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Abstract

This master’s thesis project from the Department of Mathematics at KTH, Royal Institute of Technology,
Stockholm, Sweden was carried out at Saab Dynamics, Linköping, Sweden. In this thesis, an octocopter
was studied, which is a multirotor vehicle, a rotorcraft with more than two rotors. Multirotors have
recently become very popular and have various interesting applications needing further research. Since
the market for powerful credit-card-sized computers is continuously increasing, the development and
research of multirotors is simplified.

The main purpose of this thesis project was to develop a complete open-sourced octocopter including
control laws which should be used in future thesis projects at Saab Dynamics. Since the authors field
is within Applied Mathematics, this thesis report has focused on the theoretical and analytical part of
the project rather than the development process. Nevertheless, the report includes and gives a detailed
overview of the complete octocopter and its final configuration. In addition, the report features system
identifications which were carried out in order to estimate important properties of the vehicle.

In order to carry out mathematical analyses and propose control laws, a mathematical model of the
vehicle was required. Since the vehicle moves in 6DoF (six-degrees of freedom), a suitable coordinate
system handling these freedoms was needed. In this thesis, Euler angles and quaternions were used for
representing attitude. The complete nonlinear model was derived using Newton’s second law of motion
in a rotating reference frame. Additional effects such as aerodynamics, precession torques and motor
dynamics were analyzed and modeled.

The main content of this report which can be divided into two part deals with the control of the
octocopter. The first part investigates approaches for converting of the model control inputs, forces
and torques, to corresponding motor commands, angular-rates. This issue is seldom covered in research
articles proposing control laws for multirotors and requires special attention when developing multirotors.
By minimizing the L2-norm, deriving control boundaries and using a priority algorithm which handles
situations where the control demanded is greater than the momentary available control input, it was
shown that the conversion between these properties was possible, even in critical situations.

The second part proposes control laws and approaches for controlling the vehicle in 6DoF. Three different
control strategies have been proposed: pilot-based, attitude and position control. The pilot-based control
is intended to be used by a pilot, controlling the in aviation standard roll, pitch and yaw-rate. The control
method used is a full state feedback controller using a reduced observer, observing the motor dynamics.
The attitude controller is an alteration of the pilot-based controller, controlling roll, pitch and yaw.
Lastly, a position controller is derived, controlling the translational position of the vehicle, allowing for
autonomous flying. The position controller uses a nonlinear Lyapunov based controller where the control
inputs are converted to desired attitude reference inputs, send to the attitude controller.

The control laws were evaluated using a Simulink model where the complete nonlinear system was
implemented. All derived control laws showed promising results and were able to accomplish desired
behavior. The model featured a visualization of the vehicle in 6DoF running in real time and enabled for
the use of a pc gaming controller, allowing for training and testing of e.g., the pilot-based controller.

At the end, real flying data is presented and analyzed using the pilot-based controller. The report is
finished of with a discussion, covering previously chapters of the thesis, proposing future interesting
research and work.
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Sammanfattning

Detta examensarbete från Institutionen för Matematik vid KTH, Kungliga Tekniska Högskolan, Stock-
holm, Sverige har genomförts vid Saab Dynamics, Linköping, Sverige. Under examensarbetet har en
oktokopter studerades, vilket är en multirotor dvs. en helikopter med fler än två rotorer. Multirotorer
har under den senaste tiden blivit allt populärare och har flera intressanta tillämpningsområden som
kräver vidare forskning. Då marknaden för kraftfulla datorer i kreditkortsformat kontinuerligt ökar,
förenklas utvecklingen och forskningen på multirotorer.

Huvudsyftet med examensarbetet var att utveckla en komplett användarvänlig oktokopter inklusive
styrlagar vars syfte var att användas i framtida examensarbeten på Saab Dynamics. Då författarens hu-
vudinriktning är inom tillämpad matematik, har rapportens fokus legat på den teoretiska och analytiska
delen av projektet snarare än utvecklingsprocessen. Rapporten ger även en detaljerad översikt över den
utvecklade plattformen samt dess slutliga konfiguration. Utöver den teoretiska delen innehåller rap-
porten även metoder för systemidentifiering som har utformats och genomförts för att kunna uppskatta
viktiga storheter av farkosten.

För att kunna utföra matematiska analyser och ta fram styrlagar, krävdes en matematisk modell av for-
donet. Eftersom fordonet rör sig i 6DoF (sex frihetsgrader) krävdes ett lämpligt koordinatsystem. I detta
projekt användes Euler vinklar och quaternioner för representation av attityd. Den fullständiga olinjära
modellen härleddes med användning av Newtons andra lag i ett roterande koordinatsystem. Ytterligare
effekter såsom aerodynamik, precession och motordynamik har analyserats och modellerats.

Det huvudsakliga innehållet i denna rapport som består av två delar, behandlar styrningen av ok-
tokoptern. Den första delen undersöker metoder för att omvandla modellens styrsignaler, krafter och
moment till motsvarande motorkommandon, vinkelhastigheter. Denna frågeställning behandlas sällan i
forskningsartiklar som föreslår styrlagar för multirotorer och kräver särskild uppmärksamhet vid utveck-
ling av multirotorer. Genom att minimera L2-normen, härleda gränser för styrsignalen och genom att
använda en prioriteringsalgoritm som hanterar situation där styrsignalen är större än den momentana
tillgängliga, möjliggjordes omvandlingen mellan dessa storheter, även i kritiska situationer.

Den andra delen föreslår styrlagar och metoder för manövrering av fordonet i 6DoF. Tre olika kon-
trollstrategier presenteras: pilot-baserad reglering, attityd- och positionsreglering. Den pilot-baserade
regulatorn är avsedd att användas av en pilot, som styr enligt flygets standardiserade roll-, tippvinklar och
girhastigheter. Reglermetoden som används är en fullständig tillståndsåterkoppling med en reducerad
observatör som observerar motordynamiken. Attitydregleringen är en modifiering av den pilot-baserade
regleringen, styrandes tipp-, roll- och girvinklar. Slutligen togs en olinjär reglermetod fram för regler-
ing av farkostens position i rummet vilket möjliggör autonomt flygande. Denna olinjära styrmetod är
framtagen genom att tillämpa en av Lyapunov’s designmetoder och där styrsignalerna konverteras till
önskade attitydreferenser som skickas till attitydregleringen.

Styrlagarna utvärderades i en Simulinkmodell där hela det olinjära systemet implementerats. Alla fram-
tagna styrlagar visade lovande resultat och uppvisade önskat beteende. Modellen innehöll även en
visualisering av fordonet i 6DoF, körandes i realtid samt möjliggjorde användning av en spelkontroll,
vilket möjliggör träning och testning av t.ex. den pilot-baserade regulatorn.

I slutet analyseras flygdata utförd med den pilot-baserade regulatorn. Rapporten avslutas med en diskus-
sion som behandlar tidigare avsnitt och föreslår framtida relevant forskning och arbete.
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Chapter 1

Introduction

Multirotor vehicles, rotorcrafts with more than two rotors e.g., octocopters, have lately gained a lot of
attention in both the scientific and commercial sphere. With a greater number of rotors, multirotors are
very maneuverable and robust. And because of its simple design, costs can be kept reasonably low.

To efficiently maneuver a multirotor, good control strategies are needed. To derive good control strategies,
great insight and understanding of the system is required. Although academical papers have addressed
the problem of controlling multirotors, deeper understanding and analyses are necessary to improve
control. By reading papers and articles addressing the topic, it becomes clear that the majority only
derive control strategies on paper and therefore may not be feasible to implement, thus requiring further
attention and development. During this thesis the whole chain from mathematical analysis, modeling,
control and simulation to testing of a final product is performed, which is fairly uncommon.

The department of Guidance and Navigation at Saab Dynamics in Linköping bought 2013 a radio
controlled octocopter, mainly to investigate how it in some manner can be controlled and used. Two
previous master thesis have been conducted on the matter. The first one focused on building and testing
of the octocopter [8]. During the second thesis a mathematical model was derived, different important
properties were measured and a PID and L1 adaptive controller were derived and simulated [12].

This year’s master’s thesis project at Saab is conducted by the author of this thesis, Oscar Oscarson
from KTH, Royal Institute of Technology in collaboration with Markus Mikkelsen from Umeå University.
The main purposes of this year’s thesis can be divided into two parts. Firstly, Saab Dynamics wants
us two technologists to together design and develop an opened sourced hardware and software wise
platform using the existing octocopter. A reason for this is that last year’s thesis students encountered
problems when trying to implement their controller because of poor insight in the existing system. The
main requirement is that the new platform should be able to run C code which has been generated
from Simulink in MATLAB. This since Simulink and MATLAB is a widely used programming language
among engineering students and has a lot of predefined functions and documentation. Furthermore,
future thesis projects involving the octocopter will be able to easily implement own code and conduct
research including the vehicle.

The second part of this thesis project is conducted individually and includes the mathematical modeling,
analysis and control of the octocopter. This theoretical part is going to be the main focus in this thesis
report since the authors field is within applied mathematics, nevertheless, the author has done extensive
work on the octocopter both hardware and software wise during the entire thesis period.
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To give an overview of the thesis report a summary of each chapter is made.

• Chapter 2 - The Octocopter
The first section of this chapter summarizes the electrical hardware and software components
implemented during the thesis and is fairly separated from the rest of the thesis report. The
second section of this chapter proposes and carries out an experimental method of estimating the
moment of inertia of important components of the octocopter.

• Chapter 3 - Modeling
In this chapter the modeling of the octocopter is covered. The first part focuses on deriving two
suitable coordinate systems to represent a rigid body in 6DoF (six-degrees of freedom). Then the
rigid body dynamics are derived using Newton’s second law of motion in a rotating reference frame.
Body forces and torques such as motor induced properties, aerodynamics and precession torques
are then derived. The motor dynamics are also given here. Finally, the complete nonlinear model
is presented and linearized.

• Chapter 4 - Control
This chapter covers the complete control of the octocopter, from state estimation to motor control
input. The first section investigates and proposes in detail methods for converting the model control
inputs, motor forces and torques, to corresponding motor control inputs, angular-rates. Then three
different approaches of controlling the octocopter in 6DoF are presented: pilot-based, attitude and
position control.

• Chapter 5 - Simulation
In this chapter appropriate simulations of the derived control approaches are carried out. The chap-
ter is divided into two main sections, simulations with and without disturbances. The disturbances
include signals noises, system delays and quantization of the motor control input.

• Chapter 6 - Evaluation of Flying Data
This chapter presents and discusses data logged from a real flying occasion of the developed octo-
copter. Only data from the pilot-based controller is presented and is divided in two sections, with
and without the integrating states.

• Chapter 7 - Discussion and Future Work
The thesis ends with a discussion which is divided into sections related to each previously mentioned
chapter. The discussion contains thoughts and suggestions about future research and work, but
also discusses problems encountered during the thesis project.
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Chapter 2

The Octocopter

The physical octocopter used in this thesis is originally manufactured by the German hobby company
MikroKopter and goes under the name Okto XL 4S12 [18]. The Okto XL 4S12 is an ARF (almost ready
to fly) octocopter with top performance compared with today’s RC multirotors.

As mentioned in chapter 1, last year’s thesis encountered software problems due to lack of insight in
the system. Therefore, during this year’s thesis, hardware components are changed to create a more
open-source platform. Also, components responsible for navigation are replaced (IMU and GPS) to
improve state estimation and to increase insight in the system. The new main added/replaced hardware
components are two Raspberry Pi 2 Model B, Ardunio Nano, IMU and GPS. Mechanical solutions such
as mountings for components, landing gear, safety cage are also implemented during the thesis. The new
configured octocopter can be seen in Figure 2.1.

Figure 2.1: The new configured octocopter which is developed and used during the thesis. The upper
black cases contains e.g., the Arduino Nano. The two Raspberry Pi’s are contained in the two transparent
cases. The red part on the left in the picture is the IMU, the GPS antenna is on the right.

The added components have increased the total mass from 2.5 kg to 3.8 kg. From now on the total mass
will be denoted and given by m = 3.8 kg. From Figure 2.1 it can be seen that the octocopter has two
different arm lengths. These lengths are of importance and used when modeling and controlling the octo-
copter. These lengths are measured from the geometric center of the octocopter to the geometric center
of a motor and are from now on denoted and given by l1 = 0.45 m and l2 = 0.35 m respectively.

3



All software running on the new added components is written during the thesis except for the ”Navigation
Solution” see Section 2.1.3. For further insight in the code written during the thesis, see [14]. In section
2.1 all the electronic components are specified and discussed in more detail. In section 2.2 an experimental
method is derived and carried out for estimating important moments of inertia.

2.1 Electronic Hardware and Software

As mentioned, new electronic hardware and software is added and configured. To illustrate the new
configuration a schematic diagram of the electronic hardware including power supply and communication
is made, see Figure 2.2.
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Figure 2.2: Schematic diagram of the electrical hardware of the octocopter. The hardware is divided
into the parts: Power management, Navigation and Guidance and Control. Black connections indicate
data communication and red connections indicate power supply.

Note that the schematic is somewhat simplified but since the focus of this thesis does not lie in the
development process of the octocopter, the scheme fulfills its purpose. The different components in
Figure 2.2 are specified and explained in more detail in sections 2.1.1 - 2.1.10.

2.1.1 Arduino

To handle communication with the PDB, Receiver and GC Raspi an Arduino Nano V3.2 is used [1].
The Nano 3.2V has an ATmega328 microcontroller, 14 digital I/O pins, 8 analog input pins and more.
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One of the main reasons why the Arduino microcontroller is used, is because it is open-source and
well documented. The Ardunio is programmed by using Arduinos IDE (C/C++) which has plenty
of predefined libraries. Furthermore, the Nano is only 45 × 18 mm, weighs 5 g and supports serial
communication, external interrupts, PWM, I2C and more. The software and hardware configured with
the Nano is written and setup during the thesis. The Arduino measures the battery voltage (indirectly)
and enables the buzzer if the battery level is critical.

2.1.2 GC Raspi

The GC Raspi (Guidance and Control Raspberry Pi) communicates with the Arduino, Nav Raspi, runs
all control related algorithms and handles the logging of data. The Raspberry Pi 2 Model B is a 900 MHz
quad-cored, 1 GB ram credit card-sized single board computer with 4 USB ports, 40 programmable gpio
pins, HDMI port, Ethernet port and more [24]. The GC Raspi runs on Raspbian which is a Debian based
OS. A D-Link Wireless USB adapter [4] is plugged into one of the USB ports to simplify communication.
To make the GC Raspi autonomous, shell scrips is written which e.g., enables auto login, starts relevant
written C code, creates and moves logging folders and files. The control algorithms, communications
with the Arduino and Nav Raspi and logging of data are written in MATLAB and C and code generated
through Simulink to the GC Raspi by Ethernet or WiFi. Currently the GC Raspi runs at 200 Hz.

2.1.3 Nav Raspi

The Nav Raspi (Navigation Raspberry Pi) communicates with the GPS, IMU and GC Raspi and esti-
mates states such as translational and rotational position, velocity and acceleration of the octocopter.
The Nav Raspi used is hardware wise identical to the GC Raspi in section 2.1.2. Currently the Nav
Raspi runs at 100 Hz.

The Nav Raspi, GPS and IMU are parts from Saab Dynamics ”Navigation Solution” where the software
is developed by Saab Dynamics. The states are estimated by using a discrete EKF (Extended Kalman
Filter). The EKF is the nonlinear version of the Kalman filter which linearizes about the current states
and computes the Kalman filter based on the linearization [25, p. 380]. The EKF is not further explained
in this thesis. The estimated states x̂ from the Nav Raspi were compared (by Saab Dynamics) to the
”true” x (estimated by much more powerful components) states, the RMS (root-mean-square) of the
error ei = xi − x̂i, for some state i is given in Table 2.1.

state xi eiRMS

x, y 1 m

z 3 m

ϕ, θ 0.1◦

ψ 1◦

ẋ, ẏ, ż 0.1 m/s

ϕ̇, θ̇, ψ̇ 0.1 rad/s

ẍ, ÿ, z̈ 0.1 m/s2

Table 2.1: Table showing the RMS of the error ei = xi − x̂i, for some state xi where x̂i is the state
estimation made by the Nav Raspi.

It is noteworthy to mention that the values in Table 2.1 are computed from data measured after the
system has settled in, larger errors occur during the start up phase of the system. According to Saab
Dynamics the error xi− x̂ can be modeled as a Gaussian-Markov process. This would require more data
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and knowledge about the system. Instead, Gaussian distributed noise di ∈ N (µi, σ
2
i ) using µi = 0 and

σ2
i ≈ e2iRMS is applied and used when simulating the complete system, see chapter 5.

Noise due to vibrations

Another type of noise, is noise due to vibrations. Since the navigation solution is mounted on the
octocopter, noise in the estimated states can be expected due to vibrations originating from the rotating
motors and propellers. This noise is experimentally estimated by ramping up all motors in the time
interval t ∈ [5 15] with the plastic propellers mounted and then logging relevant states computed by the
EKF filter. The result can be seen in Figures 2.3 - 2.4.
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Figure 2.3: Estimated noise due to vibrations, in rotation. All motors have mounted plastic propellers
and are ramped up to ≈ 700 rad/s during 10 s.
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ẏ
[m

/s
]

-0.2

0

0.2

t [s]
0 5 10 15 20

ż
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Figure 2.4: Estimated noise due to vibrations, in translation. All motors have mounted plastic propellers
and are ramped up to ≈ 700 rad/s during 10 s.

From Figures 2.3 - 2.4 it can be seen that there is some noteworthy noise in the Euler angular-rates and
translational accelerations. The noise in the Euler angles is relatively small and decided to be neglected.
The small offset in roll θ seen in Figure 2.3 is due to some smaller applied torque generated by the
motors. From Figure 2.4 it can be seen that there is some drift in translational position and velocity.
This is probably due to a changing GPS position, from which the translational position is calculated and
used to estimate the translational velocity. Furthermore, it can be seen that the amplitude of the noise
is relatively small and therefore decided to be neglected. Therefore only noise in the Euler angular-rates
and translational acceleration is considered. In order to determine the amplitude and frequency content
of the noise, a single-sided amplitude spectrum is made using MATLAB’s fft, see Figure 2.5.
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|Ÿ
(f
)|
[m

/s
2
]

0

0.2

0.4

frequency f [Hz]
0 10 20 30 40 50 60 70 80 90 100

|Ψ
(f
)|
[r
ad

/s
]

0

0.005

0.01

frequency f [Hz]
0 10 20 30 40 50 60 70 80 90 100

|Z̈
(f
)|
[m

/s
2
]

0

0.5

1

Figure 2.5: Single-sided amplitude spectrum using MATLAB’s fft of Euler angular-rates and translation
acceleration.
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Note that the FFT is made during t ∈ [5 15] s, since the motors were running during that time. From
Figure 2.5 it can be seen that the most prominent amplitude occur at ≈ 7 Hz. It can also be seen
that there is some considerable content at ≈ 15 Hz. It is decided to only consider and model the most
prominent signal. The amplitudes for this frequency and state is given in Table 2.2 below.

state Amp

ϕ̇ 0.02 rad/s

θ̇ 0.01 rad/s

ψ̇ 0.005 rad/s

ẍ, ÿ 0.2 m/s2

z̈ 0.5 m/s2

Table 2.2: Table showing the amplitudes of the signal content at ≈ 7 Hz, for different states.

The outcome of this approach for determining motor generated vibrations should not be seen as exact
but rather as an estimation of size and frequency. These values are used in chapter 5 when simulating
the complete system with disturbances.

