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SUMMARY

Computer architecture has looming challenges with finding program paral-

lelism, process technology limits, and limited power budget. To navigate these chal-

lenges, a deeper understanding of parallel programs is required. I will discuss the task

graph representation and how it enables programmers and compiler optimizations to

understand and exploit dynamic aspects of the program.

I will present Contech, which is a high performance framework for generating

dynamic task graphs from arbitrary parallel programs. The Contech framework sup-

ports a variety of languages and parallelization libraries, and has been tested on both

x86 and ARM. I will demonstrate how this framework encompasses a diversity of pro-

gram analyses, particularly by modeling a dynamically reconfigurable, heterogeneous

multi-core processor.
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CHAPTER 1

INTRODUCTION

Modern hardware is going through a paradigm shift. The solutions and techniques

of the past decades are reaching physical limits. Already architectures are embracing

parallelism to continue to provide improved performance. Many opportunities are

looming ahead, such as 3D stacking, heterogeneous components, and dark silicon.

Designing for these opportunities requires greater understanding of the software.

Software is ever increasing in size and complexity. To continue its development

and improvement, programmers must understand their software. How does the soft-

ware work with the compiler, hardware, operating system, and other programming

libraries. To understand the software and how it is executing, tools and analyses are

required. Without quality tools and analyses, software will not be able to fully utilize

the resources provided, especially as the computing ecosystem continues to evolve

and change.

Therefore, there is a continuing need of programmers, compilers and computer ar-

chitects to understand modern parallel programs, and each in different ways [7]. The

common approach has been to develop a targeted instrumentation and corresponding

analysis for each particular need. In many circumstances, existing instrumentation

frameworks have been available to assist in collecting the specific data about the

program, mitigating some of the work to develop the instrumentation. While some

This work will demonstrate that a common representation, in the form of a task
graph, can provide a unified platform for a diversity of parallel program analysis,
while matching the performance overheads of more targeted approaches.
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instrumentation is designed to have negligible overhead (e.g., using sampling), allow-

ing these tools to be used with production systems, there is still a need for more

detailed insight into parallel programs.

Some problems of analysis can be solved with simple tools and techniques, yet to

encompass the great diversity of common analyses, more comprehensive approaches

are required. The task graph representation is one such approach. By gathering the

threading interactions of the software along with the trace of execution, a task graph

can serve as a common representation upon which analysis tools can be developed.

Task graphs of various kinds are well established in the study of efficient scheduling

of parallel tasks [76] [109] [120] [132], as well as evaluating future architectures [4] [42]

and parallelizing applications [52]. Yet task graphs have been limited by the nature

of their generation. In software, research has relied on programs being appropriately

annotated or written in a task-oriented language. Even hardware-based approaches

have assumed the programs have been extended to expose the ”tasks”. Task graph

representations have generally been designed for targeted problems of scheduling,

which necessitates extending the representation if the task graph is to be used to

solve other complex problems.

1.1 Definitions

Task graphs will be described in detail in Chapter 2. The concept is that parallel

programs are composed of sequential execution regions, called tasks. Tasks are de-

limited by operations that may affect the concurrency, such as exposing additional

concurrency or coordinating between tasks.

Concurrent operations are those that may potentially operate simultaneously with

other operations in a program or system. The architecture of the system, scheduling

decisions, and other constraints then determine whether any two operations actually

2



execute in parallel with each other. A task graph is expressing the actual concurrency

exposed and thus potential parallelism of a program.

Parallel paradigms are different approaches to expressing the concurrency of a

program. The approaches may be implemented through runtime or library APIs,

compiler pragmas or extensions, or integral to the programming language.

Heterogeneous architectures are those whereby the processing elements of a single

system differ in some aspect, such as the frequency or cache configuration. Hetero-

geneity can have both static and dynamic traits, for example, the ARM big.LITTLE

[50] combines different processor cores (static) and dynamically enabling and fre-

quency scaling the cores. Scheduling and modeling such a system will be analyzed in

Chapter 6.

1.2 Future Challenges

Software development is being guided by the changes in computer architecture, whereby

processor designs are constrained by their power and energy requirements. This con-

straint brings increasing focus on core counts and heterogeneity as ways for the hard-

ware to continue to provide more performance. Software and programs are also bur-

dened by their own success, whereby the designs and software architecture continue

to grow, while layers of abstraction are introduced to aid the programmer. These

burdens further distance the developer from the tools to leverage the changes in the

hardware.

1.2.1 Architectural Challenges

What are the architectural challenges of the near future? Even now, the presence

of multicore chip designs has created difficulties for compilers and programmers to

achieve the performance and stability expected of modern software. In focusing on

3



increasing core counts, modern software does not yet have sufficient scaling to al-

ways use the cores available [41]. Simply increasing the core count will leave greater

portions of the processor unused.

For the past several decades, the decreasing feature size of silicon has had similar

decreases in power consumption; however, as the features increasing depart from

classical mechanics and are subject to quantum effects, the savings in power are

diminishing [41] [133]. Should the power consumed by the transistors exceed the

thermal dissipation capability of the design, some of the transistors must be disabled

at all times except in short bursts. This design would now have different on chip

components that are enabled depending on the requirements of the executing code.

Even switching to other cooling techniques cannot prevent the fundamental scaling

problems of power dissipation.

Improvements in process technology have been shrinking the features in silicon;

however, there is a looming limit in the size of features. Eventually, each feature

would be the size of a single atom, at which point the transistor counts can only be

increased by macro scaling, either larger dies or vertical stacking. There is always the

possibility of changing materials, yet unless the fundamental architecture is changed

the trends remain.

The above trends lead to increasing opportunity for die space to be devoted to

different purposes, whether it be cores with a variety of computation power or spe-

cialized accelerators. In this heterogeneous space, how a program is designed to use

the resources is of importance and requires more focused analyses.

1.2.2 Programmer Challenges

Programmers must ensure the correctness of their code, while meeting the architec-

tural challenges that are proliferating the number of cores. One increasingly com-

mon approach is the use of alternative programming languages that better address

4



the costs and difficulties of modern programming. For example, Facebook recently

adopted Haskell for better scalability in detecting spam messages [87]. Other groups

have developed new languages, such as X10, Go, and Rust, or adopt different parallel

paradigms, such as OpenMP or Cilk, in an effort to ease the burden on the program-

mer to meet these challenges. However, rewriting millions of lines of legacy code is

rarely an option and therefore programmers also require improved support from tools.

Program correctness requires locks, barriers, and other forms of synchronization.

Significant research has explored more efficient and scalable implementations both

from software as well as hardware changes. Vallejo, et al. [118] provides a good

summary of the various lock-based implementations available. It can be difficult for a

programmer to make an informed decision as to the appropriate lock implementation

based on the usage of the lock and the underlying architecture. Program scalability

is further impacted due to coarse-grained locking, whereby a critical section protects

more than is required for correctness. In many cases, it is possible to statically

identify operations that do not require the critical section [11], and thereby reduce

the size of the critical section. Furthermore, synchronization may also be split into

finer-grained units to protect smaller sets of locations, thereby reducing contention

when the different sets can be accessed independently.

By incorrectly reducing the critical sections and otherwise changing the synchro-

nization, accesses to shared data may no longer be safely ordered and serialized,

thereby introducing data races. Data races can be difficult to identify due to the

diversity of synchronization in programs [116], as well as the impact of the mem-

ory model [73]. Changes to synchronization may also introduce deadlocks and other

failing execution scenarios.

Programmers utilize the available abstractions in selecting algorithms and data

structures during development to improve their productivity. These conventions may

not be efficient from an architectural or compiler standpoint. One example is the use
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of data structures in a program. Brainy [69] showed that not only do programmers

often chose a suboptimal data structure, but the optimality of the choice can depend

on the architecture itself. This work was extended to also consider the parallel usage

of the data structures [90].

1.3 Designing a New Tool

The general approach by programmers to understand and analyze a program follows

repeated iterations across increasingly complex tools toward the specific problem of

interest. The complexity of the tools requires greater time to collect as well as analyze

the information from the program. This has lead to a significant diversity of analysis

tools.

The original challenge presented three years ago was identifying the thread and

communication relations to best exploit Manager Client Pairing (MCP) [17] [18],

which is a hierarchical coherence compositional design. Without any immediate tool

available to solve the problem, a new instrumentation tool or plug-in would be re-

quired. The minimum data necessary for this problem would be the memory accessed

by the parallel program, as well as the thread ID or context of each access. This diver-

sity of data required to support MCP leads the design of what would become Contech

to collect additional data in order that the tool would be able to support many of

the existing tools and analyses. Given the desire to support this diversity, Contech’s

design generates traces of the program’s execution, so that multiple tools can analyze

precisely the same events from that execution.

Figure 1, from Rico, et al. [102], illustrates the decreasing use of trace-driven

models for computer architecture. Program traces have difficulties modeling parallel

programs, due to the need to capture timing related aspects of execution such as lock

ordering. Fitting with this trend, only 16% of papers in ISCA 2015 used traces. The
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Figure 1: Different Simulation Types in Computer Architecture, (Figure 1 from Rico,
et al. [102])

development of a new tracing tool would need to properly encapsulate the different

timing aspects of parallel programs.

From interviews with parallel programmers [7], a regular concern with tools and

debugging approaches is whether the techniques used to find the performance issue

will introduce other phenomena (i.e., probe effects) that will mask the original issue.

Therefore, any tool used to understand programs, especially parallel ones, must be

designed with an awareness of the performance costs of its associated instrumentation.

1.4 Contributions

The contributions of this dissertation are three-fold:

• A novel, “Contech”, task graph representation of parallel programs that sup-

ports independence of architecture, language, and threading paradigm. This

representation splits synchronization tasks from work tasks, and includes the

memory and execution trace.
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• The design and implementation of a framework in the popular LLVM compiler

infrastructure to efficiently generate the dynamic Contech task graph represen-

tation for arbitrary parallel programs.

• Demonstration of the comprehensive nature of the task graph representation by

modeling the parallel programs on a parallel, reconfigurable architecture.

1.5 Organization

The remainder of the dissertation is organized as follows: Chapter 2 describes the

task graph representation, Chapter 3 explores the different approaches taken to in-

strument and analyze programs, Chapter 4 demonstrates the Contech framework that

collects and supports the analysis of task graphs. Chapter 5 will cover the analysis

of task graphs, along with several sample tools. Chapter 6 presents a parallel recon-

figurable architecture and shows how Contech task graphs can be used to model the

architecture. Chapter 7 concludes the dissertation.
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CHAPTER 2

TASK GRAPH REPRESENTATION

This chapter will present the theoretical underpinnings of the task graph represen-

tation that the Contech parallel program instrumentation and analysis framework

uses. It will also discuss the basis and history of the task graph representation and

how Contech’s model differs from the prior work. These differences are what enables

Contech task graph analysis to address a greater diversity of problems, as well as to

encompass many parallel programs.

Parts of this chapter have been extended from the prior publication of Con-

tech [100].

2.1 Extending from Prior Task Graphs

Contech is not the first work to propose task graphs for representing the parallel

program and generate them from instrumented programs. However, prior approaches

have been limited to specific languages and program structures, or required that

programmers add annotations to their code so that a tool could construct a task graph.

Nabbit [3] and Vandierendonck, et al. [120] both extend Cilk with annotations to

identify tasks for scheduling, while Heumann, et al. [56] proposed similar annotations

for Java to provide tasks with safety guarantees. Even hardware-based approaches to

task scheduling have relied on programmer annotations made to C or C++ programs

[42] [52] [76].

Adve, et al.[1] demonstrated a framework that can collect task graphs without any

programmer annotations, when the program is written in High Performance Fortran

(HPF). When they extended their work to more general programs, they relied on

hand-generated task graphs, as they noted, “[we] manually wrote scripts to generate
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each of the task graphs” [2]. Thus they decided to focus their work on an interesting

analysis of parallel programs rather than extending their prior framework.

Tareador [8] used Valgrind-based instrumentation to generate a (artificial) task

graph for the program. This task graph is primarily a recording of the sequential

execution of the program, with additional user-supplied annotations to identify the

potential parallelism of the program. It is primarily designed to explore parallelism

strategies before implementation.

While not generating a task graph, Varuna [109] identifies virtual tasks out of

parallel programs, using existing parallelism APIs to identify when parallel work is

created, and dynamically finds efficient schedules of the running programs. ParaOps

[102] [103] has been used to encapsulate parallel operations in execution traces, to

better support parallel simulation. Varuna and ParaOps, along with Contech, repre-

sent parallel operations via abstraction to either better schedule, simulate, or analyze

parallel programs.

The following section describes the task graph representation, as based out of

prior publications. These papers developed the representation for theoretic analysis

of scheduling algorithms, where the programs had been abstracted as task graphs.

2.2 Parallel Program Representation

A parallel program can be represented as a set of tasks that may execute in parallel

and interact via both actions and data dependencies. A task graph models the behav-

ior and execution of a parallel program as a directed acyclic graph, where nodes are

tasks and edges are the explicit dependencies between tasks, which gives the following

expressions for a task graph:

G = (V,
−→
E ),∀v ∈ V :< task >

∀−→e ∈
−→
E :< scheduling dependencies >
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Figure 2: Aggregating a Computation Graph into Tasks (Work: 1, 3, and 4; Create:
2)

The focus of Contech has generally been on shared-memory programs; however, a

distributed-memory program could be similarly represented where all memory ac-

cesses are mapped to disjoint sets of addresses and there exist send and receive actions

that allow accesses between these sets [46], see also Section 4.9.

To derive a task graph, first begin with a program’s execution, which is considered

as a computation graph. In the computation graph, every node is an action, be it

an instruction, basic block, function, or some other unit of execution. Some actions

have additional explicit non-data dependencies on prior actions, and are termed syn-

chronization actions. Programs may use these dependencies to enforce an order on

its data dependencies. The actions are then aggregated together into tasks, thereby

transforming a computation graph into a dynamic task graph. Figure 2 shows an

aggregation of compute nodes into tasks.

The task graphs representation was first used to analyze program scheduling by

decomposing the program into tasks [21] [22] [46]. Figure 3 shows an example task

graph from that work. In it, tasks are circles and there are three types of edges:

horizontal - continue, vertical - spawn, and curved - data-dependency. Additional

research extended task graphs with their potential interactions [84] and found subsets

of the graph with no interaction and representing the subset as a single node [15].
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Figure 3: Classic Task Graph, circa 1993 [22]

Parallel Program Graphs [107] is an extension of control flow graphs (CFGs),

which adds a parallelism node and synchronization edges; however, it does not cleanly

partition out other edge types controlling parallelism. Figure 4 provides one example

of a Parallel Program Graph. Note how the synchronization edges (S2 to S5, and S4

to S5) are only conveying the ordering information. This graph also demonstrates its

CFG origin with the backward edge and representing each statement as a separate

node. Finally, node S5 is a generic node and does not have a special type, even though

it represents the end of the parallel section.

A task is defined as containing either a sequence of actions taken without an inter-

vening synchronization action, or the synchronization action itself, which is similar to

Cilk’s definition of a strand [83]. Tasks consisting of the former are identified as work

tasks (task partition W), which may contain individual instructions, basic blocks, or

entire functions. In practice, most tasks are sequences of basic blocks; however, a

standard system function such as malloc is stored intact in a task, although other

work have used different sequences [21] [22]. Tasks may also contain a set of data

locations accessed.

2.3 Contech Task Graph

One extension of Contech task graphs from prior work is that tasks containing syn-

chronizing actions are assigned into one of four partitions on the task graph: creates
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Figure 4: Parallel Program Graph [107]

(C), joins (J), syncs (S) and barriers (B), which along with the fifth partition, work

(W), cover all tasks in the graph. Each synchronization action can only map to a

single partition type in the task graph. Thus the task graph formalism is extended:

C, J, S,B,W are partitions on V:< task type >

These synchronization tasks define the topology of the task graph, and cleanly sep-

arate the synchronization from the useful work within the graph. Using these par-

titions, the task graph has one type of edge, and the cause of dependency edges is

clear from the partitions of the tasks, whereas prior task graph representations either

stored the cause as an action in the tasks or as different edge types. Thus the depen-

dencies in the task graph are only those actions explicitly invoked by the program to

order otherwise concurrently executing contexts. Unlike prior work, the dependencies
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between tasks are not associated with data being produced or consumed by the tasks.

In practice, the particular mapping of parallelism functions to the partitions is left to

tools that generate task graphs. For example, the end of an OpenMP parallel region

has an implicit barrier followed by a joining of the parallel execution, which could be

mapped to both a barrier and join or just a join task.

The following properties are expected of each partition regardless of the architec-

tural details of the generating tool: Create tasks increase the possible parallelism in

the task graph, commonly having an out degree greater than their in degree. Join

tasks are the complement of creates, in that they reduce the possible parallelism in

the task graph. Sync tasks capture actions that impose an order between tasks, but

without changing the parallelism in the task graph. The sync task may encapsulate

a semaphore or condition variable, where one task is waiting on another task’s no-

tification. Tasks in the sync partition can also represent lock acquires and releases.

The particular mapping is again left to tools implementing the task graph definition

and could capture other functionality. Barrier tasks are similar to sync tasks, except

that the ordering requirement is all to all rather than one to one (e.g., lock) or one to

many (e.g., condition variable). Together, the dependencies in a task graph establish

a partial order between the tasks. While it may be possible to create a total order

using additional annotations such as the start and end times of tasks, such an order

would be an artifact of a particular execution.

The set of work tasks can also be partitioned into disjoint subsets, where each

subset represents a context. This partitioning of work tasks can be constructed using

information known for each execution action. The practical definition of a context

depends on threading models, but in general such a subset in the task graph represents

the implicit data dependencies that many architectures carry between work tasks via

registers, stack locations, return values, et cetera. As such, tasks in a context are
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Figure 5: Legend for Visualized Contech Task Graphs

expected to depend on prior tasks in the context and may not be able to execute in

parallel with each other, even if there are no explicitly represented data dependencies.

The task graph only contains the program order of the actions in each task,

which may differ from the order dictated by the architecture executing the program.

This property of the task graph also holds for any data locations accessed by the

task. Dependencies between these actions may restrict the set of possible reorderings

that the compiler or hardware can exploit. As the task graph is independent of

the architecture, it does not preserve the actual execution order, only the program

order. These orderings, along with the dependencies from synchronizing actions,

define possible orderings of the actions in a parallel program. A correct parallel

program uses synchronizing actions to restrict the set of possible orderings to those

that preserve the intended dependencies between memory writes and reads in different

threads. In other words, the synchronization actions prevent data races.

Contech work tasks contain sequences of execution and memory actions. The Con-

tech task graph also contains properties and annotations such as, a set of predecessor

and successor tasks for each node, as well as start and end times. Being annotations,

the start and end times are not used in constructing the task graph, and are only

provided for certain analyses.
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(a) Create (b) Join (c) Sync (d) Barrier

Figure 6: Contech Task Graph Features by Type

2.4 Visualizing a Contech Task Graph

It is useful to visualize the elements of Contech task graphs. Figure 5 provides the

legend for the subsequent figure. Tasks are uniquely labeled with a Task ID, which is

the pair of <Context ID>:<Sequence ID>. The Context ID is a unique identifier for a

context, akin to a thread ID. The Sequence ID is a monotonically increasing identifier

in each context. Work tasks are represented by ovals, with their Task ID visible. Other

task types have a Task ID, but are represented instead by their type. The edges in the

graph are represented as arrows, with the direction of the arrow pointing towards the

dependent task. Synchronization actions are black squares labeled with a single letter

indicating the type. Note that while the implementation also assigns identifiers to

these actions, they are not shown in the visualization. While these images are taken

from actual task graphs, in our experience most parallel programs use thousands to

millions of tasks during execution, which exceeds the capabilities of even a simple

graphical visualization.

Figure 6 shows each of the task types from a task graph. The Create task (Fig-

ure 6.a) shows one task entering the create task and two tasks dependent on the

create. The 1:0 shows that Context 1 has been created, and therefore Context 0 in-

voked the create. Join (Figure 6.b) has two tasks entering the join task, and one task

(Context 0) continuing. Syncs (Figure 6.c) involve two tasks entering and leaving
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the sync, which represent the two chains of dependencies. One chain of dependencies

follows the sync tasks, as each sync must occur after its predecessor, for example, a

lock is acquired after being released. The second chain of dependencies reaching a

sync task follows the context that executes that sync, whether it be an atomic, lock,

or other construct. The final task graph feature, the barrier (Figure 6.d), involves

many tasks entering and leaving. Tasks after the barrier are dependent on both their

context’s last task as well as the barrier task itself, although the former is known

transitively via the latter.

