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ABSTRACT

Design with Nonlinear Constraints

Chengcheng Tang

Most modern industrial and architectural designs need to satisfy the requirements

of their targeted performance and respect the limitations of available fabrication

technologies. At the same time, they should reflect the artistic considerations and

personal taste of the designers, which cannot be simply formulated as optimization

goals with single best solutions. This thesis aims at a general, flexible yet efficient

computational framework for interactive creation, exploration and discovery of ser-

viceable, constructible, and stylish designs. By formulating nonlinear engineering

considerations as linear or quadratic expressions by introducing auxiliary variables,

the constrained space could be efficiently accessed by the proposed algorithm Guided

Projection, with the guidance of aesthetic formulations. The approach is introduced

through applications in different scenarios. Its effectiveness is demonstrated by exam-

ples that were difficult or even impossible to be computationally designed before. The

first application is the design of meshes under both geometric and static constraints,

including self-supporting polyhedral meshes that are not height fields. Then, with a

formulation bridging mesh-based and spline-based representations, the application is

extended to developable surfaces including origami with curved creases. Finally, gen-

eral approaches to extend hard constraints and soft energies are discussed, followed

by a concluding remark outlooking possible future studies.
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Chapter 1

Introduction

Modern computational design tools have helped designers to convert their ideas to

designs efficiently. To further ensure the functionality of the designs, and to fabri-

cate them with available technologies, many restrictions have to be respected. For

example, in modern freeform architectural designs, stylish doubly curved buildings

have to meet desired performance requirements, and be constructed with simple and

cost-effective methods. However, such a task is usually challenging, and it happens

often that a brilliant design might not work or can not be built, and one ends up with

a mediocre solution after many rounds of trial and error.

By incorporating restrictions while respecting aesthetics, this thesis aims to pro-

vide a computational platform for the creation and exploration of artistic architec-

tural and industrial designs that could be engineered and fabricated. The proposed

approach is demonstrated in different applications in the following chapters.

1.1 Form-finding with polyhedral meshes

This chapter introduces Guided Projection through form-finding with polyhedral

meshes. Polyhedral meshes are meshes with planar faces, which are important for

the construction of freeform surfaces, as planar panels can be easily manufactured.
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Special types of polyhedral meshes, such as circular meshes where each quadrilateral

face has a circumcircle, are important for the construction of multi-layer structures.

Besides geometric constraints, physical constraints such as static equilibrium under

appropriate material assumptions are also important for the servicebility of buildings.

To satisfy these considerations, this chapter demonstrates the application of the pro-

posed approach to freeform architectural designs under both geometric and physical

constraints.

1.2 Interactive design with developable surfaces

This chapter extends the hard constraints of Guided Projection from the planarity

of faces to the developability of surfaces. Developable surfaces are surfaces that

could be flattened to a plane without tearing, shearing or stretching. As they could

be created from sheet materials by bending and welding, they can also be easily

manufactured. Thus, they have been widely applied in industry and architecture, such

as ancient sails and hulls as well as several modern freeform architectural projects.

Developable surfaces also serve as the basic elements of several art creations like

origami. To provide an interactive interface for the design of developable surfaces,

this chapter extends the proposed approach for the design of multi-patch B-Spline

developable surfaces. This chapter also studies relevant properties including special

boundary conditions such as developable curved creases, and isometric manipulation

of developable surfaces.
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1.3 Further Extensions of Guided Projection

This chapter exemplifies more scenarios to demonstrate general procedures to extend

Guided Projection. For the extension of hard constraints defining the design spaces,

creating structures with repetitive elements is demonstrated. Besides, generalizing

soft energies serving as regularizers of the computation is exemplified through poly-

hedral patterns, which are meshes with planar faces arranged regularly. To find the

feasible regularity of polyhedral patterns, this chapter discusses the explicit construc-

tions approximating surfaces with different Gaussian curvatures, leading to affine

symmetry based regularizers applicable in the general case.

1.4 Conclusion and Outlook

After examining the framework of Guided Projection, including the hard constraints,

the guiding soft energies, the applications and several extensions, concluding remarks

are made in this chapter. It also provides a discussion of the future work and possible

further applications extending those mentioned in this thesis for general computa-

tional design approaches.
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Chapter 2

Formfinding with Polyhedral

Meshes

2.1 Introduction

The advance of computer aided design platforms and shape modeling systems have

provided designers and architects powerful tools to create and shape digital forms

and structures for industrial and architectural designs. While most of the available

computational solutions are well suited to handle shapes and appearances in solely

digital representations, much less could be said for the fabrication and functionality.

Therefore, the conceptualization of shapes and forms are decoupled from engineering

and manufacturing in most situations. Often, to bring industrial and architectural

designs to the real world with expectations of service criteria, many iterations of

concepts to validations have to be taken through trial and error.

More recently, there is a trend in computational design to incorporate consid-

erations related fabrication and functionality into the early phase of digital design,

facilitating the exploration of valid concepts. A major beneficiary of this movement

is the design of freeform architecture. In that field, the progress of fabrication-aware
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Figure 2.1: The project of Eiffel Tower Pavilions finished in 2014 features doubly
curved surfaces. Geometric computation has been applied here for the construction
of the facades from cylindrical glass panels, as well as the manufacture of curved steel
beams by cutting, bending and welding planar steel sheets. More details could be
found in [EKS+10] and [SLB+12].

design has opened up a new research direction called architectural geometry. Fun-

damental questions asked in architectural geometry include, how to tile a freeform

surface with planar panels or developable patches, how to assemble multi-layer struc-

tures with beams and nodes, and how to create statically sound vaults with given

materials such as stone or timber. Many research results in this field have been suc-

cessfully applied to a variety of modern landmark architectural projects. Examples

include the Eiffel Tower Pavilions in Paris shown in Figure 2.1 and the MLK Jr. Park

Stone Vault in Austin shown in Figure 2.2.

The success of those applications further requires a design framework for architects

to interactively explore meshes or structures that satisfy both geometric and physical

constraints. Equivalently, the goal is to incorporate more fabrication and engineering

related considerations into the design phase.
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Figure 2.2: This masonry structure designed by P. Block is going to be constructed
in Austin with local Texas limestone. It is self-supporting, as it can support its own
weight with compression force only without reinforcement.

This system should include the basic geometric constraints such as planarity of

faces. Besides simple geometric constraints, it should also be able to handle cer-

tain physical considerations, such as static equilibrium, or self-supporting. Both of

geometric and physical constraints should be satisfied simultaneously at interactive

rates. Further more, the system should be flexible enough to accommodate more con-

siderations, such as matching given connectivity with user prescribed boundaries, and

provide the possibility to create structures that have not been demonstrated before,

such as non-height field self-supporting structures.

Solving those challenges is the main focus of this chapter. The core technical

contribution is a general approach based on the proposed algorithm Guided Projec-

tion. This algorithm is applied to interactively create and edit structures satisfying

both geometric and physical constraints, e.g., polyhedral meshes in static equilibrium.

Most of the content presented here has been presented in [TSG+14].

To introduce guided projection as a general approach for computational design with
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nonlinear constraints, a few basic geometric and physical considerations are discussed

first in this chapter. Some of the capabilities are foundations for further extensions

which are demonstrated in the following chapters with enriched applications.

For example, the planarity condition is extended to developability constraint in

Chapter 3, which shares essentially the same underlying computational foundation.

In parallel with the extension of hard constraints like planarity, soft energies such

as fairness, which are discussed in greater details in the following paragraphs of the

chapter, is extended to more general definitions of regularities based on local symme-

tries.

2.2 Prior Work

There are two seemingly independent roots to trace back related previous studies.

On the one hand, design with geometric constraints in the modern freeform ar-

chitectural context has been studied in [LPW+06, LXW+11, YYPM11, ZTY+12,

BSWP12, POG13, DBD+13]. The work of [BSWP12] was even extended for an-

imation in [BML+14] following a similar framework. On the other hand, design

with physical constraints, especially static equilibrium, is a task for [Blo09, PBSH13,

dGAOD13, LPS+13]. They study the modeling of statically sound shapes, especially

self-supporting structures which are in static equilibrium with compressive forces only.

2.2.1 Constrained geometric designs

Polyhedral meshes are meshes with planar faces. Creating polyhedral meshes, espe-

cially planar quadrilateral (PQ) meshes, is considered one of the most fundamental

tasks in architectural geometry, as planar panels are the most cost-effective elements

available for surface paneling.
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The work of Y. Liu et al. [LPW+06] is an earlier project in architectural geometry,

which takes a combined approach with subdivision and planarity optimization to

create planar-quadrilateral meshes. During the optimization, ensuring each face to

be planar is done by requiring the sum of inner angles of each quadrilateral to be 2π,

which is highly nonlinear. Later on, Y. Yang et al. [YYPM11] develop the idea of

exploration of shape spaces to find variations of polyhedral meshes. The planarity

condition is replaced by a cubic constraint by keeping the two diagonals of a quad

touching each other.

A more recent work of R. Poranne et al. [POG13] introduces plane coordinates

and formulates the planarity condition as the requirement that face vertices should

satisfy the corresponding plane equations. With seemingly redundant variables and

increased number of constraints, the reduced nonlinearity improves the computational

efficiency as confirmed by the convergence rate. However, a staggered optimization

scheme utilized and decoupled treatments of variables at different stages sacrifice the

potential interactivity and system extensibility unfortunately.

Formulating constraints to be quadratic to enjoy the least amount of nonlinear-

ity is a well-known trick in numerical optimization and scientific computing, see

e.g.[BPC+10]. The efficiency of the quadratic formulation is further confirmed in

this chapter. Formulating constraints to be at most quadratic serves as a rule of

thumb for all the constraints. Those linear and quadratic constraints are incorpo-

rated in a flexible algorithm Guided Projection. The generality of this framework

makes it suitable for the purpose of interactive design, and extendible to handle other

desired constraints such static equilibrium.
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Figure 2.3: Thrust Network Analysis and Reciprocal Diagram [BO07]: a structure is
in static equilibrium if there exists a thrust network within the structure, representing
balanced internal forces. A classical and elegant way to ensure the existence of a
balanced thrust network, and thus the horizontal balance of the structure, is through
a valid reciprocal diagram of the top-view.

2.2.2 Static-aware design

In parallel with geometry, statics is a classical yet fast-developing field in the context

of computational design. Physical models have been created by architects to find

statically sound structures for more than a century, which was the origin of the

concept of form-finding. More recently, computation has further accelerated this

process by bringing the physical experiments to digital interactions.

A structure is in static equilibrium if there exists a valid thrust network within it,

which represents balanced internal forces. An elegant approach to ensure the existence

of a thrust network is through the help of top-views and reciprocal diagrams, which

is an approach that can be dated back to Maxwell [Max64]. For local horizontal force

balance at a vertex, the balanced forces form a closed polygon in the force diagram,

or the reciprocal. If the forces are balanced everywhere, there exists a reciprocal

diagram globally, and vice versa. Figure 2.3 presents an example. Such a top-view
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Figure 2.4: Vouga et al. [VHWP12] create self-supporting PQ meshes based on
remeshing along relative principal curvature directions, which are determined by the
reference shape and the associated Airy stress potential surface. As the connectiv-
ity is determined by the shape, there is no natural way to achieve interactivity as
remeshing is a detached procedure from shape modification. Also due to the lack of
user controllability over the mesh connectivity, boundary alignment cannot be easily
achieved, leading to the unnatural trimmed boundary shown in this image.

and reciprocal based method is very powerful when the structure is a height field, but

could be challenged otherwise.

2.2.3 Combining geometry with statics

There are few attempts at combining both the geometric considerations with the

static-aware designs. Among all of the previous studies, the closest work along this

direction is done by Vouga et al. [VHWP12], where self-supporting planar quadrilat-

eral meshes are also generated. They present an approach in which static equilibrium

and geometric considerations are treated at two independent stages. First, a self-

supporting triangular mesh is created without the consideration of face planarity

constraints. Next, a planar quadrilateral mesh is constructed by remeshing along

relative principal curvature line directions given by the reference triangle mesh with

respect to the associated Airy stress potential surface. Once a triangle mesh in static

equilibrium is created, the connectivity of the quadrilateral mesh is roughly deter-
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Figure 2.5: A self-supporting polyhedral mesh that is not a height field interactively
modeled and created with the proposed approach. This structure is self-supporting,
i.e., it can support its own weight with compression force only. It is also a polyhedral
mesh, where every face is planar. Please note that the boundaries are aligned on the
ground, matching the given boundaries with user specified connectivity of well-shaped
quads and triangles only.

mined and cannot be further adjusted. Further, matching a given boundary with

user prescribed connectivity is a notoriously difficult problem in engineering called

boundary alignment, as shown in Figure 2.4. This task is getting even more challeng-

ing where the connectivity of the mesh cannot be controlled. Therefore, when static

equilibrium and geometric constraints are required at the same time, the isolation of

the two stages sacrifices the controllability of mesh connectivity, boundary alignment,

as well as the interactivity of shape modeling.

2.3 Contributions and Overview

The following summarizes the functionalities of the proposed approach in the context

of form-finding with polyhedral meshes. Those capabilities are roughly categorized

to hard constraints like planarity and force equilibrium, soft energies taking care of
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Figure 2.6: A basic goal of the proposed approach is to relocate the vertices of a mesh
locally so that the faces are planar, while the modified shape is close to the original.
Planarity serves as a basic constraint extendible to further geometric requirements
such as developability, illustrated in Chapter3.

aesthetic or performance related considerations such as smoothness of the shape, as

well as interactive interfaces for users to freely modify and explore possible designs

within the constraint space. An example of the results is shown in Figure 2.5.

