously.  

Finally, the results of the sample's classification are compared to the outcome 

of the anatomopathological examination. Thus, the accuracy, sensitivity and 

specificity of the correctly classified samples are calculated.  

Accuracy is defined as the percentage of correctly classified objects and it 

indicates the ability of the system to make correct predictions on unknown data. The 

Accuracy is defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 +  𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

where TP: True Positives, FP: False Positives, TN: True Negatives, FN False 

Negatives.  

Sensitivity or true positive rate is defined as the percentage of correctly 

classified malignant samples and it indicates the ability of the system to make correct 

diagnosis. Sensitivity is defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦    =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
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Specificity is defined as the percentage of correctly classified benign samples 

and it indicates the ability of the system to correctly identify the benign cases. It is 

defined as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦    =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

The approach described in this section introduces two novelties. Firstly, the 

issues that have emerged concerning each MC's ground truth are avoided. Secondly, 

there is a shift from binary classification to a probability-based classification.  
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8. Chapter: Results and Discussion 

In this chapter the results of the experiments described in Chapter 7 are 

presented. At first, the binary classification results are presented and then the results 

of sample's classification. The results concern the experiments that were conducted 

with the application of the following combinations as far as the clustering algorithms 

and the classifiers are concerned: 

Clustering Algorithm Classifier 

K-means (Cityblock distance)  Artificial Neural Network 

K-means (Euclidean distance) Artificial Neural Network 

K-means (Cityblock distance) Support Vector Machines 

K-means (Euclidean distance) Support Vector Machines 

Minkowski Weighted K-means Artificial Neural Networks 

Minkowski Weighted K-means Support Vector Machines 

As discussed in Chapter 7, the performance of the new approach is 

investigated on 3 groups of features; the 8 shape features, the 12 boundary zone 

features and on the combination of both (20 features).  

Section 8.1 presents the classification results at the microcalcification level, 

while section 8.2 presents the final results of the sample’s classification.  

 

8.1 Individual Classification Results 

At the microcalcification level the label assigned to an individual MC is 

compared to the original ground truth and thus the accuracy of the binary 

classification is obtained. In the following tables (8.1-8.3), the mean and the standard 

deviation of the accuracy for different cases of "ideal" number of clusters are 

illustrated. It is reminded that the number of clusters is obtained according to the 

criterion of minimum entropy as this described in Chapter 7.  

In Tables 8.1 and 8.2 the results of accuracy for clustering with K-means with 

two different distance measures; squared Euclidean distance and Cityblock distance, 

respectively, are presented.  
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Table 8-1: Results of accuracy for squared Euclidean distance using K-means as 

clustering algorithm, for features 1-8 (shape features), 9-20 (boundary zone features) 

and for the ensemble of all features. 

 7 8 9 10 

 ANN SVM ANN SVM ANN SVM ANN SVM 

1-8 64.04 

3.10 

63.80 

2.85 

65.83 

3.47 

65.37 

3.22 

64.88 

3.16 

64.69 

3.43 

65.81 

2.42 

65.86 

2.93 

9-20 59.73 

2.22 

59.38 

1.55 

60.32 

4.01 

60.41 

4.02 

60.60 

1.48 

59.62 

1.68 

  

ALL 64.02 

2.30 

62.82 

2.47 

64.64 

2.27 

62.47 

2.11 

64.15 

2.77 

63.07 

2.59 

65.00 

2.88 

63.58 

1.89 

 

Table 8-2: Mean and standard deviation results of accuracy using K-means algorithm 

and Cityblock distance, for features 1-8 (shape features), 9-20 (boundary zone 

features) and for the ensemble of all features 

 7 8 9 10 

 ANN SVM ANN SVM ANN SVM ANN SVM 

1-8   66.21 

2.03 

65.86 

2.05 

67.14 

3.11 

67.25 

2.62 

67.38 

2.34 

67.41 

2.39 

9-20 58.62 

3.30 

58.72 

3.51 

59.35 

2.40 

59.78 

3.14 

59.73 

2.78 

60.24 

3.06 

60.65 

2.56 

60.19 

3.09 

ALL 64.10 

1.60 

62.52 

2.06 

63.80 

2.01 

62.52 

1.75 

64.53 

2.20 

63.20 

1.94 

  

 

In Tables 8.3-8.5, the results of accuracy for clustering with MWK-means and 

optimal values of 𝛽 are presented. In order to find the optimal value of 𝛽 in the 