2.5 Incorporating a Parallel Programming Model into the
Task Graph Representation

The process of integrating a new parallel programming model is straightforward. Each

construct within a parallel programming model must be mapped to the appropriate

representation in a task graph. The construct is considered for how it affects the

(potential) parallelism of the program: is it increased (create), decreased (join), or

has the parallelism remained the same (sync / barrier). The intent of the programmer

also influences classification; for instance, atomic instructions can be used for fine-

grained concurrent access to shared locations and should therefore be represented

explicitly as sync tasks rather than be contained within work tasks.

When a representation for a construct is established, the construct must be appro-

priately instrumented to record the necessary information to represent the task. For

create and join tasks, this often requires identifying the contexts involved in the op-

eration. Sync and barrier tasks are identified by the address of the dynamic instance

of the construct. This instrumentation is at the core of the Contech framework.

Condition variables, part of the POSIX threads standard, provide a way for

threads to signal both 1:1 and 1:many. The core design is centered on represent-

ing condition wait, which performs three operations: it unlocks the mutex, after

some time the condition variable is signaled, and the mutex is reacquired. Each of
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the three operations is represented as a separate sync task performed on either the

mutex or condition variable, with the mutex’s or the condition variable’s identifier

(e.g., address) stored in their respective tasks.

OpenMP 3.0 introduced the task keyword, which was extended in 4.0 to add a

depend keyword. As the OpenMP task increases the potential parallelism, it is first

bracketed by Contech create and join tasks. Then each OpenMP task dependency

provides an ordering constraint between separate tasks without changing the pro-

gram’s exposed parallelism, and each is therefore represented by a Contech sync task

for the associated item. The constraint’s identifier (e.g., address) are then used to

link the dependencies together in the final task graph.

2.6 Example Task Graphs

In its simplest, a task graph is a single task. This program can be as short as “Hello

World” or a multi-day serial architectural simulation. Across this range of serial pro-

grams, the programs are without any parallelism actions, and so the aggregation from

the computation graph will never encounter an action that should be in a separate

task, which contrasts with the example in Figure 2.

The program’s computation graph can be initially viewed as being aggregated as

a single task. Parallel actions are then selected that are part of larger tasks. Each

parallel action (P), in general, will split the task (T) containing it into three pieces:

computational actions in T prior to P, P itself, and the computational actions in T

following P. Specific parallel actions may introduce additional tasks. A create action

is part of the three split tasks plus one additional task per created context. And a

barrier action splits each waiting context and introduces the single barrier task as a

common dependency.

In practice, parallel programs will either be dominated by syncs and barriers or

creates and joins, based on the underlying programming paradigm. In pthreads and
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#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

Figure 7: Simple OpenMP Program as a Contech Task Graph

MPI, threads are explicitly managed, therefore the high cost of thread creation re-

sults in few creates. Concurrent access by the parallel program to its data is protected

through syncs (mutexes, condition variables, et cetera) and barriers. With OpenMP

and Cilk, the programs will instead decompose the problem into parallel components

that are created through #pragma omp parallel or cilk_spawn, which the paral-

lelism runtime may map to different threads. Decomposing into finer granularity

can then mitigate the need to use fine-grained synchronization. This analysis will be

revisited in Section 5.2.

Figure 7 shows how a simple OpenMP program maps to a Contech Task Graph.

From top to bottom, the parallel region creates two parallel contexts, which then

execute up to the single directive. The contexts synchronize and one enters the

region, while the other skips to the end of the region. The end of the single construct

implies a barrier within this parallel region. The contexts continue executing, until

they reach the end of the parallel region, where they wait at the implicit barrier and

then join back into the serial execution. Note again that the implementation of the
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Figure 8: Simple OpenMP Program Using OMP Tasks

instrumentation used to generate this Contech task graph represented the implicit

barrier and join separately.

Figure 8 demonstrates how the OpenMP task construct is represented in Contech,

along with conveying the dependency information between tasks. Context 3 creates

two tasks (context 4 and 5) each with an input and an output dependency on the

same variable. The dependencies are each represented with a sync task, as each

(potentially) orders the execution of different contexts. In the example figure, the

syncs surrounding work task 4:2 are the input and output dependencies to that task.

The OpenMP task in context 5 syncs on context 4’s output after work task 5:0.

2.6.1 Why are syncs (i.e. non-work) a unique type of task

Prior work has generally treated non-sequential dependencies as separate edge types.

For example, Blumofe, et al. [22] had three edge types: continuation, spawn, and

data dependency. Parallel Program Graphs [107] used two edge types: control and
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sync. Yet the Contech task graph only uses one edge type. More importantly, Con-

tech promotes syncs and barriers to be distinct types of nodes, rather than using

types of edges. In principle, this decision begins with the underlying computation

graph representation whereby a synchronization would be one or more actions in the

graph. Beyond this underlying representation, this section will work through sev-

eral cases where prior designs would have difficulties adequately supporting desired

functionality.

In general, synchronizations form a continuous chain throughout the program, as

each synchronization is ordered with respect to the one before and the one after it,

such as atomic operations on a single memory location. From this primitive synchro-

nization, programmers (and architects, parallelism libraries, et cetera) can build more

complex forms of synchronization, such as locks, condition variables, or semaphores.

Some complex types may have implicit orderings that overlap with the underlying

ordering. For instance, consider a lock that alternates between acquire and release.

Release will follow acquire in the same context, and therefore will have the context’s

ordering constraint. In contrast, the acquire after a release may cross between con-

texts and require the constraint explicitly. If only the latter were required, then an

edge from the releasing task to the acquiring task would convey this same ordering.

In such a case, the synchronization action itself could be placed before (for acquire)

or after (for release) the work of the task itself. Initially, Contech’s design attempted

to do that and place the synchronization with the work.

Three problems limit the suitability of including synchronization with work: iden-

tifying syncs in the graph, representing non-lock types, and measuring the costs of

syncs. Tasks with syncs could be identified by extra flags, special edge types or even

the number of incoming / outgoing edges. Differentiating the diversity of syncs can

be (and is) accomplished by including an enum with the task. However, non-lock

types do not have the clear acquire and release that enables inclusion with work.
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Until now, the discussion of syncs has focused on locks; however, as initially

noted, there are a variety of types built on atomic primitives. If the sync is not a

lock, then there may be no implicit ordering and therefore the complete order should

exist in the task graph. Thus, the synchronization event (current) has two edges:

(previous → current) and then (current → next). If this generic synchronization

was part of a work task with actions before and/or after it, then either the edge from

previous must enter the middle of the task to correspond to the synchronization or

the edge to next must exit from the middle of the task. Yet tasks should be treated

like basic blocks, such that edges should only enter at the start of a task and exit at

the end of a task. That being the case, then synchronizations become degenerate work

tasks only containing the synchronization itself. Furthermore with synchronizations

being discrete tasks representing a variety of potential coordination between tasks,

the special case of locks is not treated separately by restricting its edges to the release-

acquire pair, and instead retaining the general representation of each node having a

partial order (1 or more predecessors and 1 or more successors).

A key feature of modeling synchronization is being able to measure the various

costs associated with any atomic operation, for example: how expensive is the oper-

ation? Is there contention? What effect does contention have? Therefore, each sync

action needs, at minimum, the start and end time annotations. If the sync is part of

work, then both the task and any syncs each have start and end time annotations.

And each sync in the work would have the appearance of a task: having incoming /

outgoing edges and start / end times. Alternatively, some prior work treated syncs

as edges. A sync edge would still have time annotations, where the edge would be

defined from not two but four times: a start time and end time for the first action

and a start and end time for the second action. If the actions temporally overlap,

then the edge exists at a time in between each start and end. If instead, the actions

do not overlap, then the edge is after the first and before the second sync actions.
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A barrier is a common instance of all to all ordering between tasks. By representing

the action as a single barrier task, rather than barriers per context, the edges in the

graph pass through the single ordering point. This avoids creating a clique between

the associated contexts.

2.7 Other Parallel Program Representations

Other parallel program representations had been developed. Some representations are

formal in nature and support proving the properties of the parallel programs. Other

representations are designed as a comprehensive programming interface to represent

and then efficiently execute a parallel program. Contech’s task graph is comparable

to the former and is designed to encompass the latter. I will summarize several

representations and frameworks not (currently) supported by Contech in this section.

2.7.1 Communicating Sequential Processes

Communicating Sequential Processes (CSP) provides a description of the program’s

potential actions. This formalism describes the actions that every process in a pro-

gram will or may take in each step of its execution. The representation is therefore

closer to the computation graph that is the theoretic basis for the task graph, rather

than the task graph itself. However, CSP includes language to hide parts of a pro-

cess’s actions, so this technique could be used to restrict the actions exposed by a

process to just the actions required to describe the interactions between processes.

A Contech task graph could be described using CSP; however, given that these

task graphs are traces of specific executions, individually they do not contain the

nondeterminism that CSP captures. CSP could be used to unify a set of traces from

a program’s execution, although such an effort is far beyond this dissertation. In so far

as it might be done, contexts are treated as processes that interact with each other

through locks and other synchronization. These interacting elements are distinct

processes in CSP, whereby a lock is a state machine alternating between the acquire
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and release events. After mapping more than one Contech task graph to a CSP

description, further work would be required to show how the different descriptions

could be merged through finding commonalities. Only by unifying a diversity of task

graphs for a given parallel program would a CSP-based representation be then able

to correspond to the static task graph (implicitly) within a parallel program.

2.7.2 Concurrent Collections

Concurrent Collections (CnC) [74] consist of three types to govern the execution of

a parallel program: computational steps, control, and data. Similar to other runtime

parallelism libraries, it is expected that programs will identify the parallel constructs

dynamically. Computational steps define possible high-level functions that can be

applied to data. Control tags determine whether a computation should execute when

its data is available. This design choice enables programs to define the data used

by computation in simpler terms, and thereby enable the runtime to better partition

the program’s execution based on greater prior knowledge of its possible execution.

For example, an image is partitioned into windows and passed through a series of

classifiers, where each classifier will either decide reject or emit the control tag for

the next classifier to process the corresponding window. Data elements are defined

in a write-once manner, such that a computational step will input data elements and

output other elements. This permits multiple computations to consume the same

data element; however, it introduces the need to identify when an element will no

longer be required by a computational and can be garbage collected.

A parallelism expert separately defines the architecture- / platform- specific run-

time that will appropriately map the parallel constructs onto the hardware. One

example mapping would be deciding between assigning executing computation steps

to different hardware contexts, based on the number of units as well as the commu-

nication costs between them.
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A CnC-based program forms a directed acyclic graph that is generated dynam-

ically from its execution, and the program (as well as its task graph) is generally

constructed independent of the specific architecture. These traits are shared with

Contech’s task graph representation, and given these commonalities it would be a

reasonable future step to extend Contech’s instrumentation to support programs tar-

geting CnC.

2.7.3 LogP

Part of analyzing parallel programs and parallel algorithms has been developing an-

alytical models to estimate the runtime costs on different possible hardware. One

classic model is LogP [35], which emphasized that data movement via the intercon-

nection network can be a bottleneck at higher processor scalings. The model is based

on four parameters: L - the latency of communication, o - the overhead or cost to

send or receive a message, g - the minimum gap between consecutive messages, and

P - the number of processors. The problem of modeling parallel programs analytically

will be revisited in Section 6.1.1.

2.7.4 Legion

Legion is organized around logical regions [14], in which a set of objects are grouped

and accessed through a set of permissions. Legion also utilizes tasks, which are a set

of functionality that accesses regions. The runtime then manages these entities and

schedules the tasks to preserve their ordering as well as the region permissions. In

effect, a program using Legion is executing a task graph, where the dependencies are

logical regions.

2.7.5 Galois

Efficient graph processing is becoming increasingly relevant as big data pervades

computing. Graphs have notoriously bad locality and are often difficult to process

25



efficiently, as their accesses do not fit the traditional dependence graph model [98].

Graph algorithms often rely on fine-grained computations applied to all nodes or

edges in the graph. In order to support these efforts, Nguyen, et al. [95] proposed a

general infrastructure for writing graph domain specific languages (DSLs).

2.7.6 X10

X10 [29] is a second generation language in the space of those intrinsically supporting

partitioned global address spaces (PGAS), and is built on top of the Java language

and runtime. This support is centered around a place, which is a virtual pairing

of computational and memory resources, such that the actual mapping of places to

physical resources may change during execution. Parallel execution is supported

particularly through asynchronous statements, quoting:

[Asynchronous statements are expressed by the following:] async (P) S where

P is a place expression and S is a statement. The statement async S is treated

as shorthand for async(here) S, where here is a constant that stands for the

place at which the activity is executing.

Other parallel programming support includes atomic blocks, which utilize atomic and

rely on the runtime to select the best synchronization mechanism. X10 also provides

guarantees that programs written using certain language features will not deadlock.

Altogether, I would expect that programs written in X10 could generate valid

Contech task graphs to represent their execution. However, the instrumentation of

virtual machine-based languages (such as, Java, C#, et cetera) as well as interpreted

languages (such as Python, JavaScript, et cetera) is a problem beyond the scope of

this dissertation. Given the current instrumentation tools available, it is possible to

leverage them to collect the appropriate aspects of the parallel program’s execution

to generate the appropriate task graph.
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CHAPTER 3

PROGRAM INSTRUMENTATION

There is a significant spectrum of program instrumentation. Each instance of instru-

mentation has costs from two components: the cost of the instrumentation and the

frequency of the instrumentation’s execution. Simple program instrumentation can

answer questions such as how often was a routine executed or what was the largest

value observed at a location.

Table 1 compares a variety of program analysis tools similar to Contech, which

will separately be described in detail in Chapter 4. For each tool, I have provided the

slowdown for the instrumentation as reported by its publication. Each tool potentially

records three components: the dynamic control flow of the program, the memory

accesses, and explicitly recording the parallel actions (creates, syncs, et cetera). Many

tools only record partial information about the control flow such as the execution

count of each basic block rather than the complete path, and are so denoted separately.

These tools will be discussed in this chapter grouped by the framework each uses,

rather than ordered by instrumentation features.

A major decision for any instrumentation approach is whether it should be source-

or binary-level. Source-level instrumentation can provide greater details about the

program, information that is lost during the compilation process. Additionally, the

instrumentation can be better integrated into the program itself. Binary instrumen-

tation, in contrast, does not require the program to be recompiled. However, it may

not be able to accurately identify every detail about the program. Thus, one is faced

with the choice between ease of use and richness of analysis.
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Table 1: Instrumentation Tools with Similar Functionality to Contech (x - Support
Present, b - Basic Block count without Full Path Information)

Control Memory Parallel
Slowdown Flow Accesses Actions Reference

Pin BBCount 2x-4x b [9] [108]
Harmony 1.2x b [70]
CAB Path Profiling 1.4x-2.2x x [53]
Pin Memory Trace 2x-8x x [9] [108]
PEBIL 7.7x x [80]
MACPO 1.5x-6x x [101]
ShadowReplica 2.7x x x [65]
PiPA 5x x x [135] [136]
Cilkview 2x-10x b x [55]
ParaMeter 3x-200x b x [75]
Peregrine 2x-35x x x [34] [129]
Pin Task Graph 16x x x x [100]
ParaOPs n/a x x x [102] [103]
Contech 1x-5x x x x Chapter 4

3.1 Reducing Instrumentation Overhead

In its simplest, program instrumentation is answering questions about the program’s

behavior. As the instrumentation is invoked more frequently or increases in com-

plexity, the program’s execution will be impacted by this overhead. Analysis tools

effectively have three approaches to managing the overhead: optimizing the cost of

each instrumentation event, reducing the quality or accuracy by removing specific in-

strumentation events, and reducing the frequency of all instrumentation events. For

example, PiPA [135] is an instrumentation system focused on reducing the cost of the

instrumentation events. In contrast, reducing the number of captured events is part

of the approach of ShadowReplica [65], whereby it statically elides the instrumenta-

tion components that are identified as not required for the requested analysis. And

PEBIL [80] is designed to switch in and out of executing instrumented code to reduce

the cost of the instrumentation. Each of these instrumentation systems has taken a

different approach to minimizing its overhead.
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3.1.1 Inlined Instrumentation

Inlining function calls is a longstanding technique to place the called code directly

inline in the calling context. This removes the overhead of the function call, as well as

providing opportunities to optimize the combined code. The technique is often used

as part of the initial compilation of the code and many heuristics exist to balance the

benefits of inlining with the cost of increased code size. With instrumentation, the

routines are often simple, yet invoked from countless locations in the program. For

example, Contech’s instrumentation of memory accesses can be inlined at the cost of

a single instruction.

3.1.2 Sampling

One approach to mitigate instrumentation overhead is to only enable the instrumen-

tation periodically. This approach can always improve (i.e. reduce) the overhead of

existing instrumentation designs; however, this ease can result in some tool designs

relying on sampling rather than a better instrumentation implementation. This de-

sign weakness can still be apparent if the instrumentation imposes some overhead

when it is disabled, such as checks for enablement. Along with any periodicity of

the instrumentation, the overall approach must incorporate appropriate statistical

modeling to ensure that the actual program behavior is still being captured.

By minimizing the overhead, sampled tools can be used with production code,

where the analysis can be running continuously to monitor for potential problems.

Arnold, et al. [6] studied periodic instrumentation and published two observations.

If the instrumentation is enabled on a regular period, it may coincide with other

periodic behavior in the program. Furthermore, if sampling only applies to a subset of

the instrumentation, then care must also be taken to ensure that the non-instrumented

regions do not count against the sampling period.

29



3.1.2.1 Perf / Oprofile

Rather than sampling complex instrumentation, a tool can also take samples of the

current executing code in a program or running system (thus in the extreme, the

sampled instrumentation is a record of every PC value of the program). By taking

many profiles of a steady state, the tool can reconstruct the total amount of time

spent in each region of code. This is a valuable approach to quickly observing a

minimally impacted behavior of a program.

3.1.2.2 SHIM

SHIM [131] provides a very low overhead sampling of various performance counters.

This tool relies on two pieces of functionality: first, it is placed within a Java VM so

that targeted software instrumentation can be added to the software, and second, the

performance counters on an SMT system are unified so that any hardware context can

access the counters for the core. SHIM introduces a second thread to each executing

application thread that consistently polls the hardware counters for that core, as well

as injected software counters. This allows the system to provide sampling rates in

the 10s of cycles at around 60% overhead and down to 2% overhead at 1500 cycle

rate. This approach is reliant on the free resources of another core and the ability to

schedule the observer thread on this context.

3.1.3 Mirroring Program

In many cases, the instrumentation required can result in the application executing

orders of magnitude slower. Given the additional resources of multi-processor com-

puters, it is possible to execute the instrumented and uninstrumented program in

parallel. The design put forward by two simultaneous publications [91] [124] was to

fork the program into two or more copies. The original program continues executing

without instrumentation, while the copies are instrumented and run slower.
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Shadow Profiling [91] opts to fork periodically in order to provide samples of the

original program without excessive impact. In contrast, SuperPin [124] repeatedly

forks such that multiple slices of the program are executing the instrumentation, which

provides results similar to executing the entire program under the instrumentation.

In both cases, the authors note that there is limited support for forking multithreaded

programs and the forked copies only retain a single thread from the original execution.

3.2 Source Instrumentation

To inject instrumentation into a program, one approach is to start with the source

code and extend it with the appropriate routines. Generally, the compiler is required

to be modified or extended to support the instrumentation. By instrumenting at the

source code level, there is greater static knowledge available about the code, such as

the actual types of variables and the program’s control flow graph.

As the Contech front end relies on source-level instrumentation, I will describe

several tools that do the same and establish how they influenced the design for Con-

tech.

3.2.1 GProf

GProf [49] is an instrumentation tool integrated into the gcc compiler framework. It

works by instrumenting function calls to record execution counts and path informa-

tion. Path information is collected by recording the incoming arc when the instrumen-

tation for a routine is triggered. It determines this arc by finding the return address,

thereby identifying the caller routine. Primarily, GProf is used to identify the hot

code in the program, and by incorporating path information it can also provide the

context of the code and frequency of its invocation. A separate study found that this

simple instrumentation incurs an average of 115% overhead on SPEC 2000 Int [45].
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3.2.2 ICECAP

Within the Microsoft Windows kernel, there is a function call instrumentation known

as ICECAP [123]. This instrumentation records function calls and returns, along with

spin locks, into per-processor buffers. Each record has an associated time stamp. As

the buffers are per-processor, each record also has information to attribute which

process / thread was executing given that interrupts and context switches may occur

at any time. And as this is kernel instrumentation, the interrupts and context switch

code will also be logged in the buffers. Furthermore, being source level instrumenta-

tion, it can be enabled and disabled on a per-source file basis. This allows the user

(a kernel developer) to budget how the costs are spent: space required to record the

events and slowdowns of the instrumented code.