It is noteworthy to mention that the estimated states are sampled at 100 Hz. Furthermore, the motors
rotate at about 700 rad/s which corresponds to 111 Hz. One can argue that the rotating motors will give
arise to vibrations near this frequency. By using the Nyquist sampling theorem, the sampling frequency
should be at least 200 Hz, in order to measure content to 100 Hz and avoid aliasing. Hence, due to
aliasing, the content at 7 Hz could as well be at 107 Hz which is close to the frequency of the rotating
motors. In order to accurately determine the frequency content of the vibrations, the sampling frequency
has to be increased.

2.1.4 IMU

The IMU (inertial measurement unit) provides acceleration (proper acceleration) and angular rate data
to the EKF in section 2.1.3. The IMU used is the MTi-100 IMU manufactured by xsense [27]. The
MTi-100 IMU has built in accelerometer, gyroscope, barometer and magnetometer where the two later
sensors are currently not used in the EKF. The data is sent with 100 Hz from the 9-pins push-pull
connector on the IMU via USB to the Nav Raspi which it also is powered by.

2.1.5 GPS

The GPS provides position data (latitude, longitude and altitude) to the EKF in section 2.1.3. The GPS
used is the EVK-6T (evaluation kit) manufactured by u-blox [26]. The kit includes an antenna which is
connected by an SMA jack to the evaluation box. The EKV-6T is powered by USB which is connected
to the Nav Raspi. The GPS data is read from the evaluation box via a RS-232 serial port which is also
connected to the Nav Raspi. The GPS data is sent with 1 Hz.

2.1.6 ESC

There are eight ESCs (electronic speed controller), each controlling a motor by a three phase PWM
signal. The ESCs are Mikrokoters BL-Ctrl V2.0 with the possibility to communicate through I2C, PPM
and serial [16]. The board measures and provides automatic limitation of current and temperature. The
ESCs have 11 bites resolution and two LEDs, one for ”error” and one for ”OK”. Currently I2C is used
for sending motor commands to the ESCs at 8 bits resolution (0−255), no data from the ESCs are read.
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Note that 0 and 255 corresponds to ”motors off” and 254 ”maximum thrust”, see Figure 2.6. Note that
with the current configured ESCs it is not possible to reverse the motors.

2.1.7 PDB

The PDB (power distribution board) provides power to all electrical components, distributes the ESCs
I2C buss and has a buzzer. The PDB used is Mikrokopters Okto XL PDB V8 [21]. The Ardunio is
connected to the PDB to communicate with each ESC via I2C by a single connection. The Ardunio is
also connected to the buzzer on the PDB.

2.1.8 Battery

For power supply, the high performing VISLERO LiPo 6600 mAh 4S 20 C 14.8 V is used. The battery is
a special flat version with dimensions 145× 90× 28 mm and weighs about 715 g [22]. Using a 6600 mAh
battery gives an approximate flying time of 14−22 min depending on flying style [18, Flight times].

2.1.9 Radio transmitter and receiver

For transmitting control signals the Graupner MC-32 HoTT radio controller is used. The MC-32 is a
2.4 GHz premium radio controller with e.g., 16 programmable gimbals/switches, two LCD’s and more
[7]. For receiving the control signals, Graupner GR-16 HoTT is used [6]. The transmitting signal is a
PPM signal of length 30 ms. Currently 4 gimbal axes and 8 switches are used. The PPM signal is read
by the Arduino by using external interrupts and then converted to an array of 12 bytes, one for each
channel.

2.1.10 Motors and Propellers

The octocopter uses eight Mikrokopter brushless DC motors MK3638 5 mm [20]. The motors are
controlled by the ESC which sends a three phase PWM signal. Two types of propellers are currently
used, a plastic 12× 4.5” (dimater× slope) [19] and a CFRP (carbon-fiber-reinforced polymer) 12× 3.8”
[17]. The dynamics of the motors are described in section 3.5. From the previous year’s master thesis
[12, pp. 56-63], it was found that motor generated thrust and torque are proportional to the squared
angular velocities of the motors ωM i.e.,

FM = cTω
2 (2.1)

MM = cQω
2 (2.2)

where for the plastic propeller

cplastic
T = 2.2 · 10−5 Ns2 (2.3)
cplastic
Q = 4.5 · 10−7 Nms2 (2.4)

and for the carbon propeller

ccarbon
T = 1.9 · 10−5 Ns2 (2.5)
ccarbon
Q = 3.7 · 10−7 Nms2. (2.6)

From the above values it can be seen that the plastic propeller performs better in means of generating
thrust and torque which is due to the greater angle of attack of the blades. Another difference is the
stiffness, the carbon propeller is much stiffer and would probably reduce effects such as blade flapping.
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In flight, the plastic propellers are used because of their ability to generate thrust and torque and their
significant lower price.

As mentioned in section 2.1.6, the motor commands range from 0 − 254. From now on the motor
commands will be denoted uM and motor angular-rates ωM . A motor curve with motor commands and
corresponding angular-rates is made by using a digital tachometer [2], see Figure 2.6.
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Figure 2.6: Motor curve, with motor commands and corresponding angular-rates. Fitted 2nd order
polynomial through the data points marked ◦.

Note that not all motor commands are measured, the data is given in the appendix Table A.1. Further-
more, the measurements are carried out with the plastic propeller mounted.

From Figure 2.6 it becomes clear that a fitted second order polynomial does not match the data very
well, especially for smaller uM . It can also be seen that the motor curve has a more linear behavior
when uM & 20 byte. To get rid of this nonlinear effect it is decided to have a lower boundary ωM ≥ 200
rad/s. A lower boundary on ωM above 0 rad/s can also be motivated by means of control. The control
algorithm should not be allowed to generate control signals which lie in or are close to the boundary 0
rad/s in any operating condition. Therefore, it is reasonable to have some margin.

Furthermore, it is difficult to accurately measure angular velocities corresponding to motor commands
uM & 200 byte, since the measurements are fluctuating. At these commands the motor housing becomes
very hot and probably affects the performance. Because of this effect it is decided to have an upper
boundary ωM ≤ 700 rad/s. By the same analogy as for the lower boundary an upper boundary can also
be motivate by means of control and margin.

From this reasoning it is decided to approximate the motor curve by a first order fitted polynomial in
LS sense through the data points in the interval ωM ∈ [200, 700] rad/s. The data points and fitted
polynomial are illustrated in Figure 2.7.
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Figure 2.7: Bounded motor curve, with motor commands and corresponding angular-rates. Fitted first
order polynomial through the data points marked ◦.

From Figure 2.7 it can be seen that the fitted first order polynomial represents the bounded motor curve
very well. The equation describing the polynomial is given by

ωM = 3.07uM + 139 (2.7)

to three significant figures. In order to convert ωM to uM , (2.7) can be used. Solving for uM gives

uM = 0.326ωM − 45.2 (2.8)

to three significant figures. Note that more figures for the constants in (2.7) were used when determining
(2.8). Also, using (2.8) can result in fractions and since uM must be an integer (byte), MATLAB’s uint8
is used to convert ωM to uM .

2.2 Moment of Inertia Estimation

The new components added to the octocopter have changed its mass and center of gravity and hence its
moment of inertia. During the previous year’s thesis, the octocopters moment of inertia was estimated
analytically where masses and dimensions of components were measured and approximated by different
geometrical shapes [12, pp. 54-56]. In this thesis, an experimental approach is chosen for estimating the
moments of inertia. The experiment takes use of a bifilar (quadrifiliar) pendulum, which is a two (four)
stringed pendulum, where the strings run up parallel to each other attached to e.g., the ceiling. The
bifilar pendulum setup of a rod is illustrated in Figure 2.8. The rod has mass m, moment of inertia I
and is rotated about the z-axis by an angle θ.
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Figure 2.8: Bifilar pendulum of a rod with mass m and moment of inertia I rotated about z by and
angle θ. The strings are of length L and separated by the distance D.

Note from Figure 2.8 how the rod has changed its vertical position by δ due to the rotation. By using
energy conversion and Lagrangian mechanics the moments of inertia of the above pendulum can be
estimated by using its rotational period. The general Lagrangian equation of motion is given by

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj (2.9)

where L is the Lagrangian function, qj the considered degree of freedom and Qj non-conservative forces
acting in qj . The Lagrangian function is given by

L = T − V (2.10)

where T is the kinetic energy and V the potential energy of the system. For the pendulum case, the
moment of inertia of interest is the one about the z-axis. Hence, the only degree of freedom (j = 1) of
interest is q = θ. Furthermore, it is assumed that all non-conservative forces such as damping due to
aerodynamic drag, viscosity and kinetics losses due to the strings are neglected, hence Q = 0. Before
moving on, the vertical displacement δ due to the rotation θ can be determined using trigonometry which
gives [15, eqn. (3)]

δ = L

[
1−

√
1−

(
D√
2L

)2

(1− cos θ)
]
. (2.11)

From now on it is assumed that the vertical position of the pendulum is given by z = δ. The vertical
velocity is then given by

ż =
1
L

(
D
2

)2 sin θ√
1−

(
D√
2L

)2

(1− cos θ)
θ̇. (2.12)

The potential energy of the pendulum is only due to vertical displacement

V = mgz (2.13)

and the kinetic energy is due to rotation and translation

T = 1
2Iθ̇

2 + 1
2mż

2. (2.14)
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For the conducted experiments L ≈ 2D and θ ≤ π
8 which together with (2.12) gives ż2 ≈ θ̇2 · 10−3 in the

worst case, therefore ż in (2.14) is neglected. By using this assumption and (2.9) - (2.14), one gets

Iθ̈ +
mgD2

4L sin θ√
1−

(
D√
2L

)2

(1−cos θ)
= 0. (2.15)

Applying the small angle assumption cos θ ≈ 1 and sin θ ≈ θ to (2.15) gives

θ̈ +
mgD2

4LI
θ = 0 (2.16)

which has the known solution

θ = c1 cos(
√

mgD2

4LI t) + c2 sin(
√

mgD2

4LI t) (2.17)

where c1 and c2 are arbitrary constant. By assuming that θ̇(0) = 0, one gets that c2 = 0. By using this,
the moment of inertia can now be expressed by using the periodic time T of (2.16) which gives

I =
mg(DT )2

16π2L
. (2.18)

This relationship can be used to estimate the moment of inertia of the pendulum in Figure 2.8, by
measuring m, D, L and T . Section 2.2.1 and 2.2.2 estimates the moment of inertia for the motor
including propeller respectively the octocopter by using this relationship.

2.2.1 Motor and Propeller

In section 3.4.3 it is described how precession torque is generated due to the rotating motors and pro-
pellers. The size of the generated torque requires knowledge about the moment of inertia of the rotating
motors including propeller which will be denoted IM . It is assumed that the motor coordinate system
coincides with the principal axes of inertia, hence the moment of inertia matrix for motor and propeller
is given by

IM =

IMxx 0 0
0 IMyy 0
0 0 IMzz

 . (2.19)

Since the motors only generate rotation about their z-axis, only IMzz needs estimation. To estimate IMzz

the experiment described in section 2.2 is carried out. The rotating motor housing including propeller
is separated from the motor and hung from the ceiling by two thin strings to match the setup in Figure
2.8, see Figure 2.9
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1.
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3.

Figure 2.9: Experimental setup for motor and plastic propeller. 1. Hanging from the ceiling by two thin
strings. 2. Completely at rest before rotation, cross underneath to mark stationary position 3. Rotating
about its vertical axis.

where L = 2.33 m, D = 0.30 m and m = 0.064 kg with the plastic propeller. The motor and propeller
are rotated by hand by a small angle θ < π

8 which will reduce aerodynamic effects due to smaller
rotational velocity and reduce translational movement. A small cross is marked underneath the object
when stationary in order to increase accuracy upon release, see Figure 2.9. It is made sure that the two
strings are parallel to each other and the object is horizontal in order to increase accuracy. The strings
are thin and have limited elasticity to reduce their contribution to the experiment. The total time t is
measured for a fixed number of periods N , the period time is then given by T = t

N . The experiment
is carried out for N = (10 10 15 15 20 20 25 25) i.e., two measurements for each N . The experiment
is performed for the two different propeller types section 2.1.10. The measurements are given in the
appendix Tables A.2-A.3. The mean value of T is computed and the moment of inertia is estimated by
using (2.18). The result is shown below to three significant figures for the different propeller types.

Iplastic
Mzz

= 1.13 · 10−4 kgm2 (2.20)
Icarbon
Mzz

= 1.07 · 10−4 kgm2 (2.21)

From the result, it is reasonable that the motor with mounted plastic propeller has a larger moment
of inertia since it weighs more, although the difference between them is probably within measurement
errors.

2.2.2 The Octocopter

An important property of the octocopter is its moment of inertia I. In section 3.3 it can bee seen how
it affects the equations of motion. As previously mentioned, new components have been added and the
total mass and geometry has changed from the previous year’s master thesis. Therefore, a new estimation
of I is necessary. Once again, it is assumed that the body coordinate system coincides with the principal
axes of inertia, hence the moment of inertia matrix for octocopter is given by

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (2.22)
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To estimate I the method described in section 2.2 is used. Before moving on, note that the number of
strings in the experiment setup Figure 2.8 does not affect the equation (2.18). Now the same procedure as
in section 2.2.1 is followed. Figure 2.10 illustrates how the moment of inertia about z is estimated

1.

2.

3.

Figure 2.10: Experiment setup for octocopter. 1. Hanging from the ceiling by four strings. 2. Completely
at rest before rotation. 3. Rotating about its vertical axis.

where in this case L = 2.09 m, D = 0.64 m and m = 3.8 kg. Note that the plastic propellers are mounted
since they are mainly used and the difference in IM is neglectable compared to the carbon propellers
according to (2.20) and (2.21). Furthermore, the strings used in Figure 2.10 were later exchanged with
thinner 0.21 mm PE-braided fishing line [3] to further reduce contribution from the strings. A cross
was also marked on the ground as in Figure 2.9 to increase accuracy upon release. All the measured
values are found in the appendix Tables A.4-A.6. The moment of inertia for each axis was once again
determined by using (2.18). The result is shown below to three significant figures.

I =

0.135 0 0
0 0.129 0
0 0 0.222

 kgm2 (2.23)

By comparing these values to last year’s estimations there is an increase in all axis which is reasonable
since the new components have increased the total mass by 52 %. The increase of Ixx and Iyy is most
significant and about 26 % respectively 22 % which is due to the new components added in z. The
increase of Izz is about 11 %.
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Chapter 3

Modeling

When deriving control algorithms it is crucial to have good knowledge and insight in the system requiring
control. When modeling an object in all 6DoF i.e., three translations and three rotations, a suitable
coordinate system is required. A common approach is to use two reference frames, one inertial reference
frame denoted by I which can be compared to the earth, a fixed reference system. The second reference
system will be called the body reference frame and will be denoted by B. The body reference frame is
positioned in the center of mass of the octocopter which is assumed to coincide its geometric center.
Furthermore, in this thesis it is assumed that the octocopter can be approximated by a rigid body, more
about this later. To illustrate the two reference frames see Figure 3.1 below, note that the xB-axis is
aligned with the forward defined direction of the octocopter.

xB

zB

yB

yI

xI

zI

Figure 3.1: The body frame B moves freely with respect to a fixed inertial frame I .

It is necessary to be able to transform from the different frames in order to express physical properties
in the respective frames. In this thesis Euler angles are used, which are presented in section 3.1. To
transform properties between frames, Euler rotation and angular-rates matrices can be used, sections
3.1.1 - 3.1.2. An alternative method is also presented, quaternions, which is preferable when simulating
in 6DoF, see section 3.2. The general equations of motions for a rigid body in 6DoF are derived in section
3.3. The body forces and torques acting on the octocopter are explained and discussed in section 3.4.
The motor dynamics are given in section 3.5. The complete nonlinear model is compactly presented in
section 3.6. Lastly, in section 3.7 the system is linearized.

3.1 Euler Angles

A common choice to represent rotations in e.g., aviation is to use the Euler angle representation. The
Euler angles represent a sequential rotation about some axes. In this thesis the three Cartesian axes x,
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y and z are used where the respective rotation angle is going to be donated by ϕ, θ and ψ. The rotation
sequence z-y-x is illustrated in Figure 3.2.

yI

xI

zI

ψ
yF1

xF1

zF1

θ

xF2

zF2

ϕ

yF2

⇒ ⇒

Figure 3.2: Sequential rotation z-y-x of the coordinate system by using Euler angles where I , F1 and F2

are reference frames which change due to rotation.

Note that the ”normal” Cartesian system is rotated by π about the x-axis, so that the Euler angles ϕ,
θ and ψ coincide with aviation standards for roll, pitch and yaw. Furthermore, the rotation sequence
is crucial and does not commute, more about Euler angles in the next section 3.1.1. Before moving on,
translational and rotational position of the rigid body in I are denoted by

rI =

xIyI
zI

 , η =

ϕθ
ψ

 . (3.1)

3.1.1 Euler Rotation Matrix

The rotation between I and B can be performed in twelve possible ways using rotation matrices. In
this report the aviation standards for roll, pitch and yaw are followed. When going from I to B , this
corresponds to rotating first about the z-axis, then y-axis and finally the x-axis. This is equivalent to
the rotation sequence z-y-x (or x-y-z, B to I), see Figure 3.3.

θ, y

F1 ϕ, x

I

ψ, z
F2

B

Figure 3.3: Rotation from I to B frame by using Euler angle sequence z-y-x or B to I with x-y-z.

Here the two helping frames F1 and F2 are introduced, which will be used when deriving the final rotation
matrices. Rotation from I to B can be performed by using rotation matrices. The rotation matrix from
e.g., I to F1 is going to be denoted by RI→F1 . The rotation matrices, for rotation about different axes,
are now derived by using simple trigonometry. When going from the inertial frame I to F1 i.e., rotation
about the z-axis by angle ψ, one gets the following rotation of the reference frame, see Figure 3.4.
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xI

yI

xF1

yF1

ψ

ψ

Figure 3.4: Rotation from I to F1 with ψ.

From which the following relation can be derivedxF1

yF1

zF1

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

xIyI
zI

 = RI→F1rI . (3.2)

In the same manner the rotation matrices RF1→F2 and RF2→B can be derived, see Figures 3.5 - 3.6 and
equations (3.3) - (3.4).

zF1

xF1

zF2

xF2

θ

θ

Figure 3.5: Rotation from F1 to F2 with θ.

xF2

yF2

zF2

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

xF1

yF1

zF1

 = RF1→F2rF1 . (3.3)

yF2

zF2

yB

zB

ϕ

ϕ

Figure 3.6: Rotation from F2 to B with ϕ.
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xByB
zB

 =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

xF2

yF2

zF2

 = RF2→BrF2 . (3.4)

The rotation matrix RI→B can now be obtained by using (3.2) - (3.4) which gives

RI→B = RF2→BRF1→F2RI→F1

=

 cθcψ cθsψ −sθ
sϕsθcψ − cϕsψ sϕsθsψ + cϕcψ sϕcθ
cϕsθcψ + sϕsψ cϕsθsψ − sϕcψ cϕcθ

 (3.5)

where cosx ≡ cx and sinx ≡ sx. From e.g., Figure 3.4 and (3.2) it can be seen that RI→F1 =
RT
F1→I , which is a property that holds for all rotation matrices. Hence, the rotation matrix from

B to I can be obtained as following RB→I = RF1→IRF2→F1RB→F2 = RT
I→F1

RT
F1→F2

RT
F2→B =

(RF2→BRF1→F2RI→F1)
T = RT

I→B . Hence

RB→I =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 . (3.6)

3.1.2 Euler Angular Rates Matrix

In order to achieve continuity between properties in the body and inertial frames, it is important to
be able to relate the body angular-rates with the time derivative of the Euler angles η̇. To do this,
it is common to use a transformation matrix which relates the body and Euler angular-rates. The
transformation matrix will be denoted W and uses the same indexing as Euler rotation matrices. Before
deriving these transformation matrices, the angular-rates of the body frame are defined. The body
angular-rates are the denoted by

ω =

ωxωy
ωz

 (3.7)

where i.e., ωx is the angular-rate of the body about its x-axis. In general ω ̸= η̇, therefore the transfor-
mation matrix for the angular rates from frame I to B is derived. A simple way of doing so, is to imagine
the rotation sequence z-y-x, the first angular rate ψ̇ has to undergo two rotations, F1→B, to align with
the body frame, θ̇ has to undergo one rotation, F2→B and ϕ̇ non. Therefore,ωxωy

ωz

 = RF1→B

0
0

ϕ̇

+RF2→B

0

θ̇
0

+

ϕ̇0
0


which by using (3.2) - (3.4) can be rewritten asωxωy

ωz

 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ

ϕ̇θ̇
ψ̇

 = WI→Bη̇. (3.8)

The transformation matrix from ω to η̇, can be computed by taking the inverse of WI→B which
gives ϕ̇θ̇

ψ̇

 =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

ωxωy
ωz

 = WB→Iω. (3.9)
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By inspecting WB→I , one can see that for some θ problems might occur, this since sec θ = 1
cos θ , hence

singularities occur when θ = π
2 +πk for k ∈ N. This phenomenon is usually called gimbal lock [10, p. 13].

