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SUMMARY 

 

Over the past decade there has been a great deal of interest in graphene, a 2-

dimensional allotrope of carbon with exceptional mechanical and electrical properties.  

Its outstanding mobility, minimal size, and mechanical stability make it an appealing 

material for use in next generation electronic devices.  Epitaxial graphene growth on 

silicon carbide is a reliable, scalable method for the production of high quality graphene 

films.  Recent work has shown that the SiC can be patterned prior to graphitization, in 

order to selectively grow graphene nanostructures.  Graphene nanoribbons grown using 

this technique do not suffer from the rough edges caused by lithographic patterning, and 

recent measurements have revealed extraordinary transport properties.  In this thesis the 

magnetic properties of these nanoribbons are investigated through spin polarized current 

injection.  The sensitivity of these nanoribbons to spin polarized current is interesting 

from a fundamental physics standpoint, and may find applications in future spintronic 

devices. 
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CHAPTER 1  

INTRODUCTION 

1.1 Graphene Properties and Bandstructure 

 Graphene is a two dimensional allotrope of carbon composed of a single atomic 

layer of carbon atoms bonded together in a honeycomb lattice.  Its unit cell is made up of 

two carbon atoms differentiated as A and B sublattice atoms as depicted in figure 1.1.  

The in-plane bonding between carbon atoms is an extremely strong sp
2
 covalent bond 

giving graphene exceptional mechanical strength.  The 4th valence electron of each 

carbon atom is in a delocalized π-orbital, free to move about the graphene sheet, and is 

responsible for its exceptional electronic properties. 

 

Figure 1.1: The primitive unit cell and lattice vectors in real space and the Brillouin zone 

of graphene in k-space, from ref [1] 

 

 The band-structure of graphene was first described with a tight binding model by 

Wallace in 1947 [2].  The dispersion relation resulting from the nearest neighbor tight 

binding approximation is: 
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In this equation t is nearest neighbor hopping energy, approximately 2.8eV in graphene, 

  is the in plane lattice constant, 2.46Å, and the ± accounts for the π and π* bands [3]. 

The valence and conduction bands meet at the six corners of the hexagonal Brillouin 

zone, labeled K or K' points, as illustrated in figure 1.2. 

 
Figure 1.2: (a) Nearest neighbor tight binding approximation of the graphene band 

structure according to equation 1.1 with t=2.8eV. (b) 2D view of the band structure 

depicting the Brillouin zone and the K, K', and Γ points. 
 
 At the K and K' points, near charge neutrality, the energy bands take on a nearly 

conical structure with a linear dispersion relation that can be approximated as  

                     
  (1.2) 

where             is the Fermi velocity and   is the momentum measured relative 

to K (or K'), i.e.       and       [3].  Because of this unique linear dispersion 

relation, the charge carriers in graphene are often referred to as massless Dirac fermions 

[4] and compared to photons and neutrinos, which travel at a constant speed, c (the speed 

of light), and have no mass.  

 

                
   

 
       

   

 
     

     

 
  (1.1) 

(b) (a) 
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 The 2-component electron wave function,     , obeys the 2D Dirac equation near 

the K and K' points [3]: 

                   (1.3) 

In momentum space, the wave function around the K point has the form: 

 
        

 

  
  

      

       
  (1.4) 

for         , and around the K' point has the form: 

 
         

 

  
       

        
  (1.5) 

for       
   .  Here   and    are Pauli matrices:          ,  

          .     

is the angle in momentum space defined as                  .  The ± signs 

correspond to the eigenenergies        and to the π and π* (bonding and anti-

bonding) bands.  Because of the mathematical similarity to spin, the band designation is 

often referred to as pseudospin.  The direction of this pseudospin can be related to 

momentum using the helicity operator:  

 
   

 

 
  

 

   
 (1.6) 

Based on this definition of    it is apparent that the states       and        are 

eigenstates of   : 

          
 

 
     ,              

 

 
       (1.7) 

This implies that   has two eigenstate values with one parallel to momentum   and one 

anti-parallel to  .  Thus, the pseudospin gives the states chirality near the Dirac point as 

shown in figure 1.3. 
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Figure 1.3: A 2D slice of the graphene band structure between the K' and K points 

through the Γ point.   The pseudospin of the particles is denoted by the red and blue 
coloring and corresponding arrows.  Pseudospin conservation inhibits intra-valley 
scattering (the small arrow at the top right) and the large change in momentum 
limits inter-valley scattering (the large arrow across the top). [5] 
 

 Pseudospin is not just an abstract mathematical construct, it has significant 

implications for transport.  For a particle to reverse its own momentum through intra-

valley scattering it would also have to reverse its pseudospin, but this is generally 

disallowed due to pseudospin conservation [6].   While this prevents scattering due to 

long-range disorder, short range potentials can flip the psuedospin and lead to intra-valley 

scattering  [6,7].  The other option for a charge carrier to reverse its momentum would be 

to scatter from one valley to another, which would allow the carrier to conserve its 

pseudospin.  Although pseudospin is conserved in inter-valley scattering, the large 

change in momentum required generally prevents such scattering.  However, atomically 

sharp potentials/defects and ribbon edges can result in inter-valley scattering [8]. 
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 The high mobility of graphene can be diminished by dephasing of carriers caused 

by electron-phonon interactions or electron-electron interactions.  Electron-phonon 

scattering in graphene has been found to be weak [9].  However, the electron-electron 

interaction can become significant as the carrier concentration increases [10,11]. 

 Graphene's relativistic dispersion relation and the suppression of scattering due to 

pseudospin conservation[6] results in very high mobility [12,13].  Its high mobility 

combined with its exceptional mechanical properties makes it a very appealing material 

for future electronic devices.  In addition, the relativistic nature of the particles makes it a 

very interesting platform from a pure physics perspective. 

1.2 Graphene Production Methods 

 Although theoretical calculations of the graphene bandstructure were published in 

1947 [2], it was not until 2002 that its exceptional electronic properties were 

demonstrated experimentally, with seminal papers in 2004 at the Georgia Institute of 

Technology [14] and independently in 2005 by groups at the University of Manchester 

[4] and University of Columbia[15] following work on ultra thin graphite [16,17].  These 

initial experiments sparked great interest in graphene as a potential material for next 

generation electronics.  Interestingly, the three groups fabricated their graphene samples 

through completely different methods.  The Manchester and Colombia groups peeled 

apart layers of graphite, in a method known as mechanical exfoliation; while the de Heer 

group formed graphene films on the surface of silicon carbide through a high temperature 

epitaxial growth technique demonstrated previously by van Bommel, Forbeaux, and 

others [18,19].  In addition to these two methods, graphene can also be formed through 

chemical vapor deposition (CVD)[20] and by reduction of graphene oxide [21,22]. 
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 Mechanical exfoliation is an appealing method for the production of graphene due 

to its simplicity.  The method includes any number of techniques used to peel apart 

graphite into thin films.  Graphite can be rubbed against a hard surface [23], or Scotch 

tape can be used to repeatedly peel apart graphite [16,24].  The resulting graphitic thin 

films can then be transferred to a substrate for identification and measurement [23].  

Typically, a silicon wafer with a ~300nm thick silicon oxide layer is used as it allows for 

easy optical identification of single layer graphene flakes [23,25].   While this method 

can be used to provide samples for research, it is not scalable, which limits its usefulness 

for applications in industry [26].  Moreover, the method is inherently "dirty" from a 

surface science perspective and the deposited films are typically randomly strained and 

contaminated with charge puddles [27]. 

 
Figure 1.4: Optical image of exfoliated graphene on a silicon wafer with a 290nm thick 

oxide layer.  The inset shows an enlarged view of the monoloayer graphene. From ref 

[28]. 

 

 CVD is another method commonly used for the production of graphene films 

[20].  CVD growth of graphene is typically accomplished through thermal decomposition 
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of hydrocarbons on transition metal substrates.  CVD graphene growth has been 

demonstrated on Cu [29], Ni [30], Ru [31], and Ir [32].  One advantage of CVD growth is 

that very large graphene sheets can be formed.  Films up to 30 inches wide have been 

fabricated using CVD [33].  Unfortunately, because CVD growth is performed on 

metallic substrates, the graphene must be transferred to another substrate for transport 

measurements or use in electronic devices.  In addition, CVD graphene has typically 

suffered from small domain sizes that reduce mobility [34].  However, there has been 

considerable research into increasing the size of CVD graphene domains, and significant 

improvements have been made [35,36].  

 Another method for graphene production is the reduction of graphene oxide.  In 

this technique graphite is oxidized, which results in reduced coupling between layers and 

allows the oxidized graphene layers to separate and break up into thin flakes [21].  

Sonication of the graphite oxide is often used to further separate the graphite oxide layers 

[21].  After separation the resulting graphene oxide layers can be transformed into 

graphene through chemical reduction [21] or thermal annealing [37].  This method can be 

used to form large quantities of graphene, but the process introduces defects that lower 

the mobility of the resulting graphene films [21]. 
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Figure 1.5: Epitaxial graphene on the SiC C-face.  The diagonal steps are SiC surface 

steps, and the white lines are pleats in the graphene sheets that form during cool down 

due to the different thermal expansion coefficients of graphene and SiC. 

 

 The method used to produce graphene in this work is epitaxial growth on silicon 

carbide.  In this growth technique, SiC crystals are heated until thermal decomposition 

begins on the surface.  Si sublimation leaves behind excess carbon that forms graphene 

sheets.  The formation of graphitic thin films through thermal decomposition of SiC was 

reported by van Bommel et al. in 1975 [18].  In 2004 the de Heer group demonstrated 

that this technique could be used to form high mobility graphene sheets [14].  Epitaxial 

growth is a very appealing production method, as it forms very high quality graphene on 

a crystalline substrate.  It is also scalable on commercially available substrates, providing 

a path toward wafer scale production of graphene for use in electronics.  In addition, SiC 

pre-patterning allows for growth of graphene nano-structures.  The epitaxial growth 

technique is discussed in depth in chapter 3. 
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1.3 Thesis Outline 

 Chapter 2 gives an overview of the tools and techniques used to characterize 

epitaxial graphene as well as the methods used to create the graphene devices used for 

transport measurements.  In chapter 3, the details of epitaxial growth are explored.  The 

confinement controlled sublimation (CCS) technique is explained in detail and the use of 

SiC pre-patterning for the creation of graphene nanostructures is discussed.  Chapter 4 

provides relevant background information on spin dependent transport and discusses 

some of mechanisms that can lead to magnetism in graphene.  Chapter 5 presents the 

results of transport measurements on epitaxial graphene nanoribbons.  It will focus 

specifically on measurements of spin dependent tunneling into epitaxial graphene 

nanoribbons.  The results of these measurements were quite complicated and varied from 

sample to sample.  Thus, chapter 5 presents each sample individually to give a clear 

picture of the graphene growth and resulting transport observed in each.  Hopefully, the 

careful documentation of the transport measurements presented here will lead to eventual 

understanding of the underlying physics.  The last chapter will highlight the key 

observations made and suggest future experiments that can be done to gain further insight 

into the nature of the transport in these graphene nanoribbons (GNR). 
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CHAPTER 2  

EXPERIMENTAL METHODS 

2.1 Scanning Probe Microscopy 

2.1.1 Atomic Force Microscopy 

 Atomic force microscopy (AFM) is a powerful scanning probe microscopy (SPM) 

technique widely used for surface topography measurements [38].  AFM utilizes a 

cantilever with a sharpened tip that scans the sample surface line by line.  The relative 

position of the sample and the scanning probe is controlled by a set of piezoelectric 

crystals as shown in figure 2.1.  In the Park XE-70 used in this thesis, the Z scanner is 

completely separated from the X-Y scanner allowing for more precise vertical control of 

the probe [39].  As the cantilever scans across the sample surface, forces acting on the tip 

cause a deflection of the cantilever.  This deflection is measured by reflecting a laser 

beam off of the cantilever's top surface to a position-sensitive photodiode (PSPD).  The 

PSPD sensitively detects changes in the laser's position allowing the system to measure 

the forces acting on the tip and thus gain information about surface topography and 

roughness as shown in figure 2.1.  This technique allows for extremely precise vertical 

resolution on the order of 1Å.  The lateral resolution is dependent on the tip sharpness.  A 

nanoscopically sharp tip (such as the SSS-NCHR) can yield horizontal resolution on the 

order of a few nanometers; however, many tips, especially those coated with a 

conducting metal layer, will be unable to resolve such fine details.  This is especially 

important to consider when measuring steep sidewalls as a worn tip will make step edges 

appear less steep. 
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 A wide variety of tips were used in this work depending on the application.  The 

most commonly used tip for this work is the Point Probe Plus PPP-NCHR tip with a 

typical radius of curvature below 7nm.  However, when finer horizontal resolution is 

required, the supersharp SSS-NCHR tip with a radius of curvature below 2nm can be 

used.  For electrical measurements, tips coated with a 25nm thick double layer chromium 

and platinum iridium5 (PPP-EFM or PPP-ContSCPt tips) are used.  The coating results in 

a radius of curvature of approximately 30nm.  It is important to note that over time these 

tips can wear down, further reducing lateral resolution.  Three different AFMs were used 

in this work: the Park Systems Autoprobe CP, the Veeco diCP-II, and the Park Systems 

XE-70.  The XE-70 is the newest and most advanced of the three and most of the images 

presented in this thesis were taken with it. 

 
Figure 2.1: (a) Schematic showing the basic components used in atomic force 

microscopy.  The 4-segment photodiode can detect both vertical displacement (b) and 

lateral displacement (c).  Public domain image obtained from the Wikimedia Commons 

 

(a) 
(b) 

(c) 
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 Atomic force microscopy can be divided into two major categories: contact or 

non-contact mode.  In contact mode, the tip sample interaction is governed by short-range 

interatomic repulsive forces.  The force between the tip and sample is typically very 

small, on the order of 1-10nN; however, the spring constant of the cantilever is usually 

less than 1N/m letting it sensitively respond to these minute forces [39].  As the tip 

approaches the sample, the repulsive electrostatic force causes the cantilever to bend.  

