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Abstract in English Language

Author: Ilan Momber
Title: Benefits of Coordinating Plug-In Electric Vehicles in Electric Power Sys-
tems Through Market Prices and Use-of-System Network Charges
Language: Written in English
Keywords: Electric Vehicles, Power Systems, Optimization

Both electric power systems and the transportation sector are essential constituents to
modern life, enhancing social welfare, enabling economic prosperity and ultimately provid-
ing well-being to the people. However, to mitigate adverse climatological effects of emitting
greenhouse gases, a rigorous de-carbonization of both industries has been set on the political
agenda in many parts of the world. To this end, electrifying personal vehicles is believed
to contribute to an affordable and reliable energy model that provides tolerable environmen-
tal impact. Representing an inherently flexible electricity demand, plug-in electric vehicles
(PEVs) promise to facilitate the integration of variable renewable energy sources. Yet, how
should the PEVs’ system usage be ideally coordinated for providing benefits to electric power
systems in the presence of resource scarcity?

The thesis develops a model of an aggregation agent as the interface to the wholesale
electricity generators, which is envisaged to be in charge of procuring energy in electricity
markets, exposed to uncertainty in prices, fleet availability and demand requirements. This
aggregator could coordinate the PEV charging either with direct load control (DLC), i.e.,
sending power set points to the individual vehicles, or with indirect load control (ILC), i.e.,
by sending retail price signals.

Contributing to the technical literature this thesis has on the one hand proposed a two-
stage stochastic linear program for the PEV aggregator’s day-ahead and balancing decisions
with DLC over a large fleet of PEVs, while accounting for conditional value at risk in the
objective function. On the other hand, it has put forward a formulation of ILC coordination
as a bi-level optimization problem given by mathematical programming with equilibrium con-
straints, in which 1) the upper level decisions on retail tariffs and optimal bidding in electricity
markets are subject to 2) the lower level client-side optimization of PEV charging schedules.
These decisions may respect a potential discomfort that could arise when PEV users have
to deviate from their preferred charging schedule. Set in an existing, real medium voltage
distribution network with urban characteristics and spatial PEV mobility, network UoS tariffs
for capacity have been applied to both DLC and ILC scheduling by a PEV aggregator.
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Autor: Ilan Momber
Titulo: Beneficios de Coordenar Vehiculos Electricos en Sistemas de Potencia por
Precios del Mercado y Tarifas de Red de Distribución
Lengua: Escrito en Inglés
Palabras clave: Vehiculos Electricos, Sistemas de Potencia, Optimización

¿Cómo sería nuestra sociedad moderna, si no existiese el acceso generalizado a la elect-
ricidad y cómo viviríamos sin transporte motorizado? Parece muy difícil imaginar nuestras
sociedades contemporáneas en países desarrollados sin los sistemas eléctricos como la columna
vertebral para incrementar el beneficio social, el desarrollo económico y ultimadamente el bi-
enestar humano. No hay duda que el sector transporte es un constituyente esencial para la
vida moderna. Sin embargo, para mitigar los efectos adversos de los gases de efecto inver-
nadero, una rigorosa descarbonización del sector eléctrico y transporte ha sido establecida en
la agenda política de muchas partes del mundo. En este sentido, se espera que los vehículos
contribuyan a lograr un modelo energético accesible y fiable con un impacto ambiental toler-
able. Pero todavía existe una duda: ¿Exactamente cuánto deberían coordinarse los vehículos
eléctricos, de tal manera que puedan proveer beneficios al sistema eléctrico en la presencia
de escasez de recursos?

El principal objetivo de esta investigación es proponer herramientas de soporte que puedan
mejorar la eficiencia de todo el sistema a través de la carga de vehículos eléctricos. Un agente
agregador podría ser el interfaz con el mercado mayorista de electricidad en la cual el agregador
está encargado de comprar energía en los mercados eléctricos exponiéndolo a la incertidumbre
de precios, la disponibilidad de la flota de vehículos y los requerimientos de demanda. Este
agregador podría coordinar la carga de vehículos eléctricos con control directo de carga (CDC),
esto es enviando consignas a los vehículos individuales, o con control indirecto de cargas (CIC),
enviando señales de precios minoristas.

Esta tesis contribuye con la literatura técnica en dos maneras, por un lado propone una
programación lineal en dos etapas con CDC para el agregador de vehículos eléctricos que
toma decisiones de oferta en el mercado diario y desvíos de energía para una flota grande
de vehículos eléctricos, mientras se tiene en cuenta el valor en riesgo condicional. Por otro
lado, se propone una formulación de coordinación con CIC como un problema de optimización
binivel dado por una programación matemática con restricciones de equilibrio, donde 1) las
decisiones del nivel superior son el diseño de las tarifas minoristas y las ofertas óptimas en
los mercados, que dependen de 2) las decisiones de optimización de tiempo de carga de los
vehículos eléctricos por parte de los clientes, que se da en un nivel inferior. Las tarifas de red
han sido aplicadas a ambos CDC y CIC, estas tarifas están basadas en una red de distribución
de media tensión con características urbanas y con movilidad de vehículos eléctricos.

Pertenencia:

Inst.deInvestigaciónTecnológica

Universidad Pontificia Comillas

C. Sta Cruz de Marcenado 26

28015 Madrid, Spain

KTHElectricPowerSystems

SchoolofElectricalEngingeering

Royal Institute of Technology

Teknikringen 33, 100-44

Stockholm

Sweden

Technology,Policy&Management

Technische Universiteit Delft

Jaffalaan 5, 2628 BX Delft

The Netherlands





xi

Abstract in Swedish Language (Sammanfattning)

Författare: Ilan Momber
Titel: Fördelar med att koordinera laddning av elbilar med marknadspriser och
kapacitetsnätverkstariffer
Språk: Skriven på engelska
Uppslagsord: Elbilarna, Elkraftsystem, Optimering

Både elkraftsystem och transportsektorn är nödvändiga komponenter av vårt moderna
liv – de förstärker den sociala välfärden, möjliggör ekonomisk framgång och bidrar slutligen
med välmående för folket. För att undvika skadliga klimateffekter av utsläppta växthusgaser
har en rigorös utfasning av fossila bränslen inom båda dessa sektorer prioriterats på politiska
agendor runtom i världen. På så vis förväntas elektrifieringen av personbilar bidra till en
prisvärd och pålitlig energimodell som ger en acceptabel miljöpåverkan. Med en betydande
flexibilitet i efterfrågan på el har elbilarna möjlighet att underlätta integrationen av förnybara
energikällor. Frågan är då, hur ska elbilarnas elanvändning koordineras för att bäst bistå
elkraftsystemet med hänsyn till resursbrist?

Det huvudsakliga syftet med den här forskningen är att föreslå beslutsstödsverktyg som
kan förbättra systemeffektiviteten genom elbilsladdning. Forskningen utvecklar en modell för
en aggregatoragent som länk till grossistelproducenterna, som antas vara ansvariga för att
köpa energi på elmarknaden, under osäkerhet inom priser, tillgång på bilar och efterfrågan.
Aggregatorn kan koordinera elbilsladdningen antingen genom direkt efterfrågekontroll, med
kraftbegräsningar för enskilda elbilar, eller genom indirekt efterfrågekontroll, men prissignaler.

Den här avhandlingen har å ena sidan föreslagit ett tvåstegs stokastiskt linjärt program
för elbilsaggregatorns spotmarknads- och balansbeslut med direkt efterfrågekontroll för en
stor elbilsflotta, genom att ta hänsyn till conditional value at risk i målfunktionen. Å andra
sidan har den tagit fram en formulering för koordinering av indirekt efterfrågekontroll som ett
bileveloptimeringsproblem med jämviktsrestriktioner, där 1) de övre besluten om slutkund-
spriser och optimal budgivning i elmarknaderna med förbehåll för 2) den lägre optimeringen
av kundoptimeringen av laddningsscheman. Dessa beslut kan åsamka möjligt obehag för elbil-
sanvändarna då de behöver avvika från sina föredragna laddningsscheman. Kapacitetsnätverk-
stariffer har tillämpats både för direkt och indirekt laddningskontroll för en elbilsaggregator,
i ett existerande distributionsnätverk med urbana egenskaper och spatiala laddningsscheman
för elbilar.
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Abstract in Dutch Language (Samenvatting)

Author: Ilan Momber
Titel: Voordelen van het Gecoördineerd Opladen van Plug-in Elektrische Voertu-
igen in Elektrische Energiesystemen via Marktprijzen en Use-of-System Tarieven.
Taal: Geschreven in het Engels
Trefwoorden: Elektrische Voertuigen, Energiesystemen, Optimalisatie

Zowel het elektrische energiesysteem als het transportsysteem leveren een essentiële bij-
drage aan de hedendaagse samenleving: het verhogen de maatschappelijke welvaart, het
toelaten van economische vooruitgang, en het verbeteren van het menselijke welzijn. Echter,
om de nadelige effecten van broeikasgassen te beperken, is een verregaande decarbonisatie
van beide sectoren een belangrijk politiek agendapunt geworden in verschillende delen van de
wereld. De elektrificatie van personenwagens wordt geacht bij te dragen aan een betaalbaar
en betrouwbaar energiemodel dat een aanvaardbare milieu impact heeft. De inherente flex-
ibiliteit in de energievraag van plug-in elektrische voertuigen (PEV’s) is beloftevol voor de
facilitering van de integratie van hernieuwbare energiebronnen. De vraag is: hoe kan het
opladen van PEV’s het best gecoördineerd worden om voordelig te zijn voor het elektrische
energiesysteem op momenten van productieschaarste?

Het belangrijkste doel van dit onderzoek is om beleidsondersteunende hulpmiddelen aan
te bieden, om het totale systeemrendement te verbeteren door middel van het gecoördineerd
opladen van PEV’s. Het proefschrift ontwikkelt een model van een aggregatie-agent die als
interface fungeert naar de groothandelsmarkt van elektriciteitsproducenten. De aggregator
is verantwoordelijk voor de aankoop van de energie op deze elektriciteitsmarkten, en is bij-
gevolg blootgesteld aan prijsvolatiliteiten, de beschikbaarheid van de voertuigvloot, en de
vereiste energievraag. Deze aggregator kan het opladen van de PEV‘s coördineren via directe
lastregeling (Direct Load Control, DLC), het verzenden van de vermogenssetpoints naar de
individuele voertuigen, of via indirecte lastregeling (Indirect Load Control, ILC), het sturen
van prijssignalen.

De bijdrage van dit proefschrift aan de technische vakliteratuur is tweeledig. Ener-
zijds wordt er een tweetraps stochastische lineaire programmatiemethode voorgesteld voor de
beslissingen van de PEV aggregator op de day-ahead markt en de balanceringsmarkt, waarbij
rekening gehouden wordt met het voorwaardelijke risicogehalte van de doelfunctie. Ander-
zijds wordt er een formulering van de ILC-coördinatie voorgesteld, als een bi-level optimalisatie
probleem dat gebaseerd is op de wiskundige programmeringsmethode met evenwichtsbeperkin-
gen. Hierbij zijn er 1) de high-level beslissingen omtrent de retailtarieven en de optimale
biedstrategie in de elektriciteitsmarkten, en 2) de low-level optimalisatie van de individuele
PEV oplaadschema’s. Deze beslissingen kunnen een mogelijk ongemak creëren door de af-
wijking van het optimale laadschema voor de PEV-gebruiker. Voor een realistisch en bestaand
stedelijk middenspanning distributienetwerk en ruimtelijk PEV mobiliteitsgedrag, zijn UoS
capaciteitstarieven toegepast door een PEV-aggregator, zowel voor DLC- als ILC-gebaseerde
laadcoördinatie.
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Propositions belonging to the dissertation
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Ilan Momber
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1. Quantitative and qualitative research may reinforce each other when the scientist
is able to turn thoughts into equations and vice versa.

2. Even though their technical integration in power systems has been a chal-
lenge, plug-in electric vehicles are themselves powerful integrators for efficiency-
promoting policies in the energy and transport sectors.

3. Plug-in electric vehicle charging presents an inherently flexible load that, if
aligned to the correct signals, is very beneficial to power system operation.

4. Size matters: larger aggregations of plug-in electric vehicle fleets are more prof-
itable when participating in electricity markets due to the decrease in relative
forecasting error on bids ahead of real time.

5. Timing is not all: the alignment of plug-in electric vehicle charging in the spatial
dimension must not be underrated in order to make use of spare capacity in
power distribution networks.

6. Existing technical power system literature underestimates the illustrative power
of superscripted mathematical notation using the LATEX code forZ and Y as
symbols to indicate the directionality of plug-in electric vehicle charging.

7. Too often, scientific progress is not based on reuse but inspired by regurgitation,
as practiced by some species in the real world of biology, for which the expulsion
of undigested food is a valid method to feed the young.

8. Soliciting negative feedback, is more constructive than the convention of ac-
knowledging uncritical affirmation for reassurance.

9. Even the deterministic equivalents of stochastic optimization problems cannot
defy the odds of decision making under contingent information uncertainty.

10. Good and bad, success and failure, evil and good, tend to closely co-exist, yet
distinguished research avoids the pernicious coalescence of it all into a gray-on-
grey.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotor prof.dr.ir. P.M. Herder.
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Chapter 1

Introduction

This chapter introduces the topic of this thesis from general to specific, defines
the scope and its main objective, before indicating its structure.

1.1 Background
What would our modern societies be like, in the absence of widespread access
to electricity and how would we live without motorized mobility?

It appears rather difficult to imagine contemporary societies of developed
countries without electric power systems as the backbone enhancing social wel-
fare, economic prosperity and ultimately well-being to its human constituents.
This may be one of the reasons why in developed countries, the provision of
electricity to the members of a society is regarded a fundamental service that
in many cases has to be accessible virtually anywhere [1]. Besides being an
essential, integral and even constituting element of societies, to plan, operate
and maintain contemporary electric power systems is a challenging task, as they
may well belong to the group of most complex engineering projects ever success-
fully executed by mankind. Similarly, the transportation sector in general and
motorized mobility in particular bridge the distances between different places
for living, producing and consuming goods. Exchange has been fostered and
travel has been eased.

Limits of Growth and Climate However, these achievements have come at
the cost of expending the planet earth’s resources. The famous 1972 MIT re-
port on the “Limits of Growth” commissioned by the think tank Club of Rome,
warned that the planet’s resource constraints could lead to an economic collapse
in terms of the world’s industrial and agricultural output, eventually resulting
in a fall of health and education services, among many other effects. With 40
years of hindsight and substantial data collections at hand, [2] have recently
confirmed that, despite the growth in population, important per-capita indica-
tors of material and immaterial wealth have indeed closely followed the original

1
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predictions of 1972: Food, services and industrial output have risen on a global
scale. It is no secret however, that this rise has come at the expense of an
ever increasing demand for raw materials, as well as increasing levels of pollu-
tion. Whether the actual “collapse” is portended by these data, or merely one of
many possibilities, is secondary. It seems reasonable to mitigate the exploitation
of natural resources, where possible, to hedge against the risk of a potentially
adverse scenarios of over-depletion.

Already in the early reports, one of the mentioned contributors to collapse
is the climatological effect of emitting greenhouse gases during the process of
converting fossil primary energy carriers into other forms of energy, e.g. elec-
tricity, through combustion. Research has come a long way since. Nowadays,
it is state-of-the-art knowledge that measurable change in climate is partly an-
thropogenic, i.e. caused by human activities. Long-term measurements that
substantiate this assertion include, but are not limited to direct and remote
sensing, e.g. through satellites, of the earth’s surface temperature, annual pre-
cipitation over land, spring snow coverage, polar region summer sea ice extent,
upper ocean heat content, global average sea levels, carbon dioxide contained
in the atmosphere as well as dissolved in ocean surfaces. In fact, the fifth as-
sessment report from the Intergovernmental Panel on Climate Change (IPCC)
finds that “It is extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20th century,” [3].

If the effects of climate change are undesirable, then efforts should concen-
trate on avoiding the anthropogenic components of it. Once determined to
adjust behavior, does climate change mitigation mean a reduction in economic
growth, like the early reports suggest? The recent climate economy synthesis
report by The Global Commission on the Economy and Climate (GCEC) finds
that a protection of the world’s climate can go along with economic growth. In
fact, [4] states that the opportunity of growth is not limited to the countries of
high income, and that it would be feasible in combination with a reduction of
climate change risks. In the context of this, the energy sector is at the tipping
point towards a cleaner future.

The world energy outlook of the International Energy Agency (IEA) sup-
ports the argument that with the right policy instruments, the correlation of
economic growth, energy demand and greenhouse gas emissions can be exten-
uated [5]. It furthermore asserts that the role of the energy sector is crucial in
abating carbon emissions, being a major source of it with roughly two-thirds on
its accounts.

Based on 2011 data from the European Environment Agency (EEA)1, [6]
provides an overview of the contribution of the transport sector, and in partic-
ular the road-based transport to the total greenhouse gas emissions, which are
measured in tons of carbon dioxide equivalent. Other pollutants may or may
not be counted as greenhouse gases, such as carbon-monoxide, nitrogen-oxides
and sulfur-oxides, but remain dangerous to air quality. According to these data,
the EU-27 countries average 1225 out of a total 4615 million tons equivalent

1Excluding Land-Use, Land-Use Change and Forestry.
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Table 1.1: Greenhouse Gas Emissions from Transport in Europe [6]

Country EU27 DE ES SE NL

Total Emissions CO2 [Mio. Tons Eqvt.] 4615 920 368 60 199
Thereof Transport [Mio. Tons Eqvt.] 1225 187 135 30 91
Thereof Transport [%] 26.5 20.3 36.7 50.0 45.7

contributed by the transport sector, or 26.5 percent. Depending largely on
the industrial production base of a country, this share may vary substantially
from member state to member state and may reach up to half of all emissions.
Tab. 1.1 gives an overview of the numbers for the host countries of degree deliv-
ering institutions within the SETS program plus the most populous EU member
state, i.e., Spain (ES), Sweden (SE), and The Netherlands (NL) plus Germany
(DE). Hence, it may be asserted that the transportation sector is a large con-
tributor to greenhouse gas emissions and that it is extremely likely that vehicles
used for road transport account for a substantial share of human influence in
the climatological effect of warming our atmosphere. Thus indeed, if energy
efficiency for transport could be increased, a valuable due would be paid to the
de-carbonization of modern societies.

This view is supported by many other studies. With the goal to quantify
multiple benefits along with the emission reduction potential from low-carbon
actions, the recent GCEC report [4] adjusted the widely-known Marginal Abate-
ment Cost Curves (MACC) by McKinsey & Company [7]. Inverting the original
and adding co-benefits of various options, puts the potential of plug-in electric
vehicle (PEV) subclasses into perspective. Even though, the total abatement
potential compared to other options is rather small, electric vehicles appear as
the third most beneficial abatement option within the range of US$ 100 per
tonne of carbon-dioxide emitted. Hybrid vehicles are estimated to lie in the
range of US$ 80 per tonne of carbon-dioxide emitted.

PEVs as an Option for Increased Efficiency Both of these figures are
partially grounded on the technological facts that electrified mobility has certain
efficiency gains over the conventional internal combustion engine propulsion. [8]
illustratively compares the efficiencies of currently available models based on the
fundamental laws of physics underlying motorized mobility. Generally speaking,
it can be shown that, mainly due to heat losses in the exhaustion fumes, the
water cooling units and friction in the transmission systems, the remaining
usable traction energy for propulsion provided by internal combustion engines
is somewhere close to one fifth of the energy contained in the primary fuel,
i.e., gasoline, diesel or natural gas. Vehicles that use an electric motor for
propulsion, exhibit a substantially higher efficiency in the range of 80 - 85 %,
already including the losses due to thermal management of the battery and
other side aggregates, such as kinetic energy recuperation systems.

However, the emission impact of massive PEV deployment, also depend on
the carbon-intensity of power systems, which is mainly based on its generation
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Table 1.2: Sales Statistics and Market Share Q3 ’13-Q2 ’14, Source: [12]

Country USA Japan China France Germany Italy Sth. Korea

Sales [#PEV in k] 111 31.3 25.4 14.3 10.3 1.6 1.1
Market Share [%] 0.7 0.73 0.13 0.79 0.35 0.12 0.09

mix. Here the benefits appear to be mutual: In case the power system is largely
penetrated by renewable energy sources and therefore less carbon-intensive, the
emissions accounted to PEVs are reduced; With more PEVs penetrating the
system, the integration of renewable energy sources could be facilitated due to
the inherent flexibility of their electricity demand [9].

It turns out that the future of power systems may look a lot different from
today and its century-long past. According to projections of the IEA, until the
year 2035 almost 50% of the global increase in power generation will stem from
renewable sources, [5], however, this would mean that still only slightly more
than 20% of electricity would be generated from renewables worldwide. Other,
more optimistic road maps are sketched by a sustainable energy outlook, which,
focusing on the case of the US, state that much more ambitious targets, e.g.
71% by 2030, are feasible [10].

Status Quo and Development of PEV Penetration Recent studies cer-
tify that an energy transition to a power system with high shares of renewable
energy sources is indeed possible without much stationary storage technology,
and the reason for that being cheap flexibility options, e.g., provided by PEVs.
For the case of Germany, even though with ambitious renewable energy targets,
this means that for the next 15 to 20 years time, or an energy production of up
to 60 % supplied by renewables, the power system could do without stationary
storage options, if PEVs are deployed as planned. Together with power-to-heat,
power-to-gas, demand side management of large industrial customers, PEVs
provide very cheap options to flexibilize power systems. These estimations are
based on assumptions that in the year 2033, up to 80 GW of installed PEV
charging capacity could be leveraged [11].

But where exactly does the PEV market stand today and what are realistic
projections for the uptake? It can be noted that the overall PEV penetration
and its rate of change still remain very low. What the future holds is uncertain
and may include some surprises. The latest sales statistics as summarized in
Tab. 1.2, indicate that the US is by far the largest market with total annual
sales registered at 111 000 vehicles, while the country with the highest share of
total vehicle sales stemming from PEVs is present in France with 0.79 % [12].

These data might seem like negligibly small contributions to an electrification
of the entire fleet of vehicles, but it has to be noted where this rather new
industry comes from. Taking the example of the largest market, the US, PEV
sales grew from 2012 to 2013 by a sheer 81% while the entire automotive market
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only grew 7.5%. Also in terms of vehicle models offered on the market the
developments are fast paced. While by the end of 2013 there were only 16
models commercially available, this number is projected to be 22 by the end of
2014 [13].

Last year’s up-to-date overview of PEV penetration and sales projection
studies compared to real-life observations can be found in [14]. It shows how
difficult this art and science of projection is, even though a variety of analytical
and computational tools to model PEV penetration is already in use.

PEVs as a Strategic Development Option and its Geo-Political Di-
mension The primary energy carrier of crude oil is the indispensable input
for propelling today’s vehicle fleets. [13] indicates that in the US, petroleum use
for road transportation, counting motorcycles, cars, trucks and buses makes up
85%.

As laid out in the introduction of [15], the electrification of personal vehicle
mobility permits a greater number of private end-users, i.e., vehicle mobilists,
to access strategic advantages thus far exclusively inherent to the electric power
sector. Electricity generation is diverse in its primary energy sources and can
partially be generated from domestic, renewable sources. The obvious advantage
of energy diversity lies in sourcing flexibility and potential for quick adaption
to exogenous shocks. These may result from an interruption of supply or soar-
ing prices due to unforeseen events of any sort. Crucially, domestic production
allows political independence and freedom from energy imports, or rather, liber-
ates from a necessity to maintain diplomatic relations of dependency on energy
exporting countries. In the past, electricity prices have proven to be significantly
less volatile than oil prices.

But the electrification of today’s vehicle fleets may also have relevance per-
taining to industry policy and labor markets. Supporting innovation in the
automotive sector would increase internal European employment and enhance
economic prospects in general. Significant reductions or diversion to other sec-
tors from spending on imported materials would free up forces to create jobs
back in other parts of the European economy. These EU-wide benefits are
estimated to be around 850,000 to 1.1 million additional jobs in 2030 [16].