When kernel components are recompiled with the instrumentation, they have

inlined calls to the instrumentation routine. The first step of the routine is to check

whether logging is enabled, thus most of the overhead is avoided until required. When

in use, the kernel sets aside a region of memory that is split by processor. As it runs,

each record advances the corresponding per-processor buffer pointer until the buffer

is full (and consequently each processor in the trace may end at different times).

Therefore, the instrumentation routine also checks whether there is space and then

atomically (remember interrupts and context switches) reserves that space for the

record.

After the instrumentation run finishes, a separate tool processes the buffers and

reconstructs the functions involved using the debugging symbols. This output can

be analyzed by other tools to determine lock usage, particularly the high contention

/ long critical sections; as well as understanding the common paths through the

kernel. ICECAP complemented other approaches by being able to distinguish between

whether expensive routines are being frequently invoked or doing significant work

per call. ICECAP could also support logging other performance counters to relate
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architectural phenomena, such as cache misses or branch mispredicts, with the specific

locations in the code. However, most of the analysis has been superseded by ETW-

based tools [88].

3.2.3 LLVM-Based Approaches

LLVM [79] is a compiler framework that provides a well-documented API for writing

additional compiler passes. This lends the framework toward supporting compiler-

based instrumentation.

3.2.3.1 Harmony

Harmony [70] which relies on per-thread instrumentation added by LLVM to gather

basic block execution counts across a parallel program and keeps track of the thread

count for each block. It instruments specific function calls to detect when application

threads are not active, such as making I/O requests or waiting on synchronization.

Each thread is allocated a separate thread-local buffer with one entry for each iden-

tified basic block. The tool is integrated into the compiler1, such that at link-time it

can instrument all of the provided code. In contrast, Contech has not been integrated

into the compiler, and instead required additional engineering to pass and retain the

instrumentation details (see Section 4.12).

3.2.3.2 MACPO

MACPO [101] uses LLVM to record a memory access trace for a targeted portion of

a program. Before instrumentation, they run a separate analysis tool on the program

to identify the most expensive functions in the program. Using this information,

the LLVM-based analysis is then applied to the memory accesses in that function.

The instrumentation is further constrained to only measure accesses explicitly made

to data structures, arrays, and unions. Each access is tagged with the ID of the

1This is not a well documented nor supported solution.
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generating core and is combined into a single log file. However, the initial performance

was considered bad enough that they added support to only sample the accesses.

3.2.3.3 Peregrine

Peregrine [34] uses LLVM to record a synchronization trace for creating a deterministic

schedule of the program. First, it replaces all of the synchronization operations with

Peregrine wrappers. Then the program is run through the LLVM interpreter, which

provides the trace of instructions and memory locations. Additional experiments

showed that the overhead could be reduced to between 2x to 35x with a different

approach to recording the loads / stores. The trace of the program is treated as having

a total order between all of the synchronization operations, rather than the program’s

partial order that exists between specific operations. For example, Peregrine will order

different mutexes with each other. By doing so, the tool is able to reduce the scope

of possible data races. Since the final schedules will be enforced by the framework,

this step can be viewed as an initial optimization on the original partial order.

Wu, et al. [129] used Peregrine to specialize synchronization schedules. The sys-

tem would collect a set of executions for the program and then establish a specialized

schedules. These schedules can then be used with static and dynamic analyses, such

as alias analysis and detecting data races.

3.3 Instrumentation Frameworks

Collecting an arbitrary task graph requires a diverse instrumentation framework, due

to the extensive data stored in the task graph. Most published instrumentation is

confined to collecting the minimum required to solve the corresponding problem, and

only a few tools exist that are general enough. These frameworks that could be used

to record an appropriate trace for a task graph are discussed in this section. These

frameworks are generally designed to instrument binaries. In the end, I elected to
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develop my own framework based on LLVM’s support and it will be discussed in

Chapter 4.

3.3.1 Pin

Pin [85] is a well known framework designed for highly customized data collection,

typically toward analyzing one aspect of a program. The original Pin included lim-

ited support for ARM-ISA; however, this support has not been maintained. The

framework is effectively a virtual machine that implements the identical architecture

with builtin instrumentation hooks. This requires a code cache, JIT compiler, linking

traces, et cetera. One of the key pieces of the original design was optimizing how the

instrumentation can impact the eflags register, which tracks condition codes. As

condition codes are set by most instructions, the register must be preserved across

the instrumentation routines; however, the only x86 instructions to preserve the flags

allow them to be transfered to / from the stack. Thus Pin seeks instrumentation

points that are immediately before a program instruction will overwrite the register.

After the initial design, most improvements to Pin have focused on moving the

cost of the analysis to separate threads and processes. Offloading analysis to separate

processes was discussed in Section 3.1.3. In order to analyze the results from the in-

strumentation in separate threads, the instrumentation must have some mechanism

for communication. Initially, individual items could be passed between the instru-

mentation and analysis threads; however, there is significant overhead in doing so.

Pin’s Fast Buffering APIs [117] were introduced to allow support for recording the

instrumented events in per-thread buffers. This support requires the events to be of

a single type, although union or inheritance could be used to store a diversity of data

(e.g., basic block IDs and memory addresses). Ansaloni and Binder [5] explored the

additional support to better enable instrumentation events to queued into buffers and
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later processed by other threads. This system added an adaptive model of processing

that dispatches queued buffers when spare resources are available.

Cache-friendly Asymmetric Buffering (CAB) [53] worked on improving the com-

munication of thread local buffers between instrumentation and analysis. They mod-

eled the cost of instrumentation and analysis and concluded that the key component

to improve is the communication, practically as the other costs were considered as

fixed (i.e., the instrumentation and analysis was immutable). The design used a

fixed-size ring buffer that is divided into communication buffers. The components

will block if there are no buffers available, which prevents the system from adapting

to unbalanced demand, although they recognize this limitation.

3.3.1.1 Shadow Replica

Shadow Replica [65] demonstrates the performance potential of a Pin-based tool,

when using the latest published enhancements. The tool is actually two instrumen-

tation components: an offline profiler and the actual instrumentation. A program

is first passed through the offline profiler with sample inputs. The profiler finds the

basic blocks in the program and determines the properties of each. It will then com-

pute the most efficient instrumentation scheme for each basic block. For example,

it may determine that certain memory accesses will not be used with the analysis

program and that other accesses are based on prior addresses and do not need to be

recorded. The tool also identifies fall through branches, and omits the basic block

ID for the subsequent blocks. Finally, the profiler outputs an analysis program that

is customized to the instrumented program, which is aware of the accesses and basic

blocks that were not recorded. In the published experiments, the first pass took be-

tween 57 seconds and over 2 hours, with an average of 13 minutes. Thus incurring a

significant cost to optimize the instrumentation.
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In the second pass, the program is run with the final instrumentation, which

records the memory accesses of note as well as the control flow. This information

is enqueued into a ring-buffer shared between the instrumented program thread and

the separate analysis thread. The tool further takes advantage of the fact that parts

of the address space are reserved for the kernel’s use. These addresses can then be

repurposed to store either basic block IDs or control commands, which eliminates

headers for each value. The optimizations enable the tool to store the dynamic

information necessary for the analysis in 10.3 bytes per basic block.

3.3.1.2 ParaOps

Paraops combines Pin and a runtime library to collect a comprehensive trace [102]

[103]. Their approach relies on Pin to collect the combined control flow and memory

accesses. The runtime library flags each parallel action and stores it separately, which

enables these actions to be simulated in aggregate. The focus of the design is to

support a diversity of architectural simulations and do so more efficiently than existing

trace-driven approaches. Given this focus, it was co-designed with the simulator and

performance measurements for the instrumented program have not been published.

3.3.2 Valgrind

Valgrind [94] is a heavy-weight instrumentation platform intended to provide detailed

access to the execution of program binaries. On this platform, common plugins can

run that will identify leaked memory, poorly cached memory locations, and data

races. Valgrind uses the disassemble and resynthesize (D&R) approach to execute the

guest program. This contrasts with Pin and other tools that use copy-and-annotate

(C&A) to only target the specific component of the program that is of interest. D&R

is heavier-weight and requires more implementation work to support; however, it

provides greater ability to express the components of interest to the instrumentation

or tool.
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As Valgrind executes the program, it is reading in assembly from the binary and

converting it to its internal IR. This IR is passed to the loaded tool that can then apply

the appropriate changes to the code. This instrumented IR is then resynthesized into

native assembly.

Without any instrumentation, Valgrind runs at 4.3x slowdown; however, Valgrind

is targeted at particular usage cases that are more complex than those handled by

prior tools. As such, it covers a different instrumentation capability space than the

lower overhead tools. One such tool, Tareador which was discussed in Chapter 2.1,

uses Valgrind to generate a task graph.

3.3.3 DynamoRIO and PiPA

DynamoRIO’s [23] [24] initial design was only optimizing the instructions in a pro-

gram. As the framework is able to read and process the instructions from a binary,

it is then valuable to be able to inspect and then introduce new instructions into the

original program’s stream. It was subsequently extended with an API for instrument-

ing the programs.

PiPA [135] uses DynamoRIO to collect a control-flow and memory operation trace;

however, it requires additional software threads to process the trace, to quote “PiPA

essentially obtained good performance at the expense of additional resources.”[136]

Additionally, PiPA has limited support for parallel threads and no support for any

operations between threads (syncs, forks, joins, et cetera). The expectation for PiPA

is that a user will completely process the trace while the program is running, for

example the paper demonstrates modeling a cache using the memory requests from

the running program. In the online analysis scenario, the analysis requires addi-

tional resources and therefore devoting further resources to the instrumentation is

reasonable.

38



Two optimizations in PiPA’s design are worth highlighting. First, rather than stor-

ing a list of memory accesses, PiPA analyzes each basic block and determines which

registers are used in address calculation. Only these registers are stored. If registers

are reused in a given basic block (e.g., pushing / popping function arguments), then

the size of the execution profile is reduced. However, the trace processing has to re-

construct the address calculations. Second, as DynamoRIO converts hot sequences of

basic blocks into larger traces, these traces can be instrumented in aggregate, which

eliminates checks for overflowing the instrumentation buffer.

3.3.4 PEBIL

PEBIL [80] is built on top of Dyninst and was designed to allow efficient switching

between instrumented and uninstrumented code in order to support sampling. While

the full instrumentation is less efficient than Pin, reducing the example instrumen-

tation of memory accesses to a 10% sampling rate reduces the program slowdown

from 7.7x to 2.9x for NAS workloads, where most were executed with input size B.

Contech’s instrumentation operates at 3.85x slowdown on its subset of NAS and in-

put class A, and against this subset of NAS only slows down by 2.6x with PEBIL’s

sampling.

3.3.5 QEMU

QEMU [16] provides a full system simulator, such that the application as well as the

operating system can be executed. In executing both, there is additional support

to generate traces of instructions executed, primarily in the native assembly of the

application.

PANDA [39] is a project that provides replay and record support to QEMU with

LLVM IR traces, with the goal of enabling reverse engineering efforts. One initial

analysis located decryption routines in software, via both tracing backward from the
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output of a failed decrypt as well as using taint analysis to trace the input’s use in

the program.

DBILL [86] uses QEMU to generate architecture independent instruction se-

quences that are translated to LLVM IR for simple binary instrumentation. This

permits cross-ISA instrumentation, for example running Android apps on an x86

desktop. Without any instrumentation, this system has a 3.4x slowdown running x86

programs. A simple address sanitizer increases the slowdown to 5.7x for SPECInt

benchmarks.
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CHAPTER 4

CONTECH INSTRUMENTATION

Contech’s task graph representation discussed previously can encompass significant

program diversity, while providing a rich data set for program analysis, and the

high performance instrumentation to generate a task graph will be described in this

chapter. The Contech framework is composed of two parts: the generation of a

dynamic task graph and the analysis of task graphs. The front end and middle

layer work together to generate the task graph from a program (either source code

or binary). Then back ends implement analyses and transformations that can be

executed on this representation. The focus of this design is to allow easy analysis of

the Contech task graph representation without a need for back end programmers to

understand the details of how a task graph is generated. Each component toward

generating a task graph will be explained in further detail in this chapter along with

the design decisions and trade-offs, while the analysis of task graphs will be discussed

in the next chapter.

This chapter is an extended version of the material that previously appeared

in ACM Transactions on Architecture and Code Optimization (TACO) [100]. Fig-

ures 15, 17, and 19 all retain results taken from the version of Contech developed for

publication in TACO, and are shown to demonstrate the performance improvements

made since that time. Excepting where otherwise noted, the results in this chapter

used the PARSEC [20] and NAS [66] benchmark suites.

4.1 Overall Design Goals

Instrumentation should be transparent to the target program, otherwise the pro-

gram’s behavior is affected by the instrumentation and the results can be inaccurate.
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Bruening, et al. [25] put forward three categories of transparency that are desirable

in program instrumentation: code, data, and concurrency. For each category, the

instrumentation has three guidelines:

1. Ideally, the application should be unchanged.

2. If the application must be changed, it should be done in such a way as to appear

as if it is unmodified.

3. The instrumentation should make as few assumptions as possible about the

system (language, compiler, runtime, architecture, et cetera).

They noted that achieving transparency in concurrency requires particular care so as

to not introduce deadlocks, or data races.

Contech’s design is also predicated on two assumptions: the first is that the pro-

gram is fundamentally correct and the second is that the programmer is competent /

professional / et cetera. In the first, the tool does not need to protect its instrumen-

tation from buffer overflows or other data corruptions. The program will essentially

follow the semantics of the instrumented library routines for their intended purposes.

In the second, the tool assumes that the program uses well established practices and

avoids certain optimization techniques, such as inline assembly, manually managing

large memory, or self-modifying code. This is similar to how the compiler can op-

timize against undefined behaviors. However, system libraries and operating system

code are two places where this assumption may be violated.

Given that the tool is compiler based, Contech cannot presently instrument dy-

namically generated code. The primary LLVM-based approach could be combined

with a dynamic instrumentation system. Or this use case would be solely served

by an equivalent dynamic instrumentation tool. This choice would impose greater

overheads and slowdowns from both the dynamic instrumentation performing worse

42



Table 2: System Configuration for Contech Measurements
Intel Xeon X5670

# of Processors 2
Cores per Processor 6
Hyperthreading 2-way
Clock Speed 2.93 GHz
Last Level Cache Size 12MB

Main Memory Size 48 GB

than Contech (see Table 1) and the tools themselves have significant slowdown in this

scenario [54], although the application is already relying on dynamic code.

The performance results presented in this chapter rely on a cluster of servers

configured based on Table 2, and are primarily collected using the benchmarks from

the PARSEC and NAS suites.

4.2 Front end

The first component is the Contech front end, which consists of two parts: a compiler

pass for LLVM [79] and a runtime library linked to every application. Primarily, I

use LLVM 3.4 with Cilk or OpenMP support to instrument programs with Contech;

however, Contech has been tested with LLVM 3.2 through 3.5. Contech relies on

Clang (the C / C++ LLVM front end) or DragonEgg (a plugin for gcc to support

Fortran and other languages) to generate the intermediate representation (IR) for the

program. The compiler pass modifies IR to include the instrumentation for recording

the actions of the parallel program. As Contech covers a variety of parallel libraries,

the instrumentation is applied to the IR rather than modifying the runtime libraries

themselves. The pass operates function-by-function and identifies whether the func-

tion should be instrumented, or treated as a black box (e.g., malloc, pthread_create,

etc). Black box functions are from a defined list; and although the compiler can detect

certain operations such as atomic accesses, the programmer may have user-defined

versions that would need to be explicitly identified to the instrumentation pass. This
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way each function only has one static representation in the task graph: either it is a

sequence of basic blocks or it is an abstracted functionality such as allocating memory

or creating a thread. For each basic block, the LLVM pass finds instructions that

will access memory and introduces instrumentation to record the properties of the

memory access: address, size, and load versus store. Given that instrumentation oc-

curs prior to register assignment, the LLVM-based instrumentation only records the

memory operations specified by the program and not those imposed by a particular

architectural model due to register allocation. Information about every basic block

is also copied into a simplified set of debugging information, such that analysis tools

can identify the function name, source file, et cetera even when processing a basic

block ID.

4.2.1 Front End Instrumentation

The design of the instrumentation is for each action of interest (computation graph

actions) by the program to be recorded by a call to an instrumentation routine in the

runtime library that creates a corresponding event. The instrumentation is written

in C, with functions for each type of event. The instrumentation is implemented in

C rather than assembly so as to make it architecture-independent. Inserting multiple

function calls per basic block would have a severe performance impact, so Contech

requires programs to be compiled with clang’s -flto flag. This flag instructs clang to

perform link-time optimization, which inlines the instrumentation routines into the

binary. The most common instrumentation call, recording a basic block event, re-

quires 4 inlined x86 instructions, after the optimizations discussed in Section 4.2.1.2.

Figure 10 shows the steps required for recording a basic block event, as well as the

optimized instrumentation inlined into the assembly code. In this example, the instru-

mentation stores the basic block ID, as well as updating the position in the thread

local buffer. The original, uninstrumented code had two load instructions, so the
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Figure 9: Code Coverage by Contech Instrumentation

instrumentation stores each address loaded by the original code. While the instru-

mentation introduces additional instructions, the original code has no dependencies

on the instrumentation thus maintaining the existing critical path and thereby en-

abling the instrumentation to potentially fit into gaps where the program is not fully

utilizing the core’s instruction level parallelism (ILP).

4.2.1.1 Code Coverage

As Contech only instruments the source code that is passed to the compiler, a certain

fraction of execution will be in other, opaque code. A portion of the execution has

been stored at a semantically higher level, for example, functions such as malloc or

pthread_mutex_lock; and therefore the execution of these routines is still considered

“instrumented”. Other library routines are not captured at any level and therefore

could escape Contech’s notice. In order to gain an estimate of the fraction of time

in instrumented execution, Contech’s instrumentation was modified to record a cycle

count timestamp in every basic block. Even cycle counts can be inaccurate at this

fine level of detail; however, the only time measurement of interest is when the basic

blocks are separated by an uninstrumented function call.
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Figure 9 presents the measurement of the time spent in instrumented execution.

Specifically, the time in work tasks that is or is not in instrumented code. Functional-

ity that corresponds to separate tasks, such as locks or thread creation is not counted

either way. Blackscholes spends most of its time in the math library routines, pow,

sqrt, log and exp. As this measurement included all time (and not just the region of

interest), the uninstrumented time also includes I/O calls such as printf and scanf.

Overall, there is almost no correlation between the fraction of instrumented execution

and the runtime slowdown, as over half of the tested programs spend greater than

97% of the work time in instrumented code.

4.2.1.2 Reducing Event Size

The baseline implementation recorded each basic block event as a 4-tuple of 4-byte

fields: context ID, type of event, basic block ID, and number of memory accesses in

the basic block. Given how fundamental basic block events are to execution, these

values constitute a significant fraction of the event list and even small improvements

can have significant impact on the event queue size.

All events in a queued buffer originated from the same context, so each event is

carrying redundant information. When the background thread processes a buffer,

it adds an additional event to the stream that indicates the next set of bytes all

originate from the same context. When the event list is deserialized back into events,

the library recognizes these special buffer events and reconstitute the context ID for

each event. The special buffer events also assist in detecting whether the event list

is corrupt, as each buffer event indicates when the next buffer event will be found in

the trace.

Basic blocks also have a static number of memory accesses known at compile time.

Each memory access in a basic block is always of the same type and size. This static

information only needs to be stored once for the program and not for each dynamic
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instance. The compiler pass records this information about each basic block and at

link time, this information is added to the binary so that it can be prepended to

the event list, such that each memory access no longer needs to explicitly store its

type and size information. When the parallel program is instrumented for 32-bit

architectures and 64-bit Intel architectures, memory addresses are stored as 48 bits,

which is at or above the current limit for virtual addresses [62] [77].

For practical purposes, 32 bits each is excessive for the type of event and basic

block ID. These two values are combined together into a single 32-bit value. All

together, these improvements reduce the space for each basic block event by 75%,

when compared to the näıve approach.

The initial method of combining the type and basic block ID utilized 1 byte set

to 0 as indicating a basic block. Further extracting unnecessary bits, the type basic

block is treated as all 1 byte values which have the highest bit set to 0. All other event

types then start at 128 (i.e., the most significant bit set to 1). This further reduces

the size of basic blocks by approximately 6% and thereby lowers the average program

slowdown by a proportionate amount. These changes limit the number of basic blocks

to 8 million (223), although further engineering could provide an extending basic block

event type that provides a larger field for ID values albeit with additional overhead.

4.2.1.3 Buffer Position Value

To simplify the instrumentation design, recording and serializing a basic block event

consists of the basic block header followed by separate writes for each memory access.

Each is a separate function invocation that is inlined. In order to minimize the

memory accesses, the functions are written to pass the buffer pointer between the

instrumentation calls in each basic block, which is non-obvious for the compiler to

identify. This pointer is also passed to the buffer overflow checks, thus requiring the
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thread 

local buffer 

BBID 

MEM0 

MEM1 

. 