The vertical deflection of the cantilever, detected using the laser and PSPD (figure 2.1b), 

is proportional to the force between the tip and the sample.  Thus, along with knowledge 

of the cantilever's spring constant, this deflection can be used to measure the force 

between the tip and the sample.  As the tip scans across the sample surface, a feedback 

loop maintains a constant force between the tip and sample by moving the sample 

vertically and the surface topography is tracked [40]. 

 In non-contact mode, the cantilever is vibrated perpendicular to the sample plane, 

at a frequency just above the cantilever's resonant frequency.  As the tip approaches the 

sample surface, it will experience small attractive van der Waals forces due to the dipole-

dipole interaction between the tip and the sample.  This attractive force will cause a 

decrease in the effective spring constant and a corresponding decrease in the resonant 

frequency.  This shift in resonant frequency will result in the fixed oscillation frequency 

being further from resonance causing a decrease in the oscillation amplitude as shown in 

figure 2.2 [39].  A feedback loop moves the sample up and down using the Z piezo in 

order to maintain a constant oscillation amplitude and hence a constant tip-sample 

separation distance.  In this way, the surface topography can be measured with minimal 
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force applied to the sample surface, which has the advantages of reducing tip wear and 

preventing any damage to the sample surface. 

 
Figure 2.2: (a) Relationship between force and separation distance as it pertains to 

different AFM operating modes [39]. (b) Shift in resonant frequency due to van der 

Waals forces and the corresponding change in oscillation amplitude [39]. 

2.1.2 Current AFM 

 Current AFM (C-AFM) is an advanced contact mode technique used to measure 

the electrical properties of the sample surface.  For a C-AFM measurement, a conductive 

tip is used to scan the surface while a constant voltage is applied between the tip and the 

sample.  The current flowing from the tip to the sample is measured during the scan 

allowing one to map the conductivity on the surface at the same time as the topography.  

When working with graphene grown on insulating silicon carbide, it is necessary to 

ground the graphene in order to complete the circuit.  Hence, this technique is typically 

only applied to samples that have had electrical contacts patterned on them that can be 

used to ground the sample. 

2.1.3 Electrostatic Force Microscopy 

 Electrostatic Force Microscopy (EFM) is a technique used to map the electric 

properties of the sample surface in addition to measuring surface topography.  During an 

(a) (b) 
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EFM measurement, the electrostatic force between the tip and the sample surface is 

measured using a biased conductive AFM tip.  EFM can reveal information about the 

surface potential and charge distribution.  During an EFM measurement, the tip response 

is influenced by electrostatic forces as well as the normal van der Waal forces used for 

topography measurements.  The influence of these two forces must be distinguished from 

one another in order to properly interpret the data. One method to accomplish this is to 

take advantage of the differing length dependence of the van der Waals forces, which are 

proportional to 1/r
6
, and the electrostatic forces, which are proportional to 1/r

2
.  In this 

basic method, known as standard EFM, each line of the sample is scanned twice.  The 

first scan (to measure the topography) is taken close to the sample surface where the van 

der Waals forces dominate.  The second scan is done at a larger separation distance where 

the electrostatic forces dominate.  A constant distance is maintained between the sample 

and the tip using the topography data during this scan to minimize the effects of sample 

topography on the electrostatic data.  This method has the obvious disadvantage of 

doubling the scan time. 

 One alternative EFM method, known as enhanced EFM, uses a lock-in amplifier 

to apply an AC bias to the tip during a non-contact mode scan.  The electrostatic force 

between the sample and the tip during such a measurement is given by equation 2.1 [41].   

 
                    

  
 

 
   

  

                            

 
 

 
         

          

(2.1) 

C is the capacitance between the tip and sample, d is the separation distance, VDC is the 

DC bias applied to the tip, VAC is the AC bias, VS is the surface potential of the sample, ω 
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is the lock-in frequency, and t is time.  The force can be divided into three parts: a DC 

component that arises from the van der Waals interaction between the tip and the sample, 

an AC component with frequency ω that reflects the sample's electrostatic properties, and 

an AC component with frequency 2ω that reflects the capacitive properties of the sample 

[39].  The separation distance is kept constant by the normal non-contact mode feedback 

loop and the lock-in amplifier is used to isolate and measure the ω signal.  This allows 

simultaneous measurement of the sample's topography and electrostatic properties.  

However, one must be careful when performing these measurements and interpreting the 

results.  If the tip does not respond quickly enough to a change in topography, the change 

in separation distance will be picked up in the EFM signal showing a false change in 

surface potential.  When done correctly, this technique is useful for distinguishing 

graphene from silicon carbide due to the different work functions of the materials.  This 

is the primary EFM mode used in this work. 

2.1.4 Lateral Force Microscopy 

 Lateral force microscopy (LFM) is a contact mode SPM technique that measures 

the frictional force of the tip against the sample as it scans across the surface.  It does so 

by tracking the lateral displacement of the cantilever in addition to the vertical 

displacement used for topography as shown in figure 2.1 (c).  The direction of the 

displacement due to frictional forces depends on the scan direction so the scan direction 

must be known for proper interpretation of the results.  Typically, the sample is scanned 

in both directions and the difference in displacement between the two scans is analyzed to 

reveal information about the frictional force across the surface.  Surface steps can also 

cause lateral deflection of the cantilever, so knowledge of the topography is necessary to 
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distinguish topological effects from the frictional effects.  Graphene has been observed to 

have a lower coefficient of friction than that of SiC, making LFM a useful tool for 

determining graphene coverage on flat SiC surfaces. 

2.2 Ellipsometry 

 Ellipsometry is a versatile, non-destructive thin-film characterization technique 

that can be used to measure the thickness or optical properties of a variety of materials.  

Ellipsometry works by analyzing the change in polarization of light reflected off of the 

sample surface.  The incident light is typically linearly polarized and can be divided into 

the s-component, which oscillates parallel to the plane of the sample, and the p-

component, which oscillates parallel to the plane of incidence (see figure 2.3).  The 

reflected light is measured and the change in polarization, ρ, is expressed in terms of Ψ 

and Δ, which relate to the change in amplitude and phase shift as shown in equation 2.2 

[42].  Rs and Rp represent the intensities of the reflected s and p components.  This 

change is dependent upon both the film thickness and the optical constants of the material 

and substrate being measured.  In order to obtain accurate thickness measurements a 

suitable optical model of the material being measured is required.  The optical constants 

used for graphene were obtained from Jellison's measurements on highly ordered 

pyrolytic graphite [43].  The silicon carbide was measured directly and fit using a Cauchy 

model to determine the refractive index. 

 
  

  

  
           (2.2) 
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Figure 2.3: Linearly polarized light is reflected off of the sample surface resulting in 

elliptically polarized light measured by the ellipsometer and characterized in terms of the 

azimuth angle, Ψ, and relative phase difference, Δ.  Image reproduced from ref [44] 

 

 In this work, a Horiba Jobin Yvon Auto SE was used to measure the thickness and 

uniformity of graphene grown on the silicon carbide surface. The Auto SE has a spectral 

range of 440 to 1000nm and works with a fixed angle of incidence.  The minimum spot 

size for this system is 25µm x 60µm, allowing for large-scale mappings but preventing its 

use for nanometer scale uniformity measurements. 

2.3 Raman Spectroscopy 

 Any molecular system will have characteristic vibrational and rotational modes 

that are dependent on the bond strength, atomic mass, and structure of the system.  

Raman spectroscopy is a spectroscopic technique used to gain vibrational information 

about the system [45].  Briefly, in this technique, a sample is exposed to monochromatic 

light that can undergo elastic Raleigh scattering or inelastic Raman scattering.  The 

elastically scattered light at the incident wavelength is filtered out so that the remaining 

radiation that has undergone inelastic scattering can be analyzed.  The change in energy 
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of the inelastically scattered light measured with Raman spectroscopy corresponds to the 

energy of one of the system's phonon modes.  The light can either excite the molecule 

into a higher energy state, resulting in a lower energy photon exiting the system through a 

process known as Stokes scattering; or the molecule can relax into a lower energy state 

than it was in prior to the absorption, releasing a higher energy photon through a process 

known as anti-Stokes scattering.  In this work, a Horiba Jobin Yvon Labram HR-800 

Raman spectrometer with a 532nm excitation laser and ~1µm
2
 beam size was used to 

characterize graphene films grown on silicon carbide. 

 In graphene, the Stokes phonon energy shift results in three major peaks in the 

Raman spectrum [46]: the G peak at 1580cm
-1

, the D peak at 1350cm
-1

, and the 2D peak 

at 2690cm
-1

 when measured with a 532nm excitation laser [47].  The G peak results from 

a high frequency in plane vibrational mode corresponding to the E2g phonon and can be 

observed in pristine graphene [45].  The D peak results from the A1g breathing mode of 6 

atom rings and can only manifest near the edges or defects in the graphene lattice [45,48].  

The 2D peak is an overtone of the D-peak resulting from two phonons with opposite 

wave vectors [45].  Because the opposite wave vectors of these two phonons satisfy 

conservation of momentum, the 2D-peak can be observed in pristine graphene even 

though the D-peak will not be present [45]. 

 
Figure 2.4: (a) The E2g phonon mode responsible for the G peak. (b) The 6-atom A1g 

breathing mode responsible for the D and 2D peaks.  Reproduced from ref [45] 

 

(a) (b) 
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 The size and shape of these three peaks can reveal a great deal of information 

about the graphene being measured, see for example Ferrari & Basko [45].  Since the A1g 

breathing mode requires lattice defects or grain boundaries to manifest, the intensity of 

the D peak relative to that of the G peak, which is unaffected as long as the sp
2
 carbon 

bonding is still intact, can serve as a good indicator of the graphene quality [48].  

Measurements away from the edges should yield an intensity ratio (ID/IG) close to zero 

for high quality graphene. 

 The shape, position, and intensity of the G and 2D peak can also be used as 

indicators of the doping of a graphene sheet [49].  Both electron and hole doping shift the 

G-peak to higher energies.  However, the 2D peak shifts toward higher energies for hole 

doping but remains relatively constant for electron doping up to a concentration of 

approximately 3.2x10
13

cm
-2

, at which point the peak position begins shifting down in 

energy [49] as shown in figure 2.5.  In addition to a change in peak position, the peak 

shape can also be affected by doping.  The G peak becomes more narrow and increases in 

intensity with increasing carrier concentration for electrons or holes, while the 2D peak 

becomes broader and less intense for increasing carrier concentration [49].  Hence, the 

relative intensity and width of the 2D peak compared to that of the G peak can be used as 

another indicator of the doping level.  The intensity ratio, I(2D)/I(G), will be the largest 

for neutral graphene and decrease with an increase in doping [49]. 
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Figure 2.5: The position of the G peak (left) and 2D peak (right) as a function of carrier 

concentration.  The data was taken on graphene produced by micromechanical cleavage 

using a 514.5nm excitation laser.  Reproduced from ref [49] 

 

 When measuring graphene on silicon carbide it is important to differentiate the 

graphene spectrum from the silicon carbide spectrum.  Silicon carbide has a number of 

Raman active peaks in the same energy range as graphene as shown in figure 2.6.  To 

extract the pure graphene spectrum one must subtract the SiC background spectrum.  To 

obtain a good SiC background spectrum one can adjust the focal depth of the Raman 

spectrometer to measure the silicon carbide directly underneath the graphene being 

measured.  If this measurement is not possible, another SiC Raman spectrum can be used 

as a reference.  The height of the pure SiC Raman spectrum is matched to that of the 

combined graphene-silicon carbide spectrum in a region where the graphene does not 

have a peak, such as the shoulder of the SiC peak near 1900cm
-1

.  After matching the 

height of the spectra, the background subtraction can be performed.   
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Figure 2.6: The graphene spectrum (red) and silicon carbide spectrum (black) overlap 

requiring decomposition of the combined spectrum into its constituent parts.  Figure 

provided by Jan Kunc. 

 

 Basic subtraction has limitations and can lead to poorly defined spectra with 

spectral regions of negative intensity [50].  To better separate the two spectra one can use 

the non-negative matrix factorization technique, which provides well defined non-

negative decomposed spectra [50].  In this technique, multiple Raman spectra are taken at 

different focal depths.  The relative intensity of the graphene and SiC signals vary as a 

function of focal depth allowing one to decompose the combined spectra into basis 

functions representing the individual graphene and SiC spectra [50].  This provides a 

much cleaner graphene spectrum, but requires multiple measurements, which increases 

data collection time. 

2.4 Device Fabrication 

2.4.1 Electron Beam Lithography 

 Electron beam (e-beam) lithography is a fabrication technique used to create 

nanoscale patterns.  The process utilizes an electron-sensitive material (resist) that 
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changes its solubility properties based on the energy deposited by an electron beam [51].  

First, the entire surface of the substrate is covered with an e-beam resist through spin 

coating.  A pattern is then defined by selectively exposing the resist to a concentrated 

electron beam.  After exposure, a developer is used to dissolve the exposed or unexposed 

portions of the resist (depending on the type of e-beam resist used) creating a custom 

nanoscale mask.  Another material can then be selectively deposited onto the sample 

through the mask or the substrate can be etched in the exposed areas (figure 2.7).  

Afterward, the remaining resist is removed with a suitable solvent. 

 
Figure 2.7: Electron beam lithography process.  First e-beam resist (PMMA) is spin 

coated onto the surface of the sample (a).  The resist is selectively exposed to the electron 

beam (b) and then developed to remove the exposed resist (c).  Afterwards exposed 

surfaces can be etched (d) or a thin film can be deposited through the mask (e).  Finally a 

solvent (acetone) is used to remove any remaining resist (f) and (g). 

 

 The choice of resist is an important consideration when doing e-beam lithography.  

Resists can be divided into two main categories: positive tone resists, which dissolve in 

the region exposed to the electron beam, and negative tone resists, which dissolve in the 

unexposed region.  In this work, patterning was done primarily using a 6% solution of 

950,000 molecular weight polymethyl methacrylate dissolved in anisole (PMMA 950 

A6), a commonly used positive tone resist.  The patterns were written with a JEOL JSM-

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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5910.  This system has a maximum resolution of 3nm for imaging.  However, for 

lithography the minimum feature size obtainable with the system used is approximately 

50nm and for good metal liftoff the minimum feature size of the contacts was kept above 

200nm. 