1.2 Motivation, Aim and Solution

Given the above background, PEVs are perhaps not a perfect panacea but cer-
tainly exhibit a plurality of benefits and co-benefits to modern society. It there-
fore appears stringent to tackle the challenges of integrating PEVs in current
power systems as efficiently as possible. PEVs may contribute to an affordable
and reliable energy model that provides tolerable environmental impact. This
is the main motivation of the given thesis research.
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A Brief Introduction to the Research Line
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Ilan Momber ( SETS JD: IIT-KTH) PEV Market and Grid – Feb. 20, 2011 2 / 2
Figure 1.1: Three Layers of PEV Integration in Modern EPS

1.2.1 Motivation

Future power systems with high penetration levels of PEVs are likely to be struc-
tured in the following three layer scheme. First and foremost, PEVs are going to
be used to service the mobility needs of final customers, who drive and connect
at different supply points of the power system, requiring a certain amount of
energy. One layer above, medium and low voltage distributions system opera-
tors are affected by the use of their system. Relevant tasks are the long-term
network expansion planning and the short-term operation of the grid in secure
conditions, such as voltage stability and keeping currents within thermally dic-
tated limits. For the sake of this thesis, it will be assumed that all tasks of the
distribution system operation can be boiled down to a simplified calculation of
network use-of-system fees, which are incurred by the users of the grid. Finally,
an aggregation agent as the interface to the wholesale electricity generators is
envisaged to be in charge of procuring energy in electricity markets. This would
be done similar to the way suppliers nowadays take different positions in the
respective trading floors of electric power exchanges. This agent would be ex-
posed to uncertainty in prices, fleet availability and demand requirements from
the lowest level. It should be noted that from a regulatory perspective within
the framework of the European Union, the regulated activities carried out by a
network operator in its natural monopoly are strictly unbundled from those of
the competitive aggregator agent. Fig. 1.1 gives and overview of this three-layer
scheme for PEVs in power systems
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1.2.2 General Thesis Objectives
This thesis claims to be a normative research work in the sense that it intends to
describe, how should PEVs be advisably coordinated, providing benefits to elec-
tric power systems in the presence of resource scarcity? Resource scarcity refers
to the general economic terminology for welfare-optimal allocation of resources.
Generally speaking, these include, but are not limited to network infrastruc-
tures, generation assets, fuel, and the labor required to deliver the planning and
operation of the entire system. To this end, the thesis works towards increasing
total system efficiency and what in economic theory are called net social welfare.
The goal is to deliver a techno-economic thesis, employing qualitative as well
as quantitative methods and techniques known in regulatory theory, applied
mathematics, economics and operations research.

Main Objective The main objective of this research is to propose models for
decision making of existing and future power system agents that can influence
the total system efficiency while charging plug-in electric vehicles.

1.2.3 Strategy and Approach
In order to pursue the research goal, individual objective functions of aggregators
need to be accurately formulated and the role of network operators analyzed.
Hence the thesis is set out to develop simulation algorithms to generate realistic
price and availability scenarios, as well as stochastic – to account for uncertainty
in the involved parameters – optimization models employing state of the art
solver technology, e.g., MatLab© for handling scenario data, GAMS© and
CPLEX™ for optimization. These algorithms and models will precisely represent
the decision making.

The analysis shall then turn to potential measures to - and prerequisites for
- achieving system optimal outcomes. For that, a representation of the network
state needs to be chosen. The work will introduce location-based efficient net-
work use-of-system (UoS) fees, in the form of capacity prices in e per kW max.
demand over a given time period, for different nodes in the low and medium volt-
age grids. The proposed models will then accurately approximate the economic
impact of these pricing schemes for the involved agents.

Significance and Impact of Proposed Research The models and tools
developed in this work can be directly used by electricity sector agents to aid
them in complex decision making under operational uncertainty. Using these
tools will emphasize the opportunities as well as limits of the PEV technology
and thereby pave the way for system optimal PEV integration. In summary,
the proposed research will foster the energy efficiency of transport systems and
hence contribute to the overall sustainability of future societies.

Other side objectives, intended effects and achievements include the fostering
of an informed and open debate, and to contribute to the wider public policy
agenda affecting the electric power sector and car manufacturing industry.
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1.3 Outline and Document Organization
With the following structure, this thesis addresses the above-mentioned research
objectives. The main body document is organized in two parts, both presenting
different types of scientific contributions, framed by introduction Chapter 1
and conclusion Chapter 7. Part I contains conceptual ideas, general electric
power system framework assumptions and qualitative discussions on existing
work of PEV integration. These chapters form the foundation of this thesis,
to which the subsequent sections frequently refer back. Part II presents the
quantitative modeling chapters, which substantiate the methodology, point to
specific assumptions for the proposed decision making tools and finally put
forward a thorough analysis of an aggregator’s economics with a discussion of
numerical results.

In detail, the subsequent content of this thesis is structured as follows: In
Chapter 2, the regulatory framework of power systems with high levels of PEV
integration is presented in a tutorial manner. It includes a first illustrative case
study to further motivate the importance of understanding regulatory frame-
works and to highlight the most important power systems agents impacted by
PEV charging. Following, in Chapter 3, the existing body of literature is re-
viewed, structured and organized to further synthesize more detailed research
questions and more concrete objectives. Chapter 4 then proceeds to apply ad-
vanced mathematical programming techniques to the decision making of PEV
aggregators. The developed approach is explained while at the same time pro-
viding detailed nomenclature and algebraic formulations of the proposed opti-
mization techniques within the stochastic and bi-level programming frameworks.
In the following two case study chapters, Chapter 5 and Chapter 6, inputs and
outputs of numerical cases are documented, the various aspects of PEV aggre-
gator decision making are highlighted and quantitative results are discussed.
Finally, Chapter 7 states the main findings of this thesis in the form of con-
clusions as well as future work. An overview of the document organization is
provided in the summarizing schematic of Fig. 1.2.
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Opening Chapter 1: 
Introduction

Closing Chapter 7: 
Conclusions

Background Chapter 2: 
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Literature Review
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Figure 1.2: Illustration of the Thesis Outline and Document Structure
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Chapter 2

Regulatory Framework

This chapter forms the basis of understanding the core analysis to follow. It is
a natural extension of the introduction chapter. Beginning a nearly comprehen-
sive thesis on PEV coordination, it can only be beneficial to create a common
ground of comprehension for a broad audience. However, the chapter is not
merely informative to a less specialized readership. The logic amplification and
deepening of basic concepts used in power systems can also serve to the well-
informed power system expert, as basic concepts are reviewed, hence brushed up
and solidified. All this is given in view of a projected adaption of power systems
to a new era with a significant presence of PEVs.

Large parts of this chapter have been published as a book chapter in [17] and com-
plementary discussions grounded on the similar principles have been published
in [18].

Given the long and comparatively slow evolution of power systems over
more than a century, the above-mentioned adaption, progressing in one or two
decades, may be regarded as nothing less than drastic change and disruptive
to business-as-usual (BAU). Therefore, it is deemed important to reflect and
discuss along the lines of constituting elements of these complex systems. On
the one hand, this chapter focuses on current, incumbent and existing, elements,
while on the other hand, it opposes them with those that pertain to the mid-
to long-term future and may with today’s perspective understandably seem fu-
turistic, yet promising.

This chapter borrows large shares of its wording, as well as its mind-set
from the discipline of regulation, an across-the-board art combining technical
knowledge from engineering, understanding of economics as well as surmounting
legislative processes and normative policy analysis. An important piece of work
on the matter shall be cited here first and foremost [1]. To the author of this
thesis, “Regulation of the Power Sector” presents an integrated and concordant
text on the topic, which in the form of its graduate course originated plenty of
inspiration for the given chapter.

13
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2.1 Introduction to Regulatory Aspects

A quick scan of the policy landscape governing PEV in power systems reveals
that at the supra- and national level of the European Union (EU) among others,
a huge variety of relevant initiatives and policy measures have been launched
in recent years. Generally speaking, these include strong commitments to the
allocation of funds to mitigate energy-related environmental impacts as well as
to foster the energy efficiency of societies. In some parts of the world these were
correlated with large government stimulus programs to decrease the exposure to
a world-spanning financial, and in its consequences economic, crisis. In addition,
an increasing awareness of sustainability issues in relation to energy consumption
has paved part of the way for an electrification of transportation systems.

All of the above has lead to the expansion of research in energy efficiency and
clean technology, specific to introducing electric vehicles for road transportation.
This research intends to address a number of prerequisites to a massive deploy-
ment of PEVs. In the course of such endeavors, it has become evident that both
the electric power industries and the automotive industries will have to rise to
a number of challenges. The implications of these, focusing on the electricity
sector, are elaborated in the subsequent paragraphs and sections. To do so,
some background and basic concepts are provided.

2.1.1 Background and Basic Assertions

PEVs bring along environmental advantages compared to conventionally pro-
pelled transportation systems, which tend to be inherently fossil-fuel-dependent
and based on internal combustion engines (ICEs). It is often narrated that these
comparative benefits are a function of the composition and origin of energy car-
riers used as primary inputs to produce the alternative fuel: electricity. This is
true to a large extent, although a refined argument can be added.

Internal Combustion compared to PEVs Electricity generation at the
source, tends to exert less controlability, the more it is based on fluctuating,
intermittent renewable energy technologies. And because it has to be consumed
instantaneously, while, generally speaking, storage technologies are not yet eco-
nomically viable, it has become rather clear that the benefits of PEVs depend
on the advances of control strategies for the charging processes. The idea is to
meet less controlability on the generation side with increased flexibility from
the demand. However, it is interesting to note certain studies, which conclude
that even in rather unlikely but most carbon dioxide (CO2) intensive scenarios,
i.e. with conventional power generation technologies and largely BAU, PEVs
would still possess benefits: Both annual and cumulative greenhouse gas (GHG)
emissions of entire systems, i.e. combining both electricity and transportation
sectors, could be reduced significantly, if a certain electrification level of the car
fleet under analysis [19] was to be achieved.
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Comparing Alternative Fuel Options With the above in mind, it remains
to be questioned, whether PEVs are the best alternative fuel option? PEVs
have received a significant amount of attention both in mainstream media and
research oriented publications. In this later context, the scientific interest has a
twofold justification. As alluded above, in many instances, PEVs are perceived
to offer a means for achieving goals related to energy efficiency, presenting en-
vironmental benefits to the arena of personal transportation. Even though de-
tailed performance characteristics of electricity storage in mobile applications
remain uncertain for the future, transportation technology options have been
effectively compared to one another and evaluated, as the following citations
indicate. Lithium-ion based storage technologies seem most promising in the
mid-term: this technology’s well-to-wheel energy consumption and emissions
highly depend on the electricity generation mix for mobility. Taking a static
value, consumption and emission of battery electric vehicles could range around
314–374 Wh per km and 76–90 gCO2eq per km [20]. However, the academic
opinions are diverse and divided. For the sake of neutrality, it shall not be
left un-mentioned that other literature suggests PEVs do not present the best
option to cut oil consumption and emissions in the transportation sector. A re-
cent study finds that fuel cell electric vehicles powered by hydrogen made from
natural gas would be more efficient in the USA [21].

PEV Promises and Concerns On the other hand, in the mid- to long term
future, i.e. within the next decades to come, PEVs are expected to be able to
provide ancillary services to electric power systems (EPS) and could thereby
further support the integration of variable renewable electricity sources (vRES)
[22], [23]. Yet, it has to be analyzed how to coordinate and to incentivize all
involved participants to foster PEV adoption and create a functional basis for
mass deployment of this emerging technology. To fulfill ambitious penetration
targets on time, it is very demanding but necessary for all stakeholders, including
regulators and policy makers, to exploit their prospective capabilities to an
optimal extent for the entire system.

Storage technology is still costly and degradation, i.e., the loss of value over
time due to intensive usage, is a major concern. Although capacity degradation
may effectively turn out to be less severe, today’s prospects are not only promis-
ing. With the currently projectable lifetime performance and the use of relevant
commercial lithium-ion based batteries for grid application as peak power gen-
erators may remain economically unattractive [24]. Alternative revenue sources
for battery storage valuation in power markets for ancillary services, such as
secondary frequency regulation may have to be sought for [25].

At the consumer level, the proposition of PEVs compared to conventional
vehicles is similarly uncertain. The currently perceived purchase premiums com-
pared to ICEs are widely being discussed and the multitude of different policy
schemes to foster PEV adoption are evaluated. A comparative study shows that,
from a user perspective, one time support at the initial investment is highly ap-
preciated. However, recurring instruments like an annual tax benefit are more
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effective though usually smaller in volume [26] .
Coordination issues for utilities, mostly distribution system operators, and

car manufacturers, but also fleet operators and potentially other charging sta-
tion operators, are constituted by finding functional standards for charging in-
terfaces including physical equipment, metering, and communication protocols
for billing at home or en route. The relevant standardization organizations at
the level of the European Union are the European Committee for Standardiza-
tion (CEN) with its sub-branch the European Committee for Electrotechnical
Standardization (CENELEC) and the European Telecommunication Standard-
ization Institute (ETSI). All of the above mentioned organizations are in col-
laboration with the biggest international standardization bodies: International
Electrotechnical Commission (IEC) and the International Standardization Or-
ganization. Standards need to be addressed to a variety of topics to achieve
interoperability, allow for competition in manufacturing, and agree on commu-
nication protocols as well as the information to be exchanged. Furthermore they
can improve safety of certain products [27].

Regulation as a Means to Penetration With all the PEV promises and
concerns at hand, it becomes clear that a regulatory framework can play an
important role in furthering the deployment of PEV, yet even be a prerequisite
to it. The further integration of PEVs may require new models of ownership and
lease for personal transport vehicles and a change in thinking about the BAU
practices. Mobility as a product or a service may have to be consumed under
new types of arrangements and contracts. Moreover, a great challenge is the
installation of a publicly available charging infrastructure for PEVs. This would
demand active collaboration of national and regional policy makers, vehicle
fleet managers, electricity distribution companies, payment service providers,
and many other areas that may not directly be associated to the sectors of
transport or energy [28]. For the latter however, finding a suitable and well
established operation state description from the power system point of view for
all affected entities to manage different activities such as load shifting, ancillary
services provision and their interdependency, may be crucial [29].

A central responsibility for supporting the commercial introduction of PEVs
lies with electric utility companies. A number of potential roles includes out-
reach and education to create customer acceptance, safe and secure infrastruc-
ture development, as well as understanding and potentially mitigating adverse
system impacts [30].

2.1.2 Chapter Contributions

Provided the above, high-level overview of challenges and elaborating the im-
portance of a regulatory framework, the contribution of this chapter can be
summarized as:

1. Providing a tutorial introduction to the main characteristics, role alloca-
tion and distribution of crucial functions among the agents of modern,
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vertically disintegrated, i.e. unbundled electric power industries, with dif-
ferent penetration levels of PEVs connected to the grid.

2. Introducing a classification of charging modes, i.e. different scenarios, in
which PEVs can be charged, such as home charging, public charging on
streets and dedicated charging stations.

3. Proposing a conceptual regulatory framework for these charging modes,
governing the interaction of the involved agents and giving justification
for the development of two new entities as intermediary facilitators of the
final service.

2.2 PEV and Power-System-Related Taxonomy
In power system literature, there exists a number of different abbreviations that
are used to describe different vehicle classes. This may stem from the fact that
the research on PEV integration may be considered relatively young, and at
its initial stages, a standardization of terminology had not taken place. For
the sake of clarity and interoperability with other publications, the following
paragraph briefly defines relevant acronyms.

Vehicle Types The following distinction between different technologies and
according abbreviations will be used: The parent class contains all vehicles
with motorization differing from mere conventional internal combustion engines.
Electric vehicles (EVs) are driving at least partially with an electric drive train.

1. HEVs, Hybrid Electric Vehicles possess both electric and conventional
drive but no capability of grid connection.

2. PHEVs, Plug-in Hybrid Electric Vehicles, are a sub-class of the fore-
mentioned, distinguished by the capability of connecting to and receiving
energy from the grid. Into this category also fall EREVs, Extended Range
Electric Vehicles.

3. BEVs, Battery Electric Vehicles are propelled with an electric drive train
only. These are naturally equipped with grid connection capability. If a
vehicle is designed to be a BEV but also equipped with a range extending
ICE unit, it is sometimes called a BEVx and then actually is a PHEV, or
more specifically an EREV.

4. PEVs, Plug-in Electric Vehicles, sometimes also referred to as grid-enabled
vehicle (GEVs), are the conjunction class between PHEVs and BEVs, i.e.
all vehicles endued with the possibility to connect to, as well as charge
from the grid.

Where applicable, this document uses the term PEV instead of its synonyms,
as by now, it appears to be the most commonly used abbreviation in IEEE
literature.
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Generic Terms Commonly Used in EPS Connected to the electricity
grid, PEVs could be charged according to their users’ needs for mobility, but at
the same time they could provide benefits to different agents in the value chain
of the electric power system. Such positive externalities would notably exist
in system operation (SO), generation (GEN), retail (SA) and market operation
(MO). SO can be further distinguished with respect to which part of the network
is concerned: in high voltage (HV) transmission (TSO), medium and low voltage
(MV and LV) distribution (DSO), or if the agent in charge of SO does not own
any assets, but is constituted by a separate agent as found, e.g. in United States’
(US) regulation, independent system operator (ISO). All the aforementioned
elements in the electric power system value chain are depicted on the left hand
side of Fig. 2.1.

A Short Excursus on Optimal Charging Schedules In an unbundled
electric power system with liberalized energy markets, generators’ electricity
supply meets the final customer’s demand represented by retailers, while system
operators ensure grid stability [31], [32]. Different electricity sector agents could
be involved in enhancing and valuing intelligent charging alternatives of the
storage. With adequate regulation in place, the PEV charging schedules that
are most important to the system as a whole could be favored.

In this instance, the term system may refer to the collection of producers
and consumers represented by retailers that meet in the electricity market as
well as all network operators. Optimality of the resource allocation can be ex-
plained with a market efficiency argument and in terms of global net social
benefits. That is, the more favorable the PEV charging schedule is, the more
it is consistent with the goal of a market-based regulatory policy. Hypothet-
ical and implicit assumptions form the basis of this argument: primarily all
network aspects are ignored, generation markets should be sufficiently compet-
itive, where agents’ decisions are based on non-regulated market prices, being
the only economic signal for the generators even in the presence of planning
and operational constraints [33]. It is generally believed that establishing an
energy marketplace for electric power and having competitive agents interact
via a spot price for buying and selling electric energy, which is determined by
the economic conditions of supply and demand at that instant, supposedly, has
major advantages over other ways of determining energy prices [34].

However, transmission and distribution of energy comes at a cost and net-
work capacities are not unlimited. This enriches the aforementioned viewpoint
by the fact that optimality may take into account planning and operational
aspects of the power system networks. It may thus be favorable to the power
system as a whole, that charging schedules are simultaneously aligned by market
prices and congestion signals from the network.
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Figure 2.1: PEV Agents in Future Electric Power Systems

2.3 Existing and Future Agents in Electric Power
Systems

The electric power industry has a long history, ever since its birth, strongly
contributing to the technical industrialization of manufacturing goods as well
as to the economic development of modern society. Until its present maturity,
tremendous endeavors have gone into the improvement of current processes of
planning, operating, monitoring and controlling. These have to endure in a
world that is on the one hand technologically quickly advancing but, on the
other hand, growing technically and economically ever more complex.

Traditional regulation of this strategically important sector was designed
with electricity utility companies vertically integrating all processes of the value
generation chain for the final product of electricity: procurement of primary
energy sources, generation, transmission, distribution, and retail. The sector
was liberalized for a variety of different reasons, usually pursuing economic effi-
ciency in the allocation of resources. The enhancement of computing and com-
munication technology has further propelled the intention to drive for efficiency
with appropriate economic signals sent to the final customer. The innovations
in production technology and the advancement of renewable energy generation
equipment that can be deployed in a less centralized manner than conventionally
large electricity generation plants have further weakened the stance of monopo-
listic ownership of vertically integrated companies such that today, the electric
power industry has changed drastically.

Modern power systems since the 80s and 90s have undergone the processes
of unbundling and liberalization. They have developed electricity markets with
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decision making hierarchies for long, medium, short term and real time horizons.
The physical characteristics of electricity as such and the not yet economically
attractive storage technologies demand for generation and consumption to al-
ways equal each other, which make the design of these markets for such systems
a highly complex. To fulfill it, technically both the frequency of the alternat-
ing current and the voltage magnitudes at the different physical nodes of the
network have to be kept within a certain range around the nominal value. The
terminology and the technical specification of the services may vary, however
such services have to be provided. Usually, in liberalized systems, the SO pro-
cures them from other agents [31] . The services are usually called ancillary,
as in addition to being needed they help optimize the utilization of the system,
such that for instance reactive power reduces the technical losses in the network.
Setting up and designing these markets properly is not a trivial task [31].

The following subsections give rise to the functions that are taken on by
the various agents in the electric power system. On the one hand, first, those
known and well defined existing agents are introduced that current regulation
has already defined. On the other hand, the expected, yet sketched and up-
coming agents in a changing picture of PEVs penetrating the power system, are
explained thereafter. Finally, a small example on how these agents may interact
in a coordinated way is provided.

2.3.1 Existing Agents: The Known and Well-Defined

Electric power system agents can be distinguished by the nature of their basic
activity: some agents may be referred to as non-regulated agents with compet-
itive activity. These include generation companies, acting on wholesale energy
markets, and suppliers, acting on both wholesale and retail markets. The other
group of agents can be referred to as regulated agents and mostly includes the
network infrastructure operators. Due to the economies of scale in network
infrastructures, these agents, including the operators of transmission and distri-
bution networks, TSOs and DSOs, act in natural monopolies, commonly under
what is called incentive-based regulation.

As opposed to what is commonly referred to as traditional cost of service
regulation, under an incentive based approach, the remuneration of the network
operation service is determined by revenue caps. This is done with the intention
of emulating the competition of markets to artificially induce efficiency gains in
the operation and planning of the networks.

For the charging modes and their classification further on, mostly DSOs,
TSOs and suppliers are of particular interest and hence are further introduced
and abbreviated at this point:

• TSOs: are responsible for keeping a secure system operation at the regional
or national HV to extra-HV transmission level. For meeting this obliga-
tion these agents procure system services, such as operational reserves and
frequency regulation, from market participants. In other systems outside
the European framework, especially in the US, independent system oper-
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ators are also frequently found. Such a model distinguishes the ownership
of the transmission system assets from their operation.

• DSOs: are the owners and operators of the mostly LV/MV distribution
grids. In the context of this thesis, it is assumed that distribution is legally
unbundled from generation, transmission and particularly from supply and
retail. Therefore, DSOs cannot trade energy. They only provide network
services and are fully regulated agents operating in a monopoly. This
complies with the existing regulation in Europe and presents a fundamen-
tally different approach than, e.g., in some US American states, where
traditionally retail and distribution are provided by the same entity, the
electric utility. In the EU, DSOs are strictly regulated monopolies, subject
to incentive- or performance-based regulation and unbundled as imposed
by the European Commission Directive 2009/72/EC [35]. Under these
incentive-based schemes network operators are generally provided with
incentives in order to improve their performance regarding system effi-
ciency and attain better quality-of-service (QoS) levels. The objective is
to strike an optimal equilibrium of investment and operation cost on the
one hand, with and optimal QoS on the other.

• SAs: Supplier(-Aggregator)s or Retailers are the agents who sell energy
to final customers, the electricity end consumers. Under the assumption
that distribution and supply have been fully unbundled, final customers
remunerate their suppliers for their service, who in return procure the
energy from the electricity markets and pay the DSOs respective regulated
charges for grid services and other system costs.

• Final Customer: is the agent that requires electricity for end-uses and
purchases this from an SA. In general, by legislation, a final customer is not
allowed to resell electricity to another final customer or to another agent.
Final customers are residential, commercial or industrial customers. In
some countries, as an intermediate step towards a complete liberalization,
small residential customers have purchased electricity at regulated rates,
while large customers have negotiated a supply contract with any supplier.

2.3.2 Future Agents: Sketching Expectations

In addition to the known, well defined electric power system agents named in
the previous section, the penetration of PEVs in the system would require new
agents. Besides the PEV driver, two new agents would become relevant. Their
respective relevance depends on the later to be introduced PEV charging modes.
These expected agents are sketched as follows:

• Plug-in Electric Vehicle Owner: is the agent that owns a PEV and requires
electricity to charge its PEV battery. This could be a private person, or
an organization that owns a fleet of vehicles. In the future, this agent
could be able to provide other services to the networks as well. When
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charging, PEVs would be physically connected to a charging point and
in some scenarios a specific PEV supplier aggregator will procure system
services from the PEVs under his control (see definition below). In the
following, we consider two main alternatives regarding the development of
charging infrastructure:

i) privately owned charging areas with private or public access for PEV
owners, and

ii) public charging areas with public access for PEV owners.

• PEV Supplier-Aggregator (PEVSA): the PEV supplier is the agent selling
electricity to the PEV owner. PEV suppliers are retailers and therefore
similar to other wholesale market agents. Their business should be de-
clared as a competitive activity, fully unbundled from other vertical func-
tions in the electric power system. PEV suppliers in general are expected
to aggregate multiple PEVs to conduct an integrated management and
may hence also be referred to as PEV aggregator. All terms, PEVSA,
PEV aggregator are used interchangeable in this document. The nuanced
differences to the traditional SA are elaborated in the following sections.

