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Abstract

In this thesis, the red hot topic anomaly detection is studied, which is a subtopic
in machine learning. The company, Procera Networks, supports several broad-
band companies with IT-solutions and would like to detected errors in these
systems automatically. This thesis investigates and devises methods and al-
gorithms for detecting interesting events in diagnostics data. Events of inter-
est include: short-term deviations (a deviating point), long-term deviations (a
distinct trend) and other unexpected deviations. Three models are analyzed,
namely Linear Predictive Coding, Sparse Linear Prediction and Wavelet Trans-
formation. The final outcome is determined by the gap to certain thresholds.
These thresholds are customized to fit the model as well as possible.

Keywords: machine learning, anomaly detection, fault detection, Linear
Predictive Coding, Sparse Linear Prediction, Wavelet Transformation
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Sammanfattning

I den här rapporten kommer det glödheta området anomalidetektering stude-
ras, vilket tillhör ämnet Machine Learning. Företaget där arbetet utfördes på
heter Procera Networks och jobbar med IT-lösningar inom bredband till andra
företag. Procera önskar att kunna upptäcka fel hos kunderna i dessa system
automatiskt. I det här projektet kommer olika metoder för att hitta intressanta
företeelser i datatraffiken att genomföras och forskas kring. De mest intressanta
företeelserna är framfärallt snabba avvikelser (avvikande punkt) och färänd-
ringar äver tid (trender) men också andra oväntade mänster. Tre modeller har
analyserats, nämligen Linear Predictive Coding, Sparse Linear Prediction och
Wavelet Transform. Det slutgiltiga resultatet från modellerna är grundat på en
speciell träskel som är skapad fär att ge ett så bra resultat som mäjligt till den
undersäkta modellen.

Nyckelord: maskinlärning, anomalidetektering, feldetektering, Linear Pre-
dictive Coding, Sparse Linear Prediction, Wavelet-transformation
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Abbreviations and Variables

iff if and only if
e.g. exempl̄i grātiā ("for example")
i.e. id est ("that is")
db Daubechies (a member of the wavelet family)

ECG Electrocardiography
D Input data set

Dref Reference data set
Dtest Test data set

di Elements in D
k Number of elements in D
i Used as index for the data D, often: 1, 2, ..., k
Y Output signal from the models
yi Elements in Y
N Order of the model
j Used in iterations for the order N , often: 1, 2, ..., N
C Coefficient vector used in LPC, often: [1 c2 ... cN+1]
ci Elements in C
A Coefficient vector used in LPC, often: [α1 α2 ... αN ]
αi Elements in A
W Output signal from the moving window sum
wi Elements in W
AS The anomaly score

CWT Continuous wavelet transform
THV Threshold value
THI Threshold indicator
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Chapter 1

Introduction

The first part of this chapter gives a brief explanation of the concept anomaly
detection and some fundamental areas in mathematics, followed by some words
about Procera Networks and a discussion about the main task of this paper.

1.1 What Is Anomaly Detection?
In data mining, anomaly detection is an automatic test that, in a data set, is to
find data that in some sense does not fit to the rest of the data, i.e. is anomalous.
The nature of an anomaly is entirely defined by the context, for the versatility
of the data set can be very high. Basically, anomaly detection can be translated
into one question; is it normal or not? The answer is always that the observed
data is either normal or anomalous (depending on the context however, it is
also possible to get something in between those two). Anomaly detection as a
subject is highly related to fault detection and some might say that it is the
same thing. For ease of understanding, two examples are examined, see Figure
1.1 and Table 1.1.

Both these two scenarios show similarities in the sense that they involve
time dependent sequences of data points. They are different in other senses,

Figure 1.1: A real-valued discrete time series with a subsequence in the middle
that shows tendency of being anomalous.
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such as the type of data points which are real-valued and symbolic respectively.
The structure of the data set is also different, one long sequence contra several
sequences. In the sense of anomaly detection, the nature of the anomalies is
what differs the most, for in the first example, it is a matter of finding what
data points are anomalous, whilst in the second example, it is a matter of finding
which sequence are anomalous compared to the others.

Consider the scenario in Figure 1.1, this could be interpreted as a factory
machine producing items with corresponding measurements, after some time the
machine encountered a problem and did not produce as consistent as it should
(anomaly). However, this problem seems to be solved after some time and the
machine continued in its normal behaviour.

U1 login passwd messages pictures ... homepage logout
U2 login passwd pictures homepage ... homepage logout
U3 login passwd messages messages ... pictures logout
U4 login passwd homepage pictures ... page logout
U5 login passwd login passwd ... login passwd

Table 1.1: User one through five at the left hand side of the table and the
corresponding user commands at the right hand side. The last user shows
tendency of being anomalous

An interpretation could also be made for the scenario in Table 1.1, namely,
an intruder protection for a website with login requirements. All IP-adresses
visiting the site seems fine except for the last that could be a bot trying to hack
someones account (anomaly).

Anomaly detection is not only applicable in digital areas, it is also useful
when saving lives. For it is used in ECG devices which records the signal from
the heart beat rate and when it detects an anomaly in the signal the ECG
immediately activates.

All this is a subtopic of machine learning[7].

1.2 Background
In southern Sweden, namely Malmö, a medium sized company (approximately
200 employees) is located[1]. They are called Procera Networks Inc and are
working with IT-infrastructure improvements and customer insight care. The
headquarter is located in Los Angeles, CA, USA. Particularly, Procera is man-
aging Internet data traffic for their customer which uses Internet from different
sources, e.g. programs (computer) or applications (smart phones). A collection
name for these sources will throughout this report be ’signature’ (e.g. Skype).
All data being transferred at the customers of Procera are being stored in a
database. This database is updated every hour. Every customer uses Internet
individually from different signatures and in different amounts, therefore there
is a value stored for every signature for every hour. There are over 20,000 signa-
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Figure 1.2: A typical time series, representing data traffic for nine days. A
periodical property is visible.

tures. This results in a huge amount of data in many discrete time series. For
easier understanding, an example of an ordinary time series is shown in Figure
1.2.

1.3 Objective
The aim of the thesis is to automatically detect anomalies with as high accuracy
as possible. This is divided into two parts.

The first part is to build a number of suitable algorithms and then evaluate
these to determine which one is the most optimal in this context.

The second part is to specialize in the final algorithm, i.e. to adjust all
the parameters of that algorithm so that it will be suitable for its particular
purpose. These adjustments could of course be done in advance. But the value
of this particular assortment is that low performing algorithms can be rejected
on the spot. Otherwise, the algorithms that are close in terms of the outcome
must then be evaluated further (in detail).

1.4 Purpose
Ideally, the decisive anomaly detection framework is integrated at Procera Net-
work with ease, at their Python-based database. The reason why Procera wants
to use anomaly detection is to automatically get an overview of all the signatures
at once and see if any of them are behaving improperly. In case of misbehaviour,
a indication would be sent notifying that something is wrong. Some explana-
tions for this sudden change of behaviour could be, e.g. due to maintenance
errors, user overload or software updates not being compatible with a particular
signature. Whatever reason there is behind the change can be argued to be
of less interest in this context, but knowing about it is very valuable. Procera
would then be able to put themselves one step ahead, working closer as well as
faster with the customer. Also it creates the possibility to take care of the prob-
lem before a user eventually do. A successful accomplishment of the objective
will facilitate the manual work at Procera tremendously.

3



1.5 Problem Discussion
The constant struggle with data of this user-based category is that they all
behave differently. Signatures are used in different ways in different amounts
at different times of the day. In the data, searching for specific patterns being
connected with anomalies is not enough. This is because all problems causing
anomalies have a possibility to occur. Some of these have never happened before,
or are still unknown, therefore they are not sought for because they cannot be
found in historical data.

Some signatures are used in the same way, e.g. two games, but one of the
games has a much larger player base. This results in similar curves when only
considering shape, but very different when considering size. The curve for one
game is a rescaled version of the other. This should, therefore, not be treated
as an anomaly.

On the other hand, some signatures are not used in the same way, e.g. a
web-browser and a torrent client1. The browser transfers most of its data a
short time after every user command while the torrent client needs only a few
commands to achieve a large activity for a long period of time. Since the torrent
client is not user-dependent it has the opportunity to behave more linear than
the average behaviour, i.e. show less periodic property. This too should not be
treated as an anomaly.

The conclusion of this is that the nature amongst the signatures differs, thus,
they must be treated differently. An anomaly in one signature can be normal in
another. Consequently, another task arises, namely, what should be considered
as an anomaly. This is discussed in detail in Chapter 3

1.6 Problem Specification
Specifications are given by Procera and exists to keep the customers satisfied.

1. Anomalies are to be detected at least within a week. The reason for this
is the greater risk of it being detected by the customer.

2. The output of the algorithm is a score which is related to each signature.

3. The anomaly detection algorithm is implemented in Python.

4. The algorithm needs to be faster than 60 minutes, for a new calculation
will begin at this time.

1A torrent client enables the user to join a BitTorrent file distribution system which is a
system that helps participants (all aiming for the same file) in the system to find each other
and form efficient distribution groups, called swarms. In this swarm, every participant receive
partitions of the desired file from several other participants simultaneously. The benefit is
that there are several sources instead of one, as in peer-to-peer file sharing (P2P).
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1.7 Research Questions
R1. What method is most suitable for detecting anomalies?

R2. What kind of deviations should be considered as anomalies?

R3. Which parameters are best to maintain and which to disregard?