2.4.2 Reactive Ion Etching 

 Reactive ion etching (RIE) is a type of dry etching commonly used for 

nanofabrication.  In this process, a chemically reactive plasma is generated by using an 

electromagnetic field to ionize one or more input gases.  The choice of gas is dependent 

on the material being etched.  For graphene, an oxygen plasma is used; while for etching 

of silicon carbide, gases such as sulfur hexafluoride (SF6) or carbon tetrafluoride (CF4) 

are typically used. 

 The plasma will attack any exposed surface so a mask is used to protect the 

sample surface where etching is not desired.  The choice of mask material is important as 

it can also be etched during plasma etching.  The relative rate of etching of the mask 

compared to the target material is known as the selectivity of the mask.  For deep etches a 

high selectivity mask is needed, so a metal such as nickel is deposited before etching.  

However, for most shallow etches the mask can be composed of an e-beam resist or 

photoresist like PMMA. 

2.4.3 Thin Film Deposition 

 Thin film deposition is used to provide metal contacts and tunnel barriers for 

measurement of patterned graphene structures.  In this process, a source material is 

heated until it undergoes vaporization.  The vaporized atoms will settle on exposed 

surfaces within the chamber.  A mask is used to protect the parts of the sample surface 

where deposition is not desired.  In this work, the most common mask material is PMMA 
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patterned using electron beam lithography.  After deposition, a solvent (acetone) is used 

to remove the resist and the portion of the film lying on top of it. 

 For non-magnetic contacts used in this work Pd/Au contacts are deposited using 

an e-beam evaporator.  A 20nm thick layer of Pd is deposited at 0.7 Å/s followed by 

30nm of Au deposited at 1Å/s.  For magnetic contacts a 20nm thick film of Co is 

deposited at 0.4 Å/s using an e-beam evaporator.  Prior to the Co deposition a thin 

aluminum oxide layer is deposited to allow for efficient spin injection. 

 In order to prevent contamination and oxidation the deposition takes place in a 

high vacuum chamber.  However, since the chamber is not a perfect vacuum there are 

still some water molecules present that can cause oxidation of metals as they are 

deposited.  For most metals this oxidation rate is negligible.  However, certain metals, 

such as aluminum, are more readily oxidized and can form oxides if deposition is done at 

a slow enough rate.  In this work, slow deposition of aluminum, at 0.1Å/s, is used in 

order to create aluminum oxide tunnel barriers.  The total thickness of aluminum 

deposited is 3-4 Å, resulting in a AlOx layer approximately 1nm thick after oxidation 

[52]. 
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CHAPTER 3  

EPITAXIAL GRAPHENE GROWTH ON SILICON CARBIDE 

 It has long been known that thin graphitic films can be grown on the surface of 

hexagonal silicon carbide[18].  However, it was not until 2002 that the de Heer group 

first measured the electronic properties of these epitaxial graphene films and found that 

they showed remarkable 2D electron gas properties.  These first results were reported in 

2004 [14].  While the ease of creating small graphene flakes through mechanical 

exfoliation helped spur scientific study of the material, it does not provide a means of 

scalable commercial production of graphene.  Growth of graphene films on silicon 

carbide however, does offer a possible path toward large-scale production of high-quality 

electronics grade material.  In addition, silicon carbide is a useful semiconductor creating 

a system with the potential for integrated electronics using both the graphene and the 

silicon carbide itself. 

3.1 Silicon Carbide 

 Silicon carbide is a wide band gap semiconductor commonly used in high 

temperature and high power electronic applications [53].  However, in this work it is used 

primarily as a high-quality crystalline substrate for epitaxial graphene.  The SiC crystal 

can form a number of polytypes resulting in a variety of structural and electronic 

properties [54].  Some of the more common polytypes include the 4H and 6H polytypes, 

which have hexagonal crystal structures, and the 3C polytype, which has a cubic crystal 

lattice.  The 4H and 6H hexagonal polytypes have been observed to allow for good 

epitaxial growth of graphene films and are the only polytypes used in this work. 
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 Hexagonal SiC crystals are composed of stacks of atomically thin bi-layers 

consisting of equal numbers of silicon and carbon atoms bonded together as seen in 

figure 3.1.  The layers have an interlayer bonding length of 2.5Å and an in plane lattice 

constant of 3.07Å [55].  The 4H and 6H polytypes have slightly different rotational 

stacking sequences resulting in 4 and 6 bi-layers respectively in a single unit cell.  The 

polar [0001] axis results in a carbon terminated         face and a silicon terminated 

       face.  The majority of epitaxial graphene growth is done on one of these two 

crystal facets. 

 
Figure 3.1: Side view showing 4 bi-layers of the 4H SiC crystal structure.  

 

 Silicon carbide can be doped with a number of different elements to modify its 

conductivity.  For electronic transport measurements of epitaxial graphene, semi-

insulating wafers are typically used so that transport through the substrate is not 

significant at room temperature.  In this work, 4H semi-insulating SiC from Cree with 

average resistivity between 1x10
8
Ω-cm and 1x10

10
Ω-cm was used.  The wafers used in 

this work were diced nominally on axis with miscut angles of approximately 0.1º to 0.3º.  

The face used for graphene growth undergoes chemical mechanical polishing (CMP) in 

order to remove large scratches and surface defects left behind during the wafer dicing.  
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The sample surface can be further improved by hydrogen etching, which is a high 

temperature annealing process under a flow of hydrogen gas [56].  During this process 

the surface restructures, creating atomically flat terraces arranged in a staircase structure 

as seen in figure 3.2.  The orientation, terrace width, and step height depend on the miscut 

angle as well as the time, temperature and gas flow rate used during the hydrogen etching 

process. 

 
Figure 3.2: 20x20µm

2
 image of the silicon carbide         face after hydrogen etching 

showing surface steps resulting from the slight miscut angle. 

3.2 Graphene Formation Due to SiC Surface Sublimation 

 Early characterization of few layer graphene on the surface of silicon carbide was 

performed by van Bommel in 1975 [18].  Van Bommel noted that under high temperature 

annealing (800˚C) in UHV, graphitic thin films formed on both the        and         

faces of silicon carbide due to silicon sublimation.  Using low energy electron diffraction 

measurements (LEED), he made the first observation of the              diffraction 

pattern that characterizes the commensurate graphene/SiC structure formed on the 

       face [18].       denotes the length of the supercell edge in number of SiC unit 

vectors, and R30 refers to the 30˚ rotation between the supercell edge and the SiC lattice 
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vector.  This consistent rotation between the graphene and the underlying SiC is 

important as it allows for control over the chirality of ribbons grown or patterned on the 

Si-face.  Multiple layers grown on this face all share the same rotational orientation and 

follow Bernal stacking as in graphite.  Because the electronic properties of few layer 

graphite differ from those of graphene, careful control of graphene thickness is required 

when working on the Si-face. 

 

Figure 3.3: LEED patterns of epitaxial graphene on the (a) Si-face and (b) C-face of 

silicon carbide.  Reproduced from [57] 

    

 Graphene grown on the carbon face follows a different stacking sequence with 

multiple allowed rotation directions relative to the underlying SiC.  The LEED pattern 

(fig 3.3) shows graphene diffraction spots at        as well as a diffuse ring segment 

peaked at        , indicating the preferred orientations of the graphene sheets relative 

to the underlying silicon carbide.  These angles are interesting because -2.204˚, 2.204˚, 

and 30˚ all provide a nearly commensurate              cell with the underlying 

silicon carbide.  In addition, a 32.204˚ rotation between graphene layers forms a 

commensurate          
 
      unit cell (in this case the cell edge lengths and 
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rotation are given in terms of the graphene lattice vector as denoted by the G subscript) 

[57].  So while these rotation angles may seem random at first glance, they actually allow 

for commensurate superstructures between graphene and SiC as well as between the 

graphene layers themselves.  Furthermore, because the layers formed on the C-face are 

rotated relative to their neighboring layers, they do not follow Bernal stacking and have 

been demonstrated to behave as independent graphene layers [57]. 

 
Figure 3.4: Graphene growth at a step on the (0001) face.  New graphene forms as the 

SiC step edge recedes, reproduced from [58] 

 

 On both faces graphene forms from the C atoms left behind after the desorption of 

Si during thermal decomposition of the SiC crystal [55].  The formation of the epitaxial 

graphene films is believed to nucleate at SiC step edges on the Si-face [55,58,59].  

During growth, the SiC surface recedes as the epitaxial graphene film forms as show in 

figure 3.4.  During multi-layer growth new layers form underneath the fully formed 

graphene layers, resulting in continuous graphene sheets on the surface even if there is 

variation in the number of layers across the sample.  Graphene sheets in multilayer films 

have different doping depending on their distance from the SiC substrate.  The layers 
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closest to the SiC interface will be electron doped (n~10
12

-10
13

 cm
-2

) due to the interface 

electric field, while layers further from the SiC interface are essentially undoped 

(n<10
10

cm
-2

)[60]. 

 While the growth mechanism on both faces is similar, the growth rates differ 

significantly.  Under the same growth conditions graphene formation on the C-face 

occurs much more rapidly than on the Si-face.  The difference in growth rate may be 

linked to the formation of a carbon rich buffer layer on the Si-face which is not seen on 

the C-face.  The buffer layer, sometimes referred to as zero-layer graphene, appears to be 

composed of a graphene like carbon lattice; however, interaction between its carbon 

atoms and the substrate silicon atoms modifies the layer's electronic properties.  This 

bonding results in a 300meV bandgap at EF rather than the π bands with linear dispersion 

relations as seen in freestanding graphene [61,62].  After the growth of the buffer layer, 

the first true graphene layer forms, showing the linear dispersion relation characteristic of 

isolated graphene.  However, hydrogen intercalation can be used to passivate the SiC 

surface, turning the buffer layer into a quasi-free-standing graphene layer [62]. 

3.3 Confinement Controlled Sublimation 

 Epitaxial graphene growth through thermal decomposition of SiC differs from 

typical thin film growth techniques because the atoms for the epitaxial layer are provided 

by the substrate rather than an external source.  During thin film growth through chemical 

vapor deposition (CVD), the rate of surface diffusion and the deposition flux can be 

controlled independently by adjusting the substrate temperature and adjusting the flow 

rate of the source material.  During epitaxial graphene growth, both are tied to the 

substrate temperature because it affects the Si desorption rate, and therefore affects the 
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amount of carbon available for graphene formation.  Growth in UHV conditions leads to 

rapid Si desorption at relatively low temperatures.  The high Si sublimation rate and low 

temperatures results in defective graphene [26].  Increasing temperature can increase 

surface mobility and anneal out defects, but results in extremely rapid Si sublimation 

rates.  Lower growth temperatures reduce the Si sublimation rate but also reduces surface 

mobility and results in more defects.  Increasing the Si partial pressure can limit Si 

desorption, allowing for graphene growth near equilibrium conditions at higher 

temperatures [26]. 

 One method to increase the Si partial pressure is confinement controlled 

sublimation (CCS) [26].  During CCS growth, the SiC wafer is confined in a small 

graphite crucible in high vacuum.  The crucible is supplied with a small opening to 

moderate the outgassing of Si vapor from the crucible.  This technique increases the Si 

partial pressure and results in a more controlled growth closer to equilibrium conditions 

[26].  Careful design and maintenance of the crucible in which the sublimation takes 

place is crucial for obtaining high quality epitaxial graphene growth with the CCS 

method. 

 The crucibles for epitaxial graphene growth consist of an enclosed graphite 

chamber with a small leak hole (~1mm diameter) to allow Si to escape at a controlled 

rate.  The crucible dimensions vary, but for a typical 0.3x3.5x4.5mm
3
 sample the internal 

volume of the crucible is approximately 100mm
3
.  In order to stabilize the conditions 

within the crucible, a few primer samples are baked prior to the first controlled 

graphitization run.  This process allows some silicon to buildup on the inner walls of the 

crucible.  As the crucible heats up, this silicon is released from the chamber walls 
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creating a silicon vapor pressure before surface sublimation begins on the SiC crystal 

resulting in a more uniform repeatable growth. 

 The sample chamber is heated under high vacuum conditions using an inductive 

heater.  Early furnace designs utilized a metal susceptor, such as molybdenum, to heat the 

graphite crucible.  However, in later designs the graphite crucible itself is used as the 

inductive heating element.  This new simplified design provides a number of advantages.  

By directly heating the graphite, rather than relying on heat transfer from another 

element, we can more precisely control the heating process.  The removal of the 

susceptor and surrounding insulation that was used also keeps the system cleaner and 

exposes the graphite chamber, allowing direct measurement of the chamber temperature 

with an infrared pyrometer.  A Land Amtek IQR E Y Infinity infrared pyrometer was 

used for monitoring the temperature during growth.  This pyrometer has a range of 700˚C 

to 1750˚C, making it well suited for measuring the temperature during the most important 

stages of graphitization.  Monitoring the temperature with the infrared pyrometer has 

proven to be more precise than using a thermocouple, enabling much more consistent 

growth temperatures.  The voltage response of the thermocouples drifted over time and 

they were very sensitive to oxidation and easily broken. 

 In addition to constant temperature monitoring using a thermocouple or infrared 

pyrometer, a Leeds and Northrup Co. 8622-C-8 optical pyrometer is sometimes used for 

temperature calibration.  This pyrometer uses a disappearing filament design.  The 

incoming radiation goes through a red filter and is compared to a filament that has an 

adjustable current flow.  Matching the color of the filament to that of the incoming 

radiation from the target allows determination of the target temperature based on 
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knowledge of the filament's temperature to current relation.  The 8622-C has three 

overlapping temperature ranges with a total range of 800˚C to 2800˚C 

 The typical graphene growth recipe is a 3-stage process.  During the first stage, 

the chamber is heated for 10 to 20 minutes to allow the chamber to degas.  This can be 

done at temperatures as low as 200˚C; however, in later furnace designs degassing is 

done at 800˚C due to the low temperature cutoff of the infrared pyrometer used for 

temperature measurements.  The second stage is a 1200˚C anneal to remove the native 

oxide on the SiC surface.  The final stage is the graphitization stage.  The time and 

temperature vary greatly depending on the desired thickness and the facet selected for 

growth.  C-face thin film growth is typically done at temperatures between 1450 and 

1550˚C.  Mono-layer coverage is typically obtained after approximately 10 minutes under 

such conditions [26]. 