• Charging Point Manager (CPM): assuming that the installation of charg-
ing infrastructure on private property will in some instances be made by
the property owner, acting as a final customer, CPMs would buy the re-
quired electricity. This energy would be used to either charge the own
PEVs or to resell it to other PEV owners connected to the charging sta-
tion under a commercial agreement. Different situations could be possible,
such as:

– An office building owner who installs several PEV charging points in
the office parking area for private use of its employees.

– A commercial building owner who installs several PEV charging points
in its parking area for use of its clients.

– A PEV charging station owner who installs several charging points
with different charging options, specifically fast charging modes, for
delivering this service to the public.

By legislation until recently, CPMs who resell electricity to a third party, i.e., a
PEV owner, in a competitive activity would be defined as suppliers or retailers.
In this case, the access to the charging services would be made available on
the terms and conditions set by the CPM. For obtaining a license to exercise
this type of activity, they should demonstrate technical capability and financial
liability according to legislation. In Spain, the role of CPMs has been adopted
and defined as outlined above.

In public parking areas, streets and areas with public access, the installation
of PEV charging points is likely to be more expensive, given the state-of-the art
technology and its most likely future. To have a large roll out might therefore
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Figure 2.2: Old and New Agents in Interaction

involve substantial expenditure and risk. When involving the use of a public
good such as the public location, there is a strong argument, that the business
should be regulated and charging stations developed by either the correspond-
ing DSO or the municipality in the area. In this case, the infrastructure would
be considered as other grid expenditures and the access to the charging points
should be made universal to PEV owners contracted with different PEV sup-
pliers. In this way, private companies monopolizing the scarce resource would
be avoided. In the case of CPMs acting on privately owned property, however,
infrastructure could be installed and investment risk assumed by private agents.
The activity would be open to competition depending on the development rights
of the location.

2.3.3 Interactions of new and old agents

To sum up this sub-section, Fig. 2.2 brings the above together and shows the
potential interactions of new and old agents of the electric power system with
the PEVSA as the facilitating agent of the most generic charging process. The
physical flow of electric power is tracked via the HV transmission system over
MV to LV distribution to the final customer. The network operators recover
their costs via the network access tariffs, which are collected by the PEVSA,
together with the energy generation costs and passed on to the respective agents.

2.4 PEV Charging Modes

As mentioned in the previous sub-sections, for the purpose of this thesis, a
charging mode is defined as a situation in which a PEV can be charged [18].
This definition is so important, because these situations may vary a lot and
therefore there is significant value in determining the characteristics that dis-
tinguish and categorize these situations. To this end, certain characteristics of
charging modes have been made out: the determining factors are the charg-
ing point location, interacting agents and their relations for delivering the final
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product or providing the final service, as well as the level of control over the
charge and degree of sophistication for the charge.

Clarifying the boundaries to similar notions: Different terms describing
similar concepts are widely used. According to the above outline of a charging
mode, it could be freely translated as a use-case as well. However, it is different
from the notion of a business model. As opposed to charging modes, business
models describe how a product or service is provided, including the perceived
value creation of a certain product for a final customer. It is internal to one
single agent and usually easy to assess by spending strategic thoughts on op-
portunities and threats. On the other hand, charging modes provide the access
to the changing interrelations as they put each single agent into perspective in
relation with others. In that sense, charging modes are the more general first
and necessary step to formulate the business models of the agents.

2.4.1 Location and Access

The location and access of the charge is defined by the property ownership
on which the charging process itself is taking place. The different cases are:
charging points located on public areas, private areas with public access and
private areas with private access.

2.4.1.1 Public Areas

For public (PU) areas being municipal, regional or national property, merely
public access is possible, therefore a charging station or a charging point should
enable free access to all citizens, which does not mean that the electricity should
be sold for free. However, dealing with a public good, the assumption that the
distribution system company, or the local municipality would be developing the
infrastructure, is not very far-fetched.

At this point it seems important to note that it has been implicitly assumed
that DSOs are likely or favorable to develop public charging infrastructure.
However the outcome of this market development, and therefore also its reg-
ulation is uncertain. It remains to be seen what will happen in the future as
different approaches for developing public charging infrastructure from different
stakeholders with diverging interests are currently co-existing.

Regulatory Options for Charging Infrastructure The Union of the Elec-
tricity Industry at pan-European level initiated the discussion about the “struc-
ture of the e-mobility market” in September 2010 [36], this excerpt picks up
the dialogue and aims at introducing the given regulatory options for fostering
the deployment of public charging infrastructure. The paragraphs below illus-
trate the proposed regulatory options for rolling out the public infrastructure for
charging PEVs. These are potential alternative for the ownership and operation
of the infrastructure placed in public areas with public access.
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Option 1 : The Integrated Infrastructure: This option is characterized through
full integration of the charging infrastructure in the asset base of the
DSO. This would mean that retail and distribution of the electric-
ity for electric mobility are unbundled from each other. This would
entail that the incremental capital and operational expenses would
be acknowledged by the regulatory authorities and the allowed rev-
enues of DSOs would be adjusted accordingly. The advantage of this
first option is that siting of the charge points could be aligned with
network needs, i.e. if possible favoring the most efficient connection
points, which cause the least cost for the overall system.

Option 2 : The Separated Infrastructure: The charging infrastructure would
be a completely new and separate step in the value chain of PEV
electricity delivery, at least legally unbundled from the rest of the
distribution network as well as from retailing. Although this solution
may not exhibit the optimal siting in terms of network expansion
according to already existing DSO assets, potential adverse effects
for the operation of distribution networks, could be offset by higher
revenues from optimal retailing strategies of new dedicated agents.

Option 3 : Independent E-Mobility : Here the ownership of assets and the re-
tailing of the electricity for PEV are combined under one roof. Like
in the second option, the charging infrastructure would be outside
the asset base of the distribution system company, yet the retailing
would be part of the functions for the new entity. There would be a
proprietary network with the licensed and conceded territory. This
territory could be maximally as big as the territory of the country or
as little as a few spots.

Option 4 : Spot Operators: Finally the fourth option proposed is a derivative
of number three with the main difference that the license is single
spot based and not for a regional territory. The prime example is a
parking lot or a gas station that also offers charging services. Similar
to the previous option, location-specific delivery generating location
rents could be the driving force behind development.

In principle it can be argued that Option 1 is the most desirable. The DSO
developing the charging infrastructure in public spaces as the network operator
have the best knowledge about the grid behavior and can take direct measures
in the planning and operation processes to keep the costs as small as possible.
However, it would require that charging infrastructure would be regarded as a
public good and essential service similar to the cases of electricity itself, water,
telecommunications and gas. Only then would a considerable need for capital
be justified.

The importance of this discussion lies in finding appropriate solutions as to
how these investments are going to be acknowledged as costs to DSOs and how
electricity customers or PEV owners, or both are going to pay for them. All
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this should ideally be compliant with incentive-based monopoly regulation for
networks in place [1, Ch. 4, pp. 140].

Interoperability: a Case for Monopoly Regulation? In EU member
states, different initiatives exist with the intent of creating a freely accessible
charging infrastructure to all clients, who may be contractually related only
to one single charging infrastructure operator with a local service territory.
The idea is to provide a billing and settlement platform, such that different
infrastructure operators, especially valid in Option 4 with Spot Operators,
could have a means of providing a roaming service, similar to the ones known
in mobile phone communications, or bank cards: in case the customer finds
himself in the situation to arrive to a new charging spot operated by a different
agent than the one he has contracted already, it would be valuable to the client
to be granted access, without having to enter in a new contractual relation,
especially not one that is, e.g. long-term binding. There is a value in roaming
capability for the client: access to the infrastructure in new locations; as well
as for the operator: additional revenue from external clients that are roaming
in their network.

The developments of information-technology-based platforms that enable the
billing and settlement of payments for charging of roaming processes may there-
fore be regarded as likely. In case, for any reason, the roaming service provider
becomes the sole supplier of the product, a case for monopoly and its regulation
may be given [1, Ch. 4, pp. 140]. To give an example, in Germany the industry
consortium Hubject, providing such an IT platform, is already monitored by
the Federal Cartel Office to ensure that the establishment of interoperability
benefits the well-being of the final customers as proclaimed.

2.4.1.2 Private Areas with Public Access

For private areas (PR) with public access, the case is different. These areas
include company owned parking lots or dedicated charging stations. Here, the
property owner can decide to commercialize the service of charging PEVs him-
self, subcontract other companies or sell a license to do so. The arrangement
would be made between the operator of the charging point and possibly mul-
tiple PEV users. Other contractual relationships, such as office or commercial
building owners giving the service away for free are possible.

Especially offices with a high share of the staff commuting with personal
vehicles might be an interesting field of application for PEVs. There, the man-
aged fleet size could be significant, cars are usually parked during multiple hour
periods of time. In these locations, sophisticated energy management systems
are in some instances already in place, sometimes integrating on-site generation
with small-scale photovoltaic arrays and combined heat and power systems.
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Figure 2.3: Hierarchy of Charging Modes

2.4.1.3 Private Areas with Private Access

Private areas with private access (HO) are the third and last group of charging
modes, concerned with all the charging processes with restricted access to a lim-
ited group of PEV owners. Examples are home charging in domestic garages or
mutli-dwelling units. In this case the electric vehicle service equipment (PEVSE)
for the charge is most probably going to be owned by the PEV user himself and
the cost can be added to the purchase price for the vehicle itself.

2.4.2 Control Modes
Concerning the technical grid aspects of PEV integration, different control
modes are imaginable. The following gives a short introduction to the dif-
ferentiation of control in the charging modes presented underneath. There are
five different denominations for control modes: Uncontrolled Charging (UCO),
Controlled Charging (CCO), which splits up into Direct (DLC) and Indirect
Load Control (ILC), Vehicle-to-Home (V2H), Vehicle-to-Building (V2B) and fi-
nally Vehicle-to-Grid (V2G). Even though in the final nomenclature they are
presented equally, a certain degree of hierarchy exists. This is shown in Figure
2.3 and individually explained in the subsequent subsections.

2.4.2.1 Uncontrolled Charging

Uncontrolled charging stands for the simplest, least sophisticated way of oper-
ating the charging of a PEV. UCO is the intuitive, traditional way of supplying
any given electrical device with power: plugging it in and instantaneously tak-
ing the required power. Since there is no intelligence to improve the scheduling
of the charge to any criterion whatsoever, it is often times referred to as dumb
charging. It is thus assumed that under UCO, there is no tariff, or electricity
price structure in place that incentivizes final customers to adapt their con-
sumption or UoS in any way. In reality, this would be rather similar to the
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current situation of flat energy-based, volumetric prices that are discriminating
neither time, nor consumption level.

With sufficient PEV penetration in the system, the co-incidence of PEV
UCO may drive up peak load and hence lead to adverse impacts on the network.
High costs for investment (in capacity of generation and network assets) as well
as operation would be the consequence. However, it is expected to be the
most prominent way of charging PEVs in the near term until high penetration
scenarios require more sophisticated control modes.

2.4.2.2 Controlled Charging

Controlled charging complements uncontrolled charging. CCO is more sophisti-
cated, hence sometimes merely called smart charging, than UCO as it disposes
of a certain degree of control over the charge. This control can be either exer-
cised via a price signal, which is here called ILC, or via setting a specific load
level, which is here denominated DLC.

In its most trivial form, CCO under DLC may be a simple switch that cuts
off the load if it negatively impacts on the system – for instance in the case of
overloads or voltage problems in the network – or if it becomes too expensive for
the system to reinforce itself against these impacts. More advanced solutions
may permit the controller of the charging to send exact power set points to
the vehicle and thereby actively modulating the charging according to a set of
defined criteria. The most futuristic control modes include bidirectional energy
flow between the battery storage system of the vehicles and the local network
at the grid connection.

With CCO under ILC however, appropriate electricity prices are used as
economic signals, such that beneficial behavior of the final customer is induced
and thereby reducing the negative impact of PEV charging. A good example
are peak and off-peak prices to promote charging at off-peak hours, or with
higher time resolution a contract with hourly prices. Hence, CCO under ILC
in the form of time- or load-variable end-user tariffs, supported through smart
metering,1 appear to be the natural next step in the evolution towards a smarter
grid.

Whether directly or indirectly exercising CCO, the control may be exercised
by different energy management systems operated by different entities such as
PEV aggregators, DSOs, or local CPMs. When PEV sales have sufficient up-
take such that high penetration levels and concentration of PEV charging in
certain feeders becomes significant, CCO may have to be strongly incentivized
by legislation.

The following three charging modes pertain to the main beneficiary and
criterion used in order to control the charging. All three could be enacted under
ILC or DLC.

1Smart metering in this context refers to the ability of the measurement device to dis-
tinguish between different time periods (resolution may vary from two periods per day, up
to 15-minute intervals) and potentially even communicate this data close to real-time to the
DSO.
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2.4.2.3 Vehicle-to-Home

Vehicle-to-home is the first element in the subset of CCO control modes for
charging electric vehicles. It specifies the criterion for the optimization of the
charge control to be according to local domestic devices. Assuming that a
household has a local energy management system2 installed, V2H charging could
be controlled to level out the net load of the home avoiding peak demand charges
or shift electricity consumption to off-peak hours.

2.4.2.4 Vehicle-to-Building

Vehicle-to-building charging control is very similar to the preceding control mode
and not clearly distinguishable from the above. However, it is recently more fre-
quently used and therefore listed here. In this classification it refers to situations
in which the PEVs are connected to an integrated management of a greater size
building. In addition to the energy management system in V2H this may com-
pose of an integrated control with local loads and even other distributed energy
resources (DER), low voltage distributed generation (DG), from e.g., small-scale
combined heat and power (CHP) units, solar photovoltaic panels (solar-PV or
simply PV), or distributed storage (DS) devices.

2.4.2.5 Vehicle-to-Grid

The control mode V2G has received a lot of attention in scientific literature.
This section is not ample enough to give an exhaustive explanation but intends
to deliver an introductory overview of what is often referred to. In any case, V2G
presents the most sophisticated and hence futuristic application of connecting
electric vehicles to power networks.

Security of the physical operation of the electric power system requires, as
noted above, the frequency of the alternating currents, as well as the node
voltage magnitudes of the network to stay within a certain range around their
nominal values. During the process of unbundling vertically integrated utility
companies and liberalizing energy markets, most systems adopted fundamen-
tally similar designs for procuring ancillary services in market arrangements.
Although in research there has been an abundant intuitive use of the term
vehicle-to-grid, two completely different understandings of the term can be dis-
tinguished:

On the one hand, to some it means that there is a bidirectional power flow,
for which the vehicles sometimes act as a generator, injecting electricity into the
grid.

On the other hand it is understood in a more general way, as providing an
ancillary service to the grid, which could be delivered by unidirectional power
flow as well. From a technical view point, lowering the aggregated power draw
of a given fleet of cars has the same effect on the system as an injection of
the same amount of power. What counts is the rate of change in power draw

2Sometimes referred to as energy box.
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indifferent of the current level of own demand. Hence, just the stopping of a
charge when regulation energy to lower demand is required3 would be provided
by an interruptible power connection of a PEV. [37] argues that, even though
further limited in capacity, unidirectional V2G should be logically addressed
first, as it requires less sophisticated PEVSE.4 Along a similar train of thought,
the aggregator of electric vehicles for V2G is believed to be the potential link
between automatic generation control (AGC) entities and the fleet of vehicles
for providing secondary frequency regulation [39].

In best-case scenario simulations of German and Swedish power markets,
[25] found that secondary frequency regulation markets could be significantly
profitable but may saturate quickly if high capacity connections are available to
a broader mass of vehicles.

2.4.3 Communication Protocols

With regard to the communication protocols, during the early stages of the
discussions within the standardization process, [40] analyzed different V2G pro-
tocols, that are in general also relevant for CCO charging. The protocols are
distinguished by the link on which they operate. There are generally two pos-
sibilities:

1. V2G front-end: The link between the PEV and the EVSE and

2. V2G back-end: The link between the EVSE and the legacy electricity grid.

Here, legacy electricity grid refers to any type of electric power system entity
and physical equipment, which may include the DSO, TSO, MO, as well as of
course the PEVSA. Depending on the technical set-up, i.e. voltage levels, cur-
rent ratings, phases involved etc., and charging functionality, different protocols
may be involved. From 32 amperes upward for example the requirements for
safety are rather strict: on the lower layer, dedicated safety signals, circuits and
control pilots may be required.

Furthermore, according to [40], on the V2G front-end, a) IEC 15118, b) IEC
61851 and c) IEC 62196 can be found. According to [41], c) mainly addresses
the physical interoperability, i.e., the electrical equipment, extending b) which
defines technical set-up from slow charging using typical household sockets to
fast charging with dedicated EVSE, however does not accommodate standard-
ization of communication necessary for load control. Hence, a), the newest and
most relevant standard for this thesis, was necessary. Among many features, it
contains provisions for “active charge control”, i.e., CCO, renegotiation as well
as processes necessary to settle payments.

On the V2G back-end however, besides the existing legacy protocols for
communication and control, IEC 61850 may be found. Offering data modeling

3Also referred to as regulation up.
4This claim is backed up by the PEV interface studies of [38] and it avoids negative effects

of depleting PEV batteries in cases where the charge is highly valued by the customer.
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and mapping of logical nodes, this standard is applicable not only to PEV
charging but to communicating with any smart grid device that is equipped
with a certain degree of intelligence.

Having discussed the different control modes and communication protocols
above, the following paragraph links them to the future agents in their respective
roles, for the final classification of charging modes provided underneath.

2.5 Discussing the Role of Future Agents
The following sections come back to rather market related, economic aspects
of PEV integration. They explain the regulatory setting and once again give
justification, why two new figures, CPMs and PEVSAs, may in a future with
high penetration levels of PEV in the power system complement the incumbent
SAs.

2.5.1 Incumbent Retailers, Supplier Aggregators (SAs)
This sub-section focuses on the interactions of SAs as market agents and the
regulation they have to follow in order to perform their tasks when supplying
PEV users. Day-ahead and intra-day markets refer to the wholesale energy
market, where generators meet SAs which procure electricity to resell it to final
customers on the retail market.

The activities of SAs comprise technical and economic tasks. They include
the billing of the energy consumed by the final customer according to energy and
capacity prices set in the agreed contract. A retailer also has to store and use
the information on the consumption of each final customer for load forecasting
to optimize its involvement in the markets. Furthermore, the tasks embrace the
procurement of energy, e.g. in a power exchange, and managing the commercial
relationships with the existing and potential new customers.

The SAs are market players that bridge the trading gap between generation
and demand, fulfilling various functions from the wholesale to the retail market.
In capital market theory these functions mainly include transforming lot sizes,
i.e. trading volumes and quantities of goods, risk transformation, i.e. hedging
against undesirable events, and term transformation, i.e. monthly payments
for domestic customers while procuring energy in 15-minute intervals on the
wholesale market.

An SA’s profits result from the difference in prices, quantities, terms and
risks at wholesale compared to final customer level. In order to assure a viable
business model, the aggregated demand for the final customers has to be as
accurately forecasted as possible, and then accordingly procured. If positions
do not close as expected, that is, if the forecasting errors are causing a need
for balancing of previously purchased supply and the aggregated SA’s demand,
more costly ancillary service products have to be procured on the balancing
markets. In countries where electricity distribution and supply have been un-
bundled to favor competition among agents, all final customers should have



32 CHAPTER 2. REGULATORY FRAMEWORK FOR PEV

access to competing generators through their choice of SAs. Fully regulated
tariffs, if they exist, are intended to only present a back-up option. In these
cases, final customers remunerate the electricity supplier for the service, who in
return procures the energy and pays the distributors regulated charges for grid
services and other system costs.

Due to uncertainty, stand-alone retailing is regarded a high-risk and low-
return business. In theory it is of high interest to the SA to obtain a very
flexible demand which is able to respond to varying market prices in order to
reflect the actual opportunity cost of the customers more appropriately and
pass on part of the risk exposure to the final customers. In this sense, including
a percentage of flexible demand procured by smart charging of PEVs in their
portfolio can be of interest for SAs in the future.

2.5.2 Charging Point Managers (CPMs)

CPMs are yet new to the power system. Slowly, regulation has started to sketch
these figures as vague understanding has hit the regulatory authorities that an
agent for reselling electricity in local contexts is demanded by a world of massive
propagation of PEVs.

CPMs are expected to be acting as final customers on private property with
public access. They are understood to be buying the required electricity to resell
it to PEV owners connected to the local charging station under a commercial
agreement with specific terms and conditions. It is very important to understand
that, to the distribution system, however, a CPM is regarded as a single final
customer. The final customer, depending on the size of the parking lot managed,
could have an electricity demand as big as a small industrial customer in terms
of energy consumption, or constitute just a few cars and therefore be similar
to a household. The CPM in general would have a supply contract with a
supplier. The supplier would have to pay the regulated access tariff according
to the contracted capacity and consumption measured on the interface to the
network.

CPMs should be free to define an objective function that is most beneficial to
them. This could include an installation of PEVSE that meters the connection
points of each and every car and design according rates for the usage of this
infrastructure. On the other hand, it could be favorable for the CPM to simply
charge for parking time and space without measuring user specific consump-
tion and internalizing energy procurement and infrastructure investment costs
on an aggregated level in the parking time rates. Hence, the CPM could be
offering the charging of the electric vehicle as an additional service to customers
with whom there already is some other type of commercial agreement, like in
a shopping mall or for the commuting staff of an office building. The second
arrangement alludes to the main challenge of a regulatory framework forming
the basis of legislation that fixes the rules for such operation of the charging
service. Any set of requirements concerning metering layouts, financial liabil-
ity and technical capability should be designed according to the principle of
non-over-complication, applying restrictions only where absolutely necessary.
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2.5.3 PEV Supplier Aggregators (PEVSAs)

PEVSAs are expected to be the agent that sells energy to final customers,
the electricity end consumers using PEV. The supplier therefore aggregates
contracts with final customers and procures the energy in the wholesale markets,
and possibly agrees on demand side reduction measures of the final customers to
be offering other services to the market. Hence, these agents already exist and
are denominated supplier aggregators (SAs), with the only distinction of being
specialized in serving a theoretically highly flexible load of a fleet of electric
vehicles.

These functions have been extensively discussed and numerically shown in
literature: On the one hand, the study of aggregators’ performance in terms of
revenue and cost implications during charging processes with different program-
ming algorithms can be considered as very important [42]. On the other hand,
however, the problem of the aggregator should not be regarded in a completely
isolated way from other agents in the system. To relax network constraints and
assume the absence of a grid topology that needs to be operated securely and
cost efficiently may present a major shortcoming to analysis when considering
the opportunities of further DG penetration [43].

In the near-term uncontrolled and home charging modes are very likely to
dominate the scene, in which most of the functions and objectives of the SA
stay the same. In the HO scenarios where PEVs are charged at home, the PEVs
will merely present an additional net load to the SAs of domestic electricity
customers. In short, this load is more volatile because it is a flexibly schedulable
charge and hence presents the opportunity for more business, but also the threat
of adding uncertainty to the forecasting. As there is no control over the charging
process from the SA, the main means of influencing the charge of the electric
vehicles will be the offer of PEV user-customized electricity prices with at least
ToU differentiation. In general, the main objective is to get the demand side
involved in the market game by passing on the volatility of prices and thereby
reducing its own risk.

The proposition by electric vehicles could be theoretically a valuable one, as
they present schedulable loads, which if reacting to the price signals, or being
controlled, may contribute to reduce uncertainty and risk exposure of the SAs,
while increasing turnover significantly. However, if the PEV penetration gets
very large, PEV demand becomes very relevant, new specialized PEV aggrega-
tors might arise and additionally, in close interactions with DSOs, the operation
of distribution networks would also have to be considered. In such a case, the
DSO would offer special contracts, pricing the use of the network to the SAs or
would perhaps even be called to validate power flows caused by PEV demand
from a technical point of view or at least be informed about the amounts to be
bought by the aggregators.

In general, the use of PEVSAs may be viewed under the aspect of enhancing
many small entities that by themselves would not present a very meaningful class
of agents to the system. This has implication in terms of energy demand and
capacity for market participation as well as buying power with low transaction
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Table 2.1: A Nomenclature for Classifying Different PEV Charging Modes

LOCATION AGENT CONTROL

Home HO Supplier-Aggregator SA
Uncontrolled Charging UCO
Controlled Charging CCO

Private Property PR Charging Point Manager CPM
Vehicle-to-Home V2H
Vehicle-to-Building V2B

Public Property PU PEV Supplier-Aggregator PEVSA Vehicle-to-Grid V2G

cost [44].
However, in literature, the most common aspect that is mentioned is the

concept of V2G [22], in which the vehicles provide ancillary services to the
system. This is why in the following classification PEVSAs are mentioned as
the intermediary for facilitating these services.

2.5.4 Classification of the Charging Modes

Having introduced the different factors that define a charging mode, the follow-
ing classification and denomination becomes more evident. It is consistent with
what has been published in [17], [45]. Tab. 2.1 provides a tabular overview.