R4. How will the outcome be scored?

R5. What level of certainty does the models provide?

5



Chapter 2

Literature Review

The literature review will provide the reader an understanding of necessary con-
cepts and fundamental mathematics. The context of this chapter is also a foun-
dation making it possible to answer the research question.

2.1 Supervision
In machine learning, there are primarily three subcategories of the topic anomaly
detection, named and described below.

2.1.1 Supervised Learning
When a reference scheme is given for both the normal behaviour and the anoma-
lous behaviour, the environment is said to be supervised. The anomaly detection
task then comes down to a comparison whether the observed data is most likely
to be more similar to the normal -or to the anomalous reference scheme.

Definition 2.1. Given data set D, normal reference data set(s) N and anomaly
reference data set(s) A, supervised machine learning is defined to determine
whether di ⊆ D are more similar by nature to N or to A.

Benefits with this type of supervision is that it is kind of straight forward
to solve and no further complications can occur. The disadvantage is that
these reference schemes could be troublesome to receive, in some cases even
impossible.

2.1.2 Unsupervised Learning
If there are no references at all to evaluate the observed data with, it is said to
be unsupervised, therefore, the machine has to learn itself what states should
be considered as normal and what states should be considered as anomalous.

6



Definition 2.2. Given data set D only and no reference set, unsupervised ma-
chine learning is defined to determine whether di ⊆ D are more likely to be
normal or anomalous in contrast to D, using D itself as reference.

The benefits with this type is that it can be applied on any data set and no
groundwork on the data is required. The disadvantages is that the output can
always be questioned, is it really anomalous or is it just a coincidence? What if
the data that is considered anomalous really is normal and the opposite for the
normal data. There is for the machine no correct answer to that, this has to be
evaluated afterwards by professionals.

2.1.3 Semi-supervised Learning
As expected, semi-supervised is a in between of the two previous types. It is
when one reference scheme is available whilst the other scheme is not. There
are two cases where this can occur. Either there is a reference data set for the
normal state and no reference for the anomalous set, or vice versa (reference for
anomaly and no reference for normal state).

Definition 2.3. Given data set D and normal reference data set(s) N , semi-
supervised machine learning with normal reference is defined as to determine
whether di ⊆ D are, by nature, "similar enough" to N . The term similar
enough means that it should be within some threshold that is preferably chosen
in an explainable way.

This is probably the most common type for it is often the case that there
exists a desired normal state, which is known, and all other outcomes are clas-
sified as anomalies. These anomalies are, at the start of the process, unknown.
An example for this could be a factory machine producing items with a certain
measure with an additional threshold, all items measured outside this threshold
are considered anomalous. The reason for an item to be measured abnormal,
could be anything, it could be too hot in the factory, wear on the machine
tools or a software that is out of date. Benefits and disadvantages with this
type are a combination of the benefits and disadvantages from supervised and
unsupervised learning.

The opposite semi-supervised type, where anomalies are sought for, is more
common when there are several normal possibilities but only a few number of
anomalous states.

Definition 2.4. Given data set D and anomalous reference data set(s) A, semi-
supervised machine learning with anomalous reference is defined as to determine
whether di ⊆ D are, by nature, "similar enough" to A. The term similar enough
means that it should be within some threshold that is preferably chosen in an
explainable way.

An example of this type is the intruder example in Table 1.1 where every
user is classified as normal except those who try to log in over and over but still
fail.
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Furthermore, in computer science, anomaly detection can be classified into
two other subcategories, that are independent of the supervision, named and
explained below.

• Online method is an algorithm that is processing data in a time serial
fashion, i.e. it is fed input data successively and solves the problem in
every step. This type of method is applied successfully on systems that
are currently up and running (i.e. online).

• Offline method is an algorithm that requires the full data set when it
begins. If that requirement is fulfilled it produces an output answer from
that data right then and there. No further actions are made in offline
methods.

2.2 Norm
Norm is a mathematical term, defined as the length or size of a vector (in a
vector space) or a matrix. It is written out as ||X||, where X is the vector
that is to be normed. If the norm of several vectors is sought, the lengths are
summarized[2]. The power of the norm is often mentioned before the norm, e.g.
L2-norm. The general definition of the Ln − norm is:

Definition 2.5. ||X||n = n
√∑

i x
n
i

Even though the formula is very clear and every Ln−norm looks much like
other norms, the value of n becomes very important, for the properties are very
different for different n’s and their applications differ too. The most common
norms will be discussed briefly in subsections 2.2.1 and 2.2.2.

2.2.1 L2-norm
The most common of all norms is the L2-norm or the Euclidean norm. It is
obtained when n = 2 in the general definition (Def 2.5) and the result is shown
below:

Definition 2.6. ||X||2 =
√∑

i x
2
i

Simply, it is the square root of all the vectors squared. Note that higher
values of the elements in X have more impact on the outcome than the small
values (due to the squares).

L2-norm is recommended for Gaussian problems and smooth problems. If
the problem is spiky, it will try extensively to fit the problem. Sometimes it
tries too hard and the effort backfires and nothing useful comes out.

2.2.2 L1-norm
This norm handles the values by their absolute value and not squared. Again,
from the general definition, with n = 1, the L1-norm definition is:
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Definition 2.7. ||X||1 =
∑
i xi

So it is the sum of all values in X. Note that all elements in X have equal
impact on the outcome (in terms of order).

L1-norm is often more effective than L2-norm for spiky problems, because
it is more simple.

2.2.3 L0-norm
An interesting norm is the L0-norm which, technically, is defined as: ||X||0 =
0
√∑

i x
0
i But since all x 6= 0 will turn into ones, the L0-norm can be treated as

a counter that counts all nonzero elements in a vector (X).

2.2.4 L-inf-norm
An other interesting norm is the L-∞-norm, that by the general definition looks
like:
||X||∞ = ∞

√∑
i x
∞
i

This looks tricky but by the property of the infinite exponent, the largest ele-
ment in X will become much greater than every other element, hence,

∑
i x
∞
i =

max(|x∞i |), and finally:
||X||∞ = max(|xi|).

2.3 Filter
In signal processing, filter is a function that has the task to remove various
unwanted components or features from the input signal. Commonly for discrete-
time samples, it is desired to extract, and then be able to observe the actual
process only. This is done by removing the noise.

Noise is a collection name for all the high-frequencies in a signal. The defi-
nition of high frequencies is, of course, dependent on the context and individual
for each case. But they all have one characteristic in common; their frequency
is too high to have any relevance.

Definition 2.8. Noise is defined as a compilation of frequencies that are too
high to be of any relevance to the context.

2.3.1 Forward-backward Filter
A forward filter uses previous data while backward filter uses upcoming data and
therefore results in a shift in time. Forward-backward filter, on the other hand,
is a combination of a forward filter and a backward filter. The combined filter
applies a function twice, once forward and once backward (hence the name).
The reason for applying the function in both directions is to obtain a response
with zeroed phase-shift, i.e. there is no time distortion and no time delay in the
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Figure 2.1: A signal that is unfiltered.

Figure 2.2: A signal that is filtered.

filtered signal. Depending on the intention, either high-pass1 or low-pass filter
can be used, the latter is explained in detail below.

2.3.2 Low-pass Filter
A low-pass filter is a filter that passes low-frequency signals and attenuates
signals with frequencies higher than the cutoff frequency, i.e. this is a frequency
that acts as a threshold mark and will only try to remove frequencies lower than
this mark.

When removing noise, the low-pass filter is a good choice of filter.
The cutoff frequency is usually determined by the user. This filter applies a

forward function and a backward function at once, the result is a linear phase.
The filter uses both forward and backward filtering to achieve a zeroed phase-
shift, i.e. the signal is not moved in time, resulting in no phase distortion and
no delay. The Butterworth filter has this property[3], see Figure 2.1 compared
with Figure 2.2.

1High-pass filter is not explained more than that it is the exact opposite of the low-pass
filter. The reason for this is that this type of filter is not used in this paper.
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2.4 Dot Product
Dot product or inner product is directly related to the cosine of the angle be-
tween two vectors in Euclidean space. It holds for all dimensions and is often
written as A ·B. It is defined as the sum of the product of the corresponding
elements of the two vectors, see Definition 2.9

Definition 2.9. A ·B =
n∑
i

AiBi, where n is the dimension

The two vectors are perpendicular iff the sum of the dot product is equal to
zero, this is the most significant case and it can be used in many areas.

2.5 Fourier Transform
Occasionally, it is the case that the observed event gives no peculiar informa-
tion. Looking at the exact same event from another point of view can reveal
valuable information that would otherwise be hidden in the original view. In
many cases, vital information is hidden in the frequency content of the signal.
Fourier transformation is a mathematical tool that transforms a time series to
a frequency domain, i.e. it translates the signal. The outcome consists of the
frequencies that are underlying in the signal. These are located in the frequency
spectrum, which is a spectrum containing all of the frequency components of the
signal. Hence, the frequency spectrum of a signal shows the frequencies present
in the signal.

Hereby, the very definition of the Fourier transform, F (ω), will follow.

Definition 2.10. F (ω) =
∫∞
−∞ f(t)e−jωtdt

It can transform signals into the frequency domain but it is also possible
to go the opposite direction, namely, the inverse Fourier transformation. The
corresponding definition is given below.