When using the rotation sequence z-y-x i.e., aviation standard, this problems arises when the vehicle
has pitch θ = ±π. Under normal operating conditions the octocopter will not experience such a large
pitch, however this singularity can be avoided by using quaternions, see section 3.2.

3.1.3 Time Derivative of Rotating Body Frame

The relation between the time derivative of a vector in the body frame and the inertial frame is of
importance when deriving the equations of motions in 6DoF and is now given. Let r be an arbitrary
and general position vector following the rotation of a rotating reference frame e.g., the body frame.
Furthermore, let (ṙ)X be the time derivative taken in frame X . Assume that the body frame is rotating
with the angular rate ω. The time derivative of r with respect to a fixed inertial reference frame will
now be motivated by using Figure 3.7.

xI

yI

yB

yB

ωz

r
ṙ

Figure 3.7: Rotation of the body frame, illustrated about the z-axis.

From Figure 3.7, one can argue that the time derivative of r in the inertial frame is

(ṙ)I = ω × r (3.10)

since (ṙ)B = 0, [10, p. 7]. Now assume that the body frame B also is moving with velocity v, thus

(ṙ)B = v. (3.11)

Using (3.10) and (3.11) gives an expression for the time derivative of r in the inertial frame

(ṙ)I = (ṙ)B + ω × r. (3.12)

3.1.4 Time Derivative of Rotation Matrices

The time derivative for rotation matrices is here derived and can be applied when deriving the equations
of motions for a rigid body. Let rX be a vector expressed in frame X and (ṙ)X be the time derivative
taken in frame X . Furthermore, assume that r is rotating with angular rate ω with respect to the initial
frame so ω = ωI = −ωB . By definition

rB = RI→BrI . (3.13)

Taking the time derivative in the inertial frame of (3.13) gives

(ṙB)I = (ṘI→B)IrI +RI→B(ṙI)I

= {(ṙI)I = 0}
= (ṘI→B)IrI .

(3.14)
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But from (3.10) one gets

(ṙB)I = −ωB × rB

= −ωB ×RI→BrI .
(3.15)

Hence, combining (3.14) and (3.15) gives

(ṘI→B)I = −ωB ×RI→B . (3.16)

By the same analogy one gets that

(ṘB→I)B = ωI ×RB→I . (3.17)

3.2 Quaternions

As mentioned in section 3.1.2, singularities arise when using Euler angles, rotation matrices and having a
pitch angle θ of ±π. Although such a large pitch angle is not within usual operating conditions, it might
occur when simulating an unstable or uncontrolled system. To get around this problem an alternative
representation of an object in 6DoF is used, quaternions. Quaternions are members of a noncommutative
division algebra first invented by William Rowan Hamilton in 1843 [28]. A quaternion is a four-element
vector consisting of one real part and three imaginary parts. The unit imaginary parts are denoted by
i, j and k and the fundamental formula of quaternions is [28, eq. (1)]

i2 = j2 = k2 = ijk = −1.

Quaternions can be used for many things and the math behind them is extensive. In this thesis the ability
to express rotations is used. For clarification, the four valued unit quaternion can express rotations in
three dimensions which can be compared to the Euler’s unit formula eit = cos t+i sin t, which can express
a rotation in two dimensions using three components i.e., (t, cos t, sin t). The quaternion q is defined as
[28, eq. (20)]

q = q0 + q1i+ q2j + q3k

from which the quaternion vector q is defined [28, eq. (25)]

q ≡
(
q0 q1 q2 q3

)ᵀ ≡ (
s v

)ᵀ (3.18)

where s is a called the scalar part and v the vector part corresponding to the imaginary unit vectors i, j
and k. The norm of a quaternion is given by [28, eq. (24)]

||q|| =
√
q20 + q21 + q22 + q23 (3.19)

and called a unit quaternion if ||q|| = 1. From now on assume that the imaginary unit vectors i, j and
k coincide with the Cartesian axes x, y and z. Furthermore, a unit quaternion on the form

q =
(
cos ϕ2 sin ϕ

2v
)ᵀ (3.20)

can be used to express a rotation by ϕ about an arbitrary axis v in R3 [10, eq. (175)]. Note that v
has to be scaled such that ||q|| = 1. A sequence of rotation about multiple axes can be achieved by
using quaternion multiplication. Quaternions multiplication will here be denoted ⊗ and for two arbitrary
quaternions q1 and q2 the multiplications is defined by [28, eq. (26)-(27)]

q1 ⊗ q2 =
(
s1 v1

)ᵀ ⊗ (
s2 v2

)ᵀ
=

(
s1s2 − v1 · v2 s1v2 + s2v1 + v1 × v2

)ᵀ (3.21)
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where · is the dot product and × the cross product. The final operation necessary for rotating an
arbitrary vector in R3 by using quaternions is the quaternions conjugate q̄ which is given by [28, eq.
(21)]

q̄ =
(
s −v

)ᵀ
. (3.22)

Now it is possible to use the above operations and quaternions to perform a rotation of an arbitrary
vector in R3. Assume that rB ∈ R3 is in the body reference frame B and shall be rotated to an inertial
reference frame I . This can be achieved by a unit quaternion qB→I and the following operation [10, eq.
(122)] (

0 rI
)ᵀ

= qB→I ⊗
(
0 rB

)ᵀ ⊗ q̄B→I . (3.23)

By letting qB→I = (q0 q1 q2 q3) and performing the above quaternions multiplication one can derive a
rotation matrix QB→I relating rB and rI , this will give [10, eq. (125)-(127)]

rI =

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 rB = QB→IrB (3.24)

where the following holds QI→B = Qᵀ
B→I [10, eq. (126)-(127)]. By combining (3.20) and (3.21) the

quaternion qB→I can be formed, performing the Euler rotation sequence x-y-z using Euler angles, which
gives

qB→I =

(
cos ψ2

sin ψ
2 ez

)
⊗

(
cos θ2

sin θ
2ey

)
⊗
(

cos ϕ2
sin ϕ

2ex

)
(3.25)

where ex, ey and ez are the Cartesian unit vectors respectively. So by above means, an arbitrary vector
in R3 can be rotated by using quaternions and Euler angles. When simulating an object by using
quaternions it is often necessary to be able to convert unintuitive quaternions to e.g., Euler angles. For
the rotation sequence x-y-z one gets by using the rotation matrices RB→I and QB→I and solving for
ϕ, θ and ψ [10, eq. (73)]

ϕ = atan2(2(q0q1 + q2q3), q
2
0 − q21 − q22 + q33)

θ = arcsin 2(q0q2 − q1q3)
ψ = atan2(2(q0q3 + q1q2), q

2
0 + q21 − q22 − q33)

(3.26)

where atan2 is the four-quadrant inverse tangent and is used to expand the output interval to [−π, π],
since arctan ∈ [−π2 ,

π
2 ]. To be able to produce time continuous quaternions its time derivative q̇ is

necessary. By using the angular-rate ω of an object, q̇ can be expressed as [10, eq. (156)]

q̇ = 1
2q ⊗

(
0 ω

)ᵀ
. (3.27)

3.3 Equations of Motion for a Rigid Body

Now the equations of motions for a freely moving rigid body are derived. A rigid body is an idealization
of a solid body where deformations are neglected. Meaning that the distance between particles within the
object will remain constant even when subjected to external forces. This idealization is often made and
does also apply well in this case. Furthermore, it is assumed that the body reference frame is positioned
in the center of mass of the octocopter which is assumed to coincide with its geometric center. These
assumptions greatly simplifies the calculations made in order to derive the equations of motions.

There are many methods and approaches for deriving the equations of motions for a rigid body. The most
common ones are the Lagrangian method which uses conservation of energy and the Euler-Langrange
equation or Newtonian mechanics which uses Newton’s second law in a rotating reference frame. In this
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thesis, the later one is used. Newton’s second law for a rigid body in R3 in an inertial frame, affected by
the external forces and torques F and M receptively is given by

ṗ = F (3.28)
L̇ = M (3.29)

where p is the linear momentum and L the angular momentum which can be expressed as
p = mv (3.30)
L = Iω. (3.31)

Here m is the mass, I the moment of inertia and ω the angular velocity of the rigid body. From now
on the ”derivative index” is dropped and it is assumed that the derivative is taken in the same frame as
in which the vector is represented in, i.e., ṙX is the time derivative of rX in frame X . Before going on,
it is assumed that ṁ = 0, which is true for the electric octocopter. Next, let I be the inertial matrix of
the rigid body in the body frame. The equations of motion in the inertial frame are easily derived using
(3.28) - (3.31) giving

v̇I =
1

m
FI (3.32)

ω̇I = I−1
I (MI − İIωI). (3.33)

The equations of motion in the body frame can not be derived as easily since the body frame is rotating.
One approach of doing this, is to apply rotation matrices and their time derivatives to obtain the
equations of motions in the body frame. By definition

vB = RI→BvI

and taking the time derivative gives
v̇B = ṘI→BvI +RI→Bv̇I

= {(3.17), (3.28), (3.30)}

= −ωB ×RI→BvI +RI→B
1

m
FI

= −ωB × vB +
1

m
FB.

In the same manner, by definition
LB = RI→BLI

and taking the time derivative gives
L̇B = ṘI→BLI +RI→BL̇I

= {(3.16), (3.29)}
= −ωB ×RI→BLI +RI→BMI

= −ωB ×LB +MB

and by using that LB = IωB gives
L̇B = İBωB + IBω̇B

= {IB = 0, in the body frame}
= IBω̇B .

Which gives the final body equations of motions

v̇B =
1

m
FB − ωB × vB (3.34)

ω̇B = I−1
B (MB − ωB × IBωB). (3.35)
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3.4 Body Forces and Torques

Now the body forces FB and torques MB in (3.34) - (3.35) are defined. For a freely moving rigid
body these forces are usually easier expressed in the body system than the inertial, therefore properties
following in this section are expressed in the body system. The body system follows the octocopter as
seen in Figure 3.8.

xB
zB

yB
ωx

ωz
ωy

Figure 3.8: The octocopter with aligned body frame with their respective angular velocities.

There are many types of forces and torques which arise and can be modeled but not all of them are
as contributing and important. It is assumed that the most prominent ones are the forces and torques
generated by the motors, gravitational force, aerodynamic effects and precession torque. Aerodynamics
give arise to many phenomenons which can extensively be modeled but are only noted in this thesis. Such
effect are e.g., ground effect, down wash, blade flapping and skin friction drag. Precession torque is the
effect due to applied moment on a spinning object e.g., toy-gyro rotating in a cone-shaped motion.

3.4.1 Motor Forces and Torques

The eight rotating motors including propellers are used to generate motor forces FM and torques MM

which are used to stabilize and control the vehicle. Furthermore, the motors rotate in different directions
allowing for stability and controllability in yaw. The numbering and rotational direction of each motor
is illustrated in Figure 3.9.
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l2

ωM1

ωM2

ωM3ωM4ωM5

ωM6

ωM7
ωM8

l1

yB

xB

Figure 3.9: The octocopter seen from above. Showing the numbering of each motor and their respective
rotational direction and the two different arm lengths l1 and l2.

From Figure 3.9 it can be seen that odd and even numbered motors have different arms lengths, l1
respectively l2. The position of the geometric center of each motor i, in the body system, is given
by

rM1 =
(
l1 0 0

)ᵀ
rM2 = 1√

2

(
l2 l2 0

)ᵀ
rM3 =

(
0 l1 0

)ᵀ
rM4 = 1√

2

(
−l2 l2 0

)ᵀ
rM5 =

(
−l1 0 0

)ᵀ
rM6 = 1√

2

(
−l2 −l2 0

)ᵀ
rM7 =

(
0 −l1 0

)ᵀ
rM8

= 1√
2

(
l2 −l2 0

)ᵀ
.

(3.36)

To increase the ability to yaw, the motors are tilted by an angle α = 3◦ with respect to the zB axis. The
motors are tilted in different directions to accomplish stability in yaw. Even and odd numbered motors
are tilted in two different directions, see Figure 3.10.

α

−zB

α

−zB

Even Odd

Figure 3.10: Showing how the motors are tilted by an angle α with respect to the zB axis, seen towards
the center of the octocopter. Note that odd and even numbered motors are tilted in different directions.
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From Figures 3.9 - 3.10 the direction of each motor i can be determined, in the body system, and are
given by the unit vectors

eM1 =
(
0 −sα −cα

)ᵀ
eM2 =

(
− 1√

2
sα

1√
2
sα −cα

)ᵀ

eM3 =
(
sα 0 −cα

)ᵀ
eM4 =

(
− 1√

2
sα − 1√

2
sα −cα

)ᵀ

eM5 =
(
0 sα −cα

)ᵀ
eM6 =

(
1√
2
sα − 1√

2
sα −cα

)ᵀ

eM7 =
(
−sα 0 −cα

)ᵀ
eM8

=
(

1√
2
sα

1√
2
sα −cα

)ᵀ

(3.37)

where cosx ≡ cx and sinx ≡ sx. The size of the generated force and torque from a motor is proportional
to the squared motor angular-rate, see section 2.1.10. Hence, for each motor i the force and torque
generated is given by

TMi = cTω
2
Mi

(3.38)
QMi = cQω

2
Mi

(3.39)

where cT is the thrust constant and cQ the torque constant. Note that the torque acting on the octocopter
generated from a motor is in the opposite of the motor direction (counter torque). Now the total generated
motor forces and torques can be derived by using basic mechanics. The motor generated forces acting
on the octocopter are given by

FM =
8∑
i=1

eMiTMi (3.40)

and the torques by

MM =

8∑
i=1

rMi × eMiTMi +

8∑
i=1

(−1)i+1eMiQMi . (3.41)

Note that the term (−1)i+1 in (3.41) arises because of the different rotational directions of the mo-
tors.

3.4.2 Aerodynamics

As mentioned before, extensive modeling regarding aerodynamics can be made e.g., ground effect, down
wash, blade flapping, skin friction drag. However, it requires good physical knowledge and insight in
components and physical experiments to determine aerodynamic properties. The most common and
easily modeled aerodynamic effect is form drag. Form drag is most dominant at large velocities and
arises due to the movement of a reference area through a fluid. Without going into detail, form drag is
given by

FDrag = −1

2
ρCDv

2 (3.42)

where ρ is the air density, CD the drag coefficient and A the reference area which is perpendicular to the
velocity. In the case of the octocopter, drag is generated both due to the movement in translation, but
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also due to rotation. Drag force generated due to translation is given by

FD = −1

2
ρCD

Ayzvx|vx|Axzvy|vy|
Axyvz|vz|

 (3.43)

where | · | is the absolute value, which is necessary since the aerodynamic drag is acting in opposite
direction of the velocity vector. Note that e.g., Axy is the reference area of the xy-plane. Drag generated
due to rotation about the z-axis (xz-plane) is illustrated in Figure 3.11.

lx

FD

x
FD

ωz

Axz

Figure 3.11: Drag generated due to rotation about the z-axis, in the xz-plane. FD is acting at x = l
2 , −

l
2

and thus generating a torque. Where Axz is the reference area.

From Figure 3.11 it becomes clear that a torque due to drag is generated opposite the rational direction
ωz. For geometrical reasons the drag force is acting at x = l

2 , −
l
2 which also can be shown by integrating

pressure and angular-rate over the interval x ∈ [0, lx]. Hence, the total torque due to drag in all directions
is given by

MD = −1

2
ρCD

Axyωx|ωx|lx
Axyωy|ωy|ly
8Ayzωz|ωz|lz

 . (3.44)

Note that here it is assumed that Axz = Ayz. The numerical eight in the last row of (3.44) occurs since
there are eight reference areas in the yz-plane (eight arms). The area and length parameters were chosen
by assuming that octocopter can be approximated by a cube, which results in Axy = Axz = Ayz = 0.04
m2 and lx = ly = lz = 0.2 m. The following aerodynamic parameters were chosen ρ = 1.2 kg/m3 (air at
20◦) and CD = 1 (cube).

3.4.3 Precession

Precession is a motion due to change in orientation of an object rotating about an axis. It is the same
phenomenon occurring when a rotating toy-gyro is moving in a cone-shaped motion. So the precession
rotation itself does not occur about the axis the object is rotating about. This effect does also affect
the octocopter, each motor itself can be seen as toy-gyro rotating and undergoing precession, generating
counter moments when the whole octocopter undergoes rotation. Figure 3.12 is trying to illustrate this
effect on a tilted disc rotating with angular-rate ωD
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MP

ωD

ωP LD

L̇D

Figure 3.12: Disc with angular momentum LD rotating with angular-rate ωD. An applied torque MP

causes the disc to precess with angular-rate ωP .

where ωP is the angular-rate of the precession, LD the angular momentum of the rotating disc and
MP the applied precession torque. The direction of the torque MP causes LD to change in the same
direction as MP [5], hence MP = L̇D therefore ωP is clockwise. By using the same motivations about
time derivatives of rotating reference systems and cross products in section 3.1.3, one gets that the total
precession torque MP in arbitrary directions can be expressed as [5]

MP = L̇D = ωP ×LD = ωP × IDωD. (3.45)

Thus, in the case of the rotating motors, the total precession torque generated is given by

MP =

8∑
i=1

(−1)i+1ω × IMeMiωMi (3.46)

where ω is the angular-rate of the octocopter. Note that the term (−1)i+1 is needed since the direction
of each ωMi is defined as seen in Figure 3.9.

3.5 Motor dynamics

As mentioned in section 2.1.10 the motors are brushless DC motors. An approach to derive a mathe-
matical model of the motors is to use electrical and mechanical relationships. But this requires good
knowledge about the motor and its properties. So instead, the motor model derived in the previous year’s
master’s thesis [12, pp. 44-53] is used. The motor dynamics are approximated by a first order low-pass
filter where numerical values were found through experiments. The motor dynamics for a motor i are
given by

ωMi(s) =
KM

τMs+ 1
UMi(s), τM =

{
τM+ if ω̇Mi(t) ≥ 0

τM− else
(3.47)

whereKM is the static motor angular-rate gain, τM the time constant and UMi the input for motor i. Note
that τM varies between ramping up (τM+) or down (τM−) the motor. These values were experimentally
determined during the previous year’s master’s thesis and resulted in τM+ = 0.1 s and τM− = 0.2 s. By
taking the Laplace transform of (3.47) one gets

ω̇Mi(t) =
1

τM
(−ωMi(t) +KMuMi(t)) . (3.48)
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The gain KM is just a scaling factor and is from now on assumed to be 1 since in section 2.1.10 a
relation between the motor command uM and motor angular velocity ωM is found. The different values
on the time constant give arise to nonlinearities, these are neglected and from now on it is assumed that
τM =

τM+
+τM−
2 = 0.15 s.

