
Nonlinear Preconditioning and its Application in

Multicomponent Problems

Thesis by

Lulu Liu

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology, Thuwal,

Kingdom of Saudi Arabia

December, 2015

2

The thesis of Lulu Liu is approved by the examination committee

Committee Chairperson: David Keyes

Committee Member: Shuyu Sun

Committee Member: Ravi Samtaney

Committee Member: Rolf Krause

3

Copyright ©2015

Lulu Liu

All Rights Reserved

4

ABSTRACT

Nonlinear Preconditioning and its Application in

Multicomponent Problems

Lulu Liu

The Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) algorithm

is presented as a complement to Additive Schwarz Preconditioned Inexact Newton

(ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy

to improve the convergence of systems with unbalanced nonlinearities; however, they

have natural complementarity in practice. MSPIN is naturally based on partition-

ing of degrees of freedom in a nonlinear PDE system by field type rather than by

subdomain, where a modest factor of concurrency can be sacrificed for physically mo-

tivated convergence robustness. ASPIN, originally introduced for decompositions into

subdomains, is natural for high concurrency and reduction of global synchronization.

The ASPIN framework, as an option for the outermost solver, successfully han-

dles strong nonlinearities in computational fluid dynamics, but is barely explored for

the highly nonlinear models of complex multiphase flow with capillarity, heterogene-

ity, and complex geometry. In this dissertation, the fully implicit ASPIN method is

demonstrated for a finite volume discretization based on incompressible two-phase

reservoir simulators in the presence of capillary forces and gravity. Numerical exper-

iments show that the number of global nonlinear iterations is not only scalable with

respect to the number of processors, but also significantly reduced compared with

5

the standard inexact Newton method with a backtracking technique. Moreover, the

ASPIN method, in contrast with the IMPES method, saves overall execution time

because of the savings in timestep size.

We consider the additive and multiplicative types of inexact Newton algorithms

in the field-split context, and we augment the classical convergence theory of ASPIN

for the multiplicative case. Moreover, we provide the convergence analysis of the

MSPIN algorithm. Under suitable assumptions, it is shown that MSPIN is locally

convergent, and desired superlinear or even quadratic convergence can be obtained

when the forcing terms are picked suitably. Numerical experiments show that MSPIN

can be significantly more robust than Newton methods based on global linearizations,

and that MSPIN can be more robust than ASPIN, and maintain fast convergence even

for challenging problems, such as high-Reynolds number Navier-Stokes equations.

6

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest thanks and appreciation to

my advisor, Prof. David Keyes, for his support and guidance on my research. I am

grateful to him for his patience, encouragement and suggestions throughout my PhD

studies. His enthusiasm and diligence as a scientific researcher inspire me a lot to do

the research.

The research in my thesis is supported by KAUST’s baseline funding and Extreme

Computing Research Center, which provided me opportunities to attend several inter-

national conferences. The PETSc group of Argonne National Laboratory is gratefully

acknowledged for their software support.

Finally, I would like to thank my family for their love, support and encouragement.

7

TABLE OF CONTENTS

Examination Committee Approval 2

Copyright 3

Abstract 4

Acknowledgements 6

List of Abbreviations 10

List of Figures 11

List of Tables 13

1 Introduction 15

1.1 An Overview of Nonlinear Solvers . 15

1.2 Nonlinear Preconditioning . 17

1.2.1 Background . 17

1.2.2 Development of Nonlinear Preconditioning 18

1.3 Motivation and Objectives . 20

1.4 Organization of Dissertation . 20

2 Preliminaries 22

2.1 Inexact Newton with Backtracking (INB) 22

2.2 Di↵erentiability . 25

2.3 PETSc . 26

3 Additive Schwarz Preconditioned Inexact Newton (ASPIN) 29

3.1 Linear and Nonlinear Preconditioning 29

3.2 Review of ASPIN . 30

3.2.1 Framework . 30

3.2.2 Some Analysis . 33

8

4 Numerical Simulation of the Two-phase Flow with ASPIN 35

4.1 Basic Concepts . 37

4.2 Two-phase Flow Model . 38

4.2.1 Description of the Problem . 38

4.2.2 Relative Permeability and Capillary Pressure 41

4.2.3 PVI . 42

4.2.4 Discretization . 42

4.3 Numerical Results . 45

4.3.1 Example 1 — Quarter Five-Spot Problem 46

4.3.2 Example 2 — Layered Permeability 49

4.3.3 Example 3 — Layer 26 From SPE10 Model 2 51

4.4 Concluding Remarks . 53

5 Field-split Preconditioned Inexact Newton Algorithms 55

5.1 Field-split Preconditioned Inexact Newton Algorithm 55

5.1.1 Field-split ASPIN . 56

5.1.2 Field-split MSPIN . 59

5.2 Implementation of the Field-split ASPIN and MSPIN 62

5.2.1 The Field-split ASPIN and MSPIN 62

5.2.2 A Simple Example . 64

5.3 Some Analysis of the Field-split ASPIN and MSPIN 67

5.4 Extension to Multicomponent for ASPIN and MSPIN 72

5.5 Numerical Results . 75

5.5.1 Nonlinear Boundary Value Problem 75

5.5.2 An ODE Coupled to an Algebraic System in 1D 77

5.5.3 Driven Cavity Flow Problem 78

5.6 Orderings and Groupings . 85

5.6.1 Driven Cavity Flow Problem 85

5.6.2 Natural Convection Cavity Flow Problem 87

6 Convergence Analysis for the MSPIN Algorithm 92

6.1 MSPIN with Multiple Components 92

6.1.1 Some Properties . 93

6.1.2 The MSPIN Framework . 102

6.2 Local Convergence . 104

6.3 Convergence Rate . 111

6.4 An Illustration . 116

9

7 Conclusion and Future Work 123

References 125

Appendices 137

10

LIST OF ABBREVIATIONS

ASPIN Additive Schwarz Preconditioned Inexact

Newton

IMPES IMplicit Pressure Explicit Saturation

INB Inexact Newton method with Backtracking

MSPIN Multiplicative Schwarz Preconditioned Inex-

act Newton

PV Pore Volume

PVI Pore Volume Injected

11

LIST OF FIGURES

4.1 The setting of the quarter-five spot problem. 40

4.2 Permeability field. The permeability varies between 1.3 md and 3.0

darcy. 47

4.3 The quarter-five spot problem with the mesh 256⇥256 at di↵erent

times t = 0.1 PVI, t = 0.3 PVI, t = 0.5 PVI. The flow behavior

corresponds to the homogeneous field (left) and heterogeneous field

(right). 48

4.4 Layered alternate permeability with 100 md and 1 md. 50

4.5 Saturation distribution in layered porous media with mesh 50 ⇥ 90 at

di↵erent time t = 0.5 PVI: Bc = 2.5 bar (left), Bc = 1, 10 bar (right). 50

4.6 Convergence history for the Layer 26 from SPE10 using ASPIN method

and the inexact Newton method with a backtracking technique (INB)

up to 300 days. The maximum time step is 10 days in both cases. . . 53

5.1 Contours of log(kF (x)k+ 1) . 66

5.2 Contours of log(kFJ(x)k+ 1) . 67

5.3 Contours of log(kFGS(x)k+ 1) . 67

5.4 The exact solution u(x). 76

5.5 Nonlinear residual history for the driven cavity flow problem with dif-

ferent Reynolds numbers. The initial guess is still zero for u, v,!,

except u = 1 on the top boundary. 82

12

5.6 Strong scaling for the driven cavity flow problem on a 1024⇥1024 mesh

at Reynolds number 1000. The initial guess is still zero for u, v,!.

✏global�linear�rtol = 10�3, ✏global�nonlinear�rtol = 10�8, ✏sub�rtol = 10�3

and ✏Jac�rtol = 10�3. ✏sub�rtol denotes the relative tolerance for the

subproblems (which are linear in this example), and we specify ✏Jac�rtol

as the relative tolerance for the linear problems in (5.13) and (5.29).

The finite di↵erence step size for the matrix-free Jacobian applications

is 10�8. Execution time for ASPIN using 512 processors is not shown

since it fails to converge on this mesh and this Reynolds number from

a zero initial guess. 84

5.7 Nonlinear residual history for the flow problem with di↵erent Reynolds

numbers. The initial guess is still zero for u, v,!, except u = 1 on the

top boundary. The MSPIN algorithm fails when Re > 2565. 87

5.8 Boundary conditions for natural convection cavity flow 88

5.9 Contours of temperature T (top) and vorticity ! (bottom). 91

13

LIST OF TABLES

2.1 Krylov subspace methods and preconditioners. 28

4.1 A 256 ⇥ 256 mesh on di↵erent numbers of processors, the simulation

time is 0.5 PVI, starting with the initial time step 0.0001 PVI, and the

overlap = 2. 49

4.2 A 50⇥90 mesh on di↵erent numbers of processors, the simulation time

is 0.5 PVI, starting with the initial time step 0.00001 PVI, and the

overlap = 2. 51

4.3 A 60 ⇥ 220 mesh on 8 processors, the simulation time is 300 days,

starting with the initial time step 1 days, and the overlap = 4 in the

ASPIN method. 53

5.1 The number of nonlinear iterations. The outer global tolerance is 10�8,

and the inner component tolerances are both 10�3. 66

5.2 Comparison of the number of nonlinear iterations for di↵erent methods

in the rightmost three columns. “No. points” indicates the number of

grid points used to discretize the ODE. The points between Gleft and

Gright are unknowns in G. 77

5.3 Global nonlinear and linear iterations using globalized INB, ASPIN

and MSPIN. ✏global�nonlinear�rtol = 10�10, ✏global�linear�rtol = 10�8, and

✏sub�nonlinear�rtol = 10�3. “ ⇤” indicates that linear iterations are not

available, since the nonlinear methods stagnate at the line search. . . 78

5.4 Global nonlinear and linear iterations using globalized INB, ASPIN,

and MSPIN on di↵erent mesh sizes. The initial guess is zero for u, v,

and !. ✏global�linear�rtol = 10�6, ✏global�nonlinear�rtol = 10�10. The finite

di↵erence step size for the matrix-free Jacobian applications is 10�8. “

⇤⇤” indicates that nonlinear iterations are not available, because linear

iterations fail to converge after 10000 steps. 80

14

5.5 Execution times for strong scaling of the lid-driven cavity for ASPIN

and MSPIN on a 256⇥256 mesh at Reynolds number 1000, for tight and

loose relative convergence tolerances on the subproblems and global

preconditioner linear systems solutions. The initial guess is zero for u,

v, and !. ✏global�linear�rtol = 10�6, ✏global�nonlinear�rtol = 10�8. ✏sub�rtol

denotes the relative tolerance for the subproblems (which are linear

in this example), and we specify ✏Jac�rtol as the relative tolerance for

the linear problems in (5.13) and (5.29). The finite di↵erence step size

for the matrix-free Jacobian applications is 10�8. “ Np” indicates the

number of processors, which does not have to be square. Performance

for INB is not shown since it fails to converge on this mesh and this

Reynolds number from a zero initial guess. 83

5.6 Global nonlinear and linear iterations using ASPIN and MSPIN on

di↵erent mesh sizes. We arrange the unknowns in the order of !, u,

v for the global system. The initial guess is zero. ✏global�linear�rtol =

10�6, ✏global�nonlinear�rtol = 10�10. The finite di↵erence step size for the

matrix-free Jacobian applications is 10�8. 86

5.7 Global nonlinear and linear iterations using INB and MSPIN on dif-

ferent mesh sizes at di↵erent Rayleigh numbers. The initial guess is

zero for u, v, and !, and the linear interpolation for T using two

known temperatures on the vertical sides. ✏global�linear�rtol = 10�6,

✏global�nonlinear�rtol = 10�10, and ✏sub�linear�rtol = 10�6. “-” indicates

that the nonlinear iterations are not available, because linear itera-

tions fail. “*” indicates that the nonlinear iterations are not available,

because the subproblems fails to converge or backtracking fails. . . . 90

15

Chapter 1

Introduction

1.1 An Overview of Nonlinear Solvers

In contemporary simulations, many problems are governed by nonlinear partial dif-

ferential equations (PDEs), which result in large scale algebraic systems using dis-

cretization techniques such as the finite di↵erence method, the finite volume method,

or the finite element method.

There are several important categories of solvers for discretized nonlinear PDEs:

• Newton-type methods: Starting from a global linearization by Newton’s method

or some inexact variants, we solve the resulting linear system by a linear solver

such as SOR, multigrid, or Krylov subspace methods. It is not necessary to

explicitly form or store the matrix of the linear system. For example, various

“matrix-free” approaches can be used to construct the Jacobian-vector prod-

uct approximation in Newton-Krylov methods, namely Jacobian-free Newton-

Krylov methods [1]. There is no guarantee that Newton-type methods can

converge when an initial guess is far from the exact solution, and therefore they

are often augmented by popular globalization techniques such as line search or

trust-region methods [2].

• Nonlinear Krylov methods: These include nonlinear Richardson [3], nonlinear

16

conjugate gradients (NCG) [4], nonlinear GMRES (NGMRES) [5] and Ander-

son mixing methods [6, 7]. The nonlinear Richardson iteration and NCG can

be viewed as a simple extension of corresponding methods in linear cases, the

Richardson iteration and CG, but the associated step length is determined by

line search methods. NGMRES and Anderson mixing combine several previous

iterations and solve residual minimizing problems for weights. The updated so-

lution is then constructed as the combination of previous solutions and residuals

using those weights.

• Decomposition methods: We consider nonlinear variants of subspace or domain

decomposition and multilevel algorithms, which often serve as nonlinear precon-

ditioners or accelerators due to no guarantee of convergence. Here we consider

three nonlinear algorithms: Gauss-Seidel-Newton algorithm solves block sub-

problems using Newton’s method in the multiplicative form; nonlinear additive

Schwarz method (NASM) [8] solves local subdomain problems in parallel and

sum resulting corrections into a global search direction; Full approximation

scheme (FAS) [9] solves coarse-grid problems in the error-smoothing process,

and then the coarse-grid error extracted from the solution is interpolated to

the fine grid. Finally, the fine-grid error is used to update the current fine-grid

approximation.

• Limited-memory quasi-Newton methods: Instead of computing Jacobian di-

rectly, the class of methods form an approximation of Jacobian or the inverse

Jacobian by storing low rank updates. Three popular variants are L-BFGS [10],

“good” Broyden, and “bad” Broyden [11, 12].

In addition to above methods, there are many related variants or other globaliza-

tion techniques that will be discussed in the next section.

17

1.2 Nonlinear Preconditioning

1.2.1 Background

Newton-like methods in their many variants are often favored for the solution of non-

linear systems, especially large algebraic systems arising from discretized di↵erential

equations. For instance, Newton-Krylov-Schwarz methods have been successfully ap-

plied in many areas [1, 13, 14, 15, 16]. However, the problem of “nonlinear sti↵ness”

frequently arises, in which progress in updating the state variables with a global New-

ton step is retarded by an often small subset of the variable-equation pairs due to the

lack of a good starting point. Global Newton-like methods may waste considerable

computational resources while the majority of state variables barely evolve for many

iterations until some critical feature (e.g., boundary or interior layer, aerodynamic

shock, reaction zone, contact discontinuity, phase transition) of the solution falls into

place, following which the desired superlinear asymptotic convergence of Newton pol-

ishes the root. These unproductive iterations typically require the solution of large

linear systems with ill-conditioned Jacobians. Worse, Newton may stagnate indefi-

nitely.

As in the examples of [2, 17], the domain of convergence of Newton’s method may

shrink as the relative nonlinearity of the function increases. Therefore, it is di�-

cult to find a good initial guess for problems with “unbalanced nonlinearities.” Some

globalization techiniques have been developed to bring the solution into the domain

of convergence from a convenient initial point, such as the line search method and

the trust region method [2, 11, 18, 19], mesh sequencing methods [20, 21], pseudo-

transient continuation methods [22, 23]. Two complementary approches to handle

strong nonlinearities are nonlinear elimination [24, 25, 26, 27] and nonlinear precon-

ditioning [1, 28, 29]. Nonlinear elimination implicitly eliminates local high nonlin-

earities by removing appropriate variables deemed to cause trouble before applying

18

a global Newton iteration. Nonlinear preconditioning reduces nonlinearities of the

function by changing coordinates, i.e., to solve the preconditioned system instead

of the original system by an outer Jacobian-free Newton method. The dissertation

focuses on the nonlinear preconditiong technique.

1.2.2 Development of Nonlinear Preconditioning

As a result of nonlinearities of the problem, the solution structure has disparate

spatial scales, namely “nonlinear sti↵ness” or “unbalanced nonlinearities.” Classical

examples are reaction fronts and shock waves. For the nonlinearly sti↵ problem,

Newton’s method is often frustrated due to a considerable number of unproductive

iterations or even stagnation.

Nonlinear Schwarz algorithms have been widely used as iterative methods [30,

31, 32, 33], and numerical experiments show that they are generally not very robust,

except for monotone problems. In fact, however, the nonlinear Schwarz can serve

as an excellent nonlinear preconditioner. To conquer unbalanced nonlinearities and

improve global convergence properties, the additive Schwarz preconditioned inexact

Newton (ASPIN) algorithm was devised in [28] as an inner-outer Newton solver, with

most of the work performed on independent subproblems in inner iterations, plus

relatively few outer iterations on a transformed system, on which Newton is supposed

to converge quickly. The key idea of ASPIN is to transform the original system into a

modified system with the same root, and to solve it using a Jacobian-free [1] inexact

Newton method.

ASPIN has virtues beyond potentially more robust nonlinear convergence:

– The inner nonlinear subproblems possess smaller working sets and, being less

nonlinearly sti↵, may require in aggregate less work than the outer iterations

they replace, resulting in a net reduction of execution time.

19

– The auxiliary inner iteration linear problems are smaller than the global system,

so the sets of processors that need to synchronize frequently (e.g., because of

inner products or recurrences) to carry out their solution are smaller. Further-

more, these sets may be asynchronous relative to each other.

– Since the outer iteration is Jacobian-free and the inner iterations work on subsets

of the original system, ASPIN can be implemented with modest additions to an

existing Newton code, and it is available in the popular PETSc framework [34].

So far, ASPIN has been employed successfully to solve some challenging problems,

such as a lid-driven cavity flow [17, 28, 35], a transonic full potential flow [36], incom-

pressible Navier-Stokes flows at high Reynolds numbers [37, 38, 39], and two-phase

flow in porous media [40]. Various enhancements of ASPIN have been proposed,

including two-level versions [17, 35, 39, 41, 42] to improve the conditioning of the

outer Jacobian-free linear problem, the extension to unstructured finite element el-

liptic problems [43], and the incorporation of a rescaling step [37]. For a taxonomy

of nonlinear preconditioning methods placing ASPIN in a broader context of scalable

nonlinear solvers, see [3].

Theoretical support for the local convergence of the ASPIN algorithm at up to

a quadratic rate, for suitable assumptions, was provided in [44] and the results are

similar to those obtained for the inexact Newton method. Also, some preliminary

convergence analysis [45] of ASPIN was studied for a class of semilinear elliptic PDEs.

It is quite di�cult to prove global convergence of the ASPIN method, by contrast,

a novel “G-ASPIN” (Globalized ASPIN) method employing Trust-Region control

strategies for nonlinear programming problems was presented in [46], which is globally

convergent. The key idea of this globalization approach is to consider the nonlinearly

preconditioned Newton step of ASPIN as the first-order conditions of a particular

preconditioned quadratic programming problem. For nonlinear programming, some

additive and multiplicative preconditioned trust-region approaches regarded as right

20

nonlinear preconditioners were presented in [47, 48].

1.3 Motivation and Objectives

As far as we know, there are very few attempts [40] to apply ASPIN to reservoir sim-

ulation problems until now, although ASPIN successfully handles high nonlinearities

for challenging computational fluid dynamics problems. One objective of this thesis

is to apply ASPIN in simulating more general two-phase flow involving the terms of

capillary pressure and gravity [49].

The classical ASPIN was introduced in [28] as a nonlinear domain decomposition

method; however, its algebraic generalization to other types of decompositions was

anticipated. A second objective is to develop an algebraic variant of ASPIN based

on field splitting. Under field splitting, a Gauss-Seidel-like sequential ordering of

the subproblems is often natural, whereas domain decomposition naturally generates

concurrent problems of Jacobi character. The Gauss-Seidel-like variant of ASPIN is

referred to as the multiplicative Schwarz preconditioned inexact Newton (MSPIN)

algorithm [50].

A third objective is to carry out convergence analysis of the MSPIN algorithm

[51], which provides the theoretical support for the multiplicative version of nonlinear

preconditioning.

1.4 Organization of Dissertation

The dissertation consists of six chapters. The main contribution is presented in

Chapter 4 through Chapter 6.

The next chapter gives some preliminary knowledge, including some details of

inexact Newton method with backtracking (INB), the definition of F-di↵erentiability,

and a brief overview of the software framwork PETSc, in which our examples are

21

implemented.

In Chapter 3, we review the algorithmic and theoretical framework of ASPIN.

In Chapter 4, we describe the incompressible two-phase flow model in a two-

dimensional porous medium and the fully implicit numerical scheme. In addition,

some numerical results using ASPIN and concluding remarks are given.

In Chapter 5, we introduce two types of the nonlinear field-split preconditioned

inexact Newton algorithm and derive formulae for preconditioned functions and corre-

sponding Jacobian matrices, and then present details of the field-split preconditioned

inexact Newton algorithm implementation, as well as an illustrative example of two

scalar components. This chapter also contains a proof of the equivalence of the original

nonlinear system and the nonlinearly preconditioned system under some reasonable

conditions for applications, and the extension in the case of N > 2 components.

Finally, some numerical results are given.

Chapter 6 briefly reviews the MSPIN algorithm corresponding to N > 2 compo-

nents and its properties. A proof of local convergence of MSPIN is given, and desired

superlinear or even quadratic convergence can be obtained by choosing suitable forc-

ing terms. Next, a simple example illustrates that some conditions in the assumptions

are not unreasonably strict.

We conclude with the niche for the field-split preconditioned inexact Newton al-

gorithm variants and some natural future work in Chapter 7.

22

Chapter 2

Preliminaries

2.1 Inexact Newton with Backtracking (INB)

We briefly review the classical Inexact Newton method with Backtracking (INB)

technique [2, 52, 53], which serves as the basic block of both ASPIN and MSPIN. The

INB method is used both as a nonlinear solver for the transformed global system and

for subsystems in the original coordinates.

Considering the discrete nonlinear function F : Rn ! Rn, we want to find a vector

x⇤ 2 Rn such that

F (x⇤) = 0, (2.1)

where F = [F
1

, F
2

, . . . , Fn]T and x = [x
1

, x
2

, . . . , xn]T .

The fundamental form of Newton’s method for solving F (x) = 0 is given in Algo-

rithm 1, which may also be viewed as the two-term multivariate Taylor expansion of

the function F (x) with respect to the current approximation x(k). Some convergence

analysis including the Kantorovich analysis for the Newton’s method are found in

[2, 54]. At each step, however, it is generally very expensive to solve Newton equa-

tions for the exact solution using the direct solvers if the number of unknowns is

large and, moreover, it may not be justified when x(k) is far from the exact solution

x⇤. Therefore, it is reasonable to employ iterative methods to solve Newton equa-

23

Algorithm 1 Newton’s method

An initial iterate x(0) is given.
for k = 0, 1, 2, . . . until convergence do
Solve F 0(x(k))d(k) = F (x(k))
Set x(k+1) = x(k) � d(k)

end for

Algorithm 2 IN (Inexact Newton method)

An initial iterate x(0) is given.
for k = 0, 1, 2, . . . until convergence do
Choose ⌘k 2 [0, 1)
Find d(k) which satisfies

kF (x(k))� F 0(x(k))d(k)k  ⌘kkF (x(k))k.
Set x(k+1) = x(k) � d(k)

end for

tions approximately for an inexact Newton direction (a trade-o↵ between accuracy

and amount of work per iteration), referred to as the inexact Newton (IN) method

[2, 11, 52, 55]. The framework is described in Algorithm 2. Here ⌘k, called a “forc-

ing term,” determines how accurately the Jacobian linear system needs to be solved

using Krylov subspace methods [56, 57], such as GMRES [58, 59]. It is noted that

Algorithm 2 gives Newton’s method when ⌘k = 0.

When the approximation x(k) is su�ciently close to x⇤, it can be shown that the

inexact Newton method is locally convergent under some reasonable assumptions.