Definition 2.11. f(t) = 1
2π

∫∞
−∞ F (ω)ejωtdω

It is a particular property with the Fourier transform that needs to be lifted,
namely, that it has a trade off between time resolution and frequency resolu-
tion. What this means for the user technically is on the one hand, having good
knowledge about what frequencies that exists within the signal, but on the other
having less knowledge about what frequencies that exists within the signal but
more knowledge about when they occurred.

2.6 Wavelet Transform
Wavelet transform, as Fourier transform in Section 2.5, is a mathematical trans-
formation between time domain and frequency domain. It is a widely used
method and its popularity is derived from the disposal of the time/frequency
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Figure 2.3: A narrow wave in a wavelet transformation at different times. [6]
(Polikar, R., 2014. The Wavelet Tutorial. pp.38)

solution trade off. As a matter of fact, wavelet can display both good time res-
olution and good frequency resolution. In many applications it is of great relief
not having to consider this extra task when optimizing the time resolution. This
localization is one of the major reasons why wavelets are used instead of Fourier
transforms. The name of the method is sort of self explanatory, for wavelet
functions can be considered as a wave that travels through the signal. It travels
with one input variable, the translation variable, and the width of the wave is
determined by another input variable, the width variable, that is set by the user
of the algorithm. The impact of the width variable is illustrated in Figure 2.3
and 2.4 where a small and a larger value is used. Also, the traveling motion of
the wave can be seen.

2.6.1 Mathematical Approach
A vector v can be written as a linear combination of the basis vectors B in that
space where α contains the corresponding coefficients, see Equation (2.1). The
number of basis vectors is always equal to the dimension of the space, also the
number of elements in every basis vector.

v =
∑
k
αk ·Bk (2.1)

The vectors in Equation (2.1) can be generalized to functions by replacing
the basis vectors Bk to φk and v to a function f(t), see Equation (2.2) (if sines
and cosines are chosen here, the Fourier transform function is obtained).

f(t) =
∑
k
αk · φk

(2.2)
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Figure 2.4: A wide wave in a wavelet transformation at different times. [IBID]
(Polikar, R., 2014. The Wavelet Tutorial. pp.39)

Let f(t) and g(t) be two functions, such that f(t) ∈ L2(R) and g(t) ∈ L2(R),
i.e. f(t) and g(t) belongs to the set of square integrable functions. Inserting this
in the definition for the inner product (see Definition 2.9), for the continuous case
with functions that are square integrable on the interval [a,b], gives Equation
(2.3).

〈f(t), g(t)〉 =
∫ b
a
f(t) · g(t)dt (2.3)

Here, if f(t) is assigned to the input signal and g(t) is assigned to the basis
function(s), or in other words, the wavelets, the continuous wavelet transforma-
tion function is obtained, see Equation (2.4).

CWTψx (τ, s) =

∫
x(t) · ψτ,s(t)dt,where x(t) is the input signal

and ψτ,s(t) are the wavelets,
which are given in
Equation (2.5) below.

(2.4)

ψτ,s(t) =
1√
s
ψ
(
t−τ
s

)
(2.5)

The interpretation of this is that the output is the similarity in the sense of
frequency between the input signal and the wavelet.

Wavelet is self-dual, i.e. it can transform a signal into the frequency domain
and back to the signal amplitude domain with the inverse of the CWT , however,
it is excluded here.
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2.7 Fundamental Statistics
Some necessary statistic knowledge are here being presented.

2.7.1 Null Hypothesis
In statistics, and in experiments specifically, a null hypothesis is a statement
that says whether the studied object has any impact on the outcome or not. If
the studied object has impact, the null hypothesis is rejected (and not rejected
otherwise), see Definition 2.12.

Definition 2.12. A null hypothesis is a statement that indicates no relation
between two objects. The null hypothesis is, after experiment(s), either rejected
or disproved.

Scepticism must however always be directed towards the result, for in statis-
tics, randomness is always an obstacle. Therefore, the result must not only
reach the given barrier but also exceed this barrier with a value (a value that is
often set by 5 % or 1 % significance level, i.e. the test will most likely succeed in
1 out of 20 or one 1 of 100 times of the time respectively) so that the probability
of an extreme occurrence is low. If the results meet the target but not the extra
value, there is a probability that the null hypothesis could be either true or
false. This results in a weak conclusion, for the evidence is not enough.

In medical terms, e.g. if a new drug intends to reduce the risk of getting
cancer, a possible null hypothesis would be: "this drug does not reduce the risk
of getting cancer".

2.7.2 Type I Error
Errors of the first kind are errors that indicates an event being confirmed when
it in fact did never occur.

Definition 2.18. If a null hypothesis is rejected falsely, it is said to be a Type
I Error.

Consider the case where a doctor says to his patient that she has cancer, but
in fact she is healthy, that is a Type I Error. This type is also known as false
positive error.

2.7.3 Type II Error
In some sense, Type II Errors are the opposite to Type I. The difference is now
that the null hypothesis is accepted instead of being rejected.

Definition 2.19. If a null hypothesis is accepted falsely, it is said to be a Type
II Error.
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Consider the doctor scenario again, but this time he says to the patient that
she is healthy, but in fact she has cancer, then he has committed a Type II
Error. This type is also known as false negative error.

In matter of significance, what error type is most important to avoid, it
always depends on the context. For the doctor, of course, the Type II Error is
much worse, for then, no treatment will be carried out.

2.8 Toeplitz Matrix
A Toeplitz matrix, named after the German mathematician Otto Toeplitz, is a
matrix in which each descending diagonal is constant, i.e. ai,j = ai+1,j+1. It is
easy to show with an example, see Tn in Equation (2.6) where Tn is the Toeplitz
matrix with order N .

Tn =


a1 b2 b3 · · · bN
a2 a1 b2 · · · bN−1
a3 a2 a1 · · · bN−2
...

...
...

. . .
...

aN aN−1 aN−2 · · · a1

 , where bi = ai in a
symmetric Toeplitz
matrix.

(2.6)
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Chapter 3

Methodology

In order to create virtual models of real problems, interpretations must be made.
It is done here in this chapter, along with explanation of the three models; Linear
Predictive Coding, Sparse Linear Prediction and Wavelet Transform.

3.1 Mathematical Interpretation
As described in Chapter 1, anomaly detection is a vague term. Vague objectives
have a higher possibility to lead to vague conclusions. To prevent this, inventions
for more precise definitions of the goals will hereby follow, starting with the main
objective (detecting anomalies in the signature database).

Task 1. Anomaly detection. Given data set D, find subset A ⊆ D where A is
anomalous.

It is possible for A to be an empty set, for in that case the observed signature
works as desired.

An experiment like this is most surely expected to not obtain a perfect result
without either error type. Therefore, an additional task is to keep the level of
Type I & II Errors (see Def. 2.18 and Def. 2.19) as low as possible.

Task 2. Parameter optimization. Improve the parameters in the algorithm
until changes have no significant impact on the outcome in the sense of Type I
Error and Type II Error.

An interesting proceeding task is to consider which error type that causes
the most damage. Also, to see if there is any possibility to improve one of them
separately, leading to the third task.

Task 3. Error Type analysis. Inspect and find out if one of the Type Error is
more hazardous than the other.

Hereinafter, a detailed version of the two states in the signature are ex-
plained.
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3.1.1 State Classification Assertion
When determining states in a time series, it must be kept in consideration what
type of supervision there is in the ambient. Different algorithms are working
under different supervision.

When a reference data set is available, parameters for the algorithm will
be extracted from this and also be used as an underlying foundation for the
algorithm evaluation. The input data will be observed and evaluated from the
reference set to see if it is of similar nature or not.

The more supervision that is accessible, the easier it is to implement the
algorithm and generally it will result in a more accurate result. The reason for
this is that it is easier to recognize a state if the behaviour of this state is known.
All that is needed is to compare the input data with the reference and make a
judgement whether or not they are similar in the sense of context. On the other
hand, the downside is that more preparatory work is needed. Sometimes it is
difficult to obtain these references and it requires a lot of work, or even worse,
sometimes they are impossible to obtain. An example of this is if a company
just invented a brand new machine that are to produce a very rare item, then
no data of the machine’s performance yet exist.

When a reference data set is not available, the input data itself will be used
as ground in evaluation. The input data will be observed and evaluated to see
if there is any subset of the input data set that is of foreign nature.

Bottom line is; supervision is a trade-off between the amount of preparatory
work and performance.

3.1.2 Normal State
If a reference exists for the normal state (supervised and semi-supervised with
normal reference), this will be used as template for the definitions of a normal
state. On the other hand, if there is no reference for the normal state, there are
two possible scenarios. Either there is an available reference for the anomaly
state or it could be that the anomaly state is not accessible, or nonexistent.
In the first case (semi-supervised with anomaly reference) the anomaly state
should be determined primarily. What is not considered as an anomaly should
simply be classified as normal by elimination, i.e. the anomaly is the first layer
and what does not stay in this filter is classified as normal. However, in the
latter scenario (unsupervised), the machine has nothing to learn from but from
the actual data set, i.e. it has to work online.

Definition 3.1. A state is classified as normal when it exists no significant,
and statistically proved, deviation in terms of amplitude, periodicity and trend.

In supervised and semi-supervised with normal reference, as the normal state
is set as reference, it is of great interest that the observed data set, that is to
be used as reference, is really behaving as a normal signature.
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3.1.3 Anomaly State
The anomaly state is the antagonist to the normal state, i.e. it is the opposite
state. It is interpreted in a similar fashion. A state is classified as anomalous if
it is no longer behaving normal. Thus, a normal state is necessary for another
state to be anomalous, for otherwise it has nothing to distinguish itself from. If
the anomaly state is the primary state and is to be analyzed first, a definition
is necessary.