3.4 High pressure growth 

 

 Graphene growth can be further inhibited by the introduction of an inert gas such 

as Argon or Neon.  These gases slow the rate at which silicon gas escapes the 

confinement chamber by a factor             where λ is the mean free path of a 

silicon atom in the gaseous environment and D is the length of the path through the leak 

hole [26].  The reduced Si leak rate results in a higher Si-partial pressure inside the 

crucible.  In addition, Si atoms that desorb from the surface have a finite probability of 

being reflected back to the surface off of an Argon atom [63].  The combination of these 

two factors greatly inhibits graphene formation. 
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Figure 3.5: AFM images on top of a roughly 700nm tall mesa that formed on the C-face 

after CCS growth at 2090˚C in 1atm of Ar. The white lines are pleats that form in the 

graphene as a result of the different thermal expansion coefficients of graphene and SiC. 

 

 As expected, when CCS growth was performed in 1atm of argon graphene 

formation was strongly inhibited.  In order to form graphene under these conditions 

samples were heated to over 2000˚C, which resulted in significant SiC surface 

restructuring.  Figure 3.5 shows one such sample, 21H7, which was heated to 2090˚C for 

40min in a CCS crucible with a 1mm diameter leak hole in 1atm of argon.  This lead to 

the formation of mesas tens of microns wide and nearly one micron tall on the surface.  

Many of the mesas had large regions that were atomically flat as show in figure 3.5, 

while other mesas were shown to have spiraling hexagonal step structures on the surface.  

Surprisingly, Raman mapping of these samples showed that graphene grew preferentially 

on top of the mesas, with almost no graphene present on the lower surfaces (see figure 

3.6).  To confirm that there truly was no graphene on the lower surface the Raman laser 

was re-focused on the lower surface and additional measurements were taken. 
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Figure 3.6: 121 point Raman mapping on a C-face mesa performed after CCS growth at 

2090˚C.  Left is an optical image of the mesa while the right side is a map of the 

integrated intensity of the 2D peak, which indicates the presence of graphene. 

 

 In order to measure the electronic properties of the atomically flat graphene 

formed on the mesas, Hall bars were patterned as shown in figure 3.7.  Magnetoresistance 

measurements on these Hall bars at 4K revealed mobilities up to 1,400 cm
2
/V·s at a 

charge density of 6.6x10
12

cm
-2

.  C-face graphene grown through CCS in vacuum have 

shown mobilities up to nearly 40,000cm
2
/V·s at low temperatures [60].  Thus, it appears 

that growth at elevated temperature and pressure does not necessarily improve the 

electronic properties of the graphene, despite providing a step free substrate.  Although 

samples grown under these conditions did not show improved electronic properties, the 

suppression of graphene growth and the observed surface reconstruction of SiC may still 

be of use for certain applications where atomically flat surfaces are desired. 
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Figure 3.7: Left: Magnetoresistance data from an atomically flat Hall bar patterned on 

sample 21H7, Right: the corresponding hall resistance data.  Inset: AFM image of the hall 

bar measured, the spots are believe to be PMMA residue left behind during lithography. 

 

3.5 Silicon Carbide Pre-patterning 

 While high temperature growth leads to significant surface restructuring, the 

resulting surface structures were not well controlled.  To better control SiC surface 

structures and steps, the SiC can be selectively etched using RIE prior to growth.  

Trenches and mesas etched onto the surface can strongly impact SiC step bunching.  

During graphene growth the SiC step edges migrate across the surface as the Si atoms 

sublimate, retaining the relatively uniform surface step distribution after growth.  

However, etching a large step parallel to the natural step direction blocks the flow of the 

natural steps, causing them to bunch up at the mesa edge.  This process can be used to 

create large step free regions on the SiC surface. 

 An alternative use for SiC pre-patterning is to create preferred graphene 

nucleation sites.  Steps etched into the Si-face can be used to form graphene nanoribbons 

along the step edges.  This is possible because of the difference in growth rates on 

various SiC crystal facets.  In order to make these sidewall graphene nanoribbons (GNR) 

a step is etched into the SiC (0001) face.  The (0001) face is used because of its relatively 
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slow graphitization rate.  During high temperature annealing this step edge facets to an 

angle of approximately 28˚.  Graphitization then begins preferentially along these step 

edges.  By carefully controlling the growth temperature and time, graphitization can be 

halted before the majority of the SiC (0001) face is graphitized.  However, a buffer layer 

does form during this process.  This process results in the formation of high mobility 

graphene nanoribbons with edges that terminate into the SiC substrate or into the 

insulating buffer layer.  In addition, because the orientation of graphene on the Si-face is 

constant relative to the underlying SiC crystal directions, the chirality of the ribbons can 

be controlled by aligning the trenches along specified SiC crystal facets.  Trenches etched 

parallel to         form armchair GNRs, while those etched parallel to         form 

zigzag GNRs.  Sidewall GNRs nanoribbons have been found to have unique electronic 

and magnetic properties as will be presented in chapter 5.  They provide a promising 

platform for the creation of high mobility graphene nano-electronics.  

 
Figure 3.8: Process for creating sidewall GNRs.  First a step is etched into the Si-face, 

then during high temperature annealing this step facets to a preferred crystal face, finally 

graphene grows preferentially on the sidewall facet forming a GNR. [64] 
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CHAPTER 4  

GRAPHENE SPINTRONICS 

4.1 Spintronics 

 In basic electronic devices, information is stored and processed through electron 

charge.  Signals can be transmitted through voltage pulses and data can be stored in 

capacitors.  Spintronics goes beyond this and utilizes electron spin in order to transmit, 

store, and manipulate data [65].  In such devices, magnetic fields are typically used to 

manipulate and detect the electron spin state.  The principles of spintronics are already 

employed in devices such as hard drives and magnetic random access memory (MRAM) 

[65].  The discovery and characterization of materials that can manipulate and transmit 

spin information will lay the foundation for the next generation of spintronic devices. 

 While ordinary magnetoresistance was observed as early as 1856 by William 

Thomson [66], it was not until 1988 that giant magnetoresistance (GMR) was 

experimentally demonstrated through the independent experiments of Grunberg and Fert 

in Fe/Cr multilayers [67,68].  In a Fe/Cr multilayer system with Cr layers less than 30Å 

thick, the adjacent Fe layers exhibit in plane magnetization with antiferromagnetic (AF) 

coupling between adjacent layers [67].  The application of an external field overcomes 

this AF coupling and aligns the magnetizations of the Fe layers parallel to one another.  

As the magnetizations of the layers became aligned it was observed that the resistance 

through the Fe/Cr stack was reduced by a nearly factor of 2 (fig 4.1).  The experimental 

results showed that the resistance stabilizes at high fields once the magnetization in the 

Fe layers becomes saturated.  This initial observation of magnetization dependent 
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transmission was not only of interest from a pure physics standpoint, but has also 

triggered many practical applications in modern electronics [65]. 

 
Figure 4.1: Magnetization dependent resistance of Fe/Cr multilayer films as measured by 

Fert in 1988 showing the fractional change in resistance measure through Fe/Cr 

multilayer films as a function of applied magnetic field.  R(H=0) is the resistance at zero 

external field and Hs is the saturation field of the Fe layers [67]. 

 

 The changed in resistance in the Fe/Cr multilayer system is a consequence of 

magnetic ordering in iron.  In ferromagnets, like iron, there is an interaction between the 

spin states on neighboring lattice sites.  This exchange interaction can be simply 

described by the Heisenberg model, which has the following Hamiltonian: 

 
  

 

 
    
   
   

      
(4.1) 
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In this Hamiltonian i and j refer to lattice sites, Si  and Sj are the spin operators of the 

lattice sites, and Jij are exchange constants.  When     the interaction energy favors 

parallel alignment, the ferromagnetic case, and when     the interaction energy favors 

anti-parallel alignment, the antiferromagnetic case.  This leads to local magnetic order 

and a spin-splitting of the energy bands in ferromagnets.  The magnetic order is lost 

above the Curie temperature. 

 While the exchange interaction causes spins to align locally, this alone simply 

results in small domains with aligned spins [69].  Typically these domains are randomly 

oriented relative to each other resulting in no bulk magnetization.  In order to uniformly 

magnetize the bulk ferromagnet in a specific direction, an external magnetic field can be 

applied, which aligns the domains (and hence the magnetization) along the direction of 

the applied field.  The field strength required to create this alignment is known as the 

critical field (Hc in figure 4.2).  Further increasing the magnetic field can further increase 

the magnetization to a point.  Eventually a maximum magnetization is reached at the 

saturation field (Hs in figure 4.2).  Due to hysteresis, the ferromagnet will retain its 

magnetization when the field is removed unless heated or otherwise given sufficient 

energy to randomize the domains.  Applying the field in a different direction can re-align 

the magnetization once the critical field is reached.  The value of the critical field for 

small ferromagnets is influenced by the geometry of the ferromagnet, due to shape 

anisotropy [70].  The shape anisotropy effect, where magnetization typically prefers to be 

along a long axis of the sample, is advantageously used in spintronics.  In spin transport 

measurements, thin (~20nm) narrow (<1µm) contacts with a length to width ratio over 5 
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are typically used.  This gives the contact a uniaxial magnetization axis, with bistable 

states parallel to the long axis as shown in fig 4.2 [71]. 

 
Figure 4.2: (a) Magnetization axis in a typical ferromagnetic contact showing the 

magnetic easy axis parallel to the long axis of the ferromagnet.  (b) Relationship between 

magnetization and applied field showing the hysteresis loop of the magnetization as the 

applied field is swept.   HC and  are the critical field and saturation field of the 

ferromagnet.  From ref [71] 

 

4.2 Giant Magnetoresistance 

 Giant Magnetoresistance is caused by spin-dependent scattering in the 

ferromagnetic layers.  In 3d ferromagnets like Fe, Co, and Ni, the s and p bands form a 

dispersive sp band that dominates conduction, while the d band is localized with a high 

density of states and low carrier velocity [72].  The scattering probabilities for spin up 

and spin down carriers are independent and are proportional to the density of states of 

their respective carrier type at the Fermi level [72].  The exchange interaction causes a 

spin-split d band, resulting in different populations of spin-up and spin-down electrons at 

the Fermi level.  The imbalance of spin-up and spin-down states in the d band results in 

different scattering probabilities for each and thus two different conductivities:    and 

   [73]. 
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 According to the Mott model [74], the electrical conductivity in metals can be 

described as the sum of two nearly independent conduction channels, corresponding to 

spin up and spin down electrons [72]. 

         (4.2) 

Applying this simple concept to the situation of current perpendicular to the plane of a 

ferromagnet-nonmagnet-ferromagnet stack allows for clear understanding of the change 

in resistance caused by the change in relative magnetization.  In figure 4.3, the electrons 

experience a low resistance when their spins are aligned anti-parallel to the magnetization 

of the cobalt layer       and a high resistance when aligned parallel to the cobalt 

magnetization (    .  In the case of parallel alignment of the two ferromagnets, electrons 

with spins aligned in one direction experience low resistance through both ferromagnetic 

layers, while electrons with spins aligned in the opposite direction experience high 

resistance through both.  If spin up and spin down carriers are treated as parallel 

conduction paths the total resistance is [72] 

 
    

 

       
 

 

       
 
  

  
       
       

  (4.3) 

In the case of anti-parallel alignment, both spin up electrons and spin down electrons 

experience high resistance through one layer and low resistance in the other.  In this case 

the total resistance is 

 
     

 

       
 

 

       
 
  

  
       

 
  (4.4) 

Combining these two equations yields the fractional change in resistance: 

   

  
 
      

  
  

         
 

       
  (4.5) 
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d

 
Figure 4.3: Two ferromagnetic layers separated by a thin non-magnetic metal spacer 

layer.  In the parallel case the spin-down electrons have a high transmission probability 

and dominate transport, while in the anti-parallel case both spin up and spin down 

electrons experience increased scattering in one of the two layers, increasing the total 

resistance.  Image from Wikimedia Commons/Guillaume Paumier 

 

4.3 Tunnel Magnetoresistance 

 One alternative to the non-magnetic metal spacer is a thin (1-2nm) insulating 

layer to form a device known as a magnetic tunnel junction (MTJ).  The tunnel barrier is 

typically made of Al2O3 or MgO [75], and gives the device a much higher resistance than 

is found in the ferromagnetic/non-magnetic metal stacks.  As in the case of giant 

magnetoresistance, the resistance of a MTJ depends on the relative magnetizations of the 

http://commons.wikimedia.org/wiki/Category:Files_by_Guillaume_Paumier


 44 

ferromagnetic layers.  The high resistance of MTJs is preferable for many nanoelectronic 

applications, such as MRAM[75].   

 The first studies on tunnel junctions were performed by Bardeen in 1961[76].  

Bardeen described tunneling by considering two independent wave functions separated 

by an infinite barrier. He then used time dependent perturbation theory to describe the 

probability of tunneling from one state to the other.  Using this approach the current 

through the barrier from the left electrode to the right electrode can be written: 

 
                                             

 

  

 (4.6) 

In equation 4.6         is the density of states at the energy E of the left or right 

electrode,      is the Fermi-Dirac distribution, and        is the tunnel transfer matrix. 

 In 1975, Julliere expanded on Bardeen's description to explain spin dependent 

tunneling [77].  Julliere's model was based on two primary hypotheses.  The first is that 

the tunnel conduction is performed by two independent spin channels and that spin is 

conserved during tunneling.  The second is that the probability of transmission through 

the barrier is independent of spin.  Based on these assumptions a simplified expression 

for the conductance through the junction can be formulated: 

                  

 

 (4.7) 

Here s represents the different spin states and           is the density of states in the left 

(right) electrode with spin s.  Labeling the majority spin band as   and the minority spin 

band as   allows the conductance in the parallel and anti-parallel states to be written as: 

                                  

 
(4.8) 

                                   (4.9) 
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Figure 4.4: Schematic representation of the tunnel magnetoresistance in the parallel and 

anti-parallel configuration.  The spin-split d band results in different DOS at the Fermi 

level for spin up and spin down electrons. Spin is conserved during tunneling and 

electrons can only tunnel into a matching spin state.  In the parallel configuration 

electrons can more easily find free states to tunnel to [75]. 

