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SUMMARY

The high-density integrated circuit (IC) gives rise to geometrically complex mul-

tiscale chip-package structures whose electromagnetic performance is difficult to pre-

dict. This motivates this dissertation to work on an efficient full-wave transient solver

that is capable of capturing all the electromagnetic behaviors of such structures with

high accuracy and reduced computational complexity compared to the existing meth-

ods.

In this work, the unconditionally stable Laguerre-FDTD method is adopted as

the core algorithm for the transient full-wave solver. As part of this research, skin-

effect is rigorously incorporated into the solver which avoids dense meshing inside

conductor structures and significantly increases computational efficiency. Moreover,

as an alternative to typical planar interconnects for next generation high-speed ICs,

substrate integrated waveguide, is investigated. Conductor surface roughness is ef-

ficiently modeled to accurately capture its high-frequency loss behavior. To further

improve the computational performance of chip-package co-simulation, a novel tran-

sient non-conformal domain decomposition method has been proposed. Large-scale

chip-package structure can be efficiently simulated by decomposing the computation-

al domain into subdomains with independent meshing strategy. Numerical results

demonstrate the capability, accuracy and efficiency of the proposed methods.

xviii



CHAPTER I

INTRODUCTION

1.1 Background and Motivation

High-density integration is essential in realizing modern integrated circuits (ICs) with

high performance, small size, and low cost. This has driven the complexity of the IC

design to grow for the past decades. In recent years, the industrial needs have already

pushed the traditional two-dimensional (2-D) integration to its limit due to transis-

tor size, chip size and package density. Three-dimensional (3-D) integration, such

as system-in-package (SIP) and system-on-package (SOP), has become a promising

solution for future integration (as shown in Figure 1).

Nevertheless, the design of all these high-density integrated systems is impossible

without the assistance of electronic design automation (EDA) tools. The industry

has witnessed the huge demand for EDA design solutions as never before. From an

electromagnetic point of view, signal propagation and interaction in modern ICs poses

significant electrical simulation challenges. Therefore, the development of a full-wave

electromagnetic solver that can be applied to the simulation of complex integrated

applications is a necessity.

Among the main components in realizing modern electronic systems, the chip and

the package play a vital role. From a geometric point of view, the chip-package struc-

tures are intrinsically multiscale structures. This implies that large scale difference

in physical dimensions (as shown in Figure 2) exists in these types of structures. For

instance, the dimensional difference of interconnects of chips and packages are always

separated by several orders of magnitude. In practice, since full-wave solvers are de-

veloped based on discretizing Maxwell’s equations, large number of unknowns will be
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generated for the multiscale structures, making the solution of such problems pro-

hibitively expensive. Moreover, as the operating frequency reaches gigahertz range,

skin-effect and conductor surface roughness need to be carefully taken into consid-

eration. This usually adds additional computational cost to the original problems.

Therefore, an accurate and efficient solution needs to be developed.

Generally, full-wave solvers can be categorized into two domains: frequency do-

main and time domain. The time-domain methods have the advantage of obtaining

direct time-domain solution. Also, the corresponding frequency responses can be eas-

ily obtained by Fourier transforming the time domain response. However, traditional

time-domain techniques, such as the finite-difference time-domain (FDTD) method,

are limited by the Courant-Friedrichs-Lewy (CFL) stability condition. This stabili-

ty condition makes it almost impossible to efficiently simulate multiscale structures

using the traditional finite-difference-based techniques. Very fine meshes need to be

applied to the physically small areas, which results in a prohibitively small time step.

Moreover, it is also difficult to incorporate skin-effect and conductor surface rough-

ness into time-domain simulations. All these challenges motivate this dissertation

to work on an accurate and efficient general solution to the full-wave simulation of

chip-package structures.

1.2 Summary of Contributions: A Broader Perspective

To solve the problem aforementioned, an unconditionally stable time-domain scheme

using Laguerre polynomials, which is known as the Laguerre-FDTD method, is used

for simulating multiscale chip-package structures. The time step in the Laguerre-

FDTD method is no longer confined by the smallest mesh size, and thus, multi-level

meshing can be applied. The skin-effect is rigorously modeled and incorporated into

the Laguerre-FDTD scheme. Moreover, a modeling method for conductor surface

roughness is proposed targeting novel high-speed interconnects, namely the substrate
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integrated waveguide (SIW). Although the computational complexity can be signif-

icantly reduced for multiscale simulation by using the Laguerre-FDTD scheme, the

solution is still expensive for very large-scale problems. A transient non-conformal

domain decomposition method based on the Laguerre-FDTD scheme is proposed,

which enables the decomposed simulation of the original problem. Different mesh-

ing schemes can be applied to different domains, and the interface mesh between

adjacent domains does not need to be matched. Therefore, by maintaining the accu-

racy, the computational complexity is further reduced for the multiscale chip-package

simulation.

The goals of this dissertation are in correspondence with the contributions shown

in Figure 3. In summary, the contributions of the dissertation are listed as follows:

1. The development of a skin-effect modeling method based on the Laguerre-FDTD

scheme. This method rigorously captures the skin-effect of conductors in high-

frequency applications. It does not require field solution inside the conductor

with a fine mesh. Significant improvement of simulation speed is achieved com-

pared to the existing standard methods.

2. The development of a transient non-conformal domain decomposition method.

This method tackles large-scale multiscale problems by decomposing the com-

putational domain into smaller problems each with its unique mesh. Field con-

tinuity at the domain interface is rigorously enforced and the solution of each

domain is obtained in a parallel manner. Separate meshing strategy for the

decomposed subdomains is applied, which is suitable for simulating multiscale

chip-package structures.

3. The development of a conductor surface roughness modeling method. This

method is designed to capture the conductor loss due to the surface roughness

in the SIW, which is a promising alternative to traditional transmission lines
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Figure 3: The goals and contributions of this dissertation.

at ultra-high frequencies. An analytical solution is derived which is capable of

being incorporated into full-wave solvers, such as the Laguerre-FDTD solver.

1.3 Organization of the Dissertation

The dissertation is organized as follows: Chapter II describes the origin and history

of the problem, including a literature review and previous works. In Chapter III,

the transient simulation core algorithm, the Laguerre-FDTD method, is discussed.

Boundary conditions and frequency-domain result extraction schemes are also dis-

cussed in this chapter. A modeling scheme for incorporating skin-effect is investigated

in Chapter IV based on the core algorithm. To be more specific, the surface impedance

boundary condition (SIBC) is incorporated into the Laguerre-FDTD method using

5



two implementation schemes. In Chapter V, a transient non-conformal domain de-

composition method is proposed for solving large multiscale problems. Chip-package

structure test cases are simulated in Chapter VI based on the proposed methods. In

Chapter VII, conductor surface roughness modeling for a novel type of high-speed

interconnect, the substrate integrated waveguide, is investigated. An analytical solu-

tion is derived and the incorporation of the solution into the Laguerre-FDTD solver

is discussed. Finally, Chapter VIII and Chapter IX present the conclusions for this

work and the discussions for some future work.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

2.1 Needs for Simulation of Chips and Packages

The chips and packages are key components in realizing modern electronic systems.

Early design of the chips and the packages was done manually, which results in ex-

tremely limited system performance. For modern ICs, it is impossible to design chips

with billions of transistors and packages with hundreds and thousands of I/Os without

the assistance of CAD tools. In recent years, the need for electrical CAD tools, espe-

cially the full-wave electromagnetic simulation tools, is increasing as the system oper-

ating frequency increases. Improper electrical design may result in system failure due

to signal/power integrity problems, such as transmission loss, impedance mismatch,

simultaneous switching noise (SSN), crosstalk, and jitter. Most recently, to accurate-

ly capture the electrical property of the entire system, chip-package co-simulation is

desired by the industry to replace the current separate-modeling scheme of chips and

packages. However, due to the geometry complexity of the chip-package structures

and the simulation constraint of the current full-wave electromagnetic solvers, this

problem is still challenging and solutions are limited. All the aforementioned reasons

make the electromagnetic simulation of chips and packages a necessity in modern IC

design.

2.2 Practical Concerns in Simulation of Multiscale Chip-
Package Problems

The chip-package structures are intrinsically multi-scale structures. Time domain

simulation of such structures requires a method with unconditional stability. This

implies that the time step can be chosen independently of the smallest mesh size.
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Traditional time-domain schemes, such as the conventional FDTD method, are no

longer applicable. Moreover, skin-effect is difficult to be addressed in the time do-

main. An efficient and accurate modeling method of skin-effect needs to be developed

without compromising the simulation accuracy and stability. Moreover, for high-

frequency interconnect structures, conductor surface roughness may play a vital role

in signal transmission loss, leading to the challenge for efficient modeling of surface

roughness. Usually, for unconditionally stable time-domain implicit methods, system

matrices need to be solved. As for multiscale structures, the solution for the problem

as a whole is expensive. Methods with capability of decomposing the problem, which

reduces computational cost, are desirable. Apart from the existing implementation

of domain decomposition in the frequency domain, for an FDTD-based scheme, non-

conformal domain decomposition is still challenging, and relevant literatures are quite

limited.

2.2.1 Time-Domain Simulation Methods

The explicit FDTD method has been widely applied to transient electromagnetic

simulation problems. The marching-on-in-time scheme is efficient in field updating,

and is suitable for simulating simple structures such as planar components with ze-

ro thickness strips [2]. However, the major drawback of the original explicit FDTD

method proposed by Yee [3] is the CFL stability condition which is given by

∆t <
1

vmax

√(
1
∆x

)2
+
(

1
∆y

)2
+
(

1
∆z

)2 (1)

where ∆t is the time step, vmax is the maximum phase velocity of the propagated wave,

∆x, ∆y, and ∆z are the smallest cell sizes in x-, y-, and z-dimensions, respectively.

The CFL stability condition implies that the largest time step in the simulation is

restricted by the smallest cell size. In multiscale structures, a dense mesh needs to be
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applied to the physically small regions, making the resulting time step prohibitively

small.

To overcome the stability issue in the explicit FDTD method, semi-implicit and

implicit FDTD schemes for transient electromagnetic simulation have been studied in

recent decades. The alternating direction implicit (ADI) FDTD method, which was

first introduced for electromagnetic simulation by Holland [4], received wide attention.

Unlike the explicit FDTD method, the electric and magnetic fields are sampled at the

same time, and the one time step updating leap-frog scheme is substituted by a two

sub-step alternative. The ADI-FDTD method has been proved to be unconditionally

stable [5], and has been extended in the followed work such that the alternation is

performed in respect to mixed coordinates rather than to each respective coordinate

direction [6]. Using the ADI-FDTD method, multiscale structures, such as thin wide

metal strip, can be simulated efficiently with a large time step [7]. However, it is

found that larger value of time step rather than the CFL limit results in a larger

dispersion error [8].

Apart from the ADI-FDTD method, other implicit schemes have been proposed,

such as the Crank-Nicolson (CN) scheme, which has received much attention [9].

The CN algorithm advances time by a full time step size with one marching pro-

cedure, whereas the ADI-FDTD method uses two with an intermediate time value.

However, in both 2-D and 3-D cases, the system matrix is block tri-diagonal or tri-

diagonal with fringes, which is very expensive to solve. Eigenvalue decomposition and

approximate-decoupling methods have been proposed to further reduce the compu-

tational cost [9], [10]. Nevertheless, the CN scheme is shown to exhibit the same nu-

merical dispersion as the ADI-FDTD method. Recently, the locally-one-dimensional

(LOD) FDTD method has been proposed which is unconditionally stable [11]. The

number of equations to be computed is the same as that with the ADI-FDTD method

but with approximately 20% less arithmetic operations.
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In recent years, the unconditionally stable Laguerre-FDTD method has been pro-

posed using weighted Laguerre polynomials [8], [12], [13]. By applying the tem-

poral Galerkin’s testing procedure, the transient solution is made independent of

time discretization, which makes it suitable for analyzing multiscale structures. The

Laguerre-FDTD method is completely different from all other FDTD scheme due

to its marching-on-in-order nature. A 70× to 80× speedup using this method has

been reported for certain chip-package simulation cases [14]. Moreover, since for the

ADI-FDTD method, the numerical dispersion error becomes larger as the time step

increases, the Laguerre-FDTD method provides advantages when a larger time step

is used. Since the introduction of the Laguerre-FDTD method, several modifica-

tions have been made to the algorithm. The equivalent circuit model for Laguerre-

FDTD method has been presented, and simulation for multi-scale structures has

been performed in [14]. A perturbation term is introduced into the matrix formation,

which reduces memory consumption, and makes the simulation of large 3-D prob-

lems possible [15]. However, all these methods using the Laguerre-FDTD scheme

require discretization inside of the conductor for addressing skin-effect. A consider-

able dense mesh must be applied to the conductor, which makes the solution very

expensive. Moreover, no non-conformal domain decomposition method using the

Laguerre-FDTD method exists. It is critical to resolve these problems so that large

multi-scale chip-package structures can be simulated efficiently, which is also the mo-

tivation of this dissertation.

2.2.2 Skin-Effect Modeling

Skin effect is the tendency of an electric current to become distributed densely near

the surface of the conductor as frequency increases. The current decreases expo-

nentially between the outer surface and inside the conductor (which is illustrated in

Figure 4) with the skin depth given by [16]

10
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Figure 4: Cross section of a microstrip line operating in high-frequency. The current
is concentrated on the surface of the metal strip.

δ =
1√

πfµσ
(2)

where f , µ, and σ are the frequency, magnetic permeability, and conductivity of the

conductor, respectively. It can be inferred that for clock rates at gigahertz range, the

skin depth becomes very small, which results in skin-effect loss. One straightforward

way to capture skin-effect is to apply a dense mesh to the conductor structure. How-

ever, the inclusion of this method in an electromagnetic solver can be very costly in

computational time and memory requirements.

Some of the early attempts in efficient modeling of the skin-effect are in the

frequency domain. The vector potential method was employed to calculate the

frequency-dependent resistance and inductance [17]. To improve the accuracy, a

technique formulated in terms of the axial component of the vector potential was

proposed. Both skin-effect and proximity effect are taken into account [18]. Oth-

er schemes, such as current density method and network approach, have also been

developed [19], [20].

In the time domain, the early focus of incorporating skin-effect was to solve trans-

mission line problems. In [21], a time-domain method based on a traveling-wave

solution of the transmission line equations in the frequency domain was presented.

Skin-effect has also been modeled by equivalent circuits consisting of resistors and
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inductors derived from the skin-effect differential equations [22]. Other time-domain

schemes based on the partial element equivalent circuit (PEEC) method have been

adopted and have become a major method for the simulation of transmission lines

and on-chip interconnects with skin-effect [23]. Unfortunately, very few skin-effect

models using PEEC method are available which truly represent the 3-D current flow

in complex structures [24].

A efficient method for modeling the skin-effect in the time domain is the surface

impedance method, which has been widely used in frequency-domain simulations [25],

[26]. The concept of surface impedance was first introduced by Leontovich in [27]. Us-

ing the surface impedance concept, no field components need to be calculated inside

the conductor structure, which largely reduces the computational time. For FDT-

D schemes, the skin-effect was first modeled in [28] by applying surface impedance

boundary condition (SIBC). This method was then extended by performing a rational

approximation on the normalized frequency domain impedance, thus avoiding com-

puting the exponential approximation prior to FDTD simulation [29]. To improve

the accuracy of the SIBC in FDTD methods, some higher order methods have been

proposed and a curved surface is able to be modeled efficiently [30], [31]. In recently

years, the SIBC has been extended to unconditionally stable FDTD schemes such as

the ADI-FDTD method [32]. However, no implementation of skin-effect using the

SIBC based on the Laguerre-FDTD method has been reported.

2.2.3 Large-Scale Problem and Domain Decomposition

In mathematics, domain decomposition is a general term referring to a numerical

method that solves the partial differential equation (PDE) problem by decomposing

the original problem into sub-problems. Inherited from but unlike the commonly

known numerical methods, the domain decomposition method does not solve the

entire computational domain directly, but by dividing it into subdomains (Figure 5).

12



Computational 
Domain

Sub-Domains

1 2

3 4

Figure 5: Decomposing computational domain into subdomains.

Each subdomain is solved independently, and the adjacent subdomains are coupled

through interface boundaries. The entire system solution is then recovered from the

solutions of all subdomains. In problems with large scale difference, such as multiscale

chip-package simulation, the number of unknowns may reach several millions or above.

It is inefficient to apply direct numerical methods to such problems. Therefore, a

domain decomposition scheme, which saves computation time and memory storage,

is desirable.

Numerous domain decomposition methods based on different decomposition schemes

have been developed in applied mathematics, computational mechanics, computation-

al fluid dynamics, and computational electromagnetics [33]. One type of the domain

decomposition methods is classified as Schwartz method. The classical alternating

Schwartz method is based on overlapping subdomains with Dirichlet boundaries [33].

Although the overlapping domain decomposition is still an active research topic,

the non-overlapping alternatives become appealing for flexibility. An extension to

the classical Schwartz method has been developed, which enables non-overlapping

partitioning with replaced Robin transmission boundary conditions. The first non-

overlapping domain decomposition method for Maxwell’s equation was proposed by
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Despres [34], and was later extended to a relaxed iteration scheme and a higher or-

der transmission condition [35]. Another class of domain decomposition method is

based on Schur complement. In the Schur complement method, internal elimination

is carried out independently, which results in a reduced system relating to the in-

terface unknowns. Using this concept, the finite element tearing and interconnect

(FETI) method has been proposed, and the field continuity on the domain interface

is enforced using Lagrange multipliers. The FETI method was originally develope-

d to solve large computational mechanic problems [36], and was later extended to

electromagnetic simulations such as FETI dual-primal (FETI-DP) method [37].

One of the constraints for some implementations of domain decomposition is the

conformality of the interface meshing between different domains [34], [36], [37]. How-

ever, because of the different electrical properties of the decomposed domains, the

meshing requirement for each domain does not need to be identical. The flexibility

of non-conformal discretization across domains largely relaxes the mesh generation

and adaptive mesh refinement process [38], [39], especially in multiscale structures.

A popular approach, which enables geometrical non-conforming decomposition, is

the mortar element method. The mortar element method was first introduced in

the context of Lagrange finite element and spectral approximations for 2-D elliptic

PDEs [40]. The Lagrange multipliers are chosen in a suitable subspace of the space

of traces of the finite elements considered in one of the two adjacent subdomains [41].

The mortar element method has been successfully demonstrated for simulating elec-

tromagnetic problems [42]. Another approach, based on Robin or another type of

transmission boundary for realizing non-conformal domain decomposition, is the ce-

ment element method [43]. The major difference between the cement method and

the FETI-DP method is that the cement element method expands the dual variables

on the interface explicitly instead of generating Boolean projections as in the FETI-

DP method [37], [40]. This method does not require mortar and non-mortar sides,
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and exhibits quick convergence [44], [45]. Recently, the non-conformal FETI-DP has

been developed [46]. Both the Lagrange multiplier-based and cement element-based

approaches, which are shown to be efficient in simulating periodic structures such as

antenna arrays, have been studied.

In recent years, domain decomposition schemes in the time domain using the dual-

field time-domain finite-element method and the discontinuous Galerkin Method have

been developed [47], [48]. However, transient non-conformal domain decomposition is

still very challenging, especially for the FDTD scheme. The updating equations in the

FDTD method make it difficult for addressing non-conformal subdomain interface.

Therefore, domain decomposition using the FDTD scheme has only been implemented

for structures with conformal meshing [49].

2.2.4 Conductor Surface Roughness Modeling

In IC fabrication, signal traces contain rough surfaces to increase the adhesion be-

tween conductor and dielectric materials, such as in organic package substrates. This

creates “tooth-like” surfaces (as shown in Figure 6) with roughness height in the

order of micrometers. Most electromagnetic solvers are developed based on the as-

sumption that the conductor surface is smooth. Although conductor loss can be

captured by accurate modeling of skin-effect, this assumption begins to break down

in high frequencies where the effect of surface roughness becomes dominant. At high

frequencies, the surface roughness height becomes comparable to skin depth, resulting

in significant increase in power loss. On one hand, accurate modeling of the surface

roughness is a necessity to ensure the accuracy of the simulation result; on the other

hand, surface roughness exhibits random patterns as shown in Figure 7, making it

difficult to model these effects in electromagnetic solvers.

The earliest attempts generalize the rough surface into a 2-D periodic distribution

of simple shapes. In [50], rough surface is modeled by 2-D rectangular and triangle

15



Signal Trace

Ground Plane

Roughness

Figure 6: Microstrip line with surface roughness on both signal trace and ground
plane.

Figure 7: SEM photograph of rough copper surface of 5000× magnification [1].
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periodic grooves. Two scenarios, namely the current flow parallel to the grooves and

the current flow transverse to the grooves, are investigated. Analytical expressions

are derived for easy implementation. However, the 2-D assumption is not a true rep-

resentation of the real surface roughness distribution. Base on the numerical results

in [50], an analytical expression with enhancement factor (or correction factor) is de-

veloped in [51] using curve fitting. The enhancement factor modifies the conductivity

of the metal material, making it frequency-dependent. It has been demonstrated that

this method is accurate below 10 GHz. However, the enhancement factor saturates at

high frequencies, making it inapplicable for high-frequency simulation. Other meth-

ods based on the 2-D roughness distribution for different applications have also been

derived [52].

To more accurately model surface roughness, methods that represent the rough

surface profile with periodic 3-D simple geometries have been developed. In [1], the

random roughness is modeled by conducting hemispheres sitting on the surface of

the conductor. Analytical solution of the enhancement factor is derived by applying

the plane wave scattering theory. This method is demonstrated to be accurate in

modeling the loss of microstrip lines up to 30 GHz and later has been extended to

stripline interconnects [53]. To overcome the early saturation of enhancement factor

using the method in [1], the rough surface is modeled by conducting sphere bundles

sitting on the conductor surfaces, creating a “pyramid-like” structure [54]. Other

attempts have also been made including introducing an effective conductivity layer

on the rough surfaces and the enhancement factor is extracted using electromagnetic

solvers [55].

Another type of surface roughness modeling involves direct tackling of the rough-

ness without generalizing roughness distribution into equivalent shapes or surfaces.