2.3.1 Geometric and physical constraints

Face planarization

A fundamental task of the proposed system, which is also a benchmark for shape

modeling with constraints, is to relocate the vertices of meshes so that every face

is planar, as shown in Figure 2.6. The planarity of faces is one of the most basic

geometric constraints, maintained throughout the computation of our system ubiqui-

tously. Its importance lies in both the applicable side as well as the algorithmic side.

In architectural construction of panelization, planar panels are the cheapest options

available, especially for the panels made from glass, wood and marbles. In compu-

tation, planarity could be enhanced together with offset properties, conic meshes or

circular meshes. In the next chapter, we shall also see how planarity could be applied

to further ensure developability of surfaces.
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Offset related properties

Figure 2.7: Special types of polyhedral meshes have constant offset polyhedral
meshes. This property is especially important in architectural application for multi-
layer constructions. Circular meshes, i.e., PQ meshes with faces inscribed to circles
is important in this regard.

For the purpose of thermal insulation and structural soundness, many facades

need to be constructed with multi-layer structures. For the computational design

of those solutions, there is usually a further need to design two or more polyhedral

meshes with parallel faces. Whilst layers of meshes could be all integrated into the

computation, there is a more elegant way based on discrete differential geometry. It

would not be difficult to derive that special types of polyhedral meshes, especially

PQ meshes, enjoy the property of possessing constant face or vertex offsets. With

these properties available, the computation could be done solely on a single layer of

principal meshes, circular meshes, or conic meshes.

As shown in Figure 2.7, circular meshes are PQ meshes where every face is in-

scribed to a circum-circle, and conic meshes are those where every vertex star defines

a right cone tangential to all the neighboring faces of that vertex. Both the circularity

condition and conic condition could be incorporated into the proposed system in a

uniform manner.
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Boundary alignment

Figure 2.8: By incorporating given curves as boundary conditions, the task of bound-
ary alignment, i.e., matching a given curve with desired mesh connectivity, could be
achieved together with planarity, among other constraints. This has been considered
a very challenging task from the perspective of engineering.

As illustrated in Figure 2.8, in architectural freeform design, a challenging task is

to match a polyhedral mesh with desired connectivity with a given boundary curve,

usually required by the limitation of the construction site, or the aesthetic consider-

ations of the architect. By incorporating vertex-curve gliding conditions, boundary

alignment could be incorporated during the computation as a common condition

similar to other constraints in an efficient manner.

Static equilibrium

Figure 2.9: A basic physical constraint the system could handle is static equilibrium.
From an input model (left), by relocating the vertices (middle) and finding the proper
axial forces on the beams, a balanced thrust network is obtained (right).

As the basic mathematic formulations share great similarities, the proposed ap-
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proach is naturally extended to handling physical constraints, and in particular, static

equilibrium, as illustrated in Figure 2.9. By searching for the balancing forces and ad-

justing the proper locations of nodes, thrust networks could be brought to a balanced

state. Beyond reproducing similar results as the existing approach, a novel capability

of the proposed system is the capability to design self-supporting structures that are

not height fields, namely, possessing overhanging parts that folds back to itself.

Computation with both geometric and static constraints

With proper adjustment of magnitude, multiple constraints can be taken care of

simultaneously. As one of the most interesting examples shown in this chapter, com-

bining the geometric considerations such as planarity of faces, together with physical

constraints, e.g., self-supporting properties, creates polyhedral meshes in balance.

Naturally, the novel non-height field self-supporting structure possessing overhanging

part can also be realized with planar quads as well.

Other constraints

Incorporating target vertex locations as further conditions achieves handle-driven

deformation within the unified framework, which further provides a user an intuitive

tool to explore different solutions within the constraint manifold.

The constraints mentioned above are commonly required, but they are also only

a small subset of all the constraints the proposed system could incorporate. Multiple

other quantities could be easily formulated as well, such as the lengths of edges, the

areas of faces. Besides equality constraints, inequality constraints could be converted

to equalities with auxiliary variables, as shown in the following discussions. Further,

global quantities such as the enclosed volume can also be encoded as constraints.
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Figure 2.10: Global quantities such as the total length of beams, the sum of areas of
panels as well as enclosed volumes, shown in this example, could be incorporated in
the proposed approach.

For example, in Figure 2.10, the total volume of a polyhedral mesh with a square

base is controlled. With some over simplified and reasonable assumptions, the cost

of construction can also be measured by geometric quantities, and respected during

the computation of the proposed system as well.

2.3.2 Soft energies

Figure 2.11: Simple aesthetic considerations, such as fairness, the discrete notion
of smoothness could be utilized to find a polyhedral mesh with better appearances
(right), among many solutions which satisfy solely the planarity constraints, such as
the one shown on the left.

Among the solutions that satisfy the hard constraints, usually given by consider-

ations of fabrications, there is still enough degrees of freedom to be taken advantage

of to find solutions that perform better in certain criteria, for example, the overall
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appearance or smoothness, as demonstrated in Figure 2.11. By encoding those con-

siderations as soft energies, they could give the computation towards a result which

not only satisfies the requirements of the desired hard constraints, but at the same

time achieves the desired properties.

2.3.3 User interactions

Subdivision based multi-resolutional approach

In conjunction with a typical graphics application, the proposed approach could be

combined with subdivision. As shown in Figure 2.12, a user could control the coarse

control polygon, and the computation is applied consistently to a finely subdivided

result. Each time, the computation starts from the unconstrained subdivided mesh,

but as the computation is guided by consistent choices of soft energies, the intended

modifications on the control structure are reflected on the final results after compu-

tation. Another example is shown in Figure 2.14.

Figure 2.12: Control structures and subdivided mesh for the consistent re-
initialization of final result. Please note that the boundaries are subdivided in a
way similar to B-spline curves, so they do not shrink.
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Handle driven manipulation

Another graphics deformation tool is handle-driven manipulation. This function com-

monly exists in commercially available shape modelers. It allows a user manipulate

the shape of a model by dragging selected handles of the mesh, usually vertices, as

shown in Figure 2.13. When the handles are relocated by the user, the displacement

is intuitively propagated to a nearby region for smooth and intuitive deformation.

With the proposed approach, target vertex handle location or face orientation could

be regarded as extra hard constraints to be incorporated to the system and handled

in a similar manner. As the other hard constraints are kept together with the encoded

handle hints, the deformed meshes also satisfy the desired constraints.

Figure 2.13: Incorporating target vertex locations as additional conditions achieves
handle-driven deformation within the unified framework. It further provides a user
an intuitive tool to explore different solutions within the constraint manifold.

2.4 Algorithms and Results

2.4.1 Iterative algorithm: Guided Projection

The proposed algorithm, Guided Projection, is intended to be the foundation for

the interactive design. The problem could be formulated as solving a collection of

hard constraints, including geometric ones such as planarity, physical ones such as
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force equilibrium, as well as other customized constraints provided by the user. As

the collections of hard constraints are usually under-determined, there are generally

enough degrees of freedom to find solutions that satisfy certain soft targets better,

such as fairness, or smoothness of the designed surfaces. Most importantly, all of the

considerations should be achieved in interactive rates on an ordinary platform.

The key ideas are quite simple. First, by introducing auxiliary variables, the

constraints are at most quadratic, and each equation only involves a few variables.

Second, the system of constraints are solved together with fairness energies as reg-

ularizers. However, instead of solving a constrained optimization problem, the soft

energies such as fairness terms are treated as guidelines during the computation, and

not optimization goals. In other words, the goal is not to find the minimizer of certain

energies globally, but rather a reasonably good one in a solution space. Therefore, the

algorithm is named as Guided Projection: projecting onto the design space guided

by soft energies.

Guided Projection usually starts with a set of initial variables as well as a sys-

tem of quadratic equations, usually under-determined and inconsistent due to inter-

dependencies, as redundant constraints are allowed.

ψi(x) =
1

2
xTHix + bTi x + ci = 0, i = 1, . . . , N, (2.1)

for an iteration starting from xk, we linearize the set of quadratic equations by taking

the first order Taylor expansions, or geometrically, approximating each quadratic

surface by a hyper-plane.

ψi(x) ≈ ψi(x
k) +∇ψi(xk)(x− xk), i = 1, . . . , N. (2.2)
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Figure 2.14: Starting with a control structure and an initial subdivided surface
(top-left), user manipulation of the control structure which leads deformed initial
structure after direct subdivision. When variables are properly initialized based on the
subdivided mesh, e.g., force densities are properly initialized, the iterative procedure
of Guided Projection brings the structure to a polyhedral mesh in force balance,
matching the boundaries prescribed.

Written in the matrix form, it is:

Hx = r, H =


∇ϕ1(xn)

T

...

∇ϕN (xn)T

, r =


−ϕ1(xn) +∇ϕ1(xn)

Txn
...

−ϕN (xn) +∇ϕN (xn)Txn

. (2.3)

The linearized constraints are solved together with linear equations encoding soft

energies. Those soft energy terms reflect the desired but not mandatory considerations

like fairness. While the linearized constraints are given constant high weights, the

coefficients for the soft energy terms are reduced until vanishing through out the

computation to ensure the hard constraints are truly respected.

For two reasons, a small proximity term is added: first, the system of linear

equations may be under-determined, adding this term prevents the rank deficiency;
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second, this term prevents the solution drifting away from the previous iterations.

‖Hx− r‖2 + ‖ε(Kx− s)‖2 + ‖δ(x− xk)‖2 → min . (2.4)

This procedure is repeated with less emphasis on soft energies, and eventually solving

a system with only hard constraints and the proximity term, to ensure that the hard

constraints are satisfied to a high precision.

2.4.2 Variables and hard constraints

Following the introduction of the capabilities of the proposed approach, details on the

formulations of the hard constraints as well as the energy terms are given below. As

the variables kept during the computation inherently coupled together with the hard

constraints, due to the fact that redundant variables are used to keep the constraints

at most quadratic, therefore, they are introduced together in the section. For example,

while the shape of a meshM = (V,E, F ) could be retrieved by the information on the

connectivities together with the vertex locations vi, i = 1, . . . , ‖V ‖ as 3‖V ‖ variables,

we add extra face normals to facilitate the planarity requirement of each face with

extra 3‖F‖ variables. More auxiliary are introduced when the related hard constraints

are incorporated into the system of equations to be solved.

Planarity

For face planarity, we introduce a face normal nf for every face. As shown in Fig-

ure 2.15, the planarity of each quad is guaranteed by the orthogonality of the face

normal and its adjacent face edges:

(vi − vi−1) · nf = 0. (2.5)
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Figure 2.15: Face normals are used to ensure planarity by its orthogonality to each
face edge. They are treated as variables during the computation, updated at the same
time as the vertices.

The orthogonality conditions are required on all the face edges. Such seemingly

redundancy helps us to treat all the variables equally, and to make the solver more

symmetric with respect to each vertex. Here, we allow redundant constraints, and re-

quire such orthogonality relations for all the face edges explicitly. In fact, we can leave

out one of the edges, as it would automatically satisfy the orthogonality condition

if others are all satisfied. However, we still require all the orthogonality constraints

here, as such redundancy can ensure all the vertices are equally treated.

Circularity

As mentioned in the overview, possessing offset property is favored for the construc-

tion of multi-layer structures. Two typical polyhedral meshes with constant offsets

are circular meshes and conic meshes. For circular meshes, every face needs to be

inscribed to a circum-circle. Thus, for this circularity condition, we further introduce

the center of each circle as shown in Figure 2.16, and require the face vertices to keep

the same distance from the circle center:

‖vi − c‖2 = ‖vj − c‖2. (2.6)
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Figure 2.16: Circularity: on the top of planarity, the center of each circle is introduced,
and every face vertex is required to keep the same distance from the center.

This condition is equivalent to requiring that the chord is orthogonal with respect

to the apothem, the connecting line between the center of the circle and the mid-point

of the chord: (
vi + vj

2
− c

)
· (vi + vj) = 0. (2.7)

With similar consideration, conic condition could be formulated as quadratic equa-

tions as well.

Edge lengths, face areas, and enclosed volumes

The lengths of edges as well as the areas of faces can also be easily encoded as

quadratic equations. Incorporating those quantities could be further combined to

the considerations of cost, as well as other measurements such as the total enclosed

volumes.

For every edge connecting two vertices vi and vj, the edge length lij is simply

l2ij = (vi − vj) · (vi − vj). (2.8)

For a face fk with consistently ordered face vertices (v1
k,v

2
k, . . . ,v

|fk|
k ), the vectorial
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area ak is:

ak =
1

2

|fk|∑
i=1

vik × vi+1
k (2.9)

where the index in the sum is taken in modulo |fk|. The associated scalar area is

simply the norm of this vectorial quantity:

a2k = ak · ak. (2.10)

With the help of vectorial areas, the enclosed volume V of a mesh, defined over

the horizontal x, y-plane, is simply the sum of the product of the z-component of the

vectorial area times the average height of the column:

V =

|F |∑
k=1

(ak · e3)

 1

|fk|

|fk|∑
i=1

vik · e3

 . (2.11)

With a proper orientation and placement of the mesh, a downward oriented face over

the horizontal plane contributes negatively to the total volume. Therefore, when there

is any overlapping part along the vertical direction, the extra volume is canceled out,

which renders this definition suitable for structures even with overhanging parts, as

shown in Figure 2.17.

However, maintaining or controlling such global quantities involves too many vari-

ables in a single equation, which leads to significantly denser linear systems and much

slower computational speeds.

Static equilibrium

As with geometric constraints, physical requirements can be similarly formulated.

The force balance condition requires that the resultant force at each vertex balances
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Figure 2.17: Total volume control: by increasing the total volume or area while
maintaining face planarity and mesh fairness, polyhedral meshes could be inflated
like bubbles.