The convergence is q-superlinear if ⌘k ! 0, or q-quadratic if ⌘k = O(kF (x(k))k) and

F 0 is Lipschitz continuous [11, 55]. Some choices of ⌘k based on norms or updates

and residuals available as by-products of the main computation have been suggested

[60, 61, 62]. In order to achieve desirably fast local convergence and tend to avoid

oversolving the Newton equation, two common choices of forcing terms were proposed

by Eisenstat and Walker [62]:

• Choice 1. ⌘
0

2 [0, 1) is given and choose

⌘k =

��F (x(k))� F (x(k�1))� F 0(x(k�1))d(k�1)

��
2

kF (x(k�1))k
2

, k = 1, 2, . . . , (2.2)

24

or

⌘k =

��kF (x(k))k
2

� kF (x(k�1)) + F 0(x(k�1))d(k�1)k
2

��
kF (x(k�1))k

2

, k = 1, 2, (2.3)

• Choice 2. Given � 2 [0, 1], and � 2 (1, 2], and ⌘
0

2 [0, 1), choose

⌘k = �

✓
kF (x(k))k

2

kF (x(k�1))k
2

◆�

, k = 1, 2, (2.4)

To avoid ⌘k becoming too small, two corresponding safeguards are also needed:

• For Choice 1, modify ⌘k by ⌘k max{⌘k, ⌘
1+

p
5

2

k�1

}, if ⌘
1+

p
5

2

k�1

> 0.1.

• For Choice 2, modify ⌘k by ⌘k max{⌘k, �⌘�k�1

}, if �⌘�k�1

> 0.1.

For Choice 1, ⌘k in (2.2) or (2.3) gives a certain q-superlinear local convergence.

By contrast, Choice 2 does not directly reflect the agreement between F and its

local linear model at the previous step, as does Choice 1. However, it is e↵ective

against oversolving the Newton equation and o↵ers up to q-quadratic local conver-

gence. Moreover, Choice 2 may be useful in applications due to flexibility allowed by

two parameters � and � in (2.4).

Unfortunately, the inexact Newton method may not converge if the initial guess

is not close to x⇤, and then one has to combine the inexact Newton method with the

globalization strategies such as line search, trust-region or hybrid steepest descent

[2, 11, 18, 19, 63, 64] techniques in order to ensure the convergence.

The idea of the line search algorithm is to find an acceptable x(k+1) based on the

function f(x) = 1

2

kF (x)k2 by shortening the step length along the descent direction

d(k). Here we also list the details of the backtracking line search algorithm in Algo-

rithm 3. We first try the full Newton step by setting �(k) = 1. If x(k+1) = x(k) � d(k)

is not acceptable, we could backtrack (reduce �(k)) until �(k) is found such that

25

Algorithm 3 Backtracking line search

Input: x(k) and d(k).
Define f(x) = 1

2

kF (x)k2. Give ↵ 2 (0, 1) and 0 < ✓min < ✓max < 1.
Let �(k) = 1.
while f(x(k) � �(k)d(k)) > f(x(k))� ↵�(k)rf(x(k))Td(k) do
choose some ✓ 2 [✓min, ✓max]
�(k) = ✓�(k)

end while

Algorithm 4 INB (Inexact Newton backtracking algorithm)

An initial iterate x(0) is given.
for k = 0, 1, 2, . . . until convergence do
Choose ⌘k 2 [0, 1)
Find d(k) such that
kF (x(k))� F 0(x(k))d(k)k  ⌘kkF (x(k))k.

Determine a step size �(k) using the backtracking line search technique.
Set x(k+1) = x(k) � �(k)d(k).

end for

x(k+1) = x(k) � �(k)d(k) is acceptable. In Algorithm 3, the new step length is de-

termined by constructing a one-dimensional quadratic or cubic function to model

f(x(k) � �(k)d(k)), namely the quadratic or cubic line search methods. For more de-

tails, see [2].

Finally, we combine the inexact Newton method with a backtracking linear search

technique, leading to the globally inexact Newton backtracking (INB) algorithm

shown in Algorithm 4.

2.2 Di↵erentiability

Let L(Rn, Rm) denote the linear space of real m⇥ n matrices.

Definition 1. (Definition 3.1.1 in [54]) A mapping H : D ⇢ Rn ! Rm is Gateaux-

(or G-) di↵erentiable at an interior point x of D if there exists a linear operator

26

A 2 L(Rn, Rm) such that, for any h 2 Rn,

lim
t!0

(1/t)kF (x+ th)� F (x)� tAhk = 0. (2.5)

Definition 2. (Definition 3.1.5 in [54]) The mapping H : D ⇢ Rn ! Rm is Fréchet-

(or F-) di↵erentiable at an interior point x of D if there is an A 2 L(Rn, Rm)

such that

lim
h!0

(1/khk)kF (x+ h)� F (x)� Ahk = 0. (2.6)

The linear operator A is denoted by F 0(x), and is called F-derivative of F at x.

Note that the mapping H is G-di↵erentiable at x whenever it is F -di↵erentiable at

x, and it follows that any property of the G-derivative also holds for the F-derivative.

2.3 PETSc

PETSc [34], standing for the Portable, Extensible Toolkit for Scientific Computation,

is programmed in C to build data structures and provide routines for the scalable

solutions of PDEs deriving from the scientific applications such as fluid dynamics,

biology, fusion, geosciences, and nano-science. It is developed as an open-source soft-

ware package at Argonne National Laboratory, which supports MPI, GPUs through

CUDA or OpenCL, and hybrid MPI-GPU parallelism. PETSc is available and tuto-

rials can be downloaded via http://www.mcs.anl.gov/petsc.

One attractive feature of PETSc is to include a large suite of parallel linear,

nonlinear and timestepping solvers, which can be easily used in scientific codes written

in C, C++, Fortran and Python.

• Linear solvers: The combination of a Krylov subspace method (KSP) and a pre-

conditioner (PC) is often an e�cient iterative solver for linear systems. In Ta-

ble 2.1, we summarize the basic Krylov subspace methods and preconditioning

http://www.mcs.anl.gov/petsc

27

methods supported in PETSc. In addition, PETSc also provides physics-based

block preconditioners (PCFIELDSPLIT), and both matrix-free and matrix-

based multigrid preconditioners are fully supported. The shell preconditioner

(PCSHELL) uses an application-provided routine with its own private data

storage. The PC type, namely combination of preconditioners (PCCOMPOS-

ITE), allows one to construct a composible preconditioner by combining already

defined preconditioners and solvers. Complex multilevel or multistage precondi-

tioners can be constructed due to flexibility of PCSHELL and PCCOMPOSITE

preconditioners.

• Nonlinear solvers (SNES): PETSc includes Newton-like nonlinear solvers based

on line search techniques and trust region methods. It also provides an interface

to nonlinear Krylov methods, quasi-Newton methods, the full approximation

scheme (FAS), nonlinear additive Schwarz methods and nonlinear precondition-

ers. When solving a nonlinear system, users must set a routine for evaluating

the nonlinear function. The approximation of the corresponding Jacobian can

be computed using user-provided analytical formula, multicolored finite di↵er-

encing [65], “matrix-free” Jacobian-vector product approximation [1] or auto-

matic di↵erentiation using ADIC [66] or ADIFOR [67]. In addition, PETSc

also includes capabilities for variational inequalities (VIs) with box constraints,

which allows problems with bounds on solution such as phase-field models to

be handled properly without resorting to “cut-o↵ ” or other techniques.

• ODE and DAE solvers (TS): PETSc provides the library of time-stepping ODE

solvers, namely TS, for ODEs and DAEs arising from the discretization of time-

dependent PDEs, including fully implicit general linear methods (GL) and theta

methods, IMEX (semi-implicit) methods and the explicit Euler and Runge-

Kutta methods with variable timesteps. TS also can be used to solve steady-

28

KSP PC
Richardson Jacobi
Chebyshev Block Jacobi
Conjugate Gradient SOR (and SSOR)
BiConjugate Gradient SOR with Eisenstat trick
Generalized Minimal Residual Incomplete LU
Flexible Generalized Minimal Residual Additive Schwarz
Deflated Generalized Minimal Residual Generalized Additive Schwarz
Generalized Conjugate Residual Algebraic Multigrid
BiCGSTAB BDDC
Conjugate Gradient Squared Linear solver
Transpose-Free QMR Combination of preconditioners
MINRES LU
Conjugate Residual Cholesky
Least Squares Method Shell for user-defined PC

Table 2.1: Krylov subspace methods and preconditioners.

state problems with a pseudo-time stepping approach [22, 23].

Another attractive feature is that PETSc has interfaces to various external pack-

ages like SuperLU, SuperLU DIST, SUNDIALS, MATLAB, Mathematica, Hypre,

MUMPS, ParMeTis, Trilinos, and so on. For example, the package SuperLU DIST

extends PETSc with the parallel LU decomposition, and the TS library in PETSc

allows one to use an external parallel ODE solver, the CVODE component of SUN-

DIALS.

PETSc is one of the world’s most widely used libraries for high-performance com-

putational science. PETSc and its developers have won many prizes. For example,

the core development group won the the SIAM/ACM Prize in Computational Science

and Engineering for 2015. PETSc has been employed in many notable simulations

such as the Gordon Bell Finalist at SC 2009, and the Gordon Bell Special Prize at

SC 1999, SC 2003 and SC 2004.

Since it leverages much relevant open-source software and since it gives our own

developments a recognized pathway for distribution, in this dissertation, all of codes

for numerical examples are implemented in PETSc.

29

Chapter 3

Additive Schwarz Preconditioned

Inexact Newton (ASPIN)

3.1 Linear and Nonlinear Preconditioning

For ill-conditioned linear systems arising from typical applications such as fluid dy-

namics, iterative methods, such as Krylov subspace methods, are often favored due

to their intrinsic appeal of requiring only “blackbox” matrix-vector multiplies with

the true Jacobian, while being preconditioned with related simplified discrete oper-

ators. However, iterative solvers allowed only capped memory resources may su↵er

from slow convergence or even divergence. The technique of linear preconditioning is

successful to improve both the e�ciency and robustness of iterative methods.

We want to find the solution to the the original (ill-conditioned) system

Ax� b = 0, (3.1)

where A 2 Rn⇥n and x, b 2 Rn. The idea underlying linear preconditioning is to

replace (3.1) with an equivalent system

M�1(Ax� b) = 0, (3.2)

30

which is then solved by an iterative method. Here the nonsingular matrix M (or

sometimes M�1) is called a preconditioner. There are many ways to define the pre-

conditioner M , but it should satisfy the following requirements:

– It is inexpensive to solve linear systems with the operator M .

– The operator M is close to A in the sense that (3.2) is better conditioned.

The preconditioning technique can be generalized to solve nonlinear systems with

strong nonlinearities, which is referred to as nonlinear preconditioning. We solve the

preconditioned system F(x) = H(F (x)) = 0 instead of the original system F (x) = 0,

where H is viewed as a nonlinear preconditioner. Similarly, there are some require-

ments for H:

– If H(w) = 0, then w = 0. This implies that F(x⇤) = 0 if F (x⇤) = 0.

– H is close to F�1 in some sense such that F(x) = 0 is better balanced.

– H(F (y)) is easily computable for given y 2 Rn.

– It is easy to approximate the matrix-vector multiplication (H(F (y))0z for y, z 2

Rn when F(x) = 0 is solved by a Newton-Krylov method.

The nonlinear preconditioner H is defined implicitly and it is not necessary to specify

its form. In the next section, we will show how to define F(x) directly without

reference to H.

3.2 Review of ASPIN

3.2.1 Framework

The Additive Schwarz Preconditioned Inexact Newton (ASPIN) was proposed by

Cai and Keyes [28], and some numerical experiments [17, 28, 35, 36, 37] show that

31

this algorithm works well for some problems in computational fluid dynamics. Tests

for the standard driven cavity flow problem, show that ASPIN still converges and

maintains a superlinear Newton-like fast convergence rate for a much larger range of

Reynolds numbers than the Newton-Krylov-Schwarz algorithm, which stagnates at a

large Reynolds number (O(103)).

In this section, we quickly review the outline of ASPIN framework based on domain

decomposition. We consider a given nonlinear system

F (x) = 0. (3.3)

Let

⌦ =
N[

i=1

⌦i (3.4)

be a domain partition, where subdomains ⌦i may overlap each other. The associated

nonlinearly preconditioned system

F(x) = 0 (3.5)

is constructed in the following way:

F(x) =
NX

i=1

T
⌦

i

(x), ⌦i 2 ⌦, (3.6)

where T
⌦

i

(x) is obtained by solving local nonlinear systems

F
⌦

i

(x� T
⌦

i

(x)) = 0, i = 1, . . . , N. (3.7)

The nonlinearly transformed version (3.5) of the original system is solved using an

inexact Newton method, which requires the Jacobian of the preconditioned system

32

J (x) = F 0(x). Following [28, 44], the Jacobian J (x) can be written in the form

J (x) =
NX

i=1

T 0
⌦

i

(x) =
NX

i=1

RT
i [RiJ(x� T

⌦

i

(x))RT
i]

�1RiJ(x� T
⌦

i

(x)), (3.8)

where J(x) = F 0(x) is the Jacobian of F (x) andRi is the restriction operator such that

F
⌦

i

(x) = RiF (x), i = 1, 2, . . . , N . It is very expensive and inconvenient to directly

calculate the Jacobian in (3.8), since T 0
⌦

i

(x) is computed by di↵erent arguments, i =

1, 2, . . . , N . In practice, it is recommended in [28] to use the following approximation

Ĵ =
NX

i=1

RT
i [RiJ(x)R

T
i]

�1RiJ(x)

=
NX

i=1

J�1

⌦

i

J,

where J�1

⌦

i

= RT
i [RiJ(x)RT

i]
�1Ri and J = J(x).

We describe the ASPIN algorithm inAlgorithm 5. In our work, we solve the local

nonlinear systems (3.7) using Newton’s method, and approximate the Jacobian J
⌦

i

by a multicolored finite di↵erence scheme, instead of analytical subdomain Jacobian

matrices. For each local nonlinear iteration, LU decomposition is used for solving the

local Jacobian system. To achieve an e�cient implementation, subdomain problems

are solved in parallel. We employ an inexact Newton method with a backtracking

technique as the global nonlinear solver, and no preconditioning is done for the global

Jacobian system (3.12). The standard cubic backtracking algorithm is used to pick

�(k) such that

f(x(k) � �(k)d(k)) 6 f(x(k))� ↵�(k)(g(k))T
NX

i=1

J�1

⌦

i

Jd(k), f(x) =
1

2
kF(x)k2, (3.9)

where the parameter associated with backtracking is set to ↵ = 10�4.

33

Algorithm 5 ASPIN
Let ↵ 2 (0, 1) and 0 < ✓min < ✓max < 1 be given.

1. Compute the nonlinear residual g(k) = F(x(k)) through the following steps.

(a) Starting from g
(k)
i = 0, find g

(k)
i = T

⌦

i

(x(k)) by solving local nonlinear
systems

F
⌦

i

(x(k) � g
(k)
i) = 0, , i = 1, . . . , N. (3.10)

(b) Form the global residual

F(x(k)) =
NX

i=1

g
(k)
i . (3.11)

(c) Check the stopping conditions on F(x(k)).

2. Find the inexact Newton direction d(k) by solving the Jacobian system ap-
proximately,

NX

i=1

J�1

⌦

i

Jd(k) = g(k), (3.12)

such that

kg(k) �
NX

i=1

J�1

⌦

i

Jd(k)k  ⌘kkg(k)k (3.13)

where ⌘k 2 [0, ⌘max] is a forcing term.

3. Compute the new approximate solution

x(k+1) = x(k) � �(k)d(k), (3.14)

where the step length �(k) is determined by performing a line search along
d(k).

3.2.2 Some Analysis

In this section, we list some important results of the ASPIN algorithm. The precon-

ditioned function F(x) is defined in (3.6) and f(x) = 1

2

kF(x)k2.

Assumption 3. ([28]) F 0(x) is continuous in a neighborhood D of the exact solution

x⇤. F 0(x⇤) and RiF
0(x⇤)RT

i are nonsingular, i = 1, . . . , N .

Theorem 4. ([28]) Under Assumption 3, F (x) and F(x) have the same solution in

34

a neighborhood of the exact solution u⇤ in D.

Theorem 5. ([44]) Let F (x) and f(x) be twice continuously di↵erentiable in N(x⇤, r),

and there exists a constant C > 0 such that

krf(x)�rf(y)k 6 Ckx� yk, kr2f(x)�r2f(y)k 6 Ckx� yk, (3.15)

for any x, y 2 N(x⇤, r). Consider a sequence {x(k)} generated by the ASPIN method

such that x(k) ! x⇤, and then

(i) If ⌘k ! 0, x(k) ! x⇤ superlinearly ;

(ii) If ⌘k = O(kF(x(k))k), x(k) ! x⇤ quadratically .

For further analysis and a convergence proof, see [28, 44, 45].

35

Chapter 4

Numerical Simulation of the

Two-phase Flow with ASPIN

Multiphase flow behavior in porous media has been intensively studied over the past

few decades, due to its importance in a variety of disciplines such as oil and gas

recovery [68, 69, 70], groundwater contamination [71, 72], and basin modeling [73].

Such flows are complicated by various modeling features, including heterogeneity of

absolute permeability, gravity and capillary pressure e↵ects, and relative permeability

functions. For reservoir simulators, there are various solution techniques with di↵erent

degrees of coupling in the nonlinear solver and implicitness in the discretization.

The IMplicit Pressure Explicit Saturation (IMPES) method and its variations

(e.g., the improved IMPES) [74] remain popular schemes for solving multiphase flow

equations. The numerical stability of IMPES is limited not only by the CFL condi-

tion for the saturation equation, but also more seriously by the splitting error from

decoupling pressure and saturation equations. Splitting degrades its performance,

especially with strong nonlinearities from relative permeability and capillarity. To

maintain robustness of IMPES, including physically feasible saturation fractions be-

tween 0 and 1, the time step of the IMPES scheme must often be reduced below what

may be required for temporal accuracy. An alternative is to solve the multiphase flow

system fully implicitly, which allows a large timestep size, but this approach requires

36

a nonlinear solver at each time step. It takes a considerable amount of simulation

time to solve large nonlinear systems using Newton’s method or its many variations,

especially as an increasing number of unknowns for a high resolution to the fine scale

variations. E↵orts have been devoted to developing techniques to reduce the num-

ber of Newton iterations and execution time to solve linear systems. For instance,

a reordering procedure [75] is used to speed up the solution of the nonlinear system

derived from two-phase and three-phase flow.

In last few years, Krylov subspace methods like GMRES and BiCGSTAB as inner

solvers for inexact Newton methods have been successfully employed in multiphase

flow simulators, and preconditioners are usually required to avoid breakdowns or

una↵ordably slow convergence. To accelerate linear solvers, the two-stage precon-

ditioners [76, 77] have better performance than traditional preconditioners, such as

block Jacobi or ILU, for solving two-phase flow problems in porous media.

As an option for the outermost solver, one attractive scheme is the nonlinear Ad-

ditive Schwarz Preconditioned Inexact Newton (ASPIN) method proposed by Cai and

Keyes [28], which has demonstrated robustness in fluid dynamics problems involving

shocks and fronts and possesses domain-decomposed distributed memory scalability,

but is barely explored for the highly nonlinear models of complex multiphase flow with

capillarity, heterogeneity, and complex geometry. The ASPIN framework is initially

implemented in MATLAB and applied to fully implicit discretization arising from the

two-phase flow in the absence of capillary forces and gravity in heterogeneous porous

media [40], where numerical tests involving di↵erent phase viscosity ratios and per-

meability heterogeneity show that this algorithm is more robust and faster than that

of additive Schwarz linear preconditioning in the face of challenging problems for a

moderate number of subdomains.

We demonstrate ASPIN methods to simulate more general two-phase flow involv-

ing the terms of capillary pressure and gravity, which is governed by coupled systems

37

consisting of an elliptic pressure equation and a parabolic transport equation. A com-

bination of the finite volume spatial discretization and the backward Euler scheme in

time di↵erencing results in a fully implicit coupled nonlinear system.

4.1 Basic Concepts

Porosity

Porosity measures how much of the medium is the pore space. In a porous medium,

the dead-end pores can not store and transmit fluids, and therefore we only consider

this term as the “e↵ective porosity” associated with the interconnected pores:

� =
volume of the pore space available for flow within the medium

the total volume of medium
,

which depends on pressure due to rock compressibility.

Permeability

The (absolute) permeability, denoted byK, measures the capacity of a porous medium

to transmit fluids through its interconnected pores. By a change of basis (adjusting

the coordinate system to coincide with main flow directions), it is possible to get a

diagonal tensor K = diag(K
11

, K
22

, K
33

). If K
11

= K
22

= K
33

, it is called isotropic

porous medium; otherwise, it is anisotropic.

Phase

Phase refers to a chemically homogeneous region of fluid that is separated from other

fluid continua by a interface, where the physical fluid properties are discontinuous.

The fluids are regarded as separate phases, so called “multiphase flow”, if the phases

38

are immiscible. In this dissertation, we focus on the two-phase flow (e.g. water and

oil).

Saturation

The saturation of a phase ↵ measures how much of the pore space is filled with phase

↵, and it is defined as

S↵ =
volume of phase ↵ within the medium

the volume of pore space
.

4.2 Two-phase Flow Model

In this section, we consider the immiscible displacement of incompressible two-phase

flow in a two-dimensional porous medium, which is described by the saturation equa-

tion and Darcy’s law of the wetting and non-wetting phases. In this model, we take

into account gravity e↵ects and capillary forces that also play an essential role in

contributing the strong nonlinearities besides the relative permeability functions. It

is noted that phase densities are constants for two-phase incompressible flow, even

though the density of the wetting phase might di↵er significantly from that of the

non-wetting phase.

4.2.1 Description of the Problem

Based on mass conservation, the saturation equation for each fluid phase is given by:

�
@S↵

@t
+r · u↵ = q↵, ↵ = w, n, (4.1)

where � is the porosity of the porous media, the wetting phase (e.g, water) and non-

wetting phase (e.g, oil) are denoted by the subscripts w and n, respectively. Here,

39

S↵, u↵, and q↵ are, respectively, the saturation, velocity, and the external volumetric

flow rate of phase ↵. According to Darcy’s Law for each phase,

u↵ = ��↵K(rp↵ � ⇢↵g), ↵ = w, n, (4.2)

where K is the absolute permeability tensor of the porous media, p↵, ⇢↵ are the

pressure, density, and

g = grz,

where g is the magnitude of the gravitational acceleration, and z is the depth at the

position x. The mobility function �↵ is the ratio of relative permeability kr↵ and the

viscosity µ↵

�↵ =
kr↵
µ↵

.

The saturation constraint is given as

Sw + Sn = 1, (4.3)

and the capillary pressure function pc is defined as

pc = pn � pw. (4.4)

The total mobility is expressed as �t = �w +�n, and we also define qt = qw + qn. The

formulation for the incompressible two-phase flow can be obtained by substituting

(4.2), (4.3), (4.4) into (4.1):

�r · (�tKrpw) = qt +r · (�nKrpc)�r · ((�n⇢n + �w⇢w)Kg), (4.5)

�
@Sw

@t
�r · (�wK(rpw � ⇢wg)) = qw. (4.6)

40

�+

��

�0

�0

�0

�0

non#we&ng(phase(

we&ng(phase(

Figure 4.1: The setting of the quarter-five spot problem.

To close the coupled pressure-saturation equations (4.5) and (4.6), we require appro-

priate boundary and initial conditions. Let � = �
+

[�� [�0

be the boundary of the

rectangular domain, where �
+

, ��, and �
0

denote the inflow boundary, the outflow

boundary, and no flow boundary, respectively. The general boundary conditions are

stated as

uw · n = uw
B(x, y), un · n = un

B(x, y), on �
+

,

pw(x, y) = pB(x, y), �nKrpc · n = 0, on ��,

uw · n = 0, un · n = 0, on �
0

,

(4.7)

where n is the unit outer normal vector. For example, Figure 4.1 shows the setting

of the quarter-five spot problem.

The initial condition is given by

Sw|t=0

= Sinit in ⌦. (4.8)

In this work, we solve equations (4.5) and (4.6) simultaneously in the primary un-

knowns pw and Sw.

41

4.2.2 Relative Permeability and Capillary Pressure

The relative permeability describes how one phase flows in the presence of other

phases, and it is determined empirically or obtained via the experiments in the lab-

oratory. Extensive literature gives analytical expression for the relationship between

the relative permeabilities and the saturation of the wetting phases [74, 78, 79, 80, 81].

In this dissertation, the relative permeabilities are given by:

krw = S2

e ; krn = (1� Se)
2, (4.9)

where Se is the normalized saturation defined as:

Se =
Sw � Srw

1� Srw � Srn

, (4.10)

S
rn

is the irreducible saturation of the non-wetting phase, and S
rw

is the connate

water saturation, i.e., the saturation of the wetting phase trapped in the pores of the

rock during formation of the rock.

A discontinuity of the pressure, referred to as the capillary pressure pc, occurs

across an interface between two immiscible fluids as a consequence of the interfacial

tension. In general, the capillary pressure depends on many factors, such as the

wetting phase saturation Sw, the surface tension �, permeability k, porosity �, and

so on. For simplicity, the capillary pressure formula that we use throughout the

dissertation refers to [82, 83]

pc(Sw) = �Bc log(Se), (4.11)

where the capillary pressure parameter Bc is inversely proportional to
p
k, the square

root of the permeability.

42

4.2.3 PVI

We measure time by Pore Volume Injected (PVI) [84], which is analogous to dimen-

sionless time. PVI is defined by

PVI =
Qt

Vp

, (4.12)

where Q is the total volumetric flow rate, t is the dimensional time, and Vp is the

total Pore Volume (PV).