 

 The spin polarization of the conduction electrons is defined in terms of relative 

densities of states at the Fermi level of the majority and minority spin carriers, as shown 

in equation 4.10 [78]. 

 
  

     
     

 (4.10) 

Using the conductance relations for the parallel and anti-parallel configurations given in 

equations 4.8 and 4.9, the percent change in magnetoresistance, known as tunnel 

magnetoresistance (TMR), can be calculated as a function of the spin polarizations of the 

two ferromagnets: 

 
    

      
  

 
     

      
 (4.11) 

TMR is typically defined as the change in resistance relative to the parallel resistance,   , 

while a very similar quantity, called junction magnetoresistance (JMR), is defined as the 

change in resistance relative to the anti-parallel resistance,    .  Typically the parallel 

state has the lower resistance of the two, although there are systems where negative TMR 

has been observed [79].  Julliere made the first measurements of a MTJ in 1975 [77], but 

Parallel Anti-Parallel 
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it was not until 1995 that high magnetoresistance (up to 30% at 4.2K) MTJs were 

successfully demonstrated [80,81] thanks to improvements in thin film deposition. 

4.4 Spin Injection Into Non-magnetic Conductors 

 In addition to devices made of ferromagnets with thin metallic or insulating 

separators, there is also great interest in injecting spin current into non-magnetic 

conductors and semi-conductors [82].  This would allow spintronic devices with complex 

device architectures, as well as further integration of spintronics with modern 

complementary metal–oxide–semiconductor (CMOS) electronics [83].  Much of the prior 

work using graphene as a spintronic material has focused its use as a non-magnetic 

channel for transmitting spin information.  When doing spin injection, two of the most 

important properties to consider are the efficiency of the spin injection and the spin 

diffusion length inside the non-magnetic channel. 

 Figure 4.5 shows some of the relevant transport physics at the ferromagnet to 

nonmagnet interface.  The spin-polarized current injected from the ferromagnet generates 

a non-equilibrium magnetization of the charge carriers at the interface due to spin 

accumulation.  Spin diffusion results in an exponential decay of the spin population away 

from the interface with characteristic spin diffusion lengths       in the ferromagnet and 

      in the non-magnetic material.  This decay can be seen in the magnetization potential 

H*, defined as the carrier magnetization over the susceptibility.  The discontinuity in H* 

at the interface is due to the different magnetic susceptibilities of the two materials.  As 

the figure shows, spin diffusion occurs into the ferromagnetic source as well as the non-

magnetic channel.  This backward spin current effectively cancels some of the incoming 

spin current, reducing the fractional spin polarization of the injected current as seen in 
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figure 4.5 (c) [71].  To combat this effect a tunnel barrier can be used to increase the 

interface resistance and inhibit spin diffusion back into the contact. 

 
Figure 4.5: Model of charge and spin transport across a ferromagnet-nonmagnet interface 

(a) Schematic of the ferromagnet to non-magnetic metal interface, Jq is the charge 

current. (b) Magnetization potential H*, Pf is the spin polarization of the charge carriers 

in the ferromagnet (c) fractional spin polarization of the current JM. From ref [71] 

 

 

4.5 Graphene Spin Transport 

 Graphene has been investigated as a promising material for spin transport thanks 

to its low spin orbit coupling and high mobility [83].  The first spin transport 

measurement on graphene was made using a lateral spin valve consisting of two NiFe 

contacts ~200nm apart connected with a 200nm wide exfoliated graphene ribbon [84].  

(a) 

(b) 

(c) 
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This relatively simple structure exhibited room temperature TMR up to 10%, successfully 

demonstrating that graphene could be used as a non-magnetic conductor for spin 

transport[84].  Since then, the spin transport properties of various forms of graphene have 

been studied, including both SLG and MLG exfoliated graphene ribbons on SiO2 

substrates [85-88], exfoliated graphene on hexagonal Boron Nitride[89], suspended 

graphene ribbons[90], and both C-face and Si-face epitaxial graphene on SiC [52,83,91]. 

 In addition to the standard two terminal "local" spin valve, many experiments also 

employ a 4-point configuration for non-local spin current measurements.  In the non-local 

arrangement, current is injected through one pair of contacts, while the voltage is 

measured using an adjacent set of contacts as shown in figure 4.6 (b).  The non-local 

resistance is defined as the non-local voltage divided by the injected current.  Spin 

accumulation under the current injection contact creates a magnetization potential that 

decays exponentially along the ribbon as discussed in chapter 4.1.  This results in a pure 

spin current on one side of the injection contact without any accompanying charge 

current.  Ferromagnetic detection contacts selectively measure the potential of the spin up 

or spin down channel depending on their own magnetic orientation (the selectivity is not 

100% and depends on the polarization of the detection contacts).  Figure 4.6 (c) shows 

the dependence of the non-local resistance on the magnetization directions of four Co 

contacts patterned on an exfoliated graphene ribbon [86]. While only the inner contacts (2 

and 3) need to be ferromagnetic, often all four contacts are made of the same 

ferromagnetic material.  The coercive field strength of the contacts can be tuned by 

adjusting their widths, allowing independent switching of the contacts' magnetization 

directions. 
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Figure 4.6:(a) SEM image of a 4-terminal spin valve on an exfoliated graphene ribbon (b) 

device schematic (c) non-local resistance as a function of applied field (d) schematic 

representation of the spin dependent chemical potential for the spin up (red) and spin 

down (green) channels.  From ref [83,86] 

 

 In order to calculate the spin diffusion length and spin lifetime of a sample, a 

Hanle spin precession measurement can be carried out [83,86].  In such a measurement, 

the Co contacts are first polarized in a parallel or anti-parallel configuration.  A magnetic 

field is then applied perpendicular to the plane of the graphene ribbon and Co contacts 

and the non-local resistance is measured as a function of this applied field.  The magnetic 

moments of the electrons precess around the out of plane magnetic field with a Larmor 

frequency of          , where g is the effective Lande factor (~2) and    is the 

Bohr magneton.  With the proper applied field, the magnetic moment can rotate 180˚ as it 

travels from the injector to the detector as illustrated in figure 4.7 (a), causing detection 

of now parallel magnetic moments from an anti-parallel injector or vice versa.  The 

magnetic field also causes some dephasing of the spins in the channel, dampening the 

signal.  The combined results of the spin precession and decay are observed as an 

(a) (b) 

(c) 

(d) 
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oscillating decay of the non-local resistance as seen in the results of Han et al. in figure 

4.7 (b-c) [92].  The Hanle spin precession data can be fit with solutions of Bloch 

equations [83,86] to determine the diffusion constant D, the spin lifetime    , and the 

spin diffusion length    .  The results of Han et al. (figure 4.7 b-c) highlight the 

importance of resistive tunnel contacts.  Measurements with transparent contacts gave a 

spin lifetime of only 84ps, while measurements using resistive tunnel barriers found a 

spin lifetime of 448ps [92].  This discrepancy can be attributed to spin escape into the 

ferromagnetic injection contact when transparent contacts are used [83]. 

 
Figure 4.7: (a) With no external field the spin direction of the injected current is 

conserved, but when a perpendicular magnetic field is applied the magnetic moment 

rotates during travel.  (b) Hanle measurement on exfoliated graphene with transparent 

contacts, and (c) Hanle measurement on exfoliated graphene done with tunnel contacts. 

 

 The Fert group further explored the importance of barrier resistance on spin 

transport through graphene in their experiments on C-face multilayer epitaxial graphene 

(MEG) [91].  In this experiment, two terminal devices consisting of Co contacts with 

Al2O3 tunnel barriers were patterned onto MEG ribbons.  The tunnel resistance for these 

devices ranged from 1MΩ to 100MΩ, allowing efficient spin injection into the graphene, 

with minimal spin escape into the contacts.  In one device, with a 0.8µm long channel, 

the measured magnetoresistance was 9.4%.  A perfect channel would result in half of the 

(a) (b) (c) 
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MR of a Co/Al2O3/Co MTJ, which is 25%.  Hence the 9.4% measured MR is 75% of the 

12.5% MR that would be predicted for a perfect channel, demonstrating minimal 

degradation of spin information in the graphene channel.  Spin diffusion lengths in the 

devices measured ranged between 95µm and 285µm, the longest spin diffusion lengths 

measured in any graphene system. 

 
Figure 4.8: (a) 2-point magnetoresistance with Co/Al2O3 contacts on C-face MEG, 

showing 9.4% MR. (b) Results obtained with different barrier resistances and a plot of 

the model showing the expected behavior for different spin diffusion lengths. From ref 

[91] 

  

(a) 

(b) 
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4.6 Magnetism in Graphene 

 While pure graphene sheets are non-magnetic and act as good spin channels, there 

is great interest in creating magnetic forms of graphene for use in spintronics.  There are 

a number of methods proposed for inducing magnetism in graphene.  Many graphene 

nanostructures are also predicted to have shape dependent magnetic properties and have 

been proposed for possible applications as spin logic devices [93,94].  Graphene 

nanoribbons with zigzag edge terminations are predicted to have spin polarized edge 

states [95-97].  Magnetism can also be induced through lattice defects, vacancies, and 

adsorbates [98-100]. 

 
Figure 4.9: (a) An ideal zigzag GNR with opposite spin alignments on its edges.  The 

total current injected into the non-magnetic graphene sheet is equal parts spin up and spin 

down. (b) A defect introduced on the lower edge scatters the edge current resulting in a 

net injection of spin up current into the non-magnetic graphene.  From ref [101]. 

 

 Graphene nanoribbons are of particular interest because of the unique properties 

predicted by theoretical calculations.  GNRs with zigzag edges are predicted to have spin 

polarized edge states that exhibit anti-ferromagnetic coupling between each other [95-

97,102].  This leads to locally spin polarized current on the edge but no spin polarization 

of the total current.  However, there are situations under which a net spin current can 
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theoretically be injected from a GNR.  For example, Wimmer et al. predicts that a GNR 

with one pristine edge and one defective edge could be used to inject spin polarized 

current as shown in figure 4.9 [101].  In addition, Son et al. predicts that transverse 

electric fields could be used to shift the energy bands on opposite edges, resulting in 

parallel alignment of the spins on both edges [95].  Superlattices of graphene and 

graphane with zigzag interfaces have also been proposed as a potential method to 

generate spin polarized current in graphene [103-106].   

 In addition to edge state magnetism, there have been efforts to magnetize the bulk 

graphene lattice through defects or chemical functionalization.  Theoretical work by 

Yazyev et al. predicts that magnetic moments will form around lattice defects and 

hydrogen chemisorption sites due to ferromagnetic coupling between the electrons at the 

three neighboring lattice sites [98].  Defects on the same sublattice couple 

ferromagnetically, while defects on different sublattices couple anti-

ferromagnetically[98].  Thus, the spin polarization of random defects will tend to cancel 

out in the bulk, but if one sublattice was selectively bonded, a net spin polarization could 

be obtained.  Experimental work by the Haddon group has demonstrated local magnetic 

polarization in graphene sheets induced by nitrophenyl functionalization [99,100], 

supporting theoretical predictions and providing a possible path toward controlling the 

magnetic properties of graphene.  Magnetism has also been predicted for epitaxial 

graphene buffer layers due to periodic bonding to the SiC substrate or adatoms [107].   

 At this time, there is insufficient information to deduce the mechanism behind the 

observed the spin dependent conductance observed in epitaxial graphene nanoribbons. 

However, these mechanisms show that magnetism in graphene is not entirely unexpected.  
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Hopefully, the careful documentation of the effects observed here, along with future 

measurements on epitaxial graphene nanoribbons, will provide better understanding of 

the underlying physics at work. 
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CHAPTER 5  

EPITAXIAL GRAPHENE NANORIBBON TRANSPORT 

 While growing large graphene sheets on the SiC (0001) and (000-1) faces is 

useful for many applications, lithographic patterning leads to very rough edges that cause 

scattering and limit edge conduction[108].  This is unfortunate because interesting 

physical properties have long been predicted for GNRs with perfect zigzag-edges, 

including ferromagnetism [95] and ballistic transport [109].  In order to create ribbons 

with clean edge terminations (although not perfectly zigzag), the selective growth 

technique discussed in chapter 3.5 is used to form sidewall GNRs along SiC         and 

        crystal facets.  They are labeled armchair and zigzag ribbons respectively, based 

on the orientation of Si-face graphene.  However, their true edge orientations may not be 

so straightforward.  The results presented in this work were all measured on ribbons 

grown along the armchair direction.  Transport measurements of these ribbons [110] have 

shown them to have unique electronic and magnetic properties that could prove useful in 

the creation of future electronic and spintronic devices as explained in detail below.  In 

particular the work of Baringhaus et al. shows single channel ballistic transport indicating 

that both the spin and valley degeneracies are lifted in these ribbons [110]. 



 56 

 
Figure 5.1: Armchair and zigzag ribbons are labeled based on the SiC crystal facet 

5.1 Magnetic Tunnel Junction Measurements 

 In order to probe the electronic and magnetic properties of these sidewall GNRs, 

metallic contacts were patterned on the ribbons.  Initially, devices with multiple cobalt 

tunneling contacts were created in order to measure the spin diffusion length in the 

GNRs, as discussed in Chapter 4.5.  However, the results were anomalous.  Specifically, 

in several measurements there was a difference in resistance when all of the Co contacts 

were magnetized up compared to when they were all magnetized down.  From a simple 

symmetry argument, one would expect these two configurations to result in identical 

resistances.  The difference indicated that the graphene ribbons were intrinsically 

magnetically polarized.  In order to test this hypothesis, devices with a single Co 

tunneling contact in between non-magnetic Pd/Au contacts were created. 

Armchair 
facets 

Zigzag 
facets 
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Figure 5.2: Left: Schematic of 3-terminal tunnel magnetoresistance measurement.  