In section 4.1 it is found that it is possible to convert motor forces and torques to corresponding motor
angular-rates ωM if the motor forces and torques are kept within some boundaries. By assuming that
ωM are held within these boundaries and the mentioned assumptions on KM and τM , (3.47) and (3.48)
can be rewritten from uMi → ωMi to e.g., ux → FMx i.e., the control input is directly affecting motor
forces FM and torques MM . In vector form this can be written as

vM (s) =
1

τMs+ 1
U(s), vM (s) =

(
FM (s)
MM (s)

)
, U(s) =


Ux(s)
Uy(s)
Uz(s)
Uϕ(s)
Uθ(s)
Uψ(s)

 (3.49)

and in the time domain

v̇M (t) =
1

τM
(−vM (t) + u(t)) , vM (t) =

(
FM (t)
MM (t)

)
, u(t) =


ux(t)
uy(t)
uz(t)
uϕ(t)
uθ(t)
uψ(t)

 (3.50)

where U(s) respectively u(t) are from now on the control inputs.

3.6 The Nonlinear Model

The final nonlinear model of the octocopter is compactly presented here. Firstly the derived body forces
and torques from sections 3.4.1 - 3.4.3 are gathered as following

FB = FM + FD +mgRI→Bez (3.51)
MB = MM +MD +MP (3.52)

where now the gravitational force is added. Note the positive sign on mg since the z-axis is pointing down,
see Figure 3.8. Together with derived rigid body equations of motion (3.34)-(3.35) the body translational
and rotational accelerations are given by the following nonlinear differential equation

v̇B = 1
m (FM + FD) + gRI→Bez − ωB × vB (3.53)

ω̇B = I−1
B (MM +MD +MP − ωB × IBωB). (3.54)

Note that FD and MD, Mp are functions of vB respectively ωB . Furthermore, the control input u is
affecting ḞM and ṀM as described in (3.50)

The above properties are all defined in the body frame. Usually the purpose is to control the octocopter
with respect to an inertial frame, e.g., controlling the Euler angles. Therefore, some operation is required,
transforming properties in the body frame to the inertial frame. In this thesis, two methods of doing
so have been proposed. The first method uses the Euler angles rotation matrix (3.6) and the Euler
angular-rate matrix (3.9). Together with (3.53) - (3.54), the translational and rotational position in the
inertial frame can be determined from

vI = RB→IvB (3.55)
η̇I = WB→IωB . (3.56)
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This method is going to be used when analyzing and deriving control algorithms since it is intuitive to
work with Euler angles. The drawback is that singularities might occur when updating the Euler angles
using the Euler angular-rates matrix WB→I , see section 3.1.2.

These singularities can be eliminated by using the second approach proposed, quaternions, see section
3.2. This method uses the quaternion rotation matrix (3.24) to convert between the two frames. The
initial quaternion is computed by using (3.25) and Euler angles. The quaternion is then updated by
using (3.27). So by using quaternions the translational position in the inertial frame can be determined
from

vI = QB→IvB (3.57)
q̇ = 1

2q ⊗
(
0 ωB

)ᵀ (3.58)

where QB→I(q). The rotational position i.e., Euler angles η, can be obtained by using (3.26). This
method is going to be used when simulating the nonlinear system, since gimbal lock can be avoided.

3.7 Linearized Model

In order to apply linear control theory, a linear system is needed. Almost all systems are in some sense
nonlinear. When approximating a nonlinear system by a linear one, it is important to determine if the
approximation is good and can be motivated. By assuming that the octocopter is kept within some
equilibrium i.e., hovering, a linearization of the nonlinear system can be motivated. Furthermore, linear
systems are often easier to control and to analyze and many popular control methods are only applicable
on linear systems. Therefore, a linearization of the nonlinear system in section 3.6 is made. The linearized
system can be derived by doing a first order T.E (Taylor expansion) about some equilibrium. For an
arbitrary nonlinear system ẋ = f(x,u) with an equilibrium in x0 and u0 a first order T.E gives

ẋ ≈ ∂f

∂x

∣∣∣∣
x0

x+
∂f

∂u

∣∣∣∣
u0

u where f(x0,u0) = 0.

In the case of the octocopter, a natural selection of equilibrium is rotation free hovering which implies
that vB = ωB = 0. Without going into detail, linearization of the nonlinear body forces result in

FD ≈ 0

MD ≈ 0

MP ≈ 0

(3.59)

which is intuitive since no translation nor rotation is accomplished. Rotation free hovering also implies
η̇ = 0 hence linearization about the equilibrium η0 = 0 gives the rotation and angular rate matri-
ces

R ≈ I

W ≈ I.
(3.60)

Note that the linearization holds for any of the derived Euler rotation matrices. Linearization of the
control input u about hovering can simply be accomplished by a change of variable which gives

ũ = u+
(
0 0 −mg 0 0 0

)ᵀ (3.61)

where ũ is the actual control input to the system. By now combining (3.53)-(3.54), (3.59)-(3.61) and
the nonlinear model using Euler angular rates matrix (3.56) one gets that

v̇I = Iv̇B

v̇B = 1
mFM

η̇I = IωB

ω̇B = I−1
B MM

⇒

{
v̇I = 1

mFM

η̈I = I−1
B MM

(3.62)
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Now a complete linearized model including the motor dynamics is presented. By using the relationship
(3.50) relating the control input to the motor forces and torques and (3.62) the translation and rotation
accelerations of the octocopter can be written as

 v̇I
η̈
v̇M

 =
1

τMm


τMI 0
0 τMmI−1

B

−mI 0
0 −mI

vM +
1

τM


0 0
0 0
I 0
0 I

u (3.63)

where 0, I ∈ R3×3. Next a state-space representation of the complete linearized system is made i.e., from
control input to position and rotation in space. It is fairly obvious that the system (3.63) is decoupled
e.g., only the states (z, ż, z̈) and input uz will affect the states (z, ż, z̈). Therefore, it is not necessary
to write the complete system by using just one state-space representation. Instead, each decoupled
subsystem is written in the state-space form

ẋi = Aixi +Biui

yi = Cixi +Diui, i = 1, 2, . . . , 6
(3.64)

where

xi =

x3i−2

x3i−1

x3i

 , yi =

(
y2i−1

y2i

)
(3.65)

and

Ai =

0 1 0
0 0 ci
0 0 − 1

τM

 , Bi =

 0
0
1
τM

 , Ci =

(
1 0 0
0 1 0

)
, Di = 0. (3.66)

Here c = ( 1
m ,

1
m ,

1
m ,

1
Ixx

, 1
Iyy
, 1
Izz

) and e.g., i = 4 corresponds to the states and control input

x4 =

x10x11
x12

 =

 ϕ

ϕ̇
MMϕ

 , u4 = uϕ. (3.67)

Note that each last state x3i is not measured, see section 2.1.3. From the state-space model (3.64)
with (3.66) a general transfer function matrix Gi(s) can be formulated, relating the control input to the
output. It can be obtained by performing a Laplace transform on (3.64) and solving for the transfer
function matrix from U(s) to Y (s), this gives

Gi(s) = Ci(sI −Ai)
−1Bi +Di. (3.68)

By then using the state-space matrices (3.66) the transfer function matrix Gi(s) is given by

Gi(s) =
1

s2(τMs+ 1)

(
ci
cis

)
(3.69)

corresponding to subsystem i.
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Chapter 4

Control

In this chapter the complete state and motor control of the octocopter is covered. An octocopter is a
good example of vehicle in need of control. The vehicle has unstable dynamics and would without control
not be flyable. This chapter contains the major content of this thesis report and is carefully handled.
This chapter can be divided into two parts. The first part of this chapter, section 4.1 focuses on propos-
ing a method for converting the control input i.e., motor forces and torques into corresponding motor
commands. Then, in section 4.2 - 4.4 control laws are derived for controlling states of the octocopter in
6DoF. In section 4.2 a pilot-based controller controlling the Euler angles ϕ, θ and Euler angular-rate ψ̇
is derived. In section 4.3 the pilot-based controller is alternated to an attitude control which controls
all Euler angles. Both the pilot-based and attitude controllers use a full state feedback controller with a
reduced observer, observing the motor dynamics. Lastly, in section 4.4, a position controller is designed
using the nonlinear Lyapunov based control, controlling the translational positions x, y and z.

The control chain of the whole octocopter from desired reference to motor control input can be divided
into several parts. An illustration of this control chain can be seen in Figure 4.1

Reference
States

Octocopter
States

Control
Algorithm

Motor
Control Motors

xr

x

u ωM Convert uM

Figure 4.1: The control chain of the octocopter.

where

• Reference States - Are the current desired reference states xr of the octocopter e.g., inputs
from radio receiver or a given trajectory. Note that the reference could partially or complete be
computed within the block e.g., the octocopter is autonomous.

• Octocopter States - Are the current states of the octocopter x e.g., position and velocity. This
block uses sensor data and signal fusion technic(s) to compute and estimate the current states.

• Control Algorithm - This block computes the system control input u by using the methods
described in sections 4.2-4.4. The algorithm may use x and xr.

• Motor Control - Converts the model control input u into corresponding motor control inputs
ωM by using the derived approach in section 4.1.

• Convert - This block implements the equation 2.8 which relates ωM to uM and is used for
converting between these properties.
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• Motors - The motors of the octocopter, section 2.1.10. The motor dynamics are given in section
3.5.

4.1 Motor Control

In this section a method for converting the model control input u to motor control inputs uM i.e., ω2
Mi

,
is proposed. As mentioned in section 3.5, the model control inputs are affecting the motor forces and
torques, not the angular-rates controlling the motors. This requires a method of converting the model
control inputs to corresponding angular-rates and is a crucial and important part when designing an
octocopter. In section 3.4.1 the relation between the motor forces, torques and motor angular velocities
were found to be given by (3.40) - (3.41). From these relationships, a matrix Γ ∈ R6×8 can be defined
which relates the squared motor angular velocities ω2

Mi
with the model control input in translation

ut = (ux, uy, uz)
ᵀ and rotation ur = (uϕ, uθ, uψ)

ᵀ. Let

Γ =

(
f1 f2 · · · f8

m1 m2 · · · m8

)
(4.1)

where

fi = cTeMi

mi = cTrMi × eMi + (−1)i+1cQeMi .

By using Γ the control inputs ut, ur can now be determined from to the squared motor angular-rates
as following

u =

(
ut
ur

)
= ΓωM2 (4.2)

where

ωM2 ≡
(
ω2
M1

ω2
M2

· · · ω2
M8

)ᵀ
.

Since u ∈ R6×1 and Γ ∈ R6×8 the linear system (4.2) is underdetermined i.e., more unknowns than
equations. This means that there might exist infinitely many solutions to (4.2), which gives arise to the
question: if there exists infinitely many solutions, how should a solution be chosen?

First, it is proven that (4.2) has infinitely many solutions by using the Roché-Capelli theorem [23].
Before doing so, for convenience, from now on in this section A = Γ, x = ωM2 and y = u. Roché-
Capelli theorem states that a system Ax = y is consistent, solution(s) exists, if and only if

rank(A) = rank(A|y)

where A|y is the augmented matrix. Furthermore, if the system is consistent, the following holds

1. The system has exactly one solution if n = rank(A).

2. The system has infinitely many solutions if n > rank(A).

where n is the number of unknowns. In the case of (4.2), it is checked in MATLAB that rank(A) = 6
i.e., full rank, which also is fairly intuitive. Since A has full rank, the augmented matrix rank(A|y)
must also have full rank since it cannot be less than rank(A). Hence according to Roché-Capelli the
system (4.2) is consistent. Now it is left to show that infinitely many solutions exists. Since the number
of unknowns n = 8 > rank(A) = 6, the system has infinitely many solutions. Since (4.2) has infinitely
solutions, it is of importance to determine how a solution should be chosen. Approaches for choosing
a solution is discussed in the following sections 4.1.1-4.1.3. Before doing so, in section 2.1.10 lower and
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upper boundaries ωMmin respectively ωMmax on the angular velocities of the motors are defined. These
boundaries i.e., inequality constraints can be written as

Bx ≤ c (4.3)

where

B =

(
−I
I

)
, c =

(
−1ωMmin

1ωMmax

)
. (4.4)

Note that I ∈ R8×8 is the identity matrix and 1 ∈ R8×1 is a vector with ones.

4.1.1 Minimizing the L2-norm

One approach of finding a solution to (4.2) is to minimize the L2-norm of x i.e., ||x||2. Since minimizing
the square root of a function is the same as minimizing just the function itself and since ||x||22 = xᵀx,
the following optimization is formulated

min
x

xᵀx s.t
{
Ax− y = 0

Bx− c ≤ 0
(4.5)

where x,y,A and B are defined in section 4.1. The optimization problem (4.5) can be solved by
using Lagrange multipliers and the KKT (Karush-Kuhn-Tucker) conditions [13]. The details about this
approach are not discussed here. For (4.5) the Lagrange function is given by

L(x,λ,µ) = xᵀx+ λᵀ(Ax− y) + µᵀ(Bx− c) (4.6)

where λ and µ are the Lagrange multipliers determined from to the conditions in (4.5). By using the
KKT conditions, the following conditions arise

• ∂L

∂x

∣∣∣∣
∗
= 2x∗ᵀ + λ∗ᵀA+ µ∗ᵀB = 0 (4.7)

• µ∗ᵀ(Bx∗ − c) = 0 (4.8)
• µ∗ ≥ 0 (4.9)
• Ax∗ − y = 0 (4.10)
• Bx∗ − c ≤ 0 (4.11)

Firstly, from (4.7) one easily can see that ∂2L
∂2x > 0, hence x∗,λ∗,µ∗ will provide global optimality given

that the KKT conditions are fulfilled. From the KKT condition (4.8)

µ∗ = 0 or Bx∗ = c

where the second condition is not feasible since the motors cannot both fulfill the lower and upper limit
simultaneously, hence µ∗ = 0. By using that, (4.7) and (4.10) one gets that

λ∗ = −2(AAᵀ)−1y

which inserted back into (4.7) gives

x∗ = Aᵀ(AAᵀ)−1y. (4.12)

So the optimization problem (4.5) has the optimal solution (4.12) if the KKT condition (4.11) is satisfied.
The solution matrix Aᵀ(AAᵀ)−1 is called the right pseudo-inverse matrix and will be denoted A+.
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As mentioned, the KKT condition (4.11) determines if the solution x∗ is optimal. Although these
condition are necessary, they do not give a very good intuition of how the solution space of (4.5) looks
like. Therefore, a heuristic approach is applied to get a better understanding of the boundary of the
solution space. The method chosen is to simply vary two-three elements in y and keep the rest constant
while by brute-force determine boundaries at which x∗ no longer satisfies (4.11). Since y is the control
input i.e., motor forces and torques, it is determined that a natural choice is to vary the control force uz
together with some control torque uϕ, uθ, uψ and let ux = uy = 0. It is natural to vary the control uz
together with some torque since the applied force in z determines how much torques will be available,
which also is going to become clear from the Figures below. Furthermore, the control forces ux and uy
are set to zero since they are very small in relation to uz and are not going to be used for translational
purpose. Firstly only two variables are varied, which resulted in Figures 4.2-4.4.
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Figure 4.2: Available uϕ given uz. The marked area between and including the two boundaries umin and
umax is the area where the torque uϕ can be generated provided uz.
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Figure 4.3: Available uθ given uz. The marked area between and including the two boundaries umin and
umax is the area where the torque uθ can be generated provided uz.
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Figure 4.4: Available uψ given uz. The marked area between and including the two boundaries umin and
umax is the area where the torque uψ can be generated provided uz.

Firstly, from Figures 4.2 - 4.3 it can be seen that torque available in ϕ and θ is the same, which is due
to symmetry. Secondly, note that the available force in z begins at uz ≈ −8 N and ends at uz ≈ −80 N,
this is due to the lower and upper boundaries, 200 ≤ ωM ≤ 700 rad/s.

Furthermore, there is a breakpoint at uz ≈ −62 N, this change in slope is due to the tilted motors and
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will now be explained. In the interval uz = [−62,−8] N, the torque uϕ is the restricting factor. This
means that increasing uϕ will result in hitting the lower boundaries on ωM despite the fact that one could
generate more uz. This will cause the linear slope up to uz ≈ −62 N which can be seen in the Figures
4.2 - 4.3. But when uz = [−62 − 80] N, the force uz is the restricting factor. This means that there is
simply not enough of control in z left to generate torque in ϕ or θ i.e., hitting the upper boundaries on
ωM . Hence, a new linear slope from uz ≈ −62 onward can be observed in Figures 4.2 - 4.3.

According to Figure 4.4 the torque uψ available is not symmetrical in ψ. This is due to the fact that the
arm lengths of the octocopter are different and the motors are tilted. The tilted motors will generate
torque in ψ since the arm lengths are different, the longer arms directed counterclockwise will generate
a greater amount of torque in negative ψ. Hence, the non symmetrical distribution of uψ in ψ.

Lastly, a plot is made where three elements in y are varied, the force uz and the torques uϕ, uψ. Because
of the mentioned symmetry of the torques in ϕ and θ the torque uθ is not studied. For illustration a
colormap is made where the color corresponds to the minimum force uz required to generate the torques
uϕ and uψ, see Figure 4.5.
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Colormap of uφ and uψ given uz
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Figure 4.5: Colormap of uϕ and uψ given uz. Where uz is the minimum force required to generate the
torques uϕ and uψ.

From the colormap above, a non symmetrical distribution of uz about ϕ-axis can be observed i.e., less
force uz is required to generate negative torque uψ, which also can be observed in Figure 4.4. One can
also see that more negative torque uψ is possible to generate. From the Figure it also becomes clear that
here the torques uϕ and uψ are the restricting factors since |uz| < 80 N.

4.1.2 Minimizing Least Squares with Constraints

As concluded in section 4.1.1 a solution to (4.5) does not always exist, which raises the question: what
should be done when no solution exists? When no solution to (4.5) exist, there will not exist any
solution which both satisfies the equality and inequality constraints set on x. It is obvious that the
inequality constraints always have to be met since the octocopter can only operate in the space defined
by the inequality constraints. An approach of finding an alternative solution is to compute a x∗ which
generates forces and torques as close as possible corresponding to the control input y. Therefore, it is
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reasonable to minimize the least squared error of Ax − y subject to the inequality constraints. Hence,
the following optimization problem is formulated

min
x

||Ax− y||2 s.t Bx ≤ c. (4.13)

This problem can numerically be solved by using Lagrange multipliers and by introducing slack variables
to get it on the same form as in (4.5). This is not done here, but a numerical solution can be obtained by
using MATLAB’s function lsqlin which minimizes the least squared norm subject to equality and/or
inequality constraints. But since the processes of finding an optimal solution to (4.13) is iterative and
time consuming, it is determined that it is currently not feasible to implement such a process into the
software of the octocopter. This method can be applied when it is possible to run it completely separated
from the thread running the control of the octocopter. Therefore, an alternative method is needed when
no solution to (4.5) exists, which runs in constant time. Instead, when no solution to (4.5) exists, the
control demands are prioritized according to an algorithm which is explained in detail in the next section
4.1.3.

4.1.3 Control Boundaries and Priority Algorithm

From the discussion in sections 4.1.1 and 4.1.2 it is decided to use the right pseudo inverse A+ ≡
Γ+ to convert the motor control input u to angular motors velocities ωM . When using Γ+ it is of
importance to keep the desired control forces and torques within the boundaries seen in Figures 4.2 -
4.5, in order to ensure existence of solution. Therefore, control boundaries and a priority algorithm are
now derived.