4.2.4 Discretization

The fully implicit approach [76, 85, 72] gives the highest robustness in long term

simulation, compared with other numerical discretization schemes to di↵erent ex-

tent of implicitness and coupling for the governing equations, such as the IMplicit

Pressure-Explicit Saturation (IMPES) [74, 86] or iterative IMPES [87, 88, 89, 90],

sequential methods [91], semi-implicit discretization [92] and the adaptive implicit

method (AIM) [93, 94].

In our work, the finite volume method is applied to discretize the model equations

for the spatial terms, and the implicit first order scheme (Backward Euler) is used for

the time di↵erencing approximation. The unknowns pw and Sw are approximated by

cell-wise constants. The permeability and mobilities are not well-defined at the inter-

face, and hence approximated separately by harmonic average values and standard

upstream weighting. The upwind direction for each phase ↵ is determined using its

phase velocity u↵ [95, 96].

We consider a rectangular domain ⌦ in R2, and a grid cell is denoted by ⌦i in ⌦.

The time interval [0, T] is divided as 0 = t
0

< t
1

< · · · < tN
t

= T , and the time step

length 4tk = tk+1

� tk. Cell interfaces are defined by �ij = @⌦i \ @⌦j, and nij are

associated normal vectors pointing from cell i to cell j. At the time tk, the solution

vector is denoted by uk = (P k
1

, . . . , P k
N , S

k
1

, . . . , Sk
N)

T , where N is the number of cells.

43

Taking the integral over ⌦i for the pressure equation (4.5):

�
Z

⌦

i

r · (�k+1

t Krpk+1

w)dx

�
Z

⌦

i

r · (�k+1

n Krpk+1

c)dx

+

Z

⌦

i

r · ((�k+1

n ⇢n + �k+1

w ⇢w)Kg)dx

�
Z

⌦

i

qk+1

t dx

=
X

j

Z

�
ij

⇥
��k+1

t Krpk+1

w � �k+1

n Krpk+1

c + (�k+1

n ⇢n + �k+1

w ⇢w)Kg
⇤
· nij dv

�
Z

⌦

i

qk+1

t dx, (4.13)

which is approximated using the standard two-point flux approximation finite volume

scheme as follows:

Fp(u
k+1) =

X

j

|�ij| [�up
t]k+1

ij KH
ij

P k+1

i � P k+1

j

4xi +4xj

+
X

j

|�ij| [�up
n]k+1

ij KH
ij

P k+1

c, i � P k+1

c, j

4xi +4xj

�
X

j

|�ij| ([�up
n]k+1

ij ⇢n + [�up
w]k+1

ij ⇢w)K
H
ij g

zi � zj
4xi +4xj

� |⌦i|qk+1

t,i , (4.14)

where

KH
ij = (4xi +4xj)

✓
4xi

Ki

+
4xj

Kj

◆�1

. (4.15)

44

Similarly, integrating the saturation equation (4.6):

�i

|⌦i|

Z

⌦

i

@Sw

@t
+

1

|⌦i|

Z

⌦

i

r · (��k+1

w K(rpk+1

w � ⇢wg)) dx�
1

|⌦i|

Z

⌦

i

qk+1

w dx

=
�i

|⌦i|

Z

⌦

i

@Sw

@t
+

1

|⌦i|
X

j

Z

�
ij

⇥
��k+1

w K(rpk+1

w � ⇢wg)
⇤
· nij dv � qk+1

w,i . (4.16)

We define the cell-average of the saturation at time t = tk as

Sk
i =

1

|⌦i|

Z

⌦

i

Sw(x, tk)dx, (4.17)

and apply the backward Euler scheme to approximate the derivative term with respect

to the time. We obtain the finite volume numerical scheme for the saturation equation:

Fs(u
k+1) =

�i

4tk
(Sk+1

i � Sk
i) +

2

|⌦i|
X

j

|�ij| [�up
w]k+1

ij KH
ij

P k+1

i � P k+1

j

4xi +4xj

� 2

|⌦i|
X

j

|�ij| [�up
w]k+1

ij KH
ij ⇢wg

zi � zj
4xi +4xj

� qk+1

w,i . (4.18)

The fully implicit formulation (4.14) and (4.18) result in the nonlinear system

F (uk) =

2

64
Fp(uk)

Fs(uk)

3

75 = 0 (4.19)

for each time step. When solving such nonlinear systems using Newton method or

its many variations, however, we maybe face the numerical challenges arising from

heterogeneous permeability of high contrast, strong nonlinearities of relative perme-

ability, and spatially varied capillary pressure functions. Therefore, some techniques,

such as reordering techniques [75] and a two-stage Gauss-Seidel preconditioner [76]

and multiscale approaches [69], have been developed to reduce the execution time for

linear solvers and reduce the number of Newton iterations. Nonlinear preconditioners

45

are also good candidates to handle “nonlinear sti↵ness” and reduce the computational

costs.

4.3 Numerical Results

In this section, we present some numerical results using ASPIN methods with sub-

domain overlap. Our implementation is done using the Portable Extensible Toolkit

for Scientific Computing (PETSc) [34], which is an open-source software package.

Uniform grids and the regular quadrilateral partitions are used in our experiments,

and the number of processors is the same as the number of subdomains. The primary

variables for all the tests are the pressure pw and the saturation Sw of the wetting

phase, which are located in the center of the cells. The injection well and production

well are modeled as the inflow boundary and the outflow boundary.

The global preconditioned nonlinear iteration is stopped when

kF(u(k))k
2

 "rel
global-nonlinear

kF(u(0))k
2

, or kF(u(k))k
2

 "abs
global-nonlinear

(4.20)

is first satisfied. We set "rel
global-nonlinear

= 10�4 and "abs
global-nonlinear

= 10�8 for all test

cases. GMRES is used for solving the global Jacobian systems. The global linear

iteration is stopped when

kF(u(k))�
NX

i=1

J�1

⌦

i

Jp(k)k
2

 "
global-linear

kF(u(k))k
2

(4.21)

is first satisfied. We select "
global-linear

= 10�4 for all the tests. The local nonlinear

iteration on each subdomain is stopped when

kF
⌦

i

(g(k)i,l)k2  "rel
local-nonlinear

kF
⌦

i

(g(k)i,0)k2, or kF
⌦

i

(g(k)i,l)k2  "abs
local-nonlinear

(4.22)

46

is first satisfied. We select "rel
local-nonlinear

= 10�3 and "abs
local-nonlinear

= 10�8 for all the

tests. Due to their small size of the local nonlinear problems, LU decomposition is

used to solve each local Jacobian system. All global and local Jacobian matrices

are constructed by using a multi-colored finite di↵erence with tolerance 10�10. The

standard cubic backtracking algorithm is used for global nonlinear problems. The

parameters associated with inexact Newton methods with backtracking are: ↵ =

10�4, �min = 0.1, �max = 0.5. We get the initial guess by solving the single phase

pressure equation using the initial saturation.

The adaptive time-step scheme is used for all the tests. The time step is halved

if the global (or local) Newton iteration does not satisfy the stopping criteria (4.20),

(4.21), (4.22) within 10 (or 25) iterations, and is doubled if the previous time step

was not reduced. Also we set the maximum time step 4tmax, and the time step varies

but under the limit 4tmax.

4.3.1 Example 1 — Quarter Five-Spot Problem

The reservoir domain is [0, 500m] ⇥ [0, 500m] divided into 256 ⇥ 256 cells. The sim-

ulation is carried out up to 5 years (0.5 PVI), starting with a time step of 0.0001

PVI and the maximum time step of 0.01 PVI. The reservoir is initially filled by the

non-wetting phase, and the initially saturation is set to be zero: Sw = 0. The wetting

phase is injected with the flow rate 0.1 PV/year at the inflow boundary (the lower

left corner), and the pressure pw is fixed to 101325 Pa at the outflow boundary (the

upper right corner). The no flow boundary condition is imposed on other boundaries.

In this quarter five-spot simulation, we consider two types of permeability field:

(A) homogeneous field with 100 md and (B) heterogeneous field (almost centered

about 100 md) with a variation of three orders of magnitude shown in Figure 4.2,

and ignoring the capillary pressure and gravity. The random heterogeneous field is

generated by a simplified geostatistical method [96]. We generate a field of indepen-

47

Figure 4.2: Permeability field. The permeability varies between 1.3 md and 3.0 darcy.

dent, normally distributed variables and convolve it with a Gaussian kernel, which

results in the porosity �̃ as a simple approximation of a Gaussian field. Using �̃, we

get the permeability by the Carman-Kozeny relation:

K =
1

2⌧Av

�̃3

(1� �̃)2
, (4.23)

where ⌧ = 0.81, dp = 10 µm and Av = 6/dp. The porosity is set to � = 0.2, and the

parameters for the fluid are ⇢w = 1000 kg/m3, ⇢n = 660 kg/m3, µw = 1 cp and µn =

0.45 cp. Figure 4.3 shows saturation plots for the homogeneous and heterogeneous

fields after 0.1 PVI, 0.3 PVI, and 0.5 PVI.

To investigate the scalability, we fix the mesh size and vary the number of proces-

sors from 4 to 64 shown in Table 4.1. Whether the simulation in the homogeneous

permeability field or in heterogeneous permeability field, the average number of AS-

PIN iterations and the number of time steps still do not change much, but the average

number of GMRES iterations increases considerably with the number of processors.

It is expected that the simulation takes more time in heterogeneous porous media,

due to the permeability field with a variation of three orders of magnitude. Table 4.1

48

Figure 4.3: The quarter-five spot problem with the mesh 256⇥256 at di↵erent times
t = 0.1 PVI, t = 0.3 PVI, t = 0.5 PVI. The flow behavior corresponds to the
homogeneous field (left) and heterogeneous field (right).

shows that there is no significant di↵erence with respect to the number of time steps

and the average number of ASPIN iterations between in the homogeneous field and

in heterogeneous field.

49

Average number of ASPIN iterations per time step
Subdomain partition case A: Homogeneous field case B: Heterogeneous field
2⇥ 2 = 4 2.3 2.5
4⇥ 4 = 16 2.9 3.0
8⇥ 8 = 64 3.6 3.6

Average number of GMRES iterations per time step
Subdomain partition case A: Homogeneous field case B: Heterogeneous field
2⇥ 2 = 4 36.5 66.7
4⇥ 4 = 16 91.2 190.2
8⇥ 8 = 64 329.2 470.8

Average execution time per time step
Subdomain partition case A: Homogeneous field case B: Heterogeneous field
2⇥ 2 = 4 3.724e+03 4.424e+03
4⇥ 4 = 16 6.924e+02 8.584e+02
8⇥ 8 = 64 1.983e+02 2.525e+02

The number of time steps up to 0.5 PVI
Subdomain partition case A: Homogeneous field case B: Heterogeneous field
2⇥ 2 = 4 57 60
4⇥ 4 = 16 57 60
8⇥ 8 = 64 61 65

Table 4.1: A 256⇥ 256 mesh on di↵erent numbers of processors, the simulation time
is 0.5 PVI, starting with the initial time step 0.0001 PVI, and the overlap = 2.

4.3.2 Example 2 — Layered Permeability

The dimensions of the model are 300 meters long by 180 meters wide, and the simula-

tion grid consists of 50⇥ 90 blocks. The simulation time is 0.5 PVI, starting with the

initial time step 4t = 0.00001 PVI and the initial saturation Sw = 0. The wetting

phase is injected with the flow rate 0.11 PV/year from the left boundary, and non-

wetting phase completely filling the whole reservoir is displaced by the wetting phase

toward the right boundary with a fixed pressure pw = 101325 Pa. We again assume

the top and bottom boundaries of the reservoir to be impermeable, i.e., the normal

component of both the wetting phase flux and the non-wetting phase flux across the

boundaries to vanish. The porosity is set to be � = 0.2, and the parameters for the

fluid are ⇢w = 1000 kg/m3, ⇢n = 660 kg/m3, µw = 1 cp and µn = 0.45 cp. Figure 4.4

shows permeability distribution with the alternate layered field (1md and 100 md).

50

Figure 4.4: Layered alternate permeability with 100 md and 1 md.

Figure 4.5: Saturation distribution in layered porous media with mesh 50 ⇥ 90 at
di↵erent time t = 0.5 PVI: Bc = 2.5 bar (left), Bc = 1, 10 bar (right).

The capillary pressure function is given in the equation (4.11), and we consider two

cases: (C) Bc is 2.5 bar in the domain and (D) Bc is defined as

Bc =

8
>><

>>:

10 bar k = 1 md

1 bar k = 100 md

(4.24)

The numerical tests are again carried out using both in capillary homogeneous

(Bc = 2.5 bar) and capillary heterogeneous (Bc = 1 or 10 bar) domain. There are

major di↵erences in saturation plots, as shown in Figure 4.5. As expected, the flow

behavior with homogeneous capillary pressure is essentially influenced by the low

permeability field, which causes the great delay of displacement in the middle layer.

51

Average number of ASPIN iterations per time step
Subdomain partition case C: Bc = 2.5 bar case D: Bc = 1, 10 bar
1⇥ 3 = 3 2.7 2.7
1⇥ 6 = 6 2.8 2.8
1⇥ 9 = 9 2.9 2.9

Average number of GMRES iterations per time step
Subdomain partition case C: Bc = 2.5 bar case D: Bc = 1, 10 bar
1⇥ 3 = 3 27.6 28.2
1⇥ 6 = 6 79.6 81.3
1⇥ 9 = 9 118.4 118.6

Average execution time per time step
Subdomain partition case C: Bc = 2.5 bar case D: Bc = 1, 10 bar
1⇥ 3 = 3 1.192e+04 7.654e+03
1⇥ 6 = 6 5.338e+03 3.965e+03
1⇥ 9 = 9 3.850e+03 2.644e+03

The number of time steps up to 0.5 PVI
Subdomain partition case C: Bc = 2.5 bar case D: Bc = 1, 10 bar
1⇥ 3 = 3 779 476
1⇥ 6 = 6 681 473
1⇥ 9 = 9 679 450

Table 4.2: A 50 ⇥ 90 mesh on di↵erent numbers of processors, the simulation time
is 0.5 PVI, starting with the initial time step 0.00001 PVI, and the overlap = 2.

In the case of capillary pressure heterogeneity, in contrast, it is observed that the

wetting phase penetrates the low permeability layer in large measure, resulting in the

later breakthrough.

Table 4.2 shows the performance of ASPIN methods with respect to the number of

processors from 3 to 9 in both cases. The execution time decreases as a result of local

nonlinear solvers in parallel. Similarly, it is also clearly seen that the algorithm is

almost nonlinearly scalable but the number of global linear iterations increases when

the domain is divided into more subdomains.

4.3.3 Example 3 — Layer 26 From SPE10 Model 2

We next consider a quarter-five spot problem with permeability and porosity data

imported from the revised two-dimensional SPE-10 models in [97, 98]. The 26th

52

layer is used here, and the domain is rectangular with 60 by 220 cells. The injection

rate is 58.8 bbl/day, and the fixed pressure is 4000 psi in the production well. The

parameters for the fluid properties and residual saturations are ⇢w = 1000 kg/m3,

⇢n = 660 kg/m3, µw = 0.3 cp, µn = 3.0 cp, and Srw = Srn = 0.2. The initial water

saturation is equal to Srw. The position of wells and boundary conditions are similar

to those of the example 1. The simulation starts from 1 day up to 300 days.

Numerical tests are carried out using 8 processors in parallel. We use this example

to compare the performance of the ASPIN method, the inexact Newton method with

a backtracking technique (INB), and the IMPES method. The ASPIN method is

implemented with the partition of 2 by 4 subdomains and the overlap of 4 cells.

As for the INB method, we solve the correction equation using GMRES, but LU

decomposition as the preconditioner for the linear solvers in order to ensure fast

convergence. For these two methods, the stopping criteria of global nonlinear and

linear solvers are the same with statements in the beginning of this section, except

the time step is halved if the global nonlinear solver does not converge within 20 steps.

All global and local Jacobian matrices are constructed by using a multi-colored finite

di↵erence with tolerance 10�12, and the maximum time step is 10 days. The IMPES

method solves the pressure equation using an external library SuperLU DIST [99] as

the direct solver, and an adaptive time-step method [100], based on the change in Sw,

is used to guarantee stability in time when the saturation is updated explicitly.

Figure 4.6 tracks the number of Newton iterations for both ASPIN and INB

methods with an initial time step of 1 day. It shows that the ASPIN method always

takes fewer iterations to converge than the INB method. Table 4.3 demonstrates

that the ASPIN method greatly reduces the number of global nonlinear iterations

compared with INB. In contrast with IMPES, the ASPIN method gains savings of

an order of magnitude in timestep size, with reductions in execution time that scale

according to the number of timesteps. Overall execution time savings are modified

53

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time (days)

N
o

n
lin

e
a

r
ite

ra
tio

n
s

ASPIN
INB

Figure 4.6: Convergence history for the Layer 26 from SPE10 using ASPIN method
and the inexact Newton method with a backtracking technique (INB) up to 300 days.
The maximum time step is 10 days in both cases.

by the higher cost per step of ASPIN versus IMPES.

ASPIN INB IMPES
No. of time steps 35 35 2358
Average timestep size (days) 8.57 8.57 0.13
Newton iterations 99 287 -
Execution time (sec) 1.295e+02 6.482e+02 1.268e+03

Table 4.3: A 60⇥220 mesh on 8 processors, the simulation time is 300 days, starting
with the initial time step 1 days, and the overlap = 4 in the ASPIN method.

4.4 Concluding Remarks

In this chapter, we present the numerical results for the two-phase flow including

the e↵ects of capillary pressure, using the fully parallel nonlinearly preconditioned

inexact Newton method, and we notice that the number of Newton iterations does

not change much, but the global linear iterations increase substantially when the

54

number of processors increases. The degradation of one level domain decomposition

is attributed to the lack of inter-subdomain communication. To make linear solver

scalable, two-level ASPIN methods [17, 35, 39] are needed to reduce the number of

global linear iterations.

Load balancing is another issue to be improved in future. We expect that fewer

unknowns are included for more di�cult local nonlinear systems, however, it is very

di�cult to achieve this goal for the fixed layout of domain decomposition. In the

quarter-five spot problem, for instance, there is actually no need for many nonlinear

iterations on some subdomains when the wetting phase front is away from the pro-

duction well, but the computational cost for each domain varies as the wetting phase

front advances. Therefore, it is a future challenge to realize load balancing using the

adaptive domain decomposition strategy.

55

Chapter 5

Field-split Preconditioned Inexact

Newton Algorithms

In this chapter, we propose an algebraic variant of ASPIN based on field splitting,

which typically generates subproblems involving nonintersecting subsets of the orig-

inal unknowns, whereas the classical ASPIN in [28] typically generates subproblems

whose unknowns overlap as induced by subdomain geometry. The field-split precondi-

tioned inexact Newton method [50] generates a number of subproblems proportional

to the number of identifiable strongly coupled physical phenomena. In contrast, the

granularity of subproblems is arbitrarily large in the classical ASPIN in [28] limited

only by resolution consideration. In multiphysics problems of large scale, the classi-

cal ASPIN may naturally nest inside of the field-split preconditioned inexact Newton

methods, or vice versa.

5.1 Field-split Preconditioned Inexact Newton Al-

gorithm

Consider a nonlinear root-finding problem (2.1). In order to demonstrate the field-

split preconditioned inexact Newton framework, the nonlinear function F (x) is split

56

conformally into two nonoverlapping components representing di↵erent physical as-

pects as

F (x) = F (u, v) =

2

64
G(u, v)

H(u, v)

3

75 = 0, x = [u, v]T . (5.1)

As with the domain-based ASPIN in [28], the field-split preconditioned inexact New-

ton algorithm solves a preconditioned problem

F(x) = F(u, v) =

2

64
g(u, v)

h(u, v)

3

75 = 0, (5.2)

which has the same solution with (5.1), where g(u, v) and h(u, v) are defined as the

physical variable corrections of any given x = [u, v]T , and the INB algorithm is used

as the nonlinear solver for the global preconditioned system, as well as the two sub-

models. In this section, we focus on the form of nonlinearly preconditioned function

F(x) and the Jacobian calculation corresponding to the field-split preconditioned in-

exact Newton algorithms. We introduce two types of field-split preconditioned inexact

Newton algorithms: ASPIN and MSPIN.

5.1.1 Field-split ASPIN

We describe first the construction of the Jacobi-type nonlinear preconditioner. In the

ASPIN algorithm, the submodels are solved independently for the physical variable

corrections, and these corrections form the preconditioned system.

For any given x = [u, v]T 2 Rn, define g = g(u, v) and h = h(u, v) as the solutions

of the submodels in the original nonlinear system (5.1)

G(u� g, v) = 0, (5.3)

H(u, v � h) = 0. (5.4)

57

The Jacobi-type nonlinearly preconditioned function FJ is then defined as

FJ(x) =

2

64
g(u, v)

h(u, v)

3

75 , x = [u, v]T . (5.5)

The Jacobian of FJ(x) is not as explicitly available as F 0(x) due to the implicit def-

inition of FJ(x) via (5.3) and (5.4); therefore, it is necessary to derive a formula

for the application of the Jacobian matrix corresponding to the preconditioned func-

tion FJ in order to apply Newton’s method or its variations. We next describe an

approximate, readily computable Jacobian form of FJ(x).

Let p = u�g(u, v) and q = v�h(u, v). Taking the derivative of (5.3) with respect

to u, we have
@G

@p
(Iu �

@g

@u
) = 0, (5.6)

where Iu is the identity matrix that has the same dimension as the u block. Assuming

@G
@p

is nonsingular, equation (5.6) implies

@g

@u
= Iu. (5.7)

Next, we take the derivative of (5.3) with respect to v, yielding

@G

@p
(�@g

@v
) +

@G

@v
= 0, (5.8)

which is equivalent to
@g

@v
= (

@G

@p
)�1

@G

@v
. (5.9)

Similarly, taking the derivatives of (5.4) with respect to u and v, we obtain

@h

@u
= (

@H

@q
)�1

@H

@u
(5.10)

58

and
@h

@v
= Iv, (5.11)

where Iv is again the identity matrix of appropriate size. From expressions (5.7),

(5.9), (5.10), and (5.11), we can write down the Jacobian of FJ(x) as follows:

J (u, v) =

2

64
gu gv

hu hv

3

75 =

2

64
(@G
@p
)�1

(@H
@q
)�1

3

75

2

64
@G
@p

@G
@v

@H
@u

@H
@q

3

75 . (5.12)

Due to the continuity of F (x), we know that g(u, v)! 0 and h(u, v)! 0, i.e., p! u,

q ! v, when x = [u, v]T is su�ciently close to the exact solution. In practice, it is

more convenient to use the following approximate Jacobian

Ĵ (u, v) =

2

64
G�1

u

H�1

v

3

75

2

64
Gu Gv

Hu Hv

3

75 =

2

64
Gu

Hv

3

75

�1

J(u, v). (5.13)

The approximate Jacobian matrix Ĵ will generally be dense and expensive to form

explicitly. However, only the multiplication by Ĵ with a given vector x, y = Ĵ x, is

required for Krylov subspace methods when we solve the Jacobian system. In our

implementation, the matrix-vector multiplication Ĵ x = y is carried out as follows:

1. Perform the multiplication w = Jx, w = [w
1

, w
2

]T .

2. Solve Guy1 = w
1

and Hvy2 = w
2

.

3. Form the result y = [y
1

, y
2

]T .

Remark 6. In the linear case, this algorithm is the same as physics-based block Jacobi

linear preconditioning. If we have the linear system

F (x) = Ax� b, (5.14)

59

where

A =

2

64
A

11

A
12

A
21

A
22

3

75 , b =

2

64
b
1

b
2

3

75 , (5.15)

then the preconditioned system has the form of

FJ(x) = M�1(Ax� b), M =

2

64
A

11

0

0 A
22

3

75 . (5.16)

5.1.2 Field-split MSPIN

In distinction from the ASPIN algorithm, the submodels are solved sequentially for

the physical variable corrections in the MSPIN algorithm, and the preconditioned

system again consists of these corrections. We describe the details of the construction

of the Gauss-Seidel-like nonlinear preconditioner.

For any given x = [u, v]T 2 Rn, the preconditioned function

FGS(x) =

2

64
g(u, v)

h(u, v)

3

75 (5.17)

is obtained by solving

G(u� g, v) = 0, (5.18)

for g. With the values of u, v, g, the following system is solved

H(u� g, v � h) = 0, (5.19)

for h. Since the preconditioned function FGS(x) is implicitly defined via (5.18) and

(5.19), the calculation of the corresponding Jacobian is not straightforward. Below

we discuss a computable form of the inverse action.