Definition 3.2. A state is classified as anomalous when it is no longer normal,
i.e. a significant and statistically proved deviation can be presented in any of
the following: amplitude, periodicity or trend. Also, a change in the noise can
be argued to be included as an anomaly.

Further, if there is a reference set available for the anomaly state, the ma-
chine will only be able to detect that particular anomaly that the machine is
taught to detect. The problem with this, in this context, is that all kinds of
anomalies are to be detected. Therefore, it is very difficult to find all anomalies
and teach them to the machine. The conclusion of this is that supervision will
be used but only with the normal, and known, state (Semi-supervised learning
with normal reference).

It can be the case that some types of anomalies (e.g. trends) are most
distinguished by one model and other kinds (e.g. temporary spikes) are easier
to detect by looking at the problem from another aspect. That is one of the
reasons why several models are surveyed in this paper.

Deviations will always be present, and of course, some of these must be
accepted for they are natural fluctuations. Therefore, the acceptance level of
the various deviations have to be determined empirically. This will be solved
by putting a threshold on the output, that has to be exceeded before classifying
the item as an anomaly. This threshold will be decided by the user to achieve
the objectives in a reasonable matter. This is discussed for each goal in each
method, see Section 3.3 through 3.5.

3.2 Input Data
The input data is a discrete time series with hourly bias, i.e. every 60 minutes.
All data traffic that has been used during that hour is summarized and stored
in a data Dtest variables are the average upload and the average download
speed during one hour. Throughout this paper the sum of average upload and
download speed is the only input variable. They could be examined separately
but that is only included in the future work, see Section 5.8. The input data
set is hereinafter referred to as D and elements in D are called di. Also, the
reference part of D is called Dref and the test part is called Dtest. Furthermore,
there is a special signature called "Unknown". This signature contains all the
data that is transferred by signatures that is yet not known to Procera.
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Figure 3.1: A signature with low volume.

3.2.1 High Versus Low Volume Signatures
Signatures with low data traffic rate behaves very different compared to high
volume signatures, and even compared to other low volume signatures as well.
The reason for this is that they have low usage (few active users) that the
average speed is located at zero or very often close to zero, see Figure 3.1.

The issue that arises because of this is that statistics cannot play its full
role. In a low volume signature, one user or one event can affect the time
series a lot. The actual distribution is hidden behind the natural deviations,
which all become very strong in a low volume signature. On the other hand,
in larger scaled signatures, one deviation will not affect the shape of the time
series that much, it will most likely be unnoticed. Bottom line is; it is easier to
detect the true distribution in a signature the larger the usage is. In fact, it is
almost impossible to understand what the underlying distribution is in Figure
3.1. Consequently, a threshold, in terms of transferred data, is created that must
be exceeded for the signature to be examined by the algorithms (explained in
Section 3.3 through 3.5). It might be the case that a signature varies around
this value, hence, it is examined every other week, but not the next week and so
on. To prevent this, the threshold for a signature to not be examined is set to a
lower value. These two threshold values are determined empirically, see Section
3.2.2.

3.2.2 Analysis Threshold
There are way too many signature to analyze them all by inspection, but em-
pirical studies show that the majority of the signatures with mean value greater
than 105 has a shape that is similar to what is desired, as in Figure 1.2. Hence,
signatures with mean value below 105 are more similar to what is more diffi-
cult to analyze, as in Figure 3.1. The threshold for a signature to move from
being a "low volume" signature to a "high volume" signature is set to twice
that number, i.e. 2 ∗ 105. The threshold for a signature to move from being
a high volume signature to a low volume signature is set to half that number,
i.e. 5 ∗ 104. Bottom line; only signatures with mean value above 105 will be
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examined. If a non-analyzed signature (small) is growing, it needs to exceed
2 ∗ 105 to be classified as a large volume signature and large signatures need to
drop below 5 ∗ 104 to be classified as a low volume signature.

3.3 Linear Predictive Coding Framework
A potential approach to detect anomalies is to use Linear Predictive Coding
(LPC). This is a mathematical model using a forward linear predictor to predict
values in a discrete-time signal based on previous data. It creates a data set Y
by estimation, using parameters that are obtained when the minimization of the
relaxed error (di−yi)2 is minimized, where di is the elements in the input signal
and yi is the elements in the estimated LPC signal. LPC model uses L2-norm,
i.e. ||di − yi||2.

Definition 3.3. LPC framework is defined by the following. Given data set D,
use information from D to obtain coefficients α that are able to build a forward
prediction data set Y . Determine if each yi ⊆ Y is anomalous by considering
how much the nature of Y diverges from the original set D, where i = 1, 2, ..., k
and k is the number of elements in the analyzed data.

In its context, the algorithm is supervised in the form of semi-supervision
with reference for the normal state. Hence, the machine learns how the normal
state is defined and will indicate that an anomaly has occurred when the machine
considers that the signal has left the normal state and entered the anomaly
state[4]. This algorithm is implemented in a way explained in the following
steps:

1. Filter the signal with intention to remove the noise in the signal. This
is done in Python programming using SciPy’s function ’.filtfilt()’, which is
a forward-backward filter. This results in a much more clear signal, which
could be expected to represent the actual process signal.

2. Calculate LPC coefficients C, with the signal and together with the
LPC order N as input and the LPC coefficients as output. The number
of coefficients is equal to the order plus one (N + 1). Find the N + 1
coefficients of an N order linear filter:

yi = −c1 ∗ di−1 − ...− cN+1 ∗ di−(N+1), where i is the index in D

Such that the sum of the squared-error ei = yi − di is minimized[4].

LPC determines the coefficients of a forward linear predictor by minimiz-
ing the prediction error in the least squares sense. The C-vector will take
the form C = [1 c2 ... cN+1].

3. Calculate the alphas. This is done by using a Toeplitz matrix. In this
context it is also symmetric, but this is not a property of the Toeplitz ma-
trix, it just happened to be symmetric for this task. Hence, the entire ma-
trix can be filled in with only the first row or column given. Furthermore,
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it is of size N ×N , where N is the order (or equivalently, N = length(C),
where C is the vector from the previous step). An important thing is that
it is the first element of C that is removed.

These two A system that has the α’s as output, see Equation system (3.1).
C1 C2 C3 · · · CN
C2 C1 C2 · · · CN−1
C3 C2 C1 · · · CN−2
...

...
...

. . .
...

CN CN−1 CN−2 · · · C1

 ·

α1

α2

α3

...
αN

 =


C2

C3

C4

...
CN+1

 (3.1)

Note that compared to the ci’s, one less α is obtained, i.e. N . The C-
vector is normalized with respect to the first element, i.e. c1 = 1 (which is
why it is of no interest to use this element). It is cut from the beginning.
Which is not the case for the Toeplitz matrix, where the last row and
column are eliminated to adopt the same size, i.e. RN . The α’s are
gathered together, A = [α1 α2 ... αN ].

4. Create the LPC transformed signal Y , in order to represent the input
signal, see Equation (3.2). It can be considered to be located in a parallel
space in time.

yi =

N∑
j=1

aj · di−j , where N is the order and i is the index
for the elements in Y .

(3.2)

5. Analyze the difference between the input signal and the Y-signal, but
to be able to do this fairly, both signals must be normalized first.

6. Distribute score to the difference signal, s.t. a score is given to every
item in the data set. Points that has a score outside of a threshold are
considered anomalous. This is explained in detail in Section 3.5.4.

3.3.1 Parameters
Some input values are having more impact on the outcome than others, there-
fore, they are tested for different values. The parameters that are having less
impact are static, e.g. the filter length is always 8 hours1, see Table 3.1.

The order of the LPC method is limited to 1 - 5 days. There are two reasons
for this. First, the period of the signatures are 24 hours so the method works
better if the order match the period2. Secondly, the higher the order is the more
complex the method becomes. If the system is too complex it has a possibility
of becoming unstable.

1Empirical result
2Empirical result
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Parameter Value
Forward-backward filter length 8 Hours
Order 1 - 5 days
Window length 1 - 7 days
Threshold value (E[Dref ] + SD[Dref ]) ∗ k*

*Where Dref is the reference data set and k is a factor (function)
dependent of order and window length.

Table 3.1: The different input parameters with their corresponding test values.

Upon request from Procera, anomalies were to be detected at least within a
week, therefore, the window length does not exceed one week. The deviations
in the model are added up together for a period back in time, in a window-
like manner. The window length decides how many elements that are included.
Hence, it is also a measure of how far back in time the window stretches, so if
results are desired within a week, the window length cannot exceed one week.

Theoretically, higher order results in a more robust signal, which is good
in the sense that it is able to mimic the actual signal better. However, if it is
too good to mimic the signal, it mimics the deviations as well. This is avoided
because deviations will then be undetected.

Higher window length reduces the probability of a natural fluctuation to be
visible, which is a good thing. However, long windows will also smooth out
temporary deviations and therefore higher possibility to pass undetected.

The input values are (1) order, (2) window length, (3) anomaly type and
(4) evaluating 16 different artificial anomalies. This results in a huge amount of
combinations. In every evaluation, the filtered input signal is displayed together
with the calculated LPC-response, also the difference between these two are
included. The difference function is acting as a deviation measurement. This
is possible because the LPC-transformed signal is normalized, so it is only the
difference in nature that appears in the difference function. Furthermore, a
window summation is created for the difference so that natural fluctuations are
having less impact on the outcome. A small number of plots are shown with
corresponding window sum, they can be seen in Section 4.1.1.