The most straightforward way is to create 3-D structures with roughness details and
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simulate using commercial full-wave solvers [56]. However, this method is computa-

tionally inefficient. Modified full-wave solutions are proposed with decreased compu-

tational time in [57]. In [58], the surface is considered as a complete random surface

and a 2-D parallel waveguide problem is investigated. The second-order small per-

turbation method is applied to derive a closed-form expression for the coherent wave

propagation and power loss. The derived result is expressed in terms of a double

Sommerfeld integral. This method is then extended to 3-D problems [59]. However,

the implementation of the method is still time-consuming.

It is important to note that, all the aforementioned methods have investigated

the surface roughness modeling of 2-D problems or 3-D problems for transmission

lines supporting a transverse electromagnetic (TEM) mode, such as microstrip lines

and coaxial lines. In this dissertation, a novel interconnect, the substrate integrated

waveguide (SIW), is the structure of interest. The dominant mode is the transverse

electric (TE) mode with operating frequency up to 170 GHz. Unfortunately, no

accurate solution of surface roughness modeling in applications with TE modes has

been presented before. Moreover, modeling surface roughness in frequencies this

high and integrating surface roughness modeling into full-wave solvers are extremely

challenging.

2.3 Technical Focus of the Dissertation

The aforementioned previous works show the advantages and limitations of the exist-

ing computational methods. These post challenges in transient simulation of multi-

scale chip-package structures. New schemes need to be developed in order to overcome

the limitations with significant improvement of computational capability, speed and

accuracy, which is the essence of this dissertation. The technical focus of this disser-

tation is listed as follows:

1. The design and development of a unconditionally stable transient solver. The
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Laguerre-FDTD scheme is chosen to be the core algorithm.

2. The rigorous incorporation of skin-effect into the transient solver, which reduces

the computational complexity while maintaining accuracy.

3. The development of a transient non-conformal domain decomposition scheme

based on Laguerre-FDTD method for the simulation of multiscale structures.

4. Simulation of multiscale chip-package problems based on the proposed schemes.

5. The investigation of an analytical solution for the conductor surface roughness

modeling of SIW. The method should be easy for incorporation into full-wave

solvers, such as the Laguerre-FDTD solver and other commercial solvers.
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CHAPTER III

LAGUERRE-FDTD METHOD FOR TRANSIENT

SIMULATION

3.1 Introduction

In the time domain, simulating multiscale structures using the conventional FDTD

method is highly inefficient due to the stability condition. The time step is confined

by the smallest feature size of the simulated structure, making the simulation time

prohibitively long. The Laguerre-FDTD method is introduced to overcome the sta-

bility issue associated with the conventional FDTD method. By using Laguerre basis

functions to expand time, Laguerre-FDTD is no longer a marching-on-in-time scheme

but a marching-on-in-order scheme. Laguerre polynomials are defined from time t = 0

to t = +∞ and higher order terms can be generated recursively. All the Laguerre

polynomials are orthogonal with respect to a weighting function in a function space

defined by the inner product of two continuous functions [8]. It is important to note

that the weighted Laguerre polynomials converge to zero as time t → ∞, which is

desired for time-domain simulation.

3.2 Expanding Time Using Laguerre Basis Function

In the Laguerre-FDTD method, a time-domain waveform can be represented as a sum

of infinite Laguerre basis functions φq(t̄) scaled by Laguerre basis coefficients Wq as

W(t) =
∞∑
q=0

Wqφq(t̄) (3)

where t̄ = t · s, s is the time scaling factor, and t is time; Superscript q denotes
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the Laguerre coefficient of order q. By properly choosing the time scale factor, the

simulation time scale can be increased to the order of seconds. For numerical im-

plementation, the number of basis functions is truncated to N , where the optimum

selection of N is discussed in [14].

The Laguerre basis functions φq(t̄) can be expressed as

φq(t̄) = e−t̄/2Lq(t̄) (4)

where Lq(t̄) is the Laguerre polynomial which is defined recursively as

L0(t̄) = 1 (5)

L1(t̄) = 1− t̄ (6)

and for q ≥ 2

qLq(t̄) = (2q − 1− t̄)Lq−1(t̄)− (q − 1)Lq−2(t̄). (7)

The Laguerre polynomials are orthogonal with respect to the weighting function e−t,

given by

∫ ∞

0

e−tLu(t)Lv(t)dt =δuv. (8)

To be noted, these basis functions are also orthogonal with respect to the scaled time

variable t̄ as

∫ ∞

0

φp(t̄)φq(t̄)dt̄ = δpq. (9)
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Assuming an isotropic, non-dispersive, lossy media, in Cartesian coordinates, the

3-D Maxwell’s equations can be written as

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− Jx − σEx

)
(10)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− Jy − σEy

)
(11)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− Jz − σEz

)
(12)

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(13)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(14)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(15)

where ε is the electric permittivity, µ is the magnetic permeability, σ is the electric

conductivity; Jx, Jy, and Jz are the excitations along x, y, and z axes, respectively.

For brevity, only the derivation of formulas for electric field component Ex |i,j,k in

x-direction is discussed. Formulas for electric field components in y- and z-directions

can be derived in a similar manner. Discretizing the differential equation (10) in

Laguerre domain using temporal testing procedure yields

Eq
x |i,j,k = C̄E

y |i,j,k (Hq
z |i,j,k −Hq

z |i,j−1,k )− C̄E
z |i,j,k

(
Hq

y |i,j,k −Hq
y |i,j,k−1

)
− 2

sεi,j,k
Jq
x |i,j,k − 2σi,j,k

sεi,j,k
Eq

x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k

(16)

where
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C̄E
y |i,j,k =

2

sεi,j,k∆ȳj
(17)

C̄E
z |i,j,k =

2

sεi,j,k∆z̄k
(18)

where ∆ȳj and ∆z̄k are the distance between the center nodes where magnetic fields

are located. Figure 8 shows the position of electric and magnetic field in the form of

coefficients of order q in 3-D cells in Laguerre domain.

Similarly, discretizing time derivative differential Equation (14) and (15) for mag-

netic fields and inserting into (16), with some manipulations, we can obtain the linear

equation for electric field in x-direction as

(
1 + C̄E

y |i,j,k C̄H
y |i,j,k + C̄E

y |i,j,k C̄H
y |i,j−1,k

+C̄E
z |i,j,k C̄H

z |i,j,k + C̄E
z |i,j,k C̄H

z |i,j,k−1 +
2σi,j,k

sεi,j,k

)
Eq

x |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k + C̄E

y |i,j,k C̄H
x |i,j,k Eq

y |i+1,j,k

− C̄E
y |i,j,k C̄H

x |i,j,k Eq
y |i,j,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
x |i,j−1,k

− C̄E
y |i,j,k C̄H

x |i,j−1,k E
q
y |i+1,j−1,k + C̄E

y |i,j,k C̄H
x |i,j−1,k E

q
y |i,j−1,k

+ C̄E
z |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k − C̄E

z |i,j,k C̄H
x |i,j,k Eq

z |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
x |i,j,k+1 − C̄E

z |i,j,k C̄H
x |i,j,k−1 E

q
z |i+1,j,k−1

+ C̄E
z |i,j,k C̄H

x |i,j,k−1 E
q
z |i,j,k−1 − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
x |i,j,k−1

= − 2C̄E
y |i,j,k

(
q−1∑

n=0,q>1

Hn
z |i,j,k −

q−1∑
n=0,q>1

Hn
z |i,j−1,k

)

+ 2C̄E
z |i,j,k

(
q−1∑

n=0,q>1

Hn
y |i,j,k −

q−1∑
n=0,q>1

Hn
y |i,j,k−1

)

− 2

sεi,j,k
Jq
x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k

(19)

where
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Figure 8: Positions of the (a) electric field (black arrow) and (b) magnetic fields
(red arrow) of order q in 3-D cells.
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C̄H
x |i,j,k =

2

sµi,j,k∆xi

(20)

C̄H
y |i,j,k =

2

sµi,j,k∆yj
(21)

C̄H
z |i,j,k =

2

sµi,j,k∆zk
(22)

where ∆xi, ∆yj, and ∆zk are the length of the edge where electric fields are located.

The detailed derivation of the formulations can be found in Appendix A.

3.3 System Matrix

It can be observed from the coefficient equation shown in (19) that the field component

Ex |i,j,k is related to the adjacent twelve electric field components and four magnetic

field components. The sum of magnetic field Laguerre coefficients can be considered

as known since they are one order lower (q − 1) than the electric field counterparts.

Therefore, by solving the linear system Ax = b where each row has thirteen nonzero

terms, the Laguerre basis coefficients for each field component can be determined.

The time-domain waveform can therefore be recovered. The detailed solving steps

are as follows

1. Initialization: q = 0, E0, H0;

2. Form the system matrix A;

3. Update system right-hand-side excitation vector b;

4. Update Eq by solving system matrix;

5. Update Eq−1 using updated Eq;

6. Increment q = q + 1 and go to step (4) if q < qstop, otherwise go to next step;

7. Recover the time-domain waveform.
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3.4 Boundary Conditions

Boundary conditions define the unique solution of Maxwell’s equations in a given

computational domain. In time-domain simulation, some boundary conditions are

often adopted.

Perfect Electric Conductor (PEC) Boundary Condition: The implemen-

tation of PEC boundary is most straightforward. It can be realized by setting the

tangential electric field to zero at the boundary. In Laguerre-FDTD method, time-

domain waveform is not directly solved but is recovered from the solution of coefficient

equations. However, in Laguerre domain, the implementation of the PEC boundary

is still easy. Only the Laguerre coefficients associated with the boundary electric field

need to be set to zero. The PEC boundary can be used as the boundary of the air

box that surrounds the structure of interest. To be noted, the radiation from the

structure of interest should be low, otherwise, the PEC box will introduce simulation

errors. The PEC boundary can also be adopted in simulating conductor structures.

However, this will also introduce simulation errors since skin-effect is neglected at

high frequencies. Surface impedance boundary condition can be used to model the

skin-effect, which is one of the major topics of the dissertation.

First-Order Absorbing Boundary Condition (ABC): The implementation

of the first-order ABC is also straightforward. By discretizing the first-order ABC

equation in Laguerre domain, relationship of the boundary electric field component

and the one in the adjacent cell is establish. The ABC is widely used as the bound-

ary of the air box which truncates the computational domain. Any radiation from

the structure of interest can be absorbed at the boundary which ensures simulation

accuracy. The first-order ABC is adopted for most of the simulation cases within this

dissertation.

Second-Order Absorbing Boundary Condition (ABC): The second-order

ABC is more complex that the first-order ABC. However, the absorption quality is

26



usually superior than the first-order ABC. If high absorption quality is required at the

boundary, the second-order ABC should be adopted. In the scope of this dissertation,

the second-order ABC is usually not needed.

Perfect Matched Layer (PML) Boundary Condition: The absorption qual-

ity of the PML boundary condition is the best compared with the aforementioned

ABC. However, the implementation of the PML boundary is complicated and re-

quires additional boundary cells [60]. This results in additional computational cost.

It is important to noted that, for simulations such as radar cross section (RCS), high

quality of absorption is needed at the boundary. However, in this dissertation, for all

the structure of interest, the PML boundary condition is not required and has not

been implemented.

The detailed derivation and formulations related to the boundary conditions are

given in Appendix A.

3.5 Frequency-Domain Result Extraction

For transient computational methods such as Laguerre-FDTD method, the direct

result is always in time domain (e.g. port electric field waveform). To obtain the

frequency-domain results (e.g. S-parameters), time-domain results need to be post-

processed. In this section, some techniques related to the frequency-domain result

extraction are discussed.

3.5.1 Embedding and De-Embedding Port Resistors

When extracting frequency-domain results (e.g. S-parameters) from time-domain

simulation results, the transient response needs to decay to zero in a finite length of

time. For high-Q structures, the decay in time-domain response can be slow resulting

in prohibitively long simulation time. To accelerate the simulation speed, port resis-

tors can be used. Though incorporating resistors has been addressed before [61], [62],

none of the literature considers the influence of resistors on the frequency response
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Figure 9: Embedded resistor for one port with three cells in the x-direction.

after de-embedding. In this work, port resistors are de-embedded after time-domain

simulation to ensure that they do not alter the results.

For simplicity, only the implementation for a two port network is presented. The

method can be extended to multi-port network as well. Figure 9 shows the attached

resistor R for one port with three cells in x-direction. An additional unknown Jport

is introduced which denotes the current flow through the shunt resistor. Therefore,

(10) can be modified as

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− Jx − Jx,port − σEx

)
. (23)
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Figure 10: Equivalent network for the simulation structure (two ports) with em-
bedded resistors.

Discretizing (23) in the Laguerre domain yields

Eq
x |i,j,k = C̄E

y |i,j,k (Hq
z |i,j,k −Hq

z |i,j−1,k )

− C̄E
z |i,j,k

(
Hq

y |i,j,k −Hq
y |i,j,k−1

)
− 2

sεi,j,k
Jq
x |i,j,k − 2

sεi,j,k
Jq
x,port |i,j,k

− 2σi,j,k

sεi,j,k
Eq

x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k .

(24)

In (24), it can be observed that an additional term for port current is added to the b

vector as compared to (16). Suppose that the y-z cross sectional area of the cells in

Figure 9 is A, the port current and electric field can be related by

Jq
x,port =

Iq

A
=

3∑
i=1

∆xiE
q
x,i

RA
. (25)

To de-embed the resistor after simulation, consider the same network for calculat-

ing S-parameters. Figure 10 shows the topology of the network. The network within

the solid box is the original network whose S-parameters [S] are to be determined
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whereas the one with shunt resistors attached to each port inside the dashed box is

the modified network with S-parameters [Ŝ]. The de-embedding procedure can be

implemented as follows

1. Calculate S-parameters [Ŝ] of the modified network from the time domain re-

sponse;

2. Convert S-parameters [Ŝ] into Z-parameters [Ẑ];

3. Calculate [Z] from [Ẑ] using network transformation;

4. Convert [Z] into [S].

To realize step 3, we have

[Î] = [I] + [R]−1[V ] (26)

[Ẑ][Î] = [V ] (27)

[Z][I] = [V ] (28)

where [I] = [I1, I2]
T , [V ] = [V1, V2]

T . Combining (26) to (28) results in

[Z] = (I− [Ẑ][R]−1)−1[Ẑ] (29)

where I is the identity matrix with the same dimension of port numbers.

3.5.2 Voltage-Voltage Extraction Scheme

The voltage-voltage extraction of the S-parameters is the most straightforward frequency-

domain extraction method. Since the S-parameter is defined as the ratio of reflected

and incident port voltage, a simple fast Fourier transform (FFT) of the transient
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voltage waveform is needed. Particularly, Sij (i and j are port numbers) can be cal-

culated as

Sij =
FFT (Vi,ref)

FFT (Vj,inc)
(30)

where Vi,ref and Vj,inc are the reflection and incident voltage of ports i and j, respec-

tively.

However, in real simulations, incident and reflected wave cannot be easily distin-

guished. This scheme is only useful with planar structure whose feed line is relatively

long. This is obviously not desired since unnecessary computational resource is wast-

ed for the long feed line. Also, port energy needs to be completely absorbed to ensure

the accuracy of the extraction. Therefore, although the calculation is straightforward,

this extraction scheme is rarely used.

3.5.3 Voltage-Current Extraction Scheme

The voltage-current extraction scheme does not calculate the S-parameters directly.

By recording the port voltage and current in time domain, the Z-parameters of the

test structure can be obtained as

Zij =
FFT (Vi)

FFT (Ij)
(31)

where Vi and Ij are the voltage and current of ports i and j, respectively. The

Z-parameters are then transferred into S-parameters. Although a transformation

is needed for calculating S-parameters, distinguishing incident and reflected waves is

avoided. It is suitable for all types of structures, including planar structures with feed

line ports. To be noted, this type of extraction is especially useful for simulations

with ports defined inside the structure, such as power-ground planes. Therefore, the
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voltage-current extraction scheme is mostly adopted in this dissertation.

To be noted, for planar structures with feed line ports, S-parameters can be ob-

tained from an energy wave point of view to reduce the magnitude of ripple generated

by aforementioned method. No transformation is needed and the S-parameters can

be calculated as

Sij =
FFT (Vi − IiZ0)

FFT (Vj + IjZ0)
(32)

where Z0 is the port impedance. Note that this scheme is only valid if the field

propagating at the measurement point behaves like a simple plane wave without any

evanescent field.

3.6 Summary

In this chapter, a transient full-wave solver is developed based on the uncondition-

ally stable Laguerre-FDTD method. Unlike the marching-on-in-time schemes, the

Laguerre-FDTD method eliminates the time-dependent instability by expanding the

time-domain wave using Laguerre polynomials. The time step size is only depen-

dent on the solution resolution but not the cell size. This is suitable for simulation

of multiscale structures where fine structures are located in certain regions of the

computational domain. A scheme for embedding and de-embedding port resistors is

implemented to ensure fast convergence of the transient algorithm. Frequency domain

extraction methods are also discussed.

32



CHAPTER IV

SKIN-EFFECT MODELING

4.1 Introduction

In low frequency simulation, metal can be justifiably considered as perfect conduc-

tor without introducing significant error. However, in the design of high-frequency

applications, accurate modeling of conductor loss due to skin-effect is critical since

conductor loss cannot be neglected. To be specific, interconnect loss is related to the

signal integrity of the electronic system. Failure in capturing the conductor loss may

result in pre-silicon design flaws, leading to failure of post-silicon verification.

Efficient transient modeling of skin-effect has been a challenging topic for decades.

Usually, a dense mesh needs to be applied to the conductor structures (e.g. intercon-

nects) resulting in significant wastage of computational resources (Figure 11). Among

the existing solutions for modeling skin-effect, the surface impedance boundary con-

dition (SIBC) has been widely adopted. However, no implementation method exists

for incorporating skin-effect into the Laguerre-FDTD method.

4.2 Surface Impedance Boundary Condition

In this section, the SIBC is introduced and is used to model skin-effect. Rational

fitting technique is implemented to decrease the complexity of transformation from

frequency domain to Laguerre domain.

4.2.1 Theory

To incorporate skin-effect into the Laguerre-FDTD method, the first-order SIBC can

be applied based on the assumption that skin depth is less than the smallest feature

size of the conductor, which is usually satisfied at high frequencies. To be noted, for
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(b)

Current 
Density

Current 
Density

Figure 11: Interconnect meshing strategy: (a) coarse mesh inside conductor cannot
represent the exponentially decay current which results in inaccurate simulation of
the skin-effect and (b) fine mesh inside conductor results in high computational cost.
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a very thin (less than the skin depth) conductor structure, this method is no longer

accurate and alternatives should be considered, such as resistive boundaries [63]. In

SIBC, the tangential electric and magnetic fields on the conductor surface are related

by [29]

Etan(ω) = Z(ω) [n̂×Htan(ω)] (33)

where n̂ is the unit vector normal to the conductor surface as shown in Figure 12, ω

is the radian frequency, and Z(ω) is the surface impedance given by

Z(ω) =
1

Y (ω)
=

√
jωµ

σ + jωε
. (34)

Note that ε, µ, and σ are the electric permittivity, magnetic permeability, and con-

ductivity of the conductor.

By establishing the relationship between electric field and magnetic field on the

surface of the conductor, it is possible to model conductor loss without calculating

the field inside the conductor. This avoids meshing inside the conductor to capture

the exponentially decaying field, and thus, significantly reduces the computational

complexity.

4.2.2 Rational Fitting

As mentioned earlier, the SIBC is expressed in the frequency domain, and it cannot be

directly applied to time-domain simulations. In conventional FDTD method, one so-

lution strategy involves direct Laplace transformation followed by Laplace domain to

time domain transformation [28]. However, this results in time integral of zero-order

and first-order Bessel functions which are difficult to calculate. Here, without losing

accuracy, the frequency-domain expression of SIBC is first transformed into Laplace
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Figure 12: Interface of conductor and dielectric materials.

domain using rational fitting [29]. The Laplace domain expression is then transformed

into time domain using summation terms which are easy to to be rewritten in the

Laguerre domain.

Applying the first-order rational fitting technique to approximate the frequency

domain expression of the reciprocal of the surface impedance (surface admittance) in

(34), we have

Y (s) =
m∑
p=1

Cp

s− Ap

+D (35)

where s = jω, m is the number of terms used in the fitting, Cp and Ap are the fitting

coefficient and poles, and D is the constant term that determines the behavior of the

rational function as the frequency approaches infinity. Commonly, for infinite fre-

quency range, D can be set to zero and time domain expression of surface admittance

can be written as

Y (t) =
m∑
p=1

Cpe
−Apt. (36)
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Figure 13: Comparison of the analytical solution and data from nine-term fitting
with D equal to zero.

Figure 13 shows the comparison of the analytical solution and the fitted data of

the admittance term. Fine-term fitting with D = 0 is used for comparison. A perfect

match can be observed for these two scenarios.

To better illustrate the fitting accuracy, Figure 14 shows the relative error for

eight- and nine-term fitting for copper (σ = 5.8 × 107 S/m) over the 0.1 GHz to 40

GHz band. It can be observed that the accuracy of nonzero constant fitting is slightly

higher than zero constant fitting with the same fitting terms. Also, for both selection

of D, the relative errors are confined within 0.5% for nine-term fitting. The accuracy

level is good for the target applications considered in this dissertation.
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Figure 14: Comparison of relative error for eight- and nine-term fitting for copper
with D equal to zero and nonzero.

4.3 Skin-Effect-Incorporated Laguerre-FDTD Method

In this section, skin-effect modeling is realized using the SIBC. The SIBC is estab-

lished in the Laguerre domain and is incorporated into the existing Laguerre-FDTD

method. The implementation methods are discussed and compared.

4.3.1 SIBC in Laguerre-Domain

It can be observed from (36) that after rational fitting, the time-domain expression

of the admittance term can be written in a form that can be easily transformed into

Laguerre domain. Using the definition in (3), in Laguerre domain, the coefficient for

Y can be written as

Y q =

∫ ∞

0

Y (t)φq(t̄)dt. (37)

In Laguerre domain, denoting
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Y q =
m∑
p=1

CpG
q
p =

m∑
p=1

Cp

∫ ∞

0

e−Aptφq(t̄)dt (38)

and performing integration by parts, the final Laguerre basis coefficient expression

can be written as

Y q =
m∑
p=1

Cp
2

2Ap + s

(
2Ap − s

2Ap + s

)q

. (39)

The detailed derivation is given in Appendix B.