60

As shown in section 5.1.1, the derivatives of g(u, v) with respect to u and v are

@g

@u
= Iu (5.20)

and
@g

@v
= (

@G

@p
)�1

@G

@v
, (5.21)

respectively. Taking the derivative of (5.19) with respect to u,

@H

@p
(Iu �

@g

@u
) +

@H

@q
(�@h

@u
) = 0. (5.22)

Assuming @H
@q

is nonsingular, the equations (5.20) and (5.22) imply

@h

@u
= 0. (5.23)

Taking the derivative of (5.19) with respect to v,

@H

@p
(�@g

@v
) +

@H

@q
(Iv �

@h

@v
) = 0, (5.24)

which is equivalent to
@h

@v
= Iv � (

@H

@q
)�1

@H

@p

@g

@v
. (5.25)

Substituting (5.21) into (5.25), we have

@h

@v
= (

@H

@q
)�1(

@H

@q
� @H

@p
(
@G

@p
)�1

@G

@v
). (5.26)

Integrating (5.20), (5.21), (5.23), (5.26) into the Jacobian of FGS, we get

J =

2

64
gu gv

hu hv

3

75 =

2

64
(@G
@p
)�1

�(@H
@q
)�1

@H
@p

(@G
@p
)�1 (@H

@q
)�1

3

75

2

64
@G
@p

@G
@v

@H
@p

@H
@q

3

75 , (5.27)

61

or, more concisely,

J (u, v) =

2

64
@G
@p

@H
@p

@H
@q

3

75

�1

2

64
@G
@p

@G
@v

@H
@p

@H
@q

3

75 . (5.28)

In our implementation, it is more convenient to use the following approximate Jaco-

bian

Ĵ (u, v) =

2

64
Gp

Hp Hv

3

75

�1

2

64
Gp Gv

Hp Hv

3

75 =

2

64
Gp

Hp Hv

3

75

�1

J(p, v). (5.29)

Similarly to ASPIN, Krylov subspace methods such as GMRES are used to solve

the Jacobian system, which require the multiplication of Ĵ with a given vector x,

Ĵ x = y, instead of any explicit calculation and storage of Ĵ .

Remark 7. If the matrices A
11

and A
22

are nonsingular, then we have

2

64
A

11

0

A
21

A
22

3

75

�1

=

2

64
I 0

0 A�1

22

3

75

2

64
I 0

�A
21

I

3

75

2

64
A�1

11

0

0 I

3

75 . (5.30)

With Remark 7, the matrix-vector multiplication Ĵ x = y is carried out as follows:

1. Perform the multiplication w = Jx, w = [w
1

, w
2

]T .

2. Let z
2

= w
2

and solve Gpz1 = w
1

.

3. Perform z
2

= z
2

�Hpz1 and set y
1

= z
1

.

4. Solve Hvy2 = z
2

.

5. Form the result y = [y
1

, y
2

]T .

62

Remark 8. In the linear case, this algorithm is the same as physics-based block

Gauss-Seidel linear preconditioning. If we have the linear system:

F (x) = Ax� b, (5.31)

where

A =

2

64
A

11

A
12

A
21

A
22

3

75 , b =

2

64
b
1

b
2

3

75 , (5.32)

then

FGS(x) = M�1(Ax� b), M =

2

64
A

11

0

A
21

A
22

3

75 . (5.33)

5.2 Implementation of the Field-split ASPIN and

MSPIN

In this section, we describe a complete field-split preconditioned inexact Newton

algorithm and implementation details. We also present an illustrative example.

5.2.1 The Field-split ASPIN and MSPIN

Splitting F (x) into G(u, v) and H(u, v), x = [u, v]T . We set x(0) = [u(0), v(0)]T as the

initial guess. The current approximate solution is denoted by x(k) and x(k+1) is the

new approximate solution obtained through the following algorithm.

In Algorithm 7, the determination of the partition of the physical variables can

be the most interesting part of implementation, because the best choice is generally

problem-specific. Once the partition and the initial guess are given, we move on to

step 1.

In step 1(a), we solve nonlinear subproblems (5.34), (5.35), (5.36), (5.37) using

63

Algorithm 6 g(k) and h(k)

Starting from g
(k)
0

= 0 and h
(k)
0

= 0, find g(k) and h(k) by solving subproblems

ASPIN

Solve for g(k)i and h
(k)
j simultaneously

G(u(k) � g
(k)
i , v(k)) = 0, (5.34)

H(u(k), v(k) � h
(k)
j) = 0. (5.35)

MSPIN

Solve for g(k)i

G(u(k) � g
(k)
i , v(k)) = 0, (5.36)

Solve for h(k)
j with the new g

(k)
i

H(u(k) � g
(k)
i , v(k) � h

(k)
j) = 0, (5.37)

where i = 0, 1, . . . until

kG(u(k) � g
(k)
i , v(k))k 6 ✏sub�nonlinear�rtolkG(u(k) � g

(k)
0

, v(k))k,

and j = 0, 1, . . . until

kH(u(k), v(k) � h
(k)
j)k 6 ✏sub�nonlinear�rtolkH(u(k), v(k) � h

(k)
0

)k,

or

kH(u(k) � g(k), v(k) � h
(k)
j)k 6 ✏sub�nonlinear�rtolkH(u(k) � g(k), v(k) � h

(k)
0

)k,

where g(k) is the solution of (5.36).

the INB method. It is noted that we need the solution g(k) of the submodel (5.36)

before we solve the second submodel (5.37).

In step 2, no preconditioning is employed for Krylov subspace iterative methods

such as GMRES when we solve the global Jacobian system (5.40) using the INB frame-

work. In fact, nonlinear preconditioning automatically o↵ers a linear preconditioner

for the original Jacobian system. The Jacobian formulae (5.13) and (5.29) correspond

to the block Jacobi preconditioning and the block Gauss-Seidel preconditioning for

the original unpreconditioned equation, respectively.

64

Algorithm 7 Field-split ASPIN and MSPIN for problems with two components
Let ↵ 2 (0, 1) and 0 < ✓min < ✓max < 1 be given.

1. Compute the nonlinear residual F(x(k)) by solving the submodels.

(a) Find g(k) and h(k) by solving subproblems using Algorithm 6.

(b) Form the global residual

F(x(k)) =


g(k)

h(k)

�
. (5.38)

(c) Check the stopping conditions on F(x(k))

kF(x(k))k 6 ✏global�nonlinear�rtolkF(x(0))k. (5.39)

2. The initial guess is zero for d(k). Find the inexact Newton direction d(k) by
approximately solving

Ĵ d(k) = F(x(k)), (5.40)

such that
kF(x(k))� Ĵ d(k)k  ✏global�linear�rtolkF(x(k))k, (5.41)

where Ĵ has the form (5.13) or (5.29) corresponding to ASPIN and MSPIN,
respectively.

3. Compute the new approximate solution

x(k+1) = x(k) � �(k)d(k),

where the step length �(k) is determined by performing linesearch along d(k).

5.2.2 A Simple Example

Following [42], we present a simple example that demonstrates how the field-split

preconditioned inexact Newton algorithm rounds out a complex contour landscape

for the function whose root is sought.

Consider the system F (x) of two nonlinear equations in two unknowns,

F
1

(x
1

, x
2

) = (x
1

� x3

2

+ 1)3 � x3

2

, (5.42)

F
2

(x
1

, x
2

) = 2x
1

+ 3x
2

� 5. (5.43)

65

It is easy to verify that x⇤ = [1, 1]T is a root of this system.

By setting

F
1

(x
1

� �J
1

, x
2

) = 0, (5.44)

F
2

(x
1

, x
2

� �J
2

) = 0, (5.45)

we can solve explicitly for �Ji (x1

, x
2

), i = 1, 2, because of the algebraic simplicity of

the system, and derive a nonlinearly preconditioned system FJ(x) corresponding to

ASPIN as follows:

�J
1

(x
1

, x
2

) = x
1

� x3

2

+ 1� x
2

, (5.46)

�J
2

(x
1

, x
2

) =
2

3
x
1

+ x
2

� 5

3
. (5.47)

Similarly, we derive a nonlinearly preconditioned system FGS(x) corresponding to

MSPIN

�GS
1

(x
1

, x
2

) = x
1

� x3

2

+ 1� x
2

, (5.48)

�GS
2

(x
1

, x
2

) =
2

3
x3

2

+
5

3
x
2

� 7

3
. (5.49)

by solving

F
1

(x
1

� �GS
1

, x
2

) = 0, (5.50)

F
2

(x
1

� �⇤
1

, x
2

� �GS
2

) = 0, (5.51)

where �⇤
1

is the solution of (5.50). (5.46–5.47) are the components of FJ and (5.48–

5.49) are the components of FGS in the rootfinding problems FJ = 0 and FGS = 0,

respectively. In a practical implementation of the field-split preconditioned inexact

Newton algorithm, we usually cannot write down the preconditioned system explicitly,

66

Table 5.1: The number of nonlinear iterations. The outer global tolerance is 10�8,
and the inner component tolerances are both 10�3.
Initial guess x

0

INB ASPIN MSPIN
x
0

= (0, 0)T 11 7 6
x
0

= (0, 2)T 10 7 5
x
0

= (2, 0)T 1 8 6
x
0

= (2, 2)T 11 7 5

but we solve a Jacobian-free linear system (5.40) for the Newton correction and eval-

uate the function via submodel solvers.

The three columns of Table 5.1 show, respectively, the number of Newton itera-

tions for solving F (x) = 0 using inexact Newton methods with the cubic backtracking

technique (INB), for solving FJ = 0, and for solving FGS = 0, respectively, start-

ing from the four di↵erent initial guesses: x
0

= (0, 0)T , x
0

= (0, 2)T , x
0

= (2, 0)T ,

x
0

= (2, 2)T . Compared with ASPIN and MSPIN, the number of nonlinear iterations

using the INB method is more sensitive to the initial estimates. The respective con-

vergence histories are interpreted in the light of the contours distribution of nonlinear

systems that the three methods solve, respectively. From Figures 5.1 through 5.3, it

is seen that the preconditioned systems are better balanced, in that the contours are

more elliptical.

x
1

x
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

5

6

Figure 5.1: Contours of log(kF (x)k+ 1)

67

x
1

x
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.5

1

1.5

2

2.5

Figure 5.2: Contours of log(kFJ(x)k+ 1)

x1

x 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.5

1

1.5

2

2.5

Figure 5.3: Contours of log(kFGS(x)k+ 1)

5.3 Some Analysis of the Field-split ASPIN and

MSPIN

In this section, under some reasonable assumptions, we show that the preconditioned

system (5.2) based on physical variable partition has the same solution as the original

system (5.1).

68

Considering the nonlinear problem (5.1), let D ⇢ Rn be a neighborhood of the

exact solution x⇤ and we make the following assumptions for F (x):

Assumption 9. The function F (x) is well-defined in D, and the Jacobian

F 0(x) =

2

64
Gu Gv

Hu Hv

3

75 , x = [u, v]T , (5.52)

is continuous in D and the matrix F 0(x⇤) is nonsingular. In addition, Gu and Hv are

invertible at the exact solution x⇤.

Lemma 10. (see [8]). Assume that F 0(x) exists for all x 2 D, we define a uniformly

bounded linear operator DF (x0, x00) for all x0, x00 2 D

DF (x0, x00) =

Z
1

0

F 0(x0 + t(x00 � x0))dt, (5.53)

such that

F (x0)� F (x00) = DF (x0, x00)(x0 � x00). (5.54)

If F 0(x) is continuous at x⇤, then

kDF (x0, x00)� F 0(x⇤)k ! 0, x0, x00 ! x⇤. (5.55)

It can be shown that these assumptions are satisfied, for instance, for the class

of monotone nonlinear elliptic partial di↵erential equations [8, 101]. Under these

assumptions, the theory about the local solvability of subproblems [8] can be applied

for the cases (ASPIN or MSPIN) based on physics-based partition. Here we briefly

provide the proof for our special cases.

Lemma 11. Under Assumption 9, the nonlinear submodels (5.3), (5.4), (5.18),

(5.19) are all uniquely solvable in a su�ciently small neighborhood U of the exact

solution x⇤ in D.

69

Proof. We show unique solvability for the submodel (5.19) here, and other cases hold

due to Theorem 1.1 in [8]. Let x = [u, v] 2 D ⇢ Rn, where u 2 D
1

⇢ Rn
1 and

v 2 D
2

⇢ Rn
2 , n

1

+ n
2

= n. Let

S = {1, . . . , n} (5.56)

be an index set, and we define SH = {i
1

, i
2

, . . . , in
2

} ⇢ S as

SH = {i |Fi belongs to the function H, i 2 S} (5.57)

and a restriction matrix RH 2 Rn
2

⇥n is defined by

(RH)k,l =

8
><

>:

1, l = ik,

0, l 6= ik,
(5.58)

and then H(x) = RHF (x) in (5.1). According to Assumption 4.1, Hv(x⇤) is invertible.

We choose a su�ciently small neighborhood D0 of the exact solution x⇤and let x̂ =

[û, v̂]T . Then we describe a mapping � : D
2

⇥D0 ! D
2

defined by:

�(h, x̂) = h+Hv(x
⇤)�1H(û� ĝ, v̂ � h), (5.59)

where ĝ is the solution of

G(û� g, v̂) = 0. (5.60)

It should be noted that we must have ĝ ! 0 as x̂ ! x⇤ due to the continuity

assumption on F and the local unique solvability of (5.60).

Next, we prove that the mapping � is a contraction with respect to h.

70

�(h0, x̂)� �(h00, x̂) = h0 � h00 +Hv(x
⇤)�1RH [F (û� ĝ, v̂ � h0)� F (û� ĝ, v̂ � h00)]

= [I �Hv(x
⇤)�1RHDF (x0, x00)RT

H](h
0 � h00),

where RT
H is the transpose of the matrix RH defined in (5.58), x0 = [û� ĝ, v̂�h0]T and

x00 = [û � ĝ, v̂ � h00]T . Under the Assumption 4.1 and (5.55), we have DF (x0, x00) !

F 0(x⇤) as h0, h00 ! 0 and x̂ ! x⇤. Hence, there exists a neighborhood U 0 ⇢ D of x⇤

and a positive real number r, such that

kI �Hv(x
⇤)�1RHDF (x0, x00)RT

Hk 6
1

2
(5.61)

holds for x̂, x0, x00 2 U 0 and h0, h00 2 Br(0), where Br(0) is an open ball of 0 with

a radius r. From (5.59), we have �(0, x̂) = Hv(x⇤)�1H(û � ĝ, v̂). Since H(x⇤) = 0

and ĝ ! 0 as x̂ ! x⇤, which implies [û � ĝ, v̂]T ! x⇤ as x̂ ! x⇤, we could choose a

suitable neighborhood U 00 of x⇤ such that

k�(0, x̂)k 6 1

2
r (5.62)

hold as long as x̂ 2 U 00. Let U ⇢ U 0TU 00 be a su�ciently small neighborhood; then,

according to the local version of the well-known Banach fixed point theorem (the

Corollary 1.2 in [102]), there exists a unique fixed point h⇤ close to 0 that satisfies

h⇤ = �(h⇤, x̂), which implies H(û� ĝ, v̂�h⇤) = 0 in a small neighborhood U of x⇤.

Lemma 12. There exists a neighborhood D̂ ⇢ D of x⇤, such that the Jacobian matrix

J defined by (5.12) or (5.28) is nonsingular for any x 2 D̂.

Proof. Since F 0(x) is continuous and Gu(x⇤) and Hv(x⇤) are invertible, Lemma 2.3.3

in [54] shows that there exists a neighborhood D0 ⇢ D of x⇤ such that Gu and Hv

are invertible, and G�1

u and H�1

v are continuous in D0. Let p = u � g(u, v) and

71

q = v � h(u, v), x = [u, v]T 2 D; we know that g, h ! 0 as x ! x⇤ due to the

continuity of F .

For the Jacobian matrix J defined by (5.12), we have

lim
x!x⇤

J (u, v) =

2

64
G�1

u (x⇤)

H�1

v (x⇤)

3

75F 0(x⇤) = J (x⇤). (5.63)

For the Jacobian matrix J defined by (5.28), we have

lim
x!x⇤

J (u, v) =

2

64
Gu(x⇤)

Hu(x⇤) Hv(x⇤)

3

75

�1

F 0(x⇤) = J (x⇤). (5.64)

Whether (5.63) or (5.64), J (x⇤) is nonsingular. Hence, we may choose a suitable

neighborhood D̂ ⇢ D0 ⇢ D of x⇤ such that J is nonsingular for any x 2 D̂.

It should be pointed out that the regularity of J in (5.28) close to x⇤ has been

given in [103], but it is obtained in a di↵erent way. Using Lemma 11 and Lemma 12,

we have the following theorem.

Theorem 13. Under Assumption 9, the original system (5.1) and the preconditioned

system (5.2) based on physical variable partition have the same solution in a neigh-

borhood of x⇤ in D.

Proof. Assume that x⇤ = [u⇤, v⇤]T is the exact solution of the original system (5.1);

we have

G(u⇤, v⇤) = 0, H(u⇤, v⇤) = 0. (5.65)

According to the definition of the physical variable correction in (5.3), (5.4), (5.18)

and (5.19), we have

72

ASPIN

G(u⇤ � g(u⇤, v⇤), v⇤) = 0, (5.66)

H(u⇤, v⇤ � h(u⇤, v⇤)) = 0. (5.67)

MSPIN

G(u⇤ � g(u⇤, v⇤), v⇤) = 0, (5.68)

H(u⇤� g(u⇤, v⇤), v⇤� h(u⇤, v⇤)) = 0. (5.69)

Due to the local unique solvability shown in Lemma 4.3 and comparing (5.65) with

(5.66), (5.67), (5.68), (5.69), whether in ASPIN or MSPIN, we have g(u⇤, v⇤) = 0 and

h(u⇤, v⇤) = 0, i.e., x⇤ is a solution of the preconditioned system F in (5.2).

We next prove that x⇤ is also a unique solution of F in some neighborhood Û of

x⇤. From Lemma 4.4 and Proposition 2.1 in [44], it is shown that F is a continuously

di↵erentiable function and F 0 is nonsingular in a neighborhood U
1

⇢ D̂ of x⇤ (D̂ from

Lemma 4.4). According to the inverse function theorem of calculus, the solution is

unique in a neighborhood U
2

⇢ U
1

⇢ D̂.

Hence, there exists a neighborhood U 0 ⇢ U
2

T
U (U from Lemma 4.3) such that

F and F have the same solution x⇤ in U 0.

5.4 Extension to Multicomponent for ASPIN and

MSPIN

We can generalize the notation and theory to N > 2 components for both ASPIN and

MSPIN algorithms. The extension for the ASPIN framework is straightforward. Next

we provide the extension of the Jacobian form (5.28) of the preconditioned systems

corresponding to the MSPIN framework.

The nonlinear function F (x) is split into N > 2 components representing di↵erent

73

physical aspects as

F (x) =

2

66664

F̂
1

(u
1

, . . . , uN)

...

F̂N(u1

, . . . , uN)

3

77775
= 0, x = [u

1

, . . . , uN]
T . (5.70)

The preconditioned function

FGS(x) =

2

66664

T
1

(u
1

, . . . , uN)

...

TN(u1

, . . . , uN)

3

77775
(5.71)

is obtained by solving the following equations sequentially

F̂
1

(�
1

, u
2

, u
3

, . . . , uN) = 0,

F̂
2

(�
1

, �
2

, u
3

, u
4

. . . , uN) = 0,

...

F̂N(�1, �2, �3, �4, . . . , �N) = 0,

(5.72)

where �i = ui � Ti, i = 1, 2, . . . , N .

We define

ûi =

2

66664

u
1

...

ui

3

77775
, ûc

i =

2

66664

ui+1

...

uN

3

77775
, T̂i =

2

66664

T
1

...

Ti

3

77775
, �̂i =

2

66664

�
1

...

�i

3

77775
, (5.73)

and then F̂i in (5.72) is written as

F̂i(ûi � T̂i, û
c
i) = 0, (5.74)

74

where i = 1, 2, . . . , N . Taking the derivative of (5.74) with respect to ûi, we have

@F̂i

@�̂i
(Ii �

@T̂i

@ûi

) = 0, (5.75)

where Ii is the identity matrix that has the same dimension as the ûi block. Next,

we take the derivative of (5.74) with respect to ûc
i , yielding

@F̂i

@�̂i
(�@T̂i

@ûc
i

) +
@F̂i

@ûc
i

= 0. (5.76)

Using (5.75) and (5.76), we have

"
@F̂i

@�̂i

@F̂i

@ûc
i

#
=

@F̂i

@�̂i

"
@T̂i

@ûi

@T̂i

@ûc
i

#
, (5.77)

from which we deduce that

A =

2

6666666664

@ ˆF
1

@�
1

@ ˆF
1

@u
2

@ ˆF
1

@u
3

· · · · · · @ ˆF
1

@u
N

@ ˆF
2

@�
1

@ ˆF
2

@�
2

@ ˆF
2

@u
3

· · · · · · @ ˆF
2

@u
N

...
...

...
...

@ ˆF
N

@�
1

@ ˆF
N

@�
2

@ ˆF
N

@�
3

· · · · · · @ ˆF
N

@�
N

3

7777777775

(5.78)

=

2

6666666664

@ ˆF
1

@�
1

@ ˆF
2

@�
1

@ ˆF
2

@�
2

...
...

. . .

@ ˆF
N

@�
1

@ ˆF
N

@�
2

@ ˆF
N

@�
3

· · · @ ˆF
N

@�
N

3

7777777775

2

6666664

@T
1

@u
1

· · · @T
1

@u
N

...
...

@T
N

@u
1

· · · @T
N

@u
N

3

7777775
.

Hence, the Jacobian of the preconditioned system (5.71) corresponds to the block

Gauss-Seidel linear preconditioning for the matrix A.

75

5.5 Numerical Results

In this section, we apply a 2-component physics-based partitioning strategy to three

model boundary value problems that are paradigmatic of its uses in practice. In the

first, which involves a single unknown with di↵erent behavior in di↵erent subdomains

of a priori known locations, one partition contains unknowns comprising an interior

spike, and the other contains the unknowns in the regions of solution smoothness. In

the second, which is a prototype for coupling in multi-physics problems, one partition

contains unknowns involved in a nonlinear ODE, and the other contains the unknowns

in an algebraic system, serving as coe�cients in the ODE. In the third, one partition

contains all of the vorticity unknowns in a Navier-Stokes problem, which come from a

nonlinear PDE with the velocities as coe�cients, and the other contains the velocity

unknowns, which satisfy linear equations for a given vorticity distribution.

5.5.1 Nonlinear Boundary Value Problem

In this example, we consider a nonlinear boundary value problem [24] given by

� u00 + u3 + (4⇥ 108(x� 0.5)2 � 2⇥ 104)u� 109e�3(

x�0.5

0.01

)

2

= 0, x 2 (0, 1), (5.79)

u(0) = 0, u(1) = 0, (5.80)

which has a solution satisfying the boundary conditions to well within the machine-

roundo↵

u(x) = 103e�(

x�0.5

0.01

)

2

. (5.81)

There is a large spike around x = 0.5 as shown in Figure 5.4. Using the usual second-

order central di↵erence approximation for u00, the discretization of this ODE on a

fine uniform grid results in a system of nonlinear equations. The resulting nonlinear

problem is solved using three methods: the inexact Newton backtracking method

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Figure 5.4: The exact solution u(x).

(INB), ASPIN and MSPIN. For the latter two, the equations are split into two sets

denoted by G and H, where the system G refers to the equations discretized at the

points around x = 0.5.

We clarify the details of the field-split preconditioned inexact Newton algorithms

for this example using 100 discretized equations. The system G consists of the dis-

cretized equations 48-53 with unknowns u
48

-u
53

, and other equations belong to the

system H with unknowns u
1

-u
47

and u
54

-u
100

. The values for u
47

and u
54

from the

previous iterate for H are treated as the boundary values for the system G, and

the values of u
48

and u
53

from the previous iterate for G as the boundary values for

the system H. The initial guess is zero for u
1

, u
2

, . . . , u
100

. Following the experi-

ence in [37], the global system is solved using the INB method with the parameters

✏global�nonlinear�rtol = 10�6, ✏global�linear�rtol = 10�8, and ✏sub�nonlinear�rtol = 10�3 is

the stopping condition for the subproblems nonlinear iterations.

Table 5.2 shows the number of Newton iterations for the di↵erent methods on

problems of di↵erent resolution. The nonlinearly preconditioned Newton’s methods

are e↵ective in reducing the number of global nonlinear iterations.

77

Table 5.2: Comparison of the number of nonlinear iterations for di↵erent methods in
the rightmost three columns. “No. points” indicates the number of grid points used
to discretize the ODE. The points between Gleft and Gright are unknowns in G.