Extra attention is paid to the evaluation of the point anomaly and the chang-
ing trend. The reason for this is that the point anomaly is an excellent example
of a fast deviation and the changing trend of a slow deviation. It is of interest if
these two categories can be classified by the model too so that it can avoid ad-
ditional manual work. Therefore, these two anomalies are fully evaluated with
two different orders, 3 and 5, together with window lengths 2 and 7 correspond-
ingly. Regarding the other 14 anomalies, only the LPC results are displayed (to
keep this thesis at a reasonable length), see Section 4.1.
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3.4 Sparse Linear Prediction Framework
There is a saying, that if two methods produce equally good results, the easiest
method should be used. Basically, The Sparse Linear Prediction (Sparse LP)
model is similar to LPC but it has a higher chance for increased simplicity.
Sparsity is a measure of simplicity. The model is similar to the LPC in the
sense that they both minimizes the errors e2i and they produce coefficients, α,
that are used for forward prediction and N is the order of the model. But they
differ in one major way, Sparse LP has an additional input parameter, γ, which is
used as a sparsity parameter. What this does is that it puts a penalty on having
only non-zero elements within the alpha’s, correspondingly to what gamma is
used[5]. Hopefully, this results in a more elegant alpha vector containing only
non-zero elements at the most "valuable" locations. In this context, valuable
means a location that has more impact on the outcome than other elements.

Definition 3.4. Given data setD, use information fromD to obtain coefficients
α, such that the error ||di − yi||1 is minimized, where d is the input signal and
y is the estimated signal. Non-zero elements in α will be penalized depending
on input parameter γ, use as sparse α as possible without ruining the result. A
forward prediction data set Y is constructed from these α’s. Determine if each
yi ⊆ Y is anomalous by consider how much the nature of Y diverges from the
original set D.

Furthermore, Sparse LP could be argued to be considered as a L0-norm
model, for it puts a lot effort to produce sparse outcomes.

A step-by-step description could be made for this method too, but it would
look similar to the LPC model, the only difference in the method is at the second
step (see Step 2) where the extra input parameter (γ) is implemented to decide
how much non-zero elements are to be punished. Another task comes with this
model, namely to trim γ so that the results of the model are similar to the LPC
model but with less complex α.

3.5 Wavelet Framework
It is mentioned in Section 2.5 that observing an event from different aspects can
result in interesting outcomes. Wavelet transform is a time-frequency transform,
meaning that it transforms a time signal (with an amplitude) into its frequencies
at the same time interval[6]. Looking at the frequency spectrum of a signal will
perhaps bring revelations that the two previous models did not accomplish.

Intuitively, frequencies has something to do with the change in rate of a
process. If a variable in the process changes rapidly, it is said that it has a high
frequency. If a variable in the process does not change rapidly, i.e. it changes
smoothly, it is of low frequency. If this variable does not change at all, it is said
to have zero frequency. This is the main concept of this method and how it will
fit in the context. It is the unexpected changes in rate of the signal that are
sought for.
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The wavelet model does only have two inputs, the choice of wavelet family
and the input signal. Furthermore, wavelet analysis requires no preparation
and in this context it is an unsupervised machine learning model. However,
a reference part is needed anyway to create a threshold, but this is explained
further in Section 3.5.2

3.5.1 Wavelet Transform
The explicit application for wavelet transformation is to extract the momentary
frequencies from a signal. The wavelet transform is a bit more complicated
transform to perform in theory than the LPC and SLP model. Briefly, a de-
scription of the concept of a wavelet is that a wavelike function (hence, the
name) travels through the signal and calculates the momentary frequency in
every step.

In Python programming, there are many built-in functions and add-ons that
are able to perform these transformations. The available wavelet families are
listed below in Table 3.2.

Wavelet name Filter length Abbreviation
Daubechies 2-40 db
Symlets 4-40 sym
Haar 2 haar

Coiflets 6-30 coif
Biorthogonal 2-18 bior

Reverse biorthogonal 2-18 rbio
Discrete Meyer 62 dmey(FIR Approximation)

Table 3.2: Built-in wavelet families in Python programming.

In total, there are 75 different wavelets that are available, including combi-
nation of filter length and types. The approach to all this is to greatly reduce
this number by confirming that some has almost equal outcome, or less use-
ful outcome than others. For example, after a thorough investigation has been
done, conclusions can be drawn like: Daubechies wavelets only needs to be used
with wavelength 2, 10 and 20, for then all interesting outcomes are covered.
Even more reduction is performed in this paper, for only Daubechies with the
longest filter length is used. The other are added to future work in Section 5.8.

3.5.2 Thresholds
To find an anomaly in the outcomes of the models are easy to interpret by
inspection, it is simply to pin-point the deviation right away. But for a computer
it is a bit more complicated, especially since it must be able to do so for all
kinds of signals with different magnitude. Thresholds are one way to solve this
problem.
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Judging the outcome by absolute value is not fair, for when comparing de-
viations between different signatures, some signatures uses much less data in
general than perhaps a more popular signature. In that case, a small deviation
for a large signature is equal to a large deviation for a small signature. This
does not satisfy the demand. Hence, the theory is rejected.

Judging the outcome by percentage is not fair either, because at the outliers
at lower values of the signal (often by night), every deviation will appear to be
larger than at higher values at the signal (often by day). Hence, this theory is
rejected too.

For semi-supervised anomaly detection, a reference data set is available.
From the reference set, extract information such as mean value and standard
deviation. These values are not able to tell anything about deviations but
they provide an indication of the magnitude of the examined signal. When the
magnitude is known, let every deviation be compared with it, and then, finally,
find out how the ratio looks like. For the LPC model an empirical definition is
invented and is hereby explained along with a definition.

The threshold value equation is designed by inspecting several results from
the LPC model, and then the threshold value is placed at a desired level. From
this, a table of several threshold values that are connected with its corresponding
parameters is created. A function is then created with objective to fit the table.
The variable name for the threshold value is THV and the formula can be seen
in Definition 3.5.

Definition 3.5. THVLPC = (
E[Dref ]

30 +SD[Dref ])∗0.06∗(1+ 24
NLPC

)∗(1+ 168
WL ),

where Dref is the reference data set, E and SD is the mean value and the
standard deviation respectively, NLPC is the LPC order and WL is the window
length.

An increase of any of the variables result in a larger threshold value. How-
ever, the order and the window length do not have as much impact as the
expected value and the standard deviation.

For wavelet (that is unsupervised) the threshold value is the maximum value
of the outcome frequencies during the reference set times 1.5, see Definition 3.6.

Definition 3.6. THVwavelet = max[Dref ] × 1.5, where Dref is the reference
data set and max is the maximum value.

3.5.3 Window Sum
A moving window sum function, W , is applied to the output signals. How this
is implemented is explained in detail in Definition 3.7.

Definition 3.7. wi =
k∑

i=N+M

yi
k−(N+M) , where yi are the elements in the output

signal Y , k is the length of input data set D, N is the order of the model and
M is the window length.

Elements wi are stored in the data set W . So W is a vector of length
k − (N +M), namely, W = [wN+M wN+M+1 ... wk].
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3.5.4 Anomaly Score
A score, AS, is given to every signature for every time step after the window
sum, W , is created. It is considered as an indication of how deviating the
deviation is. It is defined as following:

Definition 3.8. if |di| > THV , then AS =
al∑
i=af

w2
i

THV ·(al−af ) , where wi is the

elements in W , i ∈ N, af and al are the first and the last anomalous element
in the anomalous sequence and k is the length of the input data. Note that i
continues from al if there are several anomalous sequences in the same data set
(the second sum starts when the second anomalous sequence starts).

Note that anomaly scores below one will not result in anything (it is not
an anomaly) and for a sequence that enters the anomalous area briefly has
anomaly score close to one, AS > 1, whilst extremely deviating sequences has
much higher anomaly score, AS >> 1.

3.6 Trial of Methods
The methods are compared to each other in terms of what method is most suit-
able to detect anomalies that are included in this context. The most successful
method is the method that has the highest rate of detecting anomalies and also
has the least amount of Type I & II Errors.

3.7 The Test
In order to see how well the models perform, a number of made-up errors are
added in some signature signal with purpose to be detected by the model. The
test is employed in the following way, namely that a relatively normal signal (i.e.
no anomalies) is chosen and the first part is representing the reference data set,
where the coefficients are collected, and the second part is the manipulated part
where the artificial anomalies are implemented and is used as a performance test.
The second part is the evaluation part where the anomaly score is assigned.

3.7.1 Error Type Test
The models are also investigated in detail to find the number of Error Types by
running it on several signatures. This test is performed when all signatures are
in normal state to detect Type I Error and also performed when each signature
having an anomaly, this to detect Type II Error. In the latter part of the test
only two artificial anomalies are used, namely, point up {1} and trend up {2}.
To be able to do this on a large amount of signatures, a function for these two
anomalies are created. For the point anomaly the function takes two late points
and adds 8 ∗ E[Dref ] to them. For the trend anomaly the function takes the
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Figure 3.2: This is the original signal that is used in every artificial anomaly
set.

mean value of the reference data set and adds it successively to the test part of
the signal.

