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Interest Curves:  
Concept, Evaluation, Implementation, and Applications 

 

Bo Li 

Department of Applied Physics and Electronics, Umeå University, Sweden 

ABSTRACT 

Image features play important roles in a wide range of computer vision 

applications, such as image registration, 3D reconstruction, object detection and 

video understanding. These image features include edges, contours, corners, regions, 

lines, curves, interest points, etc. However, the research is fragmented in these areas, 

especially when it comes to line and curve detection. In this thesis, we aim to 

discover, integrate, evaluate and summarize past research as well as our 

contributions in the area of image features. This thesis provides a comprehensive 

framework of concept, evaluation, implementation, and applications for image 

features.  

Firstly, this thesis proposes a novel concept of interest curves. Interest curves is 

a concept derived and extended from interest points. Interest curves are significant 

lines and arcs in an image that are repeatable under various image transformations. 

Interest curves bring clear guidelines and structures for future curve and line 

detection algorithms and related applications. 

Secondly, this thesis presents an evaluation framework for detecting and 

describing interest curves. The evaluation framework provides a new paradigm for 

comparing the performance of state-of-the-art line and curve detectors under image 

perturbations and transformations.  

Thirdly, this thesis proposes an interest curve detector (Distinctive Curves, 

DICU), which unifies the detection of edges, corners, lines and curves. DICU 

represents our state-of-the-art contribution in the areas concerning the detection of 

edges, corners, curves and lines. Our research efforts cover the most important 

attributes required by these features with respect to robustness and efficiency. 

Interest curves preserve richer geometric information than interest points. This 

advantage gives new ways of solving computer vision problems. We propose a 

simple description method for curve matching applications. We have found that our 

proposed interest curve descriptor outperforms all state-of-the-art interest point 

descriptors (SIFT, SURF, BRISK, ORB, FREAK). Furthermore, in our research we 

design a novel object detection algorithm that only utilizes DICU geometries 

without using local feature appearance. We organize image objects as curve chains 

and to detect an object, we search this curve chain in the target image using dynamic 

programming. The curve chain matching is scale and rotation-invariant as well as 

robust to image deformations. These properties have given us the possibility of 

resolving the rotation-variance problem in object detection applications. In our face 

detection experiments, the curve chain matching method proves to be scale and 

rotation-invariant and very computational efficient. 

 

Keywords: scale-invariance, edge, corner, curve, line, matching, object detection. 
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Sammanfattning 
 

 

 

Bilddetaljer har en viktig roll i ett stort antal applikationer för datorseende, t.ex., 

bildregistrering, 3D-rekonstruktion, objektdetektering och videoförståelse. Dessa 

bilddetaljer inkluderar kanter, konturer, hörn, regioner, linjer, kurvor, 

intressepunkter, etc. Forskningen inom dessa områden är splittrad, särskilt för 

detektering av linjer och kurvor. I denna avhandling, strävar vi efter att hitta, 

integrera, utvärdera och sammanfatta tidigare forskning tillsammans med vår egen 

forskning inom området för bildegenskaper. Denna avhandling presenterar ett 

ramverk för begrepp, utvärdering, utförande och applikationer för bilddetaljer. 

För det första föreslår denna avhandling ett nytt koncept för intressekurvor. 

Intressekurvor är ett begrepp som härrör från intressepunkter och det är viktiga linjer 

och bågar i bilden som är repeterbara oberoende av olika bildtransformationer. 

Intressekurvor ger en tydlig vägledning och struktur för framtida algoritmer och 

relaterade tillämpningar för kurv- och linjedetektering. 

För det andra, presenterar denna avhandling en utvärderingsram för detektorer 

och beskrivningar av intressekurvor. Utvärderingsramverket utgör en ny paradigm 

för att jämföra resultatet för de bästa möjliga teknikerna för linje- och kurvdetektorer 

vid bildstörningar och bildtransformationer. 

För det tredje presenterar denna avhandling en detektor för intressekurvor 

(Distinctive curves, DICU), som förenar detektering av kanter, hörn, linjer och 

kurvor. DICU representerar vårt främsta bidrag inom området detektering av kanter, 

hörn, kurvor och linjer. Våra forskningsinsatser täcker de viktigaste attribut som 

krävs av dessa funktioner med avseende på robusthet och effektivitet. 

Intressekurvor innehåller en rikare geometrisk information än intressepunkter. 

Denna fördel öppnar för nya sätt att lösa problem för datorseende. Vi föreslår en 

enkel beskrivningsmetod för kurvmatchningsapplikationer och den föreslagna 

deskriptorn för intressekurvor överträffar de bästa tillgängliga deskriptorerna för 

intressepunkter (SIFT, SURF, BRISK, ORB, och FREAK). Dessutom utformar vi 

en ny objektdetekteringsalgoritm som bara använder geometri för DICU utan att 

använda det lokala utseendet. Vi organiserar bildobjekt som kurvkedjor och för att 

upptäcka ett objekt behöver vi endast söka efter denna kurvkedja i målbilden med 

hjälp av dynamisk programmering. Kurvkedjematchningen är oberoende av skala 

och rotationer samt robust vid bilddeformationer. Dessa egenskaper ger möjlighet att 

lösa problemet med rotationsberoende inom objektdetektering. Vårt 

ansiktsigenkänningsexperiment visar att kurvkedjematchning är oberoende av skala 

och rotationer och att den är mycket beräkningseffektiv. 
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1 Introduction  

1.1 Motivation 

Image features play important roles in a wide range of computer vision 

applications, such as image registration, 3D reconstruction, object detection and 

video understanding. These image features include edges, contours, corners, regions, 

lines, curves, interest points, etc. However, previous research is fragmented in these 

areas, especially when it comes to line and curve detection. In fact, many recently 

developed computer vision applications still use very basic methods for the 

detection of edges, corners, lines or curves. Therefore, there is a real value of 

providing a clear, practical framework as a guide to the usage of these features. 

In this thesis, we aim to discover, integrate, evaluate and summarize past research 

as well as our contributions regarding the detection of edges, corners, curves and 

lines. Therefore, this thesis provides a comprehensive framework including concept, 

evaluation, implementation and applications for features. 

1.1.1 Concept 

To fully understand, evaluate and summarize previous research and our 

contributions, we present a novel concept: interest curves. Most previous research in 

the area of line curve detection fall into this concept. Our proposal for the concept of 

interest curves brings the following research questions: 

1. What common goals are shared by line and curve detection methods?  

2. How can we define the concept of interest curves? 

3. What are the differences and similarities between interest curves and other 

types of features such as interest points and interest regions?  

4. How do we design a standard interest curve data structure for all curve and 

line detection methods? 
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1.1.2 Evaluation 

Unlike interest points, which is a well-known concept, the concept of interest 

curves has not yet been proposed in previous research. Therefore, there is no 

comprehensive standard evaluation method and dataset available for interest curve 

detectors. Therefore, this thesis will answer the following questions: 

1. What parameters should we take into account in the evaluation of interest 

curve detectors, considering the concept and properties of interest curves? 

2. How do we design a practical evaluation framework for the detection of 

interest curves? 

Interest curves can be used for feature correspondence tasks and related 

applications such as image stitching and 3D reconstruction. To solve the feature 

correspondence problem, a common approach is to describe local features as local 

descriptors and then measure the matching distance between the descriptors. Hence, 

finding a standard evaluation method for curve description and matching 

performance becomes an urgent issue. This issue forms the next question: 

3. How do we design a practical evaluation framework for interest curve 

descriptors? 

 There are some differences and similarities between interest curves and interest 

points. Therefore, the next question is: 

4. How do we evaluate the detectors and descriptors for interest curves and 

interest points under the same evaluation framework? 