No. points G
left

G
right

Its. INB Its. ASPIN Its. MSPIN

100 48 53 5 2 1

500 236 265 5 2 2

1000 471 530 6 2 1

5000 2351 2650 5 2 2

5.5.2 An ODE Coupled to an Algebraic System in 1D

We consider an ODE coupled to an algebraic system in 1D:

�(vux)x + �u2 = 1 on (0, 1), subject to u(0) = 0, u(1) = 1, (5.82)

exp(v � 1) + v =
1

1

1+u
+ 1

1+u2

x

, (5.83)

where ux is discretized using forward di↵erences, and the discretization places v at

staggered points. This is example #28 in the scalable nonlinear equations solvers

subdirectory of PETSc, modified by the addition of a quadratic term in u, so that

both components are nonlinear after splitting. Fifty grid points are used for this

problem. The function u
0

(x) = x(1 � x) and v
0

(x) = 1 + 0.5 sin(2⇡x) are used to

be the initial guesses for u(x) and v(x). Considering the partition with respect to

u and v, we split the problem into two submodels G and H that are dominant in u

and v, respectively. The system G consists of the discretized equations of (5.82) with

u-unknowns using the most recent values of v as the coe�cients, while the discretized

equations of (5.83) with v-unknowns belong to the system H, where the values of ux

are computed using the most recent values of u. We set the tolerance parameters

as ✏global�nonlinear�rtol = 10�10, ✏global�linear�rtol = 10�8, and ✏sub�nonlinear�rtol = 10�3

is the stopping condition for the subproblems nonlinear iterations. The analytical

78

Table 5.3: Global nonlinear and linear iterations using globalized INB, ASPIN and
MSPIN. ✏global�nonlinear�rtol = 10�10, ✏global�linear�rtol = 10�8, and ✏sub�nonlinear�rtol =
10�3. “ ⇤” indicates that linear iterations are not available, since the nonlinear meth-
ods stagnate at the line search.

Number of PIN iterations
Methods � = 0 � = 100 � = 1000 � = 3000 � = 5000
INB 6 6 15 - 9
ASPIN 6 - - - -
MSPIN 5 5 5 5 5

Average number of GMRES iterations per PIN
INB 12 18 14 ⇤ 7
ASPIN 21 ⇤ ⇤ ⇤ ⇤
MSPIN 10 9 8 8 7

Jacobian matrices are used in this example.

Table 5.3 shows the number of Newton iterations and linear iterations for the

di↵erent methods on problems with di↵erent parameters �. The MSPIN method is

e↵ective in reducing the number of global Newton iterations, but the ASPIN method

is very sensitive to the parameter �. The failure of the ASPIN method and the INB

method happens when the line search fails.

5.5.3 Driven Cavity Flow Problem

We consider the two-dimensional lid-driven cavity flow problem [17, 28, 35, 104] in

the domain ⌦ = (0, 1)⇥(0, 1) with three unknowns: the velocity u, v and the vorticity

!.

8
>>>>>>><

>>>>>>>:

��u� @!
@y

= 0,

��v + @!
@x

= 0,

� 1

Re
�! + u@!

@x
+ v @!

@y
= 0.

(5.84)

79

Here u = 1, v = 0 on the top boundary and u = 0, v = 0 on the other boundaries.

The boundary condition on ! is given by its definition:

!(x, y) = �@u

@y
+

@v

@x
. (5.85)

Considering the partition with respect to velocity unknowns and the vorticity un-

knowns, we split the system (5.84) into two submodels

G :

8
>><

>>:

��u� @!
@y

= 0,

��v + @!
@x

= 0,

(5.86)

and

H : � 1

Re
�! + u

@!

@x
+ v

@!

@y
= 0. (5.87)

A finite di↵erence scheme with the 5-point stencil is used to discretize the PDEs,

which is a standard PETSc example [34]. Upwinding is employed in the vorticity

equation and the vorticity boundary condition is di↵erenced inward with respect

to the normal direction. It is noted that this is only a first-order discretization.

As the Reynolds number is increased on a fixed mesh, the discretization artificially

di↵uses the boundary layers, but point of pushing the Reynolds number beyond the

discretization is to obtain parameterized nonlinear algebraic problems of fixed size

that are increasingly di�cult for (unpreconditioned) globalized Newton methods.

Here, the subproblems obtained from the discretization of (5.86) and (5.87) are

linear, which are solved by GMRES with ILU(0) preconditioner. We set the tolerance

parameters as ✏global�nonlinear�rtol = 10�10, ✏global�linear�rtol = 10�6, ✏sub�linear�rtol =

10�3. The Jacobian matrices are formed using a finite di↵erence scheme. We run the

test for the uniform meshes 64⇥ 64, 128⇥ 128, and 256⇥ 256.

Newton can be sensitive to the initial guess. Our first tests set the initial guess

to be zero for u, v, and !. Table 5.4 compares a global inexact Newton-GMRES-

80

Table 5.4: Global nonlinear and linear iterations using globalized INB, ASPIN,
and MSPIN on di↵erent mesh sizes. The initial guess is zero for u, v, and !.
✏global�linear�rtol = 10�6, ✏global�nonlinear�rtol = 10�10. The finite di↵erence step size
for the matrix-free Jacobian applications is 10�8. “ ⇤⇤” indicates that nonlinear iter-
ations are not available, because linear iterations fail to converge after 10000 steps.

64⇥ 64 mesh
Number of PIN iterations
Methods Re = 10 Re = 100 Re = 1000
INB 3 5 17
ASPIN 4 9 10
MSPIN 4 5 4
Average number of GMRES iterations per PIN
INB 19 24 26
ASPIN 23 37 39
MSPIN 13 18 15

128⇥ 128 mesh
Number of PIN iterations
Methods Re = 10 Re = 100 Re = 1000
INB 3 5 ⇤⇤
ASPIN 4 9 13
MSPIN 4 5 5
Average number of GMRES iterations per PIN
INB 37 62 -
ASPIN 24 42 64
MSPIN 14 21 20

256⇥ 256 mesh
Number of PIN iterations
Methods Re = 10 Re = 100 Re = 1000
INB 3 5 ⇤⇤
ASPIN 4 10 18
MSPIN 4 6 6
Average number of GMRES iterations per PIN
INB 93 200 -
ASPIN 25 47 139
MSPIN 15 24 28

ILU with backtracking (INB) against ASPIN and MSPIN. (A fill level of 6 is chosen

for ILU since level 5 or 6 minimizes runtime for the linear solver overall across all

convergent experiments, balancing cost per iteration against the number of iterations.)

For ASPIN and MSPIN, the two linear problems involved in (5.13) and (5.29) are

solved directly. For small Reynolds numbers, corresponding to weak nonlinearity, the

81

INB can have the smallest number of outer Newton steps. However, the advantage is

quickly lost with increasing Reynolds number and for modest Reynolds number, INB

fails to converge nonlinearly altogether even with exact linear solves. The threshold

for the 128 ⇥ 128 mesh for this problem and discretization was determined to be

Re = 770.0 in [28]. Both the field-split preconditioned inexact Newton methods

converge for all Reynolds numbers. The MSPIN method is superior in nonlinear

iterations to the ASPIN method. The average number of GMRES iterations increases

when the mesh size is increased for a fixed Reynolds number. In contrast, the number

of nonlinear iterations using the ASPIN method increases, and the average number

of GMRES iterations increases considerably, when the mesh size varies from 64⇥ 64

to 128⇥ 128 to 256⇥ 256.

Next we change the initial guess. The initial guess is still zero for u, v, and !,

except u = 1 on the top boundary. The ASPIN method fails to converge once the

Reynolds number passes the value Re = 1136 on the 128⇥128 mesh, and su↵ers from

stagnation before the Reynolds number reaches 1136, while MSPIN converges for a

much larger range of Reynolds numbers, as shown in Figure 5.5. The MSPIN method

is not very sensitive to changes of parameters via the tests above, such as the initial

guess, the mesh size, and the Reynolds number and is therefore more robust than the

ASPIN method.

The nonlinear preconditioning demonstrated here is one of several globalization

techniques for systems for which INB fails if applied directly, such as the driven cavity

on a fine mesh at high Reynolds number. One may apply mesh sequencing, initializ-

ing the fine mesh with converged results from recursively coarsened meshes. One may

invoke parameter continuation, initializing the high Reynolds problem with solutions

at recursively lower values (noting that at infinitesimal Reynolds number, the prob-

lem becomes linear and SPD in each variable). One may also apply pseudo-transient

continuation by prepending a temporal evolution term to the vorticity transport equa-

82

5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

PIN iterations

R
e

la
ti
v
e

 n
o

n
li
n

e
a

r
re

s
id

u
a

ls

ASPIN

Re = 1

Re = 100

Re = 1000

Re = 1136

5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

PIN iterations

R
e

la
ti
v
e

 n
o

n
li
n

e
a

r
re

s
id

u
a

ls

MSPIN

Re = 1

Re = 100

Re = 1000

Re = 10000

Figure 5.5: Nonlinear residual history for the driven cavity flow problem with di↵erent
Reynolds numbers. The initial guess is still zero for u, v,!, except u = 1 on the top
boundary.

83

Table 5.5: Execution times for strong scaling of the lid-driven cavity for ASPIN
and MSPIN on a 256 ⇥ 256 mesh at Reynolds number 1000, for tight and loose
relative convergence tolerances on the subproblems and global preconditioner linear
systems solutions. The initial guess is zero for u, v, and !. ✏global�linear�rtol = 10�6,
✏global�nonlinear�rtol = 10�8. ✏sub�rtol denotes the relative tolerance for the subproblems
(which are linear in this example), and we specify ✏Jac�rtol as the relative tolerance
for the linear problems in (5.13) and (5.29). The finite di↵erence step size for the
matrix-free Jacobian applications is 10�8. “ Np” indicates the number of processors,
which does not have to be square. Performance for INB is not shown since it fails to
converge on this mesh and this Reynolds number from a zero initial guess.

Execution time (s)

256⇥ 256 mesh

Methods Np
✏sub�rtol = 10

�3 ✏sub�rtol = 10

�3 ✏sub�rtol = 10

�6 ✏sub�rtol = 10

�6

✏Jac�rtol = 10

�3 ✏Jac�rtol = 10

�6 ✏Jac�rtol = 10

�3 ✏Jac�rtol = 10

�6

ASPIN

4 2363.98 3273.88 2194.43 3219.34

16 687.68 943.91 654.32 976.95

32 397.12 589.86 395.26 588.95

64 272.4 412.27 276.03 405.92

MSPIN

4 175.31 245.59 199.64 248.18

16 57.04 74.06 56.74 74.48

32 32.17 45.86 34.55 46.33

64 22.31 31.64 23.90 31.79

tion, and approaching the desired steady state through a physically motivated tran-

sient, beginning with a very small timestep and adaptively increasing it in inverse

proportion to fractional power of steady-state residual reductions. These and other

strategies are discussed in [1], with references to the literature. Our purpose in this

contribution is to o↵er a complementary technique to desensitize Newton to the ini-

tial guess and improve the nonlinear conditioning in a fundamental way that may, if

necessary, be further combined with the others.

Finally we show some parallel results on a 16-rack IBM Blue Gene/P supercom-

puter with quad-core PowerPC 450 I/O nodes (850MHz, 4GB RAM). In Table 5.5,

we consider the most nonlinear and the most linearly ill-conditioned problem of Table

5.4, on which INB does not converge unassisted. On this, we demonstrate modest

strong scalability for ASPIN and MSPIN within the PETSc framework. For AS-

PIN and MSPIN, all subproblems and linear problems involved in the nonlinearly

84

10
1

10
2

10
3

10
2

10
3

10
4

Number of processors

E
xe

cu
tio

n
 t

im
e

 (
s)

1024 × 1024 mesh

ASPIN
MSPIN

Figure 5.6: Strong scaling for the driven cavity flow problem on a 1024⇥ 1024 mesh
at Reynolds number 1000. The initial guess is still zero for u, v,!. ✏global�linear�rtol =
10�3, ✏global�nonlinear�rtol = 10�8, ✏sub�rtol = 10�3 and ✏Jac�rtol = 10�3. ✏sub�rtol denotes
the relative tolerance for the subproblems (which are linear in this example), and
we specify ✏Jac�rtol as the relative tolerance for the linear problems in (5.13) and
(5.29). The finite di↵erence step size for the matrix-free Jacobian applications is
10�8. Execution time for ASPIN using 512 processors is not shown since it fails to
converge on this mesh and this Reynolds number from a zero initial guess.

preconditioned Jacobian application are solved by GMRES with BoomerAMG pre-

conditioners [105]. We vary the number of processors at Reynolds number 1000 and

the scaling behaviors are shown for both methods and all four relative tolerance tun-

ings. Because performance is generally dependent on linear convergence tolerances,

we experiment with four combinations of loose and tight tolerances for the individual

subproblems and the systems in (5.13) and (5.29). We see that execution times are

more sensitive to the outer tolerances than to the inner.

Figure 5.6 shows strong scaling behaviors for ASPIN and MSPIN on a 1024⇥1024

mesh at Reynolds number 1000, using 16, 32, 64, 128, 256, 512, 1024 processors. For

85

ASPIN and MSPIN, all subproblems and linear problems involved in the nonlinearly

preconditioned Jacobian application are also solved by GMRES with BoomerAMG

preconditioners. In terms of the execution time, MSPIN scales well for up to 1024

processors, while ASPIN scales well for up to 256 processors and it fails to converge

using 512 processors on this mesh and this Reynolds number from a zero initial guess.

5.6 Orderings and Groupings

In the MSPIN algorithm, we have to decide the field-split partitioning for both vari-

ables and equations, and then the subproblems are solved in order. Di↵erent orderings

and di↵erent groupings result in di↵erent nonlinear preconditioners. It is shown from

the following two examples that orderings and groupings can change the equality of

the nonlinear preconditioning — even dramatically.

5.6.1 Driven Cavity Flow Problem

For the driven cavity flow in Section 5.5.3, we switch the ordering as follows:

G : � 1

Re
�! + u

@!

@x
+ v

@!

@y
= 0. (5.88)

and

H :

8
>><

>>:

��u� @!
@y

= 0,

��v + @!
@x

= 0.

(5.89)

We first solve for the vorticity components ! and then for velocity components u, v.

It is noted that we arrange the unknowns in the order of !, u, v for the global system.

Our first test is to set the zero initial guess for !, u, v. In terms of the number of

outer Newton steps, Table 5.6 shows that the MSPIN method loses a clear advantage

over the ASPIN method as is shown in Table 5.4.

86

Table 5.6: Global nonlinear and linear iterations using ASPIN and MSPIN on di↵erent
mesh sizes. We arrange the unknowns in the order of !, u, v for the global system.
The initial guess is zero. ✏global�linear�rtol = 10�6, ✏global�nonlinear�rtol = 10�10. The
finite di↵erence step size for the matrix-free Jacobian applications is 10�8.

64⇥ 64 mesh
Number of PIN iterations

Methods Re = 100 Re = 1000 Re = 5000 Re = 10000
ASPIN 9 10 9 10
MSPIN 9 9 8 9

Average number of GMRES iterations per PIN
Methods Re = 100 Re = 1000 Re = 5000 Re = 10000
ASPIN 37 39 37 41
MSPIN 19 19 18 18

128⇥ 128 mesh
Number of PIN iterations

Methods Re = 100 Re = 1000 Re = 5000 Re = 10000
ASPIN 9 13 12 11
MSPIN 9 12 11 10

Average number of GMRES iterations per PIN
Methods Re = 100 Re = 1000 Re = 5000 Re = 10000
ASPIN 42 65 55 61
MSPIN 21 26 23 23

256⇥ 256 mesh
Number of PIN iterations

Methods Re = 100 Re = 1000 Re = 5000 Re = 10000
ASPIN 10 19 15 14
MSPIN 10 17 15 14

Average number of GMRES iterations per PIN
Methods Re = 100 Re = 1000 Re = 5000 Re = 10000
ASPIN 48 140 106 110
MSPIN 23 43 35 33

Next we change the initial guess. All the unknowns !, u, v are set to be zero

except u = 1 on the top boundary. The nonlinear residual history is shown in Figure

5.7. The MSPIN method fails to converge once the Reynolds number passes the

value Re = 2564 on the 128 ⇥ 128 mesh, because linear iterations fail to converge

after 10000 steps. In contrast, Figure 5.5 shows that the MSPIN method works well

up to Re = 10000 when we first solve for the velocity components u, v and then for

the vorticity component !.

87

5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

PIN iterations

R
e

la
ti
v
e

 n
o

n
li
n

e
a

r
re

s
id

u
a

ls

MSPIN

Re=1

Re=100

Re=1000

Re=2564

Figure 5.7: Nonlinear residual history for the flow problem with di↵erent Reynolds
numbers. The initial guess is still zero for u, v,!, except u = 1 on the top boundary.
The MSPIN algorithm fails when Re > 2565.

5.6.2 Natural Convection Cavity Flow Problem

We consider a benchmark problem [106] that describes the two-dimensional natural

convection cavity flow of a Boussinesq fluid with Prandtl number 0.71 in an upright

square cavity ⌦ = (0, 1) ⇥ (0, 1). Following [107], the nondimensional steady-state

Navier-Stokes equations in vorticity-velocity form and energy equation are formulated

as: 8
>>>>>>>>>>>><

>>>>>>>>>>>>:

��u� @!
@y

= 0,

��v + @!
@x

= 0,

�(Pr
Ra

)0.5�! + u@!
@x

+ v @!
@y
� @T

@x
= 0,

�(1

PrRa
)0.5�T + u@T

@x
+ v @T

@y
= 0,

(5.90)

where Pr and Ra denote the Prandtl number and the Rayleigh number, respectively.

There are four unknowns: the velocity u, v, the vorticity ! and the temperature T .

88

u = v = 0

u = v = 0

u = v = 0 u = v = 0

�T

�y
= 0

�T

�y
= 0

T = 0.5 T = �0.5

Figure 5.8: Boundary conditions for natural convection cavity flow

On the solid walls (the thickness of the walls are assumed to be zero), both velocity

components u, v are zero, and the vorticity is determined from its definition in (5.85).

The horizontal walls are insulated (@T
@y

= 0), and the vertical walls are at temperatures

0.5 (left) and -0.5 (right). The temperature di↵erence keeps the fluid circulating in

the cavity.

Considering the partition with respect to velocity unknowns, the vorticity un-

known and the temperature unknowns, we split the system (5.90) into three submod-

els:

FT : �(1

PrRa
)0.5�T + u

@T

@x
+ v

@T

@y
= 0, (5.91)

F! : �(Pr

Ra
)0.5�! + u

@!

@x
+ v

@!

@y
� @T

@x
= 0, (5.92)

Fu,v :

8
>><

>>:

��u� @!
@y

= 0,

��v + @!
@x

= 0.

(5.93)

The discretization is similar to that in the driven cavity problem, and upwinding is

used in the vorticity equation and the temperature equation.

89

There are four schemes for groupings:

• Grouping A with two subsystems

F̂
1

: FT

F̂
2

: F!, Fu,v

• Grouping B with two subsystems

F̂
1

: FT , F!

F̂
2

: Fu,v

• Grouping C with two subsystems

F̂
1

: FT , Fu,v

F̂
2

: F!

• Grouping D with three subsystems

F̂
1

: FT

F̂
2

: F!

F̂
3

: Fu,v

It is noted that the subproblems corresponding to Grouping B and Grouping D

obtained from the discretization of equations are linear, which are solved by GMRES

with BoomerAMG preconditioners. With Grouping A or Grouping C, one subproblem

is linear and the other one is still nonlinear, which is solved by INB with the tolerance

✏sub�nonlinear�rtol = 10�4.

The initial guess is zero for u, v, and !, and the linear interpolation for T using two

known temperatures on the vertical sides. Figure 5.9 shows contours of temperature

T and vorticity ! at di↵erent Rayleigh numbers. Table 5.7 compares INB against the

MSPIN algorithms corresponding to di↵erent groupings. When MSPIN algorithms

with Grouping B and Grouping D converge on a fixed mesh at a fixed Rayleigh

90

Table 5.7: Global nonlinear and linear iterations using INB and MSPIN on di↵erent
mesh sizes at di↵erent Rayleigh numbers. The initial guess is zero for u, v, and !,
and the linear interpolation for T using two known temperatures on the vertical sides.
✏global�linear�rtol = 10�6, ✏global�nonlinear�rtol = 10�10, and ✏sub�linear�rtol = 10�6. “-”
indicates that the nonlinear iterations are not available, because linear iterations fail.
“*” indicates that the nonlinear iterations are not available, because the subproblems
fails to converge or backtracking fails.

64⇥ 64 mesh, 4 processors

Ra

Grouping A Grouping B Grouping C Grouping D

INB FT |F!, Fu,v FT , F!|Fu,v FT , Fu,v|F! FT |F!|Fu,v

Newton GMRES Newton GMRES Newton GMRES Newton GMRES Newton GMRES

10

3
5 41 4 5 5 17 4 15 5 17

5⇥ 10

3
6 46 6 8 7 21 5 19 7 21

10

4
- * 7 27 8 23 6 27

5⇥ 10

4
20 58 * 23 37 14 54 23 37

10

5
- * 18 61 - 17 65

128⇥ 128 mesh, 16 processors

Ra

Grouping A Grouping B Grouping C Grouping D

INB FT |F!, Fu,v FT , F!|Fu,v FT , Fu,v|F! FT |F!|Fu,v

Newton GMRES Newton GMRES Newton GMRES Newton GMRES Newton GMRES

10

3
5 133 4 5 5 18 4 16 5 18

5⇥ 10

3
6 166 5 8 7 23 5 20 6 23

10

4
- * 7 28 10 30 7 28

5⇥ 10

4
- * - * 9 63

10

5
- * 18 110 - 16 83

256⇥ 256 mesh, 64 processors

Ra

Grouping A Grouping B Grouping C Grouping D

INB FT |F!, Fu,v FT , F!|Fu,v FT , Fu,v|F! FT |F!|Fu,v

Newton GMRES Newton GMRES Newton GMRES Newton GMRES Newton GMRES

10

3
- 4 5 5 18 4 16 4 18

5⇥ 10

3
- 5 7 7 27 5 21 6 27

10

4
- * 7 31 9 32 7 31

5⇥ 10

4
- * - - 8 82

10

5
- * - - 19 97

91

Ra=10
3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Ra=10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Ra=10
5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Ra=10
3

−2

−1

0

1

2

3

Ra=10
4

−2

−1

0

1

2

3

4

5

6

7

Ra=10
5

−4

−2

0

2

4

6

8

10

12

Figure 5.9: Contours of temperature T (top) and vorticity ! (bottom).

number, they have similar numbers of Newton iterations and GMRES iterations. In

Table 5.7, MSPIN algorithms with Grouping A, B or C fail to converge in some cases.

However, impressively, the MSPIN algorithm with Grouping D works for all the tests.

Therefore, the groupings play an essential role in determining the quality of nonlinear

preconditioning.

92

Chapter 6

Convergence Analysis for the

MSPIN Algorithm

6.1 MSPIN with Multiple Components

We consider a nonlinear root-finding problem (2.1) and assume that the function F (x)

is continuously di↵erentiable. In the multiplicative Schwarz preconditioned inexact

Newton (MSPIN) algorithm, the nonlinear function F (x) is split conformally into

2 6 N 6 n nonoverlapping components representing distinct physical features as

F (x) = F (u
1

, . . . , uN) =

2

66664

F̂
1

(u
1

, . . . , uN)

...

F̂N(u1

, . . . , uN)

3

77775
= 0, (6.1)

where x = [x
1

, . . . , xn]T = [u
1

, . . . , uN]T 2 Rn. ui and F̂i, denote subpartitions

of x and F , respectively, i = 1, . . . , N . In the MSPIN algorithm, the submodels

are solved sequentially for the physical variable corrections, and the preconditioned

system whose root is to be found consists of the sum of these corrections.

93

The multiplicative Schwarz preconditioned function

F(x) =

2

66664

T
1

(u
1

, . . . , uN)

...

TN(u1

, . . . , uN)

3

77775
(6.2)

is obtained by solving the following equations:

F̂
1

(u
1

� T
1

(x), u
2

, u
3

, . . . , uN) = 0,

F̂
2

(u
1

� T
1

(x), u
2

� T
2

(x), u
3

, . . . , uN) = 0,

...

F̂N(u1

� T
1

(x), u
2

� T
2

(x), u
3

� T
3

(x), . . . , uN � TN(x)) = 0.

(6.3)

As with the ASPIN algorithm in [28], the MSPIN method solves the global precon-

ditioned problem in (6.2) using the INB algorithm.

6.1.1 Some Properties

We discuss key properties of the MSPIN algorithm under reasonable assumptions.

Specifically, we prove that the preconditioned function F(x) is continuously di↵eren-

tiable and we give a formula for the Jacobian F 0(x).

Let

S = {1, . . . , n}

be an index set, and

F (x) = [F
1

(x), F
2

(x), . . . , Fn(x)]
T = [F̂

1

(x), F̂
2

(x), . . . , F̂N(x)]
T , (6.4)

where F̂i(x) = F̂i(u1

, . . . , uN) is defined in (6.1). We define Si = {i
1

, i
2

, . . . , in
i

} ⇢ S

as

Si = {j | Fj(x) belongs to the function F̂i(x), j 2 S}, (6.5)

94

where i = 1, 2, . . . , N , and n
1

+ n
2

+ . . . + nN = n. We define a set of restriction

matrices Ri 2 Rn
i

⇥n as follows:

(Ri)k,l =

8
><

>:

1, l = ik,

0, otherwise,
(6.6)

and then we define

Ei = RT
i Ri 2 Rn⇥n, i = 1, . . . , N. (6.7)

It is clear that F (x) =
PN

i=1

RT
i F̂i(x).