Each charging mode is named according to its classification, including the
characteristics: charging point location <LOCATION>, intermediate agent for
organizing energy procurement or system services <AGENT>, and the degree
of optimization and control over the charging process <CONTROL>. Each
three characteristics can assume the above introduced occurrence HO , PR and
PU for the location, SA, PEVSA and CPM for the intermediate agent as
well as UCO , CCO , V2H , V2B and V2G for the control.

A typical future charging mode for street parking with charging infrastruc-
ture would then be for instance PU-PEVSA-CCO, in which the PEV user
has a contract with a PEV aggregator providing a controlled charge according
to electricity market prices.

In Part II of this thesis, the PEV charging modes covered do not particu-
larize, whether the LOCATION is in a home, private or public property. The
assumption is that charging infrastructure is extensively deployed and that the
PEVSA, as the main agent exercising control and given the presence of stan-
dardized communication protocols, would be able to influence the charging ir-
respective of the location.

The control modes that are being represented in the models developed in
this thesis, are mainly addressing PEV scheduling under controlled charging
with CCO and V2G. A few calculations also make use of UCO to provide
reference cases and benchmark the quality of the CCO modes.

Note that in EU regulation of unbundling, the DSO is never the agent con-
trolling the charging. As a regulated entity, it only sets prices to reconcile
revenues in the most efficient way, which nevertheless may play an influential
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role. The following illustrative case study highlights the above-mentioned as-
pects further.

2.6 Illustrative Case Study
The following case study is published in [46] .

2.6.1 Introduction to the Case
The succeeding sub-section highlights the meaning of the above-outlined regu-
latory topics and tightens the focus of the preceding chapters on interactions of
the PEVSA while representing DSO implications as well.

Thus, the illustrative case study further analyzes the interactions of an ex-
isting agent, the unbundled DSO and a future power systems agent, the PEV
aggregator. Each agent’s objectives and functions are presented for charging
electric vehicles in two different deterministic schedules: dumb charging occur-
ring coincident to peak system load and valley charging as a smart approach.
First, the analysis turns to the different aspects of selling energy to final cus-
tomers by looking at three alternative pricing schemes: hourly pricing, time-
of-use tariffs and a flat energy rates. Then, the DSO as a regulated entity is
analyzed in its function to postpone network investments. Thereby, the simple
case study quantifies the benefits from PEV charging during low price night
hours in terms of energy trading for the aggregator and deferring network in-
vestments for DSO.

To that end, the following builds upon the conceptual regulatory framework
outlined above. The given classification suggests implications on many regula-
tory topics. Here, however, only a certain number of the charging modes are
treated, in which the intermediate agent in facilitating the charging process is
the PEVSA. But it focuses on deriving the main objectives of DSO and load
aggregators, taking into account the agents’ internal business models. In partic-
ular, the case study quantifies the value created by both agents and proposes a
method for benefit calculation and sharing among the two agents in interaction.

As the forthcoming analysis shows, the communication link between DSOs
and the PEVSA can be regarded as a key aspect of the aggregator’s functions
in order to value the opportunity presented by the dispersed storage to the
system. For the DSO, load management generally permits optimized usage of its
infrastructures, which can be valuable to defer investments in grid infrastructure
reinforcements, minimize losses and CO2 emissions, as well as achieve quality
of service objectives set by the regulatory institutions. In summary, there is a
high interest in proper charging schedules of electric vehicles if there are high
penetrations of them in the grid [47]. It has been shown, that the peak shaving
from coordinated charging of an aggregated PEV fleet can lower power losses
and voltage deviations [48]. In the following case study, the main cost savings
are derived from deferring or avoiding network investments due to optimized
charging.
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Table 2.2: Characteristics of the Considered PEV Fleet

High Penetration Scenario – Year 2030

PEV class PEV Type # Vehicles
Standard

Charging rate [kW]
Average

Charging Hours per day

L7e BEV 309 3 1.02

M1
BEV 13,001 3 2.05
PHEV 9,722 3 1.99
EREV 4,474 3 3.23

N1
BEV 1,477 3 2.99
PHEV 1,105 3 2.73
EREV 508 3 2.99

N2 BEV 604 10 8.03

TOTAL 31,201 —

2.6.2 Case Study Description
This section presents a simple but insightful case study to illustrate the ben-
efits of two alternative charging scenarios of a fleet of vehicles managed by a
PEVSA and connected to a distribution network that is owned and operated
by an incentive-based-regulated DSO. The site under analysis is a real distribu-
tion network of a tourist destination in the south of Spain, currently consisting
of 34,351 supply points and 170,444 final customers in low, medium and high
voltage, with a minimal demand of around 120 MW and a peak load of approx-
imately 315 MW on a given day.

2.6.2.1 PEV Fleet Composition

According to a high penetration scenario in the year 2030, the connection of a
PEV fleet of in total 31,201 BEVs, PHEVs and EREVs of four different classes
is considered: 309 L7e (passenger vehicle with maximum unladen mass of 0.55
tons and a maximum power train output of 15 kW), 27,197 M1 (passenger
vehicle with up to 8 seats in addition to the driver’s seat), 3090 N1 (goods-
carrying vehicle with a maximum laden mass of 3.5 tons) and 604 N2 (goods-
carrying vehicle, four wheels, with a maximum laden mass of 12 tons). In
Tab. 2.2, all these can be assessed in further detail. PEV locations were selected
randomly between customers, hence, in terms of probability the number of PEV
in each node was related to the number of customers in each node, and therefore
indirectly linked to their total contracted power [49].

2.6.2.2 Demand Scenarios

The demand of the aggregated fleet of cars is calculated with average charging
rates limited by grid connection from 3 kW (10 kW for industrial goods carrying
vehicles) and average charging hours per day ranging from approximately 1-8h
(derived from battery sizes and daily mobility as well as energy consumption
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depending on the class and type of PEV). Hence, on an average day the vehicles
would consume a total 257.7 MWh of electricity, presenting a considerable 4.5%
of the 5.374 GWh total demand. Simply extrapolating the PEV demand over the
course of a full year yields an annual consumption of 94.04 GWh of electricity.

To emphasize the effect on networks, two deterministic charging strategies
are compared to each other: peak charging and valley charging. Assuming
a high simultaneity of charge either upon arrival at home after work or at a
specific time during the night, the load profiles (except for N2 BEV) have been
adjusted to start at the same time, to consider the worst case of dumb charging
[49]. These two deterministic schedules are shown in Fig. 2.4a. Furthermore, it
can be observed that the scheduling in the peak scenario causes the aggregated
load of the system to rise by considerable 22.11%, shifting from hour 14 to hour
21. The Fig. 2.4b further illustrates the scheduling of the load in the respective
cases, where the red bars present the aggregate load of residential and industrial
customers without electric vehicles, while the green bars show the valley scenario
and the blue bars the peak scenario of the additional electric vehicles charging.
From this illustration it already becomes evident why, in the following sections
of this case study, the two charging schedules are referred to as valley and peak
charging.

2.6.2.3 Market Prices

To calculate the profits of the aggregating agent, the hourly marginal wholesale
day-ahead market prices from the Spanish system have been used as happened
on Wednesday, March 2nd 2011 [50]. The hourly time series of the chosen date
is illustrated in Fig. 2.5. This date is chosen, because it is deemed representative
in its characteristics of total energy traded 584.99 GWh, high maximum price of
€ 53.50 per MWh occurring during the midday, low minimum price of € 32.15
per MWh occurring during night hours, intermediate arithmetic mean price of
€ 45.52 MWh and average trading volume weighted price of € 46.41 MWh.
Please note that the profit calculation does not include price components from
intra-day or balancing markets, capacity payments or other cost constraints. In
particular, it is acknowledged that the wholesale electricity price only makes up
about 49.2% of the total electricity price to final customers. In September 2010,
the components of electricity prices to final customers with hourly varying prices
in Spain made up: Fixed Access Tariff €-cent 1.9 per kWh (16.8%), Variable
Access Tariff €-cent 3.43 per kWh (30.3%), Commercialization Margin €-cent
0.41 kWh (3.6%) and Wholesale Energy Cost €-cent 5.57 kWh (49.2%) [51].

2.6.3 Peak Charging Related Network Costs

2.6.3.1 Economic Impact on the DSO

To determine the DSO’s value of charging the vehicles in valley hours rather
than in peak hours a network reference model (NRM) is used considering the
same technical constraints and planning principles as in the actual network of



38 CHAPTER 2. REGULATORY FRAMEWORK FOR PEV

1 2 3 4 5 6 7 8 Hour

Valley L7e-BEV

Valley M1-BEV

Valley M1-PHEV

Valley M1-EREV

Valley N1-BEV

Valley N1-PHEV

Valley N1-EREV

Valley N2-BEV

17 18 19 20 21 22 23 24 Hour

Peak L7e-BEV

Peak M1-BEV

Peak M1-PHEV

Peak M1-EREV

Peak N1-BEV

Peak N1-PHEV

Peak N1-EREV

Peak N2-BEV

(a) PEV Off-Peak and On-Peak Load
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Table 2.3: Incremental Network Investment by Voltage Level [€/PEV]

Low Voltage MV-LV Transformers Medium Voltage Total
Valley 45.25 17.41 5.29 67.95
Peak 230.17 298.06 197.56 725.78

the described area [51]. For this, detailed geographical features of settlements,
street maps, aerial and underground topology, as well as voltage, capacity and
reliability restrictions are taken into account. The expansion plan designs the
network for a vertical5 demand increase of 2% for 3 years, disposing of a stan-
dardized equipment library for conductors, transformers, switching gear, etc.
for all voltage levels.

Incremental Network Investment Tab. 2.3 indicates a summary of the
results of the incurred expansion planning costs for the two indicated PEV load
scenarios of valley and peak charging in terms of incremental network invest-
ment. Here, the term incremental expansion costs refers to those costs that are
additionally incurred compared to an expansion plan without any PEV load
considerations. The numbers are provided disaggregated for different voltage
levels. The total incremental investment amounts to € 725.78 per PEV in the
peak scenario, whereas the reinforcements only cost € 67.95 per PEV in the
valley charging scenario. The main driver for this pronounced difference is the
additional network capacity that is needed to service the increased peak load.

Annualized Peak Charging Cost One could assume that PEVs are going
to penetrate electric power systems no matter what. In this case, as opposed to
merely reporting the integration costs compared to a no-PEV world, the more
interesting focus lies on how existing resources can be managed as efficiently as
possible, given PEV penetration. Ideally, this could be done without excessive
investment in additional network capacity to accommodate peak charging. To
emphasize this point, the difference between valley and peak charging is calcu-
lated by aggregating voltage levels, subtracting the incremental investment cost
of the valley scenario from the peak scenario. The result is denoted comparative
charging cost.

Furthermore, besides the up front investment cost, it appears interesting to
analyze how these costs amount on an annual basis. To this end, the annuity
factor (ANF) is calculated:

ANFT,i =
(1 + i)

T · i
(1 + i)

T − 1
(2.1)

5In electricity distribution network planning, load growth is further distinguished being
either vertical, or horizontal. Vertical refers to the type of growth that is incurred by the
same given set of supply points, e.g. because customers buy new electrical devices. Horizontal
refers to additional demand arising because of new, before not-existing supply points, e.g., a
new urbanization being added to a given city development.
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Table 2.4: DSO’s Comparative Equivalent Annual Cost of Peak Charging

Total Equivalent Annual Cost
€ € per PEV € per MWh

1,721,248 55.17 18.30

with an interest rate of i = 8% as well as a maturity T of 40 years, providing an
ANFT,i = 8.39 %. Applying this to the comparative charging cost, conceptually
gives the equivalent annual cost of the investment. The peak charging would
lead to an additional cost of € 55.17 per PEV or € 1,721,248 in total compared
to the valley charging scenario. Tab. 2.4 indicates the values in Euros per
vehicle, treating all vehicles equally for the allocation of the cost, as well as in
total. If this price was spread out evenly among the extrapolated yearly energy
consumed by the PEV6, the electricity price effect would be in the rough range
of € 18.30 per MWh or €-cents 1.83 per kWh.

2.6.3.2 Economic Impact on the PEVSA

Having assessed the economic impact of different charging schedules on the
DSO, the illustrative case study turns its focus on the PEVSA. In the following,
an approximation of the profit implications stemming from the two charging
schedules is carried out.

The value of different charging schedules to the aggregator is calculated ex-
post, summing up the arbitrage potential under three different hypothetical
retail tariff settings, i.e., hourly varying, time-of-use (day-night tariff) and flat
rate energy tariff. For the sake of simplicity, the hourly varying tariff assumes
a constant 10% profit margin above the hourly wholesale price. Again with the
intent to keep it simple, the ToU tariff assumes a 10% profit margin above the
average wholesale price between hours 10 and 21 for on-peak during the day
as well as the same profit margin above the average wholesale price between
the remaining hours 22 to 9 for off-peak. The flat rate retail tariff is assuming
simply a constant volumetric energy tariff that is derived from the arithmetic
average, i.e. not trading-volume-weighted, wholesale price over the full day. A
further explanation of different retail tariff options can be found in the case
study of section 6.1.1 on distributed decision making reacting to PEVSA price
signals.

The sum of profits in all hours of the representative day extrapolated to an-
nual values yields the following outcome. All scenarios except the peak charging
under flat rate would be profitable to the aggregator. The results can be ob-
served in Tab. 2.5.7

6This is merely an indicative approximation of the cost per energy, not suggesting it as an
adequate method to calculate a network tariff for PEV, as it is violating many principles of
complex network tariff designs.

7In the tables of this illustrative case study, negative figures (<0) are enclosed by paren-
thesis.
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Table 2.5: Annual Profits of the Aggregator in Different Tariff Settings [€]

ILC DLC
Hourly Variable Day-Night ToU Flat Rate

Valley 327,103 1,053,442 1,010,409
Peak 495,514 98,108 (673,701)

Then, again the peak and the valley charging schedule can be compared to
each other. Inversely to the DSO’s case since dealing with profits instead of
costs, subtracting the profits in the peak scenario from the ones in the valley
scenario yields the following value of valley charging for the aggregator, indicated
in Euros per vehicle and total. See Tab. 2.6.

From this data, it might counter-intuitively appear as if peak charging can
be more profitable to aggregators depending on the wholesale purchase price
variation over the course of the day and the margin calculation. If the cost
during the hours in which the vehicles charged in the valley case were lower than
the ones in the peak case, and the margin assumed proportional to the sales
volume as in our example, the aggregator would theoretically profit more from
peak charging. In such a case, the only determinant of profit is the revenue, i.e.
any schedule with higher revenue means higher profit. The commercialization
margin being the same however, there would still be profit in the valley case. At
this point it is important to note that some combinations, pairing a tariff setting
with a charging schedule are unlikely to occur due to the underlying assumptions
on charging control. In the two tariff settings including time discrimination,
i.e., hourly variable and day-night ToU, ILC is prevalent such that the final
customers would have the control, reacting to the price signals of the tariff
setting. Final customers with flexibility on the timing of their charging schedule
would probably not opt for the more expensive charging schedule during peak
charging, but rather charge in the valley. In that sense, the results in Tab. 2.5
and Tab. 2.6 should never be used to recommend any tariff scheme over another,
by comparatively looking at the difference in value of rows or columns.

Nevertheless they contain a lot of insightful information. The most impor-
tant take away is: If the aggregator has control over the charging, i.e., DLC is
prevalent and therefore a flat rate is offered to the final customers, there are
high comparative profits for the aggregator to align the PEV charging schedule
with the prices in the wholesale electricity market. This comparative profits
are in the same order of magnitude and in the same range as the comparative
equivalent annual costs to the DSO.

2.6.3.3 Economic Impact on the Final Customer

To the final customer the energy costs are always minimized when charging
in the valley scenario, except for the flat rate tariff, in which the customer is
obviously indifferent to the timing of the charge. Similar as for the DSO and
the PEVSA, the extrapolated annual energy cost, only considering wholesale
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Table 2.6: The Aggregator’s Annual Comparative Profits of Valley Charging

Tariff CCO € € per PEV
Hourly Variable ILC (168,411) (5.40)
Day-Night ToU 955,334 30.62
Flat Rate DLC 1,684,110 53.98

Table 2.7: Annual Energy Cost to the Final Customer [€]

Tariff CCO Valley Peak
Hourly Variable ILC (3,598,132) (5,450,653)
Day-Night ToU (4,324,471) (5,053,248)
Flat Rate DLC (4,281,438) (4,281,438)

prices plus commercialization margin of the aggregators are shown in Tab. 2.7.
The comparative value of valley charging to the final customer, as shown in
Tab. 2.8, then amounts to as much as € 59.73 per vehicle on an annual basis.
Again, if this value was spread out evenly among the extrapolated yearly energy
consumed by the PEV, the electricity price effect would be in the rough range
of € 19.70 per MWh or €-cents 1.97 per kWh.

The main take away of these data is that from a final customer perspective,
the highest incentive to participate in a load shifting charging schedule is under
ILC with hourly variable prices, i.e. being exposed to the variability of wholesale
electricity markets, because benefits are passed on.

2.6.4 Comparing Impacts for Both DSO and PEVSA

This section with its illustrative case study has shown the interactions of the
unbundled DSO and the future power system agent, the PEV aggregator. Each
agent’s objectives and functions have been presented for charging PEV in two
different times of the day, charging PEV at peak or valley hours. The coincidence
with other non PEV load is a major driver for costs, as the used capacity of
both generation and networks is scarcer. In this simple case study, the benefits
of charging the vehicles during low price night hours have been quantified in
terms of energy trading and deferring network investments.

Depending on the retail tariff, to the aggregator, the annual value of charging
in valley hours amounts to as much as € 53.98 per vehicle, while it ranges around

Table 2.8: Comparative Value of Valley Charging to the Final Customer

Tariff CCO € € per PEV € per MWh
Hourly Variable ILC 1,852,521 59.37 19.70
Day-Night ToU 728,777 23.36 7.75
Flat Rate DLC – – –
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€ 55.17 to the network operator. The comparative value of deferred charging
in low-load valley hours is approximately of the same order of magnitude to the
DSO, as it is to the aggregator. It can also be seen that the different pricing
options of the aggregator affect the benefit sharing between itself and the vehicle
users, who in the best case gain € 59.37 per vehicle.

On an extending end-note to this case, one should bare in mind, that in the
presented case, the load in the local distribution system is positively correlated
with the system load reflected in market prices. Hence, there are generally no
conflicts of interest between the main agents involved in facilitated CCO to the
fleet of vehicles because the optimal charging schedules of both agents also coin-
cide. Nevertheless, it is noted that scenarios of diverging incentives would paint
a different picture. It is therefore important that the optimal charging schedules
not only take into account price signals coming from wholesale markets, but also
from network tariffs.

Final Remarks on Case Study Implications All results representing eco-
nomic consequences for the involved agents of this illustrative case study are
calculated using a spread-sheet. The two charging schedules for the valley and
for the peak are manually constructed. This implies that no optimization of the
charging schedule is carried out. However, the case study provides a number
of valuable insights for the type of problem that the agents in interaction are
facing.

The developed models in the subsequent parts of thesis are overcoming the
methodological shortcomings of these first approximations with the adequate,
more sophisticated techniques required. As the following chapters sequentially
reveal, this thesis makes an important modeling assumption. It takes the per-
spective of the competitive agent, the PEVSA and optimizes from a single firm
perspective the profits of this central agent. It is assumed that for the purpose
of this document, all activities of the DSO regarding long term planning, i.e.
incremental network investment cost as shown in the illustrative case study,
but also more short term operational constraints, can be reduced to a set of
network prices that are fed into the PEVSA’s problem. This is fully aligned
with the regulatory framework of the EU, respecting unbundling principles of
network operation and market involvement. Therefore it appears to be the most
practicable solution to the PEV coordination problem.

2.7 Concluding Summary

Generally speaking, it may be sustained that power systems are well regulated
for the challenges that had to be faced until now. This chapter has set out
to further envisage a future power system with a massive presence of vehicles
connecting to and needing the system to fulfill mobility and ultimately elec-
tricity requirements. With the intention to structure possible implications and
sketch particular challenges of participating agents, it has further resorted to
descriptive techniques of classifying nomenclature.
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Future Agents for Coordinated Charging This chapter has given a tu-
torial introduction to the electric power system agents involved in coordinated
PEV charging. In particular these are PEV owners, PEV aggregators, and
DSOs, among others.

It is fundamental to understand the different objectives and value proposi-
tions of the intermediary agents, the facilitators of coordination, to the electric
power system. There are manifold value-adding services that an aggregator
could theoretically bring to the system, e.g. proposing prices for PEV charging
incurred by the consumer or directly controlling the power set points during
the charging schedule. If these services are economically attractive enough to
the consumers, they would potentially agree on charging contracts that enable
either ways of load control, direct and indirect. In countries, where electricity
distribution and supply have been unbundled from each other to favor compe-
tition among agents, all final customers have access to competing generators
through their choice of suppliers. In these cases, final customers remunerate the
electricity supplier for the service who in return procures the energy and pays
the distributors regulated charges for grid services and other system costs [17],
[18], [52]. The same applies for the choice of the aggregator, which acts like a
supplier dedicated to PEVs with specialised services.

Classifying Charging Modes The remaining contents of this thesis build
upon a conceptual regulatory framework aligned with European Directives that
define a set of possible scenarios in which PEVs could be charged. As thoroughly
laid out in [17], [18], [52], one way of classifying charging modes, is by the
following characteristics:

• location and access to the charging point: private or public parking areas
with private or public access,

• the intermediary agents involved in facilitating the final products as de-
picted on the right hand side of Fig. 2.1:

– competitive agents procuring energy in wholesale electricity markets
[52, section 7.1.2],

– local rather regulated entities as final customers reselling energy on
private grounds [52, section 7.1.3-4],

– and DSOs [52, section 7.2], as well as

• the level of sophistication in communication, control and optimization
strategies over the battery charging process.

This classification of charging modes leads to more concrete descriptions of
business models for future electric vehicle applications and more importantly
suggests implications for regulatory topics. By means of an illustrative case
study that relies on very simple arithmetic, the implications of different system
outcomes on DSOs and on aggregators have been highlighted, to give a taste of
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the types of problems that are modeled in this thesis. The subsequent chapters
take advantage of this common ground, when going deeper into the topic’s
matter.

The following points summarize, what types of services are evisaged to be
delivered by PEVs in future power systems.

Power System Operation By Service

• Ancillary services

– Frequency regulation

∗ Primary, Secondary, Tertiary control

– Voltage control

• Flexibility provision through load shifting

– Peak shaving, valley filling

– Network investment deferral

– Integration of vRES

To point out more directly what is included in the scope of this thesis: it cov-
ers the topics of peak shaving and valley filling reacting to market and grid
prices in order cost optimally charge and to avoid the excessive use of capac-
ity in distribution networks. This includes the benefit of avoiding or at least
deferring network investment in grids. It does not specifically cover ancillary
service provision for explicit frequency regulation or voltage control, because it
reduces the power system operation to the market interface of day-ahead and
balancing markets. vRES integration is only indirectly achieved. The charging
schemes proposed in this thesis include price signals from electricity markets.
So if it is assumed that the availability of renewables negatively correlates with
the wholesale market prices, because these production sources are direct and in-
fluential participants in the markets and because of their low marginal cost, or
even because of priority dispatch then the flexibility provision within the scope
of this thesis also allows for more vRES integration.





Chapter 3

State of the Art Literature
Review and Contributions

This chapter presents a review of carefully selected literature constituting PEV
integration in modern, unbundled and deregulated power systems. Contributions
from [53] , are for the most part included herein.

3.1 Structuring Existing Work

The integration of PEVs in future societies has been vastly explored across
many disciplines from operations research electrical and industrial engineering
to manufacturing and transportation science. To identify knowledge gaps and
research needs, the existing plethora of work on PEVs needs structure. There-
fore, this chapter specifically reviews technical literature with respect to oper-
ational, planning and policy implications for modern electric power systems.
Within this scope, it assesses the current state of technical, economic and reg-
ulatory research on electric power systems with increasing penetration levels of
PEVs. It looks at effects on electricity markets, the planning of network invest-
ments and reinforcements under uncertainty, optimal charge scheduling under
active network management and operation, design of real-time prices and tariffs,
as well as other smart-grid developments.

The literature review of PEV in power systems in this chapter is selective
yet comprehensive. Relevant and recent scientific publications are critically
discussed according to the following characteristics:

• inherent approach,

• problem ownership, i.e. the agent(s) whose problem is solved

• representation of crucial elements such as

– fleet mobility

47
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– technical characteristics of networks

– employed methodology

– used software tools

– geographical scope of case study

• as well as the main conclusions drawn.

It is acknowledged that any classification has its limitations and to a small extent
ignores significant heterogeneity within each sub-group. There are certainly
more dimensions to include, but in this way it is deemed meaningful to, finally,
from this analysis, highlight shortcomings of the existing literature and identify
promising areas of research.