4.3.2 Magnetic Field Approximation Scheme

For simplicity, consider only the electric field component in the x-direction, and as-

suming that x-y plane shown in Figure 15 is the interface of dielectric (z+) and

conductor (z−), the relationship between tangential electric and magnetic fields in

the frequency domain can be written as

Hy0 |i,j,k (ω) = −Y (ω)Ex |i,j,k (ω). (40)

Since the electric and magnetic field nodes are not collocated in the grid, the magnetic

field Hy0 |i,j,k collocated with the electric field Ex |i,j,k is unknown. This field compo-

nent can be approximated using the magnetic field component Hy0 |i,j,k above in the

half cell where Ex |i,j,k is located. This translates to the Laguerre basis coefficients as

Hq
y0 |i,j,k ≈ Hq

y |i,j,k (41)

We name this scheme the magnetic field approximation SIBC or MFA-SIBC method.
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Figure 15: Interface cell for dielectric (z+ domain) and conductor (z− domain) in
Laguerre-FDTD method with SIBC for the magnetic field approximation scheme.

Thus, in the time domain, the relationship between the tangential electric and

magnetic fields can be written in convolution form

Hy |i,j,k (t) = −
∫ t

0

Ex |i,j,k (t− τ)Y (τ)dτ. (42)

The convolution term can be transformed into Laguerre domain using the method in

described in [64], where MFA-SIBC can be established by rewriting (42) as

Hq
y |i,j,k = −

(
q∑

k=0,q>0

Ek
x |i,j,k Y q−k −

q−1∑
k=0,q>1

Ek
x |i,j,k Y q−k−1

)

= −
m∑
p=1

ap

(
q∑

k=0,q>0

Ek
x |i,j,k bq−k

p −
q−1∑

k=0,q>1

Ek
x |i,j,k bq−k−1

p

)

= −
m∑
p=1

W q
p

(43)

where
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ap =
2Cp

Ap + s
(44)

bp =
2Ap − s

2Ap + s
. (45)

Here, W q
p can be expressed recursively as

W q
p = bpW

q−1
p + ap

(
Eq

x |i,j,k − Eq−1
x |i,j,k

)
(46)

W 0
p = a0E

0
x |i,j,k . (47)

To eliminate the intermediate term W q
p , using (44) and (45), (42) can be written as

Hq
y |i,j,k = −

m∑
p=1

[
apE

q
x |i,j,k +

(
bpW

q−1
p − apE

q−1
x |i,j,k

)]
= −

m∑
p=1

(
apE

q
x |i,j,k + αq−1

p

) (48)

where

αq
p = bpα

q−1
p + ap(bp − 1)Eq

x |i,j,k (49)

α0
p = ap(bp − 1)E0

x |i,j,k . (50)

Inserting (48) into (167) (Appendix A), the final representation of MFA-SIBC be-

comes
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(
m∑
p=1

ap + C̄H
z |i,j,k

)
Eq

x |i,j,k + C̄H
x |i,j,k Eq

z |i+1,j,k

− C̄H
x |i,j,k Eq

z |i,j,k − C̄H
z |i,j,k Eq

x |i,j,k+1

= −
m∑
p=1

αq−1
p + 2

q−1∑
n=0,q>1

Hn
y |i,j,k .

(51)

Note that the left-hand side of (51) represents the nonzero Laguerre basis coefficient

of electric-field components in a row of the system matrix whereas the right side

corresponds to the value of the right-hand-side excitation vector in the same row.

Therefore, the skin-effect-incorporated Laguerre-FDTD using the MFA-SIBC can

now be implemented as follows

1. Initialization: q = 0, E0, H0;

2. Form the system matrix except on the conductor surface;

3. Apply MFA-SIBC to the system matrix using the left-hand-side of (51);

4. Update system right-hand-side excitation vector except on the conductor sur-

face;

5. Update system right-hand-side excitation vector using the right-hand-side of

(51);

6. Update Eq by solving system matrix;

7. Update Eq−1 using updated Eq;

8. Update αq−1
p using (49);

9. Increment q = q + 1 and go to step (4) if q < qstop.
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Figure 16: Interface cell for dielectric (z+ domain) and conductor (z− domain) in
Laguerre-FDTD method with SIBC for the electric field approximation scheme.

4.3.3 Electric Field Approximation Scheme

Again, considering the case in Figure 16 for electric field in the x-direction and mak-

ing the same assumption as in MFA-SIBC, discretizing (10) in y- and z-directions

with distance increments ∆yj and ∆zk/2, respectively, results in

Eq
x |i,j,k = C̄E

y |i,j,k (Hq
z |i,j,k −Hq

z |i,j−1,k )

− 2C̄E
z |i,j,k

(
Hq

y |i,j,k −Hq
y0 |i,j,k

)
− 2

sεi,j,k
Jq
x |i,j,k − 2σi,j,k

sεi,j,k
Eq

x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k .

(52)

Note that to avoid calculating the electric field component inside the conductor,

Hq
y |i,j,k−1 in (16) is replaced with Hq

y0 |i,j,k , and is discretized by half of the cell

height. This is similar to shifting the surface tangential electric field in between the

magnetic field components Hq
y |i,j,k and Hq

y0 |i,j,k . We name this scheme the electric

field approximation SIBC or EFA-SIBC method.
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As before, the surface tangential electric- and magnetic-field coefficients are relat-

ed by

Hq
y0 |i,j,k = −

m∑
p=1

(
apE

q
x |i,j,k + αq−1

p

)
. (53)

Inserting (48) into (52) together with the discretization of the magnetic fields, the

final expression of SIBC in Laguerre domain is

(
1 + C̄E

y |i,j,k C̄H
y |i,j,k + C̄E

y |i,j,k C̄H
y |i,j−1,k

+2C̄E
z |i,j,k C̄H

z |i,j,k + 2C̄E
z |i,j,k

m∑
p=1

ap +
2σi,j,k

sεi,j,k

)
Eq

x |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k + C̄E

y |i,j,k C̄H
x |i,j,k Eq

y |i+1,j,k

− C̄E
y |i,j,k C̄H

x |i,j,k Eq
y |i,j,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
x |i,j−1,k

− C̄E
y |i,j,k C̄H

x |i,j−1,k E
q
y |i+1,j−1,k + C̄E

y |i,j,k C̄H
x |i,j−1,k E

q
y |i,j−1,k

+ 2C̄E
z |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k − 2C̄E

z |i,j,k C̄H
x |i,j,k Eq

z |i,j,k

− 2C̄E
z |i,j,k C̄H

z |i,j,k Eq
x |i,j,k+1

= − 2C̄E
y |i,j,k

(
q−1∑

n=0,q>1

Hn
z |i,j,k −

q−1∑
n=0,q>1

Hn
z |i,j−1,k

)

+ 4C̄E
z |i,j,k

(
q−1∑

n=0,q>1

Hn
y |i,j,k − 1

2

m∑
p=1

αq−1
p

)

− 2

sεi,j,k
Jq
x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k .

(54)

Similarly, the skin-effect-incorporated Laguerre-FDTD using the EFA-SIBC can now

be implemented as follows

1. Initialization: q = 0, E0, H0;

2. Form the system matrix except on the conductor surface;
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3. Apply EFA-SIBC to the system matrix using the left-hand-side of (54);

4. Update system right-hand-side excitation vector except on the conductor sur-

face;

5. Update system right-hand-side excitation vector using the right-hand-side of

(54);

6. Update Eq by solving system matrix;

7. Update Eq−1 using updated Eq;

8. Update αq−1
p using (49);

9. Increment q = q + 1 and go to step (4) if q < qstop.

4.3.4 Stability Discussion

It is known that due to the marching-on-in-order nature, the Laguerre-FDTD method

is unconditionally stable. However, by introducing SIBC, the stability of the algo-

rithm is dependent on the conductivity of the metal structure. It can be inferred

that the stability will break down when the conductivity of the metal is very low.

Nevertheless, this will not affect the real world modeling since materials with very

low conductivity are rarely used as metal.

To investigate the stability of the proposed method, a simple microstrip line struc-

ture shown in Figure 17 is simulated and analyzed. The structure has a dielectric

substrate with width and thickness of s = 30 mm and d = 0.305 mm. The dielectric

constant and loss tangent of the substrate are εr = 4.5 and tan δ = 0.025, respectively.

The metal strip is considered as copper line (conductivity σ = 5.8 × 107 S/m) with

length, width and thickness of l = 93.5 mm, w = 0.51 mm and t = 0.03 mm, respec-

tively. The simulated structure is surrounded by an ABC box with height h = 1 mm.

Two ports are set at each end of the line and Gaussian pulse is used as the excitation.
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Figure 17: Cross-sectional view of the simulated microstrip line.

The ratio of maximum electric field at the observation point at the conductor

surface (E2) and the maximum electric field at the source port (E1) is used as a

gauge to measure the stability. The conductivity of the line varies from 1×10−5 S/m

to 1×107 S/m. It can be observed in Figure 18, that the MFA-SIBC method is stable

for conductivity higher than 1× 10−3 S/m. Rapid dispersion occurs for conductivity

less than 1 × 10−3 S/m. However, EFA-SIBC method is stable across the whole

conductivity range shown in Figure 19. This is because approximation (41) in MFA-

SIBC uses simple shifting of the field component and is largely dependent on the cell

size. To be noted, for both MFA-SIBC and EFA-SIBC methods, non-physical results

are obtained as conductivity becomes less than 1×10−3 S/m since the field magnitude

is larger than that of the source. For high conductivity applications, MFA-SIBC is

preferred due to its simpler implementation.

4.4 Numerical Results

In this section, the efficiency and accuracy of the skin-effect-incorporated Laguerre-

FDTD method is demonstrated with several numerical test cases.
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Figure 18: Stability analysis of the skin-effect-incorporated Laguerre-FDTD scheme
using the MFA-SIBC method with test case of microstrip line.
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Figure 19: Stability analysis of the skin-effect-incorporated Laguerre-FDTD scheme
using the EFA-SIBC method with test case of microstrip line.
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4.4.1 Microstrip Line

A microstrip line that is described in the previous section shown in Figure 17 is first

simulated. Note that the thickness of the line cannot be neglected since conductor

loss needs to be considered. This makes the microstrip line structure intrinsically

multiscale with scale difference of 3117:1 (ratio between largest and smallest feature

size which are line length and thickness).

To compare between the standard Laguerre-FDTD method and the skin-effect

incorporated Laguerre-FDTD method, two sets of meshing are applied. Figure 20(a)

shows the mesh of the microstrip line structure for standard Laguerre-FDTD method.

A dense mesh is applied inside the conductor to ensure simulation accuracy. Figure

20(b) shows the mesh for the same structure using skin-effect incorporated Laguerre-

FDTD method. In this case, inside of the conductor is not meshed and thus is left

blank.

Table 1 shows the mesh density of the microstrip line for different schemes. In

addition, simulation using the conventional FDTD method that satisfies the CFL con-

dition using the mesh setting shown in Figure 20(a) and simulation of the Laguerre-

FDTD method using the mesh setting shown in Figure 20(b) with PEC boundary

for the conductor strip are also performed. Table 1 summarizes the time interval and

CPU time of each simulation case. It can be observed that under same meshing, the

Laguerre-FDTD method is significantly faster than the conventional FDTD method

for multiscale structures since the time step for the latter one is limited by the s-

mallest cell dimension. In this case, the smallest cell dimension for the structure is

∆z = 5 µm, which makes the time step for the conventional FDTD method ∆t = 6.25

fs whereas the counterpart for the Laguerre-FDTD method is ∆t = 1.0 ps. More-

over, with skin-effect incorporated Laguerre-FDTD method, a significant reduction

in simulation time is observed compared to standard Laguerre-FDTD method.

Figure 21 shows the comparison of the time-domain electric field waveform (Ez)
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(a)

(b)

Figure 20: Comparison of the cross-sectional meshing grid for (a) standard Laguerre-
FDTD and (b) SIBC incorporated Laguerre-FDTD.

Table 1: Comparison of the computational cost for different simulation methods.

Method ∆t No. of Cells CPU Time

Conventional FDTD 6.25 fs 26×80×35 10 hr
Laguerre-FDTD 1.0 ps 26×80×35 30 min
Laguerre-FDTD (PEC) 1.0 ps 20×80×20 15 min
Laguerre-FDTD (SIBC) 1.0 ps 20×80×20 15 min
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Figure 21: Comparison of the time domain electric field waveform at the obser-
vation point for conventional FDTD, Laguerre-FDTD, Laguerre-FDTD (PEC) and
Laguerre-FDTD (SIBC) methods.
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Figure 22: Comparison of the microstrip line insertion loss for Laguerre-FDTD
(PEC), Laguerre-FDTD (SIBC) methods and measurement.

50



of the observation point in the middle of the microstrip line along the length direc-

tion using different FDTD schemes. The agreement of all methods is good except for

Laguerre-FDTD method with PEC strip. The slightly higher magnitude of the wave-

form peak results from the lossless metal strip without considering skin-effect. To

better illustrate this point, Figure 22 shows the insertion loss for the Laguerre-FDTD

(PEC) and the Laguerre-FDTD (SIBC) cases together with the measurement. It can

be observed that the result of the skin-effect incorporated Laguerre-FDTD has better

correlation with the measurement.

4.4.2 Low Pass Filter

A microstrip low pass filter originally proposed in [65] is simulated. The structure

shown in Figure 23 has a dielectric substrate with permittivity and thickness of ε =

3.81 and d = 0.42 mm, respectively. The plane symmetric filter is composed of

microstrip lines with characteristic length l1 = 1.8 mm, l2 = 1.929 mm, l3 = 2.732

mm, and l4 = 2.061 mm, respectively. The width of the line segments are w1 = 0.85

mm, w2 = 0.1 mm, and w3 = 1.5 mm. The metal strip and ground plane are made of

copper (conductivity σ = 5.8× 107 S/m) with thickness t1 = 0.22 mm and t2 = 0.02

mm. The scale difference for the structure is 1500:1 (ratio between feature sizes

of structure length and ground thickness). Note the thickness of LIGA processed

microstrip line is even larger than the minimum width which makes it unrealistic to

model the metal strip as PEC sheet.

Figure 24 and Figure 25 show the return loss and insertion loss for the low pass

filter. The comparison of the lossless case with PEC line and lossy case with skin-

effect incorporated Laguerre-FDFD is shown. Also, the measurements from [65] of the

insertion loss is presented (return loss is not shown in [65]). It can be observed that

in Figure 24, both the Laguerre-FDTD (PEC) and Laguerre-FDTD (SIBC) correlate
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Figure 23: Schematic view of the LIGA micromachined microstrip low pass filter
(a) top view and (b) side view.
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Figure 24: Comparison of simulated return loss of Laguerre-FDTD with PEC metal
strip and skin-effect incorporated Laguerre-FDTD.

well except for 12 GHz to 18 GHz range where the loss is detected by using Laguerre-

FDTD (SIBC). This can also be observed in Figure 25 where loss is modeled correctly

using Laguerre-FDTD (SIBC) in 9 GHz to 12 GHz range. The good correlation with

measurement also suggests that skin-effect incorporated Laguerre-FDTD yields more

accurate results.

4.4.3 Through Silicon Via Arrays

Figure 26 shows the 3-D view of a 3× 3 cylindrical through silicon via (TSV) array.

Each port of the TSV array is numbered as shown in Figure 26 and the TSV array

is embedded into a silicon substrate with dielectric constant and conductivity of

εr = 11.9 and σ = 10 S/m, respectively. The diameter of the TSVs are identical with

d1 = 30 µm and the conductor is considered as copper with conductivity σ = 5.8×107

S/m. The length of the TSV is l = 100 µm and the TSVs are separated from the

adjacent ones by d2 = 30 µm. The outer boundary has length L1 = L2 = 100 µm.
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Figure 25: Comparison of simulated insertion loss of Laguerre-FDTD with PEC
metal strip and skin-effect incorporated Laguerre-FDTD.

It is important to note that, the existence of the thin silicon dioxide layer makes the

TSV array a multiscale structure that cannot be efficiently modeled by conventional

FDTD method.

Figure 27 shows the simulated S-parameters of the TSV array using Laguerre-

FDTD with skin-effect incorporated. It takes fifteen minutes for full wave simulation

(100×100×15 cells). In Figure 27, good correlation of S-parameters can be observed

compared with commercial software simulation results.

4.4.4 Spiral Inductor

To illustrate the efficiency improvement of using port resistors and the accuracy of

de-embedding procedure, a spiral inductor structure originally proposed in [66] is

simulated. Figure 28 shows the top view and side view of the structure. The structure

has a dielectric substrate with permittivity and thickness of ε = 9.8 and h1 = 635 µm,

respectively. The feature sizes shown in Figure 28(a) and Figure 28(b) are g = 312.5

54



L1

L2

d1
d2

t

l

1

2

3

4

5

6

7

8

9

Copper

Silicon
Dioxide

Figure 26: Schematic 3-D view of the 3× 3 TSV array.
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FDTD (SIBC) and commercial software.
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µm, w1 = 625 µm, w2 = 312.5 µm, and w3 = 312.5 µm, and h2 = 317.5 µm,

respectively. The metal strip and ground plane are considered as copper (conductivity

σ = 5.8× 107 S/m) with thickness t = 10 µm. The scale difference for the structure

is 1200:1 (ratio between feature sizes of structure length and metal strip thickness).

When applying the embedded resistor, two ports are assigned at each end of the

strip line. Figure 29 and Figure 30 show the time domain port voltage response of

the skin-effect incorporated Laguerre-FDTD method without and with the embedding

resistor, respectively. It is obvious that in Figure 29, the port voltage waveform fluc-

tuates without damping as simulation time reaches 3 ns. This implies that simulation

time duration should be increased to ensure that adequate energy is dissipated before

truncating the simulation. Practically for this case, simulation duration should be at

least 100 ns. In comparison, with embedded port resistors, the port voltage rapidly

reduces to zero as simulation time reaches 3ns. Figure 31 and Figure 32 show the

contour plot of the electric field in z-direction at 0.5 ns using Laguerre-FDTD (SIBC)

without and with embedded resistors, respectively. It can be observed in Figure 32

that by using embedded resistors, energy is dissipated quickly as compared to Figure

31).

Figure 33 and Figure 34 show the return loss and insertion loss of the spiral

inductor using both the Laguerre-FDTD (SIBC) without and with port resistors

(after de-embedding procedure). Measurement extracted from [66] is also presented.

The agreement of both methods is good and good correlation with the measurement is

observed. Therefore, for similar accuracy, Laguerre-FDTD with port resistor scheme

significantly reduces the simulation time. To be noted, this scheme is especially

efficient when ports need to be defined inside the absorption boundary.
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Figure 28: Schematic view of the spiral inductor (a) top view and (b) side view.
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Figure 29: Time-domain voltage waveform at the port of the skin-effect incorporated
Laguerre-FDTD without embedded port resistors.
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Figure 30: Time-domain voltage waveform at the port of the skin-effect incorporated
Laguerre-FDTD with embedded port resistors.
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Figure 31: Contour plot of the electric field magnitude in z-direction of the spiral
inductor in 0.5 ns of Laguerre-FDTD (SIBC) without port resistors.
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Figure 32: Contour plot of the electric field magnitude in z-direction of the spiral
inductor in 0.5 ns of Laguerre-FDTD (SIBC) with port resistors.
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Figure 33: Comparison of simulated return loss of Laguerre-FDTD (SIBC) with
and without port resistors.
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Figure 34: Comparison of simulated insertion loss of Laguerre-FDTD (SIBC) with
and without port resistors.
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4.5 Summary

An efficient scheme for incorporating the skin-effect into the Laguerre-FDTD solver

for multiscale structure simulation is proposed in this chapter. The skin-effect is

modeled using the SIBC with two implementation methods (MFA-SIBC and EFA-

SIBC). Different from standard Laguerre-FDTD method, the inside of the conductor

does not have to be meshed. The numerical examples indicate that the proposed

scheme shows computational accuracy with significant acceleration in simulation time

compared to the standard Laguerre-FDTD method. The stability of both MFA-SIBC

and EFA-SIBC is good with conductivity higher than 1× 10−3 S/m whereas for high

conductivity case MFA-SIBC is preferred due to its simplicity. In addition, simulation

results indicate that using the method of embedding and de-embedding port resistors

provides rapid energy decay and accurate extraction of frequency domain parameters,

which improves the computational efficiency for the Laguerre-FDTD solver.
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CHAPTER V

TRANSIENT NON-CONFORMAL DOMAIN

DECOMPOSITION SCHEME

5.1 Introduction

It is known that for full-wave simulation, the number of unknowns will increase as

the problem scale increases. For methods that require matrix solution, simulating

large-scale problems could be very computationally expensive. This is because the

complexity of algorithm for matrix solution is much larger than O(n), therefore, linear

growth in the number of unknowns leads to much faster growth of solution time.

In fact, even to this date, some realistic problems in industry cannot be efficiently

simulated. For example, the full-wave simulation of interconnects in IC package

together with on-chip interconnects is considered as a problem that requires solutions.

The domain decomposition scheme is useful in simulating large-scale problems.

By dividing the computational domain into several subdomains, each subdomain can

be analyzed separately. This could be done in a serial or parallel manner. After

each domain is evaluated, the entire solution is obtained from all the solutions of

each subdomain. The problem that can be analyzed is only limited by the computa-

tional resource required by the subdomains, and thus, analyzing large-scale problems

becomes possible.

However, implementing the domain decomposition scheme is challenging, especial-

ly for cases with non-conformal interface meshing. Most of the time, non-conformal

domain decomposition method is desired since it significantly relaxes the mesh gen-

eration process. For example, a chip-package-board structure shown in Figure 35 is
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Figure 35: Partitioning a chip-package-board structure into three subdomains with
non-conformal domain interface.
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decomposed into three subdomains. Each domain is meshed according to its own fea-

ture size. In the chip domain, a fine mesh is applied whereas in the package and board

domains, a coarse mesh is applied in order to reduce the total number of unknowns.

Since the mesh on the domain interface does not match, this results in difficulties in

enforcing interface field continuity. Up to now, no solution exists in solving this type

of problem based on the Laguerre-FDTD method, which is the motivation behind the

work in this chapter.

5.2 Preliminaries: Equivalency

In the conventional FDTDmethod, a field component is related to the difference of the

surrounding field components. Although the updating equation is straightforward, it

is only suitable for updating within the Yee grid. In other words, the conventional

FDTD method can only be implemented with conformal meshing.