Illustrating with n = 3, N = 2, let S
1

= {1}, S
2

= {2, 3}, n
1

= 1, and n
2

= 2, to

get

F̂
1

(x) = F
1

(u
1

, u
2

), F̂
2

(x) =

2

64
F
2

(u
1

, u
2

)

F
3

(u
1

, u
2

)

3

75 , (6.8)

where x = [x
1

, x
2

, x
3

]T , u
1

= x
1

, u
2

= [x
2

, x
3

]T .

R
1

= [1, 0, 0], R
2

=

2

64
0 1 0

0 0 1

3

75 , (6.9)

E
2

=

2

66664

1 0 0

0 0 0

0 0 0

3

77775
, E

2

=

2

66664

0 0 0

0 1 0

0 0 1

3

77775
. (6.10)

For the nonlinear problem (6.1), we make the following assumptions for F (x):

Assumption 14. The function F (x) is well-defined in a neighborhood U of the exact

solution x⇤,

95

(i) the Jacobian

F 0(x) = J(x) =

2

6666666664

@ ˆF
1

@u
1

@ ˆF
1

@u
2

@ ˆF
1

@u
3

· · · @ ˆF
1

@u
N

@ ˆF
2

@u
1

@ ˆF
2

@u
2

@ ˆF
2

@u
3

· · · @ ˆF
2

@u
N

...
...

...
...

@ ˆF
N

@u
1

@ ˆF
N

@u
2

@ ˆF
N

@u
3

· · · @ ˆF
N

@u
N

3

7777777775

(6.11)

is continuous in U and J(x⇤) is nonsingular.

(ii) the submatrices RiJ(x⇤)RT
i are invertible, i = 1, 2, . . . , N .

We now recall results from Lemma 4.3 and Theorem 4.5 in [50] in the following

lemma. It guarantees that F(x) in (6.2) is well defined and continuous, and shows

the equivalence of two nonlinear systems (6.1) and (6.2).

Lemma 15. ([50]) Under Assumption 14, there exists a neighborhood D
1

⇢ U of the

exact solution x⇤ such that

(i) The subproblems in (6.3) are all uniquely solvable. There is a unique con-

tinuous function Ti(x) such that (6.3) hold for any x 2 D
1

with Ti(x⇤) = 0,

i = 1, 2, . . . , N .

(ii) The nonlinear system (6.1) and (6.2) have the same solution in D
1

.

We define

DF (x, y) =

Z
1

0

J(x+ t(y � x))dt, (6.12)

and T̃i 2 Rn is defined as

T̃
0

(x) = 0 2 Rn, 8x 2 D
1

, (6.13)

96

and

T̃
1

(x) =

2

66666664

T
1

(x)

0

...

0

3

77777775

, T̃i(x) =

2

66666664

T
1

(x)

...

Ti(x)

0N�i

3

77777775

, T̃N(x) =

2

66666664

T
1

(x)

T
2

(x)

...

TN(x)

3

77777775

, (6.14)

for any x 2 D
1

, where 0N�i 2 RN�i is a zero vector, i = 2, . . . , N � 1. From (i) in

Lemma 15, it is seen that

T̃i(x) =
iX

k=1

RT
k Tk(x) (6.15)

is continuous and T̃i(x)! 0 as x! x⇤, i = 1, 2, . . . , N .

Following [103], the multiplicative Schwarz preconditioned function F(x) in (6.2)

is also written as

F(x) = T
1

(x) +
NX

i=2

Ti(x� T̃i�1

(x)), (6.16)

where

Ti(x� T̃i�1

(x)) = RT
i Ti(x). (6.17)

Due to continuity on Ti in a neighborhood D
1

from Lemma 15, it follows from [8, 103]

that we have

Ti(x
0)� Ti(x

00) = DTi(x
0, x00)(x0 � x00), 8 x0, x00 2 D

1

, (6.18)

where DTi(x0, x00) is defined as

Ti(x
0, x00) = RT

i [RiDFRT
i]

�1RiDF, DF = DF (x0 � Ti(x
0), x00 � Ti(x

00)). (6.19)

97

Theorem 1.7 and Remark 1.8 in [103] show that

F(x0)� F(x00)

=

I �

NY

i=1

h
I �DTi(x

0 � T̃i�1

(x0), x00 � T̃i�1

(x00))
i!

(x0 � x00), (6.20)

for any x0, x00 2 D
1

.

Remark 16. We make the right-to-left operator convention:

NY

i=1

Ai = AN · · ·A
2

A
1

. (6.21)

Note that z = x� T̃i�1

(x), and then using (6.15) and (6.17) we have

z � Ti(z) = x� T̃i�1

(x)� Ti(x� T̃i�1

(x))

= x� T̃i�1

(x)�RT
i Ti(x) (6.22)

= x� T̃i(x),

and it follows from (6.19) and (6.20) that

F(x0)� F(x00)

=

I �

NY

i=1

(I �Qi(x
0, x00))

!
(x0 � x00), for x0, x00 2 D

1

, (6.23)

where Qi(x0, x00) is defined as

RT
i [RiDF (x0 � T̃i(x

0), x00 � T̃i(x
00))RT

i]
�1RiDF (x0 � T̃i(x

0), x00 � T̃i(x
00)). (6.24)

Theorem 17. Let Assumption 14 hold. Then there is a neighborhood D ⇢ U of

the exact solution x⇤ such that F(x) defined in (6.2) is continuously di↵erentiable.

98

Moreover,

F 0(x) = I �
NY

i=1

(I �Wi(x)), x 2 D, (6.25)

where Wi(x) = RT
i [RiJ(x� T̃i(x))RT

i]
�1RiJ(x� T̃i(x)).

Proof. Under Assumption 14, Lemma 15 shows that there exists a neighborhoodD
1

⇢

U of x⇤ such that F(x) is continuous, and then (6.23) holds for any x0, x00 2 D
1

. Since

RiJ(x⇤)RT
i is invertible and J(x) is continuous, by Lemma 2.3.3 in [54], there exists

a neighborhood D
2

⇢ U of x⇤ such that RiJ(x)RT
i is invertible and [RiJ(x)RT

i]
�1 is

continuous in D
2

, i = 1, 2, . . . , N .

Let D ⇢ D
1

T
D

2

⇢ U be a neighborhood of the exact solution x⇤ such that

x� T̃ i(x) 2 D
2

for any x 2 D and i = 1, 2, . . . , N , and then we define

A(x) = I �
NY

i=1

(I �Wi(x)), x 2 D, (6.26)

where Wi(x) = RT
i [RiJ(x � T̃ i(x))RT

i]
�1RiJ(x � T̃ i(x)), i = 1, 2, . . . , N . Note that

A(x) is continuous in D. Due to the continuity of J(x) and T̃i(x), we have

DF (x+ h� T̃i(x+ h), x� T̃i(x))! J(x� T̃i(x)), as h! 0. (6.27)

Using (6.23) and (6.26), we have

lim
khk!0

kF(x+ h)� F(x)� A(x)hk
khk = 0, (6.28)

which implies that F is Fréchet-di↵erentiable and F 0(x) = A(x).

In [103], the expression in (6.25) of F 0(x) was employed to develop the damped

Richardson scheme instead of the INB method as the solver of the preconditioned

system (6.2). The following theorem implies that the formula (6.25) can be simplified

to the form of multiplication of two matrices, and then the matrix-vector multiplica-

99

tion can be carried out instead of explicitly forming the full Jacobian matrix F 0(x)

when we solve the Newton equation.

Theorem 18. Let Assumption 14 hold, and D be the neighborhood determined in

Theorem 17. Let x = [u
1

, u
2

, . . . , u
N

]T , where ui 2 Rn
i and �i = ui � Ti(x), i =

1, 2, . . . , N . Then F 0(x) from Theorem 17 has the form

J (x) =

2

6666666664

@ ˆF
1

@�
1

@ ˆF
2

@�
1

@ ˆF
2

@�
2

...
...

. . .

@ ˆF
N

@�
1

@ ˆF
N

@�
2

· · · @ ˆF
N

@�
N

3

7777777775

�1

2

6666666664

@ ˆF
1

@�
1

@ ˆF
1

@u
2

@ ˆF
1

@u
3

· · · @ ˆF
1

@u
N

@ ˆF
2

@�
1

@ ˆF
2

@�
2

@ ˆF
2

@u
3

· · · @ ˆF
2

@u
N

...
...

...
...

@ ˆF
N

@�
1

@ ˆF
N

@�
2

@ ˆF
N

@�
3

· · · @ ˆF
N

@�
N

3

7777777775

. (6.29)

Proof. Let 0u
i

2 Rn
i

⇥n
i be the zero matrix that has the same dimension as the ui

block, i = 1, 2, . . . , N . We define

L(x) ⌘

2

66666664

l
1

l
2

...

lN

3

77777775

=

2

6666666664

@ ˆF
1

@�
1

@ ˆF
2

@�
1

@ ˆF
2

@�
2

...
...

. . .

@ ˆF
N

@�
1

@ ˆF
N

@�
2

· · · @ ˆF
N

@�
N

3

7777777775

(6.30)

and

H(x) ⌘

2

66666664

h
1

h
2

...

hN

3

77777775

=

2

66666666666664

0u
1

@ ˆF
1

@u
2

@ ˆF
1

@u
3

· · · @ ˆF
1

@u
N

0u
2

@ ˆF
2

@u
2

· · · @ ˆF
2

@u
N

.
...

0u
N�1

@ ˆF
N�1

@u
N

0u
N

3

77777777777775

, (6.31)

100

where li 2 Rn
i

⇥n, hi 2 Rn
i

⇥n, i = 1, 2, . . . , N , and then we have

L(x) =
NX

i=1

RT
i li,

H(x) =
NX

i=1

RT
i hi.

We define Iu
k

2 Rn
k

⇥n
k as the identity matrix that has the same dimension as the

uk block, 1 6 k 6 N , k 6= i. Note that

I �Wi(x) =

2

6666666666666666664

Iu
1

. . .

Iu
i�1

wi1 · · · wi,i�1

0u
i

wi,i+1

· · · wi,
N

Iu
i+1

. . .

Iu
N

3

7777777777777777775

, (6.32)

where

wi,k =

8
>><

>>:

�
⇣

@ ˆF
i

@�
i

⌘�1

@ ˆF
i

@�
k

, k < i,

�
⇣

@ ˆF
i

@�
i

⌘�1

@ ˆF
i

@u
k

, k > i.

(6.33)

It is then verified that

lk(I �Wi(x)) = lk, k < i,

hk(I �Wi(x)) = hk, k > i,

lk(I �Wi(x)) = �hk, k = i,

from which we may deduce that

101

L(x)
NY

i=1

(I �Wi(x)) =

NX

i=1

RT
i li

!
NY

i=1

(I �Wi(x))

=

N�1X

i=1

RT
i li �RT

NhN

!
N�1Y

i=1

(I �Wi(x))

=

N�2X

i=1

RT
i li �

NX

i=N�1

RT
i hi

!
N�2Y

i=1

(I �Wi(x))

=

RT

1

l
1

�
NX

i=2

RT
i hi

!
(I �W

1

(x))

= �
NX

i=1

RT
i hi = �H(x),

and it follows that

L(x)

I �

NY

i=1

(I �Wi(x))

!
= L(x) + H(x),

which completes the proof.

Theorem 18 obtains in a di↵erent way the same formula of the Jacobian F 0(x)

shown in Section 5.4 or [50]. In the practical implementation of MSPIN, it is more

convenient to use the following approximate Jacobian

J (x) ⇡ Ĵ (x) = L(x̄)�1J(x̄), x̄ = [�
1

, �
2

, . . . , �N�1

, uN]
T , (6.34)

where �i = ui � Ti, i = 1, 2, . . . , N � 1, and L(x) is defined as

L(x) =

2

6666666664

@ ˆF
1

@u
1

@ ˆF
2

@u
1

@ ˆF
2

@u
2

...
...

. . .

@ ˆF
N

@u
1

@ ˆF
N

@u
2

@ ˆF
N

@u
3

· · · @ ˆF
N

@u
N

3

7777777775

, (6.35)

102

which is the lower triangular part of J(x). Since F 0(x) = J(x) is continuous and

RiJ(x⇤)RT
i are invertible, we know that L(x) is continuous and L(x⇤) is nonsingular.

Lemma 2.3.3 in [54] shows that there exists a neighborhood U 0 ⇢ U of the exact

solution x⇤ such that L(x) are invertible, and L(x)�1 are continuous in the neigh-

borhood U 0. Due to the continuity of Ti(x) (see (i) in Lemma 15), we know that

�i = ui � Ti(x) ! u⇤
i as x ! x⇤, where x⇤ = [u⇤

1

, u⇤
2

, . . . , u⇤
N]

T and i = 1, 2, . . . , N .

Therefore, it is seen that

Remark 19. There is a neighborhood D0 ⇢ D of the exact solution x⇤ such that

L(x)�1, J (x), Ĵ (x), J (x)�1 and Ĵ (x)�1 are continuous in D0, and

lim
x!x⇤

J (x) = lim
x!x⇤

Ĵ (x) = J (x⇤). (6.36)

6.1.2 The MSPIN Framework

For discussing the convergence properties, we describe a complete MSPIN frame-

work in Algorithm 8. Considering N di↵erent physically motivated subsets of the

overall, we split F (x) into F̂
1

(x), F̂
2

(x), . . . , F̂N(x), and the unknowns have partition

structure corresponding to x = [u
1

, u
2

, . . . , uN]T . In the implementation of MSPIN in

Algorithm 8, the most interesting part is how to determine the partition of the phys-

ical variables, i.e., the set of equations that belongs to F̂i for each i, because the best

choice is generally problem-specific. The basic objective is to segregate subsystems

that retard global Newton convergence from the rest, and to make these systems as

small as possible. However, the ideal partitions could evolve during the course of the

problem and no theory is currently in hand for this. Once the partitioning and the

initial guess are given, together with the customization of the parameters, we move

on to step 1.

In step 1, based on the current approximate solution x(k) = [u(k)
1

, . . . , u
(k)
N]T , the

solutions T (k)
i of the submodels F̂i, i = 1, 2, . . . , N , forming the global residual of the

103

Algorithm 8 MSPIN for problems with N components

Specify he initial guess x(0) = [u(0)

1

, u
(0)

2

, . . . , u
(0)

N]T .
Set the parameters ↵ 2 (0, 1

2

), ⌘
max

2 (0, 1) and 0 < ✓
min

< ✓
max

< 1.
for k = 0, 1, 2, . . ., until convergence, do

1. Compute the nonlinear residual F(x(k)) by solving the submodels.

(a) Starting from the initial guess T
(k)
i,0 = 0, i = 1, 2, . . . , N , find T

(k)
1

,

T
(k)
2

, . . . , T
(k)
N by solving the following subproblems sequentially:

F̂
1

(u(k)
1

� T
(k)
1

, u
(k)
2

, u
(k)
3

, . . . , u
(k)
N) = 0,

F̂
2

(u(k)
1

� T
(k)
1

, u
(k)
2

� T
(k)
2

, u
(k)
3

, . . . , u
(k)
N) = 0,

...

F̂N(uk
1

� T
(k)
1

, u
(k)
2

� T
(k)
2

, u
(k)
3

� T
(k)
3

, . . . , u
(k)
N � T

(k)
N) = 0.

(b) Form the global residual

F(x(k)) =

2

6664

T
(k)
1

T
(k)
2

...

T
(k)
N

3

7775
. (6.37)

(c) Check the stopping conditions on F(x(k)).

2. Choose ⌘k and find the inexact Newton direction d(k) by approximately solving

Ĵ (x(k))d(k) = F(x(k)), (6.38)

such that
kF(x(k))� Ĵ (x(k))d(k)k  ⌘kkF(x(k))k, (6.39)

where Ĵ has the form (6.34), and the forcing term ⌘k 2 [0, ⌘
max

].

3. Determine the step length �(k) along the direction d(k).

Set �(k) = 1
while f(x(k) � �(k)d(k)) > f(x(k))� ↵�(k)F(x(k))T Ĵ (x(k))d(k) do
choose some ✓ 2 [✓

min

, ✓
max

]
�(k) = ✓�(k)

end while

4. Compute the new approximate solution.

x(k+1) = x(k) � �(k)d(k). (6.40)

end for

104

transformed system are determined and checked for convergence.

In step 2, an approximate Newton step is accepted provided that (6.39) is satisfied.

Note that the global Jacobian system (6.38) is solved using GMRES with no addi-

tional linear preconditioning. The Jacobian formula (6.34) implies that nonlinear

preconditioning automatically provides a block Gauss-Seidel linear preconditioning

for the original unpreconditioned equation.

In step 3, we carry out a backtracking line search algorithm to determine the

step length �(k) along the inexact Newton direction d(k). The backtracking linesearch

technique is based on the following merit function

f(x) ⌘ 1

2
kF(x)k2

2

, (6.41)

and �(k) is picked such that

f(x(k) � �(k)d(k)) 6 f(x(k))� ↵�(k)rf(x(k))Td(k). (6.42)

An easy calculation gives

rf(x(k)) = J (x(k))TF(x(k)), (6.43)

which is replaced by Ĵ (x(k))TF(x(k)) in a practical algorithm.

For details about the implementation of MSPIN, see [50].

6.2 Local Convergence

In this section, we give a theoretical foundation for the MSPIN algorithm, and show

that the MSPIN algorithm is locally convergent. Unfortunately and unsurprisingly, it

does not seem possible to carry out a global convergence analysis of MSPIN, because

105

this algorithm and its properties shown in Section 2 are based on the assumptions on

F (x) in the neighborhood of the exact solution x⇤.

Let N(x, r) = {y | ky � xk < r} represent an open ball with the center x and a

radius r, and k · k = k · k
2

for all the matrices and vectors in the remainder of the

paper. The main assumptions are as follows:

Assumption 20. Assumption 14 holds, and we define

K ⌘ max{kJ (x⇤)k, kJ (x⇤)�1k}. (6.44)

(a) In step 1(a) of Algorithm 8, we solve the subproblems exactly for T
(k)
i , for each

k;

(b) In step 3 of Algorithm 8, we assume ↵ is small enough so that

↵ 6 1� ⌘
max

64K4(3 + ⌘
max

)
; (6.45)

(c) There exists a fixed small number r > 0 such that N(x⇤, r) ⇢ D, where D is

the neighborhood determined in Lemma 15. For any x 2 N(x⇤, r), we further

assume that

(c
1

) L(x)�1, J (x), Ĵ (x), J (x)�1 and Ĵ (x)�1 are continuous;

(c
2

) kJ (x)k 6 2K, kJ (x)�1k 6 2K, where J has the form (6.29) ;

(c
3

) kĴ (x)k 6 2K, kĴ (x)�1k 6 2K, where Ĵ has the form (6.34) ;

(c
4

) kJ (x)� Ĵ (x)k 6 1�⌘
max

4K(1+⌘
max

)

;

(c
5

) kF(x)� F(x⇤)� J (x⇤)(x� x⇤)k 6 1

2K
kx� x⇤k.

In (a), we assume that all of subproblems are solved exactly, since introduction of

the secondary iteration makes the discussion more complicated.

106

In (b), the proofs of Lemma 21 and Lemma 24 require the assumption (6.45) for

↵, and more details is found in [44].

In (c), we can find a number r
1

> 0 from Remark 19 such that (c
1

)-(c
4

) hold for

any x 2 N(x⇤, r
1

) ⇢ D. Theorem 17 shows that F(x) is continuously di↵erentiable

in a neighborhood of x⇤, and hence we can find a number r
2

> 0 such that the last

inequality (c
5

) holds in N(x⇤, r
2

) ⇢ D by Lemma 3.2.10 in [54]. Let r = min{r
1

, r
2

},

and N(x⇤, r) is the open ball required in (c). Section 6.4 gives an example that

satisfies assumptions (c
1

)-(c
5

).

Note that a line search procedure is carried out with initialization �(k) = 1 in step

3 of Algorithm 8. Recalling results from Remark 3.1 and Theorem 3.5 in [44], we can

obtain the following lemma. It shows that step 3 of Algorithm 8 will terminate the

execution of the while-loop in a finite number of steps when the gradient of f satisfies

a mild condition. Moreover, there exists a positive lower bound for the resulting �(k).

Lemma 21. ([44]) Assume there exists � > 0 such that

krf(y)�rf(z)k 6 �ky � zk, 8 y, z 2 N(x⇤, r).

Let x 2 N(x⇤, r
2

) satisfy F(x) 6= 0 and kF(x)k 6 r
8K

, and we find an inexact Newton

direction d 2 Rn such that

kF(x)� Ĵ (x)dk  ⌘kF(x)k, ⌘ 2 [0, ⌘
max

],

then it holds that F(x)TJ (x)d > 0 and the while-loop in step 3 of Algorithm 8 will

terminate in finite iterations and the determined step length � satisfies

� > min{1, ↵✓min

F(x)TJ (x)d

�kdk2 }. (6.46)

Furthermore, we have kF(x� �d)k < kF(x)k.

107

Lemma 22. If x 2 N(x⇤, r), then we have

kx� x⇤k 6 2KkF(x)k. (6.47)

Proof. Since

kx� x⇤k 6 kJ (x⇤)�1kkJ (x⇤)(x� x⇤)k, (6.48)

by (6.44) and (c
5

) in Assumption 20 and F(x⇤) = 0, we have

kF(x)k > kJ (x⇤)(x� x⇤)k � kF(x)� F(x⇤)� J (x⇤)(x� x⇤)k

> 1

kJ (x⇤)�1kkx� x⇤k � 1

2K
kx� x⇤k

> (
1

K
� 1

2K
)kx� x⇤k = 1

2K
kx� x⇤k,

which implies that (6.47) holds.

We state the main result in this section.

Theorem 23. Assume there exists � > 0 such that

krf(y)�rf(z)k 6 �ky � zk, 8 y, z 2 N(x⇤, r).

If x(0) 2 N(x⇤, r
2

) satisfies F(x(0)) 6= 0, kF(x(0))k 6 r
8K

, then the MSPIN algorithm

generates a sequence {x(k)} ⇢ N(x⇤, r
2

) such that {kF(x(k))k} is strictly decreasing,

and x(k) ! x⇤.

Proof. We prove that the MSPIN algorithm can generate a sequence {x(k)} ⇢ N(x⇤, r
2

)

such that {kF(x(k))k} is strictly decreasing by mathmatical induction.

Initial step. In step 2 of Algorithm 8, we find d(0) such that

kF(x(0))� Ĵ (x(0))d(0)k  ⌘
0

kF(x(0))k, ⌘
0

2 [0, ⌘
max

], (6.49)

108

and Lemma 21 shows that we could find a suitable step length �(0) and the inequality

kF(x(1))k < kF(x(0))k holds, where x(1) = x(0) � �(0)d(0), �(0) 2 (0, 1].

From (6.49), we have

kF(x(0))� Ĵ (x(0))(�(0)d(0))k = k�(0)

⇣
F(x(0))� Ĵ (x(0))d(0)

⌘
+ (1� �(0))F(x(0))k

6
�
⌘
0

�(0) + (1� �(0))
�
kF(x(0))k

6 kF(x(0))k,

and then it holds from (c
3

) in Assumption 20 that

k�(0)d(0)k = kĴ (x)�1

⇣
Ĵ (x)(�(0)d(0))� F(x(0)) + F(x(0))

⌘
k

6 kĴ (x)�1k
⇣
kF(x(0))� Ĵ (x(0))(�(0)d(0))k+ kF(x(0))k

⌘

6 4KkF(x(0))k

< 4K
r

8K
=

r

2
.

Hence,

kx(1) � x⇤k = kx(0) � x⇤ � �(0)d(0)k

6 kx(0) � x⇤k+ k�(0)d(0)k

<
r

2
+

r

2
= r,

which implies x(1) 2 N(x⇤, r). By Lemma 22 and kF(x(1))k < kF(x(0))k, we have

kx(1) � x⇤k 6 2KkF(x(1))k < 2KkF(x(0))k = 2K
r

8K
<

r

2
. (6.50)

Hence, the MSPIN algorithm can generate x(1) starting from x(0), and x(1) 2 N(x⇤, r
2

).

Inductive Step. We assume that there is a k such that the MSPIN algorithm

109

has generated a sequence {x(1), x(2), . . . , x(k)} ⇢ N(x⇤, r
2

), and

kF(x(k))k < · · · < kF(x(2))k < kF(x(1))k. (6.51)

For a given x(k), we compute the inexact Newton direction d(k) in step 2 of Algorithm

8, such that

kF(x(k))� Ĵ (x(k))d(k)k  ⌘kkF(x(k))k, ⌘k 2 [0, ⌘
max

]. (6.52)

Lemma 21 guarantees that x(k+1) = x(k) � �(k)d(k) is generated with �(k) 2 (0, 1] and

kF(x(k+1))k < kF(x(k))k. Similarly to the procedure in the initial step above, we can

prove that x(k+1) 2 N(x⇤, r
2

). This completes the inductive step.