. 

. 

pos mov %fs:0xffffffffffffffe8,%rax 

mov (%rax),%ecx 

movl $0x14e00,0x18(%rax,%rcx,1) 

movq $0x51cfa0,0x1c(%rax,%rcx,1) 

mov 0x115467(%rip),%rdx 

lea (%rdx,%r15,8),%rsi 

mov %rsi,0x22(%rax,%rcx,1) 

mov (%rdx,%r15,8),%rbx 

addl $0x10,(%rax) 

Find position in buffer 

Store BBID into buffer 

Store MEM 0 .. N-1 

Update position 

Pseudo Code Instrumentation 

Instrumented x86 Assembly 
. 

. 

. 

Figure 10: Runtime Instrumentation Design (grey instructions are original code)

current buffer position to be computed only once per basic block. This operation can

be seen by the reuse of register %rax in Figure 10.

Unexpectedly, when the basic block ends with a buffer overflow check, the compiler

combines the update of the buffer position with the buffer overflow check, yet it

no longer reuses the initial buffer position computation. To also address this case,

the instrumentation must be further updated to compute the thread local buffer

pointer and the position at the start of the instrumentation block. This reduces

the instructions and memory operations for the instrumentation, and has a small

reduction in workload slowdown.

4.2.1.4 Instrumentation Overoptimization

The compiler is not aware that while a basic block is instrumented by a sequence of

inlined function calls, in practice these calls are a logical group and cannot be moved

nor reordered. In some circumstances, the compiler was moving instrumentation

functions (particularly after being inlined), such that the initial basic block header

was split from the rest of the basic block instrumentation. As a consequence, events

would interleave and become corrupted. This required adding fence acquire and

fence release instructions around the group of basic block instrumentation, which

prevents the compiler from splitting up the instrumentation calls.
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4.2.2 Event Ordering

A program that has been instrumented with the front-end will output an event list

when it runs. Events from the same thread are stored in the event list in program

order. Events generated by running threads are placed into thread-local buffers, which

have a default size of 1MB. When a buffer is full, the buffer is queued into a global list

of buffers. Being a global list of buffers, this gives an order to events from different

buffers, which can then be used to order specific events between threads. Each type

of event (create, join, sync, or barrier) relies on the global list to capture the order

information, such as creator versus created or lock acquisition order, such that when

an event with an ordering constraint is generated, the current buffer is queued to the

global list before the thread continues.

Syncs are the most common complex event. Whether the sync is an atomic instruc-

tion, condition variable, OpenMP single directive, et cetera, the sync is identified

either by the IR instruction or the name of the function invoked. The synchroniza-

tion action is recorded with three components: the address of the action, the order

of the action with respect to other synchronization actions on this address, and time-

stamps from before / after the action. Where possible, the synchronization action

is also tagged with a type, such that it is possible to distinguish between atomic

instructions, condition variables, et cetera.

The runtime framework ensures that synchronizing events are placed in the list

according to their partial ordering. For example, the order of two acquire events for

the same lock will reflect the execution order of the actual lock acquisitions, yet an

acquire by a different thread for a different lock will not necessarily appear earlier in

the event list even if it was globally acquired first. Effectively, the event list reflects

the partially-ordered nature of the parallel program. Furthermore, the interleaving of

critical sections observed during an execution of the program is assumed to be fixed.

In a single task graph, it is not possible to determine whether certain processors could
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have legally entered critical sections in a different order. To preserve the order, some

events have an ordering requirement with other events and preserving this ordering

requires globally queuing the event early.

4.2.2.1 Ticket Ordering

Even with the reduction in buffer size, the performance overhead in synchronization-

heavy workloads is still significant. Each synchronization event (e.g., program’s mu-

tex) forces the current buffer to be queued, and the queue is protected by an internal

lock in the Contech runtime. Thus independent locks in a parallel program are made

dependent and their accesses serialize. The middle layer relies on the order of the

sync events in the event list to order the sync tasks in the graph.

The global lock provides an ordering of events that could also be reconstituted

in the middle layer. Each synchronization event is annotated with a global ordering

number (a.k.a. a ticket), and the synchronization events are changed to no longer

require a buffer flush for ordering purposes. Thus when a synchronization event

occurs, it requests the next ticket and execution continues. The middle layer sorts the

sync events corresponding to each address using the tickets to provide an ordering, so

that it can create the appropriate dependencies between sync tasks in the task graph.

This ordering constraint technically provides a global order to all synchronization

events (e.g., lock acquires of different locks have an order); however, this order does

not represent program behavior. A further extension to this improvement would be

to use separate ticket lists for each lock in the program. Rerun [57] took a similar

approach by adding sequential “timestamps” when ordering was required between

otherwise independent instruction streams.

Adding tickets on sync events resulted in barrier events being received out of

order, as the system would delay processing barrier events while it sought the next

sync ticket. This required extending the ticket system to barriers. Originally, a
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barrier event (enter / exit) would be split by queuing the buffer in between and in so

doing the enter events from all threads would be seen before any exit. With barrier

tickets, the queue buffer call (and associated overheads) are no longer required for

each barrier, which results in a performance improvement.

Removing the queue buffer calls from condition wait improved performance, even

though the queue buffer overhead averages 20% for lu and ocean workloads. As the

improvement to the workloads is greater than the queue buffer overhead, the gains

must also be from other components. However, this change exposed a difficult scenario

for processing the event lists. In dedup, the workload uses multiple pools of threads.

One of the threads waits on a condition variable, which is not signaled for millions

to billions of cycles. As a condition wait involves releasing a lock, there is a sync

event with an associated ticket stored prior to the actual call to pthread_cond_wait.

Remember that events are processed in ticket order, which therefore requires scanning

through the event list until the remaining events for the thread are found. As the

thread had waited for billions of cycles, many events are scanned and queued in

memory. Eventually, middle layer runs out of memory and crashes.

While both barrier waits and condition waits require a ticket before the thread

waits / blocks, barriers are rarely used in an oversubscribed system and therefore do

not exhibit this problem in tested programs. However, as Contech’s instrumentation

is applied to more programs, this problem will need to be fixed. A possible solution

would be to store events from each context in a separate file. A context’s events can

then be processed until it blocks on a ticket, and therefore only a single event per

context may be queued at any time. Most workloads have context counts in the low

tens, although some OpenMP workloads can have thousands to millions of contexts.
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4.2.2.2 Small Buffer Copy

When a buffer is queued early, the amount of data in the buffer can be significantly

less than the buffer’s capacity. Furthermore, whenever a buffer is queued, a new

buffer must be allocated to continue to record events in that context. With the

runtime system already allocating a new buffer, if the stored data is small (see below),

a buffer is allocated for this data, which is copied into the new buffer and allows

the full sized buffer to be reused. This reduces the memory requirements of the

instrumentation, which improves the instrumentation performance, but at the cost

of additional operations to copy the events from one thread local buffer to another.

The tension is that a larger small buffer copy threshold will save memory; however,

the copy will be more expensive.

With ticket ordering, most of the early queue buffer invocations are not required;

however, parallel programs using condition variables or OpenMP still make significant

use of this optimization. For example, volrend, which utilizes condition variables

extensively, will use this path for the majority of queued buffers.

Figure 11 shows how sensitive the runtime system is to varying values for the

threshold from 32KB to 768KB (out of the possible 1MB buffer size). Most workloads

rarely trigger this path, and the results partially reflect runtime variability. Seven

workloads, dedup, freqmine, lu cb, lu ncb, ocean cp, ocean ncp, and volrend, trigger

this path 20% or more of the time and this subset of the benchmarks have also

been separately averaged. The minimum of both averages is at the 64KB threshold,

which also corresponds to the crossover point between time to copy the data and time

required to allocate a new 1MB buffer.

4.2.3 Runtime Buffer Management

Queuing and allocating new buffers accounts for approximately 3% of total execution

time, which is reduced from 14% of total execution time before the barrier ticket
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Figure 11: Instrumentation Slowdown due to Varying the Threshold for Using Small
Buffer Copy Path

change. Almost all of this overhead comes from allocating the new buffer, which

takes on average between 100k and 200k cycles. In contrast, the runtime can queue

the current buffer in 1000 to 2000 cycles on average.

4.2.3.1 Queuing Buffer Costs

Thread local buffers are generated at approximately 6500 per second, which are

queued to the single, global list. This list is protected by a standard pthread mu-

tex. With CAB [53], they analyzed the benefits from processing buffers in parallel

with the instrumentation. Their observation was that it was vital to minimize the

communication overhead. While Contech’s current implementation could be further

improved below 1000 cycles, the important aspect for its current performance is to

have a tail pointer, such that the thread local buffer can be quickly queued to the

end of the list of waiting buffers. If Contech were run on a system with significantly

more processors, it may be advantageous to improve the queuing system; however,
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Figure 12: Impact of Changing Buffer Size on Contech Runtime Slowdown

the current performance is almost solely due to acquiring and releasing the mutex

and is furthermore less than a tenth of 1% of total execution time.

4.2.3.2 Memory Allocation

Prior work has shown that instrumentation performance can be improved by modify-

ing the size of the buffers [117]; however, this was potentially an artifact of the cost of

using guard pages to detect buffer overflow. Figure 12 shows the runtime slowdowns

for PARSEC workloads as the buffer size is increased from 256KB to 8MB. The re-

sults of the different buffer sizes are diverse. Above a certain threshold in size, most

workloads are minimally affected by the buffer size. Several workloads are negatively

impacted by larger buffers. These workloads generally use condition variables and

are therefore utilizing the small buffer copy path. Furthermore, as the buffer size

increases, the percentage of buffers reused decreases and the memory requirements of

the instrumentation increases, and the overall memory usage of the instrumentation

correlates with the parallel program’s slowdown. Now, as each workload performs

best with a specific buffer size, if the runtime system was able to tailor the buffer size
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Figure 13: Cost to Allocate Buffers based on the Size of Buffer

for each program, then the average slowdown would be 2.6x versus the best single

configuration average of 2.8x with 1MB buffers, excluding water nsquared.1 Figure 13

shows the average cost of allocating thread local buffers when factoring in the size of

the buffer. For most workloads, the cost is declining even at 8MB and therefore there

is less overhead per unit of buffer space. The overall average is lowest at 1MB, which

supports it as the default buffer size. I would also note that dedup has particularly

high allocation costs due to context switches impacting the allocating thread, and

since the next thread is also making progress, the program itself is not slowed down

by this high allocation cost.

Maintaining a hard limit on the largest size of buffer that can use the small buffer

copy path, rather than scaling with the buffer size, restores much of the performance

lost from the larger buffer size. However, this change results in wasting a significant

quantity of memory. For example, volrend’s memory usage increases by over 30% such

that the memory used is 20% larger than the trace itself. Furthermore, removing the

1Water nsquared only barely fits in the available memory without requiring tracing to be sus-
pended (see Section 4.4.2), which limits the ability to collect timing measurements and will therefore
be excluded from averages in order to enable comparison between different instrumentation setups.
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queue buffer call from the condition wait path also mitigates the performance impact

of the larger buffers. However, both mitigation solutions do no better than generally

returning to parity with the 1MB buffer size.

Each allocated buffer is of two parts: the space for the data and the header

fields. The header fields require 24B on a 64-bit system. As malloc passes requests

for more than 128KB to mmap, which requires the allocation to be multiples of the

page size, this results in an allocation for 1MB + 4KB. For most workloads, there

is a bimodal distribution where most requests are made to mmap requiring roughly

150k cycles per allocation. These allocations require the kernel to assign new virtual

addresses to the page table, which may require invalidating the existing translations

on all processors executing this process as well as assigning zero’d pages to the new

translations. The Contech runtime will also reuse buffers after the contents have been

written to disk; allocating a buffer for reuse averages 2000 cycles, which is primarily

the cost of acquiring and releasing the mutex protecting the list. However, on dedup

the requirement to queue the buffer on each condition variable pushes up the number

of memory allocations and the oversubscribed number of threads results in many

context switches while attempting to allocate new buffers. The context switch is

inferred from recording allocation costs as high as 50 million cycles made on the

small buffer copy path.2

An important feature of Contech’s buffer management is the ability to reuse the

thread local buffers. After writing the contents to disk, the background thread places

the buffers back into an allocation list. Given the disparity between generating data

and writing it to disk, most allocation requests must go to malloc. To measure

the benefit this feature provides, I disabled returning written buffers and instead the

background thread held them until the end of execution. This result is shown in

2If garbage collection (GC) was present, then it would be possible that these events represent
triggering the garbage collector. Or if the memory usage was higher, then these costs could represent
paging as the OS prepares zeroed pages for the allocation.
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Figure 14: Varying Buffer Allocation and Reuse

Figure 14 as “No Reuse”. The standard behavior of the Contech runtime system is

displayed as “Normal” for comparison. The third set of bars is for preallocating the

thread local buffers. For simplicity of design and testing, the system preallocated

10,000 buffers before beginning execution. More than two thirds of the benchmarks

can then satisfy all of their allocations from the reuse allocation list. As a consequence,

many workloads benefit from preallocating the buffers. The main drawback of this

approach is that this still takes time, which delays the process from launching the

program to generating a task graph, even if the instrumented core executes faster. In

the future, setting a preallocation quantity may be added as a feature for workloads

/ analyses that are highly sensitive to timing and slowdown.

4.2.3.3 Buffer Overflow

When writing events to the buffer, the system needs to ensure that the buffer is not

overflowed. As the runtime system cannot spread a basic block (or other event) across

two buffers, the system can check the quantity of data added thus far before inserting

a new event. Each check verifies whether a certain margin of space is still available

in the buffer (default of 1KB). As each check establishes that sufficient space is still
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available in the buffer for (on average) multiple basic blocks, many of the checks

would be redundant and are not inserted into the code. Basic blocks average 1.7

memory operations per basic block (for PARSEC and SPLASH) and 2.8 for NAS,

such that the blocks take an average of 14 and 20 bytes respectively and therefore

between 50 and 70 average blocks can fit into the margin of space checked. However,

there are also basic blocks with a large number of memory operations, such that a

single one of these blocks is larger than the check margin and therefore these blocks

always have a buffer overflow check to ensure that the event for this basic block

will not exceed the margin of buffer safety. Having reduced the number of buffer

overflow checks in the instrumented code, the remaining checks for buffer overflow

are around 7% increased execution time. While other instrumentation approaches

have proposed canary values [135] or guard pages [117], the additional gains would

be minimal versus the added complexity, particularly when additional refinements

to the check locations could further reduce the number in instrumented code. Even

with the guard pages approach, the authors noted that given the cost, they added

additional instrumentation to check for overflows and only relied on the guard pages

as a fallback option.

4.2.4 Trace Formats

To recap, the trace written out by the front end consists of sequences of serialized

events with special header events to indicate which context generated the next se-

quence of events. Given the default buffer size, each event sequence delineated by

header events is close to 1MB in length. Together, the sequences of events form the

event list, which can be processed to generate a task graph.

4.3 Middle Layer

The middle layer processes the event list generated by a front end to convert this trace

into a Contech task graph, following Algorithm 1. Contiguous streams of basic blocks
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ALGORITHM 1: Assign Events to Tasks

input : Event List
output: Task Graph

for e ∈ EventList do
if e.Type == BasicBlockAction then

if Context[e.context id].getCurrentTask ().getType () ! = e.Type then
Context[e.context id].makeNewTask (e.Type);

end
Context[e.context id].getCurrentTask ().append (e);

end
else

Context[e.context id].makeNewTask (e.Type);
// Find other predecessors to the new task

end

end

in the event list are combined into tasks. Each work task accumulates a list of basic

block IDs and memory accesses. When the middle layer encounters a synchronizing

event, it closes the current task for the context and determines dependencies between

other synchronizing events in the task graph. The middle layer considers the four

types of dependency tasks: creates, joins, syncs, and barriers. In doing so, it is

partitioning the task graph into the types of tasks, while creating the graph. This

avoids any need to find the partitions after the graph has been created.

In processing the events, three events may be queued for later processing: creates,

syncs, and barriers. If an event is queued, all subsequent events for that context ID

are also queued. To simplify the processing of the event list and generation of the task

graph, the middle layer will delay processing a child created event until that context

has been created by another context, the parent. Syncs and barriers both contain

ticket numbers and are treated identically, except in that the tickets themselves are

separate orders respectively. As the tickets are to be observed in numeric order, if an

event contains a ticket that is later, then it is queued and waits until it is its “turn”

to be processed. In general, the next ticket should be in one of the next buffer sized

units in the event list; however, as noted in Section 4.2.2.1, it is possible to construct
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scenarios where the appropriate buffer containing the next ticket is separated by

millions of events and this queuing of events may eventually exceed the available

memory. The middle layer could process the events into a separate, albeit incomplete

task graph that would be integrated after the appropriate ticket events are processed.

To avoid any disruption of the running program, the middle layer does not process

the trace until the instrumented program has completed. As with the front end, the

middle layer also utilizes a background thread to write out tasks that are identified as

complete. In this component, tasks are complete when all predecessors and successors

have been identified, and not necessarily when the middle layer has begun processing

a successor task. As the tasks can be stored in any order on disk, tasks can be written

out as soon as they are complete and not queued into a particular order, with this the

middle layer effectively maintains only one work task per context actively in memory

while the others are being sent to disk and then deallocated. This lowers the memory

usage and improves the performance of generating a task graph.

Prior to writing out each complete task, the serialized data of the task is passed

through a compression library, and by compressing tasks individually the graph rep-

resentation supports efficient random accesses. Having prepared the task graph,

the middle layer also records a breadth-first traversal of the task graph, starting

at Task 0:0 and following the task dependencies. Given multiple possible tasks to

visit next, the middle layer checks the timestamps, if present, and selects the task

with the earliest timestamp for when it started. This traversal provides a common

order for most analysis tools. This is also the one case where timestamps play a role

in generating a task graph.
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Figure 15: Comparison of Contech and Pin Runtime Slowdown for PARSEC and
SPLASH (simmedium, 16 threads) and NAS (A, 16 threads)

4.4 Instrumentation Performance

This section discusses the performance measurements for the resulting instrumenta-

tion. The native baseline, Contech instrumented, and Pin-based runs of the bench-

marks are compiled with the same scripts and executed within the same environments.

This accounts for some of the known measurement biases [92]; however, all executions

are run on real hardware and may be impacted by the following effects: the power

/ frequency level of the processors, the temperature of the environment, as well as

operating system effects including scheduling and interrupts and even the quantity

of zeroed pages available at the start of the program’s execution. Given the shared

usage of the machines which limits the ability to directly control these effects, the

presented results are the average of 5 runs and are compared against the baseline

execution time.

Figure 15 shows the performance of four Contech implementations using the fea-

tures described in Section 4.2.1.2, along with a comparable Pin tool implementation
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(see Section 4.6). The näıve implementation is outlined in Section 4.2. The interme-

diate implementation is improved by reducing the event queue size. The implemen-

tation circa-TACO includes other performance techniques, primarily synchronization

tickets. The final implementation removes the extraneous forced queuing of buffers,

reduces the basic block events to 1 bit, explicitly passes the thread local buffer pointers

within the basic block instrumentation, and identifies redundant address calculations.

The original, näıve implementation of the Contech runtime had significant overhead

for a majority of the PARSEC benchmarks. Taking advantage of compiler and ar-

chitectural knowledge to change the structure of events, the runtime overhead was

significantly reduced; however, a small number of benchmarks, such as fluidanimate,

radiosity and raytrace, still exhibited higher overhead than the remaining bench-

marks. These benchmarks make significant use of synchronization. By changing how

the synchronization is handled in the runtime, the overhead is reduced and exhibits

little variability between benchmarks. The final slowdown is between 1x to 5x with

an average of 2.8x, excepting water nsquared with almost 7x overhead.

By selectively disabling parts of the runtime, the overhead imposed by each com-

ponent of Contech’s runtime is measured across all benchmarks. Figure 16 shows the
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runtime increase with each instrumentation component selectively added in, all based

on the current version of the Contech instrumentation.

For most workloads, the processors have sufficient resources to execute the instru-

mentation with low overhead (12% increase in execution time), which is reduced from

20% partially from the struct pointer change. Having removed most of the checks

for overflowing the thread local buffer, the remaining checks only account for a 7%

increase in the execution time and is also improved from the struct pointer change.

The time required to allocate a new 1MB thread local buffer and queue the exist-

ing one into the global queue increases the execution time by around 6%, and has

been improved by avoiding more cases where the buffer is queued early. Nearly all of

Contech’s overhead comes from the impact to the data cache from the buffer cache

forcing out application data.

One exception is fluidanimate, which has high instrumentation overhead due to

frequently performing lock and unlock operations on mutexes. Each mutex operation

is recorded as a sync event and each sync requires a ticket. The ticket is a global,

atomic value and therefore measurably contributes to the overhead of the instrumen-

tation; however, acquiring a global ticket is still significantly less expensive than the

original implementation that queued buffers early.