If the computational domain is decomposed into several domains with non-conformal

meshing, it is difficult to update the field on the domain interface using convention-

al FDTD due to the floating grid. Based on field interpolation, some sub-gridding

schemes have been developed to deal with a non-matching grid interface [67]. How-

ever, the field interpolation requires a certain mesh difference ratio at the interface,

which is not flexible and does not relax the mesh generation. This is not desired

for complex multiscale structures where different domains require different meshing

strategies.

A popular approach, which enables non-conformal domain decomposition, is the

mortar element method. The mortar element method is based on the finite element

method (FEM) that cannot be applied to the FDTD scheme directly. However,

since there exists equivalency between time-domain FEM (TD-FEM) and the implicit

FDTD method, a mortar-like method can be used in the Laguerre-FDTD scheme.

Assuming an isotropic, non-dispersive, lossy media, the vector wave equation in
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time domain can be expressed as:

∇×∇× E+ µε
∂2E

∂t2
+ µσ

∂E

∂t
= −µ

∂J

∂t
. (55)

Discretizing the differential equation (55) in Laguerre domain using temporal testing

procedure, with some manipulations, the x-direction electric field coefficient equation

can be written as:

(
1 + C̄E

y |i,j,k C̄H
y |i,j,k + C̄E

y |i,j,k C̄H
y |i,j−1,k

+C̄E
z |i,j,k C̄H

z |i,j,k + C̄E
z |i,j,k C̄H

z |i,j,k−1 +
2σi,j,k

sεi,j,k

)
Eq

x |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k + C̄E

y |i,j,k C̄H
x |i,j,k Eq

y |i+1,j,k

− C̄E
y |i,j,k C̄H

x |i,j,k Eq
y |i,j,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
x |i,j−1,k

− C̄E
y |i,j,k C̄H

x |i,j−1,k E
q
y |i+1,j−1,k + C̄E

y |i,j,k C̄H
x |i,j−1,k E

q
y |i,j−1,k

+ C̄E
z |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k − C̄E

z |i,j,k C̄H
x |i,j,k Eq

z |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
x |i,j,k+1 − C̄E

z |i,j,k C̄H
x |i,j,k−1 E

q
z |i+1,j,k−1

+ C̄E
z |i,j,k C̄H

x |i,j,k−1 E
q
z |i,j,k−1 − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
x |i,j,k−1

= − 4

µi,j,kεi,j,ks2

q−1∑
n=0,q>1

En
x |i,j,k − 4

q−1∑
n=0,q>1

n∑
m=0

Em
x |i,j,k

− 2

sεi,j,k

(
Jq
x |i,j,k + 2

q−1∑
n=0,q>1

Jn
x |i,j,k

)
.

(56)

Note that the left side of equation (56) is identical to the left side of equation (19).

The detailed derivation is given in Appendix A.

In the TD-FEM method, considering fields in open space, multiplying (55) by an

appropriate testing function N, and integrating over a volume results in:

∫
Ω

[
(∇×N) · (∇× E) + µεN · ∂

2E

∂t2
+ µσN · ∂E

∂t

]
dV = −

∫
Ω

µN · ∂J
∂t

dV . (57)
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In the computational domain, the electric field is expanded using vector basis func-

tions:

E =
n∑

i=1

NiEi (58)

where n is the total edge number, Ei is the unknown expansion coefficient, and Ni is

the vector basis function. Inserting (58) into (57) yields:

T
∂2E

∂t2
+R

∂E

∂t
+ SE = f (59)

where

Tij =

∫
Ω

µεNi ·NjdV (60)

Rij =

∫
Ω

µσNi ·NjdV (61)

Sij =

∫
Ω

(∇×Ni) · (∇×Nj) dV (62)

fi = −
∫
Ω

µNi ·
∂J

∂t
dV . (63)

Applying the temporal testing procedure in Laguerre domain, (59) becomes:

Ts2

(
1

4
Eq +

q−1∑
n=0,q>1

m∑
j=0

Em

)
+Rs

(
1

2
Eq +

q−1∑
n=0,q>1

En

)
+ SEq = f q (64)

where

f q
i = −

∫
Ω

µsNi ·

(
1

2
Jq +

q−1∑
n=0,q>1

Jn

)
dV . (65)
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Note here that, Eq denotes the Laguerre coefficient vector of electric field with order

q and s is the time scale factor defined before.

In the Laguerre-FDTD scheme, the computational mesh is defined as rectan-

gular brick elements. Using trapezoidal integration in (60)-(62) and (65) in the

construction of the elemental matrix and extracting only the equation for electric

field in x-direction, the resulting equation is identical to (56). This implies that the

Laguerre-FDTD equation can be derived from TD-FEM when trapezoidal integration

and Laguerre domain temporal testing procedure are used. The detailed derivation

of equivalency is provided in Appendix C.

5.3 Direct Mortar-Element-Like Scheme

In this section, a domain decomposition scheme using one set of Lagrange multipliers

is discussed. This method is similar to the mortar element method by using the

equivalency between TD-FEM and Laguerre-FDTD method. The limitations of using

a direct mortar-element-like scheme is also discussed.

5.3.1 Lagrange Multipliers

Lagrange multipliers are widely used for solving domain decomposition problems. By

introducing additional unknowns to the global system, field continuity on the domain

interface is maintained. One popular scheme using Lagrange multipliers is the mortar

element method and it has been successfully applied to heat transfer problems [68].

For simplicity, consider the computational domain which is decomposed into two

subdomains Ω1 and Ω2 with a non-conformal sharing interface Γ, as shown in Figure

36. In the figure, n̂1 and n̂2 are the unit normal vectors pointing to the exterior region

of each subdomain. By defining the Lagrange multiplier space as:
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Figure 36: Partitioning a computational domain into two subdomains Ω1 and Ω2

with non-conformal domain interface.

λ =
n∑

i=1

φiλi (66)

where n is the total number of expansion terms, λi is the unknown expansion coef-

ficient, φi is the vector basis function, the following mortar-like equations are obtained

∫
Ω1

[
(∇×N1) · (∇× E1) + µεN1 ·

∂2E1

∂t2
+ µσN1 ·

∂E1

∂t

]
dV

+

∫
Γ

N1 · λdS

= −
∫
Ω1

µN1 ·
∂J1

∂t
dV

(67)

∫
Ω2

[
(∇×N2) · (∇× E2) + µεN2 ·

∂2E2

∂t2
+ µσN2 ·

∂E2

∂t

]
dV

−
∫
Γ

N2 · λdS

= −
∫
Ω2

µN2 ·
∂J2

∂t
dV

(68)

∫
Γ

(E1 − E2) ·φdS = 0. (69)
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5.3.2 Implementation and Limitations

Similar to obtaining the system equation in (64), after applying the Laguerre trans-

formation to (67)-(69), the resulting linear system for the two subdomains together

with interface equations can be written as:


K1 0 BT

1

0 K2 −BT
2

B1 −B2 0




Eq
1

Eq
2

λq

 =


gq
1

gq
2

0

 (70)

where

K1 =
s2

4
T1 +

s

2
R1 + S1 (71)

K2 =
s2

4
T2 +

s

2
R2 + S2 (72)

B1 =

∫
Γ

N1 ·φdS (73)

B2 =

∫
Γ

N2 ·φdS (74)

g1 = f q1 −T1s
2

q−1∑
n=0,q>1

m∑
j=0

Em
1 −R1s

q−1∑
n=0,q>1

En
1 (75)

g2 = f q2 −T2s
2

q−1∑
n=0,q>1

m∑
j=0

Em
1 −R1s

q−1∑
n=0,q>1

En
1 . (76)

By solving the system matrix (70), the Laguerre coefficients of the electric field

can be obtained. The time-domain waveforms of interest can be recovered from the

Laguerre basis functions and their coefficients.
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Figure 37: Meshing for the 2-D wave propagation problem with two subdomains.

However, direct implementation of the mortar-element-like scheme may result

in field mismatch and reflection problems. Note that the mortar element method

works well with the heat transfer problem because the field of interest is a scalar

one. Only the temperature distribution needs to be solved with the heat transfer

equation. In an electromagnetic problems, both the continuity of the electric field and

the magnetic field need to be addressed. Therefore, by applying one set of Lagrange

multipliers, only the electric field continuity is maintained without enforcing magnetic

field continuity.

To illustrate the point, a simple wave propagation problem shown in Figure 37

in 2-D is investigated (TEz case). The length of the computational domain in x-

and y-directions are 20 mm and 10 mm, respectively. The computational domain is

decomposed into two equal area subdomains with feature length l1 = l2 = l3 = 10 mm.

The meshing density for these two subdomains are 40× 40 and 20× 20, respectively.

The source excitation is located in the middle of the first domain. An ABC is used

to truncate the entire computational domain.

Figure 38 shows the electric and magnetic field distribution at the time point when

wave propagates from subdomain one to subdomain two. It can be observed that for
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the electric fields Ex and Ey, the field continuity at the domain interface is good.

However, strong fields reflection and the distortion can be observed for the magnetic

field Hz at the domain interface.

Therefore, algorithm modification is needed for the direct mortar-element-like

method to fully represent the continuity for both electric and magnetic field, which

is the topic of the next section.

5.4 Domain Decomposition with Dual Sets of Lagrange Mul-
tipliers

In this section, a non-conformal domain decomposition method using dual sets of La-

grange multipliers is discussed. This method is immune to the field mismatch problem

by direct implementation of mortar-element-like method. Theory and derivations of

related formulations are discussed in detail.

5.4.1 Formulations for Interior Fields of Subdomains

For simplicity, assuming an isotropic, non-dispersive, lossless media in three-dimensional

Cartesian coordinates, the vector wave equation in the time domain can be expressed

as:

∇×∇× E+ µε
∂2E

∂t2
= −µ

∂J

∂t
(77)

where ε is the electric permittivity, µ is the magnetic permeability, and J is the source

excitation.

As is known, any time-domain waveform W(t) can be represented as a sum of

infinite Laguerre basis functions φq(t̄) scaled by Laguerre basis coefficients Wq as

W(t) =
∞∑
q=0

Wqφq(t̄) (78)
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Figure 38: Field distribution for the 2-D wave propagation problem using the direct
mortar-element-like scheme.
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where t̄ = t · s, s is the time scaling factor, and t is time. Superscript q denotes the

Laguerre coefficient and basis function of order q. The number of basis functions is

truncated to N in the implementation, where the optimum selection of N is discussed

in detail in [14]. Applying the temporal testing procedure with respect to the basis

function of order q, in x-direction, the discretized vector wave equation in terms of

electric field Laguerre coefficient of order q can be written as:

(
1 + C̄E

y |i,j,k C̄H
y |i,j,k + C̄E

y |i,j,k C̄H
y |i,j−1,k

+C̄E
z |i,j,k C̄H

z |i,j,k + C̄E
z |i,j,k C̄H

z |i,j,k−1

)
Eq

x |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k + C̄E

y |i,j,k C̄H
x |i,j,k Eq

y |i+1,j,k

− C̄E
y |i,j,k C̄H

x |i,j,k Eq
y |i,j,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
x |i,j−1,k

− C̄E
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q
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y |i,j,k C̄H
x |i,j−1,k E

q
y |i,j−1,k

+ C̄E
z |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k − C̄E

z |i,j,k C̄H
x |i,j,k Eq

z |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
x |i,j,k+1 − C̄E

z |i,j,k C̄H
x |i,j,k−1 E

q
z |i+1,j,k−1

+ C̄E
z |i,j,k C̄H

x |i,j,k−1 E
q
z |i,j,k−1 − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
x |i,j,k−1

= − 4

q−1∑
n=0,q>1

n∑
m=0

Em
x |i,j,k

− 2

sεi,j,k

(
Jq
x |i,j,k + 2

q−1∑
n=0,q>1

Jn
x |i,j,k

)

(79)

where
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C̄E
y |i,j,k =

2

sεi,j,k∆ȳj
(80)

C̄E
z |i,j,k =

2

sεi,j,k∆z̄k
(81)

C̄H
x |i,j,k =

2

sµi,j,k∆xi

(82)

C̄H
y |i,j,k =

2

sµi,j,k∆yj
(83)

C̄H
z |i,j,k =

2

sµi,j,k∆zk
. (84)

in which ∆xi, ∆yj, and ∆zk are the length of the edge where electric field components

are located whereas ∆ȳj and ∆z̄k are the distance between the center nodes where

magnetic fields are located.

Combining electric field coefficient equations for y- and z-directions, a system

equation with Laguerre coefficient order q can be obtained in matrix form and ex-

pressed as:

KVE
q
V = gq

V . (85)

where subscript V denotes the degrees of freedom in the interior of the computational

domain.

5.4.2 Dual Sets of Lagrange Multipliers

As is shown in Figure 36, to couple the fields between domain Ω1 and Ω2, the tan-

gential continuity of the electric and magnetic fields at the domain interface Γ must

be satisfied, namely,
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Etan,1 |Γ = Etan,2 |Γ (86)

Htan,1 |Γ = Htan,2 |Γ . (87)

For Laguerre-FDTD method with non-conformal domain interface, derivation of

the field equation at the interface based on differential scheme is not straight-forward.

However, because of the equivalency between FEM and FDTD method when trape-

zoidal integration is used in the construction of the elemental matrices with vector

edge basis functions [69], field continuity can be enforced in FEM form and then

rewritten in FDTD form.

The electric field continuity can be enforced by introducing Lagrange multipliers

similar to those used in the mortar-element-based methods by defining the Lagrange

multipliers as:

λ =
n∑

i=1

φiλi (88)

where n is the total number of expansion terms, λi is the unknown expansion coeffi-

cient, and φi is the vector basis function. On the interface we have

∫
Γ

(EI,1 − EI,2) ·φdS = 0 (89)

where subscript I denotes the degrees of freedom on the domain interface.

In [68], a scalar equation is solved using a non-conformal domain decomposition

method with the introduction of only one set of Lagrange multipliers. However, in
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full-wave electromagnetic problems, the continuity of the magnetic field is not au-

tomatically ensured when enforcing the electric field continuity. In Laguerre-FDTD

method, the straight-forward enforcement of magnetic field continuity in a similar

manner is difficult since the only unknowns for the system equation are the electric

field coefficients as shown in (85). Even by discretizing Maxwell’s equation directly,

the magnetic field coefficient is always one order lower than the electric field coeffi-

cient on the right-hand side [70]. Hence, the surface equivalent current is introduced

as:

Jeq
m |Γ = n̂m ×Htan,m |Γ (90)

where m is the domain index. If an additional set of Lagrange multipliers are intro-

duced for representing the surface equivalent current, the continuity of the magnetic

field is maintained. Hence, in each domain, the time-derivative Lagrange multiplier

space is defined as:

∂Jeq

∂t
=

∂

∂t

n∑
i=1

φij
eq
i (91)

where n is the total number of expansion terms, jeqi is the unknown expansion coeffi-

cient, and φi is the vector basis function. Incorporating the time-derivative Lagrange

multiplier into (77) for domains Ω1 and Ω2 and multiplying by an appropriate testing

function N with integration over the volume results in:

∫
Ω1

[
(∇×N1) · (∇× EI,1) + µεN1 ·

∂2EI,1

∂t2

]
dV

+

∫
Γ

N1 ·
∂Jeq

1

∂t
dS = 0

(92)
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∫
Ω2

[
(∇×N2) · (∇× EI,2) + µεN2 ·

∂2EI,2

∂t2

]
dV

+

∫
Γ

N2 ·
∂Jeq

2

∂t
dS = 0.

(93)

Note that at the domain interface, there is no source excitation, therefore, the right-

hand side of (92) and (93) equals zero. Also,

Jeq
1 = −Jeq

2 = Jeq. (94)

The last terms of the left-hand sides of (92) and (93) are the surface equivalent cur-

rents and they are of similar form as the source excitation J. By equating the surface

equivalent current in adjacent domains, magnetic field continuity is maintained.

5.4.3 Formulations for Fields on Domain Interface

Suppose choosing domain Ω1 as the dominant (or mortar) domain and Ω2 as the aux-

iliary (or slave) domain, expanding the electric field using edge vector basis functions

E =
n∑

i=1

NiEi (95)

where n is the total edge number, Ei is the unknown expansion coefficient, and Ni

is the vector basis function. Transferring (89), (92) and (93) into Laguerre domain

yields:

B1E
q
I,1 −B2E

q
I,2 = 0 (96)
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Figure 39: Formation of the projection matrix associated with the interface meshing.

(
s2
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T1 + S1

)
Eq

I,1 +
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2
BT

1 j
eq,q

= −T1s
2

q−1∑
n=1,q>0

n∑
m=0

Em
I,1 − sBT

1

q−1∑
n=1,q>0

jeq,n
(97)

(
s2

4
T2 + S2

)
Eq

I,2 −
s

2
BT

2 j
eq,q

= −T2s
2

q−1∑
n=1,q>0

n∑
m=0

Em
I,2 + sBT

2

q−1∑
n=1,q>0

jeq,n
(98)

where

Bm =

∫
Γ

NmφmdS (99)

Tm =

∫
Ωm

µεNm ·NmdV (100)

Sm =

∫
Ωm

(∇×Nm) · (∇×Nm) dV . (101)
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In grid space, two sets of Lagrange multipliers are collocated on the domain in-

terface. To eliminate the redundant unknown vector jeq,q, a relationship between

unknown vectors λq and jeq,q are established by projection matrices which can be

expressed as:

sBT
1 j

eq,q = sP1B
T
1λ

q = CT
1λ

q (102)

sBT
2 j

eq,q = −sP2B
T
2λ

q = −CT
2λ

q (103)

sBT
1

q−1∑
n=1,q>0

jeq,n = sP1B
T
1

q−1∑
n=1,q>0

λq

= CT
1

q−1∑
n=1,q>0

λq. (104)

sBT
2

q−1∑
n=1,q>0

jeq,n = −sP2B
T
2

q−1∑
n=1,q>0

λq

= −CT
2

q−1∑
n=1,q>0

λq. (105)

In the dominant domain Ω1, it is convenient to assume the projection matrix as

P1 = I (106)

where I is the identity matrix. In the auxiliary domain Ω2, the projection matrix P2

is determined by the grid ratio on the domain interface. Figure 39 shows the forma-

tion of the projection matrix associated with the interface meshing. To be specific,

suppose one Lagrange multiplier λq
n is collocated with the electric field componen-

t Eq
x,1 |i,j,k in the dominant domain, while the interface area (∆xi,1 (∆yj,1∆yj−1,1))
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associated with the electric field component Eq
x,1 |i,j,k in domain Ω1 fully overlaps

the interface area (∆xi,2 (∆yj,2∆yj−1,2)) associated with the electric field component

Eq
x,2 |i,j,k in domain Ω2. Then, the non-zero diagonal element of the projection matrix

P2 associated with electric field component Eq
x,2 |i,j,k becomes:

P2,element→Eq
x,2|i,j,k =

∆xi,1 (∆yj,1∆yj−1,1)

∆xi,2 (∆yj,2∆yj−1,2)
. (107)

If partial overlapping is observed, a weighted overlapping area is used to determine

the non-zero diagonal element of the projection matrix. Note that the most simplified

case occurs where matched meshing at the interface for both domains is observed,

where the interface problem reduces to conformal domain decomposition problem

with P1 = P2.

By inserting (102), (103), (104), and (105) into (97) and (98), the matrix repre-

sentation of the electric field on the domain interface can be written in the form:

KI,1E
q
I,1 +

1

2
CT

1λ
q = hq

I,1 (108)

KI,2E
q
I,2 +

1

2
CT

2λ
q = hq

I,2. (109)

Applying trapezoidal integration to (99), (100), and (101) in the interface cells,

the FEM-based equations (108) and (109) can be transferred into differential for-

m. Laguerre-FDTD formulations for the electric field on the interface can then be

obtained.

To be specific, in (108) and (109), each row represents the equation for the elec-

tric field component. Suppose ẑ is the unit normal vector pointing out of domain Ω1

as shown in Figure 40. The equation for electric field in x-direction on the domain

interface associated with domain Ω1 can be obtained as:
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q
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+
1

2
vCT

1 · λq

= − 4

q−1∑
n=0,q>1

n∑
m=0

Em
x |i,j,k

(110)

where v = [v1, v2, . . . , vn] is the vector for extracting a specific row of the coupling

matrix where the elements satisfy:

vi =

 1, i = l

0, i ̸= l
(111)

where l is the row number associated with the electric field component Eq
x |i,j,k .

Similarly, suppose −ẑ is the unit normal vector pointing out of domain Ω2. The

equation for electric field in x-direction on the domain interface associated with do-

main Ω2 can be written as:
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Em
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(112)

The equations for electric field component in any direction on the domain interface

can be derived in a similar manner.

Note that for (110) and (112), the equations for the electric field components on the

domain boundary are in simple differential form similar to those on the interior of each

domain. The only additional part that needs to be calculated are matrices BT
m and

CT
m which can be easily derived from (99), (102)–(105) with negligible computational

cost.

5.4.4 Global System

After obtaining the equations for interior field and field on the domain interface, the

system equation can be expressed in matrix form as:
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component Eq

x |i,j,k .
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f q1

f q1

0

 (113)

where

Km =

 KV,m

KI,m

 (114)

f qm =

[
gq
V,m hq

I,m

]T
(115)

Dm =

[
0 Bm

]
(116)

Fm =

[
0 1

2
CT

m

]T
. (117)

Similarly, for N domains, the system equation can be derived as:



K1 F1

K2 F2

. . .
...

KN FN

D1 D2 · · · DN 0





Eq
1

Eq
2

...

Eq
N

λq


=



f q1

f q2
...

f qN

0


(118)

where Dm and Fm denote the interface coupling between domain m and all adjacent

domains.

Using the Schur complement, the interface problem can be extracted and each

individual domain can be evaluated separately. To be specific, by eliminating Eq
m

from (118), the interface equation can be extracted as:
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(
N∑

m=1

DmK
−1
m Fm

)
λq =

N∑
m=1

DmK
−1
m f qm. (119)

After λq is determined, the electric field coefficient for each domain can be obtained

using

Eq
m = K−1

m (f qm − Fmλ
q) . (120)

Previously, all derivations were based on the assumption of an isotropic, non-

dispersive and lossless media for simplicity. However, in real-world applications,

material dispersion and conductor loss cannot be neglected. Material dispersion is

incorporated using the method discussed in [64] and conductor loss is incorporated

using the method discussed in [70].