Boundaries

A natural operating point for an octocopter is hovering, which implies uz = −mg. Furthermore, from
now on the forces ux = uy = 0, since translation in x, y is going to be accomplished by using the
angles ϕ, θ and ψ. To change these angles, the motor torques uϕ, uθ and uψ are used. Now numerical
boundaries on the motor torques are set. These boundaries can be chosen in many ways, it is decided to
not be too conservative when doing so. This since the most extreme operating conditions (e.g., maximal
roll, pitch and yaw commands simultaneously) will considerably and unnecessarily reduce control limits.
From Figures 4.2 - 4.5 and by using the derived Γ+ the following boundaries are chosen

|uϕ|, |uθ| ≤ 4.0 Nm
|uψ| ≤ 1.0 Nm.

(4.14)

Due to symmetrical reasons, the control boundaries on ϕ and θ are determined to be the same. Fur-
thermore, the boundaries on uϕ and uθ are selected so that both of these control signals can hit their
limits but still produce valid motor control signals. By investigating Figure 4.4 it can be seen that the
maximal available torque about ψ when hovering is uψ ≈ 1.15 Nm, therefore the limit on uψ is reduced
some to have a margin and to increase the control available about ϕ and θ. Note that it is not possible
to generate uψ = 1 Nm if uϕ and uθ are at their limits. The maximum torque uψ which can be generated
when uϕ and uθ are at their limits is only uψ ≈ 0.1 Nm.

Priority Algorithm

As mentioned, the limits in (4.14) can not be hit all at once. In order to handle situations where control
demands cannot be achieved, a priority algorithm is used. As mentioned, both uϕ and uθ can hit their
limits in any possible way. Furthermore, it is determined that control in ϕ and θ is more crucial than ψ,
since changing ψ will not by itself change translation. Hence, uϕ and uθ are priorities higher than uψ.
The priority algorithm is now described by pseudo code, see Algorithm 1.
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Algorithm 1 Priority Algorithm
1: function priority_algorithm(u, Γ+)
2: if check_control(u, Γ+) then return u

3: u1 ← 0
4: u2 ← 0
5: if check_control(u, Γ+) then return u

6: h← 0.1
7: nψ ← ⌈|u6|/h⌉
8: for i← 1 to nψ do
9: u6 ← reduce_control(u6, h)

10: if check_control(u, Γ+) then return u

11: u6 ← 0
12: nϕθ ← ⌈max(|u4|, |u5|)/h⌉
13: for j ← 1 to nϕθ do
14: u4 ← reduce_control(u4, h)
15: u5 ← reduce_control(u5, h)
16: if check_control(u, Γ+) then return u

17: u4 ← 0
18: u5 ← 0
19: return u

20: function check_control(u, Γ+)
21: ω2

M ← Γ+u
22: if ∀i 200 ≤ ωMi ≤ 700 then
23: return true
24: else
25: return false

26: function reduce_control(uk, h)
27: if |uk| > h then
28: uk ← uk − sign(uk)h
29: else
30: uk ← 0

31: return uk

The main function, priority_algorithm(u, Γ+) first checks if the incoming control u is possible to ac-
complish by using the helping function check_control(u, Γ+), which simply checks if ωM lies within the
boundaries. Secondly, it sets ux = uy = 0 and checks if the control is valid. Thirdly, it decreases uψ by
the step h = 0.1 until zero by using the helping function reduce_control(uk, h), during each iteration it
is checked if the control is valid. Lastly, uϕ and uθ are decreased by h until zero, during each iteration
it is checked if the control is valid. Note that it is made sure that uϕ = uθ = uψ = 0 after each for-loop.
If no solution with the current uz is found, all other elements in u will be zero.

Note, it is here assumed that the limits on u in (4.14) are met, this is checked in the implemented code.
Furthermore, the algorithm always runs in finite constant time O(9/h) = O(1) since h is fixed and does
not dependent on the input data. In the worst case, if h = 0.1 the algorithms executes ≈ 600 lines of
code before it halts. Hence, in C this time will be neglectable.

4.2 Pilot-based Control

The pilot-based controller is designed in such a way that an active human pilot can operate the octocopter.
There are of course many approaches of doing so, but a common way is to control the Euler angles roll ϕ,
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pitch θ, angular yaw-rate ψ̇ and the motor force in z, FMz . Since the control in z is quite trivial for the
pilot and the estimations of translational movement is not as accurate as rotational, see section 2.1.3, it
is determined that no feedback controller in z is needed, only open-loop control.

There are many control techniques which are appropriate for this type of system. It is decided to use
a linear control method. Partially since linear control methods are easier to implement and derive than
a nonlinear control method and since last year’s thesis investigated a PID controller. Therefore, it is
decided to use state feedback control. State feedback control or pole-placement is a commonly used linear
control method. This method allows for arbitrary pole-placement of a LTI (linear time invariant) system
as long as all states are measurable and the system is controllable [25, p. 237]. Since the third state of
each subsystem in (3.66) is not measured, an observer is required for the use of full state feedback. For
this purpose a reduced observer is used and derived in section 4.2.3. Before that, it is shown that the
system (3.64) is both controllable and observable, see section 4.2.1.

When tuning a controller, it is of importance that the control is fast enough. According to [9], the average
reaction time, vision to hand, is 267 ms. Therefore, it is concluded that the rise time of the controller
should be about this value. A somewhat slower control will not cause any major problems since the
pilot has to learn how the system behaves. In means of oscillations, it is decided that the pilot-based
controller should not produce large overshoots.

Since the control input is bounded, see section 4.1.3, it is important to produce control inputs within these
boundaries. According to these control boundaries, the control input in yaw is going to be considerably
smaller than the one in roll and pitch. Also, since translational movement can not be accomplished by
only changing yaw, it is determined that the lower boundary on uψ is not going to be an issue. The
magnitude of the control signal is partially dependent on the demanded reference. Therefore, it is crucial
to determine reasonable reference values. It is decided that sufficient maximum roll and pitch references
are π

8 rad and maximum reference in yaw-rate 2 rad/s. These values are going to be of importance when
tuning the controllers.

4.2.1 Controllability and Observability

Controllability and observability describe how the states of a system are affected by the inputs and how
they affect the outputs. These concepts are of importance when analyzing and for understanding the
behavior of the system. The definitions of controllability and observability are given by [25, p. 45]. But
roughly, a LTI system is said to be controllable if all states can reach any state in finite time. Furthermore,
a system is said to be observable if it lacks unobservable states. Where an unobservable state is a state
that cannot be seen in the output. For a LTI system the controllability and observability matrices are
here denoted S respectively O and must have full rank for the system (3.64) to be controllable and
observable. The matrices are given by

S(A,B) =
(
B AB A2B · · · An−1B

)
(4.15)

O(A,B) =


C
CA
CA2

...
CAn−1

 (4.16)

where n is the order of the system. By investigation it is quite clear that the system (3.64) with (3.66)
is going to be both controllable and observable, but this is now shown. It is first noted that n = 3. The
controllability matrix for the system is given by

S(Ai,Bi) =

 0 0 ci
τM

0 ci
τM

− ci
τ2
M

1
τM

− 1
τ2
M

1
τ2
M

 (4.17)
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which clearly has full rank i.e., 3 if ci, τM ̸= 0. So the system is controllable. Now it is shown that the
system also is observable by checking the observability matrix

O(Ai,Ci) =


1 0 0
0 1 0
0 1 0
0 0 ci
0 0 ci
0 0 − ci

τM

 (4.18)

which clearly has full (column) rank i.e., 3 if ci, τM ̸= 0.

4.2.2 State Feedback Control

As mentioned, state feed back control allows for arbitrary pole-placement as long as all states are mea-
surable and the system is controllable. In the previous section 4.2.1 it is shown that the system (3.64)
is both observable and controllable. But since the last state in (3.64) with (3.66) is not measured, an
observer estimating this state is needed. All states will be made available by using a reduced observer,
see section 4.2.3. In the single input case the general state feedback control is given by

u = −Lx̃ (4.19)

where the change of variable x̃ = x − xr is introduced to track some reference xr. By applying the
controller and variable change to the system (3.64) one gets that

˙̃x = (A−BL)x̃ (4.20)

which is asymptotically stable if all the eigenvalues of A−BL have negative real part which implies

lim
t→∞

x̃→ 0⇒ lim
t→∞

x→ xr. (4.21)

Hence, the controller tracks the reference xr. Conditions and appropriate values on L are derived in
sections 4.2.4-4.2.5.

To be able to apply integral action for control of ϕ and θ a new integrating state is necessary. Adding an
extra integrating state can reduce the effect of modeling errors and disturbances, it can be compared to
the I-part in a PID controller. The state-space matrices for i = 4, 5 in (3.64) with the added integrating
state will thus be given by

Ai =


0 1 0 0
0 0 1 0
0 0 0 ci
0 0 0 − 1

τM

 , Bi =


0
0
0
1
τM

 , Ci =

1 0 0 0
0 1 0 0
0 0 1 0

 , Di = 0. (4.22)

Note that the state ψ̇ already has the integrating state ψ and therefore can use the previous state-
space matrices (3.66). Also, the new system with the above state-space matrices is still controllable and
observable, which can be shown by using (4.15)-(4.16).

4.2.3 Reduced Observer

As mentioned, the state feedback controller requires all states to be measurable and the system to be
controllable. But since the third state of each subsystem in (3.66) and forth in (4.22) is not measured,
an observer is required for the use of full state feedback. Before moving on it is noted that the state
space matrices (3.66) and (4.22) are observable, see section 4.2.1. Since only one state of each subsystem
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requires estimation a reduced observer is suggested. Consider the system below where the states x1 ∈
Rp×1 are measured and x2 ∈ Rq×1 are not measured with the scalar control input u(

ẋ1

ẋ2

)
=

(
A11 A12

A21 A22

)(
x1

x2

)
+

(
B1

B2

)
u (4.23)

y =
(
I 0

)(x1

x2

)
= x1 (4.24)

where I ∈ Rp×p and 0 ∈ Rp×q. Let the estimate of x2 be given by x̂2. The approach used for finding a
reduced observer is the same one used for a full state Luenberger observer. Since only the states x2 are
in need of estimation one gets that

˙̂x2 = A21x1 +A22x̂2 +B2u+ d (4.25)

where d is called a driver function, driving the estimated x̂2 towards x2. The matrix K ∈ Rq×p should
be selected such that the x̂2 → x2 fast enough. This means that d → 0 as x̂2 → x2. An appropriate
candidate for d can be found by using the equation for ẋ1 (4.24), one gets that

d = K(ẋ1 −A11x1 −A12x̂2 −B1u) (4.26)

which equals zero if x2 = x̂2. It is now shown that the proposed driver assures that the estimate error
e2 = x2 − x̂2 converges to zero. Taking the time derivative of e2 gives

ė2 = ẋ2 − ˙̂x2

= A21x1 +A22x2 +B2u−A21x1 −A22x̂2 −B2u− d

= A22(x2 − x̂2)−K(ẋ1 −A11x1 −A12x̂2 −B1u)

= A22(x2 − x̂2)−K(A11x1 +A12x2 +B1u−A11x1 −A12x̂2 −B1u)

= A22(x2 − x̂2)−KA12(x2 − x̂2)

= (A22 −KA12)e2

which has the known solution e2 = eA22−KA12e2(t0) and is asymptotically stable if all eigenvalues to
A22 −KA12 have real negative part. The differentiation ẋ1 in (4.26) can amplify measurement noise,
this can be avoided by applying the change of variable z = x̂2−Kx1 which with (4.25) and (4.26) yields
the final reduced observer

ż = ˙̂x2 −Kẋ1 (4.27)
= (A21 −KA11)x1 + (A22 −KA12)(z +Kx1) + (B2 −KB1)u. (4.28)

For the LTI system with the state-space matrices (4.22) the matrices in (4.24) are given by

A11 =

0 1 0
0 0 1
0 0 0

 , A12 =

 0
0
ci

 , A21 =
(
0 0 0

)
, A22 = − 1

τM
,

B1 =

0
0
0

 , B2 = 1
τM
, K =

(
k1 k2 k3

)
.

(4.29)

By using these one easily gets the eigenvalue of A22 −KA12 to be λ = −cik3 − 1
τM

and since stability
requires Re(λ) < 0 one gets that Re(k3) > − 1

τMci
. Since the parameters k1 and k2 do not affect the

stability of the observer these can be arbitrarily set. For simplicity k1 = k2 = 0 which together with
(4.28) and (4.29) gives the reduced observer

ż = −( 1
τM

+ kci)(z + kx3) +
1
τM
u, z(0) = z0 (4.30)
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where k ≡ k3 and the estimated state is given by x̂4 = z + kx3. Because the estimated state x̂4 equals
the delayed input u, section 3.5, the initial condition z0 is chosen such that x̂04 = u

2 , which gives
z0 = u

2 − kx03. Note that the equivalent matrices for the system with (3.66) will give arise to the same
condition and observer. The value of k is determined after the state feedback controller has been designed
since the observer should be faster than the system.

4.2.4 Roll and Pitch Control

As mentioned, the states roll and pitch have an extra integrated state and can be represented by the
state space equations given by (4.22). Since the goal is to track some reference state ϕr and θr, the
following variable change is made

x̃ = x− xr =


∫
(x2 − x2r)dt
x2 − x2r

x3
x4

 (4.31)

where e.g., x2 = ϕ, x3 = ϕ̇ and x4 =MMϕ
. Note that this variable change does not affect the state space

matrices (4.22). In order to determine conditions on L = (l1 l2 l3 l4), the characteristic polynomial is
computed

|λI − (A−BL)| = 1
τM

(τMλ
4 + (1 + l4)λ

3 + l3ciλ
2 + l2ciλ+ l1ci) (4.32)

where τM , ci > 0. By then using Routh-Hurwitz stability criterion for a fourth-order polynomial one
gets the following conditions on L

l1, l2, l3 > 0, l4 > −1
(1 + l4)l3

l2
> τM

(1 + l4)(l2l3ci − (1 + l4)l1)

l22ci
> τM

(4.33)

which guarantee stable roots to (4.32). Before moving on it is important to note that the conditions
(4.33) guarantee stability for the full linearized system (4.22).

Now appropriate values for L are chosen such that the controller behaves in a desirable manner as
discussed in the beginning of section 4.2. There are numerous ways of selecting L. One can directly
study the poles of the system or investigate how changing L affects the system. It is important to
understand that there are infinitely many L which provide stability. Therefore, L should be selected
such that the system behaves in an desired way which is quite subjective, especially when it comes to a
pilot-based controller. Besides stability, the control input u is bounded. This means that L should be
chosen such that u lies (under normal operating conditions) within the limits defined in section 4.1.3.
It is determined that u should be kept within its defined boundaries when a step in the reference signal
from the lower boundary to the upper boundary is applied e.g., ϕ ∈ [−π8 ,

π
8 ]. This will in a sense cover

the most demanding control signals under normal operating conditions.

Furthermore, the parameter for the reduced observer has to be set, during the tuning of the state feedback
controller k = 2 that gives a pole at λ ≈ −21 which initially should provide a sufficiently fast observer.
Before determining L, it is important to notice that the observer initially requires some time before it
has settled in, this since the initial condition given in (4.30) does not correspond the true initial state.
This is now illustrated by simulating the LTI system in roll with the state feedback L = (2, 5, 2, 1)
which are reasonable values (compare to Table 4.1), see Figure 4.6.
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Figure 4.6: Reduced observer estimating MMϕ
with k = 2 and L = (2, 5, 2, 1). Step in roll (at t = 2

s) with initial condition ϕ0 = −π8 and reference ϕr = π
8 .

From Figure 4.6 it can be seen that it takes about 1 s before the observer has settled in and estimates the
state MMϕ

well. Therefore, in order to not be too conservative, all simulations following in this section
will give the observer the same initial condition as the true state.

It is now described and illustrated how L is selected for achieving desired control in roll. It is chosen
to initially not have any integrating action. Integrating action is good when rejecting disturbances and
compensating for modeling errors but will also increase overshoot and settling time, this will later be
compensated for by filtering the reference signal. But for now l2 = 0 and is added and tuned after the
tuning of l2, l3 and l4 is done. By letting l1 = 0, stability of the integrating state is obviously not
achieved. If one does not need to stabilize the integrating state the last stability criterion in (4.33) can
be ignored, this can be shown by using Routh-Hurwitz stability criterion for a third-order polynomial,
compare also to (4.37). Therefore, initially L = (0, 1, 1, 1). Each parameter in L is then varied to
study how the system is affected e.g., rise time, settling time, overshoot, undershoot. Also, the generated
control signal, estimated state by the observer and closed loop systems poles are investigated.

Firstly, the parameter l2 is varied, which can be seen as the proportional part of the controller. This since,
applying a step in the reference ϕr when the octocopter is stationary in rotation i.e., ϕ̇ = θ̇ = ψ̇ = 0,
the magnitude of the control input uϕ is mainly affected by the proportional part. Hence, l2 should be
selected such that |uϕ| ≤ 4 Nm, see section 4.1.3. As mentioned, the LTI system is simulated for the
maximum allowed positive step ϕr =

π
8 in the reference where the system initially has full negative roll

ϕ0 = −π8 , see Figure 4.7.
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Figure 4.7: State feedback with L = (0, l2, 1, 1). Step in roll with initial condition ϕ0 = −π8 and
reference ϕr = π

8 .

From Figure 4.7 it can bee seen how the parameter l2 affects the step response. Increasing l2 will increase
rise time but also the possibility for oscillations. Again, note that l2 can not be tuned too large since it
will produce invalid control signals. Now the LTI system with state feedback is simulated by varying l3,
which can be seen as the derivative part of the controller, see Figure 4.8.
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Figure 4.8: State feedback with L = (0, 1, l3, 1). Step in roll with initial condition ϕ0 = −π8 and
reference ϕr = π

8 .
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From Figure 4.8 it can bee seen how the parameter l3 affects the step response. Increasing l3 will reduce
oscillations but increase the rise time. The parameter l3 is going to be tuned such that the system
with the chosen l2 and without any integrating part does not produce any overshoot i.e oscillations.
Furthermore, l3 should not be selected too large since the state ϕ̇ might experience noise. Now the LTI
system with state feedback is simulated by varying l4, which can be seen as the second derivative (motor
torque) part of the controller, see Figure 4.9.
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Figure 4.9: State feedback with L = (0, 1, 1, l4). Step in roll with initial condition ϕ0 = −π8 and
reference ϕr = π

8 .

From Figure 4.9 it can bee seen how the parameter l4 affects the step response. Increasing l4 will to
some point increase the rise time, which after this point starts to decrease again. Increasing l4 will
also increase the possibility for overshoot. Furthermore, it can be seen that there exists a crucial point
where the step response experiences oscillations during the initial rise, see l4 = −0.5. This is due to
the fact that there exists a significant large time constant in the motor dynamics, see section 3.5. The
parameter l4 is selected after l2, l3 and such that the rise time is kept low but the oscillations during the
initial rise are removed. The final parameter tuned is l4, which determined how much the integrating
state is affecting the system. The LTI system with state feedback is simulated by varying l1, see Figure
4.10.
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Figure 4.10: State feedback with L = (l1, 1, 1, 1). Step in roll with initial condition ϕ0 = −π8 and
reference ϕr = π

8 .