Other workloads, such as water spatial, have high buffer check overheads. They

have similar percentage of basic blocks with buffer overflow checks as the workloads

with lower overheads. And there is almost no correlation between this overhead and

the branch misprediction rate.

4.4.1 Data Write Performance

Writing the events into the thread local buffer still takes the majority of execution time

even after the previous improvements. Changing these writes to use non-temporal,

write-combining writes (i.e., SSE2’s movnti), did not reduce this overhead and in fact
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slowed down from 3.5x to 4.0x for the tested benchmarks. Moving the instrumentation

into a single sequence (rather than interleaved) has no impact on performance, not

even when movnti is used. With a high rate of memory traffic and regular nature

of the instrumentation’s memory writes, there is also little benefit to prefetching the

thread local buffer.

Given the impact of filling the buffers on the cache, there is a stronger corre-

lation between slowdown and time to write the data than the runtime itself (0.78

versus 0.49). The strongest correlation is between the slowdown and the amount of

data written at 0.85. This correlation declined to 0.8 after reducing the basic block

type to 1 bit, showing that as the data written is reduced, other components will

increasingly contribute to the runtime overhead. With that in mind, any redundancy

or unnecessary data from the instrumentation could improve performance. There

are three known redundancies in the trace: path information, static addresses, and

redundant address calculations.

Path information is a technique to represent sequences of basic blocks with a single

identifier. Instrumentation is then added to only count when an entire path has been

traversed [10]. Adding this instrumentation is more complex, particularly when the

basic block instrumentation has already been tightly coupled with the memory access

instrumentation. Furthermore, the basic block identifiers are currently less than 25%

of the total trace size, which constrains the potential gains from using paths in lieu

of basic blocks.

A series of experiments also explored static, global addresses and their impact on

the instrumentation performance. First, the compiler instrumentation has been ex-

tended to identify accesses to global variables. Table 3 gives the measurements across

PARSEC and NAS, where the average is 5.2% of accesses across the benchmarks are

made to global variables. Dropping any load / store of the identified globals reduced
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Table 3: Static Global Accesses per Benchmark

% Accesses Slowdown % Accesses Slowdown
to Globals (Data Write) to Globals (Data Write)

barnes 15.5% 4.42 (3.04) is 1.2% 4.38 (2.61)
blackscholes 13.1% 1.09 (0.08) mg 0.0% 5.56 (4.44)
bodytrack 0.0% 3.02 (1.76) lu cb 1.0% 2.88 (1.66)
canneal 1.6% 5.21 (2.57) lu ncb 0.3% 3.85 (2.28)
cg 0.0% 5.45 (4.06) ocean cp 23.3% 4.35 (2.87)
cholesky 0.4% 2.67 (1.58) ocean ncp 23.7% 2.78 (1.62)
dedup 0.2% 1.70 (0.74) radiosity 0.4% 5.44 (3.60)
ep 0.0% 0.92 (0.53) radix 15.4% 1.83 (0.86)
ferret 0.0% 4.30 (3.00) raytrace 0.1% 5.32 (4.04)
fft 1.8% 1.32 (0.27) streamcluster 1.4% 3.47 (1.52)
fluidanimate 31.8% 3.57 (1.16) swaptions 0.0% 4.10 (2.67)
fmm 0.3% 4.79 (3.29) volrend 5.1% 2.95 (1.45)
freqmine 5.6% 5.10 (3.15) water spatial 4.1% 5.45 (3.44)
ft 0.0% 2.96 (1.77) x264 0.0% 2.37 (1.25)

the trace length by an average of 3%; however, there was no observed change in

runtime overhead.

In contrast, removing all memory operations from the trace reduces the slowdown

from 3.6x to 2.1x. Given that the memory operations are approximately 75% of the

trace, the overhead of data writes (220%) should be reduced by a factor of 4 to about

55%. This would give an overall reduction in overhead of 1.65x, which is close to

the observed reduction of 1.5x. A slowdown of 2.1x to record path information and

parallel actions is comparable or better than similar tools, see Table 1.

4.4.1.1 Redundant Address Calculations

PiPA [135] and Shadow Replica [65] demonstrated the capability of identifying when

multiple memory accesses use the same or similar address calculations and empha-

sized this feature as part of reducing their total trace size for lower overhead. These

tools, utilizing DynamoRIO and Pin respectively, relied on identifying common reg-

isters in the assembly and then finding the different offsets therein. Stack accesses
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are a common example in prior work. While Contech does not capture explicit stack

accesses, Contech can use this technique to reduce the number of addresses that must

be stored, which results in less data generation and lower overhead. Prototype mea-

surements showed that this change would reduce the number of memory operations

stored in each basic block from 2.25 to 1.67.

The Contech front end was extended to check each memory operation for whether

its address is based on another operation. Contech restricts itself to cases where the

memory operations and their address computations occur in the same basic block. It is

possible that other cases of memory address redundancy could be identified; however,

the O(N2) näıve scan of the memory operations in the basic block increases the

compilation time by approximately 5%. LLVM supports address calculation primarily

through the GetElementPtr instruction, which takes a base pointer and 0 or more

offsets that iterate through the nested types of the base type. An address calculation

is redundant if Contech can compute a static difference between the offsets for the

same base pointer. Contech can then store this difference in the static basic block

information and recreate the address when the trace is processed into a task graph.

Actual testing identified flaws in the prototype measurements, and the number of

memory operations stored at instrumentation time per basic block was reduced to

an average of 1.84, with a corresponding reduction in runtime overhead for PARSEC

from 3.11x (after extraneous forced queuing and single bit basic block event headers)

to 2.77x, as shown in Figure 15.

4.4.2 Background Writing Performance

Buffers in the global list are written out by a dedicated background thread. This de-

sign minimizes the overhead in the running threads to only that required to record an

event. Should the queued event lists reach the threshold of the system’s memory limit

(default of 90%), the runtime will suspend further execution until all queued buffers
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have been written to disk. The runtime will also insert events for each suspended

thread to indicate that the thread spent time paused.

The instrumentation generates data at an average rate of 5GB/s for each bench-

mark (between 1.6 and 8.1GB/s). This data is being written out in the background

while the program is executing; however, most hard disks do not support 5GB/s trans-

fer rates, so the event list buffers in memory during program execution. As mentioned

earlier, should the queued buffers reach the memory usage threshold, the instrumen-

tation suspends the programs execution until there are no queued buffers. Moving

this background writing to multiple threads could enable online analysis and com-

pression [53], yet greatly increase the processing requirements of the running machine.

The following section will further discuss some of the difficulties of implementing this

additional background support.

4.4.2.1 Streaming Compression

The disk, using the OS file cache, consumes the trace at 100 - 900 MB/s. Rather than

write the results immediately, the trace could be first compressed. Simple experiments

indicate 500MB/s is an approximate bound for a simple buffer copy, when copying

512MB between two memory locations, while smaller sizes will operate closer to

1GB/s. Any compression algorithm would require other calculations in addition to

the buffer copy (i.e., read the original trace and write a compressed trace).

Ibtesham, et al. studied general purpose compression tools applied to application

checkpoints in high performance computing [59], and found that the compression

rate was in all cases less than 100 MB/s and often less than 10 MB/s. However,

the checkpoints were compressed by 50% or more. Instead of using general purpose

compression, prior work has demonstrated storing a path (i.e., a sequence of basic

blocks), rather than recording the events as individual basic blocks, and deciding

on the description of the paths using context free grammars [78] can provide good
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Figure 17: Frequency of Byte Values in Contech Trace

compression ratios. This trace format has been extended to include a representation

of lock operations [47] and data dependencies [115]. In experiments using Contech

event traces, the compression algorithm used in the prior work (Sequitur) only runs

at 2 - 4 MB/s. Kanev and Cohn [71] demonstrated that tying simple predictors from

a functional simulator to the trace collection can predict many instructions in a trace

and thereby eliminate the need to store them. In general, these approaches are guided

toward the goal of minimizing trace size rather than maximizing the trace collection

rate. COP [97], in contrast, tries to efficiently compress memory blocks to provide

space for storing error correcting codes and can do so with minimal impact on the

program.

Studying the frequency of values from several traces, the most common value is

0, see Figure 17. This figure shows three distributions of byte values. Two are taken

from running blackscholes, which is a small workload (few basic block IDs) and almost

solely basic block events. The first bar is from the version of Contech published in
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for (uint64_t i = 0; i < fsz; i++)

{

v = fc[i];

buf <<=1;

bits++;

if (v != 0)

{

buf |= 0x1;

buf <<= 8;

buf |= v;

bits += 8;

}

if (bits > 8)

{

v = (buf >> (bits - 8));

bits -= 8;

wCount ++;

}

}

Figure 18: Simple Compression Algorithm

TACO, which used a zero byte to indicate basic block events. The second bar shows

how this distribution changes with the basic block event using 1 bit. The third bar

comes from fluidanimate, which is a synchronization heavy workload. Comparing the

first and second bars shows that reducing the basic block events to 1 bit has some

reduction on the fraction of 0 values. Between the second and the third bars, there are

commonalities between workloads, such as the common occurrence of the value 0x7F,

which come from addresses on the stack. A basic calculation showed that replacing

any 0 byte with a single bit and prepending an additional bit to all non-zero values

would reduce the trace size by 15 - 30%. This algorithm is implemented in Figure 18.

Measurements showed that this code could process data at approximately 350 MB/s.

An initial test with fluidanimate demonstrated that a simple scheme would not be

sufficient for any performance improvement, as the performance regressed from 3.57x

to a 5.96x slowdown. In addition, the time to write the data to “disk” increased from
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Table 4: System Configuration for Contech Measurements on ARM
NVIDIA Tegra K1

Processor ARM Cortex A15 r3p3
# of Processors 1
Cores per Processor 4
Clock Speed 2.3 GHz
Last Level Cache Size 2 MB

Main Memory Size 2 GB

Table 5: Runtime Overhead for PARSEC (simsmall) with Clang and Optimized
Contech (without lto) on ARM

Benchmark Run Time Slowdown
blackscholes 4.07
cholesky 31.47
dedup 6.41
volrend 11.03

5.5s to 40s, as the write speed now matched the compression speed instead of the file

cache speed. There are two theories to this regression: first, this scheme introduces a

high CPU usage thread to the running system that competes with the existing code,

and second, the lower write rate increases the memory requirements and evicts more

data from the caches. However, while a detailed analysis has not been conducted, the

scheme was able to compress the trace to 83% of the original size.

It has also been suggested that the memory bandwidth could be reduced with some

variation of inline delta compression. In this scheme, the runtime instrumentation

would include additional operations to compute the deltas between bytes, compress

the deltas and then store the compressed data into the thread local buffer. The

question is whether the cost of these operations would be mitigated by the reduced

memory traffic to the thread local buffer.

4.5 Running on ARM ISA

To demonstrate support for other ISAs, a subset of PARSEC benchmarks with Con-

tech instrumentation were selected to be executed using an ARM-based system (see
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Table 4). Given the small size of the system, these workloads used the simsmall

input, with the slowdowns in Table 5, based on the Contech version from TACO.

An LLVM bug prevented the link-time optimizer from working properly on ARM;

the most common instrumentation calls are marked force inline, but the instrumen-

tation is not being optimized to the same degree as on x86 and therefore increases

the slowdown. In addition, the ARM processor does not have the same quantity of

spare microarchitectural resources for the instrumentation, and only generates data

at less than one quarter the Intel processor’s rate. The only change to the Contech

framework required for ARM was adding 1 line of assembly to access the time stamp

counter (PMCCNTR); however, the architecture support is less clear than on x86.

4.6 Comparison with Pin

Pin is a widely used, high performing instrumentation tool that has support for

collecting similar data to Contech’s task graphs. I searched prior work and found

several tools that collect subsets of the data recorded by Contech (the full list is in

Table 1): the overhead of recording a memory trace alone (ignoring basic blocks,

as well as attributes of the memory accesses) ranged between 2x and 9x [9] [80],

recording the memory trace with attributes and basic block information averaged a

16x slowdown [135], and recording the program’s DAG and instruction count incurs

2x - 10x slowdown [55]. As Contech’s instrumentation is more extensive than these

tools, I implemented my own Pin tool that is functionally equivalent to Contech’s

instrumentation, targeting Pin 2.13 and using Pin’s Fast Buffering APIs [117] to

record basic block IDs and memory operations, with read or write and size attributes,

along with events for synchronization actions. I incorporated optimizations to the Pin

tool including those in Section 4.2.1.2 such that the performance would be comparable

to prior work.
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Running the PARSEC and NAS benchmarks using Pin, the execution time is

recorded to estimate the overhead imposed by Pin. The results are the average of 5

runs, and the measurements are for the whole program execution. Figure 15 shows

the runtime slowdown for the benchmarks, comparing Contech front end versions with

Pin. This set of measurements show that the current implementation of Contech’s

front end performs better than a Pin-based implementation does on all workloads.

The Pin slowdowns also show significant variation across the PARSEC benchmarks,

varying from 2.3x to 42x and averaging 15.8x.

The hardware performance counters are measured using the tool perf to compare

Contech’s and Pin’s instrumentation. Being a dynamic instrumentation tool, Pin

significantly impacts the instruction cache performance with an L1I cache miss rate

of between 2.2 - 8.0% averaging 4.4% versus Contech’s range of 0.1 - 7.1% with an

average of 0.7%. The uninstrumented code’s instruction cache miss rates range from

0.02 to 4.0% with an average of 0.5%.

Figure 19 shows the increase in architectural events from Contech’s and Pin’s

instrumentation versus the baseline programs. In all cases, the instrumentation has

increased the operations and instructions executed by the programs. Along with the

measurements in Figure 16 where the instrumentation instructions were shown to

have low overhead, the runtime cost of the additional operations recorded with perf

is primarily the increased cache pressure. As most of the architectural miss rates

remain similar between Pin and Contech and in some cases are better than the native

code, viewing the results by the total number of events better illustrates the slowdown

from Pin.

The recent improvements to Contech have reduced the loads by 30% primarily

by ensuring that the thread local buffer values are only loaded once per basic block

(see Section 4.2.1.3) and the stores by 8% by removing redundant addresses from the

event list (see Section 4.4.1.1). These changes have also reduced the instrumentation
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Figure 19: Average Increase of Architectural Events over Uninstrumented Execution

instructions, such that the instruction cache (L1I) accesses and dynamic instruction

count have been reduced by 20% each.

4.6.1 Instruction Execution Rate

While the instrumentation approaches increase the overall load of instructions be-

tween 100% and 500%, as shown in Figure 19, the rate metric of CPI may show an

improvement with the instrumentation. For example, the CPI for Splash 2 workloads

is improved when running with the Pin-based instrumentation, such as radix having

a 50% reduction in the CPI from 3.49 to 1.74.

While the number of instructions added per basic block are few, each is particularly

long. For example, the common load of the thread local buffer is 9 bytes, the store of a

basic block ID is 8 bytes and storing memory operations are 5 - 9 bytes in size (whether

the address is in a register or an immediate). Using fluidanimate as an example, the

average size of the instructions in the native binary is 4.8 bytes, while the added

instrumentation averages 5.0 bytes. Furthermore, approximately 60 - 70% of the

instructions in the binary have been added as part of the Contech instrumentation.

Some of these instructions correspond to the runtime library routines, while others
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are the inline instrumentation. One extreme example of this increase is that the

instrumentation for each mutex is inlined, at the cost of 22 instructions which total

103 bytes versus 6 instructions for 23 bytes to load the mutex address and call the

pthread library. During runtime, the dynamic instruction count is only increased by

an average of 100% (and down from 120% with the TACO instrumentation) across

PARSEC, SPLASH and NAS; and in this respect, fluidanimate is near the mean at

95% increase.

Figure 20 shows how the change in the L1I cache miss rate relates to the runtime

slowdown from Contech. There is some correspondence between the two quantities,

and the most indicative of the actual slowdown from the instruction execution related

metrics. At less than double the instruction cache miss rate (100% increase), all

benchmarks showed less than a 3x slowdown. And above the 150% increase in miss

rate, the benchmarks almost all above the 3x slowdown. The CPI is primarily related

to the data cache load and store miss rates, which are discussed in the next section.

74



4.6.2 Data Cache Miss Rates

A basic block event is the most common event (at least 18x more common than the

next event), so I will use it to model the aggregate of recording all of the events in

a program. To record the average basic block, which has a load and a store, there

are 5 or 6 additional memory accesses: load the location of the (OS-managed) thread

local structure, load the pointer to the thread local buffer, store the basic block ID,

store memory access 1 and 2, and store the new buffer position. The optimizations

in Section 4.2.1.3 eliminate 2 - 4 loads from each basic block event. With an average

basic block event size of 14B and cache line of 64B, every 4th or 5th basic block event

will incur a cache miss, which is 1 miss for every 16 stores or 6%. Note that the

changes to the basic block event type have reduced the event size and the redundant

address identification eliminated storing some memory operations.

Given that the Contech instrumentation incurs approximately a 6% L1 data cache

(L1D) store miss rate, workloads with lower miss rates will have an increased miss rate

from the instrumentation. Figure 21 shows how workloads with low native miss rates

increase toward the 5 - 6% for Contech instrumentation, while workloads above this

miss rate decrease. For example, a workload, such as ocean ncp, with a large working

set (in this case, 7GB) and high L1D miss rate (50%) will have an improved miss

rate from the instrumentation. Effectively, an instrumented program has a second

program (the instrumentation) interleaved throughout and this instrumentation has

While the perf results report a high L1D load miss rate for Contech, I devised a
separate experiment to test the counters, where a simple program iterated millions
of times by storing to a large buffer, but never loading from the buffer in the loop.
Perf still reported L1D load misses, at a few percent above the number of L1D
store misses. It appears that the underlying implementation of a “load miss” in
perf includes the store misses as well.
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Figure 21: Relationship between Native and Instrumented L1 D Cache Store Miss
Rates

a separate usage profile for the cache and other resources. And the amount that this

“program” affects the base program correlates with the runtime slowdown.

4.7 Variation on Workload Parameters

For PARSEC, SPLASH and NAS workloads, the intent is always to maximize the

number of workloads running successfully while utilizing as much of the system re-

sources as possible. There are two parameters to tune this: size of the input and

number of threads. Increasing the input moves the workloads closer to realistic ex-

ecution, while also increasing the time and resources needed to run each parallel

program. Using more threads decomposes the problem into smaller parts while in-

creasing the parallel aspects of the program’s execution: locks, contention, et cetera.

Finally, each benchmark suite is uniformly run with the same set of parameters, such

that even if, for example, blackscholes can run with native input, it will be run and

compared using simmedium, just as the other PARSEC benchmarks are executed

with this input size in order to generate maximal coverage of the suite.
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Figure 22: Size of Event List Generated from PARSEC and SPLASH with Different
Inputs

4.7.1 Increasing Input Size

Every program has an initialization cost that is not completely accounted for with the

runtime comparison. For most programs, this cost is low enough that it is subsumed

in the existing sources of measurement error. However, at the smallest inputs, the

program execution is so short that this value is noticeable, along with the other

measurement errors. As such, no slowdowns will be shown below simsmall input size.

Changing the input size gives three insights into Contech. First, workloads that

fail to generate a task graph (such as, raytrace or water nsquared with the simlarge

input), are only failing due to the size of the input and not any limitation in the

design of Contech. Second, the failure to generate a task graph, or at least do so

without reaching the instrumentation memory limit, is linked to the size of the event

list. Given that the event lists size is increasing by approximately 4x per input set,

this increase pushes the event lists for 7 workloads at simlarge beyond the available

memory in the system, leaving only 17 workloads successfully generating task graphs.

These “failing” workloads used more than 48GB of memory while generating the
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Figure 23: Runtime Slowdown of Contech Instrumented PARSEC and Splash 2
workloads by Varying the Number of Threads

event list, forcing their execution to be paused to allow buffers to be flushed to disk.

Three of these workloads completely failed to generate task graphs when the local

hard drive ran out of available space. Thus for the systems available, simmedium is

the largest input for which all workloads run successfully to task graph generation,

and hence why it is used for all other measurements.

The third insight is that the overhead of Contech depends on the program’s code

and not its input. The runtime slowdown showed small increase between simsmall,

simmedium, and simlarge. The slowdown is primarily related to the the instrumenta-

tion’s impact on the program; however, the longer trace has a small correlation with

additional slowdown. Therefore, if a system had hundreds of gigabytes to terabytes

of memory, then it would be able to record much longer executing programs.