Here, the simple 2-D wave propagation problem shown in Figure 37 is simulated

again using the proposed method. Figure 41 shows the electric and magnetic field

distribution at the same time point as the simulation using the direct mortar-element-

like method. It can be observed that both the electric and magnetic field continuity is

maintained at the domain interface without significant reflection and field distortion.

5.4.5 Solution Procedure and Parallel Computing

The solution procedure using the proposed domain decomposition scheme is shown in

Figure 42. First, the system matrix is formed. In some cases when the total number of

unknowns is small, the system matrix can be solved with direct solvers without using

Schur complement. For large-scale problems, direct solution of the system matrix is

not possible since direct solvers require a large amount of memory storage. Instead,
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Figure 41: Field distribution for the 2-D wave propagation problem using dual sets
of Lagrange multipliers.
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the interface problem is extracted using the Schur complement. Therefore, the sub-

system for each domain can be solved independently. After the solution for each

domain is obtained, the solution for the entire computational domain can be derived.

It is obvious that the solution of the sub-system corresponding to each domain can

be obtained in a parallel manner which will significantly reduce the computational

time. Parallel computing can be realized by using a multi-core feature of the proces-

sor or GPU computing. Another approach is to utilize distributed computing using a

cluster of computers. This approach involves more complex algorithm design, includ-

ing the communication between different computers, which is preferred for ultra-large

problems. In the scope of this work, only the first approach is adopted.

It is important to note that, the solution of each domain can also be calculated

in a series manner if parallel computing is not available. The simulation speed can

also be enhanced by the domain decomposition scheme due to the reduction of total

unknowns. The speedup dependents on the meshing in each domain and the meshing

at the interface.

5.4.6 Stability Analysis

When implementing non-conformal domain decomposition schemes, artificial error

can be generated due to the non-matching grid interface, which often shows up as

spurious reflection. A simple microstrip line structure is tested to gauge the reflection

introduced by the proposed method. The width, length and thickness of the metal

strip are 0.4 mm, 50 mm and 0.02 mm, respectively. The thickness and dielectric

constant of the substrate are 0.2 mm and 4.3. The simulated structure is decomposed

into three subdomains, as shown in Figure 43. Domain two is densely meshed with

metal strip length of 10 mm. Two ports are defined at each end of the microstrip

line. A Gaussian pulse is excited at one port and artificial reflection is recorded. The

reflection is normalized by the result simulated by Laguerre-FDTD with only one
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Figure 42: Flow chat for the non-conformal domain decomposition scheme with
parallel computing
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Domain 1 Domain 2 Domain 3

Figure 43: Schematic top view of decomposed microstrip line with mesh. The
microstrip line is partitioned into three subdomains

domain.

Figure 44 shows the artificial reflection magnitude with respect to time. Two

scenarios are investigated, namely interface grid ratio of 2 : 1 and 10 : 1. It can

be observed that the maximum reflection of the time period for these two cases are

−50.7 dB and −43.6 dB, respectively. The reflection of the latter case is larger due

to the larger mismatch of dispersion behavior of the densely meshed and coarsely

meshed regions. This level of reflection is maximum and is therefore acceptable for

the structures of interest.

5.4.7 Selection of Dominant Face

The proposed domain decomposition uses a mortar-element-like scheme with dual sets

of Lagrange unknowns. By interface problem extraction, a 3-D problem is reduced

to a 2-D problem with fewer degrees of freedom. For implementation, a practical

concern is the selection of the dominant face.

Consider the domain interface between domain two and domain three for the

microstrip line shown in Figure 43. At the interface, the face belonging to domain

two is densely meshed whereas the one belonging to domain three is coarsely meshed

(Figure 45). From (119) it can be concluded that the complexity of the interface

problem extraction is dependent on the dominant face selection. Selecting the face
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with dense mesh as the dominant face will result in more interface unknowns, which

is not desired. In the previous microstrip line test case, all the faces with coarse mesh

are selected as the dominant face. This guideline is also used for all other simulation

cases.

5.5 Numerical Results

In this section, some test cases are simulated which validate the proposed non-

conformal domain decomposition method. It is important to note that, the non-

conformal domain decomposition method shows significant advantages only when

multiscale structures, such as chip-package structures, are simulated. These exam-

ples are discussed in detail in the next chapter.

5.5.1 Cavity Resonator

To validate the proposed domain decomposition method, a simple air-filled rectangu-

lar cavity resonator shown in Figure 46 is simulated and analyzed. The side length

of the structure along the x, y, and z coordinates are l = 20 mm, w = 10 mm, and

h = 2 mm, respectively. For the domain decomposition method, the cavity is divided

into two equal domains. Table 2 shows the meshing details of these two subdomains.

For comparison, the meshing for the Laguerre-FDTD method without domain de-

composition is also created. The excitation is located in the center of subdomain one

along the z-direction and the entire computational domain is truncated using a PEC

boundary.

Figure 47 shows the comparison of the time-domain electric field waveform at the

observation point for the Laguerre-FDTD method and domain decomposition. The

observation point is located in the center of subdomain two. Good correlation can be

observed for these two methods. Table 2 summarizes the CPU time using different

simulation schemes. It can be observed that the CPU time of domain decomposition
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Figure 46: Meshing of the simulated cavity structure with two subdomains.

Table 2: Comparison of the computational cost for the standard Laguerre-FDTD
method and the Laguerre-FDTD method with domain decomposition.

Method ∆t No. of Cells CPU Time

Laguerre-FDTD 0.4 ps 80×40×8 15 min
Domain decomposition 0.4 ps 40×40×8 (Sub-domain 1) 8 min

20×20×4 (Sub-domain 2)

method is almost half of the standard Laguerre-FDTD method. This is because non-

conformal domain decomposition allows coarse meshing for subdomain two, which

significantly reduces the computational time.

To be noted, this test case is just a demonstration of non-conformal domain de-

composition method. The cavity resonator in this case does not necessarily need to

be decomposed with different meshing schemes in different subdomains. However,

for complex cases such as chip-package or package-board application, the mesh ratio

between two adjacent subdomains can easily exceed 10:1. In such cases, a direct so-

lution is highly inefficient, and the non-conformal domain decomposition method is

required.
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Figure 47: Comparison of the time domain electric field waveform at the observation
point for the Laguerre-FDTD method without and with domain decomposition.

5.5.2 Via Transition

To further validate the accuracy of the proposed method, a simple via structure

originally proposed in [71] is simulated. Figure 48 shows the cross-sectional view of

the via structure with all the feature sizes marked. The dielectric constant of the

substrate is εr = 3.4 and the conductivity of the metal strip is σ = 5.8 × 107 S/m.

Note that in [71], the metal strip and ground plane are considered as zero thickness

PEC sheets. Here, the thickness of the metal strip and ground is considered as t = 20

µm which makes the structure multiscale. Two ports are defined at each end of the

metal strip. The scale difference for the structure is 1500:1 (ratio between feature sizes

of length and metal thickness). The structure is decomposed into two subdomains.

Figure 49 shows portion of the enlarged top view of the domain interface. Coarse

mesh is applied to the microstrip line region whereas dense mesh is applied to the via

transition. The non-matching interface can be clearly seen.

Figure 50 shows the return loss and insertion loss of the simulated structure. For
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Figure 48: Cross-sectional view of the via transition.

Figure 49: Top view of the decomposed via transition with mesh. The via transition
is partitioned into two subdomains.
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Figure 50: Return loss and insertion loss of the simulated via transition.

comparison, a measurement from [71] is also shown. It can be observed that the sim-

ulation results correlate well with the measurement and no non-physical phenomenon

can be identified.

5.6 Summary

A full-wave transient non-conformal domain decomposition scheme based on the

Laguerre-FDTD method is proposed in this chapter. Unlike the traditional computa-

tional methods which compute the entire domain in a single run, the computational

domain is decomposed into several subdomains with independent meshing strategies.

In this chapter, electric and magnetic field continuity at the interface is enforced

by introducing dual sets of Lagrange multipliers. This implies that dense mesh and

coarse mesh can be applied separately in the physically small and large regions which

is suitable for multiscale structure simulation. The interface problem can be solve first

using Schur complement and each subdomain can be calculated in a parallel manner.

The final solution is obtained by the combination of results of all subdomains. Several
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multiscale structures are investigated using the proposed method. Comparison of the

results of the proposed method with the results simulated by commercial transient

solver and measurement has also been carried out. The examples demonstrate that

the proposed method is accurate and efficient for multiscale structure simulation.
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CHAPTER VI

MULTISCALE CHIP-PACKAGE CO-SIMULATION

6.1 Introduction

The design and simulation of chips and packages have been considered as disjoint tasks

in semiconductor industry for several decades. However, as the integration density

and operating frequency increases, the electromagnetic interaction between chip and

package becomes non-negligible, posing problems in signal/power integrity. These

interactions are difficult to be modeled using circuit type of schemes. Therefore, a full-

wave chip-package co-simulation solution that rigorously captures the system behavior

is required for simulating on-chip and on-package interconnects. For example, if a

signal trace starts from a package, passes through a solder bump and ends in the

chip, a typical modeling strategy would be first extracting the S-parameters of these

three parts and then cascading them together (Figure 51(a)). However, this does

not account for the mutual coupling among these three parts. A straightforward and

more accurate way would be to analyze the entire system at once (Figure 51(b)).

One critical problem in chip-package co-simulation is the multiscale dimension.

The typical feature sizes for chip and package are nanometer and micrometer, resulting

in a scale ratio around 1:1000. Such structures are difficult to simulate efficiently

especially for time-domain solvers. Very fine mesh needs to be applied to the on-chip

area, resulting in prohibitively long simulation time due to stability conditions arising

in the conventional FDTD method. Even with unconditionally stable schemes, the

memory usage will become a significant problem as system complexity grows.

The problems mentioned can be solved efficiently using the proposed non-conformal
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Figure 51: Chip-package structure simulation strategy (a) cascading models of pack-
age, solder bump and chip and (b) chip-package co-simulation.

domain decomposition method applied to the Laguerre-FDTD scheme. First, the sim-

ulation time using the Laguerre-FDTD method is no longer constrained by the time

step but by the required simulation resolution. The key idea of the non-conformal

domain decomposition scheme is that the simulation is performed by decomposing

the structure into subdomains with non-matching mesh interface. Each domain is

evaluated separately and the system solution is obtained by combining the solutions

of all subdomains. This implies that the chip and package can be meshed separate-

ly and less peak memory will be consumed. The field continuity between adjacent

subdomains is guaranteed by introducing the Lagrange multipliers. In this chapter,

several typical chip-package co-simulation problems are investigated. The simulation

results indicate that the proposed method is accurate and computationally efficient

compared to the existing schemes.

6.2 Multiscale Interconnects in Chip-Package Structure

In this section, interconnects in a chip-package structure are investigated with the

proposed non-conformal domain decomposition scheme. Numerical results show the
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Figure 52: Schematic cross-sectional view of the interconnects in chip-package struc-
ture.

efficiency and accuracy of the proposed method.

6.2.1 Test Case: Signal Traces Connecting Package to Chip with Four
Coupled Lines

Multiscale interconnects in a chip-package structure are simulated. Figure 52 shows

the hierarchical cross-sectional view of the multiscale interconnect structure. For

on-package area, one signal layer and one ground layer with thickness of 15 µm are

considered. A substrate with thickness of 30 µm and dielectric constant of 4.3 is used.

For on-chip area, the width of the redistribution layer (RDL), the fourth metal layer

(M4) and the third metal layer (M3) are 15 µm, 1 µm and 0.8 µm, respectively. The

thickness and via size of each on-chip layer are marked in Figure 52. The chip is

mounted on package with solder bumps. The diameter and the height of the solder

bumps are 110 µm and 90 µm.

Figure 53 shows the top view of the entire simulated structure. Four signal lines

99



15µm
15µm

0.2mm

400µm 160µm150µm

0.16mm

1.6mm

0.2mm

Figure 53: Top view of the four coupled line structure.

are simulated with eight ports defined at the left side of the package substrate (port 1,

2, 3 and 4) and the right side of the chip cross section (port 5, 6, 7 and 8). The signal

is excited at the port on the package, passes through the solder bump and enters into

the on-chip area. All the feature sizes are marked on Figure 53 and the 3-D view of

the structure is shown in Figure 54. The scale difference for the structure is 2500:1

(ratio between feature sizes of the total length of the signal line and minimum on-chip

interconnect thickness).

Two scenarios are investigated. First, the computational domain is discretized

with only one domain, namely discretizing using the standard Laguerre-FDTDmethod.

The meshing of the structure is shown in Figure 55. Comparatively, to implement

the domain decomposition, the computational domain is discretized into three sub-

domains with cell sizes corresponding to the feature size within each domain. The

meshing of the structure using the domain decomposition is shown in Figure 56. It

can be observed that an unnecessarily dense mesh is applied to the coupled line struc-

ture using the standard Laguerre-FDTD method. In contrast, a reduced mesh density

is achieved by the separate meshing strategy.

Figure 57 shows the simulated S-parameters using the domain decomposition
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Figure 54: 3-D view of the four coupled line structure.

Figure 55: Conformal meshing with one computational domain for the test struc-
ture.
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Figure 56: Non-conformal meshing with three subdomains for the test structure.

method. For comparison, the structure is simulated using the standard Laguerre-

FDTD method with only one domain, as shown in Figure 55. It can be observed

from Figure 57 that these two methods correlate well with each other.

6.2.2 Test Case: Package-Chip-Package Signal Traces with Three Cou-
pled Lines

The signal integrity problem for interconnects in a chip-package structure is of vital

importance to system performance. By applying the domain decomposition method,

the S-parameters of the entire interconnect system can be extracted. Time domain

performance, such as crosstalk and eye diagrams, can be easily investigated.

Figure 58 shows the top view of the entire simulated structure. Three signal lines

are simulated with six ports defined at the left (port 1, 2, and 3) and right (port

4, 5, and 6) side of the package substrate. The signal is excited at the port on one

side, passes through the solder bump into the on-chip area interconnect and finally

ends at the corresponding port on the other side. All the feature sizes are marked on

Figure 58. The scale difference for the structure is 5000:1 (ratio between feature sizes
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Figure 57: S-parameters for the four coupled line structure.

of the total length of the signal line and minimum on-chip interconnect thickness).

The entire structure is decomposed into two domains (on-package area and on-chip

area) with separate meshing strategies.

For comparison, the structure is also simulated with a conventional FDTD method

and Laguerre-FDTD method with only one domain. Simulation results from a com-

mercial time-domain electromagnetic full-wave solver (Computer Simulation Tech-

nolgy, (CST)) is used for correlation. For a fair comparison, the grid resolution on

chip is kept constant for all simulation schemes. Figure 59 shows the S-parameters of

the simulated structure. It can be observed that the simulated results correlate well

with the results from the commercial solver. Table 3 summarizes the comparison of

simulation parameters for different simulation methods. Note that for conventional

FDTD method, the maximum time step is constrained by the minimum feature size.

Thus, for multiscale chip-package structure, the time step is much smaller than that
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Figure 58: Schematic top view of the simulated multiscale interconnect structure
with two subdomains (package domain and chip domain).

Table 3: Comparison of the simulation parameters for chip-package interconnects.

Method Cells ∆t CPU Time
FDTD 70.4 K 1.2 fs >24 hr

Laguerre-FDTD 70.4 K 1.0 ps 3.5 hr
Domain Decomposition 34.6 K 1.0 ps 2 hr

Commercial Transient Solver 64.4 K - 5 hr

of Laguerre-FDTD method which results in a prohibitively long simulation time. S-

ince a separate meshing strategy is applied for the domain decomposition method,

the dense mesh of the chip area will not affect the meshing density of the package

area. This results in a reduced total number of cells and faster simulation speed with

domain decomposition scheme compared to standard Laguerre-FDTD method. Also,

the simulation speed of the proposed method is faster than the commercial solver for

this specific structure.

Using the simulated S-parameters, time-domain crosstalk is investigated using

the Advance Design System (ADS). Line 1 with ports 1 and 4 is designated as the
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Figure 59: S-parameters of the simulated multiscale interconnect structure.

attacking line whereas the other two lines are considered as victim lines. Figure 60

and Figure 61 show the far end and near end crosstalk of the system, respectively.

It can be observed that the far end crosstalk for the victim lines are comparable

whereas the near end crosstalk of the victim line located near the aggressive line is

higher than the one located further away. It is clear that by using the proposed

method, the signal integrity problem can be investigated at the chip-package level for

early stage chip/package design, which will help to eliminate any design flaws.

6.3 Multiscale Power Delivery Networks in Chip-Package
Structure

In this section, multiscale power delivery networks (PDN) in a chip-package struc-

ture are simulated with the proposed non-conformal domain decomposition method.

Numerical results show the efficiency and accuracy of the proposed method.
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Figure 60: Far end crosstalk of the three coupled line structure (line 1 is the attack-
ing line whereas line 2 and line 3 are the victim lines).
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Figure 61: Near end crosstalk of the three coupled line structure (line 1 is the
attacking line whereas line 2 and line 3 are the victim lines).
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6.3.1 Test Case: Multilayer On-Chip Power Grid

The design of the PDN is critical in modern chip design since the system signal

integrity is dependent on constant and stable voltage supply. It is known that si-

multaneous switching noise (SSN) generated in a PDN is the major cause of signal

degradation. The design goal of the PDN is to lower its impedance to meet the target

impedance requirement, and therefore minimize the influence of the SSN on system

signal integrity is important. This involves efficient and accurate simulation of the

impedance of the PDN.

A typical PDN in a chip-package structure is the on-chip power grid. Unlike

the on-package power-ground plane pair PDN design, the on-chip PDN is commonly

realized using multilayer orthogonal lines. Figure 62 shows a portion of the on-chip

multilayer power grid. On a certain layer, the power and ground interconnects are

distributed in a parallel manner whereas inter-layer grids are weaved vertically with

respect to each other.

The on-chip power grid is intrinsically multiscale. The total area of the power grid

is significantly larger compared to the width and thickness of each power interconnect.

In addition, the grid density of each metal layer is different. This structure can

be efficiently simulated using the domain decomposition scheme by discretizing the

computational domain by metal layer with different feature size.

A four metal layer on-chip power grid is simulated as shown in Figure 63. The

line width and spacing in each layer are marked in Figure 63. The total length and

width of the first two grid layers with large line spacing are 500 µm and 500 µm,

respectively. The total length and width of the other two grid layers with small line

spacing are 250 µm and 250 µm, respectively. The coarse and fine grid share one

quarter of the on-chip space.

Figure 64 shows the meshing for the simulation structure. The computational

domain is decomposed into two subdomains. Coarse mesh is applied to the first two
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Power Ground

Figure 62: Multilayer on-chip power grid (dark gray: power interconnect, white:
ground interconnect).

10µm

5µm

50µm

25µm

Figure 63: On-chip power grid of four metal layers.
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Figure 64: Meshing of the four layer power grid with two subdomains

grid layers with large line spacing whereas fine mesh is applied to the other two grid

layers with small line spacing. The port is defined at the corner of the grid structure

between the power and grid interconnects, as shown in Figure 64.

Figure 65 shows the self-impedance of the on-chip power grid. To make compar-

ison, the simulation result from the commercial solver is also presented. It can be

observed that the result of the proposed non-conformal domain decomposition match-

es well with that of the commercial solver. To be noted, the simulation time of the

proposed method is much shorter.

6.3.2 Test Case: Chip-Package PDN Co-Simulation

A more challenging simulation scenario is the chip-package PDN co-simulation, mean-

ing that the on-package power-ground plane pairs and the on-chip power grid together

with the connecting solder bumps are simulated in a single run. The scale difference of

the on-package structure and on-chip structure can be significant, making it difficult

or even impossible to simulate using the conventional schemes.
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Figure 65: Simulated impedance profile of the multilayer on-chip power grid.

A chip-package power distribution network (PDN) is simulated. Figure 66 shows

the cross-sectional view and top view of the simulated structure. The chip level

PDN is mounted on the package level PDN connected by solder bumps. The size of

the package level PDN is 10 mm×10 mm. The package level PDN is considered as

power-ground plane pairs filled with dielectric substrate. The thickness and dielectric

constant of the substrate are 30 µm and 3.4, respectively. The height, diameter and

pitch of the solder bump are 90 µm, 100 µm and 250 µm, respectively. The chip

level PDN is simulated with size 1000 µm×1000 µm which is the portion of the entire

chip level PDN inside a die with size 4 mm×4 mm. The dielectric constant of the

on-chip substrate is 2.2. The chip level PDN is considered as two layers of copper

grid with line width, pitch and thickness of 10 µm, 50 µm and 0.8 µm, respectively.

One on-package port and one on-chip port are defined with locations shown in Figure

66. The scale difference for the structure is 12500:1 (ratio between feature sizes of the

width of the package and minimum on-chip interconnect thickness). Similarly, the
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Table 4: Comparison of the simulation parameters for chip-package PDN.

Method δmin Cells CPU Time
0.4 µm 45.6 K 4.5 hr

Domain Decomposition
0.2 µm 87.4 K 9.5 hr
0.4 µm 97.2 K 10.5 hr

Commercial Transient Solver
0.2 µm 181.5 K NA

entire structure is decomposed into two domains (on-package area and on-chip area)

with separate meshing strategies.

Similar to the previous example, the grid resolution on chip is kept constant for

the proposed method and the commercial solver. Table 4 summarizes the comparison

of simulation parameters for different simulation methods, where δmin is the minimum

grid increment. Two scenarios are considered, namely coarse grid and fine grid reso-

lution for the on chip area. It can be observed that the proposed method is significant

faster and the commercial solver cannot solve the problem if fine grid resolution is

used for on chip structures. Figure 67 shows the self impedance of port located on the

package. It can be observed that the magnitude and resonant peaks of the proposed

method correlates well with the results of commercial solver. Figure 68 shows the self

impedance of port located on the chip. Good correlation of results from the proposed

method and the commercial solver is also observed.