1.1.3 Implementation 

The concept of interest curves and a new evaluation method brings a challenge 

to the previous algorithms in the areas of curves and lines detection. It is valuable to 

develop an interest curve detection algorithm and push the state-of-the-art to a new 

level. In comparison with interest points, the research in “interest curves” is not 

mature enough. Therefore, current curve and line detectors and descriptors are not 

able to present superior advantages. The first aim of our implementation is to: 

 Develop the state-of-the-art interest curve detection and description method.  

The performance of our method will be measured with the evaluation standard of 

interest curves.  
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 In addition to stability performance, we are also interested in discovering more 

relationships between edges, corners, line and curves. The second aim of our 

implementation is to: 

 Develop an interest curve detector that can detect edges, corners and lines 

multi-functionally and efficiently. 

1.1.4 Applications 

We use our state-of-the-art interest curve detection and description method in 

different applications to discover the unique advantages of our proposed interest 

curves. In addition, we have gone through previous research and have found the 

applications which can benefit from interest curves. Furthermore, we have 

developed new methods for object detection by utilizing the richer geometric 

information given by interest curves. 

1.2 Thesis outline 

The content of the thesis is organized in four chapters: concept, evaluation, 

implementation, and applications.  

 

Fig. 1.1 Different concepts used in feature detection methods. 

 

 

 

Fig. 1.2 Evaluation parameters. 
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Chapter 2 analyzes different concepts used in feature detection methods (Fig. 1.1) 

and presents our proposed concept of interest curves. This chapter also presents 

some common properties shared by various feature detectors. According to the 

proposed concept and findings, we propose a data structure and a guideline for 

algorithm design that can be used for interest curve detectors.  

According to the attributes of interest curves, Chapter 3 proposes standard 

evaluation parameters (Fig. 1.2) and methodologies for both curve detectors and 

descriptors.  

 

 

 

Fig. 1.3 Proposed multi-functional interest curve detector (Paper VII). 
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Chapter 4 presents our implementation of interest curve detection and 

description. It includes our contributions in edge detection, corner detection, curve 

and line detection and description. We present a unique multi-functional, efficient 

and robust curve detection method (Fig. 1.3). 

Chapter 5 presents the application areas (Fig. 1.4) of interest curves and our 

novel curve-based object detection framework. Our curve-based object detection 

framework presents unique properties in the aspects of efficiency and rotation-

invariance. 

The concluding remarks are highlighted in Chapter 6. Finally, the research 

papers that provide the basis for this thesis are presented. 

 

 

Fig. 1.4 Application areas of interest curves 
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2 Concept  

In this Chapter, we analyze different concepts used in feature detection methods 

and present the concept of interest curves.  

2.1 Background 

Image features include edges [1], contours [2], corners [3, 4], lines [5, 6], curves 

[7], interest points [8, 9], region [10, 11], etc. These different types of features are 

categorized by geometrical concepts. Research in recent years has started to develop 

interest point features [9-12], which are repeatable in subsequent processing. An 

interest point is a point in the image which in general has the following 

characteristics: 

 It has a clear, preferably mathematically well-founded, definition. 

 It has a well-defined position in the image space. 

 It has (or is surrounded by) a distinctive local image structure.  

 It is repeatable under various local and global perturbations in the image 

domain, such as illumination changes. 

 Optionally but commonly, the notion of an interest point should include an 

attribute of scale, which makes it repeatable under image transformations 

including scale and view point changes. 

The interest point features used in early computer vision are actually corner 

features. The earlier corner detection methods [3, 4] aim to obtain robust, stable and 

well-defined points for object tracking and object recognition in a relatively simple 

environment. In the last decade, researchers have been more interested in detecting 

scale-invariant interest points [8, 9]. In practice, these interest point detectors are 

sensitive both to corners and image regions. In general, there is no rigorous 
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boundary between interest points and interest regions. The reason is that an interest 

region can be represented as an interest point, because interest points includes the 

attribute of scale, which can reflect the radius of a region. Region-like features can 

be referred to as being a ‘region of interest’ or ‘interest region’, for example, blob 

features [9], Maximally Stable Extremal Region Detector (MSER) [10] and Salient 

Regions [11]. In some circumstances, interest region detection methods can include 

additional attributes for regions when considering affine-invariance. Such 

circumstances need to describe the regions as ellipse regions [12] rather than circular 

regions. Therefore, we can extend the concept of interest regions from interest points. 

An interest region is a region that has the following characteristics: 

 It has all the characteristics of an interest point. 

 Optionally, the notion of interest regions could include a set of attributes to 

describe the shape of the region. For example, if we want to describe the 

region as an ellipse shape, we need two additional attributes: the angle of 

the main axis and the ratio between the two axes. 

Edge-based features, lines and curves can be used as alternative features for 

applications where the interest points or interest regions methods apply. The earlier 

edge-based features are successful in applications where the objects are relatively 

simple [13]. Later developments of these feature detection methods become 

relatively stable under noise perturbations [5 and 6] and can be used for feature 

matching [14]. Given the advantages of optimization methods such as generalized 

Hough voting and dynamic programming, edge-based features or lines can be 

successfully applied in object detection tasks where the objects are in a turbulent 

background [15-17].  

Unlike interest points or interest regions, the detection methods of edge-based 

features, lines or curves usually miss the attribute of scale. Most methods in these 

areas usually aim to improve the detection robustness under noise. During the 

1980’s, the research in edge detection was more interested in finding optimal filters. 

In 1986, Canny [1] presented a famous edge detection method with three criteria: 

good detection, good localization and low spurious response. Since then, Canny’s 

edge detection method has become a common image processing technique. In later 

computer vision development, research has found that multi-scale filtering is even 

more important for enhancing edge detection results. In 1998, Lindeberg [18] 
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presented an edge detection method with automatic scale selection. Scale selection 

enables us to include scale for edge features. Conventional line and curve detection 

methods are based on Hough voting, least square fitting, or other voting schemes. 

Hough transform (or Hough voting) has been a well-known technique for line and 

curve detection since the 1990’s [7], but one problem is that Hough based 

techniques are sensitive to noise.  

State-of-the-art line detection methods are LSD [5] and EDLines [6]. LSD utilizes 

gradient direction to form line support regions, and detects lines by region growing 

followed by rectangular approximation. EDLines uses an edge drawing technique 

and least square line fitting method to extract line segments. Both LSD and EDLines 

detect lines efficiently with good false detection control. However, LSD and 

EDLines do not include a scale attribute  

However, since the scale attribute is optional, all line and curve detection methods 

can potentially generate interest curves. We will give a formal concept of interest 

curves in the next section.  

2.2 Concept 

The concept of interest curves can be extended from the concept of interest points. 

An interest curve can be defined as a curve in an image which in general has the 

following characteristics: 

 It has a clear, preferably mathematically well-founded definition. 

 It has a set of well-defined positions which can represent the curve in the 

image space.  

 Optionally, the interest curve can include more attributes to describe the 

shape of the curves.  

 The local image structure around the interest curves is distinctive. 

 The interest curve is repeatable under various local and global 

perturbations in the image domain, such as illumination changes. 

 Optionally, the notion of an interest curve could include an attribute of scale, 

which makes it repeatable under image transforms including scale and view 

point changes.  
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There are many line detection methods which can detect lines but not curves. We 

can utilize the concept of interest curves and define a new concept: interest lines. An 

interest line is a line in the image which has the following characteristics: 

 It has all the characteristics of an interest curve. 

 It has an additional constraint: The curve is straight enough.  

After providing the formal concept of interest curves, it is valuable to distinguish 

the differences between concepts of interest curves, interest lines, interest points, 

and interest regions (Fig. 2.1). 