MWK-means, the values of 𝛽 are varied such that 𝛽 ∈ [1.0,5] with steps of 0.1. Only 

the cases which resulted in higher accuracy are shown. 
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Table 8-3: Mean and standard deviation results of accuracy using MWK-means 

algorithm on the first set of shape features (Features 1-8) 

 7 8 9 10 

𝜷 ANN SVM ANN SVM ANN SVM ANN SVM 

1,7 67,19 

2,08 

67,30 

2,53 

66,51 

5,00 

66,43 

4,14 

67,90 

2,26 

68,79 

2,51 

  

1,9 

 

 67,35 

2,24 

67,87 

2,09 

68,03 

2,17 

68,01 

2,41 

68,03 

1,96 

67,98 

1,97 

2,3 67,46 

2,62 

67,79 

2,18 

67,35 

2,60 

67,11 

2,05 

67,65 

2,28 

65,65 

3,62 

  

2,7 67,08 

2,26 

67,11 

2,58 

67,55 

3,28 

67,44 

3,03 

67,49 

2,63 

67,63 

2,19 

65,81 

4,59 

67,03 

3,59 

2,8 67,52 

1,58 

67,60 

1,30 

67,49 

1,88 

67,35 

2,41 

67,19 

1,99 

67,49 

2,09 

64,83 

5,88 

66,78 

1,86 

3,1 66,38 

2,93 

66,13 

2,49 

66,32 

3,95 

67,08 

3,34 

66,14 

1,83 

66,43 

2,19 

67,38 

2,21 

66,83 

2,23 

Table 8-4: Mean and standard deviation results of accuracy using MWK-means 

algorithm on the second set of boundary zone features (Features 9-20) 

 7 8 9 10 

𝜷 ANN SVM ANN SVM ANN SVM ANN SVM 

1,9 

 

 58,7 

2,59 

58,64 

2,92 

58,56 

2,61 

57,99 

3,27 

58,91 

1,79 

59,32 

2,47 

2 57,70 

3,71 

59,97 

4,20 

58,86 

2,72 

57,88 

3,40 

58,86 

2,58 

58,84 

2,74 

58,37 

2,79 

59,03 

3,07 

4,7 59,59 

1,91 

59,97 

2,03 

60,93 

3,89 

59,38 

3,58 

61,06 

2,69 

60,98 

2,24 

59,92 

2,84 

59,81 

2,69 

4,8 58,57 

3,06 

57,85 

2,95 

60,19 

2,98 

60,24 

3,15 

61,14 

2,50 

61,41 

1,90 

  

4,9 60,32 

2,92 

60,08 

3,03 

59,62 

2,10 

59,65 

1,47 

60,35 

2,46 

60,70 

2,42 

61,19 

2,59 

61,30 

3,73 

Table 8-5: Mean and standard deviation results of accuracy using MWK-means 

algorithm on both sets of features (Features 1-20) 

 7 8 9 10 

𝜷 ANN SVM ANN SVM ANN SVM ANN SVM 

1,7 66,05 

2,73 

64,99 

3,14 

66,38 

2,99 

65,37 

3,36 

66,76 

2,74 

66,16 

3,49 

64,19 

4,12 

64,64 

4,57 

1,9 

 

 66,47 

2,05 

64,80 

1,55 

65,54 

1,50 

64,50 

2,11 

66,87 

2,09 

65,35 

1,57 

2,1 64,48 

2,48 

63,53 

1,95 

64,78 

2,21 

63,15 

2,64 

66,32 

2,57 

65,08 

2,47 

65,51 

2,51 

63,20 

2,70 
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8.2 Sample's Classification Results 

In this section the best results of the sample's classification are presented. As 

discussed in chapter 7, two approaches were applied on the sample’s classification; 

the one where the MC's cluster probability is used as a weight and the other where 

this weight is not taken into account.  

Table 8-6: Results of sample's classification accuracy without taking into account the 

cluster's probability, for features 1-8 (shape features), 9-20 (boundary zone features) 

and for the ensemble of all features 

 Kmeans-sqEuclidean Kmeans- Cityblock MWKmeans 

 Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 

1-8 61.6 98.1 21.3 71.7 80.8 61.7 62.6 100 21.3 

9-20 68.7 92.3 42.6 60.6 94.2 23.4 64.6 94.2 31.9 

ALL 70.7 84.6 55.3 60.6 76.9 42.6 65.7 90.4 38.3 

 

 
(a)      (b) 

 
(c)       

Figure 8.1: Accuracy (blue line), sensitivity (green line) and specificity (red line) for 

an increasing threshold (from 10 to 100 percent), for K-means with squared 

Euclidean distance and (a) shape features, (b) boundary zone features, (c) the 

ensemble of all features (non-weighted sample classification) 
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(a)      (b) 