From Figure 4.9 it can bee seen how the parameter l1 affects the step response. Increasing l1 will
increase rise time but also overshoot. As mentioned, having an integrating part is good when rejecting
disturbances and handling modeling errors. Furthermore, it is decided that the integrating part should
not be too large and should be seen as the parameter fine-tuning the step response. It is therefore decided
to have an integrating part which corresponds to ≈ 50% of the proportional part i.e. l1 ≈ l2

2 . So when
l2 = 1 this corresponds to l1 ≈ 0.4. From Figure 4.9 one can see that this corresponds in a quite large
overshoot which decays over a longer period. This is due to the fact that the step in reference will build
up an integration part before the response reached its final reference value. This effect can be reduced
by filtering the reference value used in the integrating state, see (4.31). It is decided to implement a first
order low-pass filter, given by

XRF (s) = GIF (s)XR(s) =
1

τIF s+ 1
XR(s) (4.34)

where τIF is the filter time constant and is tuned for appropriate behavior. Note that only the reference
used in the integrating state is filtered. The LTI system with state feedback and using the integrating
part is now simulated for different values on τIF , see Figure 4.11.

47



time t [s]
0 1 2 3 4 5 6 7 8 9 10

ro
ll
φ
[r
ad

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Step in roll with L = (0.5, 1, 1, 1) for different τIF

τIF = 0.01
τIF = 0.4
τIF = 0.8
τIF = 1
φr =

π
8

Figure 4.11: State feedback with L = (0.5, 1, 1, 1) for different τIF . Step in roll with initial condition
ϕ0 = −π8 and reference ϕr = π

8 .

From Figure 4.11 it can bee seen how the parameter τIF affects the step response. Increasing τIF will
decrease the rise time but also decrease the overshoot. Furthermore, it can be seen that larger values
on τIF will result in undershoot. The parameter τIF is selected such that no (or very little) undershoot
is present. The above explained procedure for tuning all the mentioned parameters is followed and the
final values are given in Table 4.1.

l1 l2 l3 l4 τIF k

2.0 5.0 1.9 1.0 0.37 2.0

Table 4.1: Table showing the final values parameters of the state feedback controller, low-pass filter and
reduced observer, in roll.

The final system is simulated when applying the previous used step response, see Figure 4.12.
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Figure 4.12: State feedback with L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2. Step in roll with initial
condition ϕ0 = −π8 and reference ϕr = π

8 .

From the above Figure it can be seen that the reference value is well tracked. By using MATLAB
properties such as rise time (10-90 %), settling time (2 % error), overshoot and undershoot are computed,
see Table 4.2.

Rise time 0.43 s

Settling time 0.71 s

Overshoot 1.9 %

Undershoot 0.30 %

Table 4.2: Table showing rise time, settling time, overshoot and undershoot for the chosen state feedback
controller in roll, corresponding to Figure 4.12.

According to the beginning of this section, the pilot-based controller should be fast and allows for a
small overshoot, in this case only 1.9 %. From Table 4.2 it can be seen that the rise time and settling
time are not far away from the previously mentioned normal reaction time of a human which is about
300 ms. The undershoot present is considered neglectable. Next the control signal is shown, see Figure
4.13.
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Figure 4.13: Control signal uϕ with state feedback L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2. Step
in roll with initial condition ϕ0 = −π8 and reference ϕr = π

8 .

From the above Figure it can be seen that the control signal is such that |uϕ| ≤ 4 Nm, hence the boundary
condition is satisfied. Finally, the estimated state M̂Mϕ

from the reduced observer is investigated, see
Figure 4.14.
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Figure 4.14: State estimation of MMϕ
with state feedback L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2.

Step in roll with initial condition ϕ0 = −π8 and reference ϕr = π
8 .
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From the above Figure it can be seen that the state is well estimated by using the reduced observer
where k = 2. It is important to note that the initial condition to the observer is the same as the true
state. Furthermore, no disturbances or modeling errors are present in these simulations. It can be shown
that the determined L = (2.0, 5.0, 1.9, 1.0) provides asymptotic stability by using the derived condition
in (4.33), furthermore the eigenvalues closed-loop system A −BL in pitch are computed and given in
Table 4.3.

λ1 λ2 λ3 λ4

−4.49 + 5.72i −4.49− 5.72i −3.87 −0.483

Table 4.3: Table showing eigenvalues of the closed-loop system A − BL in roll where L =
(2.0, 5.0, 1.9, 1.0), using three significant figures.

From Table 4.3 one can see that all eigenvalues have real negative parts i.e., the system is asymptotically
stable. Furthermore, the two first poles have imaginary parts. By using the observer parameter k = 2 one
gets that the observer pole is about 3 times larger than the largest pole of the closed-looped system.

By using the same procedure as above the mentioned parameters are selected to derive control of the
pitch angle θ. The values found are given in Table 4.4.

l1 l2 l3 l4 τIF k

2.0 5.0 1.9 1.0 0.37 2.0

Table 4.4: Table showing the final values parameters of the state feedback controller, low-pass filter and
reduced observer, in pitch.

As one can see from the above table, the exact same values are used as for roll control. The only
difference between roll and pitch is the moment of inertia component which according to section 2.2.2
only differs with ≈ 4 %. The step response of the LTI system with the state feedback controller is once
again illustrated, see Figure 4.15.

51



time t [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p
it
ch

θ
[r
ad

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Step in pitch with L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2

θ

θr =
π
8

Figure 4.15: State feedback with L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2. Step in pitch with
initial condition θ0 = −π8 and reference θr = π

8 .

From the above Figure it can be seen that the reference value is well tracked. Once again, properties
such as rise time, settling time, overshoot and undershoot are computed, see Table 4.5.

Rise time 0.44 s

Settling time 0.72 s

Overshoot 0.88 %

Undershoot 0.27 %

Table 4.5: Table showing rise time, settling time, overshoot and undershoot for the chosen state feedback
controller in pitch, corresponding to Figure 4.15.

By comparing Table 4.5 to the one for roll control Table 4.2 it can be seen that there is no great
difference. By using the same values as for roll control the rise time and settling time are almost the
same. The overshoot and undershoot have slightly decreased. Next the control signal is shown, see
Figure 4.16.
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Figure 4.16: Control signal uθ with state feedback L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2. Step
in pitch with initial condition θ0 = −π8 and reference θr = π

8 .

Again, from the above Figure it can be seen that the control signal is such that |uθ| ≤ 4 Nm, hence
the boundary condition is satisfied. Finally, the estimated state M̂Mθ

from the reduced observer is
investigated, see Figure 4.17.
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Figure 4.17: State estimation of MMθ
with state feedback L = (2.0, 5.0, 1.9, 1.0), τIF = 0.37 and k = 2.

Step in pitch with initial condition θ0 = −π8 and reference θr = π
8 .

53



From the above Figure it can be seen that the state in pitch also is well estimated by using the reduced
observer where k = 2. The eigenvalues closed-loop system A−BL in pitch are computed and given in
Table 4.6.

λ1 λ2 λ3 λ4

−4.59 + 6.10i −4.59− 6.10i −3.67 −0.483

Table 4.6: Table showing eigenvalues of the closed-loop system A − BL in pitch where L =
(2.0, 5.0, 1.9, 1.0), using three significant figures.

From Table 4.6 one can see that all eigenvalues have real negative parts i.e., the system is asymptotically
stable. The poles do not differ much from the poles for the closed-looped system in roll, hence the same
reasoning about the observer can be made here.

4.2.5 Yaw-rate Control

Since control in yaw-rate is desired, no extra integrating state for the system has to be added, only a
change of variable is required. The following change of variable is made

x̃ = x− xr =

∫
(x2 − x2r)dt
x2 − x2r

x3

 (4.35)

where x2 = ψ̇ and x3 = MMψ
. Since now x̃ ∈ R3×1, L = (l1 l2 l3) and therefore the characteristic

polynomial is reduced to

|λI − (A−BL)| = 1
τM

(τMλ
3 + (1 + l3)λ

2 + l2ciλ+ l1ci). (4.36)

By using Routh-Hurwitz stability criterion for a third-order polynomial one gets the following conditions
on L

l1, l2 > 0, l3 > −1
(1 + l3)l2

l1
> τM

(4.37)

which guarantee stable roots to (4.36). Now the same procedure for selecting L as for roll and pitch is
followed. The found values are given in Table 4.7.

l1 l2 l3 τIF k

0.12 0.20 −0.30 0.60 1.0

Table 4.7: Table showing the final values parameters of the state feedback controller, low-pass filter and
reduced observer, in yaw-rate.

From Table 4.7 one can see that the parameters are smaller in size compared to the ones for controlling
roll and pitch. This since the available control input in yaw uψ is considerably less, see section 4.1.3.
Furthermore, the determined L provides stability according to (4.37). Also, note that now k = 1, which
provides a sufficiently fast observer and gives λ ≈ 11, compare to Table 4.9. By using the determined
state feedback, low-pass filter and observer, the step response in Figure 4.18 is acquired.
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Figure 4.18: State feedback with L = (0.12, 0.20, −0.30), τIF = 0.60 and k = 1. Step in yaw-rate with
initial condition ψ̇0 = −2 and reference ψ̇r = 2.

From the above Figure one can directly note the larger overshoot compared to the previous step responses
in roll and pitch. It is determined to have larger overshoot when controlling the yaw-rate because of
modeling errors and disturbances due to e.g., aerodynamic effects. Aerodynamic effects are much more
prominent when controlling rate rather than position, since e.g., air drag is acting on the rotating
octocopter which would generate a counter torque, see section 3.4.2. Hence, this overshoot is going
to be reduced when simulating the full nonlinear system. The rise time, settling time, overshoot and
undershoot are computed and given in Table 4.8.

Rise time 0.91 s

Settling time 4.6 s

Overshoot 18 %

Undershoot 0.74 %

Table 4.8: Table showing rise time, settling time, overshoot and undershoot for the chosen state feedback
controller in yaw-rate, corresponding to Figure 4.18.

From the table it is clear that the performance is not as good as the controller in roll and pitch, which is
mainly due to the limited control input. But as mentioned in the beginning of section 4.2 fast response
in yaw-rate is not as crucial as in roll and pitch. The undershoot is also more prominent compared to the
previous controls but still relatively small. Now the control signal for a step in yaw-rate is investigated,
see Figure 4.19.
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Figure 4.19: Control signal uψ with state feedback L = (0.12, 0.20, −0.30), τIF = 0.60 and k = 1. Step
in yaw-rate with initial condition ψ̇0 = −2 and reference ψ̇r = 2.

From Figure 4.19 it can be seen that |uψ| ≤ 1.0 Nm, thus the boundary on the control signal is satisfied.
Also, note the behavior of uψ in the beginning, this is due to the fact that l3 < 0. Finally, the state
estimation from the reduced observer is examined, see Figure 4.20.
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Figure 4.20: State estimation of MMψ
with state feedback L = (0.12, 0.20, −0.30), τIF = 0.60 and

k = 1. Step in yaw-rate with initial condition ψ̇0 = −2 and reference ψ̇r = 2.
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From the Figure it becomes clear that the state is well estimated by letting k = 1. The eigenvalues
closed-loop system A−BL in yaw-rate are computed and given in Table 4.9.

λ1 λ2 λ3

−0.780 + 0.743i −0.780− 0.743i −3.11

Table 4.9: Table showing eigenvalues of the closed-loop system A − BL in yaw-rate where L =
(0.12, 0.20, −0.30), using three significant figures.

From the table it can be seen that the poles proved asymptotic stability and once again the two first
poles have imaginary parts. By using the observer parameter k = 1 one gets that the observer pole is
about 4 times larger than the largest pole of the closed-looped system.

4.3 Attitude Control

In this section an attitude controller is derived. The attitude controller controls all Euler angles roll ϕ,
pitch θ and yaw ψ. In this thesis the attitude controller is going to be used when controlling the position
of the octocopter, see section 4.4. The desired Euler angles are going to be computed by the position
controller and are there seen as control inputs. To keep things simple, it is decided to use the same
control method as for controlling roll and pitch in section 4.2. Therefore, only a controller for yaw is
required. Hence, here the state-space matrices are given by 4.22 where now i = 6. So all analysis done
in section 4.2 is applicable here.

Before moving on, it is important to note that the control input uψ is bounded and not as large as for
roll and pitch, see section 4.1.3. As in the previous section, the controller should be designed such that
for a reasonable step, the controller does not hit the defined control boundary. It is decided that the
controller should be able to go from ψ0 = 0 to ψr = π without hitting any boundaries. Also, the rise
and settling times are expected to be significantly larger than the ones obtained for the controllers in
roll and pitch. In terms of oscillations, they should be kept small since the attitude controller is going
to be given direct control inputs from the position controller, see section 4.4.

4.3.1 Yaw Control

By using the above requirements on yaw and the same method as in the previous section 4.2 the following
controller parameters are found, see Table 4.10.

l1 l2 l3 l4 τIF k

0.10 0.30 0.50 −0.20 1.4 1.0

Table 4.10: Table showing the final values parameters of the state feedback controller, low-pass filter and
reduced observer, in yaw.

From the above table it can be seen that the size of the values are once again small compared to Tables 4.1
and 4.4, which is due to the bounds on uψ. Furthermore, the determined L provides stability according
to (4.37), even with l3 < 0. Also, note that now k = 1, which provides a sufficiently fast observer
and gives λ ≈ 11, compare to Table 4.12. By using the determined state feedback, low-pass filter and
observer, the step response in Figure 4.21 is acquired.

57



time t [s]
0 2 4 6 8 10 12 14 16 18 20

ya
w

ψ
[r
ad

]

0

0.5

1

1.5

2

2.5

3

3.5
Step in yaw with L = (0.10, 0.30, 0.50, −0.20), τIF = 1.4 and k = 1

ψ

ψr = π

Figure 4.21: State feedback with L = (0.10, 0.30, 0.50, −0.20), τIF = 1.4 and k = 1. Step in yaw with
initial condition ψ0 = 0 and reference ψr = π.

From Figure 4.21 it can be seen that the reference value is followed well. The step response is relatively
slow compared to control of roll and pitch, see Figures 4.13 and 4.16. Some overshoot and undershoot
can be observed. Once again, properties such as rise time, settling time, overshoot and undershoot are
computed, see Table 4.11.

Rise time 2.24 s

Settling time 6.8 s

Overshoot 2.8 %

Undershoot 0.48 %

Table 4.11: Table showing rise time, settling time, overshoot and undershoot for the chosen state feedback
controller in yaw, corresponding to Figure 4.21.

From the table it is clear that the performance is not as good as the controller in roll and pitch, which
mainly is due to the limited control input. But as previously explained, translational movement cannot
be accomplished by only changing the yaw angle, hence this control is not as crucial and therefore a
slower controller can be allowed. The overshoot and undershoot are within the same region as for the
roll and pitch controllers, see Table 4.2 and 4.5. Now the control signal for a step in yaw is investigated,
see Figure 4.19.
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Figure 4.22: Control signal uψ with state feedback L = (0.10, 0.30, 0.50, −0.20), τIF = 1.4 and k = 1.
Step in yaw with initial condition ψ0 = 0 and reference ψr = π.

From the above Figure it can be seen that once again the control signal is such that |uψ| ≤ 1 Nm, hence
the control boundary condition is satisfied. Finally, the estimated state M̂Mψ

from the reduced observer
is investigated, see Figure 4.23.
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Figure 4.23: State estimation of MMψ
with state feedback L = (0.10, 0.30, 0.50, −0.20), τIF = 1.4 and

k = 1. Step in yaw with initial condition ψ0 = 0 and reference ψr = π.
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From the Figure it can be seen that using k = 1 estimates the state MMψ
well. The eigenvalues closed-

loop system A−BL in yaw are computed and given in Table 4.12.

λ1 λ2 λ3 λ4

−2.33 + 2.49i −2.33− 2.49i −0.336 + 0.382i −0.336− 0.382i

Table 4.12: Table showing eigenvalues of the closed-loop system A − BL in yaw where L =
(0.10, 0.30, 0.50, −0.20), using three significant figures.

From Table 4.12 it can be seen that all eigenvalues have real negative parts i.e., the system is asymptoti-
cally stable. Furthermore, all poles have an imaginary part. By using k = 1, the reduced observer pole is
about 4 times larger than the largest poles of the closed loop system, which should provide a sufficiently
fast observer.

4.4 Position Control

In this section a position controller is derived. As the name states, the purpose of the position controller
is to achieve some desired translational position xI , yI and zI . When controlling the octocopter by
autonomous means, a position controller is very useful. By giving the octocopter some predefined path
to follow, the position controller enables the vehicle to follow the path without the use of a pilot.

To change the translational position of the octocopter the controls ux, uy and uz can be used. But,
the control inputs ux and uy are very small and not feasible to use in order to control translational
movement. Instead, to change position of the octocopter, the Euler angles roll ϕ, pitch θ and yaw ψ are
used. Therefore, the position controller will treat the Euler angles as control inputs. In section 4.3 an
attitude controller is derived controlling the Euler angles. From that section and previous analysis it is
concluded that the control of yaw is slower than the controls of roll and pitch. Furthermore, translational
movement can be accomplished by only changing roll and pitch angles, hence the yaw angle is not going
to be actively used. In order to change vertical position z, the motor force FMz is used and controlled.
Note that even though ψ = 0, it is important to use the control of yaw to compensate for modeling errors
and disturbances. Furthermore, the attitude controller derived in section 4.2.4 and 4.3.1 has considerable
rise times, therefore it is important that the position control input is not to aggressive.

To compute position control inputs, a nonlinear controller is derived using Lyapunov based control, see
section 4.4.3. To use the Euler angles and the attitude controller from the previous section, a method for
converting position control inputs to attitude references is derived in section 4.4.2. The final controller
is presented and simulated in section 4.4.4.

4.4.1 Simplified Nonlinear Position System

Now the nonlinear system for controlling position in the inertial frame is derived. As mentioned, the
position control cannot be too fast since the attitude controller is used which has considerable rise times.
Therefore, it is decided to neglect the rise time in the motor dynamics and assume that the motor
commands sent are instantly archived i.e., uz = FMz . As previously mentioned, the control inputs
ux = uy = 0 and are not going to be used to change translational position. Also, the yaw angle is not
going to be used for position control more than controlling it to be zero, hence ψ = 0. By applying
these assumptions, using the rotation matrix RB→I , the body forces derived in section 3.4 and (3.32),
the acceleration v̇I is given by

mv̇I = RB→I(ϕ, θ, 0)(uzez + FD) +mgez. (4.38)
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The above expression can be written on scalar form as

ẍI =
1
m [cθFDx + sϕsθFDy + cϕsθ(uz + FDz)]

ÿI =
1
m [cϕFDy − sϕ(uz + FDz)]

z̈I =
1
m [−sθFDx + sϕcθFDy + cϕcθ(uz + FDz)] + g.

(4.39)

The system (4.39) is now rewritten on a more general form where all states up to position are added

xI :

{
ẋ1 = x2

ẋ2 = u1 + h1

yI :

{
ẋ3 = x4

ẋ4 = u2 + h2

zI :

{
ẋ5 = x6

ẋ6 = u3 + h3

(4.40)

where

u1 = 1
mcϕsθuz

u2 = − 1
msϕuz

u3 = 1
mcϕcθuz + g

(4.41)

and

h1 = 1
m [cθFDx + sϕsθFDy + cϕsθFDz]

h2 = 1
m [cϕFDy − sϕFDz]

h3 = 1
m [−sθFDx + sϕcθFDy + cϕcθFDz] .

(4.42)

Thus, here the control inputs are given by ui and the nonlinear ”disturbances” by hi. In the next section
4.4.2 it is shown how the control inputs ui can be converted to attitude references ϕr, θr and uz.

4.4.2 Convert Position Control to Attitude Reference

To track some desired position, the position controller uses the attitude controller to accomplish some
desired references ϕr, θr and motor force uz, note ψr = 0. Therefore, it is necessary to convert the
position control inputs ui from section 4.4.1 to corresponding attitude and force references. From (4.41)
these inputs can be solved, which gives

uz =
m(u3 − g)
cϕcθ

ϕr = − arcsin
(
mu2
uz

)
θr = arcsin

(
mu1
cϕruz

)
.