Figure 2.18: Force balance: At every vertex, the resultant force from adjacent beams
should balance the local load, which are usually constituted of the weights of adjacent
panels or adjacent beams.

the vertical load there, as shown in Figure 2.18. In our assumption, the loads are

contributed from adjacent faces or beams. For each edge, we define a so called force

density wij, force per unit length. Based on selected material and predetermined

cross section, the line mass density of beams, defined as mass per unit length, are

regarded as given constant ρe. Similarly, for faces with constant thickness, the mass

of panels could be computed based on the area and the mass per unit area given as

ρf . Figure 2.19 shows a result where the loads are proportional to panel areas. Then
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Figure 2.19: A non-height field self-supporting structure where the load on each vertex
is assumed to be proportional to the summed areas of its neighboring faces.

the force balance condition is also quadratic. Similarly, face areas and edge lengths

can be written as quadratic terms as well:

∑
j: vivj∈E

wij(vj − vi) =


0

0

1


 ∑
j: vivj∈E

1

2
ρelij +

∑
k: vi∈fk

ρfak
|fk|

 . (2.12)

Here, the edge lengths lij are kept as variables based on Equation 2.8, so are face

areas ak based on Equation 2.9 and Equation 2.10. Based on our assumptions, ρe

and ρf are regarded as constants. However, it would not be difficult to keep them as

variables as well.

Inequalities

For inequality conditions, we introduce auxiliary variables, and convert them to equal-

ity conditions. For example, the self-supporting condition allows only compression
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Figure 2.20: Screen shots of interactive design with planarity and statics based on
subdivision modeling, coupled with guided projection onto the constraint manifold.
Note that our method provides perfect user-controlled boundary interpolation: Partly
the boundary is a mesh polyline, partly the boundary consists of diagonals. Please
also note that in contrast to the mesh in static equilibrium with both tension and
compression (bottom-left), self-supporting allows only compression, and prevents the
top of the structure further leaning forward (bottom-right).

forces, and the force densities should all be nonnegative. To satisfy this, we simply

require them to be the squares of the dummy variables. An effect of those inequality

constraints are demonstrated in Figure 2.20.

2.4.3 Soft Energies

Among the solutions that satisfy the strictly required hard constraints, other desired

properties may be further required, such as aesthetics. Though some of those con-

siderations are quite subjective, some could be extracted and formulated easily, as

introduced below.

Vertex fairness

A basic measurement of aesthetics would be the smoothness of the shape, or discretely,

the fairness. For triangle meshes, a commonly used smoothness term is the Laplacian
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smoothness, which requires each vertex to be close to the average of its neighboring

vertices. For a quadrilateral mesh, there is a more natural way to define fairness

based on the two families of polylines by ensuring every polyline is smooth discretely,

as demonstrated in Figure 2.21.

Figure 2.21: To ensure the modeled shape is discretely “smooth”, fairness for quad
meshes could be required so that each vertex is close to the mid-point of its two
neighbors on every polyline.

For each vertex on a polyline, we require it to be close to the mid-point of its

two neighbors. This requirement is applicable for all valence-4 vertices, as they are

regular crossing of two polylines. For a vertex vi with four neighboring vertices

v̂ki , k = 1, . . . , 4, this condition reads:

vi ≈
1

2

(
v̂1
i + v̂3

i

)
≈ 1

2

(
v̂2
i + v̂4

i

)
(2.13)

Vertices with valences other than 4 may not be regarded as regular crossings of

two polylines, they are required to be close to the centroid of their one ring ver-

tex neighborhoods, which is similar to the smoothing based on the graph Laplacian

operator:

vi ≈
1

n

∑
j: vivj∈E

vj. (2.14)

As demonstrated in Figure 2.22, fairness has a strong effects in controlling the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.22: Exploring the design space and experiencing its limitations: Firstly
we observe that polyhedral meshes filling the same boundary (a) and having different
combinatorics, generally lead to similar shapes, see (b), (c), (d). User interaction may
yield meshes which either have sharp features, such as (e), or are skewed, such as (f),
or both (g). Subsequent optimization for equilibrium forces acts like smoothing and
reconstructs a dome-like shape apparently largely independent of the combinatorics,
see (h).

feasible shapes, even across different connectivities. This provides advantages that

the polyhedral meshes created are less sensitive to the choice of combinatorics. At

the same time, this also restricts the design space to a limited range, which prevents

the idea of shape space exploration to be performed in very meaningful ways.

Vertex tangential fairness

As vertex fairness straightens every polyline to possess equally distributed vertices,

it introduces the side effects of mesh flattening. As shown in Figure 2.23, to prevent

such over-smoothing, fairness could be applied only along the tangential direction as

vertex tangential fairness:

tTi,1

tTi,2

vi ≈
1

2

tTi,1

tTi,2

(v̂1
i + v̂3

i

)
≈ 1

2

tTi,1

tTi,2

(v̂2
i + v̂4

i

)
. (2.15)

Here, tTi,1 and tTi,2 are two orthogonal unit tangent vectors computed from the

approximated vertex normal of vi at the beginning of each iteration. As only the
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geodesic curvature is minimized, while the normal curvature is left intact, this energy

is feature preserving. Similar to vertex fairness energy, to apply tangential vertex

fairness energy to vertices with valences other than 4, it requires that:

vi ≈
1

n

tTi,1

tTi,2

 ∑
j: vivj∈E

vj. (2.16)

Figure 2.23: Tangential fairness only affects the geodesic portion of the discrete
curvature of the polylines, which is feature preserving as it no longer have the tendency
to flatten meshes as the unmodified vertex based fairness energy.

Face normal fairness

Similar to the fairness of vertices, the regularity of the face normals, or the Gauss

images are also important measurements of the aesthetics of the meshes. The fairness

energy of the face normals on the Gaussian sphere, or the closeness of neighboring

face normals. For a general quadrilateral mesh, let nk be the normal of a face, and

n̂ik, i = 1, . . . , 4 be the normals of adjacent faces, then the tangential polyline fairness

is applicable for those face normals:

tTi,1

tTi,2

ni ≈
1

2

tTi,1

tTi,2

(n̂1
i + n̂3

i

)
≈ 1

2

tTi,1

tTi,2

(n̂2
i + n̂4

i

)
. (2.17)
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As the face normals are unit vectors, there is no need to differentiate tangential face

normal fairness from face normal fairness.

Figure 2.24: Top: the construction of the freeform roof for the Islamic Department
in Louvre museum, Paris. The surface is rationalized as a hybrid mesh consisting pla-
nar quadrilaterals and triangles. Bottom: visualization of normal variations around
vertices for the original mesh (left), and results after 2 and 5 iterations of face normal
fairing are applied.

Figure 2.24 illustrates a typical usage of face normal fairing applied to a recent

architectural design, the freeform roof of the Islamic Department of the Louvre mu-

seum resembling a flying carpet. The architectural design is rationalized as a hybrid

mesh consisting both quads and triangles. For this original design, the vertices of

the mesh have fixed horizontal coordinates according to a grid layout to simplify the

computational task. The reduction of the degrees of freedom results in undesirable

non-smooth appearances noticeable in the final construction. With the proposed ap-

proach, this restriction could be easily circumvented, as the vertex locations are fully

adjustable when the normal fairness, face planarity and closeness to reference surfaces
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Figure 2.25: Equal face area as soft constraints. From left to right: a planar
hexagon mesh has a better face area distribution while the planarity of each face is
maintained. This is done by computing the average face area prior to each iteration,
and then require each face to have a face area that is close to that average.

are aimed simultaneously. Starting with the original mesh (left), iterations of guided

projection reduce the variations of face normals whilst keeping every quad planar.

Equal face areas, equal edge lengths

In engineering, panels with similar sizes and beams with lengths fallen into certain

ranges are desired. By pre-computing the average edge length of the mesh, or the

average face area prior to each iteration, the distribution of edge lengths or face areas

could become more even by requiring every face area or every edge length to be similar

to the average quantity. Figure 2.25 shows such an example.

More soft energies

More soft energies could be devised according to specific needs. For example, in

Figure 2.26, faces are encouraged to be closer to parallelograms. In Figure 2.27, the

concept of fairness is extended for the axial forces, to optimize the structure towards

a evener distribution of forces.

The soft energies presented above are not exhaustive. In the next chapters, a

family of soft energies to regularize more general polyhedral surfaces are introduced
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(a) (b)

Figure 2.26: By requiring each face to be closer to parallelograms, the effect of com-
binatorics on the shape is more prominent, and the features start to emerge.

Figure 2.27: Force fairness encourages beams to have similar stresses. It improves
the static performance of the structures as the maximal strains are reduced.

based on local symmetries.

2.4.4 Initialization

As shown in Figure 2.28, a basic task of the initialization is to have a reasonable

starting point to run the guided projection algorithm. For the enumeration of initial

connectivity, the work of Chi-Han is used. For static equilibrium, the forces are

initialized in a least squares sense. For self-supporting structures, initial force densities

are computed by the method of [Liu10], as a bounded least squares problem.
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Figure 2.28: Initialization of a polyhedral mesh satisfying prescribed boundary con-
ditions: starting with a smooth mesh without planar face which has its connectivity
enumerated. The vertices are raised up while fairness, top-view closeness are required
at the same time (middle), then further modifications could be used afterwards.

2.5 Discussion

2.5.1 Comparisons with previous methods

Thanks to the simplified algebraic structures based on quadratic formulation and a

regularized Newton-like method, guided projection is highly efficient in computation.

The advantage over state of the art methods [BSWP12] and [DBD+13] are tested

in the convergence analysis of planarity optimization shown in Figure 2.29 obvious

. More comparisons of these two methods against previous methods could be found

in [DBD+13], which has already demonstrated great improvement over the methods

before it.

With faster speed in computation, interactive manipulation could be achieved

without requiring high cost hardware, and most of the examples demonstrated in

this chapter could be interactively manipulated in a single core implementation of an

ordinary laptop.

2.5.2 Implementation details

A prototypical system is implemented in C++ on Linux with QtCreator. The library

QGLViewer is used for the visualization and user interactions, and the linear algebra
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Figure 2.29: Convergence plot of planarity against computational time, it confirms
the efficiency of Guided Projection. Here, the planarity is measured as distance
of diagonals normalized by the average edge length per face. A: S. Bouaziz et al.
[BSWP12], B: B. Deng et al. [DBD+13], C: Guided Projection with cubic constraints,
D: Guided Projection with quadratic constraints.
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manipulations is done with the help of the libraries Eigen and SuiteSparse. The half-

edge mesh data structure is based on OpenMesh. Tests running with Intel® Core�

i5-3320M CPU [2.60GHz and 8G RAM] achieve interactive rates for typical examples

shown in this thesis. More details of the timing could be found in [TSG+14].

2.6 Conclusion

This chapter introduces the algorithm Guided Projection, including the hard con-

straints, the soft energies, and the iterative procedure. Guided Projection could be

applied to a variety of scenarios throughout the interactive design phase. As a ba-

sic and benchmark task, it could be used to planarize the faces of given meshes in

a highly efficient manner. Besides geometric constraints, static equilibrium could

also be achieved, independently or simultaneously, as another example shown in Fig-

ure 2.30.

Beyond local requirements, global quantities could be similarly constrained, such

as total area or volume, as they can also be easily expressed through quadratic terms.

Unfortunately, such expressions are usually dense and may make the computation

slower. One possible future direction to look into is how to accelerate the computa-

tion by splitting the sparse terms from the dense ones, possibly through Alternating

Direction Method of Multipliers (ADMM).

For general purposes, the efficiency of Guided Projection is demonstrated through

examples including planarization of polyhedral meshes, as well as interactive design

of meshes which are constrained by both geometric constraints and static equilibrium

requirements. Based on the content presented in this chapter, in the next chapters,

more extensions and related applications are further explored, including the design

of developable surfaces and polyhedral patterns.
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Figure 2.30: Another architectural freeform design “greenhouse” in force balance
panelized by planar glass faces filling out a given boundary on the ground.
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Chapter 3

Interactive Design of Developable

Surfaces

3.1 Introduction

The previous chapter introduces Guided Projection as a basic framework of computa-

tional design with non-linear constraints. The constraints discussed previously include

geometric ones like planarity of faces and physical ones such as static equilibrium.

This chapter focuses on the extension of the geometric properties, from polyhedral

meshes to developable surfaces, which are surfaces that could be flattened to a plane

without tearing and stretching. The content presented here is based on [TBWP].

Figure 3.1 presents two examples with developable surfaces.

To extend polyhedral meshes to developable surfaces, the planarity constraints

are inherited by and generalized to developability and several associated conditions.

The proposed extension has significances for both the technical side as well as the

practical side.

On the technical side, planarity of faces is a discrete concept by definition. On the

other hand, the developability is a property defined on general continuous surface.
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This implies that achieving this condition could be a problem with infinite dimensions

for smooth surfaces.

A key contribution presented in this chapter is the formulation of the developabil-

ity constraint. In addition, the associated computational approach is proposed based

on Guided Projection introduced in the previous chapter. By combining the benefits

of spline based representations and mesh based constraint formulations, the infinite

dimensional problem is transformed to a finite one. With the proposed formulation,

the constrained surface is provably developable everywhere up to numerical precision

without suffering discretization errors.

Figure 3.1: This chapter extends the approach of guided projection presented in
the previous chapter to a general geometric modeling framework for developable sur-
faces. The discrete notion of face planarity for polyhedral meshes is extended to the
developability which is property of contiuous surfaces. Such a generalized approach
provides new methods for modeling and approximation with developable surfaces, as
well as creating curved origami designs. The bunny at left shows approximation re-
sult with composite piecewise-developables of references surfaces. The curved origami
on the right shows an interactive design inspired by the paper sculptures obtained
by folding a sheet of paper along concentric rings, which go back to 1927 Bauhaus
classes.
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Figure 3.2: Left: boat builders in Alexandria are building the doubly curved hull
by bending wooden strips, which is an ancient method that is still widely used to
shape complex geometry. Right: David Huffman, a famous electrical engineer who
had investigated the curvature behavior of curved folding [Huf76], and his Lantern
featuring curved folding creases.