In this Error Type test, another variable is added (Threshold multiplier).
What this multiplier does is that it changes the threshold value to a larger or
smaller value and the reason for this is to investigate the impact of the threshold
value.

3.8 Artificial Anomalies
The original signal that is chosen is a four week long signal and it is selected
with care, so that the deviations are equally small during all four weeks. The
reason for this is to get as fair outcome as possible, and also make the artificial
anomalies easy to visualize. The first two weeks are reference data and the last
two weeks are the working space (test data). The chosen signal that is to be
modified is in the top ten of the signals with most traffic and can be shown in
Figure 3.2.

Hereafter, a huge amount of figures of artificial anomalies will follow, to
facilitate for the reader, they are grouped below and connected with a reference
number. The artificial anomalies come pairwise, one anomaly directed down
and one directed up. Also, they are grouped in two categories, namely local
and global anomalies. Anomaly [1], [2], [5], [6], [7] & [8] are local anomalies.
Anomaly [3] & [4] are global anomalies. The signature in [9] is not categorized,
for no artificial anomalies are implemented, but it is still included in this project
for it behaves differently compared to the other.

[1] Point anomaly (Fig. 3.3)

[2] Trend-jump (Fig. 3.5)

[3] A trend changing direction (Fig. 3.7)

[4] Change in usage (Fig. 3.9)
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Figure 3.3: A downward-pointing point anomaly.

[5] Sudden change in periodicity (Fig. 3.11)

[6] Sudden change in frequency (Fig. 3.13)

[7] Anomaly located in the reference data (Fig. 3.15)

[8] Multiple anomalies located in the test data (Fig. 3.16)

[9] A special signature that does not correlate to the other signatures (Fig.
3.17)

In Figure 3.3 a point anomaly is added {1}. To clarify, the anomaly is not to
be confused with an extra bad night, the anomalous point is located in a peak.
Potential phenomenon: a signature having a server shut down.

In Figure 3.4 another point anomaly {1} is inserted but in the reverse di-
rection. The anomalous point is located in a lower subsequence. Potential
phenomenon: a signature having an unexpected bug requiring a lot of data
traffic.

In Figure 3.5 a jump in terms of trend {2} is displayed. The trend is (in
the context) constant except at the center where it "jumps" and continues in a
much lower average value. Potential phenomenon: a signature, suddenly, having
trouble working at one platform (e.g. iOS3 or Android4.) due to poor software
updates. Its antagonist can be seen in Figure 3.6.

The purpose of manipulating the signal in such manner as in Figure 3.7 and
3.8 is to discover the effects of slow permutations.

Figure 3.9 and 3.10 also represents slow, long-term changes but a bit more
realistic in the sense that the minimum and maximum value for every cycle
(day) is changed proportionally and not additive.

What is illustrated in Figure 3.11 and 3.12 is weaker and stronger periods,
correspondingly. The purpose of these are to examine what happens if, e.g. a
signature becomes more affected of the time of the day.

3A platform developed by the company Apple.
4A platform for smart phones, developed by Google.
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Figure 3.4: An upward-pointing point anomaly.

Figure 3.5: A jump in terms of trend, the trend is constant except at the center
where it "jumps" and continues to be constant but a lower magnitude. Potential
phenomenon: a signature that is using data traffic flow in the background,
suddenly, the background data stop working.

Figure 3.6: A jump anomaly in terms of trend.
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Figure 3.7: A change in terms of trend, the trend is, at the center, changed
dramatically downwards. Potential phenomenon: a signature suddenly starts
to lose users slowly.

Figure 3.8: A change in terms of trend, the trend is, at the center, changed
dramatically upwards. Note that the difference between the highest value and
the lowest value for every day is still constant. Potential phenomenon: the
signature slowly starts to use data traffic in the background.
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Figure 3.9: A change in terms of employment. The highest and lowest value are
both, after some time, greatly decreased by percentage. Potential phenomenon:
the signature loses the interest of the users due to different reasons.

Figure 3.10: A change in terms of employment. The highest and lowest value are
both, after some time, greatly increased by percentage. Potential phenomenon:
a new commercial increasing the amount of users and data traffic. Requesting
more servers.
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Figure 3.11: A change in terms of periodicity. The periodic oscillations decreases
after half of the time series. Potential phenomenon: the signature uses more
data in the background and less data while active.

Figure 3.12: A change in terms of periodicity. The periodic oscillations increases
after half of the time series. Potential phenomenon: the signature uses less data
in the background and more data while active.

Figure 3.13: A change in terms of frequency. The frequency is halved to 48 hours
after half of the time series. Potential phenomenon: the signature suddenly is
only used during some days and is ignored the other days.
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Figure 3.14: A change in terms of frequency. The frequency is doubled to 12
hours after half of the time series. Potential phenomenon: the signature is
suddenly only used in mornings and evenings and not during noon.

Figure 3.15: A signal with anomalous reference data set. This kind of anomaly
is of interest for supervised and semi-supervised models, where the reference
data is used as template.

Figure 3.16: A signal that suffers from several different kinds of deviations. More
explicitly, there is a static part that is considered anomalous in this context, a
decrease and a sudden increase of data traffic.
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Figure 3.17: A signal that is collected from the signature called Unknown, which
is a signal that is used as a catch-all for all unknown data that are found in the
data traffic.
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Chapter 4

Empirical Results

This chapter summarizes the data acquired from the three models. The chapter
is divided into three sections that are dedicated to the results from the models.
Extensive experimental results are provided in terms of plots to support the ef-
fectiveness of the proposed models. Because of the copious amounts of figures
that could be supplied in this chapter, only a few cherry-picked figures are shown.
Diagrams show complete overview of the results.

4.1 LPC Results
The outcome of the LPC-model is only the anomaly score, in which very many
results can be observed quickly. However, in this paper, the outcome will also be
provided in forms of plots for easier analysis. Two parameter combinations are
examined in particular, namely, order 3 with window length 2 and also order 5
with window length 7. The reason for this is that the first is supposed to detect
shorter and more temporary anomalies while the latter is implemented more
for trend detection. The digital results for these are shown in Table 4.3 and
4.4. If there are more than one element in the anomaly score (Sec 3.8) it means
that the signature is anomalous at one point, then back to normal and then
anomalous again and so on. The filter length and the threshold value does also
have an impact on the outcome, they are also surveyed, but separately. This is
discussed further in Chapter 5.

The "Threshold indicator" indicates the difference between the largest devi-
ation in the reference data set compared to the threshold, it is abbreviated as
THI and is defined as in Definition 4.1. The purpose of the threshold indica-
tor is to display how normal the reference data set is, where smaller values are
normal (typically 0.5) and larger values are anomalous (above 1).

Definition 4.1. THI = max(Y−D)
THV , where Y is the LPC signal, D is the input

signal (filtered) and THV is the threshold value.

The results from the Error Type test can be seen in Table 4.1 and 4.2 for
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Figure 4.1: A window sum with three different threshold values.

short and long-term LPC respectively, where the threshold value is manipulated
for different desires. A graphical demonstration for how this threshold multiplier
affects the process can be seen in Figure 4.1.

Short-term Error Type LPC results

Anomaly type Threshold
multiplier Average score Error I Error II

Point up 1 21 74 % 8 %
Point up 1.5 1.49 33 % 63 %
Point up 2 1.05 15 % 75 %
Trend up 1 13700 74 % 0 %
Trend up 1.5 6100 29 % 0 %
Trend up 2 3400 15 % 0 %
Trend up 10 145 0 % 0 %

Table 4.1: Overview for the results from the LPC-model with low order and
low window length regarding Error Types. Threshold multiplier indicates how
much the threshold is moved away from the nominal value.

Long-term Error Type LPC results
Anomaly type Average score Error I Error I

Point up 2.7 20 % 27 %
Trend up 1550 20 % 0 %

Table 4.2: Results from the LPC-model with high order and long window
length on several different signatures with artificial point -and trend anomaly
up. Threshold multiplier indicates how much the threshold is moved away from
the nominal value.
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LPC outcome for order 3 days and window length 2 days
For one signature (HTTP)

Anomaly type Anomaly score Threshold indicator
Pointu [1.65, 2.44] 0.26
Pointd [466.99, 3.64, 2.56] 0.39
Jumpu [1426.32, 3.52] 0.71
Jumpd [1255.1, 2.47] 0.65
Trendu 201.46 0.26
Trendd 356 0.37
Usageu [72.8, 50.19] 0.26
Usaged 0.73 0.26

Periodicityu 0.53 0.18
Periodicityd 0.76 0.46
Frequencyu 0.42 0.26
Frequencyd 0.91 0.26

Reference anomaly 30.7 26.87
Multiple anomalies [3.89, 17.54, 115.53] 0.26

Normal data 0.42 0.26
Unknown data [2.41, 2.06, 2.13] 0.51

Table 4.3: Overview for the results from the LPC-model with low order and low
window length. The index in the anomaly type column indicates up or down
pointing anomaly. Anomaly score below 1 means that there is no anomaly.

4.1.1 LPC-plots
All artificial anomalies are shown as input value (the normal data set is included
here). However, the order of the LPC-transformation and the window length
are chosen so that the most interesting result can be seen.