 

(c)       

Figure 8.2: Accuracy (blue line), sensitivity (green line) and specificity (red line) for 

an increasing threshold (from 10 to 100 percent), for K-means with Cityblock 

distance and (a) shape features, (b) boundary zone features, (c) the ensemble of all 

features (non-weighted sample classification) 

 

Table 8-7: Results of sample's classification accuracy taking into account the cluster's 

probability, for features 1-8 (shape features), 9-20 (boundary zone features) and for 

the ensemble of all features 

 Kmeans-sqEuclidean Kmeans- Cityblock MWKmeans 

 Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 

1-8 64.6 98.1 27.7 72.7 100 42.6 64.6 100 25.5 

9-20 61.6 94.2 25.5 65.7 80.8 48.9 66.7 96.2 34.0 

ALL 69.7 94.2 42.6 63.6 82.7 42.6 63.6 96.2 27.7 

 

 

 

 



 Automatic Detection of Suspicious Microcalcifications in high Resolution 3-D Breast Imaging  

110 
Evgenia Papavasileiou 

 
(a)      (b) 

 
(c)       

Figure 8.3: Accuracy (blue line), sensitivity (green line) and specificity (red line) for 

an increasing threshold (from 5 to 100 percent), for K-means with squared Euclidean 

distance and (a) shape features, (b) boundary zone features, (c) the ensemble of all 

features (weighted sample classification) 
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(a)      (b) 

 
(c)       

Figure 8.4: Accuracy (blue line), sensitivity (green line) and specificity (red line) for 

an increasing threshold (from 5 to 100 percent), for K-means with Cityblock distance 

and (a) shape features, (b) boundary zone features, (c) the ensemble of all features 

(weighted sample classification) 

 

8.3 Examples of clustered microcalcifications 

In this section, some examples of clustered MCs in the generated clusters are 

illustrated. 

  

Figure 8.5: Examples of clustered MCs, characterized as malignant and benign 

during histopathological examination 
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Figure 8.6: Examples of clustered microcalcifications, both characterized as 

malignant during histopathological examination 

 

  

Figure 8.7: Examples of clustered microcalcifications, both characterized as benign 

during histopathological examination 

 

  

Figure 8.8: Examples of clustered microcalcifications, characterized as benign and 

malignant during histopathological examination 
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Figure 8.9: Examples of clustered microcalcifications both characterized as 

malignant during histopathological examination 

 

8.4 Discussion 

From Tables 8.1-8.5, it becomes obvious that ANNs and SVMs show very 

similar performance (Papavasileiou et al., 2015), despite the fact that ANNs need 

more processing time and more processing resources than SVMs. In addition, the 

legacy features (shape features 1-8) outperform the boundary zone features with 

accuracies ranging from 63.80% to 68.79% and from 57.70% to 61.41%, respectively. 

The shape features show similar performance to the ensemble of all features with 

accuracies ranging from 62.47% to 66.87%. These are opposed to (Temmermans et al, 

2013; Temmermans, 2014) where the same problem of classifying MCs was explored 

but without the pre-clustering step. In that approach the accuracy results for the shape 

features, the boundary zone features and the ensemble of all features were: from 

64.3% to 68.7%, from 60.5% to 73.2% and from 65.4% to 73.8% respectively. The 

latter reveals that the previous approach (Temmermans et al, 2013; Temmermans, 

2014)  without the pre-clustering phase showed slightly higher overall accuracy at the 

calcification level (Papavasileiou et al., 2015).  

However, it should be mentioned that these results should be interpreted 

carefully because of the ground truth issues. Moreover, the binary classification 

consists an intermediate step of calculating the final sample classification results in 

this thesis approach.  

At the sample level (Tables 8.6-8.7), the ultimate goal is the optimization of 

sensitivity, with respect to high levels of specificity and accuracy. This is because the 

percentage of correctly classified malignant samples is more important than the 
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accuracy itself. Both in the weighted and the non-weighted approach the shape 

features outperform the boundary zone features and the ensemble of features. In more 

detail, the resulted percentages for the non-weighted approach are; from 80.8% to 

100%, from 92.3% to 94.2% and from 76.9% to 90.4%. For the weighted approach 

the corresponding percentages are; from 98.1% to 100%, from 80.8% to 96.2% and 

from 82.7% to 96.2%. From the latter it is apparent that the shape features outperform 

the other feature categories.  