In section 2.1, we identified the differences between interest regions and interest 

points, noting that interest regions have all the attributes that interest points have. 

Therefore:  

 Interest points can be seen as a subset of interest regions. 

The term subset indicates that a feature detection method in a set is able to generate 

features of a subset when we use additional constraints or estimations within the 

detection method. For example, we can estimate an interest region as an interest 

point. The concept of interest lines is inherited from interest curves and it has 

additional constraints but no additional attributes. Therefore:  

 Interest lines can be seen as a subset of interest curves. 

Both interest curves and interest lines can be estimated and represented as interest 

points. For example, we can use the center of an interest curve or interest line as an 

interest point. Therefore: 

 Interest points can be seen as a subset of interest lines and interest curves. 

As we can see in Fig. 2.1, interest points are a subset of interest curves, interest lines, 

and interest regions. It is a part of the intersection area of interest lines and interest 

regions. There are parts of the intersection area that do not belong to the area of 

interest points. What does this mean?  
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Fig. 2.1 Different concepts used in feature detection methods. 

 

  

(a)                                                             (b) 

  

(c)                                                             (d) 

 

Fig 2.2 Examples of features. (a) Interest points (no scale estimation). Corners 

detected by Harris detector [3]. (b) Interest points (with scale estimation). Blob 

features detected by SURF [9]. (c) Interest lines (no scale estimation). Lines 

detected by EDLine [6]. (d) Interest regions (ellipse estimation). Affine-invariant 

regions detected by MSER [10, 12].  

Interest Curves 

Interest Lines Interest Points 
Interest Regions 

Concepts 
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Interest curves and interest regions can be transformed into each other to some 

extent and there are many ways to perform this transformation. For example, if we 

set the scale of the interest curve as one axis of an interest region and the curve 

length as the other axis of the interest region, we can transform an interest curve to 

an interest region. On the other hand, we can also transform an interest region into 

an interest curve. For example, if we detect the border of the region and then detect 

the curves or lines of the border, then an interest region can be represented as a set 

of interest curves or lines. However, we should not force transformations between 

interest regions and interest curves because the method of interest curve detection or 

interest region detection are usually designed with geometrical meanings.  

2.2.1 Examples 

When we have clear concepts of different feature detection methods, it is valuable 

to review and classify some of the well-known feature detection methods. We 

present some examples of these methods in Table 2.1 and show some feature 

examples in Fig. 2.2.  

 

Table 2.1 Examples of feature detection methods. Here “no scale” means no proper 

scale estimation of the features. 

Method Name  Feature Type Brief Description 

Harris Corner [3] Interest point  

(no scale) 

A corner detector using local auto-correlation 

function. 

FAST [20] Interest point  

(no scale) 

A machine learning based corner detection 

method. 

SIFT[8] Interest point 

(with scale) 

Detects extremes of difference of Gaussian in 

scale-space. 

SURF[9] Interest point 

(with scale) 

Detects blob features using determinant of 

Hessian in scale-space. 
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ORB [21] Interest point 

(with scale) 

Uses the FAST detector in an image pyramid. 

The scale is not as accurate as in SIFT or SURF. 

LSD [5] Interest line 

(no scale) 

Uses the gradient direction to form line support 

regions, and detects lines by region growing 

followed by rectangle approximation. 

EDLine [6] Interest line 

(no scale) 

Uses an edge drawing technique and a least 

squares line fitting method to extract line 

segments. 

MSER [10] Interest region 

(can be ellipse shape) 

Detects regions using an “extremal” property of 

the intensity function in the region and on its 

outer boundary. It is affine-invariant. 

Salient Regions 

[11] 

Interest region 

(can be ellipse shape) 

Detects salient regions in scale-space. It is affine-

invariant. 

 

2.3 Data structure 

After providing the concepts of interest curves and interest lines, we propose a 

data structure for these. Interest points have a well-defined data structure in the 

OpenCV library [22] where all the interest point detectors have been re-programmed 

and follow the same standard. An interest point (also referred to as keypoint) in 

OpenCV is presented as:  

class Keypoint 

{ 

(x, y): Keypoint position in image 

Size: Diameter of the meaningful keypoint neighborhood, which is related to 

the scale estimation. 

Angle: Computed orientation of the keypoint.  

Response: Indicating how strong the keypoint is. Can be used for further 

sorting and subsampling. 
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Octave: Pyramid layer from which the keypoint has been extracted. 

} 

According to the concept of interest curves, the difference between an interest curve 

and an interest point is that an interest curve has a set of well-defined positions 

which can represent the curve in the image space. Our proposal is that we follow a 

principle of simplicity and only keep the necessary points of the curve. Our 

standpoint is that there are three necessary points to describe a curve: one middle 

point and two endpoints. The middle point may not seem necessary for a line, but 

we argue that it is necessary since we cannot assume a line is perfectly straight. Our 

interest curve (can be referred as to keycurve) data structure is: 

 class Keycurve 

{ 

 Keypoint    M: The middle point of the curve  

Keypoint    L: “left” endpoint of the curve 

Keypoint    R: “right” endpoint of the curve 

Angle: Optional. Computed orientation of the keycurve.  

Length: Optional. Computed length of the keycurve 

Straightness: Optional. Computed straightness of the keycurve. 

Response: Optional. Indicating how strong the keycurve is. 

} 

In our keycurve data structure, three keypoints follow the OpenCV data structure. 

The scale of three keypoints can be estimated by the scale of curve. Additional curve 

information, for example length, straightness, etc., can be utilized for various 

applications.  

2.3.1 Scale estimation 

Most existing line or curve detection methods cannot provide scale estimation. 

However, lines or curves are different from interest points and their length can 

directly be used as a parameter to estimate the scale for three keypoints of the 

interest curve. Therefore, the scale of each keypoint is dependent on the design of 

each specific method. In our implementation of interest curve detection (Chapter 4), 

we present a scale estimation using the scale-space concept. 
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2.3.2 Definition of “left” and “right” keypoint 

The definition of “left” keypoint and “right” keypoint is important for feature 

matching and related applications. If the orientation (angle) of the interest curve has 

already been defined, then the “left”/”right” keypoints can simply be defined as 

endpoints on the “left”/”right” of the curve direction (Fig. 2.3). Without a proper 

definition, ambiguous “left”/“right” keypoints will affect the correctness of curve 

matching and related applications. 

 

 

Fig. 2.3 An example of an interest curve. 

 

2.4 Guideline for interest curve detection 

In this section, we will analyze some feature detection methods and derive a 

guideline for interest curve detection methods. These feature detection methods 

usually include two parts: feature detection and feature description. In the following 

analysis, we will only discuss the feature detection part.  

SIFT: SIFT is a scale-invariant interest point detector. First, given an input 

image, an image pyramid is generated by applying Gaussian smoothing and down-

sampling (Fig. 2.4). A pyramid contains n octaves. Secondly, on each octave image 

in the pyramid, SIFT generates m+1 octave layers where each layer is a convolution 

of the octave image with a Gaussian smoothing kernel with various scale parameters. 

Thirdly, by applying difference of Gaussians (DoG), m DoG images are generated in 

each octave. In the next step, SIFT detects the local maxima of DoG in both image 

and scale space [23]. The next steps include noise cancellation, interpolation, size 

estimation, etc.  

‘left’ keypoint 

‘middle’ keypoint 

‘right’ keypoint 

Orientation 
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SURF: SURF is also a scale-invariant interest point detector. It also uses these 

three important concepts: pyramid, octaves and octave layers. It detects blob 

features using the Determinant of Hessian (DoH). However, the principle of 

generating an image pyramid is different from SIFT. In SIFT, each octave has a 

different size but in SURF all octave images have the same size. In SURF, DoH 

filters in coarser octaves have rather large sizes. Benefited by the design of DoH 

filter using integral image, large size DoH does not demand additional 

computational cost.  