4.7.2 Thread Counts

Figure 23 shows how the runtime slowdown varies as the number of threads specified

changes. The overall average across the workloads trends downward, indicating that
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Contech’s design is scalable at least to 16 threads. Some workloads, such as swaptions,

show worse scalability. Swaptions is task parallel, having no synchronization besides

the thread creates and joins. The only constraint on its execution appears to be

the data generation rate, which increases modestly between the 8 and 16 threaded

execution. Effectively, the OS cannot allocate thread local buffers fast enough for

Contech to fill them. As shown in Figure 14, if the buffers are preallocated, then

swaptions executes faster especially at higher numbers of threads and the scalability

loss from increasing thread counts is significantly decreased.

4.8 OpenMP Support

OpenMP support is a valuable addition to the Contech framework. It extends the

task graph representation beyond the initial pthread-based model. This support

also allowed Contech to instrument other benchmark suites, including NAS [66] and

Rodinia [31]. This support was not without issues, which this section will address.

The first major issue in supporting OpenMP is that the OpenMP pragmas are not

stored in the LLVM IR, but rather have been translated into the appropriate code.

The second major issue is that OpenMP’s implementation relies on having 1 thread

per processor (or the OMP_NUM_THREADS) allocated and then distributes work to these

threads.

In most cases, there is a 1 to 1 transformation from the pragmas to the actual

IR; however, OpenMP only defines the pragmas and their behavior while leaving

the underlying implementation to the compiler / runtime. Therefore, more complex

pragmas must instead be compiled and then the resulting IR examined to identify

the routines and transformations used by the compiler and runtime. Furthermore,

as each compiler is different, Fortran code using dragonegg and gcc invokes different

routines than the code generated using OpenMP Clang compiler [61] (which targets
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the Intel OpenMP runtime3), such as GOMP_atomic_start versus __kmpc_single.

After the implementation routines are identified, it is generally a matter of adding

them to the table of function names to instrument.

The second issue is more difficult. As the OpenMP runtime executes the program,

parallel regions are assigned groups of threads by the runtime. Each thread in the

group is treated as identical, although each can be distinguished within a group. Fur-

thermore, in assigning a group, it is not clear how many threads will be in the group,

until the group has been created and the threads have started executing. However,

within these constraints, the runtime’s threads are still OS recognized threads and

therefore the thread local storage is preserved, including the context ID and thread

local buffer pointer.

A parallel region begins executing with the invocation of __kmpc_fork_call,

which takes in a function that is called by each thread assigned to the group. Since

the number of child threads is only known after the parallel region begins, each child

thread is passed additional information so that it can record its create event on be-

half of its parent context. And given that context IDs are only stored with the buffer

meta-event, each create event also requires queuing the current buffer so that the

buffer event is also created. Passing and recording this information requires writing

a wrapper for the function called in the parallel region. Furthermore, as threads are

constantly being repurposed, the assigned context ID must be preserved and restored

at each point where OpenMP may switch its execution.

The design for a parallel region exposes architectural information via the assigned

number of threads. This is true even in with omp parallel for where the parallelism

is over the iterations, as the compiler front end transforms this pragma into two

sequences: omp parallel and then omp for. As Contech independently instruments

each basic block, the split pragmas are instrumented separately, which results in

3Intel’s OpenMP runtime also includes wrappers for the gcc-based routines.
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Figure 24: Contech Instrumentation Performance on the Rodinia Benchmark Suite

viewing the for loop’s parallelism in two stages: creating the threads for the parallel

region and the parallel iterations executed by each thread. While the stages could be

combined when creating the task graph, this would special case on the assumption

that programmers generally write parallel for rather than for loops in larger parallel

regions. Furthermore, showing the iterations by thread can reveal thread imbalance,

which is a common issue in OpenMP parallel loops.

4.8.1 Rodinia Benchmarks

The Rodinia benchmark suite [30] is designed to provide both GPU and CPU versions

of computation kernels, using CUDA and OpenMP respectively. This permits the

exploration of the heterogeneous computing space. At this time, Contech has not

been extended to support GPUs; however, the CPU versions provide an additional

set of benchmarks. Figure 24 presents the runtime slowdown from a subset of the

Rodinia benchmarks. As the suite was further designed to be diverse, the slowdowns

are also across a wide range, although the average is 2.7x.
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4.8.2 LULESH

LULESH [72] is a leading proxy app from an effort out of the Lawerence Livermore

National Lab, which models C / C++ scientific applications. Due to the high context

creation (over 1.8 million), Contech’s overhead applied to creation events significantly

slows the program’s execution to almost a 10x slowdown. Each task (such as a

parallel loop iteration) only executes for an average of 15 basic blocks, which instead

adds significant overhead from the context creation instrumentation forcibly queuing

buffers. In queuing these minimal sized buffers, the small buffer copy path avoids

wasting memory; however, the global lock on the common buffer list has measurable

contention.

4.9 MPI Support

While the focus of the instrumentation design has been on shared memory programs,

Contech also supports distributed memory programs that use MPI to communicate.

Each instance of a distributed program generates a separate trace. The middle layer

can then merge the traces together into a single task graph. The task graph has an

empty task 0:0 added as the root that will create the instances of the parallel program.

In order to maintain the address space separation, each memory address is prepended

with the instance of the program (i.e., the rank), thus treating the program as if it

used a partitioned global address space (PGAS). As sending and receiving data is

an explicit operation, the ordering of sends and receives is represented as sync tasks,

along with additional memory operations to denote the transfer of data between the

two address spaces.

For each MPI_send and MPI_recv, a 3-tuple is created: the source rank, des-

tination rank, and tag. This information along with the size of the operation are

recorded for each request. These tuples are used to match the send and recv requests

between ranks and thereby combine the different task graph pieces into the single
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Figure 25: Task Graph Recursively Computing the 6th Fibonacci Number using Cilk

comprehensive program. To support these routines, Contech must invoke MPI func-

tions; however, it is undesirable to always link in the MPI library, so Contech has two

versions of wrappers around the MPI functionality.

4.10 Cilk Support

Cilk support is also under development for Clang / LLVM [60]. Cilk is particularly

designed to minimize the difference between the serial and parallel stack sizes. As

serial execution will follow each function call in turn, making these calls parallel via

cilk_spawn has the effect of Cilk following the calls and leaving the continuation

of the calling function as parallel work. As a consequence of this design decision,
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the Cilk design utilizes setjmp and longjmp as the underlying mechanism to handle

the parallel invocations. Cilk’s design is the opposite of Contech’s, in that Contech

expects a thread to create parallel work that other threads will execute. As such,

Contech internally must swap context identifiers between the threads as they create

and execute the spawned work.

Figure 25 shows an example task graph from an example Cilk program that is

recursively computing numbers from the Fibonacci sequence. This simple program is

sufficient to exercise the compiler-based identification of the Cilk calls, as well as the

different cases involving work stealing. The initial Cilk compilation inlines significant

parts of the functionality, which contrasts with the OpenMP approach that uses

function calls, and consequently, an operation such as cilk_spawn is transformed into

several basic blocks. The cilk_sync call has also been inlined and furthermore may be

executed implicitly by Cilk determining that this frame has no further work to execute.

Therefore, Contech relies on Cilk’s determination that the parallel work is complete.

The support was subsequently tested on a million-element parallel quicksort used

to test Cilkview [55]; and while technically correct, there remains significant future

work to bring the overhead of this instrumentation support in line with the other

paradigms.

4.11 Other Implementation Issues

At the start of a program’s execution, the OS and the language runtime work to load

and initialize the program. One of the required steps is initializing static variables.

Many statics are initialized to zero and directly receive zeroed pages. More complex

are the variables that are instances of a class. The initialization of an object requires

invoking its constructor, and as the constructor was compiled as part of the program,

it is instrumented. Contech’s design is to encapsulate the program’s entry point, main
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and initialize the instrumentation system just prior to that point. However, instru-

mented constructors are one instance of code that may be invoked earlier than this

point. Initially, every instrumentation routine checked whether a thread local buffer

was present before storing the event, but that was incredibly expensive. Instead, the

Contech runtime initializes the thread local buffer to a special static buffer. This

buffer acts as a sink for instrumentation events. The queue buffer method checks for

this buffer and will discard its events rather than globally queue it.

Contech task graphs include a notion of absolute time via the timestamp counter.

Each processor’s timestamp counter ticks independently of the others. Even though

modern processors are often designed to maintain a constant tick rate, small variations

in manufacturing, clock speeds, temperatures, et cetera can result in differences (i.e.,

skew) between each counter. Given the usefulness of the timestamp counter, a modern

OS may regularly synchronize the counters to minimize the variations. Still, given the

fine-grained nature of the timestamp, any measurement of the skew can only achieve a

minimal bound. Contech has support to estimate the skew between threads; however,

measurements showed that the OS was minimizing the skews and therefore the cost

of this measurement provided minimal benefit.

4.12 Contech Compiler Wrapper

Each source file is passed to a compiler wrapper script. Contech must inject the

additional step of invoking its pass on each source file during compilation; however,

as far as is possible, the script leaves the compilation step unchanged. The script

also wraps several different languages and selects the appropriate compiler steps to

generate LLVM IR for instrumentation. Modern compilers may also be invoked as

linkers, in which case they pass the link commands along. The wrapper script must

do the same; it detects when the user intends to link the files into a binary which

then requires appending the Contech runtime and static basic block information to
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the linked objects. The static basic block information is then part of the initialized

data in the binary, which the background thread writer accesses and writes directly

to the event list.

As Contech uses -flto as part of compilation and linking, this flag introduces

additional issues. With the -flto flag, Clang will emit LLVM bitcode (LLVM IR in

binary form) rather than native assembly. These “object” files may then be merged

into an archive, or other intermediate step before being linked into the final binary. In

some cases, successfully compiling a benchmark has required changing the compilation

steps to avoid one of these problematic cases. Consequently, Contech is not always a

drop-in replacement for the current compiler, although it is more often an artifact of

LLVM’s limitations than the design of the compiler wrapper script.

Three compiler passes are required for each source file, as Clang does not support

dynamic loading LLVM passes. The first pass uses Clang to generate the LLVM

bitcode. The bitcode is passed separately through opt, which applies specific LLVM

passes (in this case, Contech’s instrumentation) to bitcode files. Then the instru-

mented bitcode is passed back through Clang to optimize some of the applied instru-

mentation, such as merging basic blocks that Contech split. These steps increase the

time to compile each application by an average of 68%.

4.12.1 Undefined Behavior

As part of successfully compiling programs with Clang / Contech, I have encountered

a variety of compiler and linker errors. The most common is subtle differences between

gcc and clang. Many programs are written targeting gcc as their compiler, which has

given particular meaning to certain undefined behaviors in the C standard against

which Clang takes different approaches. This can force a programmer to expend

additional effort addressing these cases. For example, many programs in C do not

specify a return value from main or their pthread worker routines. Gcc will return 0
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Table 6: Decision Forest Regression Model Parameters
Parameter Value
Resampling Method Bagging
Create Trainer Mode Single Parameter
Decision Trees 8
Maximum Depth 32
Random Splits 128
Minimum Samples 1

or garbage values in these cases. In contrast, Clang uses these cases to optimize and

treats the end of the functions as unreachable, which will consequently result in the

program failing to execute to completion. Quoting from the C specification: [63]

Flowing off the end of a function is equivalent to a return with no value; this

results in undefined behavior in a value-returning function.

If the } that terminates a function is reached, and the value of the function call

is used by the caller, the behavior is undefined.

4.13 Predictor of Contech Performance

This chapter laid out the the design of Contech’s LLVM-based instrumentation toward

the twin goals of having diverse support for parallel programming languages and

paradigms, as well as minimizing the impact on parallel programs by having low

overhead.

The continual question is what program behavior corresponds to low versus high

overhead with Contech instrumentation. Understanding this distinction provides in-

sight into the specific costs of the instrumentation, as well as some observation into

the gap between the parallel program’s requirements and the capabilities of the archi-

tecture. Using Microsoft Azure Machine Learning tools [89], it was possible to derive

an approximate model of the runtime slowdown based on measurements taken during

execution. Initially starting with over 50 measurements and hardware performance

counters from the native and instrumented executions of all benchmarks (set to 16
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Figure 26: Approximate Fitting of Runtime Slowdown based on Other Metrics

threads and PARSEC workloads ran with simsmall and simmedium input sets), the

data was refined to seven metrics (see below) that enable the best fit of the slowdown,

as well as processed through different model types (such as, linear regression, neural

network, and decision forest) where the decision forest [33] produced the best fit. The

decision forest model was configured with its default parameters, as shown in Table 6.

Each model was run through 90/10 train and test splits of the data, with the

results of the best model (decision forest) shown in Figure 26. From the model, we can

observe both workloads having unusual characteristics, as well as those characteristics

that best describe (and likely contribute) to the cost of the instrumentation. Contech’s

instrumentation of NN from Rodinia increases the dynamic instruction count around

6x, as the workload creates many small tasks that require Contech to record and track;

however, its slowdown is only 2x. The instruction cache is significantly affected by

the instrumentation for Raytrace with the simsmall input, as the miss rate increases

24x even as the slowdown is 1.67x and half of the simmedium slowdown. And in

general, the model was the most accurate for PARSEC with simmedium.
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As noted earlier in this chapter, the single best metric for modeling the runtime

slowdown is the size of the event list produced from the instrumented execution. Sim-

ilar to the event list, the increase in the dynamic instruction count can further refine

the modeled slowdown. As the programs are parallel, the dynamic instruction count

is also influenced by the quantity and behavior of parallel threads, unlike sequential

execution where this value would be tightly coupled to the execution time. The esti-

mation of the runtime slowdown can be further refined by incorporating the frequency

of new tasks, commonly from synchronization. In Section 4.6.1, one of the metrics

was the increase in the L1 instruction cache miss rate, which had related to the run-

time slowdown. Two metrics are also taken from the native execution: the L1 data

cache store miss rate (see Section 4.6.2) and the backend stall cycles per instruction.

This latter measurement corresponds to the baseline program’s resource usage and

capability to absorb the instrumentation’s additional requirements. Finally, the par-

allel programs have more slowdown from the instrumentation when their basic blocks

have fewer memory operations in them. While several metrics come from the baseline

program, those alone are not sufficient to estimate the impact that instrumentation

will have on the program.

Therefore, while the slowdown for most parallel programs averages 3x, there are

particular program characteristics and patterns that can drive the cost of instrumen-

tation higher. In addition, the instrumentation is clearly stressing the capabilities of

modern architectures, while lighter-weight designs such as ARM are more severely

impacted. It remains for future investigations to determine whether this overhead is

transparent enough for analysis purposes, as well as to further identify the microar-

chitectural limitations encountered by the instrumentation. In the following chapters,

I will explore the process of analyzing Contech task graphs and then model a complex

system requiring the full capabilities of the task graph.
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CHAPTER 5

PRACTICAL TASK GRAPH ANALYSIS

This chapter will explore the analysis of the task graph representation as generated

by the instrumentation in the prior chapter. The components of the prior chapter

work together to produce a rich representation of the execution of a parallel program

in the form of a Contech task graph. It is vital that the representation be usable

and useful, and so I will cover the basics of how to access the task graph, common

concerns and issues, as well as several examples. The following chapter will use the

task graph to help understand a complex parallel program modeling problem.

Contech task graph analysis is done via programs termed, backends or back ends.

The analysis of a Contech task graph is separated from the instrumentation and gen-

eration of the task graph. This separation is purposeful so that the instrumentation

is not additionally burdened by analyzing the program’s events while it is running,

to reinforce the idea that task graphs are independent of the architecture generating

them, and furthermore to better support diverse program analyses and the possible

synergies between them.

5.1 Back end tools

Contech’s purpose in collecting the rich task graph representation is to support a

wide variety of back end tools that can characterize the behavior of a benchmark

and/or collect metrics by analyzing a task graph. The task graph file contains three

elements: the debugging information, the tasks of the graph, and the table of contents

that provides a breadth-first traversal and random access to the tasks. Back end

tools’ traversal of the task graph is supported by Contech’s task library API, which

is written in C++11. The first step is to instantiate a TaskGraph from the file.
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TaskGraph* tg = TaskGraph::initFromFile(fileName);

Tools will commonly iterate through each task in the graph, following the breadth-

first traversal. A tool can also request a specific task using getTaskById(TaskId).

Or access the region of interest (ROI) task IDs by getROIStart() and getROIEnd(),

and thereby restrict its analysis to the ROI.

while (Task* currentTask = tg->getNextTask())

The task library API enables programs to access the features of the task graph, and

enables iteration via a set of classes over the components of interest from a task graph:

tasks, basic blocks, and memory operations. Commonly accessed properties are the

type of task, as well as the tasks start and end time.

switch(currentTask->getType())

Most of the data in a Contech task graph is part of the work tasks. Each work

task contains a sequence of basic blocks executed, as well as the memory operations

performed by the instrumented code.

auto bba = currentTask->getBasicBlockActions();

for (auto bbIt = bba.begin(), bbEt = bba.end(); bbIt != bbEt; ++bbIt)

BasicBlockAction bb = *bbIt;

The API also exposes “debugging information” to back ends, such as function names,

file names, and line numbers. This information is contained in TaskGraphInfo class.

TaskGraphInfo* tgi = tg->getTaskGraphInfo();

Most of the debug information is currently associated with basic blocks, in the

BasicBlockInfo class.

auto bbi = tgi->getBasicBlockInfo((uint)bb.basic_block_id);
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By using the task graph, a back end might simulate branch behavior, caches and

coherence, analyze synchronization usage, or find data races. Coherence modeling

and data races detection will be revisited in the next chapter, as part of modeling

parallel programs. Cache simulation has been published previously in TACO [100]

and data race detection with Contech was first published by Philip Vassenkov [121].

Other example analyses will be discussed in Section 5.3.

5.1.1 Types

Contech’s task graph API, described briefly above, relies almost exclusively on three

sets of types to convey the content of a task graph: IDs, actions, and tasks.

5.1.1.1 IDs

Section 2.4 described the visualization of a task graph, and one of the first aspects is

the unique label applied to each task, its task ID. All tasks in a Contech task graph

are uniquely identified by their task IDs, or TaskId. This type has two component

types, ContextId and SeqId. Technically, the TaskId is a 64-bit value; however,

the API is designed to use the type system to minimize the ability to access the

underlying representation.

5.1.1.2 Actions

Every basic block execution and memory access is stored as an action. Given the

potential to store billions of these actions in a single task graph, it is vital to select

an efficient representation. Taking a 64-bit value, basic blocks only use the lower 23

bits and memory addresses the lower 48 bits, which leaves 16 bits available. The

Action type is a bit-field that merges basic block IDs, memory accesses, and other

specific events (such as malloc) into a single type. The first use of the spare bits

is to include a type field, enabling the values to be distinguished, including whether

the access is a read or a write. Shadow Replica [65] also encoded other execution
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information using the spare bits and otherwise invalid addresses. Spare bits are also

used to encode the size of a memory access, which are always powers of 2. Memory

accesses may also need additional bits to specify the MPI rank of the address, which

enables the distributed memory program to be treated as if it used shared memory

(see Section 4.9).

By unifying the actions into a common type, Contech can utilize C++ standard

template library (STL) data structures to store and manage the actions internally.

Specifically, actions in every task are stored in a single action vector. The iterators

shown previously operate on top of this vector and provide action type specific access,

such that a backend does not need to check every type and instead can be simplified to

operate on basic blocks or memory addresses, if that is all the backend requires. Using

common sized types, this solution “wastes” 4 bytes per basic block; however, other

approaches would likely require an extra pointer. Given the hundreds of millions

of basic blocks in the average PARSEC task graph, any storage scheme must be

cognizant of the need to minimize the space used.

5.1.1.3 Tasks

Tasks are composed of a task type, which is the associated graph partition: create,

join, sync, barrier, and work (or basic blocks), as well as the sequence of basic block

and memory actions, timestamps for the start and end of the task, and two sets

of TaskIDs for the predecessors and successors in the graph. While tasks are the

predominant type in the graph, the majority of analyses focus on the actions it

contains. Even sync and barrier tasks contain an action, which is the address of its

associated object. Commonly, the address serves as a unique identifier for managing

information about the object, as the task graph has already placed the appropriate

dependencies between syncs on the same address.
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5.1.2 Determinism in Analysis

Each analysis is applied to a task graph, representing a single instance of the program’s

execution. Similar to other dynamic analyses, improving the quality of results in an

analysis with Contech may require collecting and analyzing multiple task graphs to

provide different traces of the program’s execution. Most analyses are deterministic

and so repeated invocations will not generate different results. For example, the same

task graph will always give the same sequence of memory accesses, when following

the same partial-ordering of all tasks.