3.2 Problem Ownership and Agent Responsible
for Coordination

Depending on the regulatory framework, as introduced in the preceding chapter,
different agents have different objectives in EPS. Even though the presented
allocation may not be exact, the following classification of reviewed literature
takes into account different problem owners: the final customer or PEV driver,
CPMs, PEV aggregators, TSOs and DSOs. Concentrated focus is centered
around PEVSAs and DSOs.

3.2.1 PEV Aggregators

This section reviews those scientific contributions that, in the understanding
and definition of PEV aggregation agents as provided in section 2.3, on the reg-
ulatory framework and the power systems agents therein, fulfill the criteria of
competitive market agents or electricity retailers for PEV mobility. Once again,
from a regulatory point of view, the entire system should be designed so that
PEV aggregators are serving the unbundled electric power industry in various
ways [52]. The competition among them is supposed to reduce the costs of cus-
tomer services, while they are adapting the final price options and tariff schemes
to the specific preferences of the final customer by promoting new products and
services. Under this competitive activity fall further sub-tasks such as procur-
ing energy, passing on economic signals where desired, contracting demand side
measures and rescheduling of load forecasts while absorbing higher financial risk
in interaction with generating units on market places. Hence, at first glance the
use of PEV aggregators may be viewed under a strictly quantitative aspect of
consolidating many small entities to represent a more powerful agent to the
system in terms of energy demand and market participation capabilities [44],
[54].

Along those lines, [44] laid out a basic conceptual framework of PEV aggrega-
tors, including their interactions with other agents in electric power systems. A
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very detailed literature review of algorithms used in modeling PEV aggregation
is provided by a comprehensive bibliographic survey [54]. The relevance of ag-
gregators in the context of PEV uptake and the fostering of massive deployment
is discussed with various explanations and justifications of future necessity.

However, in the literature, the most commonly mentioned aspect is the con-
cept of V2G, in which the PEV provide ancillary services to the system. The
logic behind V2G is, if there is a massive deployment of electricity storage in
the car fleet, this storage could be used for supplemental purposes that are ben-
eficial to the electric power system, and therefore remunerated. If vehicles are
purchased, that is if the initial capital cost of the battery is attributed to pro-
viding mobility, then the only additional cost for indulging in V2G may merely
be more sophisticated chargers and controllers. With these ideas, in a seminal
contribution, [55] identified PEV as the most attractive vehicle type for quick-
response, high value services. The study established the basic concept of making
use of the power generation capacity installed by existing fleets of vehicles for
transportation purposes as a resource for operating electric power systems. All
this, so the authors argue, could be done by providing so-called ancillary ser-
vices [31], e.g. frequency regulation services. For the provision of ancillary
services by PEVs, different market design implementations can be studied with
an assortment of country specific instances presented in [31], [32].

Further on, [56, section 2.3.4.2] identifies three markets that are considered
amenable to V2G power provision: peak power, spinning reserves and volt-
age regulation. In short, it is argued that these markets require generators
to increasingly and rapidly respond to control signals, such that small scale
generators, which are scurried about the electrical landscape, i.e also in low
voltage distribution feeders, in the form of vehicles, could serve these functions.
Along the same succession of thought the aggregator is believed to be capable
of providing automatic generation control [39]. The added value of such service
compared to the cost of installing communication and charging infrastructure
for fast-response is not convincingly argued.

Besides qualitatively analyzing the opportunities in different markets and
showing the potential in downward secondary frequency regulation, [25] approx-
imates revenues for PEVs participating in the German and Swedish frequency
regulation markets. Evidence is found, that regulation market participation
is limited as it may become saturated at approximately 3% PEV penetration,
which obviously limits enthusiasm. In fact, the reason for other works, such
as [24], is to exclude ancillary service provision from PEV value assessment.
Nevertheless [24] computes the profits from energy arbitrage and peak power
provisions in selected years and finds that these would not have offset hypo-
thetical costs of providing PEV grid storage. Disregarding avoided network
reinforcement costs, an estimated $ 300-400 annual net social welfare benefit
per vehicle transferable for owners engaging in PEV night charging is found.

Despite the harboring misgivings of some authors, that V2G markets might
be limited, other work shows how an aggregating control system to conduct such
market participation could be implemented [57]. [58] even tackles the problem
of reusing PEV batteries and tries to value stationary storage (as a secondary
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use option of the mobile storage) versus on-board batteries considering whole-
sale energy as well as secondary frequency regulation markets of the California
independent system operator (CAISO). Furthermore, grouping processes to ful-
fill symmetric and asymmetric control bids have been developed [59], showing
that ancillary service designs with symmetric bid requirements would be disad-
vantageous for PEV aggregators, as the fleet’s available capacity determined by
its mobility is not accordingly symmetric.

Similarly, [23] employs dynamic simulation to estimate the economic im-
pacts of vehicle participation in ancillary service markets in Germany. Dis-
cussing the pre-qualification criteria for secondary frequency regulation in the
German context, policy recommendations to adapt market rules, e.g., bid size
and hourly/daily procuring, are presented. It is highlighted that a fleet size of
10,000 PEVs is reasonable to self balance the stochasticity in the underlying
mobility processes. Explicitly, the daily or at least weekly procurement of these
services is recommended as better compared to the monthly tenders.

Ancillary services can also be provided, however slightly limited, only by in-
creasing or decreasing optimized unidirectional charging as explicitly shown by
[37] for different smart charging algorithms with according profit distributions.
[60] develops a mathematical formulation of market participation with unidirec-
tional power flows, which includes optimization algorithms with quasi-spatial
mobility simulation relating driving pattens to network nodes. Indicative re-
sults show that downward regulation could be attractive for charging PEV and
decreasing charging costs.

Finally, there is still an ongoing discussion on the environmental impacts of
PEV integration: [22] claims to highlight that PEVs with V2G capability in
conjunction with other technologies such as CHP in national aggregate systems
allow higher integration of vRES and reduce spillage as well as CO2 emissions.
[61], [62] show that this depends on many factors. For instance, [63] argues
that in power systems with a mix such as in Germany, market power will even
increase the effect that controlled charging contributes to the use of emission
intensive least cost generation technology, which overall would have a negative
environmental impact. Finally, [23] employing price-based load shifting with
feedback loops in an agent based electricity market equilibrium model, shows
that under certain assumption on 2030 power mix in the same country, PEVs
using very high power/energy ratios can contribute to balancing intermittent
vRES to the extent that negative residual load is reduced by 15–22%.

All of the above named literature focusing on PEV aggregators as problem
owners is summarized in Tab. 3.1.

Market Interaction: Uncertainty Modeling As alluded in Section 2.3 on
regulatory framework the key component in optimal charging should be market
driven. The PEV aggregation agent should hence have an objective function
that is consistent with other agents known in electric power systems. This
subsection hence reviews literature that has dealt with electricity market par-
ticipation, which usually involves the explicit modeling of uncertainty and risk
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aversion:

Consider therefore the problem of an electricity retailer that intends to ag-
gregate a PEV as a resource in electricity markets. The operational challenge of
such a PEV aggregator presents a combination of the classic problems of a re-
tailer (sometimes also referred to as supplier or marketer) [67], a large consumer
(with potential on-site generation) [68], and a conventional power producer with
resource unavailability [69], as well as of an energy storage system (ESS) oper-
ator.

The primary goal of the retailer, as an intermediary between producers and
consumers [68], is the medium term procurement of energy in electricity markets
for a subsequent resale to final customers at an agreed price. The main source
of profit for a retailer is the difference in procurement cost and resale revenue.
Typically, retailers cover a large amount of energy demand in the futures market
and procure the rest from short-term pool markets. In short, the retailer buys
electricity at an uncertain price and resells it to an uncertain demand [67].

The main objective of a producer is to sell its available energy and capacity
in the futures, pool and ancillary service markets. The futures market provides
fixed prices through futures contracts over a pre-defined time horizon, while
pool prices allow the producer to sell energy at higher prices in the short term.
Reserve being an important product to guarantee sufficient generation capacity
available in the electric power system to assure short term functioning, presents
a valuable opportunity to fast response equipment. Balancing energy is an
important tool for readjusting previous market commitments closer to real time.
If the production of this agent is subject to some technical constraints and bound
to suffer from unavailability, the producer may have to procure energy in the
pool to meet the futures contracting obligations [69]. The problem of resource
unavailability becomes even more prevalent if the production stems from vRES
such as uncontrollable win power production. A detailed model of a wind power
producer participating in short term electricity markets under uncertainty and
risk aversion is found in [70]

However, there is not only similarity with known problems considering elec-
tricity market involvement, the following basic aspects differentiate the conven-
tional agents and the new PEV aggregation agent, namely: demand is set via
consumption of vehicles, consumption as well as the unavailability of an aggre-
gated battery is defined by the mobility of the vehicles. Therefore modeling
of mobility is crucial and identified as a key element for classifying existing
literature.

[71] model a similar problem, of an storage owner scheduling capacity in
balancing markets to compensate uncertainty in wind availability, however it
can be assumed that the owner of the wind farm is also the owner of the ESS.

The methodological heart of all studies mentioned in this subsection is deal-
ing with uncertainty via stochastic programming. An overview is provided in
Tab. 3.2.
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Direct and Indirect Load Control Approaches As the the literature re-
view has demonstrated to this point, a consensus can be manifested, that PEVs
may present potential benefits to the operation of power systems, depending on
their charging schedules. However, to achieve efficient resource allocation, their
potentially flexible demand is envisaged to be coordinated by an aggregation
agent [44]. This coordination is achieved either via DLC, in which one entity
centrally determines power set points according to a single objective function
[48], [72]–[75], or via ILC, for which the decision making is distributed over more
than one actor, as in [23], applying agent-based simulation. Hybrid approaches
of DLC and ILC have been proposed as well [76]. To evaluate DLC and ILC ap-
proches, different optimization methodologies have been introduced and utilized
in the literature.

Optimization based methodologies are adequate for ILC, having a long his-
tory in theory and application [77], [78]. In power systems research, the mod-
eling of different agents interacting in electricity markets is a well known and
widely studied issue. Recent reference [79] comprehensively elaborates many
different applications of complementarity models in this context, among which
mathematical programs with equilibrium constraints (MPECs) are particularly
suited for strategic interactions between two levels of decision making. For
instance, studying the generation capacity expansion problem in liberalized sys-
tems, the work presented by [80] applies a stochastic MPEC. But also for mod-
eling the decision making of demand-side electricity market agents, such as
retailers, stochastic bi-level optimization has been applied, as in [67].

So far, there exists little literature applying MPECs to the PEV scheduling
problem. References [81] and [82] focus on the PEV aggregator’s profit-optimal
bidding subject to the optimal power flow and market clearing constraints. Nev-
ertheless, the retailing for PEV is also an important part of the PEV aggregator
business and merits some attention. [83] and [84] analyze different signals for
procuring demand-side flexibility by employing two separate optimization prob-
lems, one for the final customers and one for the aggregator of flexible demand,
though without integrating them in an MPEC.

Multi-level optimization approaches, in which different actors interact to find
an equilibrium point on the retail price interface are rare. [85] develops a de-
centralized power-frequency droop based control algorithm. However, the load
shifting only approximates a global optimal solution through estimated charg-
ing gradient functions of the PEV. [86] proposes an ILC scheme, but the study
assumes a central agent for the entire system. This may be less practical for
applications in vertically unbundled power systems with liberalized electricity
markets, such as in the majority of EU countries, e.g. Spain, UK, Germany, as
well as Nordic countries from Scandinavia etc., and in other parts of world such
as Chile etc.

In this setting, electricity tariff design is of marked importance to ensure cost
recovery for all power system activities in generation, transmission, distribution
and retailing [87], [88]. Among the overlapping price signals, to which final
customers are exposed, the aggregator would only be responsible for setting
the wholesale component of the bill. Nevertheless, distribution level impact
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on planning, operation and maintenance and therefore the related charges for
incremental investment recovery may be important at high PEV penetration
rates [47]. Although for integrating distributed generation, long run marginal
cost pricing for computing network UoS tariffs has been proposed [89], [90], the
application of it to the context of PEV charging is relatively unexplored [91].

3.2.2 LV and MV Distribution System Operation

Besides many studies’ focus on transmission system operators, PEV aggregators
and final customers, an increasing share of literature tends to focus on distribu-
tion system level effects, whose problem ownership can be clearly identified as
DSOs. A review and outlook on literature dealing with PEV charging impact on
distribution system levels is provided by [92], in which the need for standardized
reliability metrics is expressed.

The literature reviewed with respect to the DSO’s decision problem always
necessarily involves a network representation. For the IEEE 34-node test feeder,
which represents a radial network with voltage levels from 230 V to 24.9 kV,
[48] used a quadratic and dynamic programming framework to measure the
potential impact of PEV charging on the distribution system. For the load flow
analysis of multiple samples of diurnal system load profiles, the study shows
that coordinated charging leads to increased power quality in terms of energy
losses and voltage deviations on the one hand, as well as to a higher utilization
of the network on the other. Finally, [48] also conducts a first global estimation
of network reinforcement measures for the given, small scale network topology.

This directly links to [51], which present a type of model referred to as
NRM. NRMs are tools for regulators and policy makers to reduce information
asymmetries compared to DSOs when it comes to setting regulated revenues and
performance incentives. This single period tool features green field and brown
field large scale high voltage, including substations, medium voltage including
transformers, and low voltage planning, by making use of standardized cost
libraries for network components of all types. Such single period models are
capable of computing detailed costs for network reinforcements in a big scale, as
done in the corresponding contribution by [47], in which PEV charging impact is
estimated in terms of network reinforcements and energy losses. It shows that in
two large scale case studies for an urban area with underground cables and high
load density as well as a rural area with dispersed loads, that both incremental
investment costs as well as network losses may increase substantially if charging
is not coordinated.

Also for a typical semi-urban network at MV level of 15 kV, [93] run a detailed
24h PSSE simulation, analyzing how home charging, with on average 1.5 PEVs
distributed proportionally to installed capacities among households affects the
distribution system operation. The study uses an advanced centralized PEV
charging control mechanism that alludes to avoided network reinforcements,
however, without actually quantifying them. [93] furthermore promotes a high
level of local control for islanded operation modes and safe increase in vRES
shares.
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Similarly, [94] simulated home charging under DSO control for 40 household
nodes with one 160 kVA transformer, from 20 kV MV level to 400 V LV level
using DIgSILENT, PowerFactory and MatLab with 10 seconds resolution for
a horizon of 150 hours. [94] include the storage degradation for a battery with
linear single cell voltage behavior from 3.4-4.2 V. It is claimed that via bat-
tery state of charge (SoC) distribution analysis, the computed life time savings
avoiding mainly high SoCs from uncontrolled charging are circa twice as high
as revenues from energy trading.

Also in high detail, [95] model a real metropolitan distribution network with
voltage levels including 11 kV, 22 kV, 150 kV, 220 kV, 380 kV and 400 kV
transformers to combine a sophisticated agent based simulation and PEV charge
optimization. Based on assumptions clarified in [29], and a active recharging
management scheme with different levels of hierarchical control detailed in [96],
the authors actually study a potential service of PEV fleet servicing V2G for
local vRES in-feed.

Finally, Tab. 3.3 summarizes the most important features and gives an
overview of the reviewed literature on PEV integration on power systems, solv-
ing DSO related decision making, while 3.4 groups other auxiliary sources.

3.2.3 TSOs and Unit Commitment

Mostly in the US, where network unconstrained market clearing and economic
dispatch are less popular, electric power systems research with unit commitment
(UC) models, i.e. short term (one day to one week) generation unit start up
and shot down decisions, has been of great interest because it is economically
significant for proper operation and mathematically challenging (large scale,
non-convex, and integer variables). It is only logical that these models have
recently been extended to identify impacts of PEV in the operation of power
systems. Accordingly, with a mixed integer linear programming (MILP) formu-
lation, [61], [62] shows that in Texas, up to 15% of PEV penetration decreases
generator NOx emissions, and approximately $200 per vehicle could be annually
saved from the system perspective.

[98] also takes the perspective of a system operator and solves a unit com-
mitment problem of scheduling generators as well as a fleet of vehicles of de-
termined size. Total cost as well as emissions are minimized with a particle
swarm optimization, to tackle the combinatorial nature of comparatively large
amounts of integer as well as continuous variables involved. [99] combines a
MILP formulation for mid-term UC with a Monte-Carlo (MC) simulation for
unit unavailability and re-dispatch. A Spanish case study demonstrates that
system savings can vary with PEV penetration level and driving pattern.

In a planning and dispatch model, [102] conclude that neither the system
costs, as low as 36 € per vehicle per year, nor the price of electricity in the
market clearing become very high.

The author of this thesis has also contributed to the body of literature re-
garding PEV in UC models [103]. However, it is only mentioned here in the
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literature review section and not provided as an integral part of this thesis,
because a very specific problem ownership perspective is taken.

3.2.4 Welfare Effects and Other Problem Owners

Also from a system perspective and formulated as a MILP, [63] models PEV
participation in the oligopolistic electricity market of Germany in Cournot-Nash
equilibrium to highlight selected instances of market failure and regulation. Ev-
idence is found that welfare effects lead uncontrolled uni-directional PEV charg-
ing to increase generator profits but decrease consumer surplus. However with
bi-directionality, these welfare effects are reversed. [101] proposes a smart charg-
ing strategy with locational marginal pricing highlighting transmission network
strain in the Swiss-Italian-French interconnection, when PEV charging is un-
controlled. It is also emphasized that battery degradation limits peak shaving
potential.

To provide insights into the business model of one local, controlled fast
charging station, [97] looks at the profitability in terms of risk and return on
investment. [100] uses a quasi-newton heuristic and secant methods non-linear
programming (NLP) to find that the flexibility of a decentralized control of
charging PEV would bring approximately up to 3% cost savings to the system.
[20] solves the problem of the PEV owner and makes projections of costs and
emissions for various battery technologies.

It is important to note that many studies implicitly or explicitly assume
the availability of ubiquitous charging infrastructure for future charging modes.
Although, it is hard to foresee technological proof in the future, intellectual
property publications of small yet innovative start up firms indicate business
models building upon the technical capability of future power systems provid-
ing inexpensive and pervasive plug-in capability. Ubitricity for instance has
secured a patent on metering and measuring point systems for electrical energy
drawn from PEVs featuring a mobile/non-stationary measuring, metering and
billing/clearing of the electrical current [104], which seems promising.

3.3 Assumptions on Mobility Behavior

Most of the here presented studies on PEVs try to measure a technical, eco-
nomic or environmental impact on the way electric power systems are regulated,
planned or operated. For that it is almost indispensable to make an assump-
tion on the way electric vehicles are plugged-in, i.e. at what times connection
and disconnection is performed. Although the mobility assumptions are deemed
crucial, many studies, in spite of naming a data source for empirical knowledge,
tend to lack detailed technical description of the algorithms used to compute
driving and connection profiles.
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3.3.1 Qualitative, Generic Mobility

On the assumption that the non-electric mobility past is a reasonably good
indicator for forecasting future electrified mobility – with high levels of PEV
penetration –, most studies resort to empirical studies of fleet movements ob-
served on conventional vehicles. That is, PEV driving and hence connection
behavior is assumed to not be significantly different from what can be derived
from driving patterns of conventional vehicles with charging when being parked.
One could on the other hand of course argue that this is highly dependent on
how future PEV owners and drivers understand and perceive the technology
they are using. Perhaps city dwellers of the future will admit that a significant
share of their mobility can be covered by range limited full battery electric ve-
hicles and longer trips will be assured by rental cars. This is just to name one of
the many instances of potential behavior alterations that could ensue. Despite
the fact that electrification of transportation is a game changer, the simplest,
and most straightforward assumptions observed in the bulk of reviewed litera-
ture, are linked to regular commuting. For instance, it is common to assume for
instance always connecting and disconnecting at the same hours, which in this
classification is referred to as qualitative or generic and found in studies [22],
[25], [37], [42], [47], [48], [55], [58], [63], [93], [97], [105], [106].

3.3.2 Travel Surveys and Driving Cycles

To gain further insight one can make use of data obtained from household travel
surveys, in which representative samples of people indicate personal mobility,
or more precisely personal perception of own mobility. Even though it may
be questionable whether this methodology gives rise to true future mobility
of PEV it is a standard procedure as used in [22], [23], [37], [61], [62], [64],
[66], [94], [97], [100], [105], [107]–[109] and may give an acceptable indication.
Depending on the geographical scope, different sources have been identified in
the reviewed literature. In the USA, the use of the National Household Travel
Survey (NHTS) is prominent as even the generic mobility is sometimes claimed
to represent this data set [24]; one of the newest analysis with regard to PEV
can be found in [107] on 2009 data. Claiming that most of the studies using
NHTS have led to inaccurate results, [108] proposes a detailed methodology for
deriving uncontrolled connection (charging) patterns from the 2009 data set.
Other US regions are covered for instance in [61], [62] resorting to data from the
East West Gateway Coordinating Council, or in Puget Sound in the North West
[37]. [22] stands out from the the studies claiming to model US mobility, as it
takes the US a-12 transportation demand profile and then applies qualitative
assumptions for average daily travel distance and annual driving days.

[100], claims to base connection patterns on the 2008 National Travel Sur-
vey Database in the United Kingdom. Finally, the PEV integration literature
with German focus either makes use of the Mobilitätspanel [94] or Mobilität
in Deutschland (MID) 2002 [64], [65] and 2008 [23], respectively. The former
provides a smaller sample size but across the duration of a whole week, while
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the latter covers a greater sample with only one day’s driving. However both
[23], [109] manage to derive the weekly profile from MID data.

For cost and emissions projection, [20] went further into detail by modeling
the new European driving cycle (NEDC), which, in contrast to the other more
higher level studies, contributes to the state of the art by including a combina-
tion of varying driving speeds and consumptions in urban and rural settings.

3.3.3 Advanced Simulation Models

Very progressive representation of PEV mobility including spatial components
is given in [60], in which a cyclostationary discrete state and time Markov Chain
assigns vehicles to network nodes. A detailed description of the according mo-
bility simulation is provided in [110]. However, it is not clearly justified, why
this is done proportional to installed network capacity. The most advanced
mobility modeling was found in [96], [101], with an agent based micro simula-
tion model for the city of Zurich, and in [23], which even provides input data
to reproduce as stochastic mobility simulation. The latter mainly used three
types of information in the form of discrete cumulative probability distribution
functions: travel on a certain day, starting a trip on a specific day and hour as
well as a trip to be of a certain length on a specific day. As mentioned the data
basis is MID 2008 [65]. However, the analysis is not performed for the average
driver. The yields of this data were limited to select German respondents, who
are most likely to adopt electric vehicles in terms of availability of private home
charging facilities, sufficient yearly travel distances, and among other criteria
positive net present values comparing total costs of ownership to conventional
vehicles motorized with internal combustion engines [66]. Reference [109] uses
the same set of raw data from MID, however, without filtering the user groups
with respect to likelihood of adopting PEVs, weekly mobility patterns by trip
usage are mapped, which could be valuable in constructing connection scenarios
for local CPMs, as done in [97]. Finally, future research should include spatial
mobility mapping to find out realistic impacts on network topologies. [111]
provides highly useful insights about individual human mobility patterns ob-
tained from data of mobile phone connections. [112] reviews the former among
other findings regarding the nature of human movements and classifies them
along spatial, temporal and social dimensions of mobility. This could also be a
promising starting point for redefining the methodology and approach used for
modeling PEV impacts on power systems.

3.4 Battery Degradation

Battery degradation, i.e. the loss in functionality and thus value of a storage
system, has been widely addressed in the context of PEV coordination, as it may
have a valid impact on the economics of it. In the context of this thesis, battery
degradation is not the main focus, and thus where possible it has been assumed
that the effects of it can be quantified and tied to the amount of energy processed
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like in [105]. The exact method to arrive to a cost estimate of degradation lies
out of scope of this document. Nevertheless, for the sake of completeness, the
following paragraphs provide some background information, quoted, based on
and extended from the candidate’s own co-authored diploma thesis [15]:

3.4.1 End-of-Life Requirements

Battery cells degrade over their lifetime due to battery wear-out as well as energy
and power fade. Two different processes are mainly responsible for degradation:
“Cycling life” describes the shortened lifetime caused by energy throughput.
Battery cells deteriorate because of changes in structure and composition caused
by cycling. “Calendar lifespan” accounts for deterioration resulting from dam-
aging chemical reactions between cell materials. This process is independent of
battery cycling and specific for each battery type.

The shortened lifetime due to cycling depends on the used depth of discharge
(DOD). DOD describes the percentage of total battery capacity that is used
during cycling. The higher DOD, the lower is the total energy throughput
achievable by a battery over its lifetime: The energy content delivered by one
type of Li-ion battery at an average 40 % DOD is twice as high as the energy
delivered at 80 % DOD [113, p. 30].