 

 

Fig 2.4 Scheme of scale-invariant feature detection. 

 

FAST: FAST uses a machine learning technique to achieve fast corner detection. 

It is not able to provide scale estimation and hence it is not scale-invariant. In 

section 4.2.2, we can see that FAST has low repeatability under scale change. Here, 

we can consider the number of octaves n as 1, and the number of octave layers m as 

1. 

…
 

…
 

…
 

…
 

…
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Octave 2 

Octave 3 

Octave n 

…
 

 Find local maxima 

 Noise cancellation 

 Interpolation 

 Size estimation 

 etc. 
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ORB: ORB is also a scale-invariant interest point detector. It first generates a 

pyramid containing n octave images. On each octave, the FAST detector is applied 

to detect corners. However, without generating m octave layers, ORB is not able to 

provide an accurate scale estimation. In section 4.2.2, we can see that ORB has 

lower repeatability under scale change compared with both SIFT and SURF. Here, 

we can consider the number of octave layers m as 1. 

EDLine: EDLine uses edge drawing and a least squares line fitting method to 

extract line segments. It does not use the concept of pyramid and octave layers. 

Therefore, in section 4.3.2, we can see that EDLine has lower repeatability under 

scale change, compared with SIFT and SURF. Here, we can consider the number of 

octaves n as 1, and the number of octave layers m as 1. 

After the observation above, the conclusion can be made that feature detectors 

with good scale estimation all use image pyramid and more than one octave layers. 

Therefore, a guideline can be suggested for scale-invariant feature detection, which 

also applies to scale-invariant interest curve detection: 

 Generate an image pyramid which contains n (n≥1) octaves. 

 On each octave, generate m (m≥1) octave layers.  

 Detect local maxima in scale-space, constructed by n octaves and m octave 

layers. 

 Apply various feature detection strategies. 

In our implementations of edge detection, corner detection and curve detection, 

we will follow these guidelines. 
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3 Evaluation 

According to the attributes of interest curves, this chapter proposes a standard 

evaluation methodology for both curve detectors and curve descriptors.  

Recall the attributes of interest points, interest regions, and interest curves: they 

should be repeatable under various local and global perturbations in the image 

domain, such as illumination changes; they should be repeatable under image 

transforms including scale and view point changes. 

The Oxford Benchmark provides a tool to evaluate interest point (or region) 

detectors and descriptors [12, 24]. In the last ten years, it has become a standard 

evaluation tool for interest point detectors and descriptors. The performance of 

interest point (or region) detectors and descriptors is measured against changes in 

viewpoint, scale, illumination, defocus and image compression. Interest curves have 

similar attributes as interest points and interest regions so we can extend the Oxford 

Benchmark to measure the performance of interest curve detectors and descriptors. 

3.1 The Oxford Benchmark 

The Oxford Benchmark evaluation tool consists of three parts: dataset, detector 

evaluation [12] and descriptor evaluation [24]. The main parameters in the 

performance measurement are: overlap error, correspondence, repeatability and 1-

preceision vs. recall (Fig. 3.1).  

 

 

Fig. 3.1 Evaluation parameters. 

Overlap error 

Evaluation 

Correspondence Repeatability 1-Precision vs. Recall 
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Fig 3.2 Datasets used in the Oxford Benchmark. The first column shows the first 

images in each category. The second column shows the images in the dataset that 

represent changes in the images (blur, viewpoint, scale, rotation, light and JPEG 

compression). The last column labels the type of change and the image resolution. 

Blur 

6 images (1000×700) 

 

Blur 

6 images (1000×700) 

Viewpoint 

6 images (800×640) 
  

Viewpoint 

6 images (1000×700) 

Zoom+rotation 

6 images (765×512) 
  

Zoom+rotation 
6 images (800×640) 
  

Light 
6 images (921×614) 
  

JPEG compression 
6 images (800×640) 
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3.1.1 Dataset 

The Oxford Benchmark provides a dataset containing 8 categories. Each 

category contains 6 images and 5 homographies between the first images to the 

other 5 images (Fig. 3.2). Each category represents one type of change in the images 

(blur, viewpoint, scale, rotation, light, JPEG compression). For each category, the 

changes in the six images range from a small to large extent.  

3.1.2 Overlap error 

The first important measurement parameter is overlap error. Two regions are 

deemed to correspond if their overlap error is sufficiently small: 

  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑒𝑟𝑟𝑜𝑟 = 1 −
𝑅𝜇𝑎∩𝑅(𝐻𝑇𝜇𝑏𝐻)

𝑅𝜇𝑎∪𝑅(𝐻𝑇𝜇𝑏𝐻)
<∈𝑜                           (3.1) 

 

where Rμ represents the elliptic region and H is the homography relating two images. 

The union of the regions is 𝑅𝜇𝑎 ∪ 𝑅(𝐻𝑇𝜇𝑏𝐻), and the intersection of the regions is 

𝑅𝜇𝑎 ∩ 𝑅(𝐻𝑇𝜇𝑏𝐻) . The area of the union and the intersection of the regions are 

computed numerically. As shown in Fig. 3.3, one region is 𝑅𝜇𝑎, the other region is 

𝑅(𝐻𝑇𝜇𝑏𝐻), and the intersection area is shown as the shadow area. 

 

 

Fig. 3.3 Overlap of two regions. The overlap area is shown as the shadow area.  

3.1.3 Correspondence 

The number of correspondences is counted as the number of regions that have 

corresponding regions in a projected image using homography. If one region has 

more than one correspondence, only the best one is counted as a correspondence in 

this calculation. Only the regions located in the part of the scene present in both 

images are taken into account. 

𝑅𝜇𝑎 

𝑅(𝐻𝑇𝜇𝑏𝐻) 

𝑅𝜇𝑎 ∩ 𝑅(𝐻𝑇𝜇𝑏𝐻) 
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3.1.4 Repeatability 

The repeatability score for a given pair of images is calculated as the ratio 

between the number of correspondences and the smaller number of regions in the 

image pair: 

 

𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
# correspondences 

#𝑟𝑒𝑔𝑖𝑜𝑛𝑠
                             (3.2) 

 

 Repeatability and correspondences are used for evaluating interest region (point) 

detectors. A good feature detector should have a high correspondence and 

repeatability score.  

3.1.5 1-precision vs. recall 

1-precision vs. recall is a curve used to evaluate feature descriptors. Two regions, 

A and B, are matched if the distance between their descriptors DA and DB is below a 

threshold t. If a matched region pair correspond, like described in section 3.1.2, the 

matching is accepted as a correct match. Otherwise the match is a false match. 

Recall is the number of correctly matched regions with respect to the number of 

corresponding regions: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠
                                      (3.3) 

 

The 1-precision is the number of false matches respect to the total number of 

matches.  

 

1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
#𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
                                  (3.4) 

 

By varying the threshold t, the 1-precision vs. recall curve can be obtained. A good 

feature descriptor must have a high recall value and a small 1-precision value.  
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3.2 Extending to interest curves  

To extend the Oxford benchmark to interest curves, we need to find a way to 

apply the same measurements to curves: overlap error, correspondence, 

repeatability and 1-precision vs. recall. 

3.2.1 Dataset 

Interest curves share similar attributes with interest points and interest regions: 

they should be repeatable under illumination changes and under image transforms 

including scale, view point changes. Therefore, the dataset of the Oxford Benchmark 

is, generally speaking, able to evaluate interest curve detectors and descriptors.  