Sample can be rotated relative to external magnetic field.  Field angle is measured 

relative to Si (0001) face.  At 0˚ the positive field direction is from the high side of the 

trench wall toward the low side as indicated. Right: optical image of a sidewall MTJ. 

 

 A magnetic tunnel junction consists of two ferromagnets separated by a thin 

insulating layer.  In this experiment, Co serves as one magnetic contact, while the GNR 

itself serves as the other.  A thin aluminum oxide tunnel barrier, approximately 1nm 

thick, separates the graphene and Co.  To allow for control over the cobalt's spin 

polarization direction, it is locally patterned into a long thin rod: 10µm long, 300nm 

wide, and 40nm thick.  This shape anisotropy gives the cobalt a magnetic easy axis, as 

discussed in chapter 4, along which the spin polarization can be controlled using an 

external field.  The coercive field strengths for the Co contacts were between 20mT and 

100mT depending on the device.  During spin switch measurements, the magnetic field 

was typically aligned along the Co long axis in the (0001) plane (θ=0).  Nearby Pd/Au 

contacts allow for 2 and 3-point measurements of the tunnel resistance, as well as other 

electronic transport measurements on the ribbon.  

 Resistance measurements were made using a lock-in amplifier providing either 

constant current or voltage depending on the measurement.  For low resistance 

measurements, a large series resistor (1MΩ to 1GΩ) is placed on the voltage output of the 
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lock-in amplifier, providing a relatively constant current as long as the device resistance 

is much smaller than the series resistor.  However, this method is not well suited for 

measuring resistances over 1MΩ because they approach the input impedance of the 

SR830, which is 10MΩ.  For these measurements, an AC voltage is applied to the sample 

and a current amplifier is used to measure the AC current through the device.  The 

voltage can be measured in parallel or measured at another contact in a 3-point 

configuration as shown in figure 5.2.  Because the focus of these measurements is the 

tunnel resistance, the 3-point configuration was used whenever possible since it does not 

include additional resistance from the ribbon and drain contact.  However, very little 

difference was observed between 2-point and 3-point resistance measurements as the 

tunnel resistance is typically much larger than the ribbon resistance.  For voltages less 

than 10mV a voltage divider is placed on the output to provide a clean low voltage signal. 

 To calculate TMR in this work the difference in resistance at B=0T is used.  

Rather than using a single point at B=0T the values of R for          are averaged to 

minimize the effects of noise.  The standard TMR equation (4.11) will yield positive 

values whenever       .  However, in this work a slightly different definition of 

TMR is used (equation 5.1) so that the sign reflects the magnetic field direction of the 

high resistance state.  The resistance values near B=0T during the up sweep,     
  , are 

subtracted from those near B=0T during the down sweep,     
  , and this difference is 

divided by the smaller of the two values, since the smaller value is RP in most systems.  

Negative TMR values in this work indicate that the field direction for the high and low 

resistance states has flipped.  As the true spin polarization direction in the graphene is 

unknown, it cannot be determined if this is true negative TMR or if the spin polarization 
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of the graphene has changed direction.  The magnitude will be the same as would be 

found using the standard TMR equation, if RP is in fact the low resistance state. 

 
    

    
       

  

    
 (5.1) 

 

5.2 Sample 31JH6 

 One of the first samples to show a TMR signal was with a sidewall ribbon sample 

31JH6.  From the orientation with respect to the SiC lattice this ribbon was determined to 

be a armchair ribbon (see Fig 5.1).  The ribbon was grown using a fixed power recipe 

(see below) in a graphite crucible with a 0.4mm diameter leak hole.  It was grown 

following a C-face multi-layer sample grown at ~1565˚C for 45 min, which likely left the 

inner crucible walls Si-rich due to the significant sublimation of Si during the growth.  A 

3-stage growth recipe was used with a 15 minute anneal at ~60W (approximately 450˚C) 

followed by another 15 minutes at ~200W, during which the chamber temperature 

reached approximately 830˚C.  The graphitization stage was 65s at a constant power of 

~1730W, reaching a maximum temperature of 1565˚C based on a previous temperature 

calibration using the Northrop Gruman optical pyrometer. 
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Figure 5.3: Top: 31JH6 TL Device contact diagram, edge to edge distances between 

contacts are given in microns. (a) AFM Topography and (b) corresponding LFM image 

taken from G2 to G3.  (c) AFM Topography and (d) corresponding LFM image taken 

from G5 to G8.  

 

 Lateral force microscopy performed on this sample showed single ribbons grown 

on the etched sidewalls with very little additional graphene formation as shown in figure 

(a) (b) 

(c) (d) 
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5.3.  30nm deep trenches were etched with trench walls parallel to the         facet in 

order to form armchair graphene nanoribbons.  Transport measurements were done on 

two different ribbons, TR and ML.  LFM showed the width of ribbon TR to be 

approximately 100nm, although it appears to be much more narrow near contact C3 as 

seen in figure 5.3 (d).  Based on the contact mode topography scan the sidewall facet 

appears to be about 22˚, but flattens out near the top edge to an angle of about 4˚.  The 

graphene ribbon covers this gently sloped region but does not extend onto the flat 

surface. 

 Tunnel magnetoresistance measurements on 31JH6 TR were performed in Dr. 

Jiang's cryostat with the assistance of Huan Chao and Wenlong Yu.  The sample 

orientation was fixed with a 28-degree rotation between the magnetic field and the plane 

of the (0001) face.  This orientation aligned the field in the plane of the         facet (the 

facet typically observed for armchair sidewall ribbons), in order to minimized the 

perpendicular field component.  For this particular ribbon, there was still some magnetic 

flux through the ribbon due to the growth onto flatter regions.  The tunnel resistance was 

measured using a 3-point configuration with a 1mV AC voltage applied with a lock-in 

amplifier. 

 At 6K, the 3-point tunnel resistance of contact C3 displayed very clear 

reproducible switching during magnetic field sweeps.  AC and DC voltage was applied 

between C3 and G7, current was measured by use of a current amplifier between G7 and 

ground, and the AC voltage used in the 3-point resistance calculation was measured from 

C3 to G6.  Adjusting the DC bias across the junction changed the magnitude of the 

switch and could even be used to change the direction of the switch as shown in figure 
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5.4. The DC bias dependence was measured in two ways.  One method was to sweep the 

magnetic field while at a constant DC bias as shown in figure 5.4 (a).  TMR was 

calculated as the difference in resistance at B=0 between the down sweep and up sweep 

divided by the lower resistance value.  The second method was to sweep the DC bias at 

0T after going to +1T and after going to -1T as shown in figure 5.4 (b).  The difference in 

these two curves was used to calculate the TMR as a function of DC bias and agrees 

remarkably well with the individual data points as seen in figure 5.4 (c).  The switch 

amplitude peaked at 9mV DC, giving a TMR of just under 8%. 
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Figure 5.4: DC bias dependence was tested in two ways: (a) the magnetic field was swept 

with a constant bias across the junction (9mV and -27mV shown), (b) the bias across the 

junction was swept at 0T after magnetic field was swept to 3T and after going to -3T and 

back.  The difference in these curves was used to calculate the TMR and compared to the 

values from (a) in (c). 

 

 

(a) (b) 

(c) 
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 High field sweeps up to 14T were used to investigate how sensitive the 

magnetization of the GNR is to external magnetic fields.  In typical magnetic tunnel 

junctions between two ferromagnets, the tunnel resistance will return to the low 

resistance value at high fields as the magnetization of both layers align with the external 

field.  Remarkably, in the Co-GNR system the change in tunnel resistance persisted at 

high fields.  Even at 14T, it had not returned completely to its low resistance state.  The 

tunnel resistance retraced its path as the field was swept back down and the switch was 

observed as expected when the coercive field strength of the Co contact was reached in 

the negative direction. Four complete sweeps were done and the tunnel resistance 

followed an almost identical path every time as show in figure 5.5. 

 
Figure 5.5: Four magnetic field sweeps between +/- 14T, measuring the 3-point tunnel 

resistance through contact C3. 

 

 A two-point resistance measurement was made between adjacent gold contacts 

G7 and G8 as magnetic field was swept, to act as a control experiment and to measure the 

magnetoresistance response of the ribbon.  The rotation angle was the same 28˚ angle 

used in the magnetic switch measurements.  The two-point resistance was approximately 

33kΩ at 0T and the ribbon displayed a slight negative magnetoresistance of 2.5% from 
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0T to 1T.  No switching was observed, which was the expected result since the Pd/Au 

contacts are non-magnetic and inject a current which is not spin polarized. 

 
Figure 5.6: Two-point magnetoresistance measurement between contact G6 and G7. 

 

 Several months after the completion of the spin switch measurements in Dr. 

Jiang's lab, sample 42OJ6 was transferred to another sample stage and wire bonded for 

measurement in the de Heer lab.  The tunnel barriers below the Co contacts did not 

survive the storage, transfer, and re-bonding, preventing further TMR measurements.  

However, the Pd/Au contacts could still be used for other electronic transport 

measurements.   

 The conductance of the ribbon was measured as a function of temperature as the 

sample was cooled.  The conductances between G2 and G8 and between G3 and G4 were 

measured during a 16-hour cool down from 300K to 4K.  The conductance was also 

measured between G7 and G8 during a separate cool down from 180K to 4K.  A 100nA 

AC current was used for both measurements.  The conductance decreases significantly in 

all of the segments measured as the temperature is reduced.  In addition, the ribbon 

resistance seems to have increased greatly during the time between the initial 

measurements in Jiang's lab and these measurements.  The segment from G7 to G8 was 
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~32kΩ at 6K in Jiang's cryostat, while the 2-point resistance was approximately 106kΩ at 

6K during this measurement.  Surface contamination is likely to blame for this huge 

change in resistance. 

 
Figure 5.7: Conductance vs Temperature for 31JH6 ribbon TR.  The lengths are given as 

edge to edge distances, for the center to center distances add 1µm 

 

 Another experiment that was performed was to measure the magnetoresistance 

response at various rotational angles in order to try to determine whether the transport 

was dominated by graphene lying on the sidewall facet or by graphene in the plane of the 

Si-face.   In a flat graphene sheet, transport is generally not affected by the in-plane 

component of magnetic field because electronic motion can only couple to the component 

of magnetic field perpendicular to the sheet [111].  Thus, the angle at which the 
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maximum magnetoresistance is observed should be perpendicular to the graphene 

nanoribbon being measured. 

 To determine the "magnetic normal" of the ribbon, the magnetic field was swept 

between 0T and 9T while the resistance was measured using a lock-in amplifier 

supplying a 100nA AC current.  The sample was rotated in ~15˚ increments between 

90˚and -13˚ and a full 9T sweep was performed at each angle.  The unit vector normal to 

the ribbon was calculated as a function of facet angle and rotation angle.  The dot product 

of this normal vector and magnetic field was used to determine the magnitude of the 

magnetic field perpendicular to the ribbon at each angle.  If the magnetoresistance is only 

sensitive to a single component of magnetic field perpendicular to the ribbon, then the 

proper choice of facet angle (and resulting normal vector) should align all of the magnetic 

field sweeps when plotted as a function of the perpendicular magnetic field strength.   

 For 31JH6 TR it was observed that the magnetoresistance was dependent on only 

a single component of the magnetic field with an apparent facet angle of 10-15˚ 

depending on the ribbon segment measured.  A 4-point measurement between G3 and G4 

gave a 11˚ facet (see figure 5.7), a 2-point measurement between G7 and G8 gave a 10˚ 

facet, and a 2-point measurement across the length of the ribbon from G2 to G8 gave a 

facet of 15˚.  There was one segment measured on ribbon TR that could not be properly 

fit using a single component of the magnetic field.  However, the measurement used a Co 

contact as one of the voltage probes, which may be responsible for the strange response.  

See appendix A for this data. 
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Figure 5.8: Top: 2-point conductance measured between G7 and G8 as a function of the 

(a) total magnetic field and (b) component of magnetic field perpendicular to a 10˚ facet. 

Bottom: 4-point conductance measured between G3 and G4 as a function of the (c) total 

magnetic field and (d) component of magnetic field perpendicular to an 11˚ facet. 

 

5.3 Sample 42OJ6 

 Sample 42OJ6 was graphitized in a graphite crucible with a 1mm diameter leak 

hole.  The growth recipe was 10 min at 800˚C for degassing, 1150˚C for 20 min to 

remove surface oxide, and graphitization at 1490˚C for 90s.  Transport measurements 

were done on armchair ribbon TL grown on a 22nm deep trench wall oriented parallel to 

the         facet.  The sample was significantly overgrown as shown in figure 5.9.  

Additional graphene appears to form in small recesses 2-4nm deep.   The graphene can be 

identified in LFM thanks to its low frictional force and the I-AFM measurement confirms 

that these regions are conducting.  The additional graphene appears to form in small 

(a) (b) 

(c) (d) 
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recessed regions 2-4nm deep.  Although it was significantly overgrown, the sample 

showed remarkable electronic and magnetic properties including very high sensitivity to 

spin polarized current.  

 

 
Figure 5.9: Top: Device schematic for 42OJ6 TL.  Bottom: Topography, lateral force, 

and current measured on 42OJ6 ribbon TL between contacts G1 and G2.  Contact G1 was 

used as ground for the C-AFM measurement.  The C-AFM confirms that the smooth 

regions are in fact conducting.  The images were taken about a year after the transport 

measurements in cryostat.  Oxidation of the Co and settling of material on the gold 

surface is believed to be the reason that the contacts do not show much current flow. 

 

 Sample 42OJ6 was inserted into the de Heer cryostat for low temperature 

transport measurements.  The conductance of ribbon TL was measured during a 16-hour 

cool down from 300K to 4K.  A 100nA AC current was applied from contact G1 to G6, 

while voltage was measured between various pairs of Pd/Au contacts using a lock-in 

amplifier.  The conductance did not have a strong dependence on temperature, changing 

no more than 25% on any of the segments during the cool down.  The conductance 

peaked between 70K and 100K for all segments and appeared to level off around 7K.  

The behavior is different than that of 31JH6, which showed a constant decrease in 
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conduction.  The difference in the conductance vs temperature relation may be due to the 

influence of the graphene overgrowth on this sample. 