In practice, developable surfaces have a wide range of applications in both in-

dustry and architecture, as well as purely artistic designs. For industrial fabrication

and architectural construction, developable surfaces are much simpler to manufacture

compared with doubly curved surfaces. They could be processed by cutting, bending

and merging sheet materials such as glass, metal, paper and wood. Besides, when

developable panels, referred to as single curved panels by architects, are constructed

by molding, the molds can be more efficiently reused compared with doubly curved

panels.

The effectiveness of the application of developable surfaces has been demonstrated

and proved throughout history. An example is lofting the hull of ships and boats. Ir is

an old topic that has been studied empirically over several millennia through different

civilizations. Despite originating from different geographic regions, they have invented

similar approaches to construct doubly curved boat hulls with wooden strips. As
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illustrated in Figure 3.2, boat builders in Alexandria, Egypt are paneling the doubly

curved hull of a boat using wooden developable strips by traditional techniques.

The boundary between the practical applications and the artistic creations has

never been restrictively defined. From an artistic point of view, origami is a field with

a long and rich history that could be dated back to three centuries ago in Japan. It yet

still being vividly developed with novel techniques that have been advanced greatly

in the past three decades, especially through the recent invention of curved folding

and novel tessellations. Most of the classical origami designs are created with straight

line folds. David Huffman, an electrical engineer who is famous for his invention of

the Huffman code, is arguably the first person who had studied origami featuring

curved folds. A photo of David Huffman and his remarkable invention of the lantern

with curved folds is shown in Figure 3.2, right. An architectural example with curved

folds is shown in Figure 3.3. Folding a piece of paper into a nicely shaped object

in space without tearing or stretching implies an isometric deformation between the

plane and the surface. Such a surface is constituted with several smooth developable

patches, merged along developable creases that satisfy special boundary conditions.

Both the special boundary conditions for curved creases and the constraints to achieve

isometric deformation are studied in this chapter.

3.2 Prior Work

There are many previous studies related to developable surfaces. In general, with

different motivations, the geometry processing and the computer aided design com-

munities have both studied the modeling of developable surfaces. While the former

favors mesh based methods for flexibility and interactivity, the latter usually takes

spline based approaches for higher precision. The advantages and shortcomings of
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Figure 3.3: The “Arum” surface was designed by Zaha Hadid Architects in cooper-
ation with Robofold for the 2012 Venice Biennale. The “peddles” are manufactured
by folding metal sheets along curved creases by robots.

them have been very challenging to harmonize. In this section, the mesh based ap-

proaches are introduced first, followed by spline based methods. This short review

also leads to the proposed methodology which combines the advantages of both these

two families of methods, which is discussed in details in the next sections.

3.2.1 Mesh based approaches

Motivated by artistic creations such as curved origami designs (for a foundational

theoretical study, see the paper by Huffman [Huf76]), there are many previous stud-

ies related to computational origami or paper sculptures. Most of them use meshes

to represent discretized surfaces that are approximately developable, for example,

[ML12], [MS04], [Tac10], [TM12] and [WC11]. The work of Kilian et al. [KFC+08]

studies the digital reconstruction of curved origami based on laser scans. Mitani

and Igarashi [MI11] propose an approach for creating curved origami designs by re-

flecting a single developable surface, with special types of curved folds. Demaine et
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Figure 3.4: Liu et al. [LPW+06] created developable strips by consecutive subdivid-
ing and planarizing quadrilateral strips. Besides a highly nonlinear formulation for
the planarity condition, such a purely mesh based formulation also cannot guarantee
precise developability of a smooth surface.

al. [DDH+11] and Dias et al. [DDMS12] present several interesting examples which

are also studied in this chapter. There are software packages developed to produce

special kinds of curved origami designs. One such program is developed by Mitani

[Mit12, MI11], which can be used to create rotational symmetric folding objects or

curved folding objects by consecutive reflections.

As a natural extension of planar quadrilateral meshes, Liu et al. [LPW+06] pro-

pose a method to create developable strips by consecutively subdividing and planariz-

ing quadrilateral strips, as shown in Figure 3.4. Besides a highly nonlinear formulation

for the planarity condition, a purely mesh based formulation cannot guarantee precise

developability of a smooth surface. Solomon et al. [SVWG12] present an approach to

achieve the developability of surfaces and curved creases by maintaining the isometry

between the surfaces in space and plane as shown in Figure 3.5. As this approach

utilizes subdivision and optimization as well, it can only handle limited number of

rulings, similar to other mesh based approaches. Besides sacrificing computational

efficiency, the rulings and curved creases are fixed during manipulation, restricting
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Figure 3.5: Solomon et al. [SVWG12] use developments to keep the developability
conditions across creases. This approach utilizes subdivision in combination with
optimization, similar to [LPW+06], with extra isometric constraints.

the variation of the ruling lines, therefore reducing the deformation flexibility of de-

velopable surfaces.

3.2.2 Spline based representations

The study of spline based developable surfaces has a long history, but it remains

a fundamental challenge in the CAGD community. Compared with representations

with discretized surfaces, spline based approaches can generate arbitrarily smooth

surfaces, but the developability is difficult to achieve. These approaches can be fur-

ther classified: representing the spline surface by primal variables (allowing users to

work with the control vertices) directly, or creating developable surfaces through dual

variables (allowing users to work with the control tangent planes).

Primal based approaches are intuitive to work with, but the constraints of the

developability conditions are highly non-linear. This has resulted in them being re-
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Figure 3.6: Aumann et al. [Aum91, Aum03] proposes constructive approaches to
create simple developable surfaces like cones or cylinders based on Bézier (polynomial)
patches with one given boundary curve.

garded as too challenging to solve in practice for general cases. Therefore, only special

types of surfaces have been created through explicit constructions based on primal

variables. Lang and Röschel [LR92] give a theoretical investigation of a system of

cubic equations for the developability conditions of rational Bézier (polynomial) sur-

faces for all degrees. Maekawa and Chalfant [MC98] propose a method to create a

very restricted type of spline developables: first, requiring two boundary curves of

a developable patch to lie on parallel planes; further, the second planar curve has

very limited degrees of freedom for further adjusting the shape of the surface. G. Au-

mann [Aum91], [Aum03] studies the special types of developable Bézier (polynomial)

surfaces based on explicit constructions with one given boundary curve, as shown in

Figure 3.6. In Developable Bézier Function Surface[2002], Chen and Wang attempt

to create developable surfaces based on polynomial functions whose graphs are de-

velopable. However, surfaces of polynomial functions do not have singularities and

therefore cannot represent general developable surfaces except cylinders. Hence, the

conclusions of this paper is unfortunately challenged. Chu and Séquin [CS02] discuss

the developability conditions of spline surfaces and derive explicit forms of the devel-

opability constraints for surfaces up to degree 3. Chu and Chen [CC04] continue this

study and derive the number of degrees of freedom available for geometric modeling.
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Figure 3.7: Left: Pottmann et al. [PF95] propose a method to generate developable
surfaces by the movement of tangent planes, which can be regarded as points in the
dual space. Right: Such dual based approaches enjoy developability automatically,
but they are unintuitive to work with, and prone to generate singularities.

Based on the ideas of [LPW+06], Pottmann et al. [PSB+08] use splines for modeling

developable surfaces to achieve approximated developability based on optimization,

using integrals for the target functionals.

In contrast to primal based approaches, dual based methods create surfaces by the

movement of planes in space, see, e.g., [PF95]. While the developability is achieved

automatically with such approaches, the undefinedness of the boundary curves, the

unintuitive manipulation interface, and the uncontrollability of singularities prevent

their applicability for most design scenarios, see Figure 3.7 for example.

As demonstrated below, the proposed approach takes the advantages of both the

preciseness of the spline based approach as well as the flexibility of the mesh based

approach. The spline based representation is utilized for surface evaluation, and the

constraints are kept through a mesh like discrete structure in the meanwhile.
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m = 2, k = 1

m = 3, k = 2

Figure 3.8: Developables decompose into planar pieces and ruled patches. Curvature
continuity is relevant for surface quality since it becomes visible in reflection patterns.
The right hand images show spline developables of varying degree m and smoothness
Ck.

3.3 Developability Conditions

3.3.1 Simple developable patches

Each developable surface can be decomposed to simple developable ruled surfaces

and planar patches, as demonstrated in Figure 3.8, left. In the following discussions,

simple developable patches are introduced first, followed by multi-patches with or

without special boundary conditions.

In order to create large patches of composite developable surfaces, a foundational

study should be performed on the modeling of a single developable patch. Every

simple developable patchs is a ruled surface patch. A ruled surface contains a family

of lines and it can be parametrized by connecting two boundary curves a(u) and b(u):

s(u, v) = (1− v)a(u) + vb(u). (3.1)

See Figure 3.9 for example.
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Figure 3.9: A ruled surface (right) could be represented and parametrized by con-
necting two curves (left). It is developable if and only if each ruling defines a common
tangent plane shared by all its points.

A ruled surface is developable if and only if each ruling defines a common tangent

plane shared by its points. Alternatively, for any given u, the unit surface normal

n(u, v) vectors are the same for all v. As the tangent planes on each ruling interpolate

the tangent planes of the curve points, the developability conditions could be guaran-

teed by requiring s(u, 0) = a(u) and s(u, 1) = b(u) to share the same tangent plane

or the same normal. Such conditions which can be expressed via different formulas

as discussed below.

First, linear dependence of tangent vectors a′, b′ and the ruling a − b can be

expressed by the condition of their determinant in cubic Equation (3.2). Equivalently,

by introducing an auxiliary normal vector field n(u), the condition could be expressed

by three quadratic equations in Equation (3.3):

s developable ⇐⇒ d(u) := det(a− b, a′,b′) = 0 (3.2)

⇐⇒ 〈n,b− a〉 = 〈n, a′〉 = 〈n,b′〉 = 0, (3.3)

for all parameter values u.

For simplicity and efficiency, it is useful to introduce two families of auxiliary
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points a(1)
0 (u), a(1)

1 (u) which span the curve’s tangent line at the points a(u), and

similarly for the curve b(u). A straightforward choice of the auxiliary points would

be a(1)
0 = a and a(1)

1 = a + a′. The more interesting alternative is demonstrated in

Figure 3.10. In both the cases, the developability condition is expressed as

s developable ⇐⇒ a(1)
0 , a

(1)
1 ,b

(1)
0 ,b

(1)
1 co-planar ⇐⇒

〈n,b(1)
1 − a(1)

1 〉 = 〈n, a(1)
1 − a(1)

0 〉 = 〈n,b(1)
1 − b(1)

0 〉 = 0. (3.4)

These conditions are required for all the parameters u, which seemingly require the

problem to be infinitely dimensional. Fortunately, as demonstrated in §3.3.1, a finite

number of constraints required at sampled parameters are sufficient to guarantee that

the constraints are satisfied everywhere. The conditions (3.3) and (3.4) are used in

our computations because they lead to quadratic equations expressing developability.

At the same time, the original cubic conditions provided by (3.2) is useful for counting

degrees of freedom.

Degenerate cases

There are several special cases worth mentioning. When one of the two boundary

curves degenerates to a single point, b(u) = const., the surface s(u, v) is a cone with

base curve a(u) and apex coinciding with b(1)
0 (u) = b(1)

1 (u) = b(u) = const. Similarly,

when a(u) ≡ b(u), the surface s(u, v) is a cylinder. There is an interesting fact. The

cylinders have the same number of degrees of freedom as, do the spline curves, which

is more than general developable patches. This is due to the fact that the cylinders

correspond to the extraneous sheets of the constraint manifold, similar to polyhedral

meshes degenerated to a plane, which have more degrees of freedom than polyhedral

meshes in space. Similar arguments can be made for another degenerate case for the
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planar ruled surfaces created by connecting two curves in a common plane, which are

also seemingly more flexible.

Spline developables

In order to take advantage of the finite dimensionality of curve representation and con-

straint formulation (discussed below), polynomial and piecewise-polynomial curves

are used. These can be conveniently expressed by Bézier curves or B-spline curves.

The parameter interval [u0, un] = [0, 1] is used for Bézier curves. The interval is

further subdivided into n nonempty sub-intervals [u0, u1] ∪ [u1, u2] ∪ . . . ∪ [un−1, un]

for B-spline curves. Spline curves are curves whose coordinate functions are spline

functions. For B-spline curves, B-spline functions which exhibit Ck smoothness and

b(1)
1b(u)b(1)

0

a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(1)
1a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(u)a(1)

0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0a(1)
0

a(2)
0

a(2)
1

a(2)
2

b0

b1

b2

b3

b4

a0
a1

a2

a3

a4

(recursive de Boor’s algorithm for evaluating cubic
B-spline curves)

Figure 3.10: A spline curve a(u) is defined by its control points a0, a1, . . . . It is
equipped with auxiliary first derivative points a(1)

0 (u), a(1)
1 (u) which span the tangent

line, and second derivative points a(2)
0 (u), a(2)

1 (u), a(2)
2 (u) which span the osculating

plane of the curve. These auxiliary points are computed with de Boor’s algorithm.
Developability of the ruled surface defined by curves a, b is equivalent to coplanarity
of a(1)

0 , a(1)
1 , b(1)

0 , b(1)
1 .
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which are polynomial of degree m in each subinterval (k < m) are considered. To

describe a closed B-spline curve, all derivatives up to order k are required to be equal

at the two interval ends for u = u0 and u = un.