6.4 Summary

In this chapter, chip-package co-simulation problems are investigated. Solutions are

obtained based on the Laguerre-FDTD solver. The non-conformal domain decom-

position scheme is applied to efficiently tackle the multiscale structures. Chips and

packages are conveniently decomposed into subdomains with separate meshing strate-

gies. Skin-effect is considered by applying the proposed method discussed in Chapter

IV. Also, material dispersion is modeled. Several multiscale structures, including
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Figure 66: Schematic cross-sectional and top view of the chip-package PDN.
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Figure 67: Self impedance (Z11) of the chip-package PDN at on-package port.
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Figure 68: Self impedance (Z22) of the chip-package PDN at on-chip port.
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interconnects in chip-package structure and chip-package PDN, are investigated us-

ing the proposed method. Comparison of the results of the proposed method with

the results simulated by commercial transient solver and measurement is also carried

out. The examples demonstrate that the proposed method is accurate and efficient

for multiscale structure simulation.
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CHAPTER VII

SURFACE ROUGHNESS MODELING FOR HIGH-SPEED

INTERCONNECTS

7.1 Introduction

In most high-frequency simulations, a conductor surface can be treated as a smooth

surface without losing simulation accuracy. Conductor loss can be accurately mod-

eled by taking into account skin-effect, as discussed earlier. However, as frequency

increases, the simulation error associated with the smooth surface assumption also in-

creases. This is because the loss due to the conductor surface roughness is neglected.

Theoretically, surface roughness creates a larger surface area compared to the smooth

counterpart which makes the current path longer, resulting in more conductor loss.

At the same time, the surface roughness is not easy to model due to its random dis-

tributed nature. This is especially true for full-wave methods which require spacial

discretization. Direct modeling of the roughness detail with cell elements is compu-

tationally inefficient or not possible. Therefore, a model that is accurate in capturing

the surface roughness loss and is simple to be incorporated into full-wave solvers is

critical in high-frequency simulation.

7.2 Substrate Integrated Waveguide for High-Speed inter-
connections

As operating frequency reaches hundreds of gigahertz, traditional planar transmis-

sion lines, such as microstrip line and stripline, begin to show disadvantages in loss,

crosstalk and power capacity. Moreover, due to machining precision, the quality of

the traditional planar transmission in mass production is difficult to be controlled for

high frequency applications.
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To solve this problem, a new type of transmission line, the substrate integrated

waveguide (SIW), is proposed [72]. Unlike the rectangular waveguide, via fences are

used in the SIW to replace the side walls of the rectangular waveguide whereas two

metal planes serve as the top and bottom metal walls (Figure 69). This makes the

SIW easy to be integrated into planar circuits. Also, it can be connected to microstrip

and coplanar circuits using simple transitions [73]. Since the amount of metal that

carries the signal in the SIW is far greater than it would for microstrip or stripline, the

conductor loss is expected to be low. Little crosstalk is involved due to the shielding

effect of the via fences. Moreover, for waveguide type of structure, the power capacity

is high, making it suitable for high power applications.

The SIW is already proven to be useful in the design of transmission lines, filters,

resonators and antennas, especially in millimeter wave applications [74], [75]. The

miniaturization of the SIW in such applications makes it a promising alternative as

compared to traditional planar structures. However, since a large conductor surface

is used to carry the signal, conductor surface roughness will play an important role

in conductor loss. In some circumstances, the conductor loss is even larger than the

microstrip and stripline operating in the same frequency. Therefore, to accurately

capture the loss mechanism of surface roughness is critical in SIW design. Although

many surface roughness models have been developed for TEM type of transmission

lines [1], [50]–[57], [76], models for TE type of transmission line are limited. This

motivates the investigation of surface roughness modeling of SIW.

7.3 Design and Fabrication of Substrate Integrated Waveg-
uide

In this section, a D-band (110 GHz to 170 GHz) SIW is designed and fabricated. The

transmission mode is the TE10 mode, namely no other modes exist within the band

of interest.
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(a)

(b)

Figure 69: Two types of planar interconnects: (a) microstrip line and (b) substrate
integrated waveguide (SIW).
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Figure 70: Two view and side view of the SIW

7.3.1 Physical Design of the SIW

Figure 70 shows the schematic of the SIW. W is the width of the SIW defined as

the distance between the center of the vias on two sides. d and s are the diameter of

the via and spacing between two vias, respectively. t and h are the thickness of the

copper layer and the substrate, respectively.

For a rectangular waveguide, the cut-off frequency for the TE10 mode is given by

fc =
1

2a
√
µε

(121)

where a is the width of the waveguide (> height of the waveguide), ε and µ are the
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Figure 71: Microstrip line to SIW tapered transition

permittivity and permeability of the filled dielectric. Since the side wall of the SIW is

a via-fence structure but not a flat conductor surface, the width W of the SIW which

exhibits the same propagation characteristic as a rectangular waveguide of width a is

given by [77]

W = a+
d2

0.95(s+ d)
. (122)

Following the design rule, the SIW is designed with the following parameters: W =

0.925 mm, d = 0.0508 mm, s = 0.075 mm, t = 0.009 mm, and h = 0.0508 mm.

7.3.2 Microstrip to SIW Transition

The S-parameters of the SIW are not easy to be directly measured using a probe

station. A microstrip to SIW transition is designed to facilitate the measurement

(Figure 71). Low reflection is desired. Multiple transition designs have been proposed

[74], [77], [78] among which the tapered line transition shows advantages for simple

implementation with low transition loss.
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Figure 72: Mask design of the SIW (unit: mm)

In this work, the tapered line transition is adopted. While there is no strict design

rule of the microstrip to SIW transition, a commercial full-wave solver (HFSS) is used

to optimize the width Wt and length lt of the SIW, yielding minimum return loss.

The final optimized results are Wt = 0.26 mm, lt = 0.39 mm and w = 0.124 mm,

respectively.

7.3.3 Fabrication Process

The SIW is fabricated based using the liquid crystal polymer (LCP) substrate. The

LCP is widely used in high-frequency applications due to its low loss property (loss

tangent tanδ = 0.005) and commercial availability of laminates. The dielectric con-

stant of the LCP is εr = 3.1. A Mask is designed for the fabrication of the SIW. The

detailed mask design of one SIW is shown in Figure 72. The mask for other auxiliary

structures is not shown here. To make proper probing, a coplanar waveguide (CPW)

to microstrip line transition is also designed. Note that the feature size of the mask

is not identical to the feature size obtained from the full-wave solver. Over etching is

considered and the typical over etching width is 9 µm.

The D-band SIW is fabricated based on the liquid-crystal polymer (LCP) tech-

nology. The fabrication process is as follows.
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1. First, the LCP sample is cut into square with copper on both sides. A square

area smaller than the top side is covered with blue tape, leaving space for

alignment vias (Figure 73(a)). The tape is firmly attached to the top side,

otherwise under-etch will oxidize or etch the copper from the edges.

2. The sample is etched with Nitric acid and water with 1:2 composition. After

the copper is etched out completely from the bottom and edges of the top side,

rinse the sample with water and then remove the blue tape (Figure 73(b)).

3. The sample is processed with micron laser drill for forming the alignment vias

at each edge of the sample. The vias for the SIW side wall are also drilled

through the LCP and stop at the top side copper (Figure 74(c)).

4. A 9 µm copper layer is sputtered on the bottom side of the sample where the

copper is originally etch out at the second step. The 25 min sputtering is

followed by 15 min of cooling step. To get the desired thickness of the copper,

this process loops (Figure 74(d)).

5. The SIW and all the other related structures are patterned on the top side.

Fine feature of the CPW pads for probing is realized by careful etching (Figure

75(e)).

6. The SIW and all the other related structures are patterned on the bottom side

with the similar procedure as in step 5.(Figure 75(f)).

Figure 76 shows a portion of the fabricated SIW. Auxiliary open and through lines

are also fabricated for de-embedding the S-parameters of the SIW. Figure 77 shows

the cross-sectional view of the fabricated SIW. Roughness can be observed at the

interface of copper and LCP substrate. Figure 78 shows the top view of the copper

surface near a via. Spherical-like roughness can be observed on the surface.
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Figure 73: Fabrication process of the SIW (part 1)
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(d)

SIW via 
metalized

Cu sputtered 
on the bottom

(c)

Alignment vias

SIW via 
stopped at Cu

Figure 74: Fabrication process of the SIW (continued, part 2)
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(e)

(f)

SIW patterned 
on the top side

SIW patterned 
on the bottom 

side

Figure 75: Fabrication process of the SIW (continued, part 3)
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Figure 76: Fabricated D-band SIW (bottom). Short (top) and open (middle) lines
are also fabricated for de-embedding S-parameters of the SIW.
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Figure 77: Cross-sectional view of the SIW (captured by Hitachi 3700 Variable-
Pressure SEM).

Figure 78: Top view of the copper surface near a via (captured by Hitachi 3700
Variable-Pressure SEM).
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7.4 Surface Roughness Models for SIW

In this section, analytical models for surface roughness of the SIW are discussed and

compared. All the models are based on the surface approximation strategy, namely

transferring the random roughness into a equivalent surface with simple shapes from

which analytical models can be derived.

7.4.1 Enhancement Factor and Loss Mechanism

Consider a straight transmission line without discontinuities. Due to the surface

roughness of the conductor, the difference between the conductor loss with smooth

surface and rough surface will increase as frequency increases. This is equivalent to

the scenario that the conductivity of the conducting metal decreases as frequency in-

creases. Therefore, it is convenient to introduce a frequency-dependent conductivity

as

σ′(ω) =
σ

Ks(ω)
2 (123)

where Ks(ω) is the frequency dependent enhancement factor. The enhancement fac-

tor should be greater than one across all the frequencies of interest since a rough

surface is always more lossy than a smooth surface. For a fixed design, the enhance-

ment factor can be expressed as follows

Ks =
Proughn

Pflat

(124)

where Prough is the power loss due to the rough surface and Pflat is the power loss due

to the smooth surface.

Normally speaking, the power loss due to the rough surface mainly consists of two

parts: First, since the surface roughness can be considered as protrusions out of a
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smooth surface, energy will be reflected back to the power source; Second, since the

equivalent surface area of a rough surface is larger than a smooth surface, the time-

average power absorbed by the conducting surface is larger, and is a major source

of power loss. To be noted, radiation loss is associated with the SIW because of the

non-complete-shielding via fence structure. However, the radiation loss at high fre-

quency is negligible compared to conductor loss, and thus, is not discussed here. For

a SIW, any power that is not transmitted is considered as power loss, which satisfies

|Γ|2 + |T|2 = 1− Ploss

Pincident

(125)

where Γ and T are the reflection and transmission coefficient respectively. |Γ|2Pincident

and Ploss correspond to the aforementioned two parts of power loss.

7.4.2 Surface Approximation

Random roughness is difficult to be modeled. Although there are some attempts deal-

ing with the random roughness directly, most of them are computationally inefficient.

The best way is to develop an analytical solution that can be easily incorporated

into full-wave solvers. To be specific, an analytical solution for the enhancement fac-

tor should be derived to obtain the equivalent frequency-dependent conductivity. To

achieve this, random roughness is often represented by some equivalent surface with

simple shapes from which the derivation of analytical solution is possible.

One approach is to model the rough surface as repeated periodic triangles sitting

on a smooth surface (Figure 79(a)). This model is a 2-D model which is not a good

representation of a 3-D rough surface. Another approach is to model the rough surface

as repeated hemispheres sitting on a smooth surface (Figure 79(b)). This model is

demonstrated to be accurate in modeling microstrip lines with surface roughness up

to 30 GHz [1]. However, this type of model has a drawback. At low frequency, the
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(a)

(b)

(c)
Figure 79: Different models for surface roughness (a) periodic triangle (b) periodic
hemisphere (c) Huray model.
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enhancement factor could be less than 1, which is physically incorrect. Manual cut-off

frequency is needed and the enhancement factor suffers from early saturation.

A more realistic representation of the surface roughness is proposed by Huray [54]

as shown in Figure 79(c). By inspecting the real surface distribution of the roughness

(Figure 7), it is more reasonable to model the roughness as conducting sphere bundles

sitting on the smooth surface. The enhancement factor generated by this model is

always greater than 1 and early saturation is eliminated.

An important item to be mentioned is that the Huray model cannot be directly

applied to the SIW case since it is only correct for TEM type of transmission line.

7.4.3 Modified Huray Model

In actual calculation of the enhancement factor, a conductor surface will be discretized

into rectangular cells or “tiles”, which will be explained in detail in later sections.

Using the Huray model, the rough surface can be generalized with one conducting

sphere sitting on a smooth conducting surface as shown in Figure 80.

Consider that a wave is incident from the left to right as shown in Figure 80. The

total power scattered and absorbed from a sphere divided by the incident flux can be

calculated as [1]

σtot = − 3π

2k2
Re [α(1) + β(1)] (126)

where k = 2π/λ and

α(1) = −2j

3
(kr)3

[
1− δ

r
(1 + j)

1 + δ
2r
(1 + j)

]
(127)

β(1) = −2j

3
(kr)3

1− ( 4j
k2rδ

) (
1

1−j

)
1 +

(
2j

k2rδ

) (
1

1−j

)
 (128)
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Figure 80: A conducting sphere sitting on a conducting plane with (a) top view and
(b) side view.
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where δ is the skin depth and r is the radius of the sphere.

Consider a rectangular waveguide whose width and height are a and b, respective-

ly as shown in Figure 81. The TE wave is propagating in the z-direction. The field

components for TE10 can be written as:

Hz = A10 cos
πx

a
e−jβz (129)

Ey =
−jωµa

π
A10 sin

πx

a
e−jβz (130)

Hx =
jβa

π
A10 sin

πx

a
e−jβz (131)

where β is the propagating constant and A10 is the magnitude constant for TE10

mode. The Poynting vector associated with the TE10 mode is given by:

|S| =
∣∣∣∣12Re (E×H∗)

∣∣∣∣
=

∣∣∣∣12Re (EyH
∗
x)

∣∣∣∣
=

∣∣∣∣12Re
[
|A10|2

ωµβa2

π2
sin2πx

a

]∣∣∣∣
(132)

Therefore, the total power absorbed and reflected by the conducting sphere can be

calculated as:

Psphere = |S|σtot (133)

Note that Psphere takes into account both power loss from reflection and absorption

of the conducting sphere. The conductor loss due to the smooth surface is

Pflat =
µωδ

4
|Htan|2Atile (134)
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where Atile is the surface area of the smooth surface tile and

|Htan|2 = |Hx|2 + |Hz|2 (135)

Therefore, the enhancement factor (124) can be calculated as:

Ks =

N∑
n=1

mPsphere +
N∑

n=1

Pflat

N∑
n=1

Pflat

=

N∑
n=1

mRe
∣∣∣|A10|2 3ωµβa

2

4πk2
sin2 πx(n)

a
· [α(1) + β(1)]

∣∣∣+ N∑
n=1

µωδ
4
|Htan|2Atile

N∑
n=1

µωδ
4
|Htan|2Atile

(136)

where N is the total number of the discretized cells and m is the total number of

spheres sitting on one tile.

7.4.4 Rigorous Waveguide Model

The modified Huray model discussed in the previous section improves the original

model by considering the Poynting vector inside a rectangular waveguide instead of

a TEM transmission line. However, the scattering term σtot is still derived from

a plane-wave-incident scenario. In the SIW, this assumption is not valid since no

TEM mode is supported. It is obvious that the loss is mode-dependent since the

conducting sphere interacts with the field inside the waveguide which is determined

by the propagating mode. Directly using the scattering term might lead to reasonable

loss results, but it is not physically rigorous. Therefore, a strict TE-mode-based model

needs to be developed.

A rigorous scenario involves considering a conducting sphere sitting on the bottom

of a rectangular waveguide, as shown in Figure 81. Recall that in (125), the loss due

133



z-

x

y

b

a

r(x,z)

Figure 81: A conducting sphere sitting on the bottom of a waveguide.

to the surface roughness consists of reflection loss and absorption loss. By calculating

these two power-loss components under the TE mode, the total loss can be recovered.

The reflection coefficient of a conducting sphere sitting in the middle of the bottom

of a rectangular waveguide has been investigated in [79], and can be expressed as

Γsphere =

(
2r

b

)3(
πb

2a

)2
k

kc

 5.44√
1− (kc/k)

2
+

√
1− (kc/k)

2

 (137)

where kc = π/a. The power flux of a rectangular waveguide can be calculated from:

P10 =
1

2
Re

∫ a

x=0

∫ b

y=0

E×H∗ · ẑdydx

=
1

2
Re

∫ a

x=0

∫ b

y=0

EyH
∗
xdydx

=
ωµa3|A10|2b

4π2
Re (β)

(138)

Note that in [79], the reflection factor is calculated for a conducting sphere sitting

in the middle of the bottom wall of the waveguide. However, in a waveguide with
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Figure 82: Field distribution and energy density of a rectangular waveguide for
TE10 mode.

a propagation mode, the energy density inside the waveguide is position-dependent.

Figure 82 shows the field distribution and energy density of a rectangular waveguide

for TE10 mode. As can be seen that the highest energy density is observed in the

center of the waveguide. Thus, energy being reflected by a conducting sphere sitting

in the middle of a waveguide is larger than that being reflected by the same sphere

sitting near the side wall.

To account for this effect, the power loss due to the reflection can be calculated

using:
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Pref = |Γsphere|2sin2πx

a
P10 (139)

where the sin2(πx/a) term is used to represent the position-dependent reflection en-

ergy of the conducting sphere.

For a conducting sphere sitting on the bottom of a waveguide, the field strength

will be low in the “shade region” between the sphere and the smooth plane [79]. This

negligible field region makes the equivalent surface area increment of a conducting

sphere approximately half the sphere surface area, namely 2πr2. The relationship of

the skin depth and the radius of the sphere should also be taken into consideration,

which results in the power loss due to the energy absorption taking the form

Ploss =
µωδ

4
|Htan|22πr2γ(r) (140)

where γ(r) is a correction factor taking into account the ratio between skin depth

and radius of the sphere, which can be expressed as:

γ(r) =

 0 r ≤ δ

1− e−
r
δ
+1 r > δ

(141)

It is obvious from (140) that for surface roughness height less than the skin depth of

the conductor, the energy loss due to the increment of current path can be neglected.

For surface roughness height much larger than the skin depth, the correction factor is

approximately 1, making the equivalent surface area equal to half of a sphere surface.

Therefore, the enhancement factor can be calculated as:

136



Ks =

N∑
n=1

mPref +
N∑

n=1

mPloss +
N∑

n=1

Pflat

N∑
n=1

Pflat

=

N∑
n=1

m|Γsphere|2sin2 πx
a
P10 +

N∑
n=1

mµωδ
4
|Htan|22πr2γ(r) +

N∑
n=1

µωδ
4
|Htan|2Atile

N∑
n=1

µωδ
4
|Htan|2Atile

(142)

where N is the total number of the discretized cells and m is the total number of

spheres sitting on one tile.

7.4.5 Solution Strategy and Roughness Parameter Extraction

The loss due to a single protrusion can be calculated analytically as mentioned before.

Based on the loss of a signal protrusion, the enhancement factor is calculated by taking

account the loss for all the protrusions, as shown in (136) and (142). In practice,

this requires the rough surface of the copper to be discretized by rectangular cells.

Figure 83 shows the discretization of the copper surface of the SIW. The cell size

is determined by the measured profile of the surface roughness. It is convenient to

make cell size in accordance with the root mean square (RMS) value of the distance

between the peak of the protrusions (dpeak,RMS) as shown in Figure 84.

The method of determining the number of spheres used to represent the protru-

sion profile is discussed in detail in [80] and can be expressed as:

m =
Alat

Asphere

(143)

where Asphere is the surface area of a single sphere and Alat is the lateral surface area

of a hemispheroid which is given by:
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Figure 83: Discretization of the copper surface of the SIW.
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Figure 84: Conductor surface roughness profile and key parameters.
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Alat = πhtooth
bbase
2

htooth

arcsin
(√

1− b2base
4h2

tooth

)
√

1− b2base
4h2

tooth

+
bbase
2

 (144)

where htooth and bbase are the feature length marked in Figure 84. Note that this

method calculates the number of spheres using a equivalent surface concept. The

number of sphere can also be calculated using a equivalent volume concept which is

expressed as

m =
Vhemispheroid

Vsphere

(145)

where Vhemispheroid is the volume of the hemispheroid which is calculated by

Vhemispheroid =
2

3
π

(
bbase
2

)2

htooth (146)

Note that the determination of the number of spheres can be extracted from a 2-D

measured profile. More rigorously, a 3-D profile should be measured and the number

of spheres for each discretized cell can be calculated from these measurement results.

7.4.6 Incorporation with the Laguerre-FDTD Method

Recall that in Chapter IV, conductor loss is modeled by incorporating the skin-effect

in the Laguerre-FDTD solver. Skin-effect is modeled by introducing the SIBC. For

smooth surface, the conductivity is always constant. To model the conductor surface

roughness, methods of obtaining the frequency-dependent conductivity was proposed

in the previous sections. Therefore, to incorporate the surface roughness into the

Laguerre-FDTD solver, it is convenient to transform (34) into
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Z(ω) =
1

Y (ω)
=

√
jωµ

σ′(ω) + jωε
(147)

where σ′(ω) is the frequency-dependent conductivity adjusted by the enhancement

factor. Since fitting techniques are used to derive the Laguerre-domain expression of

the SIBC, the only change needed is the replacement of constant conductivity with

the frequency-dependent conductivity.

7.5 Numerical Results

The SIW structure has been simulated using the proposed methods. The frequency-

dependent conductivity was imported into the commercial full-wave solver (HFSS).

It is important to note that, the frequency-dependent conductivity can be easily

incorporated into the Laguerre-FDTD solver which is capable of handling conductor

loss. The detailed feature size of the structure can be found in Figure 72. To extract

the model parameters, the roughness profile was measured. Figure 85 shows the 2-D

measurement result of the copper surface of the SIW. The root mean square (RMS)

of the roughness height is approximately 0.5 µm.

Figure 86 shows the enhancement factor calculated from the modified Huray model

and the rigorous waveguide model. The result from the modified Huray model in-

dicates that the enhancement factor is lower than that calculated from the rigorous

waveguide model at low frequencies.

Figure 87 and Figure 88 show the simulated and measured S-parameters of the

SIW structure. For comparison, the same SIW with a smooth conductor surface is

also simulated. It can be observed from Figure 87 that surface roughness does not

have a major impact on the return loss of the SIW. However, it is observed from

Figure 88 that the surface roughness has a significant influence on the insertion loss

of the SIW. The magnitude difference of the insertion loss between a simulated SIW
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Figure 85: Measured surface roughness of the top copper wall of the SIW.
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Figure 86: Enhancement factor of the SIW.
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Figure 87: Simulated and measured return loss of the SIW.

with a smooth conductor surface and the measurement indicates that the loss effect

cannot be simply modeled by a smooth surface. It is obvious that by modeling the

surface roughness using the proposed methods, the loss in SIW is more accurately

captured. Moreover, although for 170 GHz, the loss is accurately modeled by both

the modified Huray model and rigorous waveguide model, at lower frequencies, the

rigorous waveguide model is more accurate.