The best result can be reached with the weighted approach, with K-means 

using the 8 traditionally used shape features, the Cityblock distance and 9 clusters. 

This approach delivers a sensitivity of 100%, a specificity of 42,6% and an accuracy 

of 72,7% for a threshold of 15% malignant MCs per sample. This is respectively an 

improvement of 2%, 2,6% and 2,7% compared to the state of the art (Temmermans et 

al, 2013; Temmermans, 2014).  

From the figures 8.5-8.9 it becomes obvious that by clustering MCs according 

to their shape features, similar shapes are grouped together in clusters. Especially, 

from the figures 8.1 and 8.8 the ground truth issues are illustrated because even 

though these MCs share common shape features, they were not classified as the same 

(as malignant or as benign) during the histopathological examination. 
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9. Chapter: Conclusions 

Breast cancer is one of the most common types of cancers and a leading cause 

of death worldwide. Its diagnosis in an early stage may contribute to its effective 

treatment. For this purpose, many imaging modalities have been developed in order to 

find suspicious lesions and microcalcifications (MCs), i.e. tiny spots of calcium that 

may indicate malignancy. Mammography is the current standard procedure for 

imaging the breast tissue. However, the characterization of MCs as benign or 

malignant based on their appearance is a difficult task because of the superposition of 

breast tissue and thus the alteration of their real appearance. In case of suspiciousness, 

a biopsy is conducted and the extracted tissue is pathologically analysed for the 

presence of cancer cells. However, the MCs themselves are mostly not analysed and 

therefore ground truth exists for the tissue samples but not for the individual MCs. 

The current thesis presented a novel classification approach for MCs extracted 

from core biopsy tissue samples digitized using micro-CT, a high-resolution 3D 

imaging modality. The aim of this master thesis was the investigation of whether the 

introduction of a clustering step before classification could improve the sample’s 

classification results. 

By clustering MCs according to their shape-features, similar shapes are 

grouped together in clusters. This way, the classifier is trained to classify MCs in the 

correct cluster, i.e. it learns to distinguish among different shapes of MCs, 

independently of their original class labels.  

K-means and Minkowski Weighted K-means (MWK-means) were selected as 

clustering algorithms while Artificial Neural Networks (ANNs) and Support Vector 

Machines (SVMs) as classification algorithms. In this framework, MCs that share 

common shape features are grouped together in clusters. Thus, clusters of MCs with 

common shape characteristics are formed. In addition, each cluster is characterized as 

benign or malignant with a certain probability. After clustering and classification, an 

intermediate step of binary classification is performed which will then be used for the 

classification of the sample, by varying a threshold of the number of malignant MCs 

that are required in order to characterize the sample as malignant.  

The results at the classification level revealed that the two clustering 
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algorithms and the two classification algorithms statistically show similar 

performance. As far as the processing time and resources are concerned though, 

ANNs are far more demanding. In addition, the traditionally used shape features 

outperform the boundary zone features and show similar performance to the ensemble 

of all features. It should be mentioned that these results should be interpreted carefully 

because of the ground truth issues at the calcification level.  

However, the binary classification consists an intermediate step of calculating 

the final sample classification results. At the sample level the ultimate goal is the 

optimization of sensitivity. For the characterization of the sample two approaches 

were proposed; a weighted and a non-weighted. Both in the weighted and the non-

weighted approach the shape features outperform the boundary zone features and the 

ensemble of all features. The best result is reached with the weighted approach which 

delivers a sensitivity of 100%, a specificity of 42,6% and an accuracy of 72,7% for a 

threshold of 15% malignant MCs per sample. This is an improvement of 2%, 2,6% 

and 2,7% compared to the state of the art.  

The achievement of 100% of sensitivity allows to avoid the case of missing 

any malignant samples. This improvement is the result of avoiding the bias introduced 

by the fact that the ground truth is distorted, i.e. the fact that malignant samples may 

contain unsuspicious calcifications which are considered malignant during the 

learning process. With this approach some unnecessary anatomopathological 

investigations might be avoided. Furthermore, if the future 3D high-resolution 

imaging would be applicable in vivo, the number of unnecessary biopsies could be 

decreased, thus reducing any unnecessary expenses and physical and mental 

discomfort for the patient.  

The approach of this thesis introduces two novelties; the ground truth issues 

concerning each MC's class are bypassed and there is a shift from binary classification 

to a probability-weighted classification. The vast amount of clustering algorithms and 

classifiers as well as the use of various approaches for incorporating the cluster 

probabilities in the classification of the sample hold the potential to further improve 

these results. 
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