B-spline curves are linear combinations of the B-spline basis functions Ni(u):

a(u) =
∑

i
aiNi(u) (3.5)

The points a0, a1, . . . are the control points of the curve a(u). The basis functions

N1(u), N2(u), . . . spanning a particular spline space can be constructed through well

known procedures, see, e.g., [dB78].

For any u, evaluation of the point a(u) could alternatively be performed through a

more geometric procedure with de Boor’s algorithm as demonstrated in Figure 3.10).

When n = 1, B-spline curves reduce to Bézier curves with single parameter intervals,

and de Boor’s algorithm reduces to de Casteljau’s algorithm.

De Boor’s algorithm iteratively computes linear combinations of points. It starts

with the control points in the first round of iteration, and ends up with the curve

points a(u) in the last round. In the next-to-last round, it gives auxiliary “first

derivative” points a(1)
0 (u), a(1)

1 (u), which can be used for the developability condition

(3.4) as they span the tangent line of the curve in the point a(u). Before the next-to-

last round, it gives the second derivative points a(2)
0 (u), a(2)

1 (u), a(2)
2 (u), which span the

osculating plane of the curve and are useful for expressing special boundary conditions

merging patches which as discussed below.

Computation with simple spline developables

For each simple B-spline ruled surface patch, the developability is characterized by

vanishing of the degree 3m− 3 polynomial d(u) in (3.2) for each parameter interval.
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Figure 3.11: The control vertices of the two spline curves (left) and the auxil-
iary points of the tangent quadrilaterals (right) are kept as variables throughout the
computation while the surface points of the ruled surface (see Figure 3.9, right, for
example) are not necessary. The constraints imposed for achieving the developability
condition of this simple patch include the planarity of the auxiliary quadrilaterals,
and the predefined linear relations between the auxiliary vertices and the control
vertices given by the de Boor’s algorithm.

It is sufficient to enforce the developability condition (3.4) for 3m− 2 different values

of u within each parameter interval. In computation, B-spline control points of the

curves a and b, as well as the auxiliary points a(1)
0 (u), a(1)

1 (u), b(1)
0 (u), b(1)

1 (u) are kept

as variables through predefined linear relations given by the de Boor’s algorithm, as

shown in Figure 3.11. The normal vectors n(u) could be introduced as independent

unit vectors, or samples from a dual B-spline with additional normal control points

related by linear relations as well.

3.3.2 Multi-patch developable surfaces

Based upon the simple developables, general developable surfaces could be con-

structed by merging simple ruled developable patches and planar polygons. The

complete system of the computation therefore stores all the variables representing

individual patches and solves for them simultaneously. Figure 3.13 visualizes the

auxiliary quads and control vertices used in a simple multi-patch developable surface.
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Figure 3.12: The combinatorial setup of a composite seamless developable is stored
in a mesh, where edges are labelled either R for “ruling” or S for “spline”. Faces
accordingly correspond to spline developables, cones, or planar parts. The example
shown here has no cones. There is smooth transition between surfaces along all nine
R -edges, and between boundary curves in all 12 vertices.

The efficiency of the algorithm allows interactive editing with composite developable

surfaces.

To represent the combinatorial relations of simple patches and polygons consti-

tuting a general composite developable surface, a coarse mesh is introduced, as shown

in Figure 3.12. Every face represents a patch and each edge corresponds to either a

ruling line Ror a spline S . There are four possible types of faces for such a coarse

mesh:

� S R S R : a typical spline developable formed by connecting two splines with two

rulings on the ends;

� S R S : a similar spline developable with a ruling degenerated into a point;

� S R R : a cone with a spline boundary degenerated to a point which does not

require developability conditions to be imposed;

� R R . . . R : a planar polygonal face.

The S R S and the S R R patches can be represented by S R S R with coinciding

ruling ends or control points. In practice, they are regarded as separate types of
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Figure 3.13: The developability condition of a multi-patch composite developable
surface (left) can be imposed by the auxiliary quads introduced for each spline patch
(right). Similar to the simple patches shown in Figure 3.11, only the control vertices
and the auxiliary vertices of the tangent quads are necessary to be kept as variables
througout the computation. The discretized surfaces, which can be evaluated directly
based on the control structures, are only required for visualization, or additional
conditions imposed and discussed below.

surfaces for computational efficiency as the redundant variables are omitted.

Most of the practically useful composite developable surfaces can be represented

by finitely many simple patches of the aforementioned four types. The developability

conditions could be naturally derived based on simple patches through the planarity

of the auxiliary tangent quadrilaterals, as illustrated in Figure 3.13. Over-fragmented

developable surfaces may constitute an infinite number of simple patches. However,

these surfaces, with few fabrication benefits, are generally discarded in the context

of computational design. Several industrial examples designed with the proposed

approach are illustrated in Figure 3.14 and Figure 3.15.

With a given coarse mesh, the control vertices, auxiliary vertices, as well as the

surface points can be subsequently constructed or evaluated and applied in compu-
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Figure 3.14: A piecewise-developable model created with the proposed approach
based on an artist’s sketch.

(a) (b) (c)

Figure 3.15: These surfaces are the product of interactive modeling. They all have
the same combinatorics (in the sense of Figure 3.12). In subfigure (c), control points
are connected by blue edges.

tation. For mainly visualization purposes, surface meshes could be evaluated and

interactively updated, based on the computed control structures. However, the com-

putational efficiency for developability is independent of the number of surface points

of rulings sampled. This is different from previous approaches based on discrete

representations.
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3.3.3 Developable approximation

To allow the fabrication of doubly curved surfaces by developable patches, approxi-

mating the freeform shapes by developable surfaces, as shown in Figure 3.16, is often

a desired function.

Approximation with developable surfaces can be achieved by minimizing the dis-

tances between the targets and the spline surfaces. Figure 3.17 demonstrates a typical

application where a bunny model is approximated by a piece-wise developable surface.

It is observed that minimizing the differences of normal vectors together with the dis-

tances improves the convergence of approximation, thereby validating the efficiency

of our strategy to introduce auxiliary variables, from a different perspective.

All the approximation targets are regarded as point clouds, preprocessed through

a thinning process that is is very similar to the Poisson sampling. During each round,

a sampled point qj is chosen, all the points within the ball a fixed radius r centered at

qj are used to estimate a normal vector mj and subsequently discarded. The measure

after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1after 1

iterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiterationiteration

after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2after 2

iterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterations

after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8after 8

iterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterations

Figure 3.16: A simple approximation problem, where a reference shape (point cloud)
is approximated by a developable strip. The equations we use to express proximity
make the strip grow so as to cover as much of the reference shape as possible. The
number of iterations refers to guide projection.
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of proximity constituts of three parts.

First, the most straightforward measure is the distance between a sampled point

qj and the corresponding footpoint sw(uj, vj) expressed as a linear combination of

the control points:

s(uj, vj)− qj = o. (3.6)

The second measure is the orthogonality between the reference normal mj with

respect to the vectors spanning the tangent plane at the foot point sw(uj, vj):

〈mj, a(uj)− b(uj)〉 = 0

〈mj, a
′(uj)〉 = 0.

〈mj,b
′(uj)〉 = 0.

(3.7)

The last term is to to further discourage the distance along the direction that is

orthogonal to the surface:

〈s(uj, vj)− qj,n(uj)〉 = 0. (3.8)

In practice, as this distance measure prevents tangential movement, it is only

given a very small weight, while the latter two terms are set to comparatively higher

parameters.

Merging patches

For complex surfaces, it is essential to provide users the ability to approximate sur-

faces with desired connectivity of surfaces. To achieve this, an interactive framework

proposed allows users to paint individual strokes on the doubly curved surface for sim-

ple patches. Then, with user specification, the individual patches could be merged
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(a) (b)

Φ1

(c)

Φ1

Φ2

(d)

Figure 3.17: Approximating the Stanford bunny by developable strips. (a) The user
marks two areas on the bunny intended to be approximated by cubic developables.
PCA is used to fit initial flat strips, which are visualized as rectangles. (b) The two
strips obtained in the previous step are merged by putting together their respective
control point sequences (averaging the end control points) and approximating again.
(c) Having produced two strips side by side, they are subjected to the approximation
procedure, with proximity of boundaries as an additional optimization goal. Such
strips serve to initialize a composite surface. (d) The bunny is approximated by 6
composite surfaces shown in different colours. Figure 3.1 displays the same surface.

together into a water time piece as a composite piece-wise developable surface, fol-

lowed by an approximation procedure globally. Figure 3.17 shows such an example.
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1 iteration 8 iterations

Figure 3.18: Spline developables can approximate shapes with edges, if the normal
spline is not enforced to have higher order smoothness and if n(uj) in (3.8) is consid-
ered fixed in each iteration of constraint solving. This image colour codes the distance
of a developable spline strip from the reference shape.

Approximation with Sharp features

A widely held belief towards spline based representation is that the general smooth

splines have limited capability to represent or resolve sharp features. However, there

are two ways to overcome such restrictions. One possible approach is to introduce

multiplicity for the knot vectors of the spline representation. Another, more natural

solution, is to allow control points to coincide. Figure 3.18 demonstrates such an

example based on the automatically collocated control points.

3.4 Curved Origami

When developable patches are merged together, special types of boundary conditions

can be further required. A typical and practical requirement is the global developa-

bility, where multiple patches in space could be flattened to be planarized together

without tearing or stretching. Such a requirements is necessary for designing curved

origami. Figure 3.19 illustrates such shapes which are made by folding single sheets
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(a) (b)

Figure 3.19: Shapes foldable from a single sheet of paper consist of ruled patches.
Each patch is developable. The smooth creases enjoy the “curved fold” property.
The angle sum around each vertex equals 2π. These three conditions are sufficient
for local developability.

of paper with curved creases and developable vertices.

3.4.1 Curved folding boundary conditions

In curved origami, a curved spline crease c(u) which merges two strips ΦLeft and

ΦRight could be developed to a single planar curve. Therefore, the geodesic curvatures

κLeft
g (u) and κRight

g (u) for ΦLeft and ΦRight respectively are the same:

κLeft

g (u) = κRight

g (u). (3.9)

At corresponding points, the curvatures of a developed planar curve equal the

geodesic curvatures κg of the spatial curve, which are related to the spatial curve’s

curvatures κ by κg = κ sin θ. Here, the angles, θ, are the angles between the surface

tangent planes and the curve’s osculating planes. As the geodesic curvatures are the

same for the two patches, the spline crease c’s osculating planes bisect the tangent

planes of ΦLeft and ΦRight, with unit normal vectors nLeft(u) and nRight(u) respectively.

As demonstrated in Figure 3.10, the de Boor’s algorithm provides auxiliary second
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Figure 3.20: Interactive modeling under curved-fold side conditions. Starting with a
flat composite developable, on top we show dragging selected (white) vertices upwards
while other vertices (red) remain fixed. The bottom row illustrates rotating selected
vertices around a vertical axis. Control points are connected by blue edges.

derivative points of the spline c which span the osculating planes of c(u). By denoting

these second derivative points as c(2)
0 (u), c(2)

1 (u), c(2)
2 (u), the curved folding conditions

could be written as:

〈c(2)
0 − c(2)

1 ,n
Left + nRight〉 = 0,

〈c(2)
1 − c(2)

2 ,n
Left + nRight〉 = 0.

(3.10)

These conditions are incorporated in the computation together with the linear

relations between the second derivative points and the control points. Figure 3.20

illustrates interactive design with curved folding boundary conditions .

Geodesic boundary conditions

Closely related to curved folding conditions, the geodesic boundary conditions also

require the osculating planes of the boundary curves to bisect the tangent planes of

the adjacent spline patches, in the directions that are orthogonal to the bisecting
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planes appeared in the curved folding conditions.

〈c(2)
0 − c(2)

1 ,n
Left − nRight〉 = 0,

〈c(2)
1 − c(2)

2 ,n
Left − nRight〉 = 0.

(3.11)

In this case, the planar boundaries of the developed patches are reflectively sym-

metric to each other, which provide further benefits for the panelization of architec-

tural freeform skins (see, e.g., [PSB+08]). Figure 3.21 presents an example.

Boundaries with straight development

A boundary c on a surface patch Φ has a straight development if it has a zero geodesic

curvature. Similar to Equaitions (3.10) and (3.11), such conditions could be imposed

by further introducing auxiliary normals, nosc, for the osculating planes of the curve

a(u), and then requiring their orthogonality to the surface normals n.

〈c(2)
0 − c(2)

1 ,n
osc〉 = 0,

〈c(2)
1 − c(2)

2 ,n
osc〉 = 0,

〈nLeft,nosc〉 = 0.

(3.12)

To add either property to the computational setup, the conditions (3.10) and

(3.11) are required for sufficiently many values of u, each time, adding the objects

involved as auxiliary variables and adding as equations the linear defining relations of

c(2)
i , an appropriately relabelled Equation (3.4) which defines the normal vectors nLeft,

nRight. Finally the normalization constraints ‖nLeft‖2 = ‖nRight‖2 = 1 are required.

Remark: In § 3.3.1 it was argued that enforcing(3.2) for 3m−2 values of u in each

parameter sub-interval implies validity of (3.2) for all u. The corresponding number

of evaluations for (3.10) and (3.11) would be too high, so these conditions are enforced
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ΦLeft

ΦRight

Figure 3.21: Here, unfolding neighbouring strips ΦLeft, ΦRight maps their common
boundary to planar curves which are mirror reflections of each other. This “geodesic”
property makes the developments of strips straighter, which is useful for materials
like wood [MK12].

only numerically.