 
Figure 5.10: Conductance vs Temperature measured on 42OJ6 ribbon TL measured 

during a  6hr cool down using a 100nA AC current.  Lengths are measured from contact 

edge to contact edge, for center to center distances add 1µm. 

  

 Initial 3-point tunnel magnetoresistance measurements on contact C1 showed 

very clean reproducible switching despite a relatively low tunnel resistance of only 

500kΩ.  Using a 1nA AC current the TMR was approximately 9%.  Increasing the AC 

current to 100nA caused the TMR to go up to 15% but the tunnel resistance was reduced 

to approximately 250kΩ.  Unfortunately, during subsequent DC bias dependence 

measurements the tunnel contact resistance became unstable.  The sample was removed 

from the cryostat and stored in liquid nitrogen.  It was later re-inserted into the cryostat, 
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after which the contact resistance of C1 was approximately 1300kΩ.  Oxidation during 

the sample's brief exposure to air is likely the cause of the increased tunnel resistance.   

 
Figure 5.11: 3-point tunnel resistance measurements on contact C1 using constant current 

mode.  

 

 Further spin switch measurements on 42OJ6 TL contact C1 after re-insertion 

showed very large TMR responses, as high as 38%.   This would indicate a spin 

polarization of 45.6% in the graphene nanoribbons based on equation 4.11, assuming 

PCo=35% [112].  The spin polarization could be even larger if the GNR's polarization 

direction is not parallel to the magnetization axis of the Co contact.  In addition, the spin 

polarization of the graphene charge carriers appeared to be strongly resistant to external 

magnetic fields, as the change in resistance persists under external fields up to 6T.  
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Figure 5.12: 3-point tunnel resistance measured up to +/- 6T external field. 2mV AC and 

2mV DC applied from C1 to G1, Voltage measured C1 to G2. 

 

 Although the ribbon showed some very impressive spin switching, it also 

displayed some very odd behavior.  During many of the spin switch measurements two 

high resistance states were often observed, and subsequent sweeps would sometimes 

alternate between a very large switch of 30% or more and a smaller switch of 15% or 

less.  In addition, despite resisting external magnetic fields up to 6T, complete reversal of 

the graphene spin direction occurred at seemingly random intervals.  As the temperature 

was increased, the spin polarization direction in the graphene appeared to become 

increasingly unstable and three distinct resistances were observed at 30K.  At 70K to 

90K, instead of the normal resistance loop, there was a slight increase in resistance as the 

field crosses 0T until the cobalt magnetization flipped and the resistance returned to its 

low value.  This would seem to indicate that at these temperatures the magnetization 

direction of the graphene is no longer fixed and instead follows the direction of the 
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applied field, as in a paramagnet.  Finally, at 100K the spin switching effects were 

completely lost and constant resistance was observed.  The Curie temperature of Co is 

1388K [70], so these changes in behavior are not due to a transition in the Co.  After 

cooling back to 4K, the switch behavior was different than it had been initially.  In future 

experiments, it would be interesting to apply a magnetic field during the cool down to see 

if the graphene magnetization can be controlled. 

 
Figure 5.13: (a) 3-point tunnel resistance measurement showing 38% TMR over three 

consecutive magnetic field sweeps.  2mV AC and -10mV DC applied from C1 to G2, 

Voltage measured C1 to G1.  (b) 3-point tunnel resistance displaying two high resistance 

states during three consecutive sweeps.  2mV AC and -8mV DC applied from C1 to G2, 

Voltage measured C1 to G1.  

 

 
Figure 5.14: 42OJ6 TL 3-point tunnel resistance at 4K, various DC biases. 2mV AC 

applied from C1 to G1, Voltage measured C1 to G2.  Data plotted in the order it was 

taken to present the sudden change in behavior over time, such as the direction reversal 

between 6mV and 10mV.  Field in kG for clarity of plot axes.  
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Figure 5.15: 42OJ6 TL C1 3-point tunnel resistance, temperature dependence of switch.  

Constant voltage mode: 1mV AC and -2mV DC applied from C1 to G2 (current amplifier 

on G2), Voltage measured C1 to G1.  Data plotted in the order it was taken, note that the 

4K behavior changed after the temperature cycle.  Field in kG for clarity of plot axes. 

 

 To test if the electron spin polarization in the graphene was momentum dependent 

a DC bias was applied across the ribbon while the tunnel resistance was measured using a 

lock-in amplifier.  A DC voltage was applied between contacts G1 and G2 using the 

Keithley 4200, while a 3-point AC resistance measurement was made on contact C1 with 

G2 serving as ground and voltage measured between C1 and G1.  Before this 

measurement was carried out, the tunnel resistance dropped significantly, to 

approximately 100kΩ.  Despite the drop in tunnel resistance, the sensitivity to spin 

polarized current persisted and an increase in the TMR was observed, showing magnetic 

switching as high as 75%.  This indicates a graphene spin polarization of 78% based on 

equation 4.11 and a cobalt polarization of 35% [112].  The switch behavior showed very 

little dependence on the current direction, but died off when a large enough DC bias was 

applied. 
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Figure 5.16: (a): TMR measured with various DC biases applied across the ribbon.  DC 

bias G1 to G2, 3- point tunnel resistance measured in constant current mode 2nA from C1 

to G2, voltage measured C1 to G1. Inset: largest TMR measured at 20mV DC bias. (b) A 

sampling of the spin switch measurements performed, field in kG for clarity of plot axes.  

 

 Standard magnetoresistance measurements using all gold contacts were also 

performed on ribbon TL. The ribbon displayed a slight negative magnetoresistance, 

increasing its conductance by 10% at 9T.  Magnetoresistance was measured at various 

angles to test if it was sensitive to the total magnitude of the field or only sensitive to a 

(a) 

(b) 
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specific directional component of the field as described in 5.2.  For ribbon TL we see that 

a facet angle of -7˚ aligns the sweeps done at different angles.  This is very different from 

the results obtained on the single sidewall ribbon 31JH6 TR, and indicates that the 

additional graphene overgrowth is likely responsible for a significant portion of transport. 

 
Figure 5.17: 4-point conductance measured between G2 and G3 as a function of the (a) 

total magnetic field and (b) component of magnetic field perpendicular to a -7˚ facet. 

 

5.4 Sample 42OJ7 

 Sample 42OJ7 was graphitized in a graphite crucible with a 1mm diameter leak 

hole.  The growth recipe was 10 min at 800˚C for degassing, 1150˚C for 20 min to 

remove surface oxide, and graphitization at 1485˚C for 85s.  Several additional ribbons 

approximately 100nm wide grew next to the sidewall ribbon. They were rotated between 

25 to 30 degrees relative to the etched sidewall, putting them very close to the orientation 

of zigzag ribbons.  Although the ovegrowth was still significant it seemed much more 

ordered than the extra graphene that formed on 42OJ6.  The sidewall ribbon itself was 

slightly overgrown varying in width between 100nm to 300nm.  Contacts were patterned 

on ribbon TR and it was inserted into the de Heer cryostat for low temperature transport 

measurements. 
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Figure 5.18: Top: Device schematic for 42OJ7 TR with edge-to-edge distance between 

contacts listed in microns.  Gold contacts are ~1µm wide and Co contacts are ~300nm 

wide. (a) AFM topography and (b) LFM images taken around contacts G6 and C3.  

Images were taken over one year after the initial transport measurements and it appears 

that Co contact reacted with something during storage. 

 

 The conductance of ribbon TR was measured during an 18-hour cool down from 

260K to 4K.  A 10nA AC current was supplied and measured using a lock-in amplifier.  

The relationship between conductance and temperature was very similar to that observed 

in ribbon 42OJ6 TL with a slight increase until ~100K and then a decrease in 

conductance that begins to level off around 7K.  Both 42OJ6 and 42OJ7 had significant 

overgrowth, unlike 31JH6, which may explain why the increase in conductance during 

cool down at temperatures above 100K is only observed in these samples.  Below 100K, 

all three ribbons display a similar behavior. 

(a) (b) 
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Figure 5.19: Conductance vs Temperature for 42OJ7 ribbon TR, measured during an 18hr 

cool down with a 10nA AC current.  Lengths are given from contact edge to contact 

edge, for center-to-center distances add 1µm. 

 

 Initial spin switch measurements performed on contact C1 yielded a relatively 

stable resistance loop with an average TMR of 3.7% using a 3-point configuration with a 

2mV AC bias.  The DC bias was changed in 2mV increments from -8mV to +8mV and 

three sweeps were performed at each bias value.  The TMR did display DC bias 

dependence increasing to 5.4% at 8mV and decreasing to 3% at -8mV as shown in figure 

5.20.  The switch direction did not change within the measured voltage range.  8mV was 

the maximum DC bias applied, as there was concern that higher biases would damage the 

tunnel barrier, which already had a fairly low tunnel resistance.  Angle dependence 

measurements were then performed using 8mV DC and 2mV AC, the conditions that 

gave the largest TMR. 
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Figure 5.20: 3-point tunnel magnetoresistance measurements on contact C1.  2mV AC 

plus various DC biases applied from C1 to G3, current was measured through G3, and 

AC voltage was measured C1 to G2. Field in kG for clarity of plot axis. Inset: TMR as a 

function of applied DC bias.  

 

 The tunnel resistance was relatively stable during the angular dependence 

measurements between -20˚ and 79˚, although a few sudden changes did occur.  Initially, 

the high resistance value was 560kΩ and the low resistance value was approximately 

525kΩ, giving a TMR value of 6%, very close to the value observed previously.  During 

the last down sweep at -20˚ the resistance went from 560kΩ to 510 kΩ, a TMR of 9.5%.  

This larger switch was observed for all of the -10˚ and 0˚ sweeps, then it returned to its 

initial behavior for several sweeps before jumping back to the 9.5% TMR during the 

sweep at 59˚.  Both loops were very stable and reproducible and it is unclear why the 

change occured.  A significant jump in tunnel resistance from 520kΩ to 690kΩ was 

observed at the very beginning of the first 69˚ sweep and the TMR was reduced below 

3%.  After the 79˚ sweep the tunnel resistance became very noisy and unstable, never 

returning to its initial clean behavior.  The full magnetic field sweeps for each angle are 

shown in figure 5.21 (a). 
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 The average TMR at each angle is plotted in figure 5.21 (b).  Other than the 

unexplained jumps, the TMR was very consistent, seemingly unaffected by the angle of 

the external field.  Sweeps at -20˚, 10˚, 20˚, 29˚, 39˚, and 49˚ had nearly identical TMR of 

approximately 6%, while sweeps at -10˚, 0˚, and 59˚ (as well as the last down sweep at -

20˚) had consistent 9-10% TMR loops.  In addition, the shape of the resistance loop was 

quite consistent.  The tunnel resistance curves up slightly before both the down switch 

and up switch (for all measurements before the jump to 690kΩ), and remains relatively 

flat up to +/-0.5T. 

 The only property of the loop that did have a clear dependence on angle was the 

coercive field strength.  The change in coercive field strength is expected for a narrow Co 

contact with a magnetic easy axis, as used in this experiment.  In such a contact, it is the 

component of the field parallel to the magnetic easy axis that is relevant rather than the 

total field strength.  Thus, the total field strength required to flip the magnetization should 

have a 1/cos(θ) dependence.  To check this relationship the coercive field strength was 

plotted as a function of angle and fit using equation 5.2 as shown in figure 5.21 (c).  B0 is 

the coercive field strength at θ=0˚, and θ0 accounts for any shift between the expected 

angle and the true angle of the contact relative to the magnetic field.  The resulting fit of 

B0=57.6mT and θ0=4.6˚ agreed very well with the experimental data. 

 
  

  
         

 (5.2) 
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Figure 5.21: (a) 3-point tunnel resistance on contact C1 measured as a function of 

magnetic field at various angles. (b) Average TMR based on three full sweeps at each 

angle. (c) Coercive field strength vs angle fit using equation 5.2. 

 

 Although the tunnel resistance became very noisy, a few more measurements 

were taken before the contact was lost completely.  It was observed that at angles beyond 

90˚ the switch direction was reversed and upon returning to 0˚ the switch orientation 

(a) 

(b) (c) 
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returned to its original direction as shown in figure 5.22.  This change in switch direction 

was expected because at angles beyond 90˚ the cobalt contact is magnetized in the 

opposite direction relative to the field as shown in figure 5.22. 

 
Figure 5.22: A series of TMR measurements on 42OJ7 TR contact C1 at different angles 

showing the switch direction flipping relative to the applied field when the angle goes 

from 79˚ to 108˚ and returning to its original orientation when the angle is rotate back to 

0˚.  Field in kG for clarity of plot axis. 

  

 
Figure 5.23: Illustration of effect of angle on magnetization direction of the cobalt 

contact.  The left contact is oriented 70˚ relative to the applied field and magnetizes right 

to left, while the contact pictured on the right is oriented 110˚ relative to the applied field 

and magnetizes from left to right.  This leads to an inversion of the switch behavior 

relative to the applied field because a "positive" field will align the magnetization in the 

"negative" direction when the angle is above 90˚. 

 

 Angle dependence measurements were also made on contact C3 using constant 

current mode.  A 10nA AC current was applied from C3 to G3, while the voltage was 

measured between C3 and G7.  A relatively normal spin switch loop with ~2% TMR was 
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observed at 0˚, but the behavior changed drastically as the magnetic field direction 

approached 90˚ relative to the sample surface.  At very low angles, tunnel resistance 

increased when the cobalt spin direction flipped during both the up sweeps and down 

sweeps.  The tunnel resistance slopes downward before the switch in order to create a 

continuous loop as seen in figure 5.24 (a).  Interestingly, if one focuses on the change in 

resistance at B=0T and calculates TMR as described in equation 5.1, it is relatively 

constant despite the very odd shape of the magnetoresistance loop at angles near 90˚.  