Calendar life of batteries highly depends on the temperature of batteries, at
which they are operated as well as on their SOC. The higher the temperature
and the higher the SOC, the faster batteries deteriorate. Tested Li-ion battery
cells which were left at 100 % SOC at 40°C for four years degraded less than 5 %.
Hence, under the assumption of a steady degradation, a presumed lifespan of 12
years until 20 % degradation would be reached. However, if battery temperature
is kept below 45°C and the average SOC below 50 %, an increased lifetime of
15 years can be expected [113, p. 34]. For their high power/medium energy
cell MI 26650, developers of “A123 Systems” even claim a cycle life expectancy
of 7,000 cycles at 100 % DOD and a calendar life expectancy of more than 15
years.

Battery manufacturers must account for degradation and allow for a margin
when designing batteries so that they still comply with requirements at their
end of life (EOL). This margin is usually assumed to be about 20 % of the initial
battery capacity. A PHEV-10 battery with required EOL capacity of 3.4 kWh
would therefore need 4.25 kWh of initial energy storage.

In addition to a margin for battery wear-out, one has to consider the SOC
range that batteries can operate in. As exhaustive charging and discharging
considerably shortens lifetime expectancies for most battery types, batteries
must not be cycled over their total energy capacity. The SOC range therefore
represents a trade-off between battery weight and lifetime. The more “extra
space” is allowed for in a battery, the longer the expected lifetime will be. Each
battery manufacturer sets this margin for its batteries. It typically lies around
20 % of the total battery capacity.

USABC targets for battery lifetime are 15 years for both high power-to-
energy (P/E) and low P/E ratios [114]. However, they represent merely research
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targets which are deduced from an average lifetime of 14 years for passenger cars.
The lifetime shall be reached at 35°C operating temperature as PHEV batteries
will have to cope with higher temperatures than HEV batteries (which operate
at around 30°C) caused by regular complete charging cycles. The number of
required deep discharge cycles for a PHEV-10 battery is about 5,0001 cycles
at 3.4 kWh, which leads to 17 MWh total energy throughput over the battery
lifetime. For charge sustaining, mode 300,000 shallow cycles at 50 Wh are
required.

3.4.2 A Detailed Model Account

The following summary provides a detailed account on the type of linear degra-
dation model that can be deducted from the laboratory testing provided in
[105]. This lays down the physical model for which high-power LiFePO4 cells
were cycled, simulating realistic driving conditions and V2G use.

In this context a common term is the charging rate (C-rate). The power-
based C-Rate describes the charge and discharge rate of a battery normalized to
its total energy content. A C-rate of one signifies that the battery can provide
the equivalent of its energy content during one hour in power, i.e. a 5 kWh
battery with a C-rate of one can provide 5 kW in power. A C-rate of C/2 states
that it can provide half of its energy content in power, i.e. 2.5 kW for a 5 kWh
battery. Together with the residual energy content of the batteries the C-rate
determines the power that can be delivered by a battery.

The tested battery cycles were based on driving patterns from the 2001
NHTS for selected households, representing commuters in four metropolitan
areas. The data was overlaid with US driving profiles. The resulting cycling
conditions represented four trips of traveling per day with a total daily amount
traveled of 29 km, an energy use of 0.28 kWh /mile (or 0.175 kWh /km) and an
experienced discharge at a maximum C-rate value of 2.85 [105].

Li-ion batteries can have very high C-rates depending on their design. In
the case of cells from a certain chemistry, denominated LiFePO4, C-rates with
a nominal value up to 20 are possible. For V2G energy use, discharge with a
constant C-rate of C/2 was tested over changing time periods [105].

The resulting deterioration shows a linear relationship between battery life-
time and energy throughput. The degree of degradation increases when batteries
are discharged dynamically, which they are in mobile environments. Conse-
quently, two factors for battery degradation were derived: 0.0027 % per nor-
malized Wh for V2G use and 0.006 % for driving use. The term “normalized
Wh” sets the total processed energy in relation to the available battery capac-
ity. Both factors are very small, which reflects that batteries are expected to
have a high cycling life. Even at 95 % DOD, 5.300 V2G cycles were observed
before reaching 80 % battery cell degradation. DOD therefore seems to have a
negligible impact on degradation for this type of cell chemistry [105].

1This is derived from 15 years battery lifetime, 330 days of deep discharging per year and
one cycle per day, i.e. 15 * 330 = 4,950.
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3.4.3 Limitations on Battery Assumptions
PEV batteries have not been tested in realistic driving conditions over an ex-
tended period of time. To the best of the author’s knowledge, therefore, no
reliable empirical data on battery wear-out exists to this point. The above
outlined model thus merely represents a very simplistic but straightforward ap-
proximation of the expected cycling life of batteries. Nevertheless, it must be
clear that the following uncertainties remain with all types of battery models:

• In the usually given set up, battery cells are tested under laboratory con-
ditions. More stressful conditions in the mobile environment can therefore
lead to faster battery degradation.

• Each test can only test limited amounts of cell chemistry. Consequently,
for other types, the impact of DOD might be underestimated.

• Driving cycles are usually standard patterns for an average driver and as
such might undervalue the individual strain on batteries.

3.5 Reviewing DLC and ILC Schemes
When it comes to determining optimal PEV charging schedules for Plug-in
Electric Vehicles, existing literature has proposed a variety of algorithms. As
discussed earlier, there is a fundamental difference between DLC, in which one
agent centrally determines the outcome according to a single objective function,
and ILC, for which the decision making is distributed over more than one actor.
Additionally, ILC and DLC differ in the type of information that is generally
exchanged. ILC usually refers to a situation in which the decentralized decision
making is being carried out according to prices that are sent from the aggrega-
tion agent, whereas DLC assumes the centralized decision maker sending power
or energy set points to the PEV.

As indicated in the section on control modes in the previous chapter, a
very likely agent to control the charging, whether it be with DLC or ILC, is
the PEVSA. Therefore some of the literature cited here, could also be cited in
relation to its problem ownership.

3.5.1 Determinants of Control Schemes
Furthermore, approaches for tackling the problem of optimal charging schedules
of PEV found in literature can be divided into categories depending on whether
bidirectional or unidirectional communication with the PEVs is needed, similarly
to [115], which proposes a classification according to ILC and DLC as well as
directionality of communication.

Centralized decision making with DLC almost always necessarily relies on
bidirectional communication between the aggregating agent and PEVs, which
need to communicate their energy requirements to the aggregator and receive
control signals from it. Different assumptions on the frequency of this signals
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have been used in existing literature. Besides some advantages, this control
architecture is supposed to have some drawbacks: the scalability may turn out
to be prohibitively problematic because the decision making and data handling
on the aggregator’s side is typically said to become more complex and perhaps
even intractable with large sizes of the aggregated fleets.

Under the assumptions of ILC with unidirectional communication, the com-
putational burden for the aggregator is widely expected to be significantly re-
duced. Similarly, it is assumed that overburdening communication is less proba-
ble since the requirements for data to be exchanged is somewhat less pronounced.
Here the aggregator could for instance only broadcast a vector of prices for a
predetermined time horizon in the future, which to the PEV is an exogenous
signal according to which local optimizations of the charging schedule could be
carried out.

In other setups, ILC and bidirectional communication have been assumed.
The bi-directionality stems from iterative bidding processes in market clearing
frameworks which provide the input to the local control problems of the PEV.
It is believed that these setups are advantageous compared to ILC with unidi-
rectional optimizations with respect to avoiding avalanche bidding effects and
synchronicity, i.e. all vehicles consuming at the same time, but have a similar
communication burden to DLC.

3.5.2 The Importance of Market Design

Before carrying out the approximation of communication requirements and es-
timating the burden of these, it is important to state that different assumptions
with regard to the market design framework also imply different amounts of
data to be exchanged. As an example, two simple situations of pricing and
contractual relationships between the aggregator and the PEV are indicated as
follows: 1) the aggregator may be trading in day-ahead markets and during the
balancing phase may be obliged to pay for potential imbalances between the
day-ahead and the previously committed day-ahead schedule, however the PEV
only perceive one series of prices which is determined day-ahead; 2) again the
aggregator is acting on both day-ahead and on balancing phases of the elec-
tricity market, but in this case there is also an updated pricing signal from the
aggregator to the PEV. This means that to determine the difference between
day-ahead and actual schedule, similar to any participant in the market, the
PEV need to make a scheduling commitment at day-ahead but can then update
their schedule once the new prices of the balancing close to real-time operations
are known.

With the intention to make an assessment of communication requirements
and their cost implications of the respective control architectures, first a tutorial
review of literature is given and then some data estimations under different
market designs and control schemes are given.
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3.5.3 ILC vs. DLC Cost Considerations

Without directly mentioning the assumptions for the control architectures, [116]
computes infrastructure costs for equipment private, semi-public and public
charging modes per vehicle as well as per energy charged. One of the conclusions
made from these calculations is that, the private home charging appears to be
much more attractive in terms of costs. Therefore, it is not overly optimistic
to assume that simple infrastructure scenarios with indirect load control are
likely to be most prevalent. This assertion is backed up by mobility behavior,
which indicates that large shares person kilometers of the today’s driving could
be fulfilled by home charging only, and therefore do not require any public
charging infrastructure.

[117] provides a qualitative illustration of components needed for ILC and
DLC, including infrastructure and communication hardware. From this illus-
tration, it appears that conceptually there may be a significant difference with
regard to the functions that have to be carried out by the PEVSA, but in terms
of physical components needed both in the charging point as well as inside the
car, an important difference is not evident.

As alluded – A personal side note: if you read this sentence, please email
me, ilan, the author with the codeword ’pevdrink’, you have just earned yourself
an invitation to a drink to reward your attention to detail – in the regulatory
framework chapter, see Chapter 2, looking at the communication standards that
have been proposed for PEV charging processes front end – IEC 15118, IEC
61851 and IEC 62196 – it seems that these already provide the full functionality
of both DLC and ILC. In particular, [41] formalizes a model for charging in
accordance with the parameters included in IEC 15118, in which a schedule
coming from the aggregator is enforced, i.e., DLC, as well as a tariff driven one,
i.e., ILC. It seems therefore reasonable that with wide spread adoption of level
2 charging, or higher, thanks to the standardization efforts, the technology for
both ILC and DLC are not only likely to exist in parallel but also probable to
be commonly available.

The general framework given by [44] includes a high-level discussion on the
nature of data that are transmitted from each PEV to the PEVSA, however
no explicit differentiation between the fundamentally different approaches, ILC
and DLC, is included.

Exemplifying instances of different ILC approaches exist both for 1) algo-
rithms geared to improve distribution network usage [118], as wells as 2) others,
which focus more on market integration [115].

Related work relevant both for two-stage programming and ILC The
following paragraphs further assess a set of specific works recently published,
because they enrich the background information immensely and help indicate
the specific contributions of the ILC proposal in chapter 4.

[119] exhibits a set of similarities to the already cited references [72], [73],
mainly in that optimal energy market participation of a PEV aggregator is ana-
lyzed. The forth-set algorithms in [119] explicitly distinguish between “schedul-
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ing”, i.e., short term-planning, and “dispatch” during the operational day. Com-
pared to the here presented approach in Chapter 4 of this thesis, the underlying
control assumption in [119] is DLC and not ILC. For that purpose, it rightfully
simplifies the retail pricing interface to a flat rate fixed volumetric energy charge,
without ToU, including a maximum battery SOC finalization requirement. This
permits to point out the necessity to adapt current market regulations to avoid
adverse PEV impact on the bulk power system.

[120] proposes a dynamic multistage programing framework for the opera-
tional day, in which PEVs are scheduled one hour ahead of real time, based on
flexible energy bids to be cleared as regulation service at instantaneous PEV
charging utility. The load aggregator exercises DLC. Available network capac-
ity is considered but not explicitly priced. Uncertainty is taken into account
with the assumption that prices cannot be anticipated beyond joint probability
distributions. With the help of this approach [120] demonstrates that flexible
bids may lead to cost savings of up to 15%.

The hierarchical decomposition approach proposed in [121], is precisely as
the ILC approach presented in this thesis, a bi-level programming approach to
coordinate the dispatch of PEVs. However, [121] assumes that aggregators are
exercising DLC and are designed to service by region according to the phys-
ical topology of the transmission system. The UL simulates the decisions of
the system operator, while the LL is one aggregator. The decision making is
distributed but at the interface between final customer and aggregator it is not
based on price signals.

In a sophisticated dynamic programming approach, including the detailed
modeling of battery dynamics, e.g., open-circuit voltage, resistance and battery
capacity, as a function of the SOC, [122] sequentially determines aggregated
PEV power on an LV feeder and then distributes it according to a fuzzy logic
rule. The main objective is to manage the net load according to local trans-
former restrictions. It is thus understood that, compared to the approach in this
thesis, the charge scheduling agent has substantial knowledge on local network
components, similar to the information that DSO would have. Such a setting
is more likely to be applicable to the US, where retail and low voltage network
operation are not as strictly unbundled as in the EU regulatory framework. An-
other noteworthy difference lies in the pricing: while this thesis uses realistic
network UoS charges based on the DSO’s long run marginal cost, [122] employs
“virtual” ToU prices.

Indeed very similar to this paper, [123] analyzes price-based aggregator load
scheduling to coordinate PEV charging schedules. As already pointed out in
the original literature review there are some references, which solve a problem
structured in two levels. References [82] and [81] focus on the PEV aggregator’s
profit-optimal bidding subject to the optimal power flow and market clearing
constraints. Besides the aggregator’s problem, a market clearing, or the social
planner’s problem of maximizing social welfare is solved on the second level.
Yet, the retailing for PEV is also an important part of the PEV aggregator
business and merits some attention. In [123], the final customer pricing is not
assumed to have any specific structure. The objective of the aggregator only
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includes cost from wholesale market procurement and NSE, but ignores the
revenue from client-side retail. The here proposed approach does take this into
account specifically.

3.6 Conclusions on the State of the Art

3.6.1 Research Gap Summary

In many ways, existing literature dealing with PEV integration on a large scale
or, more locally, connecting to low and medium voltage distribution networks
falls short to comprehensively show the way towards a full PEV integration as
a resource to electric power systems.

The reviewed literature is conducive to the main motivation of this thesis,
as the amount of future work can be divided in two main areas: fleet manage-
ment of electric vehicles for 1) market participation and 2) distribution system
operation. Concerning the latter, the papers that calculate the value of elec-
tric vehicles in terms of network investment deferral (planning perspective) [47],
[48], [51], or technical operation of the system [93], [94], with some exceptions
[95], [96], almost all resort to generic imprecise driving patterns and hence tend
to lack at least some detail in the assumptions concerning mobility representa-
tion. With respect to the former, i.e. PEV aggregation for energy and capacity
market participation [22], [24], [25], [42], [55], [57], [59], with some exemplary
exceptions [23], [37], [54], in the absence of any network representation ignore
potential interactions with DSOs or do not explicitly state assumptions on po-
tential contractual relationships with other agents.

The plethora of management hierarchies and control structures, proposed
by various authors, and that is true for both 1) and 2) is hardly ever explic-
itly compliant with the regulatory framework of electric power systems, which
unbundles network operation as a local monopoly with third party access from
competitive retail activity of market agents. Some authors added to the state
of art by proposing market design changes (minimum bid sizes or availability
requirements in ancillary service markets for capacity [57], [59], [64], [124]) to
enable uni- or bi-directional participation of electric vehicle fleets for the bal-
ancing of the system operation. Others formulated aggregation algorithms and
objective functions for energy procurement as market participants [23], [58],
[60], however, a lack of methodological rigor, when it comes to representing
uncertainty and risk aversion of market agents was noted when compared to
other agent’s formulations [67]–[71]. This may have led to the underestimation
of stochasticity effects on profit distributions.

Part of the technical debate tends to center on the issue of battery degra-
dation, for which various wear out models [105], [125] have been proposed and
improved and more complex formulations continuously appear, however many
market related studies do make simple approximation of these degradation mod-
els [25], [55], [63]. Furthermore, less related literature can be identified that
deals with the game-theoretical combination of diverging objectives from differ-
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ent agents. The identification of consumer and producer surplus in the exchange
of a certain good, as well as locational use of system pricing with consumers de-
mand elasticity are promising areas of research. Finally and most prominently,
a consistent combination and comparison of 1) fleet management for market
participation and 2) for distribution system operation, is not yet state of the
art in technical literature regarding PEV integration in electric power systems.

This chapter has presented a comprehensive review on the current state of
technical literature. The preceding sections have thus placed articles in context
of the regulatory background and considered the established research concerning
the existing framework for modern power systems. Furthermore, a classifica-
tion of the reviewed works with respect to the agents, which constitute problem
owners of PEV charging in electric power systems research, i.e. PEV aggre-
gators, DSOs, TSOs and CPMs, has been provided. These inferences were
grouped according to criteria comprising inherent approach, problem ownership
and representation of crucial elements. These elements include fleet mobility
and technical characteristics of networks, employed methodology, used software
tools, geographical scope of case study, as well as the main key findings stated.

This analysis provided key insight into major shortcomings in the literature
and a means to derive future research objectives. These current shortcom-
ings of the state of the art include: ignoring of regulatory framework assump-
tions, generic and imprecise mobility representation, the disregarding of network
topologies and effects as well as deterministic nature of problem formulation.
Hence, finally these findings revealed a yet un-tackled research gap: system op-
timal PEV charging managed by both market and distribution network signals.

3.6.2 Derived Purpose and Context of Research

3.6.2.1 Specific Research Questions

In the following, to tackle the topic even more precisely, the main research ob-
jectives from the introduction chapter are broken down further into research
questions. In the preceding chapter, some of the more general regulatory issues
of PEV integration have already been treated, such as how, in unbundled, mod-
ern electric power systems, existing and potential new agents could be affected
by a massive penetration of PEV.

Now, according to the literature review conducted above, the following struc-
ture is adopted, with detailed foci set on the involved agents as problem owners:
i.e. one that focuses on the fleet management of PEV for electricity market par-
ticipation 1) and another one which looks at fleet management of PEVs with
efficient capacity pricing in distribution networks 2).

1. PEV aggregators:

(a) In a given market price and mobility scenario, what is the profit
maximizing charging schedule of electric vehicles?
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(b) How do market prices, mobility behavior representation, retail tar-
iffs and pricing schemes as well as storage parameters impact the
profitability?

(c) What is the value of flexibility exhibited by a fleet of vehicles schedul-
ing their charging according to wholesale electricity market prices.

(d) If uncertainty in the input data is considered, what are appropriate
measures to hedge against the risk exposure?

(e) To what extent does the size of the fleet impact the aggregator’s
economics?

(f) How can different CCO, i.e. ILC and DLC, schemes be mathemati-
cally represented in optimizing the decision making of the PEV ag-
gregator?

2. Representing DSOs by Network Prices in the PEVSA’s problem:

(a) What is the effect of pricing distribution system capacity by means
of network UoS charges both in DLC and ILC models?

(b) Including network topology in the above PEV aggregator model, rep-
resented by locational capacity prices, how are charging schedules
changing their alignment from market signals?

3.6.2.2 Refined Research Objectives

The research objectives pursued in order to answer the above posed research
questions are:

OBJ 1: Development and application of a model that describes the optimal
decision making of plug-in electric vehicle aggregators exercising di-
rect load control over the charging schedule while participating in
day-ahead electricity markets under uncertainty and risk aversion.

OBJ 2: Development and application of a model that includes the function-
ality to represent the decision making of the plug-in electric vehicle
aggregators exercising indirect load control over the charging sched-
ule.

OBJ 3: In both models, including an adequate representation of the distribu-
tion network usage that is aligned with the long run marginal cost of
the system operator.

The subsequent techno-economic modeling chapters of Part II of the thesis treat
the here indicated research objectives by means of quantitative analysis.
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3.6.2.3 Topics Beyond the Scope of This Thesis

Naturally, this thesis has its limitations. Although it intends to give a com-
prehensive overview, it does not purport to provide an exhaustive treatment of
all possible questions around PEV integration in power systems. Consequently,
there is a number of topics related to this work, yet beyond its scope, such as
the following issues:

• Representing the system operator’s or market operator’s view by depicting
a market clearing or a unit commitment, is not treated here.

• The impact of large-scale PEV penetrations on electricity market out-
comes, such as prices in the short- or installed capacities in the long run.
PEVs are believed to facilitate the integration of vRES, however the op-
timal share of these is also not determined here.

• The DSO is not modeled as an explicit decision maker, especially the im-
portant topic of PEV penetration’s mid- to long run impact on investment
decisions for network reinforcement and expansion planning.

• The bi-level modeling of competition among PEV aggregators and final
customers selecting among various competing aggregators is an interesting
topic, but outside of the scope of this thesis.

• When depicting ILC, games are not modeled in which there is more than
one leader to find an equilibrium among these and the shared lower level
decision making. In game theoretic terms, this thesis does not provide a
tool to obtain a Nash equilibrium among multiple leaders of a Stackelberg
leader-follower problem, where there is a shared single follower.
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Chapter 4

Developed Approach

This chapter picks up the key insights gained from the preceding chapters to
develop a methodology that answers the posed research questions and closes the
detected scientific gap by designing optimal decision making models for aggre-
gators. The regulatory framework forms the basis in understanding the modeled
agents, while the literature review considerably supports the choice of modeling
methodology and aspects. It presents the quantitative tools that can be used to
corroborate decisions pertaining to optimal market involvement, both on whole-
sale and retail level. These can further be used to gain conclusions on market
design issues and substantiate policy measures.

Similar to the structure of the subsequent application chapter, the here pre-
sented models divide into two major categories:

1. Models for decisions with Direct Load Control, i.e. DLC and

2. Models for determining optimal Indirect Load Control, i.e. ILC.

Both sets of models, should be capable of analyzing effects of pricing the net-
work use. While models considering DLC decisions are predestined to take into
account uncertainty of decision making, ILC models are mainly made for looking
at the retail interface between aggregators and their clients, the PEVs.

This methods chapter is structured, taking into account the before men-
tioned dichotomy of models, in the following way: first, general decision making
frameworks are introduced applicable to both DLC and ILC models for PEV
aggregator decisions. Then, two similar yet decisively distinct mathematical
formulations are provided. For each of these formulations, some auxiliary meth-
ods, as well as its theoretical foundations are either indicated in subsections or
in the appendix.

75
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4.1 General Framework for Electricity Markets
In a fully-fledged electricity market organization, the typical decision frame-
work for a PEV aggregator can be assumed similar to that of a big consumer
or retailer, completely unbundled from any actors operating networks. This
framework includes decisions on the wholesale electricity market as well as on
the retail side, in interaction with the final customers.

4.1.1 Decision Sequences
On the one hand such an aggregator agent is envisioned to determine its opti-
mal involvement in the futures market to hedge against pool, i.e. day-ahead,
adjustment and balancing market price volatility. On the other hand, the ag-
gregator could use adjustment and balancing market clearings close to real-time
for correcting previous commitments, depending on the unavailability and en-
ergy requirement of its aggregated resource. Hence, for the wholesale activity,
without loss of generality the following decision sequence can be considered:

1. On a yearly/quarterly/monthly/weekly basis the considered PEV aggre-
gator decides on both futures contracts and financial options spanning the
respective periods to be negotiated in the futures market.

2. Every day the PEV aggregator decides its bidding in terms of day-ahead
pool involvement, which mainly pertains to spot price purchases and sales
of energy, as well as committing capacity for regulation markets.

3. On an intra-day, hourly, or quarter-hourly basis, balancing purchases and
sales positions are determined according to balancing prices, the system-
operator’s demand for regulation services, and the hard requirement for
mobility of the final customers. These readjustments stem both from
mobility forecasting errors as well as from the exercise of control over the
charging process based on updated prices.

The decision sequence for the PEV aggregator in its function as a retailer with
interface to the final customers may include the following:

1. With a mid- to long-term perspective, the aggregator needs to find con-
tractual agreements with its clients. This includes determining the type
of control exercised on the charging, a set of potential retail tariffs, i.e.
what shape the pricing may take and whether it should include energy
and capacity terms, or any other connection incentives.

In case the aggregator and the final customer find a contractual arrange-
ment that allows for DLC, the most likely retail pricing would be a flat
energy rate, which makes all subsequent retail price decisions irrelevant.

2. In case the agreement includes price-based charging, i.e ILC, on a daily
basis, consistent with the wholesale market clearings, the PEV aggregator
determines the precise retail price levels.
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Figure 4.1: General Market Clearing Structure in a Weekly Time Frame

3. On an intra-day, hourly or quarter-hourly basis, with ILC, the aggregator
may intend to harness the PEV flexibility to respond to price signals from
the very short term markets that were not captured in the day-ahead
planning. This could be done by passing on the updated price signals to
the PEV.

A typical market clearing structure and according sequential decision sequences
of the PEV aggregators are depicted in Fig. 4.1.

4.1.2 Main Assumptions

This elaborates and justifies the main assumptions that are underling to the
model calculations.