3.4.2 Isometric manipulation

Closely related to curved origami design is the isometric manipulation of developable

surfaces in space, i.e., with fixed or constrained development, as shown in Figure 3.22.

For artistically oriented designers, such capabilities provide similar experiences to

physical experiments of real sheet materials. For engineers, in parallel with designing

spatial surfaces, isometric manipulation allows the control of the development con-

stituted of planar patches before further fabrication, e.g., by cutting, bending and

welding or cladding.

In order to achieve isometric conditions during interactive manipulation, a dis-

cretized development is maintained together with a corresponding discretized surface

mesh in space. The discretized spatial mesh (V,E, F ) is initialized based on de Boor’s

algorithm for each individual spline surface s(u, v) by predetermined samples of pa-

rameters u for the two boundary curves, s(ui, 0) = a(ui) and s(ui, 1) = b(ui). The
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Figure 3.22: Isometric manipulation of a strip to create a Mobius band. The texture
coordinates are interactively updated by the coordinates of the points on the devel-
opment which is isometric to the spatial mesh and constrained on a given rectangle.

faces of the spatial mesh are mostly quads or triangles, and are almost planar for de-

velopable spline surfaces. During computation, the linear relations derived from (3.5)

between the surface points and the control points are kept as additional constraints.

It is worth mentioning that the discretized surface meshes required here are not

needed for guaranteeing the developability conditions discussed above. Compared

with the design of developables without considering the developments, enforcing iso-

metric conditions introduces considerably more variables and equations, but can still

be accommodated at interactive rates for the examples demonstrated in this chap-

ter. Due to the discretization errors, isometric manipulation cannot achieve the same

precision compared to the developability conditions which can be guaranteed pre-

cisely. Nevertheless, the precision of isometric conditions can be improved through

refinement.

There are two major tasks related to isometric deformation: the initialization of

the development before interactive manipulation, as well as the maintenance of the

isometric relation between the pair of spatial and planar meshes.
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Development initialization

The development (V̄ , Ē, F̄ ) of the spatial mesh (V,E, F ) needs to be initialized based

on the spatial discretization. When the manipulation of a developable design starts

from the plane, the initialization of the development is trivial. For more general

cases, there are two common ways to create initial developments with given globally

developable surfaces.

A first approach is to start with an arbitrary planar quad of the surface mesh, and

subsequentially glue adjacent faces congruent to the spatial faces on the same plane.

Such a construction is consistent regardless of the choice of the initial face or the

sequence of construction sequence, which is guaranteed by the global developability.

Instead of such an approach based on explicit constructions, the initial development

could also be computed in a numerical way by flattening onto a plane via minimizing

Figure 3.23: Isometric deformation of a rectangular paper folded along a given
curved crease. To achieve better flexbility by accomodating greater ruling changes,
the model is embeded to a disk like domain for computation.
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the closeness of adjacent patch normals and maintaining the congruency of individual

planar quads.

Isometric conditions

As a surface evolves, the isometric relation between the discretized surface in space

(V,E, F ) and the associated development (V̄ , Ē, F̄ ) has to be maintained. This could

be naturally achieved by enforcing the isometric conditions of each pair of correspond-

ing faces to the guided projection procedure, by equating the edges and diagonals:

‖vi − vj‖2 = ‖v̄i − v̄j‖2 (1 ≤ i < j ≤ n). (3.13)

Here, vj and v̄j are vertices of the spatial and developed meshes respectively,

maintained as variables during computation. Figure 3.23 and Figure 3.25 illustrate

two examples with isometric deformation.

Developability of vertices

Isometric conditions could already be applied to ensure the vertices are developable

approximately. However, there is a more precise alternative to achieving this which

is not subject to discretization errors, as illustrated in Figure 3.24.

Overfolding avoidance

Isometric constraints alone cannot guarantee the bijectivity between the spatial and

the developed surfaces due to the possibility of over-foldings. There are different

choices to avoid over-foldings or self-intersections of the development. A brutal force

approach is to enforce the requirements that all the possible triangulations of the
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Figure 3.24: The developability condition of vertices where splines meet can be im-
posed strictly by the developability of the vertex star formed together with the nearby
control points.

developed faces are consistently oriented by introducing signed areas as auxiliary

variables. However, such an approach is not numerically robust, especially when

the quads are too narrow due to over discretized parameters. Therefore, a superior

alternative is to use the polyline fairness energy of the developed discretization.

3.4.3 Further examples

Examples of cylinder topology. The curved-crease sculpture presented in Figure 3.26 is

inspired by David Huffman’s hexagonal column design [DDK11]. This surface does not

exhibit developability onto a plane, but onto a right circular cylinder of radius r. To

maintain developability during modeling, the cylinder is cut open and unrolled onto

the plane. The coordinates of vertices of the development (V̄ , Ē, F̄ ) are considered

modulo the vector (2πr, 0). Another cylindrical example is shown in Figure 3.27a.

Example: Flat Torus. Figure 3.27b shows a curved-crease sculpture of a torus

topology. It has been initialized from a flat torus polyhedron, and has been mod-
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Figure 3.25: This curved-crease sculpture is folded from an annulus. It has been
interactively created along the lines of Figure 3.20. The annulus unfolding shown
here is the mesh (V̄ , Ē, F̄ ) used for internal computations. Its edges correspond to
creases and rulings.

Figure 3.26: Interactive modeling of a cylindrical curved-crease sculpture. During
modeling we maintain the property of unfoldability onto a cylinder (this is imple-
mented via cutting the surface open and requiring a planar development with period-
icity). From left: a user’s initial sketch of the combinatorics, and the final sculpture
with and without patch boundaries.

eled under constraints (3.2) and (3.10) which express local developability in faces

and creases. As to vertices, the Gauss-Bonnet theorem says that the surface’s total
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curvature is zero. By symmetry, all vertices carry zero Gauss curvature.

3.5 Discussion

3.5.1 Choice of parameters

The choices of parameters are empirically guided by numerical experiments. Based on

observations of tests with different parameters, the proposed approach is not highly

sensitive with respect to the choice of parameters. The coefficient for the soft energy

ε1 influences the final shape while it has little affect on the achievable surface quality.

The parameter for the closeness to previous iteration ε2 can be chosen in the interval

[10−6, 10−3] (or [10−6, 10−2], if curved-folding constraints are present) with only small

changes in the final surface quality. The comparatively smaller values of ε2 slightly

improve the convergence rate, but larger values are usually preferred in order to

achieve a better proximity to the initial shape. Frequently, ε1 is set to zero after 5

iterations to improve convergence and to save time, since this regularizer has little

(a) (b)

Figure 3.27: (a) Creases which enjoy the “geodesic” property can be simulated by
three curved folds in close proximity. (b) This surface, whose outer faces are pla-
nar and have been removed for better visibility, has the topology of a torus and is
intrisically flat.
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effect in later stages of iteration. Generally, more constraints such as curved-folding

conditions require higher values of ε2 to prevent the shape drifting away from the

initial. Some constraints such as maintaining prescribed development also have a

regularizing effect. In these cases, ε1 can be set to smaller values.

3.5.2 Limitation

A major limitation of this approach is that the decomposition combinatorics have to

be specified before further computation. This limits the exploration of all possible

configurations, as a pair of two isometric develoapble surfaces may no longer be

transformable to each other computationally. This is also the restriction of many

previous approaches, see e.g., [SVWG12]. A more flexible framework which allows

automatic decomposition changes would still be desired and worth exploring in the

future. However, it should also be noticed that having to choose combinatorics would

not limit the possible shapes that could be modeled through the proposed approach.



83

Chapter 4

Further Extensions of Guided

Projection

The previous chapters introduce Guided Projection with basic constraints. Examples

include the design of polyhedral surfaces, self-supporting structures and developable

surfaces including curved origami. The efficiency of Guided Projection that enables

interactive editing is based on the insights that all the constraints should be formu-

lated as quadratic or linear equations and solved together with soft energies serving

as regularizers. The potential applications of Guided Projection are not limited to

the scopes discussed above.

This chapter focuses on the extensions of Guided Projection, which could be

roughly divided into two categories. On the one hand, the generalization of hard con-

straints requires the formulation of practical considerations to quadratic equations.

Often, such formulations can only be achieved with the introduction of auxiliary

variables. On the other hand, defining general guiding energies requires abstract-

ing aesthetic or practical considerations to novel regularizers. It is important that

the regularizers are meaningful in the sense that the regularized problems are nei-

ther over-regularized without feasible solutions nor under-regularized with too many
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undesirable solutions.

In the following discussion, further formulations of hard constraints are exemplified

through structures with repetitive elements, e.g., congruent nodes, or edges of the

same length. Additionally, generalization of the regularizers is illustrated through

polyhedral patterns, which are meshes with planar faces arranged regularly. To find

the feasible regularity, explicit solutions of polyhedral patterns are constructed on

paraboloids of positive, zero and negative Gaussian curvatures with different strip

decompositions. The construction of explicit solutions serves as the foundation of

affine symmetry based regularizers, guiding the computation of polyhedral patterns

on freeform surfaces with a variety of arrangements.

4.1 Extensions of the hard constraints

Construction with repetitive elements reduces the manufacturing cost by enabling

the reuse of molds or manufacturing settings. Such a goal could be easily achieved

for geometrically simple traditional buildings featuring straight lines or planar fa-

cades. However, creating freeform surfaces with repetitive elements is highly intri-

cate. For example, French architect Alain Lobel studied meshes with equilateral

triangles[JTT+14]. These meshes are also named as Lobel frames, and can be con-

structed by the same beams. Alain Lobel took a constructive approach to generate

some examples, but only special types of structures are created. With Guided Projec-

tion, the enforcement of repetitive geometric elements can be easily formulated and

incorporated during computation[JWWP14, JTT+14].

Following the trend of biomimetic design and inspired by the amazing construc-

tions of bees, Jiang and his colleagues study the design of freeform honeycomb struc-

tures [JWWP14]. In their work, the honeycomb structures are formed by connecting
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Figure 4.1: Enforcing structural similarity can create structures with repetitive
elements such as the honeycomb structure with congruent nodes (left) and the Lobel
frame with the same beams (right). They are related by a special duality condition
(middle)[JTT+14].

two hex-dominant meshes which are roughly offsets of each other. Each pair of the

corresponding edges is connected by a planar wall. Similar to the honeycomb struc-

tures in nature, the design of freeform honeycomb structures also requires the angles

between adjacent walls be 120 degrees. Due to the congruency of the wall axis, all of

the nodes can be batch manufactured based on extrusion and cutting, which greatly

benefits the engineering process.

There exists an interesting duality between the freeform honeycomb structures and

the Lobel frames[JTT+14, JTW+15]. Translating and then followed by connecting

the wall normals of a freeform honeycomb structure creates a Lobel frame. Similarly,

placing planes orthogonal to the edges of a Lobel frame forms a freeform honeycomb

structure. Figure 4.1 presents examples.

4.2 Regularizers for polyhedral patterns

In addition to generalizing hard constraints, soft energies guiding the computation

can also be extended. An interesting sceinario is finding the feasible regularity of
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polyhedral patterns, which are meshes with planar faces arranged in regular ways

[JTV+15] 1.

The main purpose of creating polyhedral patterns is to enrich the design space

of polyhedral surfaces, from triangle or quad dominant meshes to those with various

connectivities and polygons of higher valences. To keep the problem tractible, this

study focuses on patterns with combinatorics equivalent to semi-regular tilings of a

plane, where every vertex is congruent to each other.

To find the feasible regularities for creating general polyhedral patterns, this sec-

tion focuses on explicit constructions of polyhedral patterns inscribed to paraboloids

with positive, zero and negative Gaussian curvatures. Such explicit solutions are foun-

dations for the proposed regularizers to guide the computation of polyhedral patterns

approximating freeform surfaces.

The main questions here are: How should the faces be arranged and also how much

geometric regularity a planar pattern can maintain when it is mapped onto a surface

S so that the faces remain planar? Answers to these questions guide the formulation

of the algorithm in various stages, especially the introduction of the regularizers based

on symmetries.

4.2.1 Plane-paraboloid intersection

Each face of a polyhedral pattern, inscribed to the paraboloid S2 : 2z = κ1x
2 + κ2y

2,

κ1κ2 6= 0, has its vertices restricted on the intersection of S2 with a plane z =

ax+ by+ c. The intersection curve is a conic in general, and its orthogonal projection

onto the x, y-plane, or its top view has a form of κ1(x−x0)2 +κ2(y− y0)2 = d, where

1This project is a close collaboration with Caigui Jiang and other colleagues. The author’s
contribution is mainly on the theoretical side such as the explicit constructions discussed in this
section.
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x0 = a
κ1

, y0 = b
κ2

, and d 6= 0 if we exclude the case where the plane is tangent to the

paraboloid for now.

The simplest is a rotational paraboloid, e.g. S2 : 2z = x2 + y2, where the top

views of the conics are circles (see Figure 4.2, left). For a regular or a semi-regular

pattern in the x, y-plane, each of its faces is regular and thus inscribed to a circle.

Lifting the vertices (xi, yi, 0) of the pattern to points (xi, yi, (x
2
i +y2i )/2) on S2, circles

are lifted to ellipses and thus faces remain planar. We obtain a polyhedral pattern P

with vertices on S2 (see Figure 4.3, left).

For an elliptic paraboloid κ1κ2 > 0, the top views of the intersections are similar

ellipses which can be mapped to each other by translation and uniform scaling. As

an elliptic paraboloid is an affine image of a rotational paraboloid, mapping a planar

pattern to it is also straightforward.