Some tools, such as MACPO [101], incur additional runtime overhead in the effort

to (attempt to) order all memory accesses from a parallel program, although the effect

of the instrumentation and the races to add accesses to the single log may prevent the

trace from representing the true, executed order. Furthermore, any instruction stream

may be further impacted by out of order execution, consistency models, and other

microarchitectural effects. Similarly in analyzing a task graph, it may be desirable

to observe a single stream of memory accesses from the program, rather than the

default of using them on a task by task basis. Näıvely, an analysis would round robin

across active tasks, selecting a memory access from each. However, this approach

would not account for differences in the instruction streams as well as the cost of

individual memory accesses. In the other extreme, the analysis could simulate the

entire program and thereby compute an order of all events in the program.

One alternative was utilized to reproduce the results from Harmony [70]. Each

work task has a total duration and contains a quantity of basic blocks. For simplicity,

this model assumed equal cost to each basic block, which then enables the blocks

to be placed into a total order. From this order, the memory accesses in each basic

block can also be ordered. Using the approach outlined in Section 4.2.1.1, the specific

time required for each basic block can be estimated. Figure 27 covers the average

and median cycle times for basic blocks, where the function calls and other high cost
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Figure 27: Average and Median Basic Block Cycle Times

blocks have been excluded. The average varies from 5 to over 20 cycles per block,

while the median for most workloads is between 4 and 5. Thus assuming equal cost

for each block is obviously simplistic; however, for many workloads the divergence

will be reasonable, especially if there are frequent non-work tasks to resynchronize

each context.

5.1.3 Basic Blocks

Parallel programs tend to execute the larger, measured in terms of memory operations,

basic blocks more frequently than the smaller basic blocks. Figure 28 compares

statically measuring the size of each basic block in the program with the average

memory operations observed by running the program. LavaMD from the Rodinia

suite has the highest dynamic average at 13.3 memory operations per basic block.

Water nsquared is an example of the opposite result, whereby its dynamic average of

1.07 is less than half the static average, perhaps as this benchmark has the largest

static basic block of 133 memory operations, which skews the static average higher.

95



0

2

4

6

8

10

12

14

0.5 1 1.5 2 2.5 3

A
v

er
ag

e 
M

em
o

ry
 O

p
er

at
io

n
s 

in
 

D
y
n

am
ic

 B
as

ic
 B

lo
ck

Average Memory Operations in Each Static Basic Block

Figure 28: Average Static versus Dynamic Memory Operations per Basic Block

5.2 Parallel Programming Paradigms

Parallel programs are commonly written using certain patterns and paradigms. Pat-

terns have hardware and software characteristics that can lead both to their identi-

fication [32] [37] [99], as well as exploitation [106]. Paradigms, such as pthreads or

OpenMP, lead to particular ways of expressing the parallelism in programs. Pthread

based programs add 1 context per create event, while OpenMP programs add between

3 and 60 per create (with a median of 16, which is the specified number of worker

threads).

The OpenMP benchmarks from Rodinia and NAS rarely utilize fine-grained syn-

chronization, instead they primarily rely on creating new parallel regions. Cg from

NAS has 17 sync tasks per context on average, which is the highest of these programs,

and has 58 parallel regions. In contrast, the median benchmark from SPLASH has

4400 sync tasks per context, as these programs utilize condition variables as barriers.

Ignoring SPLASH’s alternative barrier, the majority of the benchmarks use barriers,

although the median is just 1 per create task, and for OpenMP programs this is often

the barrier at the end of each parallel region.
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Figure 29: Subset of Dynamic CFG from Fluidanimate (BBID and Execution Count)

Within each suite, there are distinctions, such as the task parallel workloads

blackscholes and swaptions that do not utilize locks nor barriers, or pipelined work-

loads dedup, ferret and x264. Streamcluster utilizes thousands of barriers, more than

any tested workload except lulesh which has tens of thousands of parallel regions

each utilizing two barriers. And at the finest-grained decomposition, fluidanimate

and raytrace have millions of synchronization events during their execution.

5.3 Sample Analyses

The following section will explore three simple analyses of Contech task graphs to

demonstrate some of the diversity of support available in using this representation of

parallel programs.
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Figure 30: Miss Rate for Selected PARSEC, SPLASH-2, and NAS benchmarks with
16 threads, across shared caches sized 1KB to 256MB (210 to 228)

5.3.1 Control Flow Graphs

Figure 29 shows how the control flow from a Contech task graph can be directly

visualized, by following the control flow of every context in the task graph. In the

dynamic control flow graph, each node is a basic block (with its Contech-issued ba-

sic block ID) and has a dynamic execution count (and darker nodes are executed

more frequently). Orange basic blocks are involved in synchronization, where blue

arrows indicate data transfers / communication. Thereby showing one approach to

understanding the main components of control flow and memory accesses together.

5.3.2 Cache Simulation

Contech also provides sufficient information to model architectural components such

as caches and branch predictors. In Figure 30, we replay the memory access streams

from previously collected task graphs multiple times as we iterate through the range

of cache sizes, from 1KB to 256MB. All caches are 4-way associative and use LRU

replacement. This analysis is deterministic and by using the same task graph and

breadth-first traversal as stored in the task graph, the analysis will operate on identical
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Figure 31: Estimated Working Set versus Actual Resident Set Sizes for Uninstru-
mented Benchmarks in MB

memory access streams, thus supporting the comparison of the different cache sizes.

As with all dynamic analyses, the cache model could require analyzing multiple task

graphs from the target program, possibly across diverse inputs, in order to have the

necessary confidence in its conclusions.

The cache analysis models show the different characteristics of the benchmark’s

memory accesses and how increasing the cache size impacts the miss rate. Benchmarks

such as blackscholes and raytrace show minimal improvement from increased cache

size until a component of the working set entirely fits in the cache, with significant

reduction in miss rates, which contrasts with ferret and ocean ncp where the miss

rate is continually decreasing from larger caches. Streamcluster and cg are workloads

with multiple plateaus from different components of the working set dominating the

cache miss rate.

5.3.3 Memory Usage

Similar to modeling a cache, Contech can also compute a program’s working set by

tracking the memory addresses accessed. Furthermore, as Contech captures memory

management, it is able to split the working set into heap and non-heap accesses, where
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the latter are both globals as well as stack addresses. Figure 31 presents the results

of this analysis compared with the measured resident set sizes for the uninstrumented

workloads. Resident set size gives maximum memory required by the program at any

one time during its execution, due to paging and other effects this may be less than

the working set of the program (and the one estimated by the analysis). In general,

this shows that should the analysis be correct, Contech instrumented programs have

similar working sets as they do without instrumentation. Two notes about these

results: first, ocean ncp has a resident set size of 7GB and was excluded so the

plot could show the other 40 workloads. Second, in studying the working sets of

instrumented programs, /usr/bin/time over reports the size by a factor of 4 and the

results here have been scaled accordingly, and this is a known bug in time.

5.4 Summary

This chapter has covered both how Contech provides analyses with access to the task

graph representation, as well as demonstrated several backends to analyze task graphs

in different ways. These analyses show a sample of the diversity of analyses supported

by Contech’s framework. The following chapter will explore a comprehensive analysis

that requires the complete representation.
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CHAPTER 6

PARALLEL PROGRAM MODELING

In this chapter I will explore how Contech can be used to drive a comprehensive

model of parallel programs. This usage will rely on every component of the task graph

representation. This model will be used to explore a possible reconfigurable system,

see Figure 32. This system seeks to address the architectural challenges first outlined

in Section 1.2.1. In this system, the architecture provides the capability to reconfigure

based on the explicit directive of the program. This enables hardware to dynamically

adapt to the program’s resource requirements, omitting the lag associated with a

dedicated detector that discerns these requirements. The compiler will analyze the

program and its source to determine the appropriate configuration for each section of

the program. Particularly by using Contech’s task graph representation, I will analyze

parallel programs at the task granularity and show that even at this coarse grained

unit of execution, programs differentiate and specialize their execution to specific

resources. The initial results from this chapter have been previously published in

collaboration with Seshan [110].

.c.c Clang + 

Contech

Task 

Graph

Architectural 

Model
Clang

Program 

+ Config

Figure 32: Proposed Reconfigurable System Workflow
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6.1 Related Work

Parallel program modeling and even investigating heterogeneous or reconfigurable

hardware has been extensively studied. This section summarizes the recent work

that leads to the proposed model and system demonstrated in this chapter.

6.1.1 Modeling Parallel Programs

Adve and Vernon [2] showed that hand-constructed task graphs with basic per-task

resource usage from hardware performance counters can predict parallel program

performance. Their approach was limited in its task graph construction (see Sec-

tion 2.1); however, adding information about each task’s CPU usage and memory

usage (cache miss rates, coherence events, etc) enabled them to accurately model the

performance of parallel programs on real hardware. Besides the task graphs being

hand constructed, the additional information about resource usage was collected from

the hardware itself, rather than derived from a separate model.

Parallel program resource usage can also be modeled analytically using several

different methods. LogP, first discussed in Section 2.7.3, provides a method to esti-

mate the effect of hardware on the program based on the cost of data communication.

The Roofline model [128] proposed viewing programs based on their computational

and memory intensity. The initial model was based on a static analysis of the pro-

grams; however, it has been extended to utilize measurements of real executions [96].

Hardware can then be designed to balance the two costs [36].

6.1.2 Simulating Parallel Programs

Parallel simulation work [12] [26] [28] has emphasized splitting the simulation along

temporal lines and reconstruct missing information, where as the approach in this

chapter is to split the simulation spatially along the threads themselves and use tar-

geted models to provide the missing details. Lauterbach [81] modeled single-threaded

programs first with a detailed cache model and then used that model as an input

102



to simulation of instruction samples, showing that a program’s simulation need not

be done in a single pass. As a precursor to the task graph model, Rico, et al. [102]

called the non-work : paraops, and showed that abstracting these operations supports

a simplified simulation infrastructure [103] and can lead to speedups in simulation

time.

Zhang, et al. [134] showed the importance of modeling communication behavior

to accurately capture true parallel program behavior, in that measuring the on-chip

traffic gave better indication of different phases of the program’s execution which lead

to identifying more representative samples.

Using a variety of processors as data points, Bhadauria, et al. [19] performed an

analysis of the scaling and bottlenecks of PARSEC workloads as observed on real

hardware. Lee, et al. [82] extract representative execution paths from a program’s

trace and use these paths for rapid design space exploration in order to find the

optimal resource configuration for the entire program; however, their work does not

address parallel programs, nor the reconfiguration of the programs while running.

6.1.3 Software-based Reconfiguration

In a reconfigurable system, the compiler / runtime is capable of selecting the appro-

priate issue-width [64], issue queue size [67], as well as establishing an IPC target for

hardware [125]. Dynamic compilers have also been demonstrated selecting hardware

resources [58]. Wu, et al. [130] introduced a dynamic component to programs that

has better knowledge of the code to be aware of when the program is most likely

to need a change to the configuration, demonstrating that informed software can

outperform hardware-based reconfiguration even when accounting for the additional

overhead from the software’s analysis. Prior work has shown that the compiler can

provide hardware with information about loop dependencies [111] and the loop body

[48] to speedup execution.
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Rather than allowing extensive reconfiguration, if the hardware platform is de-

signed with pre-existing differentiation in configuration (heterogeneity), then the soft-

ware can instead schedule the execution threads to the most appropriate hardware

configuration. The particular benefit is that there is no need to change the ISA to

support the reconfiguration information and therefore legacy applications can still

benefit. ARM big.LITTLE [50] is one such hardware platform. With a diverse het-

erogeneous hardware, the software itself can be tailored by scheduling threads to

specialized cores: based on critical sections [114], whereby the thread holding a lock

is switched to the faster core or ISA usage [51], wherein many cores only support a

subset of the ISA thereby saving decode power. With QsCores [122], the software

selects the quasi-specialized units to execute on.

Saez, et al. [105] proposed a thread scheduling for asymmetric multicore systems

whereby program threads are assigned speedup and utility factors based on collecting

targeted metrics. The utility factor is the estimated impact of the potential thread

speedup on the program’s execution time, where the utility factor is equal to the

speedup factor for serial programs. Using these metrics, the OS can then make new

scheduling decisions each time a parallel phase completes, i.e., a barrier. Similar to

this work, I assumed that sufficient cores were available for the program, which given

the reconfigurablity of the cores obviates the need to model scheduling decisions. And

rather than use online metrics, I explored how the compiler (through an offline model)

could determine the appropriate resources for different sections of the program.

Jones, et al. [68] explores how the compiler can inform hardware about the lifetimes

of registers to thereby enable the processor to reclaim physical registers earlier and

thereby achieve equivalent performance with a smaller register file, which supports

the claims herein that the compiler can provide specific insights into the program

earlier than the hardware can detect them.
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6.1.4 Hardware-based Reconfiguration

Hardware can monitor the program to detect phases and then adapt the resources ac-

cordingly; for example, buffer sizes [40] and integer versus floating point [104]. Rather

than using phases, hardware approaches can also adapt after fixed-sized epochs: dis-

tributing SMT resources [126], or scheduling to specialized cores [93]. This work

is focused on software-based schemes; however, these publications demonstrate the

additional possibilities for reconfiguration and adaptation of the architecture.

Thread scheduling policies are important for maximizing performance even with-

out diverse hardware resources. Wang, et al. [127] focused on the interaction be-

tween thread mapping schemes when scheduling multi-programmed workloads, and

analyzes how the different scheduling decisions impact the resource usage particularly

the shared caches and the prefetchers.

6.2 Reconfigurable Parallel Architecture

For this exploration, I propose an architecture based on recent Intel designs [43],

which has additional execution resources, such as integer ALUs or floating point mul-

tipliers. By default the additional execution resources are power gated off. This

architecture also exposes new instructions (or other mechanisms) that enable soft-

ware to request that certain resources be powered on or off. When the resource is

requested, conservatively I assume that the processor has minimal ability to execute

instructions while it reconfigures. Either the core must flush its pipeline and wait for

the reconfiguration to complete, or can possibly be instructed to execute a specific in-

struction, such as test-and-set until successful. Either way, the processor is not doing

useful work during reconfiguration. Furthermore, these reconfigurable cores are in a

multiprocessor fabric (e.g., a multicore processor) that supports each core executing

under a different configuration, which effectively results in the system’s execution

becoming heterogeneous as the cores reconfigure independently.
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Table 7: Baseline Function Unit Configuration
Latency Number of
(cycle) Function Units

Integer ALU 1 3
Integer Mul 4 1
Integer Div 73 1
Floating Point Add 4 1
Floating Point Mul 4 1
Floating Point Div 26 1
L1 Loads 4 1 Port
L1 Stores 4 1 Port
L2 12 1 Port
L3 30 1 Port
Memory 100 1 Port

Table 8: Baseline Resource Configuration
Resource Type Size
Reservation Station 56
Re-Order Buffer 168
Load Buffer 64
Store Buffer 36
Line Fill Buffer 10
L1 size 32KB
L2 size 256KB
L3 size 20MB
Cache Line 64B
Memory Word 8B
Fetch Bandwidth 4 ops

The baseline function unit configuration is shown in Table 7 and the other mi-

croarchitectural resources are configured based on Table 8, which together models

a SandyBridge-like architecture. A study of that architecture [44] measured float-

ing point divides as having faster execution than their integer counter parts. Small

inaccuracies are immaterial given that the model is computing relative speedup.

On top of this baseline configuration, the processor has an additional set of dark

function units and execution resources. These resources are what can be enabled

and disabled as needed. Some resources, such as an integer multiplier, would be

relatively simple to add, where as others such as additional memory ports would entail
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significantly more complexity. For the purposes of this work, I am not considering

this or other costs, although future work is exploring how to incorporate the various

costs of the resources into the configuration decision as well as the value of further

resource increases, such as two additional floating point adders instead of one.

As the individual core is assumed to have little to no ability to execute instructions

while reconfiguring, it is important that reconfiguration is not undertaken lightly or

arbitrarily. The task graph provides clear points to potentially reconfigure. Each

work task, by definition, must be bordered by non-work. The non-work tasks, par-

ticularly the syncs and barriers, represent hundreds to thousands of cycles in which

the execution is effectively waiting. This non-work wait time can then be overlapped

with the time required to reconfigure the processing core, thereby waiting on both

the existing non-work as well as the reconfiguration.

6.2.1 Reconfiguration Time

Figure 33 gives an example execution, where two threads of program contain 4 work

tasks (ovals) and 2 non-work tasks (rectangles). There are additional rectangular

boxes with the metadata in the binary that contains the ideal configuration for the

core that executes the particular work task. For illustration, assume that the first

tasks of each context begin at the same time (T0), take the same time to execute

(T1 - T0) and that both cores that execute these two contexts take identical times

to perform either reconfiguration (T4 - T1). In such a simplified scenario, context

1 has greater wait time due to executing its sync second, allowing complete overlap

of reconfiguration - which for context 1 is to power down 1 floating point adder and

power up one floating point multiplier - with task synchronization, ensuring zero

overhead. For context 0, however, even post overlap, there is some overhead that the

reconfiguration introduces, thereby inevitably delaying the L1 heavy work task.
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Figure 33: Overlapping Reconfiguration and Synchronization

In Section 6.5.5, I will explore the impact of increasing reconfiguration time. If the

reconfiguration time were sufficiently low, it would be further possible to introduce

additional reconfiguration points in the program besides the ones created by non-work

actions.
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6.3 Architectural Model

To analyze a program, Seshan and I extended the architectural model from Cabezas

and Püschel [27]. This model takes in a program as a sequence of LLVM IR op-

erations, which has similarities to assembly. The operations are in SSA form and

therefore enable direct tracking of dependencies between operations without analyz-

ing resources such as registers or spills through the stack. Using the dependence

graph of the program, the model computes how the instructions can be scheduled

on an architectural back end. Most operations have a fixed latency once they can

be scheduled to a function unit; however, memory operations require the degree of

memory locality computed using reuse distance [38]. The model simplifies several

aspects of a computer architecture, such as instruction fetch and branch prediction.

For each operation (i.e., instruction), the architectural model computes whether

the instruction fits into the current fetch bundle and then passes it on for scheduling. If

there are no reorder buffers or reservation stations available, the instruction itself and

instruction fetch are stalled accordingly. The instruction is then scheduled based on its

dependencies, and then the next cycle where its appropriate function unit is available.

When all instructions have been scheduled, the model can report information about

the overlap of time spent on different resources and resource stalls. For the purposes

here, the focus is on the number of cycles to schedule the operations provided.

This model has two limitations. First, it relied on the LLVM interpreter to pro-

vide the IR operations of a program’s execution. The interpreter has its own set of

limitations and slowdowns. Second, it is inherently sequential and only models one

thread of execution. Rather than rewrite the model to support simulation of par-

allel execution, I elected to leverage the power of Contech’s task graph and instead

simulate the parallel aspects of a program separately.
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6.3.1 Integration with Program Model

The first step to driving the comprehensive model with Contech task graphs is re-

placing the LLVM interpreter. Although it could, Contech does not store the parallel

program’s LLVM IR into the task graph. Instead, it is a simple task to take the

final, instrumented IR file and reconstruct the original program, particularly as the

instrumentation does not modify the original program (excepting certain OpenMP

constructs), and instead injects the additional instructions required.

The Contech task graph contains sequences of basic blocks, along with memory

accesses in each work task. To integrate with the program model, the tool rereads

the program’s LLVM IR and identifies the static operations that are associated with

each basic block. The execution of a single context is replayed, again given the

requirements of the original model, converting each basic block into the appropriate

sequence of IR operations and providing the address or other information when the

IR operation is accessing memory. Thereby, the Contech basic block sequence is

transformed into the IR required by the architectural model.

Black box elements such as malloc are left as function calls. Should an analysis

need the details of one of the black box functions, it is possible to establish a canonical

version that can be supplied. In general, these calls constitute a small portion of the

overall execution (see Section 4.2.1.1), as well as many calls are non-work operations

such as lock acquires for which any detailed version would have to convey additional

information such as the wait time.

6.3.2 Modeling Communication and Coherence

In order to model the communication between threads, I elected to reuse an existing

task graph analysis rather than extend the sequential model. The objective is to

quantify the communication of the task graph into one or more numerical quantities

called comm factors, which would enable the sequential model to account for the
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effects of communication. The task graph analysis classifies the reads and writes

in the program into whether the memory operations communicated with another

context, thus classifying any data movement between contexts as communication and

not just operations from specific sharing patterns such as producer / consumer. It

does so in effect by treating the reads and writes as if they operated in an MSI (or

derivative) coherence protocol with caches of unlimited size, with a specific cache-line

size for tracking. Each read adds itself to the list of sharers on that cache line, while

each write will clear the list of sharers except itself. If the context making the request

was not part of the list of sharers, then the access is communicating (based on the

assumed cache-line granularity). The analysis runs using the the memory accesses

of a task graph, one task at a time, following the standard breadth-first traversal of

the task graph. This approach is similar to Barrow-Williams [13], with several key

changes.