However, some categories of the dataset contain repeated textures of different 

forms, for example, the “trees” and “wall” categories cannot generate well-defined 

edges. Therefore, some categories are not adequate or even fair enough to evaluate 

edge-based features, including interest curves. In our future work, we will produce 

an additional dataset as a supplement. 

Previous research in edge detection, line detection and curve detection places a 

large evaluation importance to the stability under noise. Usually, the test images 

used in previous research contain manually added noise: white noise, pepper noise, 

or Gaussian noise. In our opinion, the noise in natural images is more objective for 

evaluation purposes. Therefore, we will not add any additional dataset for stability 

evaluation under noise. 

3.2.2 Overlap error 

In Chapter 2, we propose a standard data structure for interest curves. Each 

interest curve can be represented by three keypoints. The overlap error of two 

interest curves can be estimated by averaging the overlap error of the three 

keypoints (Fig. 3.4): 

 

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑒𝑟𝑟𝑜𝑟 =
𝑒𝑙+𝑒𝑚+𝑒𝑟

3
                                      (3.5) 

 

where 𝑒𝑙, 𝑒𝑚, 𝑒𝑟, represent the overlap error of three keypoints in interest curve. A 

full estimation of the overlap error will be: 
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𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑒𝑟𝑟𝑜𝑟 = 1 − (
𝑅𝜇𝑙𝑎∩𝑅(𝐻𝑇𝜇𝑙𝑏𝐻)

+𝑅𝜇𝑚𝑎∩𝑅(𝐻𝑇𝜇𝑚𝑏𝐻)
+𝑅𝜇𝑟𝑎∩𝑅(𝐻𝑇𝜇𝑟𝑏𝐻)

𝑅𝜇𝑙𝑎∪𝑅(𝐻𝑇𝜇𝑙𝑏𝐻)
+𝑅𝜇𝑚𝑎∪𝑅(𝐻𝑇𝜇𝑚𝑏𝐻)

+𝑅𝜇𝑎𝑟∪𝑅(𝐻𝑇𝜇𝑟𝑏𝐻)
)              (3.6) 

 

 

Fig. 3.4 Overlap of two interest curves. Each interest curve can be represented as 

three keypoints and the overlap error of an interest curve can be measured using the 

combined overlap error of these three keypoints.  

3.2.3 Correspondence, repeatability, 1-precision vs. recall 

The correspondence, repeatability and 1-precision vs. recall can be calculated 

using the same equations as for interest points (or regions) using the curve overlap 

error from the previous section.  

3.3 Conclusion 

The new evaluation framework for interest curve detectors and descriptors share 

the same performance parameters as the Oxford Benchmark and therefore, interest 

curve and interest point methods can be evaluated within the same framework. 

Using this new evaluation framework, line detection methods can be re-evaluated on 

the repeatability performance. Additionally, this framework can be used for 

evaluating line and curve descriptors. 
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4 Implementation 

In this chapter, we present our implementation of interest curve detection and 

description. It includes our contributions in edge detection, corner detection, curve 

and line detection and description.  

We present a unique multi-functional, efficient and robust interest curve 

detection method (Fig. 4.1). Our interest curve detection method unifies the concept 

of edges, corners, curves and lines. It can output robust multi-features in an efficient 

way and it utilizes our contributions in various feature detection methodologies. 

 

 

Fig. 4.1 The proposed multi-functional interest curve detector.  

Edge Detection: 1. Multi-scale Filtering (Papers I, II, V) 

                       2. Scale Selection (Paper V) 

                       3. Dynamic Thresholding (Paper VII) 

                       4. Restricted Hysteresis (Paper III) 

Corner Detection: 1. Multi-scale Filtering 

(Paper IV)                    2. Thresholding 

Curve Detection: 1. Separate Edge Segments 

(Papers VI, VII)           2. Extract Curve Parameters 

Line Detection: 1. Straightness Measure  
(Paper VII) 
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Fig. 4.2 Contributions to feature detection methods.  

 

In our research we have covered the most important attributes for various 

features in the aspects of robustness and efficiency (Fig. 4.2). We will present our 

contributions step by step in the following sections.  
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4.1 Edge detection (Paper I, II, III, V, VII) 

4.1.1 Good detection and Good localization (Paper I) 

In Paper I, edge detection is improved in terms of three research objects: good 

detection, good localization, and only one response to a single edge.  

We propose a multi-scale edge detection algorithm based on proportional scale 

summing and independent thresholding.  

Good detection: Our analysis shows that proportional scale summing 

successfully improves detection by applying independent thresholds on multi-scale 

gradient images. 

Good localization: The proposed method improves edge detection and 

localization by summing gradient images with a proportional parameter cn (c < 1); 

which ensures that the detected edges are as close as possible to the position in the 

fine scale.  

Response to a single edge: We employ non-maxima suppression and a thinning 

step similar to Canny’s edge detection framework on the summed gradient images.  

 

  

(a)                                  (b) 

  

(c)                                  (d) 

Fig. 4.3 (a) natural images with blurring effect [25]; Edge detection results of (b) 

Canny; (c) SMED; (d) The proposed PSSED algorithm. 
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The proposed method leads to better edge detection performance than the Canny 

edge detector [1] and SMED detector [26]. 

Our proposed algorithm outperforms other edge detection algorithms, especially 

when it comes to blurred edges (Fig. 4.3).  

4.1.2 Fast COM filter (Paper II, V) 

In Papers II and V, a new edge detection method was proposed, which computes 

the image gradient using the concept of Center of Mass (COM). The algorithm runs 

with a constant number of operations per pixel, independently from its scale by 

using an integral image. Compared to conventional convolutional edge filters such 

as the Sobel edge filter, the proposed method performs faster when the region size is 

larger than 3×3 pixels. The proposed method can be used as a framework for multi-

scale edge detectors when the goal is to achieve fast performance. Experimental 

results show that edge detection by COM is comparable to Sobel filter (Fig. 4.4). 

 

   

Fig. 4.4. Left: Input image. Middle: Edge detected using Sobel filter. Right: Edge 

detected using COM filter.  

 

                       

           Fig. 4.5 Speed comparison.                             Fig. 4.6 Angle accuracy. 
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As shown in Fig. 4.5, the proposed algorithm consumes approximately 5.7 ms 

invariant to filter size. Sobel filter consumes 6 ms on filter size of 3×3 and 54 ms on 

filter size of 31×31.  

Unlike the Sobel filter, which has Gaussian built-in smoothing, the COM filter is 

totally square. Therefore, the angle accuracy calculated by COM will not be as 

accurate as for the Sobel filter (Fig. 4.6). We test the angle accuracy by applying 

both algorithms on a set of synthetic images. The maximum angle error of the COM 

filter is 6.62 degrees. This small error is acceptable in edge detection operations.  

4.1.3 Redundancy reduction (Paper III) 

In Paper III, unnecessary redundancy of detected edges are eliminated.  

In edge detection algorithms, there is a common redundancy problem, especially 

when the gradient direction is close to -135°, -45°, 45° and 135°. The double edge 

effect appears on the edges around these directions, caused by the discrete 

calculation of non-maximum suppression. Many algorithms use edge points in 

further tasks, such as line extraction, curve detection, matching and recognition. 

Therefore it is important to remove redundant edge points.  

 

Fig 4.7 (a) Synthetic image; (b) Edge detected by Canny edge detector; (c) Edge 

detected using restricted hysteresis; (d) Shows a comparison between (b) and (c), red 

pixels are the edge points removed using our method. 
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Redundancy is a very important factor for algorithm speed and accuracy. We 

found that most edge detection algorithms have a redundancy of 50% in the worst 

case (and 0% in the best case), depending on the edge direction distribution. The 

common redundancy rate on natural images is approximately between 15% and 20%. 