Next we prove that x(k) ! x⇤. From (6.52), we have

F(x(k))T Ĵ (x(k))d(k) = F(x(k))TF(x(k))� F(x(k))T
⇣
F(x(k))� Ĵ (x(k))d(k)

⌘

> kF(x(k))k2 � kF(x(k))kkF(x(k))� Ĵ (x(k))d(k)k

> (1� ⌘k)kF(x(k))k2 (6.53)

> 2(1� ⌘
max

)f(x(k)),

and Lemma 21 shows that the step 3 of Algorithm 8 determines

�(k) > min{1, ↵✓min

F(x(k))TJ (x(k))d(k)

�kd(k)k2 } (6.54)

such that

f(x(k+1)) = f(x(k) � �(k)d(k)) 6 f(x(k))� ↵�(k)F(x(k))T Ĵ (x(k))d(k). (6.55)

110

By (6.53) and (6.55), it follows that

f(x(k+1)) 6 (1� 2↵�(k)(1� ⌘
max

))f(x(k)). (6.56)

Note that {f(x(k))} is strictly monotonic decreasing and nonnegative, and hence

limk!1 f(x(k)) exists and it is nonnegative. We can employ a proof by contradiction

to show that limk!1 f(x(k)) = 0. Assume that

lim
k!1

f(x(k)) = � > 0. (6.57)

Using (6.52) and kF(x(0))k 6 r
8K

, we have

kd(k)k = kĴ (x)�1

⇣
Ĵ (x)d(k) � F(x(k)) + F(x(k))

⌘
k

6 kĴ (x)�1k
⇣
kF(x(k))� Ĵ (x(k))d(k)k+ kF(x(k))k

⌘

6 2K(1 + ⌘k)kF(x(k))k

6 2K(1 + ⌘
max

)kF(x(0))k

< 2K(1 + ⌘
max

)
r

8K
=

r(1 + ⌘
max

)

4
, (6.58)

and then it follows from (6.53) that

F(x(k))TJ (x(k))d(k)

kd(k)k2 >
2(1� ⌘

max

)f(x(k))
⇣

r(1+⌘
max

)

4

⌘
2

> 32(1� ⌘
max

)�

r2(1 + ⌘
max

)2
> 0. (6.59)

Let ✏ = 1

2

min{1, 32↵✓min

(1�⌘
max

)�
�r2(1+⌘

max

)

2

} 6 1

2

. Therefore, by (6.54) and (6.59), we have

�(k) > min{1, 32↵✓min

(1� ⌘
max

)�

�r2(1 + ⌘
max

)2
} > ✏ > 0, (6.60)

111

which implies that

lim
k!1

f(x(k+1))

f(x(k))
6 1� 2↵✏(1� ⌘

max

) < 1 (6.61)

holds for ↵ 2 (0, 1
2

) and ⌘
max

2 (0, 1) (given in Algorithm 8) from (6.56). It is then

seen from (6.57) that

lim
k!1

f(x(k+1))

f(x(k))
= 1, (6.62)

which contradicts (6.61). Thus, we have limk!1 f(x(k)) = 0, and then Lemma 22

implies that

kx(k) � x⇤k 6 2KkF(x(k))k = 2K
q

2f(x(k))! 0, (6.63)

i.e., x(k) ! x⇤ as k !1.

6.3 Convergence Rate

We discuss the local convergence of the MSPIN algorithm in the previous section. In

this section, we investigate the convergence rate of the MSPIN algorithm under some

reasonable assumptions.

From [44], we borrow the following result.

Lemma 24. Let f(x) be twice continuously di↵erentiable in N(x⇤, r) and there exists

� > 0 such that

krf(y)�rf(z)k 6 �ky � zk, kr2f(y)�r2f(z)k 6 �ky � zk,

hold for any y, z 2 N(x⇤, r). Let {x(k)} be the sequence generated by the MSPIN

method such that x(k) ! x⇤. If ⌘k ! 0, then x(k+1) = x(k) � d(k) for all su�ciently

large k.

Lemma 24 implies that under reasonable conditions on rf(x) and r2f(x), the

112

while-loop in step 3 of Algorithm 8 is not executed and �(k) = 1 is acceptable when

k is su�ciently large.

Under the conditions of (c) in Assumption 20, the following Lemma shows that

J (x) and Ĵ (x) are Lipschitz continuous in a neighborhood of x⇤.

Lemma 25. Let F (x) be twice continuously di↵erentiable in N(x⇤, r), and J (x) and

Ĵ (x) are defined in (6.29) and (6.34), respectively. Then there is a neighbrhood

V ⇢ N(x⇤, r
2

) of the exact solution x⇤ such that both J (x) and Ĵ (x) are Lipschitz

continuous in V .

Proof. In the neighborhood N(x⇤, r
2

), F 00(x), T 0
i (x), L(x)

�1 and EiJ(x) are continuous

, and then we define

M
1

:= supx2N(x⇤, r
2

)

kF 00(x)k, M
2

:= max
i

sup
x2N(x⇤, r

2

)

kT̃ 0
i (x)k,

M
3

:= supx2N(x⇤, r
2

)

kL(x)�1k, M
4

:= max
i

sup
x2N(x⇤, r

2

)

kEiJ(x)k,

where Ei is defined in (6.7), T̃i 2 Rn is defined in (6.14) and T̃ 0
i (x) =

Pi
k=1

RT
k T

0
k(x).

For any x, y 2 N(x⇤, r
2

), by Lemma 3.3.5 and Lemma 3.2.3 in [54], we have

kJ(x)� J(y)k 6 sup
06t61

kF 00(x+ t(y � x)kkx� yk 6 M
1

kx� yk, (6.64)

kT̃i(x)� T̃i(y)k 6 sup
06t61

kT̃ 0
i (x+ t(y � x)kkx� yk 6 M

2

kx� yk, (6.65)

where i = 1, 2, . . . , N . By (6.64) and since L(x) is a lower triangular matrix, we have

kL(x)� L(y)k 6 max
i
kEi(J(x)� J(y))Eik 6 kJ(x)� J(y)k 6 M

1

kx� yk. (6.66)

Since Ti(x) is continuous and T̃i(x) =
Pi

k=1

RT
k Tk(x), then x� T̃i(x)! x⇤ as x! x⇤,

and hence there exists a neighborhood Vi ⇢ N(x⇤, r
2

) such that x� T̃i(x) 2 N(x⇤, r
2

),

for any x 2 Vi, i = 1, 2 . . . , N . We set V =
TN

i=1

Vi ⇢ N(x⇤, r
2

). For any x, y 2 V and

113

for each i, by (6.64) and (6.65), it follows that

kJ(x� T̃i(x))� J(y � T̃i(y))k 6 M
1

k(x� y)� (T̃i(x)� T̃i(y))k

6 M
1

(1 +M
2

)kx� yk. (6.67)

In a similar way, we have

kL(x� T̃i(x))� L(y � T̃i(y))k 6 M
1

(1 +M
2

)kx� yk, (6.68)

where i = 1, 2, . . . , N .

By setting

L̂(x) = L(x� T̃N(x)), Bi(x) = EiJ(x� T̃i(x)), i = 1, 2, . . . , N, (6.69)

we recast (6.29) as

J (x) = L(x� T̃N(x))
�1

NX

i=1

EiJ(x� T̃i(x)) =
NX

i=1

Ji(x), (6.70)

where Ji(x) = L̂(x)�1Bi(x). Using (6.67) and (6.68), for any x, y 2 V , we have

kJi(x)� Ji(y)k = kL̂(x)�1Bi(x)� L̂(y)�1Bi(y)k

6 kL̂(x)�1Bi(x)� L̂(x)�1Bi(y)k

+kL̂(x)�1Bi(y)� L̂(y)�1Bi(y)k (6.71)

6 kL̂(x)�1kkBi(x)� Bi(y)k

+kL̂(x)�1kkL̂(x)� L̂(y)kkL̂(y)�1kkBi(y)k

6 M
3

M
1

(1 +M
2

)kx� yk+M2

3

M
1

(1 +M
2

)M
4

kx� yk

= M
1

M
3

(1 +M
2

)(1 +M
3

M
4

)kx� yk.

114

Thus,

kJ (x)� J (y)k = k
NX

i=1

Ji(x)�
NX

i=1

Ji(y)k 6
NX

i=1

kJi(x)� Ji(y)k

6 NM
1

M
3

(1 +M
2

)(1 +M
3

M
4

)kx� yk, (6.72)

which shows that J (x) is Lipschitz continuous in V .

We recast (6.34) as

Ĵ (x) = L(x� T̃N�1

(x))�1J(x� T̃N�1

(x)) =
NX

i=1

Ĵi(x), (6.73)

where Ĵi(x) = L(x� T̃N�1

(x))�1EiJ(x� T̃N�1

(x)). Similarly to (6.71), we can prove

that

kĴ (x)� Ĵ (y)k 6 NM
1

M
3

(1 +M
2

)(1 +M
3

M
4

)kx� yk, (6.74)

for any x, y 2 V . Therefore, Ĵ (x) is also Lipschitz continuous in V .

Theorem 26. Let F (x) and f(x) be twice continuously di↵erentiable in N(x⇤, r),

and there exists a constant C > 0 such that

krf(x)�rf(y)k 6 Ckx� yk, kr2f(x)�r2f(y)k 6 Ckx� yk, (6.75)

for any x, y 2 N(x⇤, r). Consider a sequence {x(k)} generated by the MSPIN method

such that x(k) ! x⇤, and then

(i) If ⌘k ! 0, x(k) ! x⇤ superlinearly ;

(ii) If ⌘k = O(kF(x(k))k), x(k) ! x⇤ quadratically .

115

Proof. According to Lemma 24, we have

x(k+1) = x(k) � d(k), (6.76)

where kF(x(k)) � Ĵ (x(k))d(k)k  ⌘kkF(x(k))k, if ⌘k ! 0 for all the su�cient large k.

By Lemma 25, there exists a � > 0 and a neighbrhood V ⇢ N(x⇤, r
2

) such that J (x)

and Ĵ (x) are Lipschitz continuous with Lipschitz constant � in V .

Let k be large enough such that x(k), x⇤ + t(x(k)� x⇤) 2 V and (6.76) hold. Then

we obtain

kĴ (x(k))� J (x⇤ + t(x(k) � x⇤))k

6 kĴ (x(k))� Ĵ (x⇤)k+ kJ (x⇤)� J (x⇤ + t(x(k) � x⇤))k (6.77)

6 �(1 + t)kx(k) � x⇤k, t 2 [0, 1].

The mean value theorem shows that

F(x(k)) = F(x(k))� F(x⇤) =

✓Z
1

0

J (x⇤ + t(x(k) � x⇤))dt

◆
(x(k) � x⇤). (6.78)

Note that kĴ (x(k))�1k 6 2K because x(k) 2 N(x⇤, r). Using (6.77) and (6.78),

kx(k) � x⇤ � Ĵ (x(k))�1F(x(k))k

6 kĴ (x(k))�1k
✓Z

1

0

kĴ (x(k))� J (x⇤ + t(x(k) � x⇤))kdt
◆
k(x(k) � x⇤)k(6.79)

6 3�Kk(x(k) � x⇤)k2.

From (6.78), it holds from (c
2

) in Assumption 20 that

kF(x(k))k 6
✓Z

1

0

kJ (x⇤ + t(x(k) � x⇤)kdt
◆
kx(k) � x⇤k 6 2Kkx(k) � x⇤k, (6.80)

116

and it follows that

kĴ (x(k))�1F(x(k))� d(k)k 6 kĴ (x(k))�1kkF(x(k))� Ĵ (x(k))d(k)k

6 ⌘kkĴ (x(k))�1kkF(x(k))k (6.81)

6 4⌘kK
2kx(k) � x⇤k.

Finally, we note that

x(k+1) � x⇤ = (x(k) � x⇤) + (x(k+1) � x(k))

= (x(k) � x⇤)� d(k)

=
⇣
x(k) � x⇤ � Ĵ (x(k))�1F(x(k))

⌘
+
⇣
Ĵ (x(k))�1F(x(k))� d(k)

⌘
, (6.82)

and then we use (6.79) and (6.81) to conclude

kx(k+1) � x⇤k 6 3�Kkx(k) � x⇤k2 + 4⌘kK
2kx(k) � x⇤k, (6.83)

which completes the proof.

Theorem 26 implies that the choice of the forcing term ⌘k influences the conver-

gence rate of the MSPIN algorithm. The Newton iteration can achieve superlinear or

even quadratic rates of convergence by appropriately choosing ⌘k.

6.4 An Illustration

In this section, a simple example illustrates that the conditions (c
1

)-(c
5

) in Assump-

tion 20 are not unreasonably strict. The following lemma is required in the later

discussion.

117

Lemma 27.

1 + x < ex < 1 + 3x, x 2 (0, 1), (6.84)

ex 6 1 +
1

2
x, x 2 (�1, 0], (6.85)

|ex � 1| 6 e|x| � 1. (6.86)

Proof. The first two inequalities (6.84) and (6.85) is easy, and we prove the last one

here. The inequality (6.86) is trivially satisfied when x > 0. Let g(x) = ex + e�x, for

x 6 0, and we have ex 6 e�x and g0(x) < 0 (x < 0), which implies that g(x) > g(0) =

2. Therefore, it holds that

�(e|x| � 1) = 1� e�x 6 ex � 1 < e�x � 1 = e|x| � 1, x < 0.

In summary, for any real number x, (6.86) always holds.

Consider the system F (x) of two nonlinear equations in two unknowns,

F
1

(x
1

, x
2

) = (x
1

� x3

2

� 1)3 � x3

2

,

F
2

(x
1

, x
2

) = x
1

+ 2µex2 � 1� 2µ,

where µ 2 (0, 1). It is easy to verify that x⇤ = [1, 0]T is a solution of this system. The

nonlinearly preconditioned system F(x) = [T
1

(x), T
2

(x)]T is obtained by solving

F
1

(x
1

� T
1

(x), x
2

) = (x
1

� T
1

(x)� x3

2

� 1)3 � x3

2

= 0,

F
2

(x
1

� T
1

(x), x
2

� T
2

) = x
1

� T
1

(x) + 2µex2

�T
2

(x) � 1� 2µ = 0,

from which we get

x
1

� T
1

(x)� x3

2

� 1 = x
2

, (6.87)

118

and it follows that

F
2

(x
1

� T
1

(x), x
2

� T
2

(x)) = x3

2

+ x
2

� 2µ+ 2µex2

�T
2

(x) = 0. (6.88)

Thus, we obtain

F 0(x) = J (x) =

2

64
1 �3x2

2

� 1

0 1 + 1

2µ
(3x2

2

+ 1)e�(x
2

�T
2

(x))

3

75 , (6.89)

and

Ĵ (x) =

2

64
1 �3x2

2

� 1

0 1 + 1

2µ
(3x2

2

+ 1)e�x
2

3

75 . (6.90)

Moreover,

J (x⇤) = Ĵ (x⇤) =

2

64
1 �1

0 1 + 1

2µ

3

75 , (6.91)

and

K = max{kJ (x⇤)k, kJ (x⇤)�1k} = 1 +
1

2µ
.

Besides, it is easily verified the continuity of L(x)�1, J (x), Ĵ (x), J (x)�1 and Ĵ (x)�1.

Let r 2 (0, µ
3

) and we assume that x = [x
1

, x
2

]T 2 N(x⇤, r), i.e.,

(x
1

� 1)2 + x2

2

6 r2, (6.92)

which implies that |x
2

| 6 r. Using (6.84) and (6.88), it holds that

e�x
2 6 e|x2

| 6 er < e
µ

3 < 1 + µ < 2,

3x2

2

+ 1 6 3r2 + 1 < 3(
µ

3
)2 + 1 <

1

3
µ2 + 1,

1

2µ
e�(x

2

�T
2

(x)) =
1

2µ� x3

2

� x
2

<
1

2µ� r3 � r
<

1

µ+ (µ� 2r)
<

1

µ
,

119

and it follows that

kĴ (x)k = 1 +
1

2µ
(3x2

2

+ 1)e�x
2 6 1 +

1

µ
(
1

3
µ2 + 1) < 2 +

1

µ
= 2K,

kJ (x)k = 1 +
1

2µ
(3x2

2

+ 1)e�(x
2

�T
2

(x)) 6 1 +
1

µ
(
1

3
µ2 + 1) < 2 +

1

µ
= 2K.

Note that

kJ (x)�1k = 1 6 2K, kĴ (x)�1k = 1 6 2K. 8 x 2 N(x⇤, r). (6.93)

Since

| 1
2µ

(x3

2

+ x
2

)| 6 1

2µ
(r3 + r) 6 r

µ
<

1

3
, r 2 (0,

µ

3
), (6.94)

by (6.88), it holds that

e�1 < 1� 1

3
< ex2

�T
2

(x) = 1� 1

2µ
(x3

2

+ x
2

) < 1 +
1

3
< e, (6.95)

which implies that |x
2

� T
2

(x)| < 1. From (6.84), (6.85) and (6.95), we have

x
2

� T
2

(x) < � 1

2µ
(x3

2

+ x
2

) 6 1

2µ
(|x

2

|3 + |x
2

|), if x
2

� T
2

(x) > 0, (6.96)

� 1

µ
(|x

2

|3 + |x
2

|) 6 � 1

µ
(x3

2

+ x
2

) 6 x
2

� T
2

, if x
2

� T
2

(x) 6 0. (6.97)

Hence,

|x
2

� T
2

(x)| 6 1

µ
(|x

2

|2 + 1)|x
2

| 6 1

µ
(r + 1)|x

2

| < (
1

3
+

1

µ
)|x

2

|,

and then we have

|T
2

(x)| 6 |x
2

� T
2

(x)| + |x
2

| < (
4

3
+

1

µ
)r <

4

9
µ+

1

3
< 1, r 2 (0,

µ

3
). (6.98)

120

According to (6.84), (6.86) and (6.98), we have

kJ (x)� Ĵ (x)k =
1

2µ
(3x2

2

+ 1)e�x
2 |eT2

(x) � 1|

6 1

2µ
(
1

3
µ2 + 1)er(e|T2

(x)| � 1)

6 1

2µ
(
1

3
+ 1)er(3|T

2

(x)|)

6 2er

3µ
[3(

4

3
+

1

µ
)r] 6 2er

µ
(
4

3
+

1

µ
).

It is seen that the condition (c
4

) is satisfied when

r 6 µ(1� ⌘
max

)

8eK(4
3

+ 1

µ
)(1 + ⌘

max

)
=

µ(1� ⌘
max

)

4e(2 + 1

µ
)(4

3

+ 1

µ
)(1 + ⌘

max

)
, (6.99)

and then it is noted that

µ(1� ⌘
max

)

8eK(4
3

+ 1

µ
)(1 + ⌘

max

)
6 µ

8eK(4
3

+ 1

µ
)
=

3µ2

8eK(4µ+ 3)
6 µ2

8eK
<

µ2

3K
<

µ

3
. (6.100)

From (6.88) and (6.89), we have

J (x) =

2

64
1 �3x2

2

� 1

0 1 + 1

2µ

3x2

2

+1

1� 1

2µ

(x3

2

+x
2

)

3

75 , (6.101)

and it follows that

kJ (x⇤ + t(x� x⇤))� J (x⇤)k = 1

2µ

�����
3(tx

2

)2 + 1

1� 1

2µ
((tx

2

)3 + (tx
2

))
� 1

����� , t 2 [0, 1]. (6.102)

Note that K = 1+ 1

2µ
> 1, µ 2 (0, 1) and |x

2

| < r. Let 0 < r 6 µ2

3K
< µ

3

< 1, we have

����
1

2µ
((tx

2

)3 + (tx
2

))

���� 6
1

2µ
(|x

2

|3 + |x
2

|) 6 1

2µ
(r3 + r) 6 r

µ
6 µ

3K
< 1, (6.103)

121

and then it holds that

� µ

µ+ 3K
=

1

1 + µ
3K

� 1 6 3(tx
2

)2 + 1

1� 1

2µ
((tx

2

)3 + (tx
2

))
� 1, (6.104)

3(tx
2

)2 + 1

1� 1

2µ
((tx

2

)3 + (tx
2

))
� 1 6 3r2 + 1

1� µ
3K

� 1 6 µr + 1

1� µ
3K

� 1. (6.105)

From (6.102), (6.104), and (6.105), we have

sup
06t61

kJ (x⇤ + t(x� x⇤))� J (x⇤)k 6 max{ 1

2(µ+ 3K)
,
1

2µ
(
µr + 1

1� µ
3K

� 1)}. (6.106)

According to the mean value theorem, we have

kF(x)� F(x⇤)� J (x⇤)(x� x⇤)k

= k
✓Z

1

0

(J (x⇤ + t(x� x⇤))� J (x⇤))dt

◆
(x� x⇤)k

6 sup
06t61

kJ (x⇤ + t(x� x⇤))� J (x⇤)kkx� x⇤k.

Therefore, it is seen that the condition (c
5

) is satisfied when

1

2µ
(
µr + 1

1� µ
3K

� 1) 6 1

2K
, (6.107)

from which we obtain

r 6 1

3K
(2� µ

K
). (6.108)

It is easily verified that
µ2

3K
6 1

3K
(2� µ

K
), (6.109)

because µ2 + µ
K

= µ2 + µ

1+

1

2µ

6 2µ 6 2.

Using (6.99), (6.100), (6.108) and (6.109), to sum up, the assumptions (c
1

)-(c
5

)

122

hold for any x 2 N(x⇤, r), where r satisfies the following inequality

r 6 µ(1� ⌘
max

)

4e(2 + 1

µ
)(4

3

+ 1

µ
)(1 + ⌘

max

)
. (6.110)

123

Chapter 7

Conclusion and Future Work

We present nonlinearly preconditioned inexact Newton methods with physics-based

field-split partitioning and extend the existing theory for existence and uniqueness

for monotone nonlinear systems in a straightforward way to the Gauss-Seidel version.

MSPIN is typically employed to generate a relatively small number of sequential

subproblems involving nonintersecting subsets of the original unknowns, whereas the

classical ASPIN in [28] is typically employed to generate a large number of concurrent

subproblems whose unknowns overlap as induced by subdomain geometry; however,

there is nothing fundamental in the algebra that so restricts the respective flavors.

Numerical results illustrate that the nonlinear preconditioners are e↵ective in improv-

ing on the performance of the global Newton iterations. In all of our examples, the

MSPIN algorithm is more robust than ASPIN.

Field splitting is an option that can be combined with domain-splitting. As il-

lustrated, the former is often useful for coarse granularity where intuition can play

a role in problem decomposition. The latter is readily extensible to fine granularity,

particularly in weak parallel scaling. A combination of the two may be natural for

large-scale simulations with natural partitions between the models. Even though the

domain-based ASPIN is robust for some problems [28, 36, 37], local subproblems may

still fail to converge due to unbalanced nonlinearities or the lack of a good initial guess

[45]. The field-split algorithms provide additional options.

124

The MSPIN algorithm [50] was introduced as a physics-based field-split method

to cope with “nonlinear sti↵ness,” however, until now the convergence of MSPIN

has not been discussed and no theory predicts even local convergence rates. In this

dissertation, we provide the MSPIN algorithm with a local convergence proof. Based

on local assumptions on F (x), it is shown that the preconditioned function F(x) is

continuously di↵erentiable, and we obtain the Jacobian of the transformed system

F 0(x) in a more intuitive way than previously. Under some reasonable assumptions,

we discuss the local convergence property and the convergence rate. Customarily

desired superlinear or even quadratic convergence can be obtained when the forcing

terms ⌘k are picked suitably.

Finally, there remains much future work for the MSPIN algorithm. Picking the

suitable components and the corresponding subproblems is not trivial; di↵erent group-

ings and di↵erent orderings play an important role in the quality of the nonlinear

preconditioning, however, there is not yet theory to show how to determine a good

ordering or even good partitions for physical fields. Moreover, the Jacobian of the

preconditioned system is expressible only in the form of matvecs and it therefore a

challenge to precondition further. The linear systems for the Newton corrections of

the nonlinearly Schwarz-preconditioned forms of the rootfinding problem have the

same left-hand sides as the linearly Schwarz-preconditioned forms of the problem in

its original coordinates. (Only the right-hand sides are di↵erent, and this is, of course,

essential to the nonlinear convergence improvement o↵ered by ASPIN and MSPIN.)

In parabolic contexts, such one-level Schwarz preconditioning of the linear Newton

correction problems is known to be su�cient for convergence independent of mesh pa-

rameters and decomposition granularity. However, in elliptic contexts, such one-level

Schwarz preconditioning does not provide convergence scalability in either strong or

weak scaling. Therefore, multilevel forms of additive and multiplicative nonlinear

preconditioning are ripe for exploration.

125

REFERENCES

[1] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton–Krylov methods: a survey

of approaches and applications,” J. Comput. Phys., vol. 193, no. 2, pp. 357–397,

2004.

[2] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. SIAM, Philadelphia, 1996.

[3] P. Brune, M. G. Knepley, B. F. Smith, and X. Tu, “Composing scalable non-

linear algebraic solvers,” Argonne National Laboratory, Preprint ANL/MCS-

P2010-0112, 2013.

[4] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,”

Comput. J., vol. 7, no. 2, pp. 149–154, 1964.

[5] C. W. Oosterlee and T. Washio, “Krylov subspace acceleration of nonlin-

ear multigrid with application to recirculating flows,” SIAM J. Sci. Comput.,

vol. 21, no. 5, pp. 1670–1690, 2000.