All the artificial anomalies are used as input in the LPC method and the
outcomes are presented in this section (in terms of plots). They are visible in
Figure 4.2 through 4.23. They are presented in the same order as they were
created in Section 3.8.
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LPC outcome for order 5 days and window length 7 days
For one signature (HTTP)

Anomaly type Anomaly score Threshold indicator
Pointu 0.61 0.20
Pointd 0.84 0.52
Jumpu 1206.45 0.26
Jumpd 2820.04 0.37
Trendu 1527.42 0.20
Trendd 7803.21 0.56
Usageu 881.28 0.20
Usaged 61.45 0.20

Periodicityu 0.62 0.17
Periodicityd 0.43 0.20
Frequencyu 0.69 0.19
Frequencyd 0.83 0.19

Reference anomaly [36.23, 43.5] 1.62
Multiple anomalies [10.26, 24.72] 0.20

Normal data 0.33 0.20
Unknown data [3.55, 7.34, 26.89, 6.51] 0.39

Table 4.4: Overview for the results from the LPC-model with high order and
high window length. The index in the anomaly type column indicates up or down
pointing anomaly. Anomaly score below 1 means that there is no anomaly.

Figure 4.2: The outcome of the LPC method when a point suddenly increases a
lot {1}. When the deviating point occurs, the generated signal continues with
what it considered to be expected, but since this was not the case, the difference
indicates a jump. The corresponding window sum of the LPC method can be
seen in Figure 4.3.
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Figure 4.3: The corresponding window sum from the LPC method in Figure 4.2

Figure 4.4: The outcome of the LPC method when a point suddenly increases a
lot {1}. When the deviating point occurs, the generated signal continues with
what it considered to be expected, but since this was not the case, the difference
indicates a jump. The corresponding window sum of the LPC method can be
seen in Figure 4.5.

Figure 4.5: The corresponding window sum from the LPC method, with the
same parameters, that is shown in Figure 4.4
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Figure 4.6: The outcome of the LPC method when a trend suddenly increases
{3}. When the trend is increasing the generated signal follows, but slightly
slower, hence, the difference is below zero. The corresponding window sum of
the LPC method can be seen in Figure 4.7.

Figure 4.7: The corresponding window sum of the LPC method with the same
parameters as in Figure 4.6. When the trend is increasing the generated signal
follows, but lowered slightly, hence, the difference is below zero.

Figure 4.8: The outcome of the LPC method when a trend suddenly increases
{3}. When the trend is increasing the generated signal follows but slightly
slower, hence, the difference is below zero. The corresponding window sum of
the LPC method can be seen in Figure 4.9.
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Figure 4.9: The corresponding window sum of the LPC method with the same
parameters as in Figure 4.8. When the trend is increasing the generated signal
follows but lowered slightly, hence, the difference is below zero.

Figure 4.10: The outcome of the LPC method when an up-pointing point
anomaly {1} suddenly appears for low LPC order and short window length.
When the anomaly occurs the model does not expect this and it creates a devi-
ation in the difference between the signals.

Figure 4.11: The outcome of the LPC method for jump trend anomaly {2}
and for high order and long window length. When the trend is increasing the
generated signal follows but slightly slower, hence, the difference is below zero.
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Figure 4.12: The outcome of the short-term LPC model when there is a jump
anomaly {2} in the signal.

Figure 4.13: The outcome of the long-term LPC model when a slowly increasing
trend {3} is implemented. When the trend is decreasing the generated signal
follows but slightly slower, hence, the difference is slightly above zero during the
trend.

Figure 4.14: The outcome of the long-term LPC model when the usage suddenly
starts to increase {4}. When the amplitude for each day is increasing day-by-
day, more noise can be visible in the difference signal.
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Figure 4.15: The outcome of the LPC method when the periodicity suddenly
decreases {4}. When the amplitude for each day is decreasing day-by-day, the
difference signal becomes even smaller and the threshold remains, therefore, the
anomaly score will most likely be low.

Figure 4.16: The outcome of the long-term LPC method when the periodicity
suddenly increases {5}. When the amplitude of the periods are increasing the
generated signal takes some time to adjust to this. Noise is visible during this
adjustment.

Figure 4.17: The outcome of the short-term LPC method when the periodicity
suddenly decreases {5}.
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Figure 4.18: The outcome of the LPC method when the frequency suddenly
increases {6}. The signal has a frequency that is too high to pass the filter.

Figure 4.19: The outcome of the short-term LPC model when the frequency
suddenly decreases {6}.

Figure 4.20: When the reference is anomalous {7}, the model behaves very
unusual.

Figure 4.21: The outcome of the short-term LPC model when the multiple
amount of anomalies {8} are located in the signal.
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Figure 4.22: The outcome of the short-term LPC model for the signal: Unknown
{9}. This signal has no anomalies artificially added.

Figure 4.23: The outcome of the short-term LPC model for the original signal.
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4.2 Sparse LP Results
The input values for SLP are: order, window length, anomaly type and the
sparsity parameter γ, this results in even more plots than for the LPC model.
However, these are omitted due to too much similarity to the LPC results. The
reason for this is that for reference data sets of length of one week or less, the
SLP model creates no zero-element in the α for this task. Furthermore, when
γ reaches large values (e.g. 108), the system starts to converge to zero and all
α becomes zero. This is for reference data set containing two weeks of data.

4.3 Wavelet Results
The wavelet outcome consists of an anomaly score too. A complete overview
of the outcome is presented in Table 4.5 and the most interesting findings are
visualized in terms of plots in Section 4.4.

The threshold value is different for the wavelet model, see Definition 3.6.
The wavelet model is investigated in detail for two different anomalies,

namely Point anomaly up and Trend up. The applied test is the same as for
the test in Chapter 4.1 (9 different signatures at 11 different locations in time
for each signature). The results for Type I Error are equal for both the point
and the trend anomaly. This is natural considering both being created from
the same signal. One anomaly were detected during normal signatures which
results in one Type I Error. Furthermore, for the point anomaly case, the arti-
ficial anomaly that is applied to every signature is the mean value of the signal
times 8 in two succeeding points. The outcome for the point anomaly is that
all 88 anomalies were detected with the wavelet model. The average anomaly
score is 15.88.

The result for the trend anomaly is that 1/88 anomalies were detected. The
only anomaly that is detected has score 1.28 (average score is 0.0178).

4.4 Wavelet Plots
The outcome of the wavelet model is presented in terms of plots, see Figure 4.24
through 4.39.
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Wavelet outcome
One signature (HTTP) 88 different signatures

Anomaly type Anomaly score Error I Error II
Pointu 8.48 1/88 0/88
Pointd 6.91
Jumpu 1.44
Jumpd 1.25
Trendu - 1/88 87/88
Trendd -
Usageu [1.32, 1.7]
Usaged -

Periodicityu -
Periodicityd -
Frequencyu -
Frequencyd -

Reference anomaly 1.57
Multiple anomalies 1.99

Normal data -
Unknown data 1.27

Table 4.5: Overview for the results from the wavelet-model. In the anomaly
score column, if the value is "-" it means that no anomaly were detected. If an
anomaly is detected, the score is printed.

Figure 4.24: Wavelet transformed signal output for anomaly input: No anomaly
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Figure 4.25: Wavelet transformed signal output for anomaly input: Point
anomaly up

Figure 4.26: Wavelet transformed signal output for anomaly input: Point
anomaly down

Figure 4.27: Wavelet transformed signal output for anomaly input: Trend-jump
up
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Figure 4.28: Wavelet transformed signal output for anomaly input: Trend-jump
down

Figure 4.29: Wavelet transformed signal output for anomaly input: A trend
changing direction up

Figure 4.30: Wavelet transformed signal output for anomaly input: A trend
changing direction down
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Figure 4.31: Wavelet transformed signal output for anomaly input: Change in
usage up

Figure 4.32: Wavelet transformed signal output for anomaly input: Change in
usage down

Figure 4.33: Wavelet transformed signal output for anomaly input: Sudden
change in periodicity up
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Figure 4.34: Wavelet transformed signal output for anomaly input: Sudden
change in periodicity down

Figure 4.35: Wavelet transformed signal output for anomaly input: Changed
frequency up

Figure 4.36: Wavelet transformed signal output for anomaly input: Changed
frequency down
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Figure 4.37: Wavelet transformed signal output for anomaly input: Anomaly
located in the reference data

Figure 4.38: Wavelet transformed signal output for anomaly input: Multiple
anomalies

Figure 4.39: Wavelet transformed signal output for anomaly input: Signature
unknown
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Chapter 5

Analysis and Discussion

The beginning of this chapter answers the research questions. Furthermore,
deeper analysis, thoughts about anomaly detection and the three methods are
presented. Finally, the implementation is presented together with future work.

5.1 Research Question Analysis
Answers to the research questions are presented below.

5.1.1 R1: What method is most suitable for detecting
anomalies?

Generally, by comparing the results, point anomalies are easily detected by the
wavelet model and trends are easily detected with LPC with high order and
high window sum. This is reasonable too due to the fact that the wavelet model
observes the current frequency, which will change drastically in a point anomaly.
For trends, the frequency can even be normal during the entire anomaly, but a
bit offset, therefore, it will only be detected by observing a larger summation of
the error. Hence, the answer to [R1.] (research question from Section 1.7) is
that both are good, one being better than the other depending on the anomaly.

5.1.2 R2: What kind of deviations should be considered
as anomalies?

Mainly, there are two different kinds of anomalies, namely, short and long (point
anomalies and trend anomalies respectively). The answer to [R2.] is that
these are the kind of deviation that are considered as anomalies. How they are
detected is described further in Section 5.2 and 5.3.
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5.1.3 R3: Which parameters are best to maintain and
which to disregard?