Based on Canny’s framework, we propose a restriction in the hysteresis step. Our 

experiment shows that the proposed restricted hysteresis reduce the redundancy 

successfully. In Fig 4.7, we can see that when the edge direction is close to ±45°, the 

redundancy is about 50% and it reduces when the edges become more and more 

horizontal.  

 

 

 

  

 

Fig. 4.8 First row: input images with illumination change. Second row: detected 

edges without using DT. Third row: detected edges using DT. 

 

4.1.4 Illumination robustness (Paper VII) 

Edge detection algorithms need thresholds to filter noise. However, choosing the 

proper threshold to trade-off illumination change and signal to noise ratio is always 

difficult and seldom satisfactory. To overcome this problem, Paper VII proposes a 

dynamic threshold (DT) method:  
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ℎ′ =
ℎ �̅̅�

𝑏
                                                    (4.1) 

 

where h is the original user defined threshold, �̅� is the average gradient along all 

gradient extremes generated from the non-maximum suppression step, and b is a 

constant parameter which enables ℎ′ in a preferred magnitude. Fig. 4.8 shows that 

the dynamic threshold significantly improves the edge robustness under illumination 

change. The reason we use �̅� instead of the average image illumination is that  �̅� 

also takes the signal to noise ratio into account. For example, if a dark image 

contains a high level of pepper noise, equation 4.1 will generate a high threshold to 

suppress the pepper noise. 

4.1.5 Scale selection (Paper V) 

Scale selection is a good method to generate robust edges. Additionally, a scale 

selection method can generate scale information which can benefit interest curve 

detection. By simplifying Linderberg’s scale selection concept [18] and extending 

Canny’s concept, the proposed multi-scale scheme is composed as follows: 

1. Filter the image using various sizes of Sobel or COM filters (here we apply 5 

filter sizes: 3×3, 5×5, 9×9, 17×17 and 31×31). 

2. Scale the gradient maps by multiplying with S. S decreases when the scale goes 

from fine to coarse. This means that the finer scales are favored. 

3. Apply 3D NMS on the gradient maps. Firstly, find 2D maxima along the 

gradient direction. Then eliminate the maxima points that are no larger than their 

neighbor pixels in finer and coarser scales. 

4. Apply 3D hysteresis. Similar to Canny’s hysteresis method, extended 3D 

hysteresis applies the same double thresholding strategy to filter out weak edges 

which are not connected to strong edges. 

Fig. 4.9 (e) and Fig. 4.9 (f) show the resulting edge maps using the proposed 

multi-scale scheme using the Sobel and COM filters utilizing the same threshold. 

Both figures show that the proposed multi-scale edge detection scheme locates 

blurred edges well without being affected by noise.  
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Table 4.1 shows the time consumption of the proposed scale selection schemes 

using both the Sobel and COM filters. The total time consumption using the COM 

filter is half the time using the Sobel filter. The proposed method is fast enough to 

be used in practical applications. 

 

Table 4.1 Time consumption of the proposed scale selection scheme using the Sobel 

and COM filters (using the 512×512 ‘Lena’ image).   

 

Time 

Consumption 

Gradient 

calculation 

Scaling, 3D NMS, 3D 

hysteresis, etc. 

Total 

 

Using Sobel 92 ms 39 ms 131 ms 

Using COM 28 ms 39 ms 67 ms 

  

 

                              (a)                                           (b)                                          (c) 

 

                               (d)                                          (e)                                          (f) 

 

Fig. 4.9 Edge detection results. (a) ‘Lena’ image. (b) Using 3×3 Sobel filter and 

Canny’s scheme with high thresholds. (c) Using 3×3 Sobel filter and Canny’s 

scheme with low thresholds. (d) Using 3×3 COM filter and Canny’s scheme with 

high thresholds. (e) The proposed multi-scale method using the Sobel filter. (f) The 

proposed multi-scale method using the COM filer. 
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4.2 Scale-invariant corners (Paper IV) 

In Paper IV, a fast scale-invariant corner keypoint (SICK) detection method is 

proposed. SICK considers both robustness and efficiency of the algorithm and is 

more robust than other state-of-the-art algorithms during evaluation using the 

Oxford Benchmark. 

4.2.1 Method 

Firstly, an image pyramid is generated by Gaussian smoothing and down-

sampling. Secondly, edge chains are extracted by applying a fast scale selection 

method based on the COM filter for each octave of the pyramid. Thirdly, edge based 

corner detection is implemented by detecting the edge direction change.  

We measure the corner score by calculating the magnitude of gradient direction 

change by following one-dimensional edge chains. The corner score is calculated as: 

 

 𝑐 =  
(∑ 𝐺𝑥

𝑡
𝑡−𝑤 2⁄ −∑ 𝐺𝑥

𝑡+𝑤 2⁄
𝑡 )

2
+(∑ 𝐺𝑦

𝑡
𝑡−𝑤 2⁄ −∑ 𝐺𝑦

𝑡+𝑤 2⁄
𝑡 )

2

(∑ 𝐺𝑥
𝑡
𝑡−𝑤 2⁄ )

2
+(∑ 𝐺𝑦

𝑡
𝑡−𝑤 2⁄ )

2
+(∑ 𝐺𝑥

𝑡+𝑤 2⁄
𝑡 )

2
+(∑ 𝐺𝑦

𝑡+𝑤 2⁄
𝑡 )

2                        (4.2) 

 

where 𝐺𝑥 and 𝐺𝑦 are directional gradients, t is the measuring location and w is the 

width of the corner filter. In SICK, w is determined by the edge scale of each edge 

pixel. 

 

 

Fig. 4.10. Detected keypoints on the graf image using SICK. 
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Our algorithm has two advantages. Firstly, an edge based corner measure is more 

efficient than a corner measure using a Harris or Hessian matrix. Secondly, feature 

descriptors usually need an orientation assignment step to generate keypoint 

orientation. Since we use the gradient direction as our keypoint orientation, the 

orientation can be assigned directly without any additional cost.  

Fig. 4.10 shows an example of keypoints detected using SICK. Fig. 4.11 shows 

an example of keypoint matching using SICK. 

 

 

Fig. 4.11. Matching test on planar images using SICK. 

 

4.2.2 Evaluation 

We have implemented SICK using 8 filter layers (SICK8) as well as SICK using 

3 filter layers (SICK3). SICK8 is implemented in order to achieve the best 

performance and SICK3 is implemented to test its speed and performance 

limitations. Fig. 4.12 illustrates the evaluation results of various detectors using the 

Oxford Benchmark. SICK outperforms other methods under scale changes, 

viewpoint changes and JPEG compression. SICK outperforms the other methods 

under scale change since SICK is relatively unaffected by changes in scale while the 

performance of FAST, ORB, and BRISK dramatically decreases when the scale 

increases. SICK’s performance under blur change lies somewhere between SIFT’s 

and SURF’s performances. SICK’s performance under light change is slightly 

weaker than other methods but still within an acceptable range, similar to SIFT. This 

result is affected by the edge threshold set in our algorithm and can be improved 

using dynamic thresholding.  
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Fig. 4.12. Detector performance evaluation. 

Table 4.2 shows the time consumption of keypoint detectors. All algorithms are 

running on an Intel Duo core (4 threads) 2.7 GHZ CPU using a single core single 

thread. SICK3 (using 3 layers in edge detection) is 34 times faster than SIFT [8] and 

5.5 time faster than SURF [9] and slightly slower than ORB [21]. 

Table 4.2. Time consumption of keypoint detectors. 