For a hyperbolic paraboloid κ1κ2 < 0 (Figure 4.2, right, and Figure 4.3, right), the

top views of the intersections are hyperbolae with parallel asymptotes, which could

be transformed to each other by translation, scaling and conjugacy, where a pair of

Figure 4.2: The orthogonal projection onto the x, y-plane of the intersection curve
with a plane is a circle for a rotational paraboloid (left), an ellipse for an elliptic
paraboloid, and a hyperbola for a hyperbolic paraboloid (right).
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Figure 4.3: The transformation of polyhedral patterns from a rotational paraboloid
(left) via a parabolic cylinder (middle) to a hyperbolic paraboloid (right).

conjugate hyperbolae are κ1(x− x0)2 + κ2(y − y0)2 = ±d.

Conjugacy and metric The curvatures of the paraboloid also define a quadratic

form < p,q >:= κ1xpxq + κ2ypyq in the x, y-plane. Two directions p and q are

conjugate if < p,q >= 0, which can be regarded as the orthogonality condition with

this quadrtic form. The quadratic form also induces a metric ‖p‖2 :=< p,p >, and

all the conics can be regarded as circles under such a metric. When κ1κ2 > 0, the

metric is essentially Euclidean. When κ1κ2 < 0, the metric is pseudo-Euclidean.
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Figure 4.4: On the top view, a primal edge shared by two faces is a common chord
shared by two circumconics, which is conjugate to and bisected by the dual edge,
defined as the connecting line of the circumconic centers.

Figure 4.5: Deforming and lifting. Top: the paraboloid tilings. Bottom: top-views of
the tilings. Left to right: original (fit to the canonical rotational paraboloid), elliptic,
cylindrical, and hyperbolic.
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Figure 4.6: Pairs of primal and dual (4, 6, 12) patterns on positive, cylindrical and
negative curvature regions. Both the primal and the duals are alighed with the ruling
for the cylindrical paraboloid.

Figure 4.7: The primal (4, 6, 12) patterns have 2 degrees of freedom when a feasible
dual pattern is provided.
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Consistency For a pattern that could be lifted to a paraboloid while keeping faces

planar, the initial polygons are inscribed to similar or conjugate conics. Connecting

conic centers of adjacent faces of a liftable primal pattern gives a dual pattern. The

dual edges are conjugate to and bisected by the primal edges, which are called the

consistency conditions, as illustrated in Figure 4.4 and Figure 4.5. Similarly, when

there exists a pair of primal and dual patterns satisfying the consistency conditions,

the primal is liftable to paraboloids without sacrificing face planarity. Figure 4.6 and

Figure 4.7 presents examples. The proofs are provided in the appendix.

4.2.2 Strip decompositions

Parabolic cylinders It is interesting and insightful to observe the invariant reg-

ularity of the polyhedral patterns when the Gaussian curvatures of the paraboloids

change from positive to negative. For that, one simple way is to set κ1 = 1 and

let κ2 vary from 1 via 0 to −1; see Figure 4.3. The parabolic cylinder 2z = x2 is

extremely important as it can be viewed as the limit and transitional state of elliptic

and hyperbolic paraboloids.

The top view of an intersection curve of a parabolic cylinder with a plane is either

a pair of parallel lines or a parabola. This study focuses on the former.

Strip decompositions The assignment of polygons on a parabolic cylinder is a

combinatorial problem which we call strip decomposition. Pairs of lines are shared by

sequences of polygons without dangling vertices in between, consequently, a feasible

strip decomposition should satisfy these conditions:

1. The adjacent faces of a vertex do not all belong to a same strip.

2. Every inner face shares a common edge with two faces on the same strip.
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Figure 4.8: Different strip decompositions for regular hexagons. The corresponding
polyhedral patterns of the two on the left are shown in 4.3, and the second pattern
from the right is shown in 4.9.

A strip decomposition of a polyhedral pattern implies an assignment of vertices

to rulings for the dual pattern. Therefore, if a pattern can be decomposed to strips,

the same is true for its dual pattern. Regular quads, hexagons, (34, 6), (3, 4, 6, 4),

(4, 6, 12), (4, 8, 8) 2 as well as their dual patterns have an infinite number of strip

decompositions. We show two different strip decompositions for the regular hexagon

pattern and the pattern (4, 8, 8) each in Figure 4.8. However, patterns (3, 6, 3, 6),

(3, 12, 12) and their duals cannot be decomposed to strips.

For the (3, 6, 3, 6) pattern, starting from any hexagon, an arbitrary triangle could

be chosen first. The second condition requires the next choice to be another hexagon.

Due to the first condition, the other triangle adjacent to the two chosen hexagons

cannot be picked. However, this triangle cannot be assigned to another strip neither,

as it cannot satisfy the second requirement with only one free edge left. Similar argu-

ments are true for any patterns with triangles sharing no edges with other triangles,

e.g., (3,12,12) patterns.

Symmetries of strip decompositions For a given pattern, a different choice of

strip decompositions implies different regularity. For each strip decomposition, it is

2Naming of the patterns follows the convention according to the valences of the adjacent faces
of each vertex. For example, a (6, 6, 6) pattern is a hexagonal mesh, and a (3, 4, 6, 4) pattern has
triangles, quadrilaterals and hexagons.
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interesting to see which symmetries a polyhedral pattern can keep when the parabolic

cylinder is deformed to a hyperbolic or elliptic paraboloid.

It is helpful to examine the regular hexagon patterns, starting with the most

straight forward strip decomposition shown on the left of Figure 4.8. Such a decom-

position corresponds to a brick wall pattern when it is decomposed on a parabolic

cylinder, as shown in Figure 4.3. On the top view, every hexagon is symmetric to

the center and congruent to each other, and every pair of adjacent faces is symmetric

with respect to the midpoint of their common edge.

When the pattern is lifted to the surface, the faces are also symmetric with respect

to their barycenters. Though the faces are no longer congruent to each other, they

can be transformed to each other by affine transformations. Every pair of adjacent

faces have affine symmetry with respect to an axis, i.e., they could be mapped to each

other through an affine map which keeps the axis fixed. In this case, the axis is the

vertical line passing through the midpoint of their common edge. Of significance, with

a given strip decomposition of a polyhedral pattern, the affine symmetries exist not

only on the parabolic cylinders, but also on elliptic and hyperbolic paraboloids. The

affine symmetries can also be preserved under affine transformations of the surfaces.

With the strip decomposition shown on the mid-left of Figure 4.8, the top views of

the hexagons on a parabolic cylinder are isosceles trapezoids; see Figure 4.9. Instead

of symmetries with respect to their centers, the faces have Euclidean reflective sym-

metries on the top view, and affine (reflective) symmetries with respect to a plane and

a direction on the surface. Here, not all pairs of adjacent faces have affine symmetries

any longer, but those that are symmetric on the parabolic cylinder do preserve the

affine symmetries on paraboloids.

Similar analyses could be done for other strip decompositions and other patterns.

In general, the available symmetries of polyhedral patterns are revealed from the strip
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Figure 4.9: Transformation of the regular hexagon pattern from a rotational
paraboloid (left) via a parabolic cylinder (middle) to a hyperbolic paraboloid (right)
with the strip decomposition shown in Figure 4.8, the second from right.

decompositions.

4.2.3 Connections to regularizers

The constructed polyhedral patterns inscribed to paraboloids do not exhibit the en-

coded properties of commonly used regularizers such as angle bounds, polyline fair-

ness, Laplacian smoothness. Therefore, when planarity is required, these regularziers

lead to over-constrained problems and cannot provide sufficient flexibility.

The polyhedral patterns could preserve many affine symmetries locally when ap-

proximating paraboloids with a given strip decomposition, thus motivating the use of

symmetries as regularizers for general surfaces. For each pattern, affine symmetries

could be specified and assigned according to the choice of a valid strip decomposi-

tion. To approximate general surfaces together with the planarity requirements, the

assigned symmetries provide sufficient flexibility and regularization for the patterns.

A computational result on a freeform surface is demonstrated in Figure 4.10. Results

with different strip decomposition are illustrated in Figure 4.11.
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Figure 4.10: With symmetry based regularizers, the non-planar pattern shown on
the left is planarized towards a polyhedral pattern shown on the right, with planar
faces arranged regularly.

Figure 4.11: Different strip decompositions increase the available types of polyhedral
patterns. With the three strip decompositions shown in Figure 4.8, we obtain hexagon
patterns approximating a cyclide with different appearances.
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Chapter 5

Conclusion and Outlook

The previous chapters of this thesis introduce the basic approach of Guided Projection

and several extensions. Those formulations and applications have also opened many

new directions and challenges. For future work, theoretical investigations are vital

sources for intuitions and insights for computation. In the meanwhile, computational

approaches are best studied with concrete examples, as the challenges from real ap-

plications provide interesting research questions. To conclude the thesis, this chapter

samples a few possible directions to explore in future to further extend the content

presented in this thesis.

5.1 Theoretical investigations

5.1.1 Discrete differential geometry

Discrete differential geometry is a field which can provide many insights for possi-

ble geometric solutions. For example, explicit constructions of polyhedral patterns

mentioned in the previous chapter have led to the new regularity notion based on

symmetries. Many topics in discrete differential geometry, including regularity, rigid-

ity, stability, integrability, transformation, subdivision and convergence of different
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geometric structures could provide further foundations for general approaches of com-

putational design.

5.1.2 Volumetric computation

Beyond computation with surfaces, trending manufacturing techniques like 3D print-

ing, CNC machining and functional assembling require volumetric representations.

Though this thesis mainly focuses on surfaces, Guided Projection can be naturally

generalized to volumes, with the control of enclosed volumes demonstrated above be-

ing a simple example. At the same time, volumetric computation implies an increased

number of variables. Seeking proper sparse representations and devising computa-

tional approaches with reduced dimensionality is important for efficiency.

5.1.3 Combinatorial optimization

Most computational design platforms demonstrated in this thesis allow users to spec-

ify or change the connectivities before or during the interactive design phase. In the

meanwhile, providing automatic suggestions of connectivity changes is often desired

and left for future work. Besides mesh connectivities, combinatorial problems are om-

nipresent, like the assembly of functional parts, and enforcing repetivity with multiple

types of elements. Those challenges share seemingly similarities, however, different

computational tools are required to be advanced for suitable solutions.

5.1.4 Multi-resolutional approaches

Design with subdivision or control structures has been widely used in the projects

of this thesis for intuitive and stable control of the shape and connectivity. There is

a huge potential to accelerate computational speed by leveraging multi-resolutional
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structures. Such approaches could enable interactivity for more complicated struc-

tures, where manipulation and computation on coarser levels can be interactively

reflected in finer scales, and vice versa.

5.1.5 Learning based computational design

Existing designs are rich sources of inspirations for current designers, especially those

evolved over a long time span. Many of the design decisions are made based on practi-

cal experiences or personal tastes that may not have a clear mathematical formulation.

It would be interesting and effective to incorporate learning based techniques into the

development of future computational methodologies for design with a particular style

of an artist or the tradition of a school.

5.1.6 Discrete physical models

In the project of form-finding with polyhedral meshes, the static equilibrium for-

mulations based on simplified physical models lead to computational results which

are verifiable by commercial simulation packages. Incorporating simple yet efficient

physical models into computation requires insights to both the physics and the de-

sign scenario. Similar to the philosophy of discrete differential geometry, discretizing

physical models and theories, instead of the equations, is necessary for efficient com-

putational design with faithful physical assumptions.
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5.2 Broader applications

5.2.1 Folding patterns and transformable structures

A natural extension based on both developable surfaces and polyhedral patterns are

origami tessellation patterns. Straight folds enable deployable structures that could

be compactly compressed and transported. The more challenging curved origami

tessellations allow more expressive artistic creations. A subdivision based scheme

with controlled roughness to create folding patterns would be quite interesting to

look into. At the same time, general computational methodologies for transformable

structures are also desirable.

5.2.2 Stability

Static equilibrium does not imply stability under external perturbations. For safety

and robustness, it is important to study static stabilities of mechanical structures

and architectural designs, for both the construction sequences as well as the final

products. Beyond static stability, structures with dynamic stabilities like rattlebacks

and more general motorized systems are also fascinating topics.

5.2.3 Details and textures

A common approach to achieve interactive rates is to deal with less variables through

computation with coarse representations, which often compromises the details. There

is a huge potential to expedite the computational speed for the design of large and

complex structures with fine details or precise parts through multi-resolutional and

procedural approaches. With additional controlled stochasticity, this problem also

shares great similarities with texture synthesis.
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5.2.4 Design retrieval and history of designs

Architects, engineers, archaeologists and designers are interested to study how designs

evolve over years or centuries by different people in varied geographic regions. It would

be very helpful for them to have tools to retrieve historical designs, and to compare the

shapes, assemblies and functionalities of them, in a way similar to taking time-lapse

photos of designs, to find deeper stories behind the evolution.

5.2.5 Metamaterials

Existing physical models empowered computational tools to simulate materials as for-

ward problems. Design of materials for novel electromagnetic or mechanical properties

have led to very interesting inverse problems with many open questions. Computa-

tional design of metamaterials, such as those with negative Poisson ratios, could be

natural extensions of computational designs towards one extreme of scales.
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put. Aided Geom. Des., 9:291–298, 1992.

[LXW+11] Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen,

and Guoping Wang. General planar quadrilateral mesh design using

conjugate direction field. ACM Trans. Graph., 30(6):#140, 1–10, 2011.

Proc. SIGGRAPH Asia.

[Max64] J.C. Maxwell. On reciprocal diagrams and diagrams of forces. Philo-

sophical Magazine, 4(27):250–261, 1864.

[MC98] T. Maekawa and J. Chalfant. Design and tesselation of B-spline devel-

opable surfaces. J. Mech. Des., 120:453–461, 1998.

[MI11] Jun Mitani and Takeo Igarashi. Interactive design of planar curved

folding by reflection. In Pacific Graphics, Short Papers, pages 77–81.