Figure 5.24 (b) shows these results with the percent change in resistance during the up 

sweep plotted in blue, the percent change in the down sweep plotted in red, and the TMR 

measured at B=0T plotted in green.  Each point represents the average of 3 sweeps. 
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Figure 5.24: Results of 3-point tunnel resistance measurements on 42OJ7 TL contact C3 

at various angles.  (a) Selected plots are shown to illustrate the evolution of the switch 

behavior. R0~360kΩ for all, large ticks are 50kΩ and small ticks are 10kΩ (b) The 

average switch up, switch down, and TMR at B=0 are plotted for each angle.  Beyond 90˚ 

the magnetic field aligns the cobalt magnetization in the opposite direction so these data 

points have been inverted and marked with a *  (c) Coercive field strength vs angle and 

1/cos(θ) fit. 

 

(a) 

(b) (c) 
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5.5 Sample 52JHY 

 Sample 52JHY was graphitized in a graphite crucible with a 1mm diameter leak 

hole.  Sidewall ribbons were grown on 18nm deep trench walls.  The growth recipe was 

10 min at 800˚C for degassing, 1150˚C for 20 min to remove surface oxide, and 

graphitization at 1485˚C for 65s.  Non-contact AFM measurements with an EFM tip 

showed a facet angle of ~19˚.  A lower facet angle of around 11˚ was measured using a 

SHOCONA tip in contact mode. However, non-contact measurements are generally more 

accurate for determining facet angle as the tip effect is more pronounced in contact mode 

measurements. 

 

 
Figure 5.25 Top: Device schematic of 52JHY with edge-to-edge contact distances given 

in microns. Gold contacts are ~1µm wide and Co contacts are approximately 300nm 

wide. Bottom: (a) AFM Topography and (b) Lateral Force measurements taken on a 4µm 

long segment of 52JHY ribbon TL 

 

(a) (b) 
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 Ribbon TL, shown in figure 5.25, is an armchair oriented ribbon.  It is 

approximately 100nm wide based on LFM measurements.  There was patchy overgrowth 

nearby as shown in the LFM image in figure 5.25 (b).  The additional graphene appears 

to form in recessed regions of the SiC surface, 2-4nm deep.  The graphene abruptly stops 

~1.5µm from the ribbon on either side due to the REI etching step done using an O2 

plasma. 

 
Figure 5.26: Conductance vs Temperature for 52JHY ribbon TL, measured during a 27hr 

cool down with a 100nA AC current from G1 to G6.  Lengths are given from contact 

edge to contact edge, for center-to-center distances add 1µm. 

 

 Ribbon 52JHY TL was inserted into the de Heer cryostat for low temperature 

transport measurements.  The ribbon conductance was measured during a 27 hour 

cooldown from 250K to 4K.  A 100nA AC current was applied from contact G1 to G6 

while the voltage was measured across various ribbon segments using gold contacts.  The 
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conductance increased very slightly as the temperature was decreased from 250K, 

peaking between 150K and 200K depending on the segment.  Cooling to 4K reduced the 

conductance from its peak value by ~15% for G2G3 and 25-30% in the other segments.  

The conductance began to level off around 6-7K as observed in the other ribbons 

measured.  The strange jumps in the conductance of segment G2G3 had a period of 1 

hour and continued when the temperature was held at 4K.  Thus, it appears these jumps 

are due to some outside electronic signal being picked up rather than a temperature 

dependent effect.  Such periodic noise was not observed in any other measurements. 

 Initial room temperature measurements of the tunnel barriers on this contact were 

around 5MΩ.  However, after cooling the tunnel resistance was much lower, around 

100kΩ.  Despite this relatively low tunnel resistance, spin dependent conductance 

through the barrier was observed, with a TMR of approximately 3%.  Measurements 

were made in constant voltage mode with a 1mV AC bias applied from contact C2 to 

contact G3.  Current was measured using a lock-in amplifier connected between G3 and 

ground, and the 3-point voltage was measured between C2 and G5.  The DC bias 

dependence was measured in 1mV increments between -5mV and 5mV.  Three complete 

up and down sweeps were performed at each bias before changing to the next bias value 

and the entire set of measurements was repeated a second time to examine the 

reproducibility of the switch behavior.  The results of these DC bias dependence 

measurements are shown in figure 5.27. 

  



 88 

 
Figure 5.27: (a) 3-point tunnel resistance measurements on 52JHY TL.  R0~110kΩ for all 

plots.  Six full sweeps were done at each DC bias value (12 at 0mV).  (b) TMR vs DC 

bias. Each point represents the average TMR from a set of three full sweeps. 

 

(a) 

(b) 
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5.6 Cobalt Magnetoresistance Measurement 

 To ensure that the effects observed were not purely due to the cobalt itself, 2-

point magnetoresistance measurements were made on some of the Co contacts.  To allow 

for these measurements, cobalt contacts with pads on both sides of the ribbon were 

patterned.  The resistance through the cobalt was measured while the magnetic field was 

swept in order to obtain an independent measurement of the cobalt's magnetoresistance.  

Figure 5.28 shows a 2-point resistance measurement across contact C2 of sample 42OJ6.  

A 1µA AC current was used.  The sample orientation was -8˚.  The total change in 

resistance was less than 1% and unlike the tunnel resistance measurements it did not 

exhibit the clear spin switch loop with a high and low resistance state. 

 
Figure 5.28: 2-point resistance measured across contact C2 on sample 42OJ6 

 

 Figure 5.29 shows a series of 2-point resistance measurements done on sample 

52JH3 TL across contact C1 using a 10nA AC + 10nA DC current through the contact.  

The magnetoresistance of the contact was measured at 0˚, 30˚, 60˚, and 90˚.  The total 

change in resistance for each sweep was less than 2% and again no clear switching loop 

was observed.  In the 0˚ measurement there is a 1-2% spike in resistance just after 
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crossing 0T in both directions (figure 5.30 (a)), likely due to the re-arranging of the 

magnetic domains in the Co.  At higher field strengths, the resistance returns to its 

original value as the domains become aligned.  This behavior is completely different than 

that of the tunnel resistance measurements, where there is a clear loop with a high 

resistance state in one field direction and a low resistance state in the other field direction 

as shown in figure 5.30 (b). 

 
Figure 5.29: 2-point resistance measured across contact C1 on sample 52JH3 TL as a 

function of magnetic field, measured at four different rotations.  R0~464kΩ for all sweeps 

 

 
Figure 5.30: (a) 2-point resistance measurements across contact C1 on sample 52JH3 TL 

at 0˚, the average resistance from three up sweeps and three down sweeps is plotted. (b) 

3-point tunnel resistance measurement at 0˚ using contact C1 on sample 52JH3 TL for 

comparison. 

(a) (b) 
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CHAPTER 6 

CONCLUSIONS 

 Epitaxial graphene on silicon carbide is an exciting material for the exploration of 

fundamental physics and for its potential applications in future electronic devices.  The 

CCS furnace design is very versatile and provides a simple, scalable method for 

producing high quality graphene.  Altering the background gases, growth time, and 

growth temperature can significantly alter the resulting graphene.  In addition, SiC pre-

patterning allows for the growth of graphene nanostructures that do not suffer from the 

rough edges caused by traditional lithography techniques. 

 Nanostructured epitaxial graphene produced using SiC pre-patterning is shaping 

up to be one of the most interesting forms of graphene yet observed.  The unique 

properties of these GNRs are just beginning to be revealed.  The work in this thesis 

shows that Si-face epitaxial graphene nanoribbons with clean edge terminations have a 

strong sensitivity to spin polarized current.  Magnetic switching was observed in multiple 

ribbon samples with TMR as high as 75% observed in the cobalt/GNR MTJs.  Such 

magnetic switching has not been demonstrated in any lithographically patterned ribbons, 

showing that these GNRs are truly unique.  The observation of magnetization dependent 

tunnel resistance demonstrates that the charge carriers in these ribbons are in fact spin 

polarized, as implied by the single channel ballistic transport measurements performed by 

Baringhaus et al. [110]. 

 In addition, the GNRs exhibited very high magnetic coercivity at low 

temperatures.  In sample 31JH6 the change in tunnel resistance persisted up to 14T and in 

42OJ6 the change persisted up to 6T, which was the largest magnetic field applied.  To 
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the best knowledge of the author, the strong magnetic anisotropy energy of these GNRs 

has not been successfully explained by any of the models yet, as ferromagnetic coupling 

alone does not result in a fixed magnetization direction.   

 Since the cobalt magnetization axis is aligned transverse to the ribbon, it is clear 

that the magnetization direction of the graphene is at least partially aligned along this 

direction, i.e. in the plane of the (0001) face and perpendicular to the transport direction.  

However, the exact alignment direction is not known, as these experiments were all 

performed with a consistent orientation of the cobalt contacts relative to the GNRs.  Thus, 

the spin polarization measured in this work is simply a minimum value.  It is possible that 

the spin polarization of the graphene is even higher than calculated with a magnetization 

direction that is not parallel to the cobalt magnetization axis.  In future experiments, 

contacts with different magnetization directions could be used in order to probe the true 

magnetization direction of the graphene. 

 The measurements on sample 42OJ6 demonstrated the strong sensitivity of the 

GNR magnetization to temperature.  At temperatures of 70K the magnetization direction 

of the GNRs was no longer fixed and at temperatures above 100K no magnetic switching 

was observed.  In addition, the switch behavior changed as a result of the thermal cycling.  

Rather than returning to its initial 4K switch behavior after cooling, the magnitude and 

direction were changed.  This change implies that the magnetization direction in the GNR 

is not an intrinsic property and may simply get "locked in" as the sample is cooled down.  

This observation may provide a means to control the magnetization direction in the 

GNRs.  In future experimental work, it would be interesting to cool the samples in the 
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presence of an external magnetic field in order to test if the low temperature 

magnetization direction can be controlled. 

 All of the ribbons displayed TMR that was dependent on the DC bias across the 

tunnel junction.  Furthermore, under the right conditions, the direction of the switch could 

be inverted by changing the junction bias.  These results indicate that the spin 

polarization of the graphene might be gate controllable, which would be of great interest 

for the development of new spintronic devices.  In future experiments, a separate gate 

could be added to decouple the effects of gating and tunnel current. 

 Another key measurement performed was the ribbon bias measurement on sample 

42OJ6.  This experiment showed that the spin switch was not affected by the direction of 

the current through the ribbon.  This measurement rules out explanations that are based 

spin-orbit coupling, such as the Rashba effect, because if the spin polarization was 

momentum dependent, then reversing the current direction would reverse the spin switch.  

However, no such reversal was observed. 

 One key difference between the samples was the stability of the switch behavior.  

Measurements on sample 31JH6 were very consistent, while abrupt, unexplained 

reversals of the switch direction were observed in sample 42OJ6.  This may be due to the 

difference in growth of the samples.  31JH6 was a single ribbon grown along the 

sidewall, while sample 42OJ7 was significantly overgrown with multiple ribbons 

between the contacts.  Another possible cause is the difference in the tunnel barrier 

thickness from sample to sample.  For instance, sample 31JH6 had a tunnel resistance of 

approximately 16MΩ while samples 42OJ6 and 42OJ7 had much lower tunnel resistance 

values of approximately 1.4MΩ and 500kΩ respectively.   



 94 

 There are many additional experiments that could also be performed to gain 

further insight into the nature of the spin polarization.  To probe whether the spin 

polarization is a bulk property or the product of edge states, devices with contacts that 

only touch the ribbon edges could be fabricated.  Devices can also be produced with 

multiple Co contacts next to each other with different coercive fields.  This would allow 

for measurement of the spin potential, as done in the non-local measurements performed 

on planar graphene ribbons.  Spin polarized scanning tunneling microscopy could also be 

employed to reveal magnetic information on the atomic scale. 

 Due to the complex nature of the observed phenomenon, the exact nature of the 

spin polarization is still unclear.  The unique magnetic properties of these GNRs are 

likely related to the clean edge terminations or due to bonding between the GNR and 

substrate.  The work of Palacio et al. [113] shows that the structure of the sidewall 

ribbons can be quite complicated, with "pinning" regions where the graphene appears to 

bond to the SiC substrate.  This additional substrate bonding could break the A/B 

sublattice symmetry in places and lead to the ferromagnetic ordering observed here. 

 While much is still to be understood about these ribbons, this work gives an early 

glimpse of magnetic epitaxial graphene on SiC.  These results have piqued the interest of 

experts in the field, and collaborative work with the Fert group in the coming year will 

seek further clarify the mechanism behind the observed graphene spin polarization.  The 

integration of these magnetic GNRs with standard epitaxial graphene could prove to be a 

powerful platform for the development of future spintronic devices. 
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APPENDIX A 

ANGLE DEPENDENT MAGNETORESISTANCE ANOMALY 

 As discussed in chapter 5.2, taking magnetoresistance measurements at different 

angles can be used to find the direction that maximizes the magnetoresistance response, 

which should correspond to the direction perpendicular to the plane of the nanoribbon.  

While nearly all of the angle dependent magnetoresistance data could be fit to a single 

component of the magnetic field, there were some segments that showed anomalous 

responses that could not be fit with this method.  In order to maintain transparency, these 

anomalous results are presented here for your consideration. 

 After the transfer from Jiang's cryostat, the tunnel barriers below many of the Co 

contacts were destroyed, giving far lower contact resistances.  Since the contact 

resistance was now low, some of these contacts were used in the magnetoresistance 

measurements.  In particular, during the angular dependence measurements, a 4-point 

resistance measurement was made with current injected from G2 to G8 while the voltage 

was measured between C1 and G3.  The results of this measurement could not be fit as a 

function of a single component of the magnetic field as was done with the other 

segments.  When fit using the 11˚ facet angle that worked for other segments the peaks 

did not align, but using a facet angle of 37˚ did align the peak locations, but the peak 

heights were different.  It should be noted that other 4-point measurements were made 

using a Co contact that did not show this strange behavior.  This anomalous behavior was 

only observed on one other sample.  A Co contact was used in a 4-point resistance 

measurement for that data as well.  There were no measurements using all gold contacts 

that could not be fit using a single component of the magnetic field.   



 96 

 
Figure A.1: The original 4pt conductance vs field data on 31JH6 ribbon TR contacts C1 

to G3 measured at various angles. 

 
Figure A.2: Conductance vs perpendicular component of magnetic field fit using the 11˚ 

facet angle that fit for the other segments on this ribbon 
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Figure A.3: Conductance vs perpendicular component of magnetic field fit using a 37˚, 

which aligns the peak locations. 
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