 

 

4.3 Distinctive curves (Paper VI, VII) 

Paper VII presents a state-of-the-art interest curve detector (Distinctive Curves-

DICU) that unifies the detection of edges, corners, lines and curves. DICU has three 

advanced properties: multi-function, efficiency and stability. Multi-function and 

efficiency are benefited by the inherent property of the DICU work flow. DICU 
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detects edges, corners, curves and lines step by step. Therefore, DICU reduces data 

dimensionality gradually and requires less and less computation in each step. The 

principle that ensures the success of each detection step is that we fully utilize the 

common properties shared by edges, corners, curves and lines in each step. The 

stability is achieved by applying a scale-space concept in the edge and corner 

detection steps.  

DICU is very stable under various image transformations. After the scale-

invariant corners are detected, edges are separated at corner locations and the 

separated edge segments are represented as DICU features.  

We extend DICU to detect distinctive line features (DILine) in scale-space. We 

simply add a post-validation stage that deletes the curves that do not satisfy a 

straightness measure.  

DICU and DILine are beneficial to a wide range of computer vision applications. 

Distinctive curves and lines inherently contain richer information than interest point 

features, therefore they are more robust. We test DICU for a curve matching task 

where we apply the FREAK [28] descriptor on DICU features. The Oxford 

Benchmark is used to evaluate the repeatability and 1-precision recall of DICU 

under these image transformations. DICU outperforms state-of-the-art interest point 

detection methods (SIFT, SURF, BRISK [27], and ORB), as well as line detectors 

(EDLines [5] and LSD [6]). DICU’s unique representation improves the robustness 

of feature description and therefore outperforms state-of-the-art keypoint descriptors 

(SIFT, SURF, BRISK, ORB and FREAK) in our feature matching experiments. 

4.3.1 Detection 

The DICU features are detected stage by stage. At the same time edges, corner, 

curves and lines are generated gradually. DICU detection is performed as follows: 

1. Generate N octave images using a scale-space pyramid by down-sampling 

the original image with a set of scale factors (adding optional Gaussian 

blurring). 

2. Detect edges using multi-scale filtering and a scale selection method in 

each octave of the pyramid. 

3. Detect SICK++ features and separate edge segments. 

4. Represent the edge segments as DICU features. 

5. Select straight curves as lines and represent them as DILine features. 
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The following paragraphs explain the details of the detection stages. The image 

pyramid generation follows the same principle as for the interest point detector. 

Therefore, we do not explain this stage as a standalone section. 

Edge detection: The edge detection method is similar to the scale selection 

method shown in Papers V and IV. Furthermore, the previously developed COM 

filter, restricted hysteresis, dynamic thresholding techniques are merged into the 

edge detection stage.  

Scale-invariant corner: In Paper VII, the scale-invariant corner detection method 

(SICK++) is the extended version of the previously developed SICK corner detector 

[73]. The corner score is measured by calculating the magnitude of gradient 

direction change by following one-dimensional edge chains. The corner score is 

calculated as: 
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where, 𝐺𝑥 and 𝐺𝑦 are directional gradients, t is the measuring location in the edge 

chain and w is the width of the corner filter. In SICK, w is determined by the edge 

scale of each edge pixel. In SICK++, corner filtering is applied in scale-space and it 

is applied M iterations with multi-size of w[s]. In the first iteration, the corner filter is 

applied using the largest width w[s] and the second largest width w[s-1]. The corners 

are selected as the local maxima which satisfy the following criteria:   

 

1. 𝑐[𝑡,𝑠] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

2. 𝑐[𝑡−1,𝑠] < 𝑐[𝑡,𝑠] 𝑎𝑛𝑑 𝑐[𝑡,𝑠] ≥ 𝑐[𝑡+1,𝑠]   

3. 𝑐[𝑡,𝑠−1] < 𝑐[𝑡,𝑠] 𝑎𝑛𝑑 𝑐[𝑡,𝑠] ≥ 𝑐[𝑡,𝑠+1]   𝑖𝑓 𝑠≠ 0 𝑜𝑟 𝑚𝑎𝑥   

     𝑐[𝑡,𝑠−1] < 𝑐[𝑡,𝑠]  𝑖𝑓 𝑠 = 𝑚𝑎𝑥                                         

     𝑐[𝑡,𝑠] ≥ 𝑐[𝑡,𝑠+1]  𝑖𝑓 𝑠 =0                                                                                                  (4.4) 

 

where s indicates scale. The edge segments are then separated at the corner locations. 

In the next iteration, corner detection is repeated using a smaller w. This procedure 

assures that the unsharp corners can be detected at accurate locations, while 

producing few false detections.  
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(a) Input Image                       (b) Harris (high threshold) 

 

(c) Harris (low threshold)      (d) Shi–Tomasi’s method 

 

(e)  FAST                            (f) SICK++ (first octave) 

Fig.4.13: Corner detection results using various methods. 

Fig.4.13 shows a comparison between various corner detection methods. 

Harris’s method [3] is not capable of detecting unsharp corners (Fig.4.13 b). When 

setting a low threshold, Harris’s method detects unsharp corners but it also produces 

many false detections due to noise. On the contrary, when setting a high threshold, 

Harris’s method would miss detection of most unsharp corners. Shi–Tomasi’s 

method [4] also produces false detections and while FAST [20] produces a better 

result, it still produces false detections around the true corners. SICK++ produces 

the best result and is good at detecting unsharp corners while having a low response 

to noise. 

Distinctive curves: The generation of DICU features is very efficient. Each edge 

chain is separated at corner positions to produce edge segments and they represent 
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smooth curvature changes. These edge segments are represented as DICU features 

using three keypoints. We have also calculated the additional parameters of DICU 

including orientation and size of each keypoint as well as curve response, length and 

straightness. Fig. 4.14 shows an example of curve detection using 4 octaves.  

 
(a) 

 

 
(b) 

Fig.4.14: (a): input image. (b): Detected curves using 4 octaves. Curves detected in a 

smaller octave images are represented using a thicker line width. Each curve is 

represented by two lines connecting the middle point and the two endpoints. 
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Distinctive lines: To adapt DICU to the detection of distinctive line features, a 

simple and straightforward way is to keep the curves that are straight enough. 

Fig. 4.15 shows a comparison between EDLine [6], LSD [5], and DILine. 

DILine has very low response to arcs while other methods detect arcs as several 

short line segments. This is one of the reasons that they are not robust enough under 

image transformations. 

 

  

(a) Input Image                                      (b) LSD 

 

(c) EDLine                                       (b) DILine 

Fig.4.15: Line detection results using various methods. 

 

4.3.1 Curve matching 

A DICU descriptor as well as a matching method can follow the same principle 

as for interest point descriptors. A simple way of building curve descriptors is to 

describe the three keypoints of an interest curve and form a descriptor with a higher 

dimension. Fig. 4.16 shows a curve matching example using the FREAK descriptors 

based on three DICU keypoints (DICU+FREAK).  
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(a)                                                    (b) 

 

(c) 

Fig. 4.16: Curve matching. (a) Graffiti-1 image. (b) Graffiti-4 image. (c) Matched 

curves. Each curve is represented by two lines connecting the middle point and the 

two endpoints. Middle points are labeled as circles. The green box shows where the 

left image is located in the right image. 

 

4.3.2 Evaluation 

In Chapter 3, the evaluation method for interest curve detection and description 

has been proposed.  

Firstly, the repeatability of DICU is compared with keypoint detectors (SIFT, 

SURF, BRISK, and ORB) and line detectors (LSD and EDLines). Experimental 

results (Fig. 4.17) show that DICU is more robust than the other methods under 

various image transformations. LSD and EDLines do not provide reasonable line 

scale estimation. Therefore, we use the line length as the factor of keypoint size (size 

= line length/2). Here we also generate three keypoints from each line using the 
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same principle. All the compared algorithms are from the OpenCV [22] library. In 

OpenCV, LSD and EDLines have been extended using image pyramids.  