2011.



104

[Mit12] Jun Mitani. Origami applications. http://mitani.cs.tsukuba.ac.jp/

origami application, 2012.

[MK12] Neil Meredith and James Kotronis. Self-detailing and self-documenting

systems for wood fabrication: The Burj Khalifa. In Advances in Archi-

tectural Geometry 2012, pages 185–198. Springer, 2012.

[ML12] Meher McArthur and Robert J. Lang. Folding Paper: The infinite pos-

sibilities of Origami. Int. Arts & Artists, Wash. DC, 2012.

[MS04] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes

using strip approximate unfolding. ACM Trans. Graph., 23(3):259–263,

2004. Proc. SIGGRAPH.

[PBSH13] Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. Designing

unreinforced masonry models. ACM Trans. Graph., 32(4):#91, 1–12,

2013. Proc. SIGGRAPH.

[PF95] Helmut Pottmann and Gerald Farin. Developable rational bézier and
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Appendix A

Consistency of Explicitly

Constructed Polyhedral Patterns

We prove that a primal pattern can be vertically lifted to a paraboloid S, while keep-

ing every face planar, if and only if every primal edge in the pattern is conjugated

to, and bisected by the corresponding dual edge (i.e., the edge between the conic

centers of the neighboring faces). The paraboloid S is defined as z = κ1x
2 + κ2y

2.

We currently assume κ1κ2 6= 0, and refer to this assumption further on. We consider

the induced quadratic form 〈a,b〉 := κ1xaxb + κ2yayb on the (x, y)-plane, and denote

the squared norm |a|2 = 〈a, a〉 accordingly. The conjugacy relation is thus 〈a,b〉 = 0.

We prove our claim using the following:

Lemma 1. A polygon with vertices (p1,p2, . . . ,pn) on the x, y-plane, inscribed to a

conic of the form |p− c|2 = γ, γ ∈ R, remains planar when lifted to S.

Proof. The lifted points of pi on the paraboloid are on the intersection of S of the

vertical cylinder C extruding the conic: κ1(x − xc)2 + κ2(y − yc)2 = γ. Thus, they

also lie on any linear combination of C and S. The surface C − S is a plane, as the

quadratic terms cancel out.
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Lemma 2. Let pj−pi be a primal edge conjugate to the dual edge cj−ci and bisected

by cj − ci at point d. Then, |pi − ci|2 = |pj − ci|2 and |pi − cj|2 = |pj − cj|2.

Proof. The conjugacy of pj − pi and cj − ci implies 〈pj − pi, cj − ci〉 = 0, and the

bisecting condition implies |pi − d|2 = |pj − d|2. Thus:

|pi − ci|2 = |d− ci + pi − d|2

= 〈d− ci,d− ci〉+ 〈pj − d,pj − d〉

= 〈pj − ci,pj − ci〉.

Similarly, 〈pi − cj,pi − cj〉 = 〈pj − cj,pj − cj〉.

Corollary 1. Consistency to planar lifting: A primal pattern on the (x, y)-

plane with every edge conjugate to and bisected by the dual edge, is liftable to S while

keeping faces planar.

Proof. Due to Lemma 2, for a given polygon {pi} and center c, we have 〈pi− c,pi−

c〉 = γ for some constant γ ∈ R, and thus the vertices are on a planar conic, and can

be lifted to S while keeping face planarity, due to Lemma 1.

We next prove how planar lifting leads to consistency.

Lemma 3. The vertical projection of the intersection curve between S and a plane

P := z = ax+by+e onto the (x, y)-plane, is a conic of the form |p− c|2 = γ, γ ∈ R.

Proof. The surface obtained by the subtraction P − S is a vertical cylinder passing

through the intersection curve, which intersects the (x, y)-plane with a conic of the

form κ1(xp − xc)
2 + κ2(yp − yc)

2 = |p− c|2 = γ, where xc = a
2κ1

, yc = b
2κ2

, and

γ ∈ R.
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Lemma 4. On the (x, y)-plane, if two similar conics ci : |p− ci|2 = γi and cj :

|p− cj|2 = γj intersect at pi and pj, then pj − pi is conjugate to and bisected by

cj − ci.

Proof. The subtraction of the two conics cj − ci produces a line l defined by 〈p, cj −

ci〉 = const. As both pi and pj are on l, 〈pj − pi, cj − ci〉 = 0.

To show that bisection holds as well, we apply a shearing transformation so that

c̄j − c̄i and p̄j − p̄i become orthogonal, and thus aligned with the axes. As c̄i and

c̄j are both reflectively symmetric with respect to c̄j − c̄i, so are their intersections.

Therefore, the midpoint of pj −pi lies on cj − ci before the shearing transformation.

Corollary 2. Planar lifting to consistency: Consider a pattern on the (x, y)-

plane which is the vertical projection of a polyhedral pattern inscribed on S. Then,

there exists a dual pattern with each edge conjugate to and bisecting the corresponding

primal edge.

Proof. Due to Lemma 3, the faces of primal pattern are all inscribed to conics with

the form of |p− ci|2 = γi, γi ∈ R. Consider the dual pattern formed by connecting

the adjacent face circumconic centers. Then, the primal edges pj − pi are conjugate

to and bisected by the dual edges cj − ci.
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Appendix B

Symmetries of PQ Patterns

Polyline fairness is a popular choice for a regularizer for planar-quadrilateral meshes

in the literature. The objective is to straighten the polylines by minimizing second-

order differences between neighboring vertices on a polyline, and this is equivalent

to applying symmetries with respect to vertices. However, this fairness measure is

restrictive in the sense that it is only applicable for meshes which are aligned with

conjugate directions on the reference surface. Our computation with edge-midpoint

symmetries introduces more degrees of freedom, and is less sensitive to the initial

alignment.

In the following, we explain why the edge-midpoint symmetry regularizer is more

flexible than the polyline fairness regularizer. We consider quadrilateral patterns pi,j,

i, j ∈ Z on the (x, y)-plane, which are liftable to a paraboloid S, while maintaining

face planarity. We define S as z = κ1x
2 + κ2y

2, κ1κ2 6= 0. Following Appendix A,

we consider the induced quadratic form 〈a,b〉 := κ1xaxb +κ2yayb on the (x, y)-plane,

the squared norm |a|2 = 〈a, a〉, and the conjugacy relation 〈a,b〉 = 0.
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Polyline fairness Straight polylines hold:

1

2
(pi+1,j + pi−1,j) = pi,j,

1

2
(pi,j+1 + pi,j−1) = pi,j.

(B.1)

These conditions are essentially symmetries with respect to vertices. An equivalent

formulation is:

pi+1,j − pi,j ≡ u,

pi,j+1 − pi,j ≡ v,

(B.2)

where u,v ∈ R2 are the respective edge vectors. With perfect straight polylines of

equally distributed vertices, the quadrilaterals of the tiling are congruent parallelo-

grams which are translations of each other. When u, v and a single vertex is given,

the whole pattern is fixed.

Figure B.1: Polyline fairness requires a quad mesh to be initialized according to
conjugate directions.

In order to be liftable to a paraboloid while maintaining planarity, every parallel-

ogram must be inscribed to a conic in the form of |p− c|2 = γ, γ ∈ R, as shown in

the Appendix A. This requires u and v to be conjugate: 〈u,v〉 = 0.
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Figure B.2: Imposing edge-midpoint symmetries introduces two more degrees of
freedom in comparison with polyline fairness.

For the hyperbolic case, κ1κ2 < 0, the asymptotic directions d := λ(
√
κ2,±

√
κ1)

are self-conjugate, as 〈d,d〉 = κ1xdxd + κ2ydyd = κ1|κ2| + κ2|κ1| = 0. When one

family of polylines is aligned in a direction close to an asymptotic direction, the other

family of polylines must also be aligned with a close direction, which results in ill-

shaped narrow quads. From this we draw that the polyline fairness is only effective

for conjugate directions which are close to orthogonal, i.e., principal directions, and

are far from asymptotes (See Figure B.1).

Edge midpoint symmetry Symmetries with respect to edge midpoints require

each pair of adjacent faces to be symmetric with respect to the midpoint of their

common edge:
1

2
(pi±1,j + pi∓1,j+1) =

1

2
(pi,j + pi,j+1),

1

2
(pi,j±1 + pi+1,j∓1) =

1

2
(pi,j + pi+1,j).

(B.3)

By linear combinations, those conditions are equivalent to:

pi+1,j+1 − pi,j ≡ s,

pi+1,j−1 − pi,j ≡ t,

(B.4)
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where s, t ∈ R2 are the diagonal vectors of every quad in the mesh.

This produces two more degrees of freedom for quad tilings, in comparison with

polyline fairness, since the actual positions of the diagonals can vary, and the quad

is not constrained to be a parallelogram anymore (See Figure B.2). Effectively, the

quadrilateral pattern is naturally decomposed to two independent sets of vertices.

These degrees of freedom are apparent on computed results with general surfaces as

well.
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Appendix C

Quadratic Projection

In the procedure of Guided Projection, the quadratic equations need to be approxi-

mated by linear equations at the beginning of each iteration. In the discussion above,

the linearization step is based on Taylor expansions, following the original Newton’s

methods. Geometrically, a surface could also be approimated by a tangent plane

locally. Therefore, the following discussion proposes an alternative way to linearize

quadratic equations based on projecting to quadratic hypersurfaces and taking tan-

gent hyperplanes at the footpoints.

Implementing closest point projection onto a quadratic surface. We discuss

how to efficiently evaluate the closest point projection q of a point p onto a quadratic

surface Φ given by the implicit equation x>Hx = α, with a symmetric matrix H.

q minimizes ‖p− x‖2, such that x ∈ Φ.

This constrained optimization problem is not difficult. A standard compactness argu-

ment shows existence of a closest point p, and smoothness of the functions involved

shows it can be found by the Lagrange multiplier method. We use the following

procedure:
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Figure C.1: Illustration of the location of the Lagrangian multipliers and the iden-
tification of the multiplier corresponding to the closest foot-point.

• We change to a coordinate system defined by an orthonormal basis of eigenvectors

of H (in our applications this is fast, since the number of occupied places in H is

bounded via the degree of vertices in meshes). Φ is then defined by x>Hx = α, with

H = diag(λ1, . . . , λn), λ1 ≤ . . . ≤ λn.

By inverting some coordinate axes we achieve that the coordinates (p1, . . . , pn) of p

are nonnegative.

• Assume we have found a closest point q = (q1, . . . , qn). If qi < 0, then q′ =

(q1, . . . , −qi, . . . , qn) is contained in Φ but lies closer to p than q does:

‖p− q‖2 − ‖p− q′‖2 = (pi − qi)2 − (pi + qi)
2 = −4piqi.

If pi > 0 this is positive, contradicting that q is closest (if pi = 0 then a closest point
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has qi ≥ 0 by symmetry). Thus, qi ≥ 0.

• The location of q is found by introducing a Lagrangian multiplier λ and com-

paring gradients of the constraint x>Hx and the target function ‖p − x‖2: q must

fulfill λHq = q− p:

λλiqi = qi − pi =⇒ qi =
pi

1− λλi
.

Since pi, qi ≥ 0 we get 1 ≥ λλi. This inequality is to hold for all eigenvalues λi.

Depending on the signs of eigenvalues λi, these inequalities are summarized as follows:

λ ∈ [ 1
λ1
,∞) if λn ≤ 0,

λ ∈ [ 1
λ1
, 1
λn

] if λ1 < 0 < λn,

λ ∈ (−∞, 1
λn

] if 0 ≤ λ1.

• Lastly we determine q by the condition q>Hq = α, which means solving the

equation
∑
λi(

pi
1−λλi )

2 = α for λ. Differentiation shows that the l.h.s. of this equation

is a strictly increasing function of λ (indeed, a sum of strictly increasing summands),

provided λ is contained in the interval specified above; further the l.h.s. is unbounded

as λ approaches either end of the interval. It follows that there is a unique solution

λ, as illustrated in Figure C.1, and thus a unique closest point q.


	Examination Committee Approval
	Copyright
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Form-finding with polyhedral meshes
	Interactive design with developable surfaces
	Further Extensions of Guided Projection
	Conclusion and Outlook

	Formfinding with Polyhedral Meshes
	Introduction
	Prior Work
	Constrained geometric designs
	Static-aware design
	Combining geometry with statics

	Contributions and Overview
	Geometric and physical constraints
	Soft energies
	User interactions

	Algorithms and Results
	Iterative algorithm: Guided Projection
	Variables and hard constraints
	Soft Energies
	Initialization

	Discussion
	Comparisons with previous methods
	Implementation details

	Conclusion

	Interactive Design of Developable Surfaces
	Introduction
	Prior Work
	Mesh based approaches
	Spline based representations

	Developability Conditions
	Simple developable patches
	Multi-patch developable surfaces
	Developable approximation

	Curved Origami
	Curved folding boundary conditions
	Isometric manipulation
	Further examples

	Discussion
	Choice of parameters
	Limitation


	Further Extensions of Guided Projection
	Extensions of the hard constraints
	Regularizers for polyhedral patterns
	Plane-paraboloid intersection
	Strip decompositions
	Connections to regularizers


	Conclusion and Outlook
	Theoretical investigations
	Discrete differential geometry
	Volumetric computation
	Combinatorial optimization
	Multi-resolutional approaches
	Learning based computational design
	Discrete physical models

	Broader applications
	Folding patterns and transformable structures
	Stability
	Details and textures
	Design retrieval and history of designs
	Metamaterials


	References
	Appendices
	Consistency of Explicitly Constructed Polyhedral Patterns
	Symmetries of PQ Patterns
	Quadratic Projection