(4.43)

Note that the system (4.41) can be solved in many ways. The solution chosen here ensures that a solution
exists when ϕ, θ = 0. Also, the solution order is crucial, when computing the references ϕr, θr and uz, it
is important to keep the order in which the equations are written in 4.43. From the equation it becomes
clear that singular points exist e.g., uz = 0. To make sure that no such singularities occur during control,
boundaries on the references are set. Since the controller uses the attitude controllers for roll and pitch
derived in section 4.2.4, natural boundaries are ϕr, θr ∈ [−π8 ,

π
8 ]. The boundary on uz is decided to
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be set such that −2mg ≤ uz ≤ mg
2 , which provides some margin to the boundaries on uz, see Figures

4.2-4.4. For clarification, the above equation and used boundaries are now explained by pseudo code,
see Algorithm 2.

Algorithm 2 Convert Position Control to Attitude Reference
1: function convert_position(u, ϕ, θ)
2: uz ← m(u3−g)

cϕcθ

3: if uz > mg
2 then

4: uz ← mg
2

5: else if uz < −2mg then
6: uz ← −2mg
7: if |mu2

uz
| > sin(π8 ) then

8: ϕr ← −sign(mu2

uz
)π8

9: else
10: ϕr ← − arcsin(mu2

uz
)

11: if | mu1

cϕruz
| > sin(π8 ) then

12: θr ← sign( mu1

cϕruz
)π8

13: else
14: θr ← arcsin( mu1

cϕruz
)

15: ψr = 0
16: return uz, ϕr, θr and ψr

4.4.3 Lyapunov Based Control

Now a control for stabilizing (4.40) is derived. Since the system in need of control is nonlinear, it is
decided to now use a nonlinear control method. There are many applicable methods which are more or
less suitable depending on the system. By looking at the system (4.40) one can see that it will be easy to
cancel the nonlinearities and achieve a stabilizing control by using Lyapunov based control. Lyapunov
based control has its fundamentals in Lyapunov’s direct method [11, Lecture 4] which can be used to
determine stability of a nonlinear system.

By using Lyapunov’s theorem for global asymptotic stability, the control can be chosen such that global
asymptotic stability of the system (4.40) can be achieved. Lyapunov’s theorem for global asymptotic
stability is now given [11, Lecture 4 p. 14]. Let ẋ = f(x) ∈ Rn and f(0) = 0. If there exist a C1 function
V : Rn → R such that

1. V (0) = 0

2. V (x) > 0, ∀xi ̸= 0

3. V̇ (x) < 0, ∀xi ̸= 0

4. V (x)→∞ ||x|| → ∞

then x = 0 is global asymptotically stable. Before proposing a controller, the variable change x̃i = xi−xri
for i = 1, 3, 5 in (4.40) is made to track some reference in x, y and z. Note that it is assumed that xri is
a constant, so ˙̃xi = ẋi = x2i for i = 1, 3, 5. This is going to cause some smaller errors when simulating
the system for continues references in position. But since the change in reference will be relatively small
this will not be of any issue here. Also, by this assumption, noise in the reference signal will not be
enhanced. Then by applying the Lyapunov function V = 1

2

(∑
i=1,3,5 x̃

2
i +

∑
i=2,4,6 x

2
i

)
, one instantly

sees that condition 1, 2 and 4 are satisfied. The time derivative of V gives

V̇ = x̃1ẋ1 + x2ẋ2 + x̃3ẋ3 + x4ẋ4 + x̃5ẋ5 + x6ẋ6

= x̃1x2 + x2(u1 + h1) + x̃3x4 + x4(u2 + h2) + x̃5x6 + x6(u3 + h3).
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By letting ui = −x̃2i−1 − cix2i − hi where ci > 0, one gets

V̇ = −c1x22 − c2x24 − c3x26 < 0, ∀xi ̸= 0.

Hence, the proposed controller provides global asymptotic stability of the system (4.40). Furthermore,
the tracking of xir is accomplished since x̃i = 0 for i = 1, 3, 5. The parameter ci is now going to be tuned
such that the system behaves in a suitable manner, see section 4.4.4.

4.4.4 Tuning and Simulation of Controller

The parameter ci defined in section 4.4.3 is now chosen. The effect of ci is similar to the effect of the
parameter l3 which adjusts the derivative part in the previously used state feedback controller, see Figure
4.8. Hence, increasing ci will decrease oscillations but increase rise time. Although, now ci is tuning the
squared effect of the derivative of the system 4.40. The parameter is chosen such that no oscillations
are present when simulating the complete nonlinear system for each translational component separately,
note that in Figure 4.24 all translational components are simulated simultaneously.

Before moving on, it is noted that the Lyapunov based controller will produce unbounded control inputs.
But since the position control inputs are converted to attitude references, see section 4.4.2, no problems
arise due to the set boundaries on the attitude references. Therefore, it is decided to simulate the system
for large reference values in position so that the boundaries on the attitude references are reached and
tested. Now the complete nonlinear system is simulated using the position controller with c1 = c2 = 1.6
and c3 = 1.8, the reference xr = yr = 10 m, zr = −10 m (z-axis down) and initial condition x0 = y0 =
z0 = 0 m, see Figure 4.24.
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Lyapunov based position control with c1 = c2 = 1.6 and c3 = 1.8.
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Figure 4.24: Lyapunov based position control with c1 = c2 = 1.6 and c3 = 1.8. Step in position with
reference xr = yr = 10 m, zr = −10 and initial condition x0 = y0 = z0 = 0 m.

From the above Figure it can be seen that the controller tracks the desired position well. It takes about
5 s before the system has reached the desired position. Some minor oscillations in Figure 4.24 can be
observed. These oscillations arise are due to cross coupling effects in the attitude controller which are
not compensated for. The corresponding control inputs from the position controller ui are illustrated in
Figure 4.25.
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Lyapunov based position control with c1 = c2 = 1.6 and c3 = 1.8.
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Figure 4.25: Showing the position control input from the Lyapunov based position control with c1 =
c2 = 1.6 and c3 = 1.8. Step in position with reference xr = yr = 10 m, zr = −10 and initial condition
x0 = y0 = z0 = 0 m.

From the Figure one can be see that the control inputs from the position controller are not bounded.
The effect of the boundaries on the attitude controller is now going to be illustrated by plotting the
corresponding attitude references values ϕr, θr and uz, see Figure 4.26.
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Lyapunov based position control with c1 = c2 = 1.6 and c3 = 1.8.
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Figure 4.26: Showing the converted attitude references values from the Lyapunov based position control
with c1 = c2 = 1.6 and c3 = 1.8. Step in position with reference xr = yr = 10 m, zr = −10 and initial
condition x0 = y0 = z0 = 0 m.
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From the Figure it can now be seen how the attitude reference boundaries defined in section 4.4.2 are hit.
When the controller approaches the desired position the attitude control references are decreased and
stabilizes the octocopter. Hence, the approach to convert position control inputs to attitude references
works well even when the reference in position is large. For more simulations of the position controller
see chapter 5.
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Chapter 5

Simulation

In this chapter simulations of the complete nonlinear model derived in chapter 3 are carried out. The
simulations are done using MATLAB’s simulation tool Simulink. The model implemented makes use
of the previously mentioned quaternions, section 3.2. This since quaternions allow for simulations in
all 6DoF without any concerns for singularities which might occur when using Euler transformation
matrices. The simulations are run in discrete time with a fixed-step solver at 100 Hz, which is the rate at
which the Nav Raspi sends data, section 2.1.3. Almost all blocks used in the Simulink model are written
by the author and implemented by using MATLAB function blocks. Furthermore, most of the blocks
have programmed masks which enables for easily adjustable simulations. The code itself is not discussed
in this thesis but a visualization of the final model is made and can be seen in Figure 5.1.
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Figure 5.1: Showing the root structure of the Simulink model used for simulations of the complete
nonlinear system.

From the above Figure the root structure of the Simulink model can be seen. Note that here the
position controller is used with the attitude controller. The pilot-based controller is not connected to
the system. The reference input to the pilot-based controller comes here from a pc gaming controller
which is made possible by using the predefined Simulink Joystick Input block. Also, the Real-Time Pacer
block is downloaded from mathwork’s homepage and used to enable simulations in real time. The block
sim_hardware simulates the quantization of the motor control input since uM ∈ [0, 254] byte. This block
also adds a delay to the control input. It is decided that a delay of 20 ms should be sufficiently large. The
block octocopter_model implements all nonlinear dynamics, including the varying time constant of the
motor dynamics. The block ad_noise, adds the noise discussed in section 2.1.3. To visualize the state of
the octocopter a block simulate_6DOF in Simulink is made, written in MATLAB code. The simulation
data is used to visually display the movement of the octocopter in 6DoF, see Figure 5.2.
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Figure 5.2: 6DoF simulation in Simulink. Full scale plot on the left where the black stars indicate
translational position and are used as a visual guidance. The right Figure is zoomed in on the octocopter,
the red arm indicates the forward defined direction of the vehicle.

This visualization is very useful when simulating the system, especially when the pilot-based controller
is used and the reference input comes from a pc gaming controller. This allows for training and testing
of the controller in a controlled environment.

Now simulations are carried out for the previous derived control methods: pilot-based, attitude and
position control. The simulations are divided into two main sections, one without disturbances and one
with, section 5.1 and 5.2 respectively. The disturbances are the mentioned noises, system delays and
quantization of the motor control input.

5.1 Without Disturbances

The simulations following in this section do not experience signal noises, system delays or quantization
of motor control input. The simulations are carried out for the controllers: pilot-based, attitude and
position control.

5.1.1 Pilot-based Control

Now simulations using the pilot-based control are carried out. First, simulations are performed for all
controlled states separately i.e., roll ϕ, pitch θ and yaw-rate ψ̇. At the end, a final simulation of all
states together is made. It is decided that the reference inputs(s), state(s) and control inputs(s) of the
controlled states are the most relevant and therefore plotted. During the simulations the control in z,
uz = −mg, hence hovering. The result can be seen in Figures 5.3-5.6.
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Figure 5.3: Simulation of pilot based-control in roll ϕ with corresponding control input uϕ. Without
noise, delay and quantization.
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Simulation of pilot-based control, pitch θ.
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Figure 5.4: Simulation of pilot based-control in pitch θ with corresponding control input uθ. Without
noise, delay and quantization.
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Simulation of pilot-based control, yaw-rate ψ̇.
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Figure 5.5: Simulation of pilot based-control in yaw-rate ψ̇ with corresponding control input uψ. Without
noise, delay and quantization.
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Figure 5.6: Simulation of pilot-based control in roll ϕ, pitch θ and yaw-rate ψ̇ with corresponding control
inputs. Without noise, delay and quantization.

Before commenting the simulations, note that the two subplots in Figure 5.6 are from the same simulation.
From the Figures 5.3-5.5 it can be seen that the linear pilot-based control method performs very well
in comparison to the linear simulations in section 4.2, even with all nonlinear effects acting. From the
Figures it can also be seen that the control inputs are kept within their boundaries. In Figure 5.6
multiple reference inputs are given. Coupling effect between the states can be observed, nevertheless,
the reference inputs are tracked well. At t = 10 s a step in all states is applied, which corresponds to the
maximum allowed change in step for all states. When doing so the control input in yaw uψ is slightly
reduced which is due to the use of the priority algorithm proposed in section 4.1.3. Hence, even for
demanding reference inputs the system manages to track the desired references.
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5.1.2 Attitude Control

Here simulations using the attitude controller are carried out. Since the proposed attitude controller
uses the same controls in roll ϕ and pitch θ as the pilot-based controlled, simulations of these states
individually, are not performed again, see section 5.1.1. The simulations are illustrated in Figures 5.7-
5.8.
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Figure 5.7: Simulation of attitude control in yaw ψ with corresponding control input uψ. Without noise,
delay and quantization.

time t [s]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E
u
le
r
an

gl
e
[r
ad

]

-0.5

-0.25

0

0.25

0.5
Simulation of attitude control, roll φ and pitch θ.
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Figure 5.8: Simulation of attitude control in roll ϕ, pitch θ and yaw ψ with corresponding control inputs.
Without noise, delay and quantization.

From the Figure 5.8 it can once again be seen that the linear control method performs very well in
comparison to the linear simulations in section 4.3. From the Figure it can also be seen that the control
input uψ is kept within its boundaries. In Figure 5.8 multiple reference inputs are given. Coupling effect
between the states can again be observed, nevertheless, the reference inputs are tracked well. At t = 7
s a step in all states is applied which corresponds to the maximum allowed change in step for all states.
When doing so the control input in yaw uψ is slightly reduced which is due to the use of the previously
proposed priority algorithm.
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5.1.3 Position Control

Now a simulation for the position controller is performed. In section 4.4, step responses using the
full nonlinear system were carried out. Therefore, it is decided to now only simulate the system for
a continuous reference input. One of the main purposes of a position controller is to be able to fly
autonomously, therefore it is reasonable to do so by applying continuous reference inputs. It is decided
to use the following reference inputs xr = A(cos( 2πT t)− 1), yr = A sin( 2πT t) and zr = −kt, where A = 5
m, T = 15 s and k = 1. In other words, the octocopter should move in a circular motion with radius 5 m
with period 15 s about the xy-plane whilst the altitude is increasing with 1 m/s. Before the simulation
is performed, it is quite obvious that there is going to be some delay between the reference input and
the actual state since there exists considerable rise times in the controller. Nevertheless, optimally the
octocopter should track the desired reference. It is determined to plot the reference states and inputs,
and all control signals i.e., position, converted position and attitude control inputs, see Figure 5.9.
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Simulation of position control, converted position control inputs.
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Simulation of position control, attitude control inputs.
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Figure 5.9: Simulation of position controller with continues reference inputs in x, y and z. Without
noise, delay and quantization.

From the above Figure, it can be seen that the position controller causes the octocopter to move in the
desired manner. But, there exists some delay of the actual state to the reference input, ≈ 2 s. This is
due to the previously mentioned rise times in the position controller and due to the fact that when the
position controller is designed it is assumed that e.g., ẋr = 0. By inspecting the different control inputs,
one can see that no boundaries are hit, compare to Figures 4.24-4.26. Furthermore, it can be seen that
it is important to have a controller of yaw even if ψr = 0, which is due to mentioned nonlinearities and
disturbances which will cause ψ to change.
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5.2 With Disturbances

The simulations following in this section do experience disturbances in form of signal noise, system
delays and quantization of the motor control input. The simulations are carried out for the controllers:
pilot-based, attitude and position control.

5.2.1 Pilot-based Control

The same simulations as in section 5.1.1 are carried out but now with disturbances, see Figures 5.10-
5.13.
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Figure 5.10: Simulation of pilot based-control in roll ϕ with corresponding control input uϕ. With noise,
delay and quantization.
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Figure 5.11: Simulation of pilot based-control in pitch θ with corresponding control input uθ. With
noise, delay and quantization.

time t [s]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ψ̇
[r
ad

/s
]

-2.5

-1.5

-0.5

0.5

1.5

2.5
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Figure 5.12: Simulation of pilot based-control in yaw-rate ψ̇ with corresponding control input uψ. With
noise, delay and quantization.
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Simulation of pilot-based control, roll φ and pitch θ.
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Simulation of pilot-based control, yaw-rate ψ̇.
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Figure 5.13: Simulation of pilot-based control in roll ϕ, pitch θ and yaw-rate ψ̇ with corresponding
control inputs. With noise, delay and quantization.

The discussions held about the step responses in section 5.1.1 can also be applied here. From Figures
5.10-5.13 it can be seen that with the now added disturbances, the control signals due fluctuate and some
minor oscillations in the states can be observed. But, even with the added disturbances, the reference
input is tracked well and the disturbances seam to be attenuated.

5.2.2 Attitude Control

The same simulations as in section 5.1.2 are carried out but now with disturbances, see Figures 5.14-
5.15.
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Figure 5.14: Simulation of attitude control in yaw ψ with corresponding control input uψ. With noise,
delay and quantization.
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Simulation of attitude control, roll φ and pitch θ.

φ

θ

φr

θr

time t [s]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

co
n
tr
ol

in
p
u
t
[N

m
]

-4

-2

0

2

4

uφ

uθ

time t [s]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ψ
[r
ad

]

-2.5

-1.5

-0.5

0.5

1.5

2.5
Simulation of attitude control, yaw ψ.
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Figure 5.15: Simulation of attitude control in roll ϕ, pitch θ and yaw ψ with corresponding control
inputs. With noise, delay and quantization.

Aside from the discussion held in section 5.1.2, it can again be seen that the added disturbances have
caused the control signals to fluctuate and caused some minor oscillations in the states in need of control.
Otherwise, the reference input is still tracked well and the disturbances seam to be attenuated.

5.2.3 Position Control

Now the same simulation as in section 5.1.1 is carried out but with disturbances, see Figure 5.16.
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Simulation of position control, position control inputs.
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Simulation of position control, converted position control inputs.
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Simulation of position control, attitude control inputs.
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Figure 5.16: Simulation of position controller with continues reference inputs in x, y and z. With noise,
delay and quantization.

Firstly, from Figure 5.16 it can be seen that despite the added disturbances the system manages to
maneuver the octocopter in a fairly desired manner. Secondly, from the control input plots it can be
seen that the added disturbance has a large impact on the control inputs. This large propagation of the
disturbance on the control inputs is due to the large variances set on the noise added on the translational
states, see section 2.1.3. From the converted attitude reference input plot one can now observe how the
reference inputs hits their defined boundaries set in section 4.4. Nevertheless, by using these noise levels
the controller manages to track the desired path in an acceptable manner.
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Chapter 6

Evaluation of Flying Data

An important and crucial part in this thesis is the testing of the developed octocopter and the proposed
control strategies. As mentioned in section 2.1.2, the octocopter runs on C code which has been generated
from Simulink. The final Simulink model includes the possibility to log data during the running stage
of the system, which allows for great possibilities to analyze real flying data. As mentioned in chapter
1, the thesis project is conducted in collaboration with another technologist, Markus Mikkelsen. We,
together with Saab Dynamics, decided that the first implemented controller for testing should be the
pilot-based controller. This mainly to reduce the control chain and the probability for errors, e.g., the
positions controller is more complex.

Before flying, the implemented controller was tested without any mounted propellers to ensure that
proper motor commands from the controller were sent and to further test implemented functions. It was
decided to conduct the first ever flight at an open secluded football field. A flight schedule was made,
which divided the flying time equally between me and Markus. The schedule was roughly divided into
two main parts, flying without and with the integrating parts in the controller. This division was made
since it was concluded that the integrating part could cause problems. If the vehicle would end up in
a position where the integrating part would start to integrate, large control inputs could be generated
resulting in unexpected behavior. It is noteworthy to mentioned that both controllers had implemented
anti-windup and other fail safe features. It was decided to test my controller first, without the integrating
states. The octocopter lifted and was able to stabilize itself in roll and pitch, see Figure 6.1.

Figure 6.1: First flight, using the pilot-based controller without integrating states.
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Before the testing with integrating states was conducted, the whether conditions changed and it started
to rain, therefore at this point the testing was ended. During the flight, windy conditions ruled. Also,
even though the octocopter was flyable, the control in yaw-rate was somewhat poor, causing the vehicle to
drift. When the code later was inspected, it was found that a single parameter for the yaw-rate controller
had a shift in the decimal point. Furthermore, the logging of the data experienced some smaller delays
due to the high sample rate. This was fixed by using multiple threads in the GC Raspi. Because of these
minor bugs in the code and the windy conditions it is decided not to illustrate the data logged from the
first flight.