 

 

 

Fig. 4.17 Repeatability evaluation under various image transformations using the 

Oxford Benchmark [12].  

 

 

Fig. 4.18 The recall vs. 1-precision graph under various image transformations 

using the Oxford Benchmark [24].  

Secondly, the performance of the DICU+FREAK descriptor is evaluated using 

1-precision vs. recall graphs. In the evaluation, each method uses its own detector, 

except for FREAK, which uses the SURF detector. The evaluation shows that 

DICU+FREAK outperforms the other keypoint descriptors (Fig. 4.18).  
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The run time comparison (Table 4.3) shows that DICU is very efficient 

compared to keypoint detectors. After the edge detection stage, corners, curves, and 

lines can be detected using around 5% of the total time consumption. 

 

Table 4.3. Average run time comparison of keypoint detection and DICU 

detection on Oxford datasets. DICU uses 4 octaves, and each octave uses 4 layers.  

SIFT SURF DICU DICU 

 

 

 

 

 

6.146 s 

 

 

 

 

 

1.079 s 

Edge using Sobel 

filter: 1.079 s 

Edge using COM 

filter:   0. 531 s 

SICK++: 55 ms SICK++: 55 ms 

DICU: 7 ms DICU: 7 ms 

DILine: 1 ms DILine: 1 ms 

Total: 1.133 s Total: 0.596 s 
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5 Applications 
 

Image features play important roles in several computer vision applications, such 

as image registration, 3D reconstruction, object detection and video understanding 

(Fig. 5.1). This chapter discusses the applications which can be benefited from 

interest curves. More specifically, we present our novel curve-based object detection 

application framework. Our curve-based object detection framework presents unique 

properties regarding to efficiency and rotation-invariance. 

 

 

Fig. 5.1 Application areas of interest curves.  

 

5.1 Feature correspondence (Paper VII) 

As seen in section 4.3, interest curves can be used for feature correspondence. 

Solving features correspondence successfully is a key step in homography 

estimation (Fig 5.2), image stitching, 3D reconstruction, etc. Our DICU detector has 

proved to be more stable than interest point detectors for this kind of task.  

Interest Curves 

Image registration 

Applications 

3D reconstruction 
Object Detection 

(Paper VIII) 

Feature Correspondence 

            (Paper VII)   
… ….  
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(a)                                                    (b) 

 

(c) 

 

Fig. 5.2 Curve matching and homography estimation. (a) Boat-1 image. (b) Boar-2 

image. (c) Matched curves. Each curve is represented by two lines connecting the 

middle point and the two endpoints. The green box is the estimated homography 

showing where the left image is located in the right image. 

 

5.2 3D Reconstruction 

Interest curves are useful for 3D reconstruction applications and Caroline et al. 

[29] present a 3D building construction method based on automatic line matching 

(Fig. 5.3). 3D construction requires good line detection and accurate matching 

results. As seen in section 4.3, conventional line detection methods are inherently 

unstable under scale and view changes. Scale-invariant interest curve and line 

detection methods enhance the 3D reconstruction performance since the 

repeatability is increased. 
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(a) 

 

(b) 

Fig. 5.3 Example of 3D construction of buildings [29]. (a) Matched line segments of 

three different views of the same buildings. (b) Reconstructed 3D model of the scene.  

 

  

 

Fig. 5.4.  Curve chain matching without local appearance. Left: Input image. Right: 

Target image and matched curves. 

 



CHAPTER 5 

48 

5.3 Object detection (Paper VIII) 

Curve features contain richer image geometry information than point features. 

We have designed a novel object detection algorithm that only utilizes the curve 

geometries without using further local image appearance (descriptors). We organize 

an image object as a curve chain where the chain describes curve neighbor relations 

including relative locations, angles, sizes, and gradient differences. To detect an 

object, we search for this curve chain in a target image using dynamic programming 

(DP) [30-32]. Fig. 5.4 shows an example of the curve chain matching algorithm. It 

can be seen that most curves are matched on the target. 

 

 

Fig. 5.5. Face detection and homography estimation. (a) Using a simple sketch 

template to match an average face image [33]. (b) Matched curves by DP. (c-e) 

matching with rotation change and face pose change. (f) Using a face image as the 

template. 

 

 (a) 

 (c) 
  

 (e) 
  

 (b) 
  

 (d) 
  

 (f) 
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Curve chain matching is scale and rotation-invariant and also robust to image 

deformations and this property can solve the problem with rotation in object 

detection applications. Most object detection algorithms cannot achieve full rotation-

invariance in a reasonable computation time. For example, Viola and Jones’s face 

detection algorithm [34] only tolerate small in-plane rotation.  

We have evaluated the curve chain matching algorithm for face detection using a 

simple sketch template (Fig. 5.5). Experiments show that our algorithm works well 

under face rotation and pose changes. Additionally, curve chain matching works 

well to match a similar object (Fig. 5.5 f). Currently, the method does not work 

when the face is very small within the image, since the curves on the face cannot be 

detected well enough when the resolution is low.  Therefore, it is more suitable for 

face tracking when there are enough details in the face. In our experiment, face 

detection using curve chain matching is very efficient: after curve detection, the 

curve chain matching only consumes 34ms (Table 5.1).  

 

Table 5.1. Run time analysis of face detection (test on 300*300 images). Our 

experiment is conducted on a dual core CPU (3.06 GHz each) with 25% CPU 

occupation. 

 Curve Detection Matching Total 

Consumption 220 ms 34 ms 254 ms 
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6 Concluding Remarks 
 

The detection of edges, corners, lines, and curves is a fundamental computer 

vision problem. However, the research in line and curve detection is still fragmented. 

This thesis presents our contributions in the area of feature detection methods and 

related applications. Our contributions range from concept development, evaluation, 

and implementation to applications.  

Firstly, a novel interest curve concept is proposed. Interest curve is a concept 

derived and extended from interest points. Interest curves are important lines and 

arcs in an image that are repeatable under various image transformations. Interest 

curves have clear guidelines and structures for future curve and line detection 

algorithms and related applications.  

Secondly, this thesis presents an evaluation framework for interest curve 

detectors and descriptors. Our evaluation framework has been developed by 

extending the Oxford Benchmark, which is a standard method for evaluating interest 

point (or region) detectors and descriptors.  

Thirdly, this thesis presents an interest curve detection and description method: 

DICU. DICU is a comprehensive work that includes most of our contributions in the 

area of edge detection, scale-invariant corner detection, curve detection and line 

detection. Our contributions include the most important attributes required for these 

features with respect to robustness and efficiency. Beyond these contributions, 

DICU unifies the concept of edges, corners, lines and curves. Such unification 

makes DICU a multi-functional, efficient and robust feature detection algorithm. 

Our contributions in these areas outperform the state-of-the-art methodologies.  

 Image features have important roles in many computer vision applications, such 

as image registration, 3D reconstruction, object detection and video understanding. 
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In fact, many recently developed computer vision applications still use basic edge, 

corner, line or curve detection methods. Therefore, our research results contribute 

significant value when it comes to providing a clear and practical framework that 

can be used as guidance regarding these features.  

Curve features contain richer image geometry information than interest points. 

We utilize this advantage and design a novel curve chain matching algorithm which 

can benefit a wide range of object detection applications. Our curve chain matching 

solution has a unique advantage in that it can detect objects in a scale and rotation-

invariant manner. Compared with graph matching [35] or Hough voting [15] based 

object detection methods, curve chain matching achieves a very high efficiency. 

In our future work, we will investigate the usage of interest curve features for 

various computer vision applications such as object recognition. We believe interest 

curves will become a popular and an invaluable tool for computer vision and image 

processing applications. 
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