SIWs with different RMS heights of the surface roughness are investigated using

both models. Figure 89 and Figure 90 show the return loss and insertion loss of the

SIW with different surface roughness heights using the modified Huray model. Four

scenarios are considered, namely the RMS of the surface roughness height of 0.05 µm,

0.1 µm, 0.25 µm, and 0.5 µm, respectively. Similarly, Figure 91 and Figure 92 show

the return loss and insertion loss of the SIW with different surface roughness heights

using the rigorous waveguide model. The same four scenarios are considered. It can

be observed from the results that higher roughness height results in higher loss. This
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Figure 88: Simulated and measured insertion loss of the SIW.

is because the equivalent length of current path is longer for higher roughness cases.

To be noted, roughness height RMS of 0.1 µm or below has little impact on the overall

insertion loss of the SIW. This is because the roughness height is close to the skin

depth at the frequency of interest, resulting in limited increment of equivalent length

of current path as frequency increases.

The loss behavior of the SIW and the microstrip line are compared. For fair com-

parison, SIW is simulated without any transitions. The SIW and the microstrip line

share the same LCP substrate for which the RMS roughness height of the copper is

0.5 µm. The roughness of the SIW is modeled using the rigorous waveguide model.

Four scenarios are considered for the SIW, namely 2 mil substrate with smooth sur-

face, 4 mil substrate with smooth surface, 2 mil substrate with rough surface and 4

mil substrate with rough surface.

Figure 93 shows the comparison of attenuation of the SIW and the microstrip line.

It can be observed that surface roughness has larger impact on the insertion loss of
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Figure 89: Simulated and measured return loss of the SIW with different surface
roughness height using the modified Huray model.
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Figure 90: Simulated and measured insertion loss of the SIW with different surface
roughness height using the modified Huray model.
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Figure 91: Simulated and measured return loss of the SIW with different surface
roughness height using the rigorous waveguide model.
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Figure 92: Simulated and measured insertion loss of the SIW with different surface
roughness height using the rigorous waveguide model.
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Figure 93: Attenuation of the SIW and the microstrip line.

the SIW than that of the microstrip line. This is because in SIW, large amount of

metal carries the current. If the roughness height is high, the larger surface area of

the roughness may exhibit larger influence on the transmission loss. It can also be

observed from Figure 93 that the thicker the substrate, the lower the loss. This is the

same as what is expected since conductor loss of a waveguide is geometry-dependent.

For the smooth surface case, the attenuation due to the conductor can be expressed

as [74]

αc =
Rs√

1−
(

fc
f

)2
√

ε

µ

[
1

b
+

2

a

(
fc
f

)2
]

(148)

where b is the substrate thickness. It can be concluded from the discussions above that

to lower the loss of an SIW at millimeter wave frequencies, increasing the substrate

thickness and polishing the conductor surface are good solutions.
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7.6 Summary

In this chapter, conductor surface roughness is modeled for the SIW. Enhancement

factor has been introduced to generate the equivalent frequency-dependent conduc-

tivity of the conductor. The conductor loss due to the surface roughness is therefore

captured by the frequency-dependent conductivity. The enhancement factor is ex-

pressed analytically, thus, it is convenient to incorporate the frequency-dependent

conductivity into the existing full-wave solvers, including the Laguerre-FDTD solver.

To tackle the TE transmission mode of the SIW, two modeling schemes are adopted,

namely the modified Huray model and rigorous waveguide model. Both models use

equivalent surfaces with protrusions of some simple geometries to approximate the

random surface roughness. Loss is calculated by considering both the reflection and

absorption of energy due to the protrusions. The numerical results show that the

rigorous waveguide model is more accurate and loss due to the surface roughness is

properly modeled.
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CHAPTER VIII

CONCLUSIONS

The increasing need for consumer electronic products with high performance, small

size and low cost requires modern ICs with high-density integration. As a result, the

complexity of the IC design has witnessed a significant ramp-up in the past decades.

In recent years, the switching of 2-D integration to 3-D integration has accelerated

this trend. Hence, efficient EDA solutions become a necessity for modern IC design.

Among all the EDA solutions, the full-wave electromagnetic EDA solution is a

critical component since it addresses the electromagnetic simulation of the products

without compromising simulation accuracy. This is of vital importance in analyz-

ing signal/power integrity, electromagnetic compatibility and signal interaction of

structures of interest. However, the simulation of high-density integrated systems is

challenging, especially for simulation of chip-package structures. Up to date, there

is no transient full-wave solver that is capable of balancing simulation accuracy and

efficiency.

As discussed in Chapter I and Chapter II, the challenges lie in the following aspect-

s: First, a transient solver that is capable of solving multiscale structures with good

efficiency is required. Second, skin-effect needs to be addressed for high-frequency

simulations in order to accurately capture the conductor loss. Third, for ultra-high-

frequency interconnects, a rigorous model for conductor surface roughness needs to

be developed. The model should be easy for incorporation into the solver. Fourth,

simulation schemes for large multiscale problems need to be developed, enabling sim-

ulation of chip-package structures. To address these challenges, several numerical

methods are developed and presented in Chapter IV to Chapter VI. To be specific,
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the solver developed for this work is based on an unconditionally stable transient

method, the Laguerre-FDTD method. This method is suitable for simulating multi-

scale structures. A scheme for accurate modeling of the skin-effect is proposed and

incorporated into the full-wave solver. An analytical solution for capturing the loss

mechanism of the surface roughness is presented. Finally, a transient non-conformal

domain decomposition method, which improves efficiency of simulation of large mul-

tiscale structures, is proposed and tested. All the proposed schemes are verified using

numerical test cases. The simulation results indicate that the proposed schemes are

accurate and more efficient compared to existing methods in simulating multiscale

chip-package problems.

8.1 Contributions

The contributions of the dissertation are summarized as follows.

1. Development of an unconditionally stable transient full-wave solver

for multiscale structures.

A transient solver is developed based on the Laguerre-FDTD method. Unlike

the marching-on-in-time schemes such as the conventional FDTD method, the

Laguerre-FDTD method is a marching-on-in-order scheme. Physical quantities

that are time-variant are spanned by the Laguerre basis functions. Hence the

method is unconditionally stable because the Laguerre basis functions are ab-

solutely convergent as time goes to infinity. In other words, the time term is

eliminated. To accurately and efficiently extract the frequency domain results,

a scheme for embedding and de-embedding port resistors is proposed. The pro-

posed embedding scheme allows the energy to decay significantly faster within

the simulation structure whereas the de-embedding scheme ensures extraction

accuracy. S-parameter extraction schemes are investigated and compared. A

proper extraction method is chosen based on the analysis type of the problem.
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2. Rigorous implementation of the skin-effect.

The skin-effect is incorporated into the transient solver based on the Laguerre-

FDTD method. By applying the SIBC, the relationship between electric field

and magnetic field on the conductor surface is established. This avoids a fine

mesh inside the conductor, which is typically adopted by conventional meth-

ods to capture the exponential decaying field. Despite the reduced unknowns

due to non-meshing the interior of the conductor, the conductor surface mesh-

ing density can be reduced at the same time. This method is proved to be

accurate with significant improvement of simulation speed compared to the s-

tandard Laguerre-FDTD method. Two implementation approaches, namely the

MFA-SIBC and the EFA-SIBC methods are proposed and compared. Both ap-

proaches show good numerical stability with large variation of the conductor

conductivity. The proposed method is very useful for simulating chip-package

structures with dense interconnects at high frequencies with high efficiency.

3. Development of a transient non-conformal domain decomposition method

based on the Laguerre-FDTD scheme.

A transient non-conformal domain decomposition scheme is developed. By using

the domain decomposition scheme, the demand for computational resources is

reduced because of fewer total unknowns and the potential for parallel comput-

ing. Therefore, large-scale problems can be solved using a divide-and-conquer

strategy. The proposed scheme outperforms the conformal domain decompo-

sition schemes for the simulation of multiscale structures. Since the interface

mesh does not need to be matched, meshing complexity for different domains

can be significantly relaxed. Different domains can be meshed independently

based on the feature size without the need for mesh conformality. For multiscale
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structures, regions with physically small structures can be meshed finely where-

as regions with physically large structures can be meshed coarsely. This reduces

the total number of unknowns by eliminating unnecessary finely meshed regions.

To maintain field continuity at the domain interface, two sets of Lagrange mul-

tipliers are introduced which account for continuity of tangential electric and

magnetic fields. This scheme results in reduced field distortion and reflection

performance than the direct implementation of the mortar-element-like scheme.

Moreover, the solution of each domain can be calculated in a parallel manner

using Schur complement, which further increases the simulation speed.

4. Investigation on the multiscale chip-package structure simulation.

Multiscale chip-package problems are investigated based on all the proposed

schemes. To be more specific, the skin-effect loss is accurately modeled using

the proposed SIBC-based scheme. To deal with the large multiscale nature of

the chip-package problems, the non-conformal domain decomposition method

is used with separate meshing strategy for chip and package regions. Several

typical chip-package structures, including a multi-port interconnect network

and a multiscale chip-package PDN, are simulated. The results indicate that

the proposed methods are accurate and computationally efficient. Significant

improvement of the simulation speed for chip-package structures is achieved.

Most importantly, the proposed methods are capable of solving problems that

cannot be efficiently analyzed by existing commercial solvers.

5. Development of a conductor surface roughness modeling scheme for

the SIW.

The conductor surface roughness is modeled for SIW. As an alternate inter-

connect structure, SIW exhibits better performance in ultra-high frequency

applications due to its immunity to crosstalk, large power capacity and low
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transmission loss. Although the loss due to the surface roughness is investigat-

ed for the TEM type of transmission lines, the surface roughness loss of the

SIW is still unexplored. This work models the surface roughness based on the

enhancement factor concept. Analytical expressions for the enhancement factor

are developed to create an equivalent frequency-dependent conductivity of the

conductor. The equivalent conductivity can then be easily incorporated into

commercial solvers or the Laguerre-FDTD solver. To be specific, the random

roughness of the conductor surface is modeled by an equivalent surface with

protrusions of simple geometries. Loss due to a signal protrusion is obtained

analytically and the total loss is derived using the summation of loss of all pro-

trusions. In implementation, two models are developed to capture the loss due

to protrusions, namely the modified Huray model and the rigorous waveguide

model. Measurement data is used to gauge the accuracy of the proposed mod-

els. Both models are accurate by considering the transmission mode of the SIW

whereas the rigorous waveguide model shows better results in low frequencies.
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CHAPTER IX

FUTURE WORK

This dissertation addressed multiscale chip-package simulation problems. However,

there are still some fields related to this topic that are challenging and require further

exploration. They are categorized as future work in this chapter.

9.1 High-Efficiency Parallel Domain Decomposition

The domain decomposition method discussed in this work is efficient in simulating

multiscale chip-package structures. By introducing the dual sets of Lagrange mul-

tipliers and choosing dominant-auxiliary domain pairs, the field continuity on the

domain interface is maintained while each domain can be meshed separately (Figure

94). Using the Schur complement scheme, the interface problem is extracted with less

degrees of freedom, and therefore the system solution can be performed in a parallel

manner which significantly reduces the computational time.

However, the current domain decomposition scheme has its limitations. Since field

continuity is enforced by applying the Lagrange multipliers, additional unknowns are

introduced into the system solution. The number of unknowns depends on the domain
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Figure 94: Non-conformal domain decomposition method in this work.
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Figure 95: Non-conformal domain decomposition using domain-by-domain iteration
scheme.

partition and dominant interface selection. It is obvious that computational cost will

increase as the number of interface unknowns increases, which is very common for

decomposed structures with many domains.

One of the solution methods is the domain-by-domain iteration scheme as shown in

Figure 95. Instead of introducing additional unknowns, this method considers domain

interfaces as mutual excitation sources [44]. In a certain time step or frequency point,

each domain is solved recursively until convergence is reached. Fast convergence

methods are important in realizing the domain-by-domain iteration scheme.

9.2 Model Order Reduction

It is known that the most accurate method of solving electromagnetic problems is

the full-wave method. By discretizing the computational space with elements (e.g.,

hexahedral, tetrahedron), the field information at any point of the computational

domain can be solved. However, the full-wave methods suffer from large computa-

tional cost which makes the simulation of large-scale problems (e.g. entire package

layout) computationally inefficient. To overcome the speed limit, circuit methods

using lumped elements are developed. By extracting the equivalent circuit models

based on the actual physics of the problems, some electromagnetic problems can be

analyzed in a significantly faster manner. This type of method has been successfully
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Figure 96: Problem complexity and simulation accuracy of various computational
methods.

demonstrated in simulating structures such as power grids and PDNs [81]. One of

the critical drawbacks is the simulating accuracy. Moreover, equivalent circuits for

complex structures are difficult to be derived.

One solution is the model order reduction (MOR) method as shown in Figure

96. The basic idea of MOR method is to create a reduced linear system such that

the transfer function of the system is approximated with acceptable tolerance [82].

The solution will be much faster than the full-wave method with acceptable accuracy.

Since the linear system expression using the Laguerre-FDTD method has already

been developed in [70], it is promising that large-scale problems can be solved much

more efficiently based on the Laguerre-FDTD method.

9.3 Algorithm Hybridization

The Laguerre-FDTDmethod shows significant speed-up compared to the conventional

FDTD method when multiscale structures are simulated. However, compared to
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Figure 97: The hybridization of the Laguerre-FDTD method and the conventional
FDTD method in solving chip-package PDN problem.

conventional FDTD method, Laguerre-FDTD method requires a matrix solution at

each order step. This is computationally expensive if the structure of interest is not

multiscale or the mesh resolution requirement is not high. There are certain types of

structure for which some regions require multiscale dense mesh whereas other regions

require coarse mesh. Considering the chip-package PDN problem shown in Figure

97, the on-chip multi-level power grid is multiscale whereas the on-package power-

ground-plane-pairs can be justifiably considered as structures requiring a coarse mesh

resolution.
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By applying algorithm hybridization, it is possible to utilized the advantages of

both conventional FDTD method and Laguerre-FDTD method. Conventional FDTD

is applied to the low mesh resolution regions whereas the Laguerre-FDTD method is

applied to the multiscale regions. The key of this solution is to find the method for

hybridizing the marching-on-in-time scheme and marching-on-in order scheme. The

solution speed is expected to be much faster than using a single time-domain method.
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APPENDIX A

FORMULATIONS FOR THE LAGUERRE-FDTD

METHOD

A.1 Formulations Based Upon the Two First-Order Equa-
tions

Considering an isotropic, non-dispersive, lossy media, in Cartesian coordinates, two

first-order Maxwell’s equations can be expressed as

∇× E = −µ
∂H

∂t
(149)

∇×H = ε
∂E

∂t
+ J (150)

Rewriting (149) and (150) into 3-D form, we have

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− Jx − σEx

)
(151)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− Jy − σEy

)
(152)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− Jz − σEz

)
(153)

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(154)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(155)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(156)

where ε is the electric permittivity, µ is the magnetic permeability, σ is the electric
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conductivity; Jx, Jy, and Jz are the excitations along x, y, and z axes, respectively.

First, consider the equations related to the electric field in x-direction. Using the

Laguerre basis functions, the temporal coefficients in (151) can be expanded as

Ex =
∞∑
p=0

Ep
xφ

p(t̄) (157)

Hy =
∞∑
p=0

Hp
yφ

p(t̄) (158)

Hz =
∞∑
p=0

Hp
zφ

p(t̄). (159)

For any given time-domain waveform W , the first derivative with respect to time t is

∂W

∂t
= s

∞∑
p=0

(
1

2
W p +

p−1∑
n=0,p>1

W n

)
φp(t̄). (160)

Therefore, applying (160) into (151) results in

s
∞∑
p=0

(
1

2
Ep

x +

p−1∑
n=0,p>1

En
x

)
φp(t̄)

=
1

ε

(
∞∑
p=0

∂Hp
z

∂y
φp(t̄)−

∞∑
p=0

∂Hp
y

∂z
φp(t̄)− Jx − σ

∞∑
p=0

Ep
xφ

p(t̄)

)
.

(161)

To eliminate the time-dependent terms φp(t̄), introducing a temporal Galerkins test-

ing procedure of (161) by using the orthogonal property of the weighted Laguerre

functions. Multiply both sides of (161) by φq(t̄) and integrate over time, we have

s

(
1

2
Eq

x +

q−1∑
q=0,p>1

En
x

)

=
1

ε

(
∂Hq

z

∂y
−

∂Hq
y

∂z
− Jq

x − σEq
x

) (162)
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where

Jq
x =

∫ Tf

0

Jxφ
q(t̄)dt̄. (163)

The upper limit of the time interval is finite length time period of Tf . Discretizing

(162) using the Yee grid shown in Figure 8 yields

Eq
x |i,j,k = C̄E

y |i,j,k (Hq
z |i,j,k −Hq

z |i,j−1,k )− C̄E
z |i,j,k

(
Hq

y |i,j,k −Hq
y |i,j,k−1

)
− 2

sεi,j,k
Jq
x |i,j,k − 2σi,j,k

sεi,j,k
Eq

x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k

(164)

where

C̄E
y |i,j,k =

2

sεi,j,k∆ȳj
(165)

C̄E
z |i,j,k =

2

sεi,j,k∆z̄k
(166)

where ∆ȳj and ∆z̄k are the distance between the center nodes where magnetic fields

are located.

Similarly, discretizing time derivative differential equations (155) and (156) for

magnetic fields in three cells shown in Figure 8, the Laguerre coefficient expressions

of the related magnetic fields are

Hq
y |i,j,k = C̄H

x |i,j,k (Eq
z |i+1,j,k − Eq

z |i,j,k )

− C̄H
z |i,j,k (Eq

x |i,j,k+1 − Eq
x |i,j,k )− 2

q−1∑
n=0,q>1

Hn
y |i,j,k

(167)

Hq
y |i,j,k−1 = C̄H

x |i,j,k−1 (E
q
z |i+1,j,k−1 − Eq

z |i,j,k−1 )

− C̄H
z |i,j,k−1 (E

q
x |i,j,k − Eq

x |i,j,k−1 )− 2

q−1∑
n=0,q>1

Hn
y |i,j,k−1

(168)
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Hq
z |i,j,k = C̄H

y |i,j,k (Eq
x |i,j+1,k − Eq

x |i,j,k )

− C̄H
x |i,j,k

(
Eq

y |i+1,j,k − Eq
y |i,j,k

)
− 2

q−1∑
n=0,q>1

Hn
z |i,j,k

(169)

Hq
z |i,j−1,k = C̄H

y |i,j−1,k (E
q
x |i,j,k − Eq

x |i,j−1,k )

− C̄H
x |i,j−1,k

(
Eq

y |i+1,j−1,k − Eq
y |i,j−1,k

)
− 2

q−1∑
n=0,q>1

Hn
z |i,j−1,k

(170)

where

C̄H
x |i,j,k =

2

sµi,j,k∆xi

(171)

C̄H
y |i,j,k =

2

sµi,j,k∆yj
(172)

C̄H
z |i,j,k =

2

sµi,j,k∆zk
. (173)

in which ∆xi, ∆yj, and ∆zk are the length of the edge where electric fields are located.

Inserting (167)-(170) into (164), with some manipulations, the equation for elec-

tric field in x-direction associated with cell (i, j, k) can be obtained as

162



(
1 + C̄E

y |i,j,k C̄H
y |i,j,k + C̄E

y |i,j,k C̄H
y |i,j−1,k

+C̄E
z |i,j,k C̄H

z |i,j,k + C̄E
z |i,j,k C̄H

z |i,j,k−1 +
2σi,j,k

sεi,j,k

)
Eq

x |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k + C̄E

y |i,j,k C̄H
x |i,j,k Eq

y |i+1,j,k

− C̄E
y |i,j,k C̄H

x |i,j,k Eq
y |i,j,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
x |i,j−1,k

− C̄E
y |i,j,k C̄H

x |i,j−1,k E
q
y |i+1,j−1,k + C̄E

y |i,j,k C̄H
x |i,j−1,k E

q
y |i,j−1,k

+ C̄E
z |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k − C̄E

z |i,j,k C̄H
x |i,j,k Eq

z |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
x |i,j,k+1 − C̄E

z |i,j,k C̄H
x |i,j,k−1 E

q
z |i+1,j,k−1

+ C̄E
z |i,j,k C̄H

x |i,j,k−1 E
q
z |i,j,k−1 − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
x |i,j,k−1

= − 2C̄E
y |i,j,k

(
q−1∑

n=0,q>1

Hn
z |i,j,k −

q−1∑
n=0,q>1

Hn
z |i,j−1,k

)

+ 2C̄E
z |i,j,k

(
q−1∑

n=0,q>1

Hn
y |i,j,k −

q−1∑
n=0,q>1

Hn
y |i,j,k−1

)

− 2

sεi,j,k
Jq
x |i,j,k − 2

q−1∑
n=0,q>1

En
x |i,j,k

(174)

Similarly, for electric field associated with cell (i, j, k) in y- and z-direction, (151)

and (152) can be written into the coefficient equations in Laguerre domain as

Eq
y |i,j,k = C̄E

z |i,j,k (Hq
x |i,j,k −Hq

x |i,j,k−1 )− C̄E
x |i,j,k (Hq

z |i,j,k −Hq
z |i−1,j,k )

− 2

sεi,j,k
Jq
y |i,j,k − 2σi,j,k

sεi,j,k
Eq

y |i,j,k − 2

q−1∑
n=0,q>1

En
y |i,j,k

(175)

and

Eq
z |i,j,k = C̄E

x |i,j,k
(
Hq

y |i,j,k −Hq
y |i−1,j,k

)
− C̄E

y |i,j,k (Hq
x |i,j,k −Hq

x |i,j−1,k )

− 2

sεi,j,k
Jq
z |i,j,k − 2σi,j,k

sεi,j,k
Eq

z |i,j,k − 2

q−1∑
n=0,q>1

En
z |i,j,k .