First, the memory accesses are viewed on a task by task basis, which may not

detect some interleaved communication; however, as that communication would occur

without an explicit ordering it would be a data race. To verify this assumption

regarding data races, I used a separate analysis of the task graphs (based on the a prior

data race detector [121]), which identifies finds the first occurrence of two accesses

to same address that have no chain of task ordering dependencies between them.

These accesses are unordered and therefore are races. Table 9 shows the quantity

of races, bytes transferred and then bytes accessed. For races to be negligible, the

quantity of races must be significantly less than the bytes transferred. Therefore from

the analysis, I have concluded that as races are rare in the benchmarks (except for

canneal), there is minimal inaccuracy from this modeling choice. Hence, by modeling

the accesses at the task granularity, the graph’s existing ordering constraints will

guarantee that no amount of speedup or slowdown of any task will change the ordering
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Table 9: Data Race Analysis Results (in Bytes)

benchmark Race Transfered Accessed
barnes 633320 5.37E+06 9.76E+09
blackscholes 0 64 1.38E+08
bodytrack 60 8.43E+06 2.48E+09
canneal 11784 60 7.06E+09
cholesky 240 1.11E+07 2.10E+09
dedup 11140 3.26E+07 3.91E+08
ferret 184456 7.31E+06 6.76E+09
fft 4 6.29E+07 4.56E+09
fmm 207844 1.48E+07 1.27E+10
lu cb 8 8.02E+06 8.77E+09
lu ncb 8 4.21E+06 8.77E+09
ocean cp 32 9.21E+06 1.60E+10
ocean ncp 48 1.29E+08 1.58E+10
radiosity 84612 1.75E+07 7.66E+09
radix 16 1.28E+08 3.54E+09
raytrace 592 1.34E+06 2.65E+10
streamcluster 9 4.82E+06 6.92E+09
swaptions 0 64 8.73E+09
volrend 6256 2.67E+06 2.08E+09
water spatial 16 2.98E+06 1.72E+10

of the tasks and therefore the measurement of (non-race) communication will be

preserved across different architectures.

Second, as the task graph contains both malloc and free invocations, it can

distinguish whether the communication involved the same data structure or a reallo-

cation of the same memory location, where the latter is not actually communication

intended by the program and instead an artifact of a particular execution and library

implementation. As a consequence of these changes, the communication model gives

an architecturally independent measurement of the inter-thread communication. The

specific cost of the measured communication may be affected by architecture features,

such as network on chip (NoC) designs and cache protocols.
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Figure 34: Simulating Communication with Randomness

Comm factor is defined as the ratio of number of memory accesses that require

the data to be provided by another context to the total number of accesses. In other

words:

comm factor = #(communications)
#(accesses)

In the extreme, a comm factor of 1.0 indicates that every request to any given line

X would result in a communication or data transfer, indicating that some other pro-

cessor invariably accessed X in the past. In general, comm factor gives the combined

probability of either an access being a coherence miss (penalty) or of an access bene-

fiting (serendipity) from another context having accessed the data already.

As a motivating example, consider two processors, P0 and P1, and a cache line

X. Communicating accesses can be classified into two scenarios:

• Serendipity: Say P1 accesses X at t0 and P0 accesses X for the first time at

t1|t1 > t0. The single-threaded reuse distance for P0 (RD0) predicts a compul-

sory miss at t1. However, P0 does not need to fetch X all the way from long

latency main memory as it can be serviced from P1 or the LLC.
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• Penalty: Say P0 accesses X at t0 and P1 writes X at t1|t1 > t0 and P0 accesses

X again at t2|t2 > t1. Irrespective of what RD0 predicts at t2, we must model

communication of data from LLC to P0.

In both cases, the latest access by P0 is recorded as a communication. However,

subsequent P0 accesses to X do not result in on-chip data communication, as long as

there is no interleaving P1 access. As a first order model, we simulate such on-chip

communication as hits in the LLC.

Using the percentage of communicating reads and writes, the detailed model can

then treat the same percentage of memory operations as communicating. Figure 34

shows how the model will probabilistically adjust cache hits and misses based on

the comm factor. On each memory operation, the model takes the statistical chance

(comm factor) that the operation would not have its single-threaded reuse distance,

but instead require accessing a different level of the memory hierarchy. Such an

operation is equivalent to there being a communicating operation from a different

thread within the modeled thread’s reuse distance.

The comm factor can be computed on either a per-task or per-context basis.

Unless otherwise noted, all results use the per-task comm factor for better accuracy.

6.4 Parallel Program Modeling

The serial architectural model calculates the approximate execution rate of the pro-

vided set of instructions. By providing the instructions from entire tasks in the task

graph, we can compute an approximate execution rate for that task. Using different

configurations, the model will compute different execution rates, which give estimated

speedups for that task’s execution on the different microarchitectures. However, rate-

based speedups of parallel programs can be inaccurate, when their computation in-

cludes inter-thread related instructions, such as waiting on a lock, without modeling

the actual timing of the other threads.
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Figure 35: Using task graphs to drive parallel program modeling and analysis

Using the task graph from Contech, the parallel program analysis respects the

program’s order, separates out the non-accelerated components (e.g., synchroniza-

tion), and computes a whole program speedup from the rate-based improvements of

different tasks. By respecting the order and separating out synchronization and other

operations, the rate-based improvement represents an improvement in that task’s ex-

ecution time and the overall program order then reveals whether this improvement

impacts execution time. This analysis is still limited in that it is preserving the orig-

inal ordering of tasks, for example if the speed up of one task is sufficiently large

versus another, that task might be in place to acquire a lock in a different order than

the original execution. The workflow of this combined analysis is shown in Figure 35.
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The task graph is limited in that it only records the parallelism exposed by the

program’s execution. For this model, I am not modeling any scheduling of tasks

beyond their dependencies, rather making the idealized assumption that there are

always enough cores available to execute the ready tasks of the program. Introducing

a scheduling aspect would add additional complexities to understanding the benefits

of this system.

6.5 Experimental Results

ALGORITHM 2: Critical Path
input : Task Graph of Program
input : Speedups of Each Task by Configuration
output: Length of Critical Path

for t ∈ TaskGraph do
/* Not shown: Length of non-work tasks must account for lock

contention and other effects */

speedup←GetMaxSpeedup (t);
length← t.getEndTime () - t.getStartTime ();
for p ∈ t.getPredecessorTasks do

if PathLengthAt (p) > maxPath then
MaxPath← PathLengthAt (p);

end

end
MaxPath←MaxPath + length/speedup;
PathLengthAt (t)←MaxPath;

end
return PathLengthAt (ROI END);

I used Algorithm 2 to find the length of the critical path for a set of possible

modeled configurations (i.e., increasing number of function units, buffer sizes, et

cetera). There are two interesting additions. First, the algorithm must account for

the actual time contribution of non-work tasks. For example, a sync task acquiring

a lock is ordered after the release task for that lock. The task graph model has no

explicit understanding of contention, so the acquire sync task may include the time

waiting for the lock to be released. Also in many workloads, there is a master thread

creating and joining with all of the worker threads. Therefore the first join task has

116



Table 10: Benchmark Characteristics
Modeled ROI Total Modeled

Benchmark Length Accuracy Ops (Million)
barnes 99.8% 1794
blackscholes 97.9% 109
bodytrack 99.7% 2473
canneal 100.0% 670
cholesky 99.7% 656
dedup 99.8% 1362
ferret 100.0% 2671
fft 99.9% 1945
fmm 99.8% 6818
lu cb 95.9% 1786
lu ncb 97.9% 1791
ocean cp 95.6% 4468
ocean ncp 97.1% 4434
radiosity 100.0% 4362
radix 99.4% 2007
raytrace 100.0% 6545
streamcluster 85.5% 5729
swaptions 99.9% 2698
volrend 94.7% 3224
water spatial 99.6% 4423

a significant time gap between the start of the join (shortly after the last create) and

its end (at the end of the workload). Second, the duration of any work task may be

scaled by its speedup, which is also complicated when the decision to reconfigure must

also account for the cost of doing so. The full implementation of the Critical Path

analysis can also report additional information such as the complete path through

the graph and which configuration is used by each task.

Each benchmark is run through the model for the entire region of interest (ROI), if

supplied by the benchmark suite, otherwise for the entire program. Table 10 shows the

modeled ROI length and the size of program in LLVM IR operations. The benchmarks

average 3 billion operations in their ROIs, and the model executes at approximately

0.5 MoPS (millions of IR operations per second), which averages a 1200x slowdown

from the native execution speed. To compute the accuracy of the model’s ROI, it takes
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Figure 36: Speedups of ROI in PARSEC Benchmarks

the start and end times for the ROI and then finds the critical path when there is no

speedup. This verifies whether the critical path algorithm has accurately determined

the time spent waiting for locks, barriers, and other non-work operations that may

exist along the critical path. Finding the contribution of each non-work operation

is non-trivial, as the operations are treated as black boxes, such that the internal

breakdown of different timing components are not recorded. An additional model of

synchronization would break the synchronization task’s time into time waiting and

time transferring. The time waiting can change based on the execution speed of the

ancestor task, while the transfer time would remain independent and instead reflects

the design of the underlying component (mutex, atomic, et cetera).

For most workloads, the critical path model covers a high percentage of the ROI.

Streamcluster is one exception, as on the test machine, the threads created in stream-

cluster did not begin executing for several million cycles, possibly as it spawns more

threads (32) than there are cores (24), which introduces a delay on the critical path

for which the model does not account.

The task graphs used in the following experiments were collected on 24-threaded

x86 processors; however, the task graph and architectural model are ISA-independent
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Table 11: Number of Operations Concurrently Issued in Blackscholes Critical Task
(1:0)

Degree of Floating Point L1
Concurrent Issue ADD MUL DIV LD ST
1 527616 419506 351241 51287 101638
2 955360 478586 57374 102046 24
3 342657 768306 153 152610 0
4 264100 912492 772 305936 0
5 100075 685920 60 0 0

and could model programs executed on other ISAs. Modeling different core counts

is more difficult, although it is possible when the program is oversubscribed. For

example, ferret spawns 64 threads to execute its pipeline, requiring a higher core

count from the model.

6.5.1 Performance Improvement

Figure 36 provides the speedup versus the baseline simulated from applying the per-

task speedups for the different combinations of hardware configurations. Each con-

figuration doubles the quantity of one of the resources over the baseline presented in

Table 7, which results in the number of units increasing from 1 to 2 except for integer

ALUs that increase from 3 to 6. All configurations also double the size of the buffers.

The 2X Single Resource bar provides the speedup from Algorithm 2. The 2X All

Resources introduces a new configuration where all of the resources in Table 7 have

been doubled.

The difference between the two bars demonstrates the degree to which each task

is constrained to a single resource versus benefiting from increasing other resource

types. Barnes, canneal, and water spatial are benchmarks where the critical tasks

are strongly coupled to a single resource type. In contrast, fmm and radiosity show

minimal gains unless all of the resources are increased, which suggest their tasks

require a diversity of resources.
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Figure 37: Speedups of ROI in PARSEC Benchmarks Accounting for Buffer Increases

To further understand the speedups, the resource usage of each type of execution

unit was measured when unlimited execution units were available, which provides

a histogram of the number of units needed by each task in the program. Table 11

presents one example task from blackscholes. Each value is the number of operations

concurrently issued to that quantity of FUs. For instance, there were almost 1 million

floating point adds issued without stall when 1 other floating point add was issued,

for a concurrent issue of 2. For this critical task in blackscholes, the critical path

analysis indicated that introducing an additional divider provides the greatest increase

in performance at over 50% (2X Single Resource). After which, the performance

is constrained by multipliers and so increasing quantity of the other FUs further

improves performance to 2.8x speedup (2X All Resources).

Increasing the size of the instruction buffers can lead to improved performance

from the larger scheduling window, usually proportional to the log of the size, and

assuming there are sufficient execution resources. Figure 37 shows the performance

difference from enabling all of the additional execution resources and only changing

whether the sizes of the buffers are increased.
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Figure 38: Configuration Type Used in Accelerating the ROI in PARSEC Bench-
marks (Green - Integer, Red - Floating Point, Blue - Memory, Black - Minimal
Speedup)

6.5.2 Context Phase Variation

Figure 38 plots the type of the configuration from the 2X single resource increase

applied to each task in the ROI. The types are sorted into five categories: integer

(green), floating point (red), memory (blue), none / minimal speedup (black), and

non-work (white). It is important to understand that even regions of the same type,

integer for instance, may be benefiting from different integer resources. The white

regions of time give us insight into the program’s parallelism over time. For many
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Figure 39: Speedups from Varying Comm Factor Granularity in PARSEC Bench-
marks (2X All Configuration) Using Earlier Architectural Model

workloads, the white regions reveals the barrier nature (c.f., water spatial) or the

pipeline pattern used within dedup and ferret. Blackscholes and swaptions are task

parallel and therefore have no synchronization to introduce task boundaries that

would enable different configurations to be modeled and selected. Canneal is similar,

although it has several synchronization tasks that provide opportunities for possible

dynamic reconfiguration. Cholesky and Raytrace are two examples of workloads that

vary between different types as the tasks execute discrete work.

6.5.3 Comm Factor Granularity

In introducing the comm factor component to parallel program modeling, I explored

two basic questions. What benefit or impact does it have to the program? And

should the granularity of comm factor be accounted by task or by context? Using

an earlier iteration of the model, the program speedups were measured using three

variations on comm factors : none, per-context, and per-task. The results are plotted

in Figure 39 and show that while running without a comm factor has the best speedup,

the results are mixed as to whether the per-context or per-task comm factors impact
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the performance more. Canneal is one of several benchmarks that shows minimal

difference in speedups when comm factors are used in the model. This leads back

to Table 9, where dedup has the highest relative bytes of communication and thus

the use of comm factors predicts a slower execution. Barnes and radiosity both have

lower speedups with per-context over per-task comm factors. This contrasts with

lu ncb, where the per-task comm factor experiment has the least speedup. These

results generally indicate that penalty is more prevalent than serendipity, such that

model estimates that other contexts are requesting the cache lines more frequently

than cache misses becoming cache hits.

6.5.4 Staticness of Configurations

In order to apply the reconfigurations into a compiled program, the system needs to

identify specific points in the binary as reconfiguration points, as well as determine

the best configuration for this point across all executions. I looked at the ideal config-

uration selected for each task, as well as the final portion of the path leading into that

task. The last basic block before a task and the first into the new task establishes a

particular point in the program. If these points have similar configurations, then the

configuration can be applied at that transition rather than reliant on dynamic infor-

mation. Table 12 shows the fraction of every transition A →B, where each B would

use the same dynamic configuration, as well as the percentage of the dynamic reconfig-

uration speedup achieved when using static reconfigurations. To determine the static

configuration for each point, the critical path analysis evaluated each configuration

and computed the aggregate speedup each would provide for a given location. Then

using the best per-task static configuration, the speedups were again measured. All

workloads achieved better than 90% of the dynamic configuration speedups, which

affirms the validity of applying a specific resource configuration to a code region.

Even workloads that have less stability of configurations for a code region, the tasks
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Table 12: Staticness of Ideal Per-Task Configurations
Fraction of % Dynamic Speedup

Benchmark Configurations for Achieved with
Code Section Static Configuration

barnes 0.88 100.0%
blackscholes 1.00 100.0%
bodytrack 0.88 99.5%
canneal 1.00 100.0%
cholesky 0.78 99.8%
dedup 0.88 99.6%
ferret 0.67 97.2%
fft 1.00 100.0%
fmm 0.89 91.7%
lu cb 0.85 100.0%
lu ncb 0.74 99.3%
ocean cp 0.93 99.9%
ocean ncp 0.91 99.1%
radiosity 0.87 99.5%
radix 0.80 99.1%
raytrace 0.61 99.2%
streamcluster 1.00 100.0%
swaptions 1.00 100.0%
volrend 0.70 97.2%
water spatial 0.89 100.0%

seeing better speedup than the static configuration are either off of the critical path

or, more likely, receiving near-optimal speedups from other configurations.

In this work, I have not explored how the program would communicate the recon-

figuration information. Generally, such information would be communicated to the

hardware using an ISA extension. Vandierendonck and De Bosschere [119] showed

how certain information could be passed to the compiler within the existing ISA by

creating an implicit ISA of selecting a specific register out of an equivalent set has se-

mantic meaning. Reconfiguration is far more costly to mistake than their example of

branch mispredictions; however, this suggests other options than potentially breaking

compatibility through ISA changes.
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Figure 40: Impact of Reconfiguration Latency (in cycles) on Speedup

6.5.5 Overlapping Reconfiguration and Wait Times

In so far as it has been established that static reconfiguration decisions would benefit a

parallel program, the next question is what is the impact of the reconfiguration time.

It must be noted that the extended architectural model flushes the pipeline (but

maintains cache re-use distance) at each task boundary, so as to not overestimate

available ILP should a reconfiguration be actually triggered. The pipeline would

naturally be flushed as part of executing most non-work operations, by for example,

the atomic operations executed as part of acquiring a lock.

Prior work [40] [58] [104] [113] has shown that flushing the pipeline, resizing OoO

buffers and powering up/down functional units takes a few hundred cycles at most.

However, as this is specific to an implementation and a technology node, and that

this framework may be extended to support more complex reconfigurations, the re-

configuration latency is varied in order to evaluate its impact on speedup. Figure 40

summarizes this impact by plotting that ratio of 2x oracle speedup obtained with

arbitrary reconfiguration latencies (in cycles) to the 2x oracle speedup obtained with
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0 reconfiguration latency. It can be seen that the 2x oracle speedup is resilient to

reconfiguration latency for up to at least a few thousand cycles.

In generating Figure 40, any potential dynamic reconfiguration needed for a work

task is overlapped with time taken by a non-work task that immediately precedes

the work task. If the reconfiguration time exceeds the available wait time in the

corresponding context, the work task that prefers a new configuration, is inevitably

delayed. These correspond to the terms overlap and overhead, as was explained in

Section 6.2.1, Figure 33. A further analysis may consider the impact of optionally

not performing reconfiguration in the presence of overhead, but as long as the latency

of reconfiguration is limited to a few thousand cycles, as is the case here, this is

apparently not necessary, as evidenced by the initial resilience to reconfiguration

latency in Figure 40.

Another insight gained from this sensitivity analysis is that dynamic reconfigura-

tion is likely to yield better speedup than migrating critical sections to specialized

cores. As thread migration often involves flushing out cache entries, the overhead can

potentially reach the order of a million cycles [112]. This is not to say that thread

migration is an infeasible solution as one can always come up with smart mapping

and scheduling policies to ensure such pathological cases do not occur. The overhead

itself is relatively lower by employing dynamic reconfiguration, and we have the added

advantage of hiding this overhead by overlapping it with task synchronization.

6.6 Summary

This chapter presented a novel reconfigurable architecture, whereby the compiler

works with a Contech-based analysis tool to determine the best resources to addi-

tionally activate for each executing task. This analysis required using all aspects of

the Contech task graph representation, and consequently helped find several bugs in
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the instrumentation. The speedup model showed that small increases in architec-

tural resources can significantly accelerate parallel programs, averaging 40% across

programs from the PARSEC benchmark suite.

127



CHAPTER 7

CONCLUSION

As hardware changes and programs grow increasingly more complex, computer ar-

chitects and programs need improved support from simulators and tools. Current

approaches have been targeted to specific problems and the fields are without unified

frameworks to represent and analyze modern programs. Developing new analyses

requires identifying the data required, preparing the appropriate instrumentation,

and then significant effort to ensure that this instrumentation does not disrupt the

phenomena being measured.

This dissertation establishes, in Chapter 2, Contech’s task graph representation as

capable of supporting a diversity of parallel programs across both different languages

and parallel paradigms. The Contech framework, as described in Chapter 4, pro-

vides high performance instrumentation for collecting a task graph from a program’s

execution with minimal performance perturbation. In Chapter 5, the framework’s

support for program analysis was discussed and then demonstrated with a diversity

of backends. This demonstration culminated in Chapter 6 where an extensive anal-

ysis of a reconfigurable architecture was modeled and driven using Contech, thereby

exercising the complete task graph.

Moving forward, the Contech framework can be further improved and extended.

For example, the instrumentation support can be added to other languages, and the

support for runtime paradigms will be extended as new versions provide additional

features and parallel constructs. The instrumentation itself can still achieve further
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performance improvements, such as addressing frequent creations in lulesh or improv-

ing the buffer overflow heuristics. The value of Contech’s high performance instru-

mentation would be further established by studying the impact of instrumentation

(i.e., the probe effect) in parallel programs. Finally, the work on the parallel program

modeling in Chapter 6 is continuing, especially as the model should be validated by

a separate simulator.

In summary, Contech provides a framework to collect a rich parallel program

representation across a diversity of languages and paradigms and do so with a low

overhead from the high performance instrumentation, along with APIs for construct-

ing program analyses utilizing Contech’s task graph representation.
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