Before the second flight occasion, the above software problems were solved and future testing of the
octocopter were performed. In order to carry out tests with mounted propellers, the vehicle was fixed
by elastic threads to a 25 kg weight. The second flight was conducted in a hangar at Saab, thus no wind
would interfere. Once again the flying time was divided between me and Markus. Since the octocopter
already had shown that it was flyable, it was decided that the pilot was allowed to fly and test the vehicle
to greater extends this time. Indoors, in the hangar without any integrating part, the octocopter showed
good performance and the pilot was able to maneuver the vehicle as desired. Furthermore, by trimming
the yaw-rate, the drift in yaw experienced during the first flight, was gone. With the integrating states
enabled the octocopter performed very well, the integrating states made the controller more responsive
and the before required trimming of the yaw-rate was now not needed. Due to photographic restriction,
no footage from the flights are available.

Unfortunately, when Markus controller was implemented, the octocopter started to oscillate in roll, pitch
and yaw, and the pilot was not able to control the vehicle. The vehicle flew up in the ceiling and was
after this point beyond recovery. The octocopter crashed and suffered severe damage. Since the flight
was carried out in the final stages of the thesis project, it was not manageable due to lack of time to start
any repairs. Nevertheless, the data from my flights were successfully logged and could be downloaded.
Relevant data are presented in sections 6.1-6.2.

6.1 Pilot-based Control without Integrating States

As above mentioned, the second flight occasion was divided into two parts, without and with the in-
tegrating states in the pilot-based controller. The data logged from the flight without the integrating
states is now going to be presented. It is decided that the most relevant data logged are the states which
are controlled ψ, θ and ψ̇, the respective reference inputs and the corresponding control inputs. The
flight lasted 132 s and the data is presented in Figures 6.2-6.4.
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Figure 6.2: Flying data logged from second flight. Pilot-based control without integrating states, roll ϕ.
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Figure 6.3: Flying data logged from second flight. Pilot-based control without integrating states, pitch
θ.
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Figure 6.4: Flying data logged from second flight. Pilot-based control without integrating states, yaw-
rate ψ̇.

Firstly, from the above Figures one can see that vehicle lifts at about 40 s. From Figures 6.2-6.3 it can
be seen that the controller is able to accomplish roll and pitch commands. Although, at some point e.g.,
t = 60 s the desired roll reference is not fully followed, see Figure 6.2. By inspecting Figure 6.4, one
can see that without the integrating states, the yaw-rate reference needs trimming before the octocopter
is stable in yaw. After the trimming, the yaw-rate did follow the reference input quite well, note the
offset. Also, all the control inputs are kept within their defined boundaries, hence the implemented
priority algorithm is not engaged during the flight. Furthermore, the control input is noisy which is
mainly due to the noise in the estimated angular-rates e.g., ψ̇, see section 2.1.3. Also, it can be seen
the reference signal does experience some smaller disturbance, which probably is due to the quantization
caused when converting the PPM signal from the radio transmitter to a byte, see section 2.1.9. Besides
these disturbances, the vehicle did perform very well and the pilot was able to maneuver the octocopter
as desired.

6.2 Pilot-based Control with Integrating States

The second flight occasion with the integrating states, i.e., the complete pilot-based controller lasted 152
s and the data is now going to be presented, see Figures 6.5-6.7.
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Figure 6.5: Flying data logged from second flight. Pilot-based control with integrating states, roll ϕ.
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Figure 6.6: Flying data logged from second flight. Pilot-based control with integrating states, pitch θ.
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Figure 6.7: Flying data logged from second flight. Pilot-based control with integrating states, yaw-rate
ψ̇.

With the integrating states enabled, it can be seen from the above Figures that the control input for
all states has increased in size which is due to the integrating state. Also, at the test occasion, it could
be observed that the octocopter performed more responsive with the integrating states. Besides the
mentioned noises and disturbances in section 6.1, one can see that now the yaw-rate does follow the
reference input without the need for any trimming, compare to Figure 6.4. From Figure 6.7 at about
t = 0− 40 s it can be seen how the reference input in yaw-rate is trimmed down to a neutral level. Also,
the control inputs are kept within their defined boundaries.
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Chapter 7

Discussion and Future Work

During the thesis report, analyses and discussions are continuously presented. In this chapter, these
discussions are supplemented by future thoughts and hypothesis. The discussion held here also includes
and proposes future work and solutions to difficulties and problems encountered during the thesis project.
The discussion is divided into sections covering the chapters 2-6, including relevant topics.

7.1 The Octocopter

During the thesis project, extensive hardware modifications and implementations where carried out,
both mechanical and electrical. The greatest difficulties encountered where the implementation and
programming of the Arduino and the GC Raspi, sections 2.1.1-2.1.2. One of the greater challenges when
implementing the Arduino was to establish a stable connection via I2C to the octocopters PDB, section
2.1.7. This difficulty partially arose due to lack of insight in how the PDB distributes the I2C busses.
Furthermore, the hardware platform from which the project based on, the Okto XL 4S12 [18], was not
ideal. The platform is quite expensive and uncommonly used in these types of projects. This makes it
more difficult to get hold of spare parts and to gather insight in how the platform is designed. Also, the
Okto XL 4S12 is quite large compared to other multirotors, a smaller platform would allow for easier
handling and testing of the vehicle. In conclusion, this type of project would benefit from using a smaller,
inexpensive and popular used open-sourced multirotor platform.

One of the main design features of the platform is the ability to generate C code from Simulink, re-
sponsible for the control of the octocopter. Quite a few problems arose when configuring the GC Raspi
to enable this feature. Without going into detail about specific problems, the main issue was the poor
insight in how Simulink converts a Simulink model to corresponding C code. The concept of generating
C code from a high level programming language such as Simulink is great, but it also reduces the insight
and understanding of what exactly is generated and run on the platform. Better understanding in how
Simulink generates code is required, otherwise own written C code is preferable.

When deriving control strategies that are meant to be implemented on real hardware and not just on
paper, it is of importance to have good knowledge and insight in the system and its properties. In
order to measure and estimate these properties, it is crucial to use well motivated methods and carry
out accurate measurements. The estimation of the motor constants cT and cQ is crucial, section 2.1.10.
They should be accurately measured in order to maximize the performance of the tuned controllers. The
used estimations of the motor constants where the ones determined during the last year’s thesis. When
comparing the required (analytically determined) and the actual motor commands for lift off, it was
found that there was a significant difference. This raises suspicion that the estimated motor constants
are off and perhaps require better estimation. Nevertheless, it would be beneficial to use a platform
were some of these important properties are known or at least are well documented e.g., a data sheet
corresponding to the motors.
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7.2 Modeling

The modeling of the octocopter is crucial and has to be handled with care. The use of Euler angles and
quaternions is quite common when expressing rotations in 6DoF. Euler angles are more intuitive than
quaternions, but by using quaternions, the possibility for singular points can be eliminated. It would
be interesting to investigate how it would be possible to use quaternions when controlling a vehicle in
6DoF. In theory, this would allow the vehicle to have any rotational position without worrying about
singularities. The presented method in this thesis of using quaternions could be applied to directly
control on quaternions, which could be of interest in future projects.

The modeled body forces and torques in section 3.4 are determined to be among the most significant
ones. Other prominent effects which are of interest, are aerodynamics. As previously mentioned in section
3.4, extensive modeling regarding aerodynamics can be made. In this thesis only aerodynamic drag is
modeled. In order to analyze and model other aerodynamic effects, experiments measuring properties of
the vehicle have to be setup and performed. These experiments demand much care and preparation and
would probably need an entire thesis project worth of time. Although, by having more knowledge of the
vehicle’s aerodynamics, better control algorithms could be derived.

At the end of the modeling chapter, the derived nonlinear model is linearized about hovering, see section
3.7. When applying a first order T.E, all nonlinearities disappear and are not compensated for in a linear
control. A solution to this would be to try to control the full nonlinear model. But since it is quite
complex, it would not be as straight forward as the application of a linear controller. To simplify control,
the nonlinear model can be approximated by a simpler nonlinear model. For example, the rotation
matrices contain the nonlinear trigonometric functions cos and sin. These nonlinear functions could
be approximated by the small angle assumption which would simplify control, note that the resulting
expression would still be nonlinear. The control of such a simplified nonlinear model would be able
to compensate and reduce cross coupling effects which can be observed in chapter 5. Furthermore, it
is also important to determine which nonlinearties should be compensated for. It might be desirable
to leave some nonlinearites uncompensated. For example, a pilot-based controller might benefit from
letting the pilot be responsible for the compensation of disturbances due to wind. Futhermore, in
order to compensate for e.g., aerodynamics it is crucial to have good knowledge and insight, otherwise
compensation could cause more problems than advantages.

7.3 Control

As discussed in section 4.1, it is of importance to have strategies of converting the model control inputs
to corresponding motor commands, especially when developing a complete multirotor. It is crucial to
define boundaries on the control inputs. The performance of a controller is strongly related to how
much control can be achieved. The boundaries in this project are based on the available control about
hovering. In order to increase the available control input about hovering, the force uz can momentary be
increased to allow for larger control inputs in torques. However by adjusting uz, unexpected behaviors
might follow. If for example the vehicle is descending, a rapid change of its rotational orientation will
momentary increase its altitude. These types of effects have to be known by e.g., the pilot. Furthermore,
from Figures 4.2-4.4 it can be seen that increasing uz will after some point not increase the available
torque, on the contrary, decrease it. Thus, it is concluded that the derived approach in section 4.1
performs well, even in critical situations and also increases robustness and safety.

The derived pilot-based and attitude linear state feedback controllers showed very good performance,
even though the system in need of control is highly nonlinear. By using an observer and compensating
for the rise times in the motor dynamics, performance is increased. In section 7.2 a simplified nonlinear
model is discussed, which if controlled, could reduce the cross coupling effect observed in chapter 5.
There are numerous nonlinear control methods which could be of interest, but how applicable they are,
depend on the system in need of control. Using some Lyapunov based method such as back-stepping
as already been proposed in research articles and may be of interest. It would also be of interest to
investigate how a quaternion based controller could be used. A controller based on quaternions would
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allow for any rotational position, hence acrobatic motions such as loopings could be performed. However,
this would also require another type of platform. In conclusion, in order to improve the pilot-based and
attitude controller, the use of a nonlinear control method should be investigated.

Concerning position control, the method of combining the Lyapunov based and the attitude controller
showed promising results. With the current position controller, it is not possible to change yaw. In
order to change yaw, the equations of converting the position control inputs to attitude references have
to be altered. Since it is shown that the control of yaw is slower than roll and pitch, it is reasonable to
let the yaw reference be given to the position controller, similar to the translational position references.
This would also make sense if e.g., the octocopter carries a camera. Furthermore, when designing the
position controller it is assumed that no rise time in the system exists. To enhance the performance of the
controller, the rise time in the attitude controller could be compensated for, similar to the compensation
of the motor dynamics. This would reduce the delay in the position controller observed in chapter 5.
Also, to improve robustness, an integrating state can be added, compare to the attitude controller. This
would then require the implementation of an anti-windup.

7.4 Simulation

To simulate the complete nonlinear system with disturbances, MATLAB’s simulation tool Simulink is
used. Simulink comes with a lot of predefined functions and the visual block structure, see Figure
5.1, gives a great overview of the simulation model. By using Simulink to its full capacity e.g., mask
programming, flexibility is added and simulations are simplified. As mentioned in the beginning of
chapter 5, a visualization of the octocopter in 6DoF is made using MATLAB’s plot function. The
vehicle moves in real time and can be controlled by e.g., using a pc gaming controller which allows for
great testing and training. In order to improve the visualization, a next step would be to use a third-party
software supporting Simulink which can visualize objects in a realistic environment. The Simulink model
would compute and send relevant position data which the third-party software would use to visualize the
octocopter in a suitable environment. This would improve training and enhance visualization.

The simulation of the observer-based states feedback controllers, pilot-based and attitude, showed promis-
ing results. The controllers behaved as desired even with added disturbances. The disturbances are well
rejected and did not affect the states to greater extent. As mentioned in section 7.2, the linear con-
trollers do not compensate for coupling effects between the states. These effects can be observed in the
simulations, but even with the largest allowed changes in reference, these effects did not have any major
contribution. However, it would be of interest to design a controller that could cancel or reduce these
effects.

The derived position controller in section 4.4 did manage to maneuver the octocopter in a desired motion.
However, during the simulation, continuous references are used which resulted in a delay between the
actual position and the reference. Although the octocopter managed to produce a desirable motion, it
would be of interest to design the position controller such that continuously reference inputs could better
be used. The discussed compensation for the rise times in attitude controller would also help, see section
7.3. When simulating the position controller with disturbances, large levels of noise in the control inputs
can be observed. Even though the controller manage to control the vehicle, these large noise levels should
be reduced. More about the noise and methods for reducing them are presented in section 7.5.

During all simulations the priory algorithm derived in section 4.1 is applied. The method showed good
performance and managed to handle critical situations. Thus, it can be concluded that it is not always
necessary to be too conservative when deriving control boundaries, as long as there exists a solution to
handle critical situations.
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7.5 Evaluation of Flying Data

The possibility to test and evaluate derived control algorithms on a real system requires a lot of prepara-
tion but is also very rewarding. As mentioned in chapter 6, the last flight ended with a crash. From this
experience a lot can be learned. It is important to simulate and test derived control algorithms to there
limits before they can be applied on real hardware. It is also crucial to test implemented controllers and
functions under controlled circumstances e.g., fixate the octocopter and test how the vehicle behaves
under critical situations. Also, when testing the vehicle for the first times without any mechanical safety
features, the testing location and procedure have to be evaluated with care. Open areas and only with
relevant personnel is to prefer. This reduces the risk of damage to the vehicle and other objects.

When comparing the simulations to the real logged data, it is quite clear that they do not match. The
real data does experience much noise and the reference is not tracked as well as in the simulations. As
previously mentioned in chapter 6, the octocopter did perform well and the pilot was able to maneuver
the vehicle as desired. In order to improve control, the high noise levels in the used states have to be
reduced. The IMU and GPS are mounted on arms which vibrate due to the rotating motors, see section
2.1.3. A first step to reduce vibration noise would be to move the IMU and GPS to positions which are
less vulnerable to vibrations. Secondly, the parameters for the EKF in the Nav Raspi are not tuned for
the octocopter. For instance, filtering of high frequency content might be beneficial, i.e., if it is assumed
that the octocopter only changes its angular-rate at maximal e.g., |30| rad/s, content above ≈ 5 Hz could
be considered as noise.

Another type of disturbance is the quantization of the reference signal. This effect can be observed
when looking closely at e.g., ψr in Figure 6.2. Small fluctuations can be observed which are due to the
quantization of the PPM signal sent from the radio controller. During the project it is decided to convert
these signals to an array of bytes, one byte for each channel. By doing so, information is lost which will
produce fluctuations in the reference. Even though this disturbance can be seen as rather insignificant,
a larger resolution of the PPM signal would be beneficial. The quantization error can be reduced by
letting e.g., two bytes represent one channel, this would enhance the resolution by a factor of 255 i.e.,
using a 16-bit unsigned int.

Also, estimations and measurements have to be accurate to obtain the desired performance from the
controllers. Some properties are more important than others. As earlier mentioned in section 7.1,
the estimations of the motor constants cT and cQ are off which might negatively affect performance.
Therefore, it would be of interest to simulate the system were important parameters are varied. This
would give more insight in the robustness of the controllers and increase knowledge of the importance of
different parameters, thus requiring extra attention and accurate estimation.

Lastly, it is difficult to compare the logged data to the simulations since the references are not the same. In
order to properly evaluate the true system, it would be of interest to send steps in the reference, similar
to the ones in the simulation. This would either require a spacial area or a mechanical construction
which e.g., would enable the octocopter to rotate about its own axes. Another alternative is to simulate
the system with the reference from the radio controller and compare the simulated result to the real
data.
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Appendix A

Experimental Results

Experimental result of measuring the angular-rates of a rotating motor with mounted plastic propeller
for different motor commands given in Table A.1.

uM [byte] ωM [rpm] uM [byte] ωM [rpm]

0 0 90 3970

1 680 100 4280

2 790 110 4590

3 900 120 4910

4 1000 130 5200

5 1080 140 5480

6 1160 150 5750

7 1230 160 6030

8 1300 170 6230

9 1360 180 6530

10 1410 190 6680

20 1860 200 6850

30 2210 210 7050

40 2520 220 7400

50 2800 230 7600

60 3070 240 7750

70 3340 250 7780

80 3640 254 7950

Table A.1: Experimental result of measuring the angular-rates of a rotating motor with mounted plastic
propeller for different motor commands. uM is the sent motor command and ωM the corresponding
measured angular-rate.

Experimental result from moment of inertia estimation of the motor with mounted plastic propeller
about its z-axis given in Table A.2.
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N t [s] T [s] Iplastic
Mzz

[10−4 kgm2]

10 8.7 0.87 1.16

10 8.6 0.86 1.14

15 12.8 0.85 1.12

15 12.9 0.86 1.14

20 17.0 0.85 1.11

20 17.1 0.86 1.12

25 21.2 0.85 1.11

25 21.3 0.85 1.12

Table A.2: Experimental result from moment of inertia estimation of the motor with mounted plastic
propeller about its z-axis. N is the number of periods, t total time, T period length and Iplastic

Mzz
the

estimated moment of inertia.

Experimental result from moment of inertia estimation of the motor with mounted carbon propeller
about its z-axis given in Table A.3.

N t [s] T [s] Icarbon
Mzz

[10−4 kgm2]

10 8.3 0.83 1.06

10 8.4 0.84 1.09

15 12.6 0.84 1.09

15 12.6 0.84 1.09

20 16.5 0.83 1.05

20 16.6 0.83 1.06

25 20.7 0.83 1.05

25 20.7 0.83 1.05

Table A.3: Experimental result from moment of inertia estimation of the motor with mounted carbon
propeller about its z-axis. N is the number of periods, t total time, T period length and Icarbon

Mzz
the

estimated moment of inertia.

Experimental result from moment of inertia estimation of the octocopter about its x-axis given in Table
A.4.
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N t [s] T [s] Ixx [kgm2]

10 11.58 1.158 0.1397

10 11.42 1.142 0.1359

15 17.01 1.134 0.1340

15 16.94 1.129 0.1329

20 22.63 1.132 0.1334

20 22.61 1.131 0.1332

25 28.32 1.133 0.1337

25 28.30 1.132 0.1335

Table A.4: Experimental result from moment of inertia estimation of the octocopter about its x-axis. N
is the number of periods, t total time, T period length and Ixx the estimated moment of inertia.

Experimental result from moment of inertia estimation of the octocopter about its y-axis given in Table
A.5.

N t [s] T [s] Iyy [kgm2]

10 11.60 1.160 0.1282

10 11.54 1.154 0.1269

15 17.50 1.167 0.1297

15 17.59 1.173 0.1310

20 23.29 1.165 0.1292

20 23.10 1.155 0.1271

25 29.32 1.173 0.1311

25 29.20 1.168 0.1300

Table A.5: Experimental result from moment of inertia estimation of the octocopter about the y-axis.
N is the number of periods, t total time, T period length and Iyy the estimated moment of inertia.

Experimental result from moment of inertia estimation of the octocopter about its z-axis given in Table
A.6.
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N t [s] T [s] Izz [kgm2]

10 21.96 2.196 0.2233

10 21.81 2.181 0.2203

15 32.77 2.185 0.2210

15 33.26 2.217 0.2277

20 43.69 2.185 0.2210

20 44.25 2.213 0.2267

25 54.15 2.166 0.2173

25 54.60 2.184 0.2209

Table A.6: Experimental result from moment of inertia estimation of the octocopter about its z-axis. N
is the number of periods, t total time, T period length and Izz the estimated moment of inertia.
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