[6] D. G. Anderson, “Iterative procedures for nonlinear integral equations,” J. As-

soc. Comput. Mach., vol. 12, no. 4, pp. 547–560, 1965.

[7] A. Toth and C. T. Kelley, “Convergence analysis for Anderson acceleration,”

SIAM J. Numer. Anal., vol. 53, no. 2, pp. 805–819, 2015.

[8] M. Dryja and W. Hackbusch, “On the nonlinear domain decomposition

method,” BIT, vol. 37, no. 2, pp. 296–311, 1997.

[9] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math.

Comp., vol. 31, no. 138, pp. 333–390, 1977.

126

[10] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of quasi-Newton

matrices and their use in limited memory methods,” Math. Programming,

vol. 63, no. 1-3, pp. 129–156, 1994.

[11] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM,

Philadelphia, 1995.

[12] H.-R. Fang and Y. Saad, “Two classes of multisecant methods for nonlinear

acceleration,” Numer. Linear Algebra Appl., vol. 16, no. 3, pp. 197–221, 2009.

[13] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young, “Parallel

Newton-Krylov-Schwarz algorithms for the transonic full potential equation,”

SIAM J. Sci. Comput., vol. 19, no. 1, pp. 246–265, 1998.

[14] D. A. Knoll, P. R. McHugh, and V. A. Mousseau, “Newton-Krylov-Schwarz

methods applied to the tokamak edge plasma fluid equations,” in Domain-

Based Parallelism and Problem Decomposition in Computational Science and

Engineering. SIAM, Philadelphia, 1995, pp. 75–96.

[15] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, “Newton-Krylov-

Schwarz methods in CFD,” in Proceedings of an International Workshop on

Numerical Methods for the Navier-Stokes Equations, F. Hebeker and R. Ran-

nacher, eds., Notes on Numerical Fluid Mechanics, vol. 47. Vieweg-Verlag,

Braunschweig, Germany, 1994, pp. 17–30.

[16] M. Munteanu, L. F. Pavarino, and S. Scacchi, “A scalable Newton-Krylov-

Schwarz method for the bidomain reaction-di↵usion system,” SIAM J. Sci.

Comput., vol. 31, no. 5, pp. 3861–3883, 2009.

[17] X.-C. Cai, D. E. Keyes, and L. Marcinkowski, “Nonlinear additive Schwarz pre-

conditioners and application in computational fluid dynamics,” Int. J. Numer.

Meth. Fluids, vol. 40, no. 12, pp. 1463–1470, 2002.

[18] J. Nocedal and S. Wright, Numerical Optimization. Second Edition, Springer-

Verlag, New York, 2006.

127

[19] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. SIAM,

Philadelphia, 2000, vol. 1.

[20] M. D. Smooke and R. M. Mattheij, “On the solution of nonlinear two-point

boundary value problems on successively refined grids,” Appl. Numer. Math.,

vol. 1, no. 6, pp. 463–487, 1985.

[21] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant,

and J. E. Bussoletti, “A locally refined rectangular grid finite element method:

application to computational fluid dynamics and computational physics,” J.

Comput. Phys., vol. 92, no. 1, pp. 1–66, 1991.

[22] T. S. Co↵ey, C. T. Kelley, and D. E. Keyes, “Pseudotransient continuation

and di↵erential-algebraic equations,” SIAM J. Sci. Comput., vol. 25, no. 2, pp.

553–569, 2003.

[23] C. T. Kelley and D. E. Keyes, “Convergence analysis of pseudo-transient con-

tinuation,” SIAM J. Numer. Anal., vol. 35, no. 2, pp. 508–523, 1998.

[24] P. J. Lanzkron, D. J. Rose, and J. T. Wilkes, “An analysis of approximate

nonlinear elimination,” SIAM J. Sci. Comput., vol. 17, no. 2, pp. 538–559,

1996.

[25] X.-C. Cai and X.-F. Li, “Inexact Newton methods with restricted additive

Schwarz based nonlinear elimination for problems with high local nonlinear-

ity,” SIAM J. Sci. Comput., vol. 33, no. 2, pp. 746–762, 2011.

[26] F.-N. Hwang, Y.-C. Su, and X.-C. Cai, “A parallel adaptive nonlinear elimina-

tion preconditioned inexact Newton method for transonic full potential equa-

tion,” Comput. Fluids, vol. 110, pp. 96–107, 2015.

[27] F.-N. Hwang, H.-L. Lin, and X.-C. Cai, “Two-level nonlinear elimination based

preconditioners for inexact Newton methods with application in shocked duct

flow calculation,” ETNA, vol. 37, pp. 239–251, 2010.

[28] X.-C. Cai and D. E. Keyes, “Nonlinearly preconditioned inexact Newton algo-

rithms,” SIAM J. Sci. Comput., vol. 24, no. 1, pp. 183–200, 2002.

128

[29] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,

J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans,

C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. M. Jiao,

K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. M. Lu,

J. Magerlein, R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski, A. P. Ran-

dles, D. Reynolds, B. Rivière, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan,

M. Shephard, A. Siegel, B. Smith, X.-Z. Tang, C. Wilson, and B. Wohlmuth,

“Multiphysics simulations challenges and opportunities,” Int. J. High. Perform.

Comput. Appl., vol. 27, no. 1, pp. 4–83, 2013.

[30] P.-L. Lions, “On the Schwarz alternating method. I,” in First international

symposium on domain decomposition methods for partial di↵erential equations,

Paris, France. SIAM, Philadelphia, 1988, pp. 1–42.

[31] X.-C. Tai and M. Espedal, “Rate of convergence of some space decomposition

methods for linear and nonlinear problems,” SIAM J. Numer. Anal., vol. 35,

no. 4, pp. 1558–1570, 1998.

[32] S. H. Lui, “On Schwarz alternating methods for the incompressible Navier–

Stokes equations,” SIAM J. Sci. Comput., vol. 22, no. 6, pp. 1974–1986, 2001.

[33] B. F. Smith, P. Bjorstad, and W. D. Gropp, Domain decomposition: parallel

multilevel methods for elliptic partial di↵erential equations. Cambridge Uni-

versity Press, 2004.

[34] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, K. Buschel-

man, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,

K. Rupp, B. F. Smith, and H. Zhang, “The Portable, Extensible Toolkit

for Scientific Computing, code and documentation,” 2014, available from

http://www.mcs.anl.gov/petsc.

[35] L. Marcinkowski and X.-C. Cai, “Parallel performance of some two-level ASPIN

algorithms,” in Lecture Notes in Computational Science and Engineering, ed.

R. Kornhuber, R. H. W. Hoppe, D. E. Keyes, J. Periaux, O. Pironneau and J.

Xu, vol. 40. Springer-Verlag, Heidelberg, 2005, pp. 639–646.

129

[36] X.-C. Cai, D. E. Keyes, and D. P. Young, “A nonlinear additive Schwarz pre-

conditioned inexact Newton method for shocked duct flow,” in Proceedings of

the 13th International Conference on Domain Decomposition Methods, Lyon,

France. ddm.org, 2000, pp. 343–350.

[37] F.-N. Hwang and X.-C. Cai, “A parallel nonlinear additive Schwarz precondi-

tioned inexact Newton algorithm for incompressible Navier–Stokes equations,”

J. Comput. Phys., vol. 204, no. 2, pp. 666–691, 2005.

[38] F. N. Hwang and X. C. Cai, “Improving robustness and parallel scalability of

Newton method through nonlinear preconditioning,” in Domain Decomposition

Methods in Science and Engineering, the 15th International Conference on Do-

main Decomposition Methods, Berlin, Germany. ddm.org, 2004, pp. 201–208.

[39] F.-N. Hwang and X.-C. Cai, “A class of parallel two-level nonlinear Schwarz

preconditioned inexact Newton algorithms,” Comput. Methods Appl. Mech. En-

grg., vol. 196, no. 8, pp. 1603–1611, 2007.

[40] J. O. Skogestad, E. Keilegavlen, and J. M. Nordbotten, “Domain decomposition

strategies for nonlinear flow problems in porous media,” J. Comput. Phys., pp.

439–451, 2013.

[41] F.-N. Hwang and X.-C. Cai, “A combined linear and nonlinear precondition-

ing technique for incompressible Navier-Stokes equations,” ed. J. Dongarra, K.

Madsen, and J. Wasniewski. Springer-Verlag, Heidelberg, 2006, pp. 313–322.

[42] F.-N. Hwang, “Some parallel linear and nonlinear Schwarz methods with ap-

plications in computational fluid dynamics,” Ph.D. dissertation, University of

Colorado at Boulder, Boulder, CO, USA, 2004, aAI3153838.

[43] X.-C. Cai, L. Marcinkowski, and P. S. Vassilevski, “An element agglomeration

nonlinear additive Schwarz preconditioned Newton method for unstructured

finite element problems,” Appl. Math., vol. 50, no. 3, pp. 247–275, 2005.

[44] H.-B. An, “On convergence of the additive Schwarz preconditioned inexact New-

ton method,” SIAM J. Numer. Anal., vol. 43, no. 5, pp. 1850–1871, 2005.

130

[45] S. H. Lui, “Nonlinearly preconditioned Newton’s method,” in Proceedings of the

14th International Conference on Domain Decomposition Methods, Cocoyoc,

Mexico. ddm.org, 2002, pp. 95–105.

[46] C. Groß and R. Krause, “On the Globalization of ASPIN employing Trust-

Region Control Strategies - Convergence Analysis and Numerical Examples,”

Instuitute of Computational Science, Universita della Svizzera italiana, Tech.

Rep. 2011-03, 2011.

[47] ——, “A new Class of Non–linear Additively Preconditioned Trust–Region

Strategies: Convergence Results and Applications to Non-linear Mechanics,” In-

stitute for Numerical Simulation, University of Bonn, INS preprint 904, March

2009, submitted to Math. Comput., under review.

[48] ——, “A Generalized Recursive Trust-Region Approach - Nonlinear Multiplica-

tively Preconditioned Trust-Region Methods and Applications,” Institute of

Computational Science, Universita della Svizzera italiana, Tech. Rep. 2010-09,

March 2010.

[49] L.-L. Liu, D. E. Keyes, and S.-Y. Sun, “Fully implicit two-phase reservoir sim-

ulation with the additive Schwarz preconditioned inexact Newton method,”

in SPE Reservoir Characterisation and Simulation Conference and Exhibition.

www.onepetro.org, Sep 16 - 18, 2013, DOI: 10.2118/166062-MS.

[50] L. Liu and D. E. Keyes, “Field-split preconditioned inexact Newton algorithms,”

SIAM J. Sci. Comput., vol. 37, no. 3, pp. A1388–A1409, 2015.

[51] ——, “Convergence analysis for the multiplicative Schwarz preconditioned in-

exact Newton algorithm,” submitted to SIAM J. Numer. Anal.

[52] S. C. Eisenstat and H. F. Walker, “Globally convergent inexact Newton meth-

ods,” SIAM J. Optim., vol. 4, no. 2, pp. 393–422, 1994.

[53] M. Pernice and H. F. Walker, “NITSOL: A Newton iterative solver for nonlinear

systems,” SIAM J. Sci. Comput., vol. 19, no. 1, pp. 302–318, 1998.

131

[54] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables. SIAM, Philadelphia, 2000.

[55] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton methods,”

SIAM J. Numer. Anal., vol. 19, no. 2, pp. 400–408, 1982.

[56] P. N. Brown and Y. Saad, “Hybrid Krylov methods for nonlinear systems of

equations,” SIAM J. Sci. Stat. Comput., vol. 11, no. 3, pp. 450–481, 1990.

[57] ——, “Convergence theory of nonlinear Newton-Krylov algorithms,” SIAM J.

Optim., vol. 4, no. 2, pp. 297–330, 1994.

[58] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 7,

no. 3, pp. 856–869, 1986.

[59] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,

2003.

[60] H.-B. An, Z.-Y. Mo, and X.-P. Liu, “A choice of forcing terms in inexact Newton

method,” J. Comput. Appl. Math., vol. 200, no. 1, pp. 47–60, 2007.

[61] M. A. Gomes-Ruggiero, V. L. R. Lopes, and J. V. Toledo-Benavides, “A globally

convergent inexact Newton method with a new choice for the forcing term,”

Annals of Operations Research, vol. 157, no. 1, pp. 193–205, 2008.

[62] S. C. Eisenstat and H. F. Walker, “Choosing the forcing terms in an inexact

Newton method,” SIAM J. Sci. Comput., vol. 17, no. 1, pp. 16–32, 1996.

[63] R. P. Pawlowski, J. P. Simonis, H. F. Walker, and J. N. Shadid, “Inexact Newton

dogleg methods,” SIAM J. Numer. Anal., vol. 46, no. 4, pp. 2112–2132, 2008.

[64] M. J. D. Powell, “A hybrid method for nonlinear equations,” in Numerical

methods for nonlinear algebraic equations, vol. 7. P. Rabinowitz, ed., Gordon

and Breach, London, 1970, pp. 87–114.

132

[65] T. F. Coleman and J. J. Moré, “Estimation of sparse Jacobian matrices and

graph coloring problems,” SIAM J. Numer. Anal., vol. 20, no. 1, pp. 187–209,

1983.

[66] P. Hovland, B. Norris, and B. Smith, “Making automatic di↵erentiation truly

automatic: coupling PETSc with ADIC,” Future Gener. Comput. Sy., vol. 21,

no. 8, pp. 1426–1438, 2005.

[67] C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer, “ADIFOR

2.0 user’s guide (Revision d),” Argonne National Laboratory, Tech. Rep.

ANL/MCS-TM-192.

[68] M. Hayek, E. Mouche, and C. Mügler, “Modeling vertical stratification of CO
2

injected into a deep layered aquifer,” Adv. Water Resour., vol. 32, no. 3, pp.

450–462, 2009.

[69] P. Jenny, S. H. Lee, and H. A. Tchelepi, “Adaptive fully implicit multi-

scale finite-volume method for multi-phase flow and transport in heterogeneous

porous media,” J. Comput. Phys., vol. 217, no. 2, pp. 627–641, 2006.

[70] J. Douglas, Jr., F. Furtado, and F. Pereira, “On the numerical simulation of

waterflooding of heterogeneous petroleum reservoirs,” Comput. Geosci., vol. 1,

no. 2, pp. 155–190, 1997.

[71] Z. Chen and R. E. Ewing, “Stability and convergence of a finite element method

for reactive transport in ground water,” SIAM J. Numer. Anal., vol. 34, no. 3,

pp. 881–904, 1997.

[72] P. Bastian and R. Helmig, “E�cient fully-coupled solution techniques for two-

phase flow in porous media: Parallel multigrid solution and large scale compu-

tations,” Adv. Water Resour., vol. 23, no. 3, pp. 199–216, 1999.

[73] U. T. Mello, J. R. P. Rodrigues, and A. L. Rossa, “A control-volume finite-

element method for three-dimensional multiphase basin modeling,” Mar. Pet.

Geol., vol. 26, no. 4, pp. 504–518, 2009.

133

[74] Z. Chen, G. Huan, and Y. Ma, Computational methods for multiphase flows in

porous media. SIAM, Philadelphia, 2006, vol. 2.

[75] F. Kwok and H. A. Tchelepi, “Potential-based reduced Newton algorithm for

nonlinear multiphase flow in porous media,” J. Comput. Phys., vol. 227, no. 1,

pp. 706–727, 2007.

[76] C. N. Dawson, H. Klie, M. F. Wheeler, and C. S. Woodward, “A parallel, im-

plicit, cell-centered method for two-phase flow with a preconditioned Newton–

Krylov solver,” Comp. Geosci., vol. 1, no. 3-4, pp. 215–249, 1997.

[77] H. Klie, M. Rame, and M. Wheeler, “Two-stage preconditions for inexact New-

ton methods in multi-phase reservoir simulation,” Tech.Rep.CRPC-TR96641,

1996.

[78] D. W. Peaceman, Fundamentals of numerical reservoir simulation. Elsevier,

1977, vol. 6.

[79] M. A. Theodoropoulou, V. Sygouni, V. Karoutsos, and C. D. Tsakiroglou, “Rel-

ative permeability and capillary pressure functions of porous media as related

to the displacement growth pattern,” Int. J. Multiphas. Flow., vol. 31, no. 10,

pp. 1155–1180, 2005.

[80] R. Brooks and A. Corey, “Hydraulic properties of porous media,” Hydrology

Papers, Civil Engineering Department, Colorado State University, Fort Collins,

CO., 1964.

[81] Y. Yortsos and J. Chang, “Capillary e↵ects in steady-state flow in heterogeneous

cores,” Transp. Porous Media, vol. 5, no. 4, pp. 399–420, 1990.

[82] H. A. Friis and S. Evje, “Numerical treatment of two-phase flow in capillary

heterogeneous porous media by finite-volume approximations,” Int. J. Numer.

Anal. Model., vol. 9, no. 3, pp. 505–528, 2011.

[83] H. Hoteit and A. Firoozabadi, “Numerical modeling of two-phase flow in het-

erogeneous permeable media with di↵erent capillarity pressures,” Adv. Water.

Resour., vol. 31, no. 1, pp. 56–73, 2008.

134

[84] V. Ginting, R. Ewing, Y. Efendiev, and R. Lazarov, “Upscaled modeling in

multiphase flow applications,” Comput. Appl. Math., vol. 23, no. 2-3, pp. 213–

233, 2004.

[85] J. E. P. Monteagudo and A. Firoozabadi, “Comparison of fully implicit and IM-

PES formulations for simulation of water injection in fractured and unfractured

media,” Inter. J. Numer. Meth. Eng., vol. 69, no. 4, pp. 698–728, 2007.

[86] A. Negara, M. F. El-amin, and S. Sun, “Simulation of CO
2

plume in porous

media: consideration of capillarity and buoyancy e↵ects,” International Journal

of Numerical Analysis and Modeling, Series B, vol. 2, no. 4, pp. 315–337, 2011.

[87] S. Lacroix, Y. Vassilevski, J. Wheeler, and M. Wheeler, “Iterative solution

methods for modeling multiphase flow in porous media fully implicitly,” SIAM

J. Sci. Comput., vol. 25, no. 3, pp. 905–926, 2003.

[88] B. Lu, “Iteratively coupled reservoir simulation for multiphase flow in porous

media,” Ph.D. dissertation, University of Texas at Austin, 2008.

[89] B. Lu and M. F. Wheeler, “Iterative coupling reservoir simulation on high

performance computers,” Pet. Sci., vol. 6, no. 1, pp. 43–50, 2009.

[90] J. Kou and S. Sun, “A new treatment of capillarity to improve the stability

of IMPES two-phase flow formulation,” Comput. Fluids, vol. 39, no. 10, pp.

1923–1931, 2010.

[91] R. C. MacDonald and K. H. Coats, “Methods for numerical simulation of water

and gas coning,” Trans. SPE AIME., vol. 10, no. 04, pp. 425–436, 1970.

[92] J. S. Nolen and D. W. Berry, “Tests of the stability and time-step sensitivity

of semi-implicit reservoir stimulation techniques,” Trans. SPE AIME., vol. 12,

no. 03, pp. 253–266, 1972.

[93] G. W. Thomas and D. Thurnau, “Reservoir simulation using an adaptive im-

plicit method,” Soc. Pet. Eng. J., vol. 23, no. 05, pp. 759–768, 1983.

135

[94] P. A. Forsyth and P. H. Sammon, “Practical considerations for adaptive implicit

methods in reservoir simulation,” J. Comput. Phys., vol. 62, no. 2, pp. 265–281,

1986.

[95] Y. Brenier and J. Ja↵ré, “Upstream di↵erencing for multiphase flow in reservoir

simulation,” SIAM J. Numer. Anal., vol. 28, no. 3, pp. 685–696, 1991.

[96] K. A. Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and

B. Skaflestad, “Open-source MATLAB implementation of consistent discreti-

sations on complex grids,” Comp. Geosci., vol. 16, no. 2, pp. 297–322, 2012.

[97] J. E. Aarnes, T. Gimse, and K. A. Lie, “An introduction to the numerics of

flow in porous media using MATLAB,” in Geometric Modelling, Numerical

Simulation, and Optimization: Applied Mathematics at SINTEF. Springer,

2007, pp. 265–306.

[98] M. A. Christie and M. J. Blunt, “Tenth SPE comparative solution project: A

comparison of upscaling techniques,” in SPE Reser. Eval. Eng., vol. 4. Society

of Petroleum Engineers, 2001, pp. 308–317.

[99] X. S. L. and J. W. D., “SuperLU DIST: A scalable distributed-memory sparse

direct solver for unsymmetric linear systems,” ACM Trans. Math. Software,

vol. 29, no. 2, pp. 110–140, June 2003.

[100] J. E. P. Monteagudo and A. Firoozabadi, “Control-volume method for nu-

merical simulation of two-phase immiscible flow in two-and three-dimensional

discrete-fractured media,” Water. Resour. Res., vol. 40, no. 7, 2004, DOI:

10.1029/2003WR002996.

[101] X.-C. Cai and M. Dryja, “Domain decomposition methods for monotone non-

linear elliptic problems,” Contemp. Math., vol. 180, pp. 21–27, 1994.

[102] A. Granas and J. Dugundji, Fixed Point Theory. Springer, 2003.

[103] R. Ernst, B. Flemisch, and B. Wohlmuth, “A multiplicative Schwarz method

and its application to nonlinear acoustic-structure interaction,” ESAIM, Math.

Model. Numer. Anal., vol. 43, no. 3, pp. 487–506, 2009.

136

[104] C. Hirsch, Numerical Computation of Internal and External Flows. John Wiley

& Sons, New York, 1990.

[105] V. E. Henson and U. M. Yang, “BoomerAMG: A parallel algebraic multigrid

solver and preconditioner,” Appl. Numer. Math., vol. 41, no. 1, pp. 155–177,

2002.

[106] G. De Vahl Davis, “Natural convection of air in a square cavity: a bench mark

numerical solution,” Int. J. Numer. Methods Fluids, vol. 3, no. 3, pp. 249–264,

1983.

[107] C.-H. Zhang, W. Zhang, and G. Xi, “A pseudospectral multidomain method

for conjugate conduction-convection in enclosures,” Numer. Heat. Tr. B-FUND,

vol. 57, no. 4, pp. 260–282, 2010.

137

APPENDICES

A Papers Submitted and Under

Preparation

• L. Liu, D. E. Keyes, S. Sun, “Fully Implicit Two-phase Reservoir Simulation With

the Additive Schwarz Preconditioned Inexact Newton Method”, SPE Reservoir Char-

acterization and Simulation Conference and Exhibition (RCSC), 16-18 September

2013, Abu Dhabi, UAE. DOI: http://dx.doi.org/10.2118/166062-MS.

• L. Liu, D. E. Keyes, “Field-split Preconditioned Inexact Newton Algorithms”, SIAM

Journal on Scientific Computing, vol. 37, no. 3, pp. A1388-A1409, 2015.

• L. Liu, D. E. Keyes, “Convergence Analysis for the Multiplicative Schwarz Pre-

conditioned Inexact Newton Algorithm”, Submitted to SIAM Journal on Numerical

Analysis, 2015.

• L. Liu, D. E. Keyes. “Nonlinear Schwarz Preconditioning”, In preparation for the

Proceedings of the 23rd International Conference on Domain Decomposition Methods,

Springer Lecture Notes in Computational Science and Engineering, 2015.

	Examination Committee Approval
	Copyright
	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	An Overview of Nonlinear Solvers
	Nonlinear Preconditioning
	Background
	Development of Nonlinear Preconditioning

	Motivation and Objectives
	Organization of Dissertation

	Preliminaries
	Inexact Newton with Backtracking (INB)
	Differentiability
	PETSc

	Additive Schwarz Preconditioned Inexact Newton (ASPIN)
	Linear and Nonlinear Preconditioning
	Review of ASPIN
	Framework
	Some Analysis

	Numerical Simulation of the Two-phase Flow with ASPIN
	Basic Concepts
	Two-phase Flow Model
	Description of the Problem
	Relative Permeability and Capillary Pressure
	PVI
	Discretization

	Numerical Results
	Example 1 — Quarter Five-Spot Problem
	Example 2 — Layered Permeability
	Example 3 — Layer 26 From SPE10 Model 2

	Concluding Remarks

	Field-split Preconditioned Inexact Newton Algorithms
	Field-split Preconditioned Inexact Newton Algorithm
	Field-split ASPIN
	Field-split MSPIN

	Implementation of the Field-split ASPIN and MSPIN
	The Field-split ASPIN and MSPIN
	A Simple Example

	Some Analysis of the Field-split ASPIN and MSPIN
	Extension to Multicomponent for ASPIN and MSPIN
	Numerical Results
	Nonlinear Boundary Value Problem
	An ODE Coupled to an Algebraic System in 1D
	Driven Cavity Flow Problem

	Orderings and Groupings
	Driven Cavity Flow Problem
	Natural Convection Cavity Flow Problem

	Convergence Analysis for the MSPIN Algorithm
	MSPIN with Multiple Components
	Some Properties
	The MSPIN Framework

	Local Convergence
	Convergence Rate
	An Illustration

	Conclusion and Future Work
	References
	Appendices