4.1.2.1 PEV Participation in a DLC Program

The assumption that consumers participate in the DLC program is, an opti-
mistic and simplifying one. This may be questionable. Why would final cus-
tomers be willing to do so, what is their incentive to give up control to a PEVSA?

Initially it was taken that in principle, the incentive for the participation is
the level of the flat-rate tariff itself, and the rationale for this is the following:
In a supposedly ideal world with a long-run-equilibrium, it will pay-off for the
consumers to be connected, because the aggregator will be able to offer lower
fixed, flat-rate tariffs. If it was necessary, on the one hand, the aggregator could
additionally decrease its daily profits by “paying back” part of the revenues, and
call this an explicit incentive. In optimization terms, it would correspond to a
fixed cost of establishing the contractual framework, but would not significantly
change the outcome of the optimization. On the other hand, the incentive could
just be part of the contractual arrangement that conditions the low charging
price per kWh to the fact that consumers would stay connected when possible.
This can be measured. In this work, no incentive is modeled explicitly in mone-
tary terms, but from a pure practical perspective it also seems less cumbersome
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to just plug the vehicle in and, until the next use, let the vehicle be connected,
charging or not.

In reality, of course, adverse consumer behavior could arise, for example,
always declare to be leaving sooner as planned in order to be charged earlier.
It seems plausible that the true flexibility might not be revealed in some cases.
However, this comes at a cost. The more flexible the scheduling, the less costly
it will be. Therefore, if the consumers are used to this technology and trust is
built up, they may realize their real charging flexibility, and the potential over-
sizing of the battery with respect the actual daily need, such that the range
anxiety would become less of an issue and concurrently the declaration of true
flexibility would not be perceived as something very costly to the final consumer
anymore.

It has to be admitted that with respect to the raised point, the proposed
mobility scenario generation is clearly in one more point merely an approxima-
tion of reality. However, the author feels it is slightly outside the scope of this
thesis to capture the mentioned effects in more detail.

4.1.2.2 Price-Taker Assumption

With regard to the assumption of the PEV aggregator being a price-taker, please
consider the following justification: In the large scale case studies, to which the
model is applied in the following two chapters, a fleet of 1000 PEV is assumed
with a total expected energy consumption of 3.278 MWh during one day, c.f.
last row of Tab. 5.3. Contrast this with March 31st 2014 EPEX spot market
auctions, for which the average hourly trade volume lies roughly in-between 25
and 40 GWh, i.e., up to more than 3 orders of magnitude larger. The point is,
for a PEV aggregator to have a significant influence on the price, a very large
fleet of vehicles has to be represented. This is certainly a very interesting topic
and a realistic setting, but according to the estimation of the author lies in a
medium to long term future. Until that point, the validity of the price-taker
assumption should be given.

[81] uses an aggregator centrally dispatching a 2% penetration rate in Ger-
many, or 1 million vehicles, which is equal to the already quite ambitious gov-
ernment goal of total PEVs on the road for 2020, to show that prices can be
altered by PEV penetration. Nevertheless, the results are shown with the ag-
gregator representing 1% total trading volume and transactions accounted to
PEVs of up to 2 GWh hourly, i.e., again accounting for considerable difference
of 3 magnitudes.

The price taker assumption could be easily revoked if a market clearing is
modeled, which is possible with complementarity models on multiple levels of
decision making [79]. However, this lies slightly outside the scope of this thesis.
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4.2 Optimal Decisions with Direct Load Control

The formulation for DLC, as presented in this section, captures the aggregator’s
problem of scheduling the PEV charging in order to maximize expected profit.
To this end, this is a day-ahead planning tool and neither considers capacity
reserve for providing regulation, which would need to take into account a more
dynamic monitoring and control, nor focuses on a long-term perspective, in
which futures and other bi-lateral financial products should be contemplated.
In the context of this thesis, the balancing market refers to the mechanism
for pricing energy based deviations from day-ahead energy positions, as further
elaborated in the subsequent paragraphs.

Focusing on day-ahead planning, the model assumes full 24-hour foresight
in the second stage of the problem, which aids in managing the complexity
of full DLC scheduling at the individual vehicle level under various sources of
uncertainty. Due to this assumption, the proposed model does not replace an ad-
ditional scheduling algorithm that would be necessary for the operation phase in
a real-world application. Two such operational management algorithms coordi-
nating the PEV charging to fulfill previous market commitments and minimizing
deviation costs can be found in [73], [126], [127].

Furthermore, as justified already above, with an adequate level of competi-
tion, the aggregator is assumed to be a price taker in all markets, as done for
similar problems [68], [128]. This is deemed a reasonable assumption for a PEV
aggregator representing a small- to medium-sized fleet [72], [129], [130]. For
larger fleets, the assumption of a price-maker may be more realistic [81].

[41] describes the state of current communication protocols for standard-
ized V2G participation, such as IEC 15118-3 and its improvement proposals,
the Open Intercharge Protocol (OICP) and the Open Charge Point Protocol
(OCPP). The proposed formulation is fully compliant with these proposals. It
is assumed, that vehicle owners sign up for the charging plan with the aggrega-
tor, who exercises DLC. They, thus, cede the decision of when to charge and how
much to charge to the aggregator, who does this according to the price signals
in the market. In order to remain indifferent about the timing of the charge,
the owners are offered a flat rate, i.e. a constant energy tariff. The aggregator
agrees to service all energy requirements by the final customer, which in turn
keeps its PEV connected whenever possible.

Energy consumption can be metered on-board each car with the same time
resolution as used in the energy market. The communication of the metered
consumption is envisioned to be carried out immediately or could be transmitted
later on a weekly or monthly basis, e.g. at the time of billing and retail-side
settlement.

Admittedly, at current penetration rates of PEV, it may be pretentious to
make an assumption whether future driving patterns are going to be significantly
altered in reaction to electricity price signals or not. In the here presented set
up, mobility is a hard requirement and occurs as it used to with conventional
internal combustion vehicle technology. In reality, the use of the PEV and
the resulting energy requirements will be tracked and forecasted accordingly,
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e.g., [73] discusses relevant operational management algorithms. Since the same
holds for electricity market price forecasts, it can be assumed that the correlation
of different prices can be captured via time-series models.

4.2.1 Mathematical Problem Formulation
4.2.1.1 Nomenclature

The nomenclature is stated below: Upper-case as well as Greek letters de-
note sets (calligraphic) or input parameters, while lower-case letters are used to
represent indexes and decision variables.

Indexes and Sets

v ∈ V Vehicles in the considered aggregation

k ∈ K Sub-fleets in disaggregation

Vk⊂ V kthsub-set of vehicles or sub-fleet

h ∈ H Time periods in hourly resolution

n ∈ N MV distribution network nodes

ω ∈ Ω Scenarios

Mathematical Abbreviations and Superscript Symbols

Y, Z Charging, discharging
D, B, C Day-ahead, Balancing, and client-side retail market
IS Imbalance Spread
+, - Positive and Negative Deviations
SOC Battery state-of-charge
UoS on/off Use-of-System (-Network ) during on-/off-peak periods

PEV Parameters

γY PEV retail price for energy sold [e/kWh]
γZ PEV compensation price for energy bought [e/kWh]
ϑY, ϑZ Energy-Based UoS Prices [e/kWh]
P v Max. battery rate of discharge, charge [kW]
Ev, Ev Max., min. battery state of charge [kWh]
ηYv , η

Z
v Grid to battery efficiency and vice versa [p.u.]

Network UoS Prices

CUoSn,hon , CUoSn,hoff Node Capacity Price during on/off peak
periods

[e/kW]
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Stochastic Market Prices

πω Probability of scenario ω [p.u.]
λD
h,ω, τ Day-ahead price, transaction cost [e/kWh]
δh,ω System Imbalance [kWh]
λ+
h,ω,λ

−
h,ω Positive, negative imbalance price [e/kWh]

%+
h,ω,%

−
h,ω Positive, negative imbalance price ratios [p.u.]

Stochastic PEV Fleet Mobility

νv,h,ω Binary fleet availability ∈ {1, 0}
ρv,h,ω SOC loss from driving [kWh]
An

v,h,ω Vehicle-to-Location Incidence ∈ {1, 0}
ιSOC
v Initial SOC prior to H [kWh]
φSOC
v Final SOC at the end of H [kWh]

Positive and Continuous Decision Variables

z Objective Function Value [e]
ΠD
h,ω Day-ahead market profits [e]

ΠB
h,ω Balancing market profits [e]

ΠC
h,ω Client-side retail profits [e]

First Stage, Here-and-Now Decision Variables

eD,Zh,ω Energy as day-ahead selling position [kWh]
eD,Yh,ω Energy as day-ahead buying position [kWh]

Second Stage, Wait-and-See Decision Variables

eB+
h,ω Positive balancing energy deviation [kWh]
eB−h,ω Negative balancing energy deviation [kWh]
eRT,Z
v,h,ω Net real-time energy discharged [kWh]
eRT,Y
v,h,ω Net real-time energy charged [kWh]
eSOC
v,h,ω Battery SOC [kWh]
un,ω,u′n,ω UoS at node n during H [kW]

Risk Measure

α Confidence level for CVaR [p.u.]
β Weighting factor for risk aversion [p.u.]
ζ Auxiliary variable for CVaR calculation [e]
ıω Scenario-specific auxiliary variable [e]
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4.2.1.2 Objective Function

Stochastic Self-Scheduling of a PEV Aggregator The self-scheduling
problem in (4.1) seeks the risk-neutral maximization of expected profits from
scenario-weighted day-ahead transactions ΠD

ω , and imbalance settlements ΠB
ω ,

client-side retail to PEV ΠC
ω as a price taker in combination with a weighted

measure of the conditional value at risk (CVaR):

Maximize E
{

ΠTot
ω

}
+ β·CVaR = zDLC

=
∑
h∈H

[
πω
∑
ω∈Ω

(
ΠD
h,ω+ΠB

h,ω+ΠC
h,ω

)]
+β·CVaR, (4.1)

where the different components break down as follows:

∀h, ω : ΠD
h,ω =

[(
eD,Zh,ω τ − e

D,Y
h,ω /τ

)
λD
h,ω

]
, (4.2)

∀h, ω : ΠB
h,ω =

[
eB−h.ω λ

−
h,ω − eB+

h,ω λ
+
h,ω

]
, (4.3)

∀h, ω : ΠC
h,ω =

∑

v∈V

[
eRT,Y
v,h,ωγ

Y−eRT,Z
v,h,ωγ

Z
]

(4.4)

and CVaR = ζ − 1

1− α
∑

ω∈Ω

πω · ıω. (4.5)

Eq. (4.2) describes the Day-ahead market profit, 4.3 refers to the balancing
result, 4.4 indicates how the client-side profits from the retail market are com-
posed, and finally 4.5 computes the risk measure. Day-ahead purchases (sales)
eD,Yh,ω

(
eD,Zh,ω

)
are priced with a single clearing price, whereas the balancing trans-

actions eB−h.ω and eB+
h,ω are assumed to be settled according to a two-price system

with λ−h,ω and λ+
h,ω as existing in, e.g., NordPool, and modeled in [70]. Even

though there is an assumed price tariff γY and discharge compensation price
γZ, both on flat-rate energy terms, the expected revenue from retail on the
client side, Σh∈HπωΣω∈ΩΠC

h,ω, may, indeed, alter the optimal solution and is,
therefore, necessarily included for completeness. Alternatively, a minimization
of procurement costs could be formulated as in [72], [129]–[131].

The objective function includes a linear term to hedge against risk expo-
sure, measured in terms of the expected outcome of the lower (1− α)-quantile
of the profit distribution [132], [133, Chapter 4]. It is especially valuable when
the lower tail of the distribution has high relative importance, called CVaR or
average VaR, and in the common case that the lower end of the profit distribu-
tion is below zero, it is also referred to as mean excess loss. The formulation
does without any binary variables, and the relative importance with respect to
the expected value can be set via the weighting factor β ∈ [0, ∞+). It is an
established risk measure as it is widely applied in many different models [68],
[70], [134], [135]. An illustration of CVaR is provided in Fig. 4.2.
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APPENDIX

Emulating Two-Price Systems

Any market agent expecting a deviation from the day-ahead
energy schedule is commanded to participate in the balancing
market or incur the financial penalties for unbalanced sched-
ules ex-post. System imbalances, δh,ω �= 0, can be positive
or negative. For the purpose of this paper, the convention
is as follows: a negative energy deviation, δh,ω < 0, is a
lower system consumption (or higher system production) than
scheduled. A positive deviation, δh,ω > 0, vice versa.

To emulate a two-price system, as supposed in this paper,
the single balancing price λB, such as, e.g., the reBAP in
Germany, is split up into two prices for each period: λ+ and
λ−. The price λ+ is paid by the balancing responsible party
(BRP) in case it deviates positively by an energy amount
denoted by eB,+. Vice versa, the BRP receives the price λ−

for the negative energy deviation denoted by eB,−.
In these two-price systems, the difference in day-ahead (or

last liquid intra-day) market spot price λD and balancing price
λB is taken to calculate what is referred to as the imbalance

ProfitVaR(1−α)

——CVaR(1−α)
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Figure 10. CVaR as a Coherent Risk Measure

spread is λIS = λB − λD, from which the two prices can be
deducted as follows:

λ+=

{
λRT if λIS > 0

λD otherwise,
λ−=

{
λRT if λIS ≤ 0

λD otherwise.
(16)

In addition, to avoid absolute values, linear combinations of
positive or negative imbalance price ratios may be used [13]:

�+=
λ+

λD
, �−=

λ−

λD
, (17)

where λ+ and λ−, refer to the balancing market prices in a
two-price system. By this definition, negative deviations eB,−

are priced with λ−, which differ from the day-ahead market
price λD in case δh,ω < 0. Accordingly, positive deviations
eB,+ are weighted with the price for positive imbalances λ+,
which is only different from the day-ahead market price λD

in case of δh,ω > 0. If deemed necessary, then the balancing
price can be reconstructed by λB = (�+ + �− − 1) · λD.
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4.2.1.3 Constraints

The objective function in (4.1) is subject to a number of constraints. Two-
stage stochastic programming distinguishes first-stage here-and-now decisions
from second-stage wait-and-see decisions. In the first-stage, decisions must be
taken with limited information, while second-stage decisions are made after the
revelation of additional information [133, pp. 27-62]. The formulation includes
the following:

First-stage, here-and-now decisions: Day-ahead market decisions prior to
market clearing eD,Yh,ω , e

D,Z
h,ω , in which the aggregator must determine the bids

to be submitted to the market operator. An aggregate plan specifies quantities
of energy, i.e. when and how much to consume (and discharging, to produce).

Second-stage, wait-and-see decisions: Given the day-ahead market outcome,
according to the balancing price scenario λ−h,ω and λ+

h,ω and full information
of availability νv,h,ω and energy requirements ρv,h,ω of individual vehicles, the
control over the charging is exercised eRT,Z

v,h,ω , e
RT,Y
v,h,ω :

∀h, ω :
∑
v∈V

[
eRT,Y
v,h,ω −e

RT,Z
v,h,ω

]
=
(
eD,Yh,ω −e

D,Z
h,ω

)
+
(
eB+
h,ω−eB−h,ω

)
, (4.6)

∀v, h, ω : eSOC
v,h,ω =eSOC

v,h−1,ω+
(
eRT,Y
v,h,ω ηYv

)
−
(
eRT,Z
v,h,ω

ηZv

)
−ρv,h,ω, (4.7)

∀h,∀ω, ω′ : eD,Yh, ω = eD,Yh, ω′ , eD,Zh, ω = eD,Zh, ω′ , (4.8)

∀v, h, ω : eRT,Z
v, h, ω + eRT,Y

v, h, ω ≤ νv, h, ω · P v, (4.9)

∀v : eSOC
v,0 = ιSOC

v , eSOC
v,|H|=φSOC

v , (4.10)

∀v, h, ω : Ev ≤ eSOC
v, h, ω ≤ Ev, (4.11)

∀ω : −ΠTot
ω + ζ − ıω≤0, (4.12)

∀ω : ıω ≥ 0, (4.13)

where (4.6) is the market-side energy balance, (4.7) is the client-side, vehicle-
based, inter-temporal energy SOC balance, (4.8) ensures the nonanticipativity
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of real-time conditions when taking day-ahead decisions, (4.9) is the availability
constraint, (4.10) sets the initial and final SOC conditions, while (4.11) are
the lower and upper SOC limits. In addition, constraints in (4.12) and (4.13)
pertain to the linear CVaR representation as a coherent risk measure.

Equation (4.6) ensures that the aggregated real-time charging (discharging)
Σv∈V

[
eRT,Y
v,h,ω −e

RT,Z
v,h,ω

]
has to be met by either purchases (sales) in the day-

ahead eD,Yh,ω , e
D,Z
h,ω or balancing market eB−h.ω , e

B+
h,ω . Note that dividing purchases

and multiplying sales in the day-ahead profit function (4.2) by an efficiency
term τ , even when taking values smaller than but very close to zero, favors
unique solutions in which simultaneous charging (Y) and discharging (Z) do not
exist. τ is a modeling shortcut to avoid binary variables but may be interpreted
as a transaction cost parameter. It makes it possible to have both charging
and discharging terms in the same constraint, because they are prevented from
being both non-negative for the same vehicle and period in a given scenario.
τ is only necessary for the day-ahead term because the buy and sell prices are
the same, and not necessary for balancing because these prices here depend
on the direction of the deviation. The availability constraint in (4.9) prevents
(dis-) charging in periods of disconnection. Note that the connection capacity
P v is a vehicle specific parameter but could also be modeled dependent on the
network. The SOC balance in (4.7) tracks energy for each individual PEV and,
therefore, does not reduce problem size via averaging the SOC of a sub-group
of vehicles. Coherent inputs to the proposed model have to ensure, however,
that non-negative SOC reduction parameters ρv,h,ω only coincide with times of
unavailability, i.e., νv,h,ω = 0. The nonanticipativity is enforced only for the
day-ahead variables eD,Yh,ω , e

D,Z
h,ω . This means that neither driving profiles, nor

market price outcomes are known at the time of making day-ahead decisions
(4.8). However, since this formulation is a two-stage stochastic program, once
this decision is taken, the balancing decisions are assumed to be taken under
full 24-hour foresight within one scenario path.

In this part of the modeling, the author intentionally refrains from using
integer and binary variables for the sake of computational efficiency and for
conserving the possibility to solve large problem instances in terms of scenario
numbers and vehicle fleets in due detail. With the additional terms introduced in
the second section of this chapter, ultimately, this formulation is envisaged to be
capable of including network pricing for a real medium-scale urban distribution
system.

Offer Curves vs. Non-Anticipativity As an alternative to (4.8), the fol-
lowing offer curve constraints are proposed. In day-ahead electricity markets it
is common to submit not only one single energy quantity which as a consumer
(producer), one is willing to buy (sell) in a given time period h. Rather, a
step-wise block curve of maximum (minimum) buying (selling) prices as a func-
tion of the corresponding energy quantities is required. Offers for selling are
usually commanded to be of a non-decreasing nature [135], while it is supposed
that bids for buying energy have to be non-increasing. Here, different scenar-
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Figure 4.3: Scenario Tree of Sequential Market Decisions

ios of day-ahead prices
{
λD
h,1, λ

D
h,2, . . . , λ

D
h,NΩ−1

}
result in different day-ahead

market involvements
{(
eD,Yh,1 − e

D,Z
h,1

)
,
(
eD,Yh,2 − e

D,Z
h,2

)
, . . . ,

(
eD,Yh,NΩ

− eD,Zh,NΩ

)}

which can represent either a buying or a selling position. It can therefore be
reasonable to enforce two additional constraints, as seen in (4.14), to ensure that
the bidding in the day-ahead market fulfills the above described requirements:

∀h, ∀ω, ω′ :
(
λD
h,ω ≤ λD

h,ω′ ,
)

eD,Zh,ω ≤ e
D,Z
h,ω′ and e

D,Y
h,ω′ ≤ e

D,Y
h,ω . (4.14)

The same justification for constraints similar to (4.14) could be given for
the subsequent balancing market. However, since the focus of this research
lies on finding the optimal day-ahead involvement for the PEV aggregator, the
simplification of single optimal energy quantities in the subsequent balancing
markets is chosen.

Alternatively to the offer curve determination, and more common in stochas-
tic programming, the nonanticipativity constraint (4.8) could ensure that those
scenarios sharing a common history up until the day-ahead decision have to yield
the same solution. Constraints (4.14) are shown as dashed lines in Fig. 4.3.

Scenario Tree Construction Please refer to Fig. 4.3, in which an overview
of the sub-scenario to full scenario composition with according probabilities is
given.
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4.2.2 Pricing Networks and Imbalances

To include an appropriate pricing mechanism in the DLC formulation, this
subsection first introduces network capacity prices as an efficient signal, and
later on the balancing market is described by emulating two-price system from
single-price data.

4.2.2.1 Network Capacity Prices as Efficient Signals

To obtain the network capacity price, first, the network UoS tariffs are calculated
taking into account the used capacity and the extent of use, and later on, the
following related points are further clarified and discussed: 1) Profit from client
side transactions with UoS, 2) the node dimension of the formulation and 3) use
of system prices and network congestion.

This work supposes the European regulatory framework for modern EPS, in
which competitive retail activity at the interface between wholesale electricity
markets and final customers is strictly unbundled from operation of monopolist
network infrastructures. In this framework, PEV aggregators in their function
as retailers trade energy on liberalized electricity markets, while they are deemed
to bill electricity consumption to the final customer. Furthermore, in addition
to the revenue attributed to wholesale, they also collect network tariffs payable
to DSOs.

Currently, the most common practice is that DSOs collect network fees based
on volumetric energy consumption. Even though there may be a small per-
centage of the final bill of the customer attribued to a connection charge that
includes a capacity component, the bulk of the costs are collected through the
actual energy consumption.

However, this formulation takes into account network capacity prices that
are dependent on the network nodes. This is not common pracitice yet, but
deemed a promising means of network pricing. The basic idea of these prices is
grounded on the fact that the use of the system is less costly at a point of supply
where there tends to be spare capacity compared to another point, where the
network tends to be saturated. This is common ground in distributed generation
as it sends a locational signal to investors, promoting locations where it is overall
less costly to connect and use the network. Given an appropriate infrastructure,
the batteries of PEV presumably present a certain degree of freedom not only
regarding the timing of charging, but also the location. Therefore, the same
principle could be applied to the scheduling of controlled PEV charging.

The network UoS tariffs are calculated using the methodology presented in
[89]. In this calculation, see Eq. (4.15), the cost of the lines are allocated taking
into account the used capacity (a) in terms of current flow as well as the extent
of use (b), which refers to the marginal participation of the network users. For
active power the network UoS prices at node n are derived as:
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CUoSn =
∑

l

Ctotl
Il

In,liml︸ ︷︷ ︸
a

·
∂Il
∂Pn∑

n′∈N

(
∂Il
∂Pn′

Pn′ + ∂Il
∂Qn′

Qn′
)

︸ ︷︷ ︸
b

, (4.15)

where Ctotl denotes the total cost of line l, Il/I
n,lim
l is the used capacity of

this line, ∂Il/∂Pn′ and ∂Il/∂Qn′ are the partial derivatives of the current with
respect to active Pn′ and reactive Qn′ power components of network user n′.
The units are in maximum power injection (or withdrawal) over a specified
time horizon, i.e. typically a month or a year, which is why they are assumed as
fixed and known in the short term. The advantage of the proposed approach lies
in satisfying principles of cost causality, transparency, simplicity, predictability
and viability of the implementation.1

Hence, with these types of prices, the cost attributed to network use caused
by the fleet of vehicles billed to the aggregator by the DSO would be formulated
as follows:

∀ω : κω =
∑

n∈N

(
un,ω − u′n,ω

)
CUoSn , (4.16)

with

∀v, h, n, ω : un,ω ≥ eRT,Yv,h,n,ω, (4.17)

∀v, h, n, ω : u′n,ω ≥ eRT,Zv,h,n,ω, (4.18)

where un,ω is the highest consumption and u′n,ω is the highest injection at node
n over a specified time interval, i.e. here of the entire time horizon of 24 hours.
Although, the capacity prices could be updated, and hence applied in intervals
of months or years.

Note that these capacity prices may be positive or negative depending on
the network characteristics at the respective nodes. Furthermore, they could
also be applied on a time-of-use basis representing different load situations, e.g.
differentiating between an OFF-peak period in the night CUoSn,h∈Hoff and and
ON-peak period during the day CUoSn,h∈Hon .