Considering the parameters, they sure do have an impact on the results but not
as much impact as they could considering their variation. E.g. the order can
vary from 1 hour up to 168 hours, but only the values for full days are useful,
therefore, 161 of them can be discarded. With only [24, 48, ..., 168] left, still some
of these provide almost equal results. This means that even more parameters
can be discarded, but now they can be discarded by what is most beneficial for
the user. In this paper, only 72 and 120 (order 3 and 5) are retained. The same
argument holds for the window length parameter, where the final lengths are 48
and 168 (order 2 and 7). That is the answer to [R3.].

5.1.4 R4: How will the outcome be scored?
The anomaly score resembles the integral of the curve that are located outside
of the threshold line. Analyzing this mathematically is done by using Definition
3.8 and is the answer to [R4.]. If this value is above 1 it is an anomalous point
(or sequence). The larger the value is, the more critical the anomaly is. The
scoring is done empirically. This works well for most of the anomalies in this
project, but when extremely anomalous points enters the model it can get out
of hand and result in an extremely large score. This can be misleading, but
since all extreme anomalies must nevertheless be analyzed, it is a good thing
that they are highlighted.

5.1.5 R5: What level of certainity is it on the models?
In statistics, 100 % certainty level is very difficult to achieve. For these three
models, by analysing the rate of Error Type 1 & 2 on the artificial anomalies,
the success rate for detecting anomalies are shown in Table 5.1, which is created
by simply looking at the ratio regarding number of Type II Errors and total
number of anomalies. Generalization of this yields a certainty of 50 to 60 %
detected anomalies, which is the answer to [R5.].

These numbers can be greatly improved if the models are used simultane-
ously. For instance, if the wavelet model is used for detecting short-term anoma-
lies only, it presents a clear difference between normal data and anomalous data.
The long-term LPC model is used for slower anomalies, such as trends, where it
showed a very high anomaly score for the trend anomalies. Worth noting is that
only one Type I Error occurred throughout all tests but many more Type II
Error. For the latter error type a brief analysis has to be done by a person, but
for the first error type nothing will be done and a possibly devastating problem
will go unnoticed. Therefore, Type II Error is considered more hazardous than
Type I Error. And since Error II is more common for these models, parameter
tuning is added to future work to decrease the number of errors of the second
type. This is done in the last row in Table 5.1, where the wavelet model handles
the local anomalies and the long-term LPC model handles the global anomalies.
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Model overview results

Model Anomalies
detected Error I Error II

Short-term LPC 57 % 74 % 40 %
Long-term LPC 57 % 20 % 13 %

Wavelet 50 % 1 % 49 %
Wavelet and

long-term LPC
combination*

∼ 71% ∼ 11 % ∼ 0 %

*The result for the combination of models is only an estimation.

Table 5.1: An overview of the average for the LPC and the wavelet results.

However, the results for the combination of models are estimations based on the
results for the other models, s.t. the results for the local anomalies are taken
from the wavelet model and the global results are taken from the long-term LPC
model.

The anomaly detection rate is also a bit misleading, for the implemented
anomalies are all tested once, which represents a world where all types of prob-
lems occur once and none occurs frequently. Realistically, that is not the case
since some problems are more common than others, e.g. hasty software updates
or local server crashes. If a frequently repeating error is an easy one to detect,
the anomaly detection rate would increase (and vice versa). Nevertheless, more
common problems are more likely to be focused on, therefore, the detection rate
should increases with more distinct anomaly type distribution.

5.2 Detecting Point Anomalies
When a point anomaly appears {1}, the filter will smooth out this and the
deviating point will not even be noted, unless it is deviating very much (such
that di >> E[D] or di << E[D]). However, the filter can be regulated by
decreasing itâĂŹs length so that it is more sensitive to deviations in one point.
The forward-backward filter that is used has a length of eight steps (eight hours)
so it is not very sensitive. If the desire is to detect such anomalies, the filter
length should be lowered to, e.g. three. This will cause the signal to oscillate
more. Eventually, this might make other anomalies more difficult to detect.
The reason for this is that the reference data set will be less consistent and, e.g.
the α-parameter for the LPC method will become more complex.

In general, all methods performed satisfactorily to detect point anomalies
but the wavelet model is the one with the best results for this.
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5.3 Detecting Trends
A trend jump {2} has an outcome from the LPC that looks like a delay. The
LPC-signal needs some time to adjust to this sudden jump and while the LPC-
signal is doing that, the difference between the input signal and the LPC-signal
is very large. By only considering the absolute value of the difference, a large
block appears at the time of the anomaly. Looking at the absolute value is done
because one more task will be eliminated, namely, to determine whether the
trend jumps up or down (both are however anomalies).

In the changing trend-case {3}, the error is very small, hence, it will not be
considered as an anomaly in the difference comparison between the LPC signal
and the input signal. On the other hand, the error is constantly located at one
side of the zero mark. Benefits can be drawn from this, namely, if there is no
absolute operator and the window length for the error summing is increased.
Such small but persistent deviations are added with the same sign, hence, a
sum of a large number of elements with the same sign will make the value of the
sum large, even though the elements themselves are not. Therefore, a changing
trend can be detected by summing over a longer time period, e.g. seven days or
ten days.

Slow trends were not even detected by some models, but the long-term LPC
model with long window length performs best for this.

5.4 LPC Analysis
The definition of a good model is a model that has as few Type I & II Errors
as possible. In Table 4.1 it can be shown that the LPC model is not completely
enough for the local anomaly detection task. If the threshold is set to a narrow
value, the Type I Error increases immensely. To prevent this, the threshold
is set to a more spacious value, which in turn makes Type II Error increase
significantly. A compromise is necessary and a decision must be made about
what is desired.

For the slower anomalies, such as trends, the long-term LPC model is a good
choice. It detects the majority of the anomalies with few Type I & II Errors
and high margin for the threshold indicator.

5.5 SLP Analysis
In the analysis of the shorter reference data set (one week) the SLP model
cannot improve α to make it more sparse. Only at very large γ the SLP model
increases the number of zero-elements in α. But in fact, the model now consider
a zero-element more valuable than almost any number, therefore, it converges
to generate an α containing only zeroes because having a zero in an element is
more appraised than having a number that possibly could make the SLP signal
to fit the input signal.
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For reference data sets of length of one week or less, the SLP model creates
no zero-element in α until γ reaches 108 where the system starts to converge to
zero.

What happens in the "grey area" in between one and ten weeks is not in-
vestigated in this paper and therefore added to the Future work, see Section
5.8.

5.6 Wavelet Analysis
Wavelets are great for detecting local anomalies, almost no Type I & II Errors
at all, see Table 4.5. However, this model is terrible for detecting trends. A
slowly moving trend does not change the frequency much, therefore, it is simply
not being detected by the model. Resulting in a hideous amount of Type II
Error for trend anomalies. The only detected trend resulted in a anomaly score
of 1.28, which is not very convincing.

Anomalies directed downwards are resulting in lower frequencies. This means
that if the signal is normal from the start, the anomalies are considered to be
even more normal (because they are located even more in between the thresh-
olds). This is actually misleading, because anomalies directed downwards are
considered equally anomalous as upwards. A solution to this could be to in-
troduce another threshold for when the signal starts decrease. This problem
occurs when a signature suffers from decreasing usage over time (down-pointing
trend). At this time, any change in the signature have more difficulties to be
detected by the system. The reason for this is that the wavelet outcome itself
is located much lower than before, regarding the threshold. E.g. a decreasing
trend followed by an up-pointing point anomaly is more difficult to be detected,
see the filtered input signal in Figure 5.1 and the outcome in Figure 5.2.

Figure 5.1: A late point anomaly in an already anomalous down-pointing trend.

5.6.1 Window Sum
A window sum for wavelet outcome is not reasonable because the outcome is
located around the zero-mark. Therefore, the sum will also oscillate around
zero. The problem is solved by taking the sum of the absolute values of the
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Figure 5.2: The output signal from the signal in Figure 5.1 using wavelet
(Daubechies wavelet).

outcome. Hence, the sum would increase for increasing frequencies and decrease
for decreasing frequencies.

5.7 Implementation of Methods
The current working process for the anomaly detection program is that a data
set (Dref ) is sent to the machine so that it can learn from this. This data
set is supposed to be as normal as possible, containing no anomalies. If any
of these signatures are already anomalous, the program will not perform very
well on this particular signature, see Figure 4.20, resulting in many alarms and
the reference set must be replaced with a normal data set. From this point,
anomalies can be detected. When the analyzed data set (Dtest) is analyzed and
an anomaly are detected for any signature, the anomaly score will indicate this
(values above 1 are anomalous). The higher the score is the more anomalous
the signature is.

The program is done calculating in matter of seconds, which makes Problem
specification 4 a success! And no further code optimization is required.

5.8 Future Work
• Thresholds has optimization opportunities. A more general and simple

function could be a solution.

• Anomaly score has optimization opportunities too. The algorithms find
them but the score is sometimes a bit misleading. However, this is corre-
lated with good models.

• Analyze the input parameter, upload speed and download speed that are
reduced to a collective parameter. Separate them and analyze them indi-
vidually instead and see if the result differs.

• The wavelet families, other than Daubechies, can be closer analyzed to see
if any of them performs perhaps better for its specific purpose.
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• The SLP model can be closer analyzed to see what happens with the
output for a larger variety of γs.
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