(176)
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The coefficient equations for magnetic field associated with electric field are

Hq
x |i,j,k = C̄H

z |i,j,k
(
Eq

y |i,j,k+1 − Eq
y |i,j,k

)
− C̄H

y |i,j,k (Eq
z |i,j+1,k − Eq

z |i,j,k )− 2

q−1∑
n=0,q>1

Hn
x |i,j,k

(177)

Hq
x |i,j,k−1 = C̄H

z |i,j,k−1

(
Eq

y |i,j,k − Eq
y |i,j,k−1

)
− C̄H

y |i,j,k−1 (E
q
z |i,j+1,k−1 − Eq

z |i,j,k−1 )− 2

q−1∑
n=0,q>1

Hn
x |i,j,k−1

(178)

Hq
z |i,j,k = C̄H

y |i,j,k (Eq
x |i,j+1,k − Eq

x |i,j,k )

− C̄H
x |i,j,k

(
Eq

y |i+1,j,k − Eq
y |i,j,k

)
− 2

q−1∑
n=0,q>1

Hn
z |i,j,k

(179)

Hq
z |i−1,j,k = C̄H

y |i−1,j,k (E
q
x |i−1,j+1,k − Eq

x |i−1,j,k )

− C̄H
x |i−1,j,k

(
Eq

y |i,j,k − Eq
y |i−1,j,k

)
− 2

q−1∑
n=0,q>1

Hn
z |i−1,j,k

(180)

and

Hq
y |i,j,k = C̄H

x |i,j,k (Eq
z |i+1,j,k − Eq

z |i,j,k )

− C̄H
z |i,j,k (Eq

x |i,j,k+1 − Eq
x |i,j,k )− 2

q−1∑
n=0,q>1

Hn
y |i,j,k

(181)

Hq
y |i−1,j,k = C̄H

x |i−1,j,k (E
q
z |i,j,k − Eq

z |i−1,j,k )

− C̄H
z |i−1,j,k (E

q
x |i−1,j,k+1 − Eq

x |i−1,j,k )− 2

q−1∑
n=0,q>1

Hn
y |i−1,j,k

(182)

Hq
x |i,j,k = C̄H

z |i,j,k
(
Eq

y |i,j,k+1 − Eq
y |i,j,k

)
− C̄H

y |i,j,k (Eq
z |i,j+1,k − Eq

z |i,j,k )− 2

q−1∑
n=0,q>1

Hn
x |i,j,k

(183)
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Hq
x |i,j−1,k = C̄H

z |i,j−1,k

(
Eq

y |i,j−1,k+1 − Eq
y |i,j−1,k

)
− C̄H

y |i,j−1,k (E
q
z |i,j,k − Eq

z |i,j−1,k )− 2

q−1∑
n=0,q>1

Hn
x |i,j−1,k

(184)

Following the same procedure as is used deriving the coefficient equation for elec-

tric field in x-direction, the coefficient equations for electric field in y- and z-direction

can be obtained as

(
1 + C̄E

z |i,j,k C̄H
z |i,j,k + C̄E

z |i,j,k C̄H
z |i,j,k−1

+C̄E
x |i,j,k C̄H

x |i,j,k + C̄E
x |i,j,k C̄H

x |i−1,j,k +
2σi,j,k

sεi,j,k

)
Eq

y |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
y |i,j,k+1 + C̄E

z |i,j,k C̄H
y |i,j,k Eq

z |i,j+1,k

− C̄E
z |i,j,k C̄H

y |i,j,k Eq
z |i,j,k − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
y |i,j,k−1

− C̄E
z |i,j,k C̄H

y |i,j,k−1 E
q
z |i,j+1,k−1 + C̄E

z |i,j,k C̄H
y |i,j,k−1 E

q
z |i,j,k−1

+ C̄E
x |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k − C̄E

x |i,j,k C̄H
y |i,j,k Eq

x |i,j,k

− C̄E
x |i,j,k C̄H

x |i,j,k Eq
y |i+1,j,k − C̄E

x |i,j,k C̄H
y |i−1,j,k E

q
x |i−1,j+1,k

+ C̄E
x |i,j,k C̄H

y |i−1,j,k E
q
x |i−1,j,k − C̄E

x |i,j,k C̄H
x |i−1,j,k E

q
y |i−1,j,k

= − 2C̄E
z |i,j,k

(
q−1∑

n=0,q>1

Hn
x |i,j,k −

q−1∑
n=0,q>1

Hn
x |i,j,k−1

)

+ 2C̄E
x |i,j,k

(
q−1∑

n=0,q>1

Hn
z |i,j,k −

q−1∑
n=0,q>1

Hn
z |i−1,j,k

)

− 2

sεi,j,k
Jq
y |i,j,k − 2

q−1∑
n=0,q>1

En
y |i,j,k

(185)

and
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(
1 + C̄E

x |i,j,k C̄H
x |i,j,k + C̄E

x |i,j,k C̄H
x |i−1,j,k

+C̄E
y |i,j,k C̄H

y |i,j,k + C̄E
y |i,j,k C̄H

y |i,j−1,k +
2σi,j,k

sεi,j,k

)
Eq

z |i,j,k

− C̄E
x |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k + C̄E

x |i,j,k C̄H
z |i,j,k Eq

x |i,j,k+1

− C̄E
x |i,j,k C̄H

z |i,j,k Eq
x |i,j,k − C̄E

x |i,j,k C̄H
x |i−1,j,k E

q
z |i−1,j,k

− C̄E
x |i,j,k C̄H

z |i−1,j,k E
q
x |i−1,j,k+1 + C̄E

x |i,j,k C̄H
z |i−1,j,k E

q
x |i−1,j,k

+ C̄E
y |i,j,k C̄H

z |i,j,k Eq
y |i,j,k+1 − C̄E

y |i,j,k C̄H
z |i,j,k Eq

y |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
z |i,j+1,k − C̄E

y |i,j,k C̄H
z |i,j−1,k E

q
y |i,j−1,k+1

+ C̄E
y |i,j,k C̄H

z |i,j−1,k E
q
y |i,j−1,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
z |i,j−1,k

= − 2C̄E
x |i,j,k

(
q−1∑

n=0,q>1

Hn
y |i,j,k −

q−1∑
n=0,q>1

Hn
y |i−1,j,k

)

+ 2C̄E
y |i,j,k

(
q−1∑

n=0,q>1

Hn
x |i,j,k −

q−1∑
n=0,q>1

Hn
x |i,j−1,k

)

− 2

sεi,j,k
Jq
z |i,j,k − 2

q−1∑
n=0,q>1

En
z |i,j,k

(186)

A.2 Formulations Based Upon the One Second-Order E-
quations

Again, considering an isotropic, non-dispersive, lossy media, in Cartesian coordinates,

the one second-order wave vector equation can be expressed as

∇×∇× E+ µε
∂2E

∂t2
+ µσ

∂E

∂t
= −µ

∂J

∂t
. (187)

Rewriting (187) into 3-D form, we have
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∂2Ey

∂x∂y
− ∂2Ex

∂y2
− ∂2Ex

∂z2
+

∂2Ez

∂x∂z
+ µε

∂2Ex

∂t2
+ µσ

∂Ex

∂t
= −µ

∂Jx
∂t

(188)

∂2Ez

∂y∂z
− ∂2Ey

∂z2
− ∂2Ey

∂x2
+

∂2Ex

∂x∂y
+ µε

∂2Ey

∂t2
+ µσ

∂Ey

∂t
= −µ

∂Jy
∂t

(189)

∂2Ex

∂x∂z
− ∂2Ez

∂x2
− ∂2Ez

∂y2
+

∂2Ey

∂y∂z
+ µε

∂2Ez

∂t2
+ µσ

∂Ez

∂t
= −µ

∂Jz
∂t

. (190)

For any given time-domain waveform W , the second derivative with respect to time

t is

∂2W

∂t2
= s2

∞∑
p=0

[
1

4
W p +

p−1∑
n=0,p>1

(p− n)W n

]
φp(t̄)

= s2
∞∑
p=0

(
1

4
W p +

p−1∑
n=0,p>1

n∑
n=0

Wm

)
φp(t̄).

(191)

First, consider the equations related to the electric field in x-direction. Discretizing

(189) in the Yee’s cells in the Laguerre domain, the coefficient equation associated

with electric component Ex |i,j,k becomes
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(
1 + C̄E

y |i,j,k C̄H
y |i,j,k + C̄E

y |i,j,k C̄H
y |i,j−1,k

+C̄E
z |i,j,k C̄H

z |i,j,k + C̄E
z |i,j,k C̄H

z |i,j,k−1 +
2σi,j,k

sεi,j,k

)
Eq

x |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k + C̄E

y |i,j,k C̄H
x |i,j,k Eq

y |i+1,j,k

− C̄E
y |i,j,k C̄H

x |i,j,k Eq
y |i,j,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
x |i,j−1,k

− C̄E
y |i,j,k C̄H

x |i,j−1,k E
q
y |i+1,j−1,k + C̄E

y |i,j,k C̄H
x |i,j−1,k E

q
y |i,j−1,k

+ C̄E
z |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k − C̄E

z |i,j,k C̄H
x |i,j,k Eq

z |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
x |i,j,k+1 − C̄E

z |i,j,k C̄H
x |i,j,k−1 E

q
z |i+1,j,k−1

+ C̄E
z |i,j,k C̄H

x |i,j,k−1 E
q
z |i,j,k−1 − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
x |i,j,k−1

= − 4

µi,j,kεi,j,ks2

q−1∑
n=0,q>1

En
x |i,j,k − 4

q−1∑
n=0,q>1

n∑
m=0

Em
x |i,j,k

− 2

sεi,j,k

(
Jq
x |i,j,k + 2

q−1∑
n=0,q>1

Jn
x |i,j,k

)
.

(192)

Similarly, consider the equations related to the electric field in y- and z-direction,

the coefficient equation associated with electric component Ey |i,j,k and Ez |i,j,k be-

comes
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(
1 + C̄E

z |i,j,k C̄H
z |i,j,k + C̄E

z |i,j,k C̄H
z |i,j,k−1

+C̄E
x |i,j,k C̄H

x |i,j,k + C̄E
x |i,j,k C̄H

x |i−1,j,k +
2σi,j,k

sεi,j,k

)
Eq

y |i,j,k

− C̄E
z |i,j,k C̄H

z |i,j,k Eq
y |i,j,k+1 + C̄E

z |i,j,k C̄H
y |i,j,k Eq

z |i,j+1,k

− C̄E
z |i,j,k C̄H

y |i,j,k Eq
z |i,j,k − C̄E

z |i,j,k C̄H
z |i,j,k−1 E

q
y |i,j,k−1

− C̄E
z |i,j,k C̄H

y |i,j,k−1 E
q
z |i,j+1,k−1 + C̄E

z |i,j,k C̄H
y |i,j,k−1 E

q
z |i,j,k−1

+ C̄E
x |i,j,k C̄H

y |i,j,k Eq
x |i,j+1,k − C̄E

x |i,j,k C̄H
y |i,j,k Eq

x |i,j,k

− C̄E
x |i,j,k C̄H

x |i,j,k Eq
y |i+1,j,k − C̄E

x |i,j,k C̄H
y |i−1,j,k E

q
x |i−1,j+1,k

+ C̄E
x |i,j,k C̄H

y |i−1,j,k E
q
x |i−1,j,k − C̄E

x |i,j,k C̄H
x |i−1,j,k E

q
y |i−1,j,k

= − 4

µi,j,kεi,j,ks2

q−1∑
n=0,q>1

En
y |i,j,k − 4

q−1∑
n=0,q>1

n∑
m=0

Em
y |i,j,k

− 2

sεi,j,k

(
Jq
y |i,j,k + 2

q−1∑
n=0,q>1

Jn
y |i,j,k

)
.

(193)

and
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(
1 + C̄E

x |i,j,k C̄H
x |i,j,k + C̄E

x |i,j,k C̄H
x |i−1,j,k

+C̄E
y |i,j,k C̄H

y |i,j,k + C̄E
y |i,j,k C̄H

y |i,j−1,k +
2σi,j,k

sεi,j,k

)
Eq

z |i,j,k

− C̄E
x |i,j,k C̄H

x |i,j,k Eq
z |i+1,j,k + C̄E

x |i,j,k C̄H
z |i,j,k Eq

x |i,j,k+1

− C̄E
x |i,j,k C̄H

z |i,j,k Eq
x |i,j,k − C̄E

x |i,j,k C̄H
x |i−1,j,k E

q
z |i−1,j,k

− C̄E
x |i,j,k C̄H

z |i−1,j,k E
q
x |i−1,j,k+1 + C̄E

x |i,j,k C̄H
z |i−1,j,k E

q
x |i−1,j,k

+ C̄E
y |i,j,k C̄H

z |i,j,k Eq
y |i,j,k+1 − C̄E

y |i,j,k C̄H
z |i,j,k Eq

y |i,j,k

− C̄E
y |i,j,k C̄H

y |i,j,k Eq
z |i,j+1,k − C̄E

y |i,j,k C̄H
z |i,j−1,k E

q
y |i,j−1,k+1

+ C̄E
y |i,j,k C̄H

z |i,j−1,k E
q
y |i,j−1,k − C̄E

y |i,j,k C̄H
y |i,j−1,k E

q
z |i,j−1,k

= − 4

µi,j,kεi,j,ks2

q−1∑
n=0,q>1

En
z |i,j,k − 4

q−1∑
n=0,q>1

n∑
m=0

Em
z |i,j,k

− 2

sεi,j,k

(
Jq
z |i,j,k + 2

q−1∑
n=0,q>1

Jn
z |i,j,k

)
.

(194)

A.3 Absorbing Boundary Conditions

First, considering the first-order absorbing boundary condition (ABC) is used to trun-

cate the simulation space. For electric field in x-direction, the ABC at boundary face

z = 0 in time domain is given by

(
∂

∂z
− 1

v0

∂

∂t

)
Ex = 0 (195)

where v0 is the velocity of light in vacuum. Discretizing (195) in Laguerre domain

yields
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(
1

∆z1
+

s

4v0

)
Eq

x |i,j,1 +

(
− 1

∆y1
+

s

4v0

)
Eq

x |i,j,2

= − s

2v0

q−1∑
n=0,q>0

(En
x |i,j,2 + En

x |i,j,1 ).
(196)

At the edge boundaries, for instance y = 0 and z = 0, coordinate rotation is

performed to discretize (195) to ensure computational stability and accuracy which

results in

 1√
(∆y1)

2 + (∆z1)
2
+

s

4v0

Eq
x |i,1,1

+

− 1√
(∆y1)

2 + (∆z1)
2
+

s

4v0

Eq
x |i,2,2

= − s

2v0

q−1∑
n=0,q>0

(En
x |i,2,2 + En

x |i,1,1 )

(197)

The first-order ABC at other arbitrary boundary faces and edges can be derived in a

similar manner.

Considering the second-order absorbing boundary condition (ABC) is used to

truncate the simulation space. For electric field in x-direction, the ABC at boundary

face z = 0 in time domain is given by

[
1

v0

∂2

∂z∂t
− 1

v20

∂2

∂t2
+

1

2

(
∂2

∂x2
+

∂2

∂y2

)]
Ex = 0. (198)

Discretizing (198) in Laguerre domain yields
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(
−s

2v0∆z1
− s2

4v20
− 1

2∆xi−1∆xi

− 1

2∆yj−1∆yj

)
Eq

x |i,j,1

+

(
s

2v0∆z1
− s2

4v20
− 1

2∆xi−1∆xi

− 1

2∆yj−1∆yj

)
Eq

x |i,j,2

+
Eq

x |i−1,j,1 + Eq
x |i−1,j,2

2∆xi−1 (∆xi−1 +∆xi)
+

Eq
x |i+1,j,1 + Eq

x |i+1,j,2

2∆xi (∆xi−1 +∆xi)

+
Eq

x |i,j−1,1 + Eq
x |i,j−1,2

2∆yj−1 (∆yj−1 +∆yj)
+

Eq
x |i,j+1,1 + Eq

x |i,j+1,2

2∆yj (∆yj−1 +∆yj)

=
−s

v0∆z1

q−1∑
n=0,q>1

(En
x |i,j,2 − En

x |i,j,1 )

+
s2

2v0

q−1∑
n=0,q>1

n∑
m=0

(
Em

y |i,j,1 + Em
y |i,j,2

)

(199)

The second-order ABC at other arbitrary boundary faces and edges can be derived

in a similar manner.
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APPENDIX B

FORMULATIONS FOR SKIN-EFFECT MODELING

After implementing the rational fitting, the time-domain expression for surface ad-

mittance can be written as

Y (t) =
m∑
p=1

Cpe
−Apt (200)

By definition, the corresponding Laguerre coefficient for the time-domain admittance

term is

Y q =

∫ ∞

0

Y (t)φ(t̄)dt. (201)

Denoting

Y q =
m∑
p=1

CpG
q
p =

m∑
p=1

Cp

∫ ∞

0

e−Aptφq(t̄)dt (202)

and performing integral by part results in

Gq
p = − 1

Ap

φq(t̄)e
−Apt |∞0

−
∫ ∞

0

s

2Ap

[
φq(t̄) + 2

n−1∑
n=0,q>0

φn(t̄)

]
e−Aptdt.

(203)

By inspection, we have
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Gq
p =

1

Ap

− s

2Ap

Gq
p −

s

Ap

q−1∑
n=0,q>0

Gn
p

=
2

2Ap + s

(
2Ap − s

2Ap + s

)q
(204)

Therefore, the final Laguerre basis coefficient expression can be written as

Y q =
m∑
p=1

Cp
2

2Ap + s

(
2Ap − s

2Ap + s

)q

(205)
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APPENDIX C

FORMULATIONS FOR THE NON-CONFORMAL

DOMAIN DECOMPOSITION METHOD

C.1 Derivation of Equivalency Between the TD-FEM and
the Laguerre-FDTD Method

Assuming the computational domain is descretized using hexahedral unit cell as shown

in Figure 98, vector basis functions associated with the unit cell can be constructed as

E =
n∑

i=1

NiEi (206)

where n is the total edge number, Ei is the unknown expansion coefficient, Ni is the

vector basis function. In the hexahedral element, the total edge number is 12. The

field component in the element can be written as

Ex =
4∑

i=1

NxiExi (207)

Ey =
4∑

i=1

NyiEyi (208)

Ez =
4∑

i=1

NziEzi (209)

where
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Nx1 =
1

∆y∆z

(
yc +

∆y

2
− y

)(
zc +

∆z

2
− z

)
(210)

Nx2 =
1

∆y∆z

(
−yc +

∆y

2
+ y

)(
zc +

∆z

2
− z

)
(211)

Nx3 =
1

∆y∆z

(
yc +

∆y

2
− y

)(
−zc +

∆z

2
+ z

)
(212)

Nx4 =
1

∆y∆z

(
−yc +

∆y

2
+ y

)(
−zc +

∆z

2
+ z

)
(213)

Ny1 =
1

∆z∆x

(
zc +

∆z

2
− z

)(
xc +

∆x

2
− x

)
(214)

Ny2 =
1

∆z∆x

(
−zc +

∆z

2
+ z

)(
xc +

∆x

2
− x

)
(215)

Ny3 =
1

∆z∆x

(
zc +

∆z

2
− z

)(
−xc +

∆x

2
+ x

)
(216)

Ny4 =
1

∆z∆x

(
−zc +

∆z

2
+ z

)(
−xc +

∆x

2
+ x

)
(217)

Nz1 =
1

∆x∆y

(
xc +

∆x

2
− x

)(
yc +

∆y

2
− y

)
(218)

Nz2 =
1

∆x∆y

(
−xc +

∆x

2
+ x

)(
yc +

∆y

2
− y

)
(219)

Nz3 =
1

∆x∆y

(
xc +

∆x

2
− x

)(
−yc +

∆y

2
+ y

)
(220)

Nz4 =
1

∆x∆y

(
−xc +

∆x

2
+ x

)(
−yc +

∆y

2
+ y

)
(221)

in which ∆x, ∆y and ∆z are the length of the edge in x-, y- and z-direction, xc, yc

and zc are the coordinates of the central point inside the element.

Assuming an isotropic, non-dispersive, lossy media, the vector wave equation in

time domain can be expressed as

∇×∇× E+ µε
∂2E

∂t2
+ µσ

∂E

∂t
= −µ

∂J

∂t
. (222)
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Figure 98: 3-D hexahedral unit cell.

Multiply (222) by an appropriate testing function N, and integrate over volume re-

sults in

∫
Ω

[
(∇×N) · (∇× E) + µεN · ∂

2E

∂t2
+ µσN · ∂E

∂t

]
dV = −

∫
Ω

µN · ∂J
∂t

dV . (223)

Expanding the electric field using the aforementioned vector basis function by insert-

ing (206) into (223), we have

T
∂2E

∂t2
+R

∂E

∂t
+ SE = f (224)

where

177



Tij =

∫
Ω

µεNi ·NjdV (225)

Rij =

∫
Ω

µσNi ·NjdV (226)

Sij =

∫
Ω

(∇×Ni) · (∇×Nj) dV (227)

fi = −
∫
Ω

µNi ·
∂J

∂t
dV . (228)

Using the trapezoidal integration, (225) to (227) can be rewritten into

T = µε
∆xi∆yj∆zk

4


I

I

I

 (229)

R = µσ
∆xi∆yj∆zk

4


I

I

I

 (230)

S =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (231)

in which Sξξ =
∆ξ
2

[
∆η
∆ζ

K1 +
∆ζ
∆η

K2

]
, Sξη = −∆ζ

2
K3, and

K1 =



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


(232)
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K2 =



1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1


(233)

K3 =



1 0 −1 0

−1 0 1 0

0 1 0 1

0 −1 0 −1


(234)

Applying the temporal testing procedure in Laguerre domain, (224) becomes

Ts2

(
1

4
Eq +

q−1∑
n=0,q>1

m∑
j=0

Em

)
+Rs

(
1

2
Eq +

q−1∑
n=0,q>1

En

)
+ SEq = f q (235)

where

f q
i = −

∫
Ω

µsNi ·

(
1

2
Jq +

q−1∑
n=0,q>1

Jn

)
dV . (236)

To derive the coefficient equation associated with the electric field component

Ex |i,j,k , (235) needs to be discretized within four adjacent elements, namely element

cell (i, j, k), (i, j − 1, k), (i, j, k − 1), and (i, j − 1, k − 1). By adding the equations

associated with electric field component Ex |i,j,k in the four cells, the coefficient equa-

tion can be derived as
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y |i,j,k C̄H
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− C̄E
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q
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(237)
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