Profit from Client Side Transactions with UoS On the client side, with
UoS the profits slightly change. The fixed prices on the client side include a
component that accounts for wholesale market prices γ and one that represents
the network prices ϑ, both of which are on a per energy unit basis. Hence,
the profit for every period h in scenario ω is the summation over all vehicles
v and nodes n of energies multiplied by respective prices for charging (Y) and
discharging (Z):

ΠC
h,ω=

∑

v∈V

∑

n∈N

[
eRT,Yv,h,n,ω

(
γY+ϑY

)
−eRT,Zv,h,n,ω

(
γZ+ϑZ

)]
. (4.19)

1Not all symbols contained in (4.15) are listed in the nomenclature, as the computation is
out of the scope of this thesis. The here presented formulation only requires CUoSn as inputs.
For further information on these UoS tariffs, please refer to the original proposal [89].
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The Node Dimension of the Formulation In order to include locational
representation where applicable, the charging variables may include the network
dimension. To highlight this change, the following shows, how the client side
availability constraint is then formulated on a vehicle and node basis :

∀v, h, n, ω : eRT,Zv,h,n,ω + eRT,Yv,h,n,ω ≤ [αv,h,ω ·An
v,h,ω]Pn, (4.20)

where charging or discharging can only be performed while the vehicles are
available, indicated through the binary data αv,h,ω, and the location at node
n of the vehicles is assigned by the binary vehicle-to-location incidence tensor
An

v,h,ω. This tensor is a multi-dimensional array linking the vehicle and the
location.

Use of System Prices and Network Congestion One could argue that,
if all vehicles would receive the same price signal and there were sufficient PEV
penetration in the local network, congestion could arise during the low price pe-
riods. The topic of congestion and its management is slightly outside the scope
of this thesis, nevertheless a short discussion is provided. In fact, a remedy
to congestion could indeed be the pricing of the network as proposed in this
thesis, not only differentiating between network nodes, but also including time
discrimination in the access tariff would treat vehicles at different locations indi-
vidually. PEV penetration is a slow process and as such it can be well included
in the planning processes of network operators including both the tariff design
in the short- to medium term, as well as investment decisions for reinforcement
in congested areas.

In principle, the pricing of UoS based on capacity is already an effective
tool to make use of the system. However, additionally, it sends a signal to
the users that is well aligned with the long run marginal cost of operating the
network. If the lack of spare capacity is more prominent in certain parts of
the grids, the higher capacity prices give a strong signal, always relative to the
other components of the final customer bill, such as the wholesale parts, to the
PEV to smoothen the charging curve. If the danger of congestion prevails, the
additional revenue from higher UoS revenues should permit the grid operator
to reinforce the network by upgrading lines and transformer capacity.

4.2.2.2 Market Design Regarding Balancing

Different electricity market designs with regard to the imbalance pricing mech-
anisms exist today [136]. The major differences between the designs lie in the
way, capacity for balancing is reserved by the TSO, the way imbalance settle-
ment fees are calculated as well as how costs are allocated among the balancing
responsible parties[137]. Different designs have different advantages, however
it can be assumed that economic theory does not mandate any asymmetry be-
tween the supply and demand side, nor between suppliers and consumers. In
principle, a flexible load should be able to provide the same services as a flexible
generator and therefore should be granted access to the same markets. Regard-
ing the settlement, there exist single-price systems, in which the direction of
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imbalances determines different prices incurred by the market participants. In
two-price or dual-price systems, the direction of energy deviations matters for
the imbalance settlement fee. Then, additionally one can further distinguish,
how the costs for procurement are allocated to the balancing responsible parties.
These could be based on average cost or on marginal costs.

A discussion of advantages and disadvantages, in particular the adverse ef-
fects of average reserve costs in case of balancing-area-internal congestion, is
provided in [138].

Emulating Two-Price System from Single-Price Data For the given
analysis, the following is assumed. There is an energy only balancing market.
Any market agent expecting a deviation from the day-ahead energy schedule
is commanded to participate in the balancing market or incur the financial
penalties for unbalanced schedules ex-post. System imbalances, δh,ω 6= 0, can
be positive or negative. For the purpose of this paper, the convention is as
follows: a negative energy deviation, δh,ω < 0, is a lower system consumption
(or higher system production) than scheduled. A positive deviation, δh,ω > 0,
vice versa.

To emulate a two-price balancing market, as supposed in this thesis, the
single balancing price λB, such as, e.g., the reBAP in Germany, is split up into
two prices for each period: λ+ and λ−. The price λ+ is paid by the balancing
responsible party (BRP) in case it deviates positively by an energy amount
denoted by eB,+. Vice versa, the BRP receives the price λ− for the negative
energy deviation denoted by eB,−.

In these two-price systems, the difference in day-ahead (or last liquid intra-
day) market spot price λD and balancing price λB is taken to calculate what
is referred to as the imbalance spread is λIS = λB − λD, from which the two
prices can be deducted as follows:

λ+=

{
λRT if λIS > 0

λD otherwise,
λ−=

{
λRT if λIS ≤ 0

λD otherwise.
(4.21)

In addition, to avoid absolute values, linear combinations of positive or negative
imbalance price ratios may be used [70]:

%+=
λ+

λD
, %−=

λ−

λD
, (4.22)

where λ+ and λ−, refer to the balancing market prices in a two-price system.
By this definition, negative deviations eB,− are priced with λ−, which differ
from the day-ahead market price λD in case δh,ω < 0. Accordingly, positive
deviations eB,+ are weighted with the price for positive imbalances λ+, which is
only different from the day-ahead market price λD in case of δh,ω > 0. If deemed
necessary, then the balancing price can be reconstructed by λB = (%+ + %− − 1)·
λD.
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4.3 Modeling Indirect Load Control
In the previous Section, the formulation of a DLC program was developed and
presented, this Section develops a model for the ILC program.

4.3.1 Mathematical Problem Formulation
The following section illustrates the proposed mathematical problem formula-
tion for modeling indirect load control by a PEVSA. To reduce the formulation
complexity, the following model only includes the formulation for uni-directional
charging, even though the bi-directional case follows the same logic as under
DLC. There is no other explicit justification for using a uni-directional case
but for the ease of understanding the principles. The proof of concept can be
achieved by uni-directional formulations.

Note that the DLC problem formulation was a single level problem, whereas
the ILC problem formulation is a two level problem. Therefore after presenting
the additional ILC nomenclature, first programing on the upper and lower levels
is presented. The upper level objective pertains to aggregators, while the lower
level to final customers. To achieve a consistent formulation, in the end, the UL
and LL are combined with an affine demand.

4.3.1.1 Additional ILC Nomenclature

The nomenclature is stated below: Upper-case as well as Greek letters denote sets (cal-
ligraphic) or input parameters, while lower-case letters are used to represent indexes
and decision variables.

Mathematical Abbreviations, Superscripts and General Symbols

UL, LL Upper and lower level problem
NSE Non-supplied PEV energy
BS Benefit Sharing
f , g, h Objective function, inequality and equality constraints
µh, θg Dual variables for inequality and equality constraints
∇L Gradient of the Lagrangian function

UL Parameters

ε Price Difference between ToU periods [e/kWh]

UL Decision Variables
zUL Upper level objective function value [e]
γYh Retail energy selling price [e/kWh]

LL PEV Parameters
φSOC
v Minimum final SOC at the end of H [kWh]

ĚRT,Y
v,h Reference Demand with no Discomfort [kWh]
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LL PEV Objective Function Cost Factors

Ξv NSE cost [e/kWh]
Λv Charging Deviation Discomfort [e/kWh]

LL Decision Variables

zLL Lower level objective function value [e]
eNSE
v,h Non-supplied Energy [kWh]
etot
v Total demand (RT and NSE) per vehicle [kWh]
eDR
v,h SOC reduction due to alternative transport [kWh]
eUoS,Y
v Network UoS over defined time horizon [kW]
t+v,h, t

−
v,h, tv,h Positive, Negative and Total shift from

ĚRT,Y
v,h

[kWh]

Affine Demand Parameters

Dv, Dv Minimum and maximum vehicle demand [kWh]
αv Vehicle specific slope of demand reduction [kWh

2

/e]
λ̃D Lowest feasible retail price reference [e/kWh]
γ̃Y Mean retail price level over H [e/kWh]

4.3.1.2 Programming On Two Levels

In order to formulate the ILC program, interactions between aggregators and
final costumers must be modeled that results into a bi-level formulation. Thus
in the following, some important considerations of aggregators and final cus-
tomers are highlighted and discussed, and accordingly the bi-level formulation
is detailed.

Aggregators As outlined in the previous sections on DLC, in a fully-fledged
electricity market organization, the typical decision framework for a PEV aggre-
gator shares characteristics with that of big consumers and retailers, unbundled
from network infrastructure entities [44], [74], [75]. For the ILC formulation the
main role of the aggregator remains unaltered.

In general, this formulation comes a bit closer to the reality of current retail-
ers already today. The aggregator acts between wholesale and retail markets.
On the one hand, such an agent is envisaged to determine its optimal involve-
ment in the various trading stages of electricity markets, i.e. in the sequential
clearings of futures and bilateral contracts for mid- to long term procurement,
as well as day-ahead, adjustment and balancing markets for the short run. On
the wholesale side, the PEV aggregator is competing against other demand-
side market participants for the cost optimal purchases of electricity as well as
profit-optimal provision of ancillary services. On the client-side retail market,
the aggregator is competing for final customers against other agents, who are
offering similar products and services. These offers boil down to energy retail
prices determined on a daily, monthly, quarterly or yearly basis.
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In this context, the main role of the aggregator consists in facilitating the par-
ticipation of flexible PEV loads in electricity markets by assuming relevant price
and quantity risk, while providing a simple retail interface for final customers.
It is acknowledged that some literature, contrary to the here employed concepts,
has proposed the direct market participation of PEVs without the necessity of
any intermediary agent, such as the PEV aggregator. In principle, with enough
local intelligence, PEV could theoretically become active market participants
and place bids autonomously, without any intermediary agent. However, there
are some obvious objections against that, e.g. PEV would then also be liable
and have to pay financial compensation for unfulfilled market positions.

Regarding contractual relationships, the underlying assumption of this work
is that most of the PEV charging would occur at low voltage supply points
that are counted as residential final customers. For PEV charging, regardless
whether at an industrial, commercial or residential supply point, one could
plausibly assume that consumption could be metered on-board the vehicle, or
with a dedicated metering device. This would enable tailor-made contracts
distinguishing PEV consumption from other existing loads. In [18], a detailed
account of many possible charging modes, or PEV use-cases, is given, including
the different power systems agents involved in facilitating and controlling the
charging.

Nevertheless, it is deemed helpful to distinguish two cases in which the PEV
aggregator exercises ILC. The first involves the day-to-day operational prac-
tices of a real life aggregator. If the fleet of vehicles is reacting to day-ahead
communicated hourly varying retail prices, no particular information has to be
transmitted to the aggregator besides the consumption, like any other final cos-
tumer today. This should be measured with time-discrimination but would not
have to be submitted until some time ex-post for billing and settlement. In
that case there would also not really be any need for solving any particular
scheduling problem day-ahead. The vehicle just uses electricity when available
according to the agreed prices.

The second case is to be understood as more in a general planning, offline,
perhaps rather long term perspective, to determine optimal retail price margins
assuming the perfect reaction and rational behavior of the LL PEV. For this
case, this proposed method together with its nomenclature gives a good overview
of the aggregator’s required information regarding the final customers, the PEV.
Under the two headlines LL PEV parameters and LL PEV Mobility parameters
all necessary inputs are listed.

Part of this information is certainly directly available to the final customers,
i.e., such as the maximum battery rate of discharge and charge, the maximum,
minimum battery SOC or the grid-to-battery and vice-versa efficiencies. These
would come as specifications to the vehicle that is purchased or if the grid
connection point is the limiting factor, the rating of a plug could be easily
consulted. Of course these types of data are not changing over time as opposed
to next day’s mobility, i.e., fleet availability, consumption in km or kWh, initial
and final conditions of the SOC. Nevertheless, it can be asserted that means for
making a good forecast may exist either automatically integrated in the charging
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intelligence of the vehicle, or, by good rule of thumb from personal experience.

Final customers Arguably, PEVs prefer to keep charging under their own
control [23], [76], i.e. localized in the internal on-board electronics or in the ex-
ternal charging equipment, reacting to a given price interface. The inclination
towards cost-optimal fulfillment of the energy requirement derived from PEV
use for mobility should lead final customers to select the most competitive ag-
gregator for their energy purchases. This selection would be similar to choosing
a retailer for electricity[67]. Preferences for this choice are manifold, however,
once an aggregator is chosen they may within the existing retail contract vary
from user to user, and could include willingness to pay, temporal price elasticity
and minimum SOC requirements.

Bi-level formulation Hence, the following mathematical program is pro-
posed in order to account for both types of the above mentioned agents and
their respective objective functions.

To obtain optimal PEV charging schedules a bi-level optimization program
is proposed. This structure is particularly well suited for the described interac-
tions, as it entails one problem embedded within another: on the upper level
(UL), the problem of the PEV aggregator is formulated, while on the lower level
(LL), the problem of the PEVs is described. Besides the aggregator’s decisions
in wholesale day-ahead markets, the UL includes a maximization of revenues
from retail. On the LL however, the final customers minimize the costs of PEV
charging subject to physical operation constraints and the respective mobil-
ity profiles. In that sense, the here proposed formulation does not explicitly
model the aspects of aggregator competition and PEV selecting aggregator’s in
a functional retail market. Nevertheless, it can serve as a basis for analyzing
the strategic interactions in a two-agent leader-follower games, where a single
leader correctly anticipates the equilibrium reaction of the followers. The in-
sights gained with this model are directly transferable for the design of and
indeed motivate the necessity of retail equilibrium models.

Fig. 4.4 depicts the typical scheme of bi-level decision making for the case
of the PEV aggregator in interaction with the final customers. It visualizes the
respective information exchanged between the two types of agents. In principle,
the aggregator sends different retail prices γYh down to the LL. Given these prices
as parameters, the final customers determine the cost-minimal PEV charging
schedule eRTv,h , which in turn is sent up to the UL.

Not impeding that other mathematical decomposition techniques could be
used to tackle the given problem, in mathematical terms, the above described
decision framework with bi-level structure leads to an MPEC because typical
characteristics are given: a) inherently conflicting objectives between UL and
LL, b) clear sequence of and considerable time delay between decisions on UL
and LL as well as c) strategic interactions between the two agents. In effect
these interactions present a Stackelberg leader-follower game [77, Ch. 3], in
which the aggregator on the UL would be the leader and the PEVs on the LL
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PEV Aggregator
Maximize Expected Profits

Determine
Optimal Market Bids
Retail Prices

UL

Minimize Mobility Cost

SOC, Demand
Determine

PEV / Final Customers

Charging Schedule

MPEC

LL
eRT
v,h

γYh

Figure 4.4: Bi-level Decision Making of Aggregator and PEV

would be the followers.
The here presented formulation concentrates on one energy based day-ahead

market clearing and does not consider balancing issues, which have been widely
discussed in [72], [74], [75]. Furthermore, the aggregator is put in a hypotheti-
cal case of a simplified monopoly. Nevertheless, the formulation could serve as
a valid foundation for continuative research, specifically modeling competition
on the retail market, e.g., via an Equilibrium Program with Equilibrium Con-
straints (EPEC). However the formulation of EPECs remains out of scope of
this thesis.

4.3.1.3 Upper Level Objective: PEV Aggregator

The stochastic DLC equivalent of the PEV aggregator’s problem has been pre-
sented by the same authors in the previous section of this chapter. Now with
ILC, the self-scheduling problem in (4.23) seeks the risk-neutral maximization of
expected net profits from price taking day-ahead transactions κD

h , and revenue
interactions from the client-side retail to PEV ΠC

h :

Max. zUL = fUL

(
eD,Yh, , γY

h

)
=
∑
h∈H

(
κD
h + ΠC

h

)
, (4.23)

with κD
h = −

[
eD, Yh · λD

h

]
, (4.24)

ΠC
h =

∑
v

[
eRT, Y
v,h · γY

h

]
, (4.25)

where the components of the objective function zUL depending on energy bought
day-ahead and retail prices fUL

(
eD,Yh, , γYh

)
are the negative profit, i.e. costs
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of purchasing energy day-ahead (4.24) and the revenue from electricity retail
(4.25). Market prices λD

h are exogenous parameters. This is a simplifying as-
sumption that is only valid as long as the modeled fleet of vehicles does not sur-
pass a critical size, such that a significant level of the traded energy in wholesale
electricity markets comes from vehicles.

On the UL, this objective is subject to the market energy balance (4.26),
which ensures that all individual charging eRT,Y

v,h has to be bought day-ahead:

∀h :
∑
v∈V

[
eRT, Y
v,h

]
=
(
eD, Yh

)
. (4.26)

The most intuitive appears that the PEV aggregator directly passes on price
signals with the same time resolution as assumed in the day-ahead electricity
market, i.e. hourly prices, which are composed of the market price plus a
constant margin m [e/kWh]:

∀h : γY
h = λD

h +m. (4.27)

Retail Tariff Options With regard to the tariff choice, the PEV aggregator
could set mutually exclusive constraints on the shape of the hourly retail price
curve γYh :

A. flat rate tariff with a constant energy price :

∀h, h′ : γY
h = γY

h′ (4.28)

B. time-of-use (TOU), e.g. day-night, two-step energy price, for ex-ante de-
fined time periods:

∀h, h′ ∈ Hon : γY
h = γY

h′ , (4.29)

∀h, h′ ∈ Hoff : γY
h = γY

h′ , (4.30)

∀h ∈ Hon, h′ ∈ Hoff : γY
h = γY

h′ + ε. (4.31)

C. hourly prices, which are composed of the market price plus a margin m
[e/kWh]:

∀h : γY
h = λD

h +m. (4.32)

Excursion on Endogenous Tariff Selection The tariff constraints are
never simultaneously binding in one run. In principle, it is possible to in-
clude integer variables to ensure simultaneous tariff selection, but it adds to
the computational burden while conceptually not providing any supplemental
insights. Therefore, the tariff options are recommended to be tested in multiple
optimization runs.

However, if simultaneous tariff selection is desired, the following could be
considered:

Assume there is a set of tariffs or retail prices shapes named p ∈ P =
{1, 2, 3}. Binary variables would indicated the selection of the tariff sp ∈ [0, 1].
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In the objective function γYh would then be replaced by (γYh,1 +γYh,2 +γYh,3), with
the non-coincidence constraints:

∀h, p : γYh,p ≤ sp, Σp sp = 1. (4.33)

The different prices in the tariff options could then be constrained:

p = 1, ∀h, h′ : γYh,p = γYh′,p (4.34)

p = 2, ∀h, h′ ∈ Hon : γYh,p = γYh′,p and ∀h, h′ ∈ Hoff : γYh,p = γYh′,p(4.35)

p = 3 ∀h : γYh,p = λDh +m. (4.36)

Realistic Short Term Practices vs. General Studies The timing of
information being unveiled in reality matters. The proposed work is used to
determine hourly aggregator involvement in the day-ahead electricity markets
market. One critical assumption of the here presented bi-level optimization is
that the market prices λDh are exogenous parameters. In practice, however,
market participants need to submit their bids first, and then the day-ahead
market is cleared, where cleared prices and amount of purchases are determined
simultaneously. So it is plausible to pose the question, how it would be possible
for PEV aggregators to take decisions based on exogenous energy prices before
bids have been submitted to the market, and the clearing outcome determined?

In practice, it is true that PEV aggregators would not receive energy prices
before the submission of the bids and the subsequent market clearing. And
therefore this is not a pre-requisite for the proposed approach. In reality, many
price-taking electricity market participants simply predict prices to determine
their optimal energy schedules. And accordingly, lots of theoretical research
work bases its proposed bidding algorithms on the existence of a sufficiently good
forecast of the market price outcome to determine merely energy quantities, at
zero cost, e.g., a generator that intends to be dispatched, or alternatively market
price caps, e.g. a demand agent that needs energy no matter the cost. This
means scheduling is carried out in terms of energy quantities and not in terms
of prices, which goes hand-in-hand with this work’s core assumption of the
aggregator being a price-taker.

While the proposed DLC formulation of the preceding sections uses a two-
stage stochastic programming framework to highlight the importance of uncer-
tainty and risk that may be involved in scheduling PEVs, the ILC proposal does
not focus on these issues, as it concentrates mainly on the day-ahead short term
planning stage. Thus the whole modeling world collapses into one instant. This
is of course a simplifying assumption, but deemed suitable for the purposes of
this section, which would like to emphasize the bi-level structure of the aggre-
gator’s retail problem in interactions with the final customers. Nevertheless,
without loss of validity of the here shown concepts, another scenario dimension
along with nonanticipativity constraints could be introduced to approximate
the uncertainty range involved in actual realizations of the day-ahead market
prices. For simplicity and the sake of understanding, this has been avoided. The
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exogenous market day-ahead wholesale price parameters used for this part of
the model can thus be conceptualized as expected values from the best forecast
that the aggregator has at hand.

4.3.1.4 Lower Level Formulation: Final Customers, PEV

There are a number of ways how to represent the final customer’s decisions on
the LL. This thesis features two of them: 1) including a reference schedule of
highest comfort and via optimality conditions with complementarity and 2) rep-
resenting the demand response via an affine demand constraint and optimality
by the strong duality-theorem.

1) Reference Schedule On the lower level, the final customers optimize their
charging schedule according to an objective of minimum cost incurred:

Minimize zLL= fLL(eRT, Y
v,h , eSOC

v,h , t+v,h, t
−
v,h, e

DR
v,h ) (4.37)

= Σv,h
[
eRT, Y
v,h ·γ

Y
h

]
+Σv

[
Λv·Σh

(
t+v,h + t−v,h

)]
+ Σv

[
Ξv · ΣheDR

v,h

]
.

The incurred cost includes terms pertaining to the monetary cost of electricity
Σv,h

[
eRT,Y
v,h · γYh

]
, a level of discomfort created by deviating from the most con-

venient schedule Σv

[
Λv · Σh

(
t+v,h + t−v,h

)]
and a demand response energy term

Σv

[
Ξv · ΣheDR

v,h

]
. Hence, (4.37) includes PEV specific costs of discomfort Λv,

and alternative transportation Ξv. The discomfort is created for energy devia-
tions tv,h from the preferred schedule. Demand response eDR

v,h only happens, in
case the costs of alternative transportation Ξv, e.g. the next cheapest substi-
tute for providing the same mobility, are not prohibitively high. For PEVs with
hybrid propulsion systems, Ξv could be the cost of gasoline or diesel per gross
kWh, i.e. accounting for efficiencies.

This objective function is subject to the following constraints:

∀v, h: g1=− eRT,Y
v,h + νv,hP v ≥ 0 : θg1

v,h, (4.38)

∀v, h: g2=− eSOC
v,h + Ev ≥ 0 : θg2

v,h, (4.39)

∀v, h: h1=− eRT,Y
v,h ·η

Y
v + eSOC

v,h −eDR
v,h + ρv,h (4.40)

− eSOC
v,h−1︸ ︷︷ ︸

h∈{2..|H|}

− ιSOC
v︸ ︷︷ ︸
h=1

= 0 : µh1

v,h,

∀v, h: h2=− eRT,Y
v,h − t+v,h+t

−
v,h+ ĚRT,Y

v,h = 0 : µh2

v,h, (4.41)

∀v,|H|: h3= eSOC
v,h − φSOC

v = 0 : µh3

v,|H| , (4.42)
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where (4.38) ensures PEV charging only when vehicles are available, (4.39)
ensures the upper bound on the battery SOC, (4.40) stands for the inter-
temporal battery SOC balance, (4.41) quantifies the energy deviation from the
reference schedule ĚRT,Y

v,h,ω and finally (4.42) sets the requirements for the final
SOC. The dual variables related to inequality g and equality h are denoted θg

and µh, respectively. Another set of inequalities and respective dual variables
g3. . . g7 : θg3

. . . θg7

that is not explicitly given above but of equal formal im-
portance, describes the constraints of non-negativity of the involved variables
∀v, h : (eRT,Y

v,h , eSOC
v,h , t+v,h, t

−
v,h, e

DR
v,h ) ≥ 0.

The reference schedule ĚRT,Y
v,h is considered to be most convenient in the

sense that it is calculated as the immediate charging upon arrival from a trip.
Any deference of the charging to other hours leads to a perceived loss in utility
for the customer. Obviously this parameter depends on personal utility, varies
from user to user and is assumed to be measurable in reality.

The reference profile ĚRT,Y
v,h can be obtained from the solution to a simple

optimization problem in which the objective is ASAP charging, achieved by:

Minimize {eRT,Y
v,h

} eRT, Y
v,h · h, (4.43)

and subject to the immediate post trip charging constraint:

Σh1e
RT, Y
v,h ≤ Σh1

ρv,h
ηv

. (4.44)

Besides (4.43) and (4.44), only the physical constraints given by availability
(4.38), SOC balance (4.40), upper SOC bounds (4.39) as well as final SOC
conditions (4.42) are enforced.

The LL problem can thus be completely replaced by its first order optimality
conditions. Since the LL is linear and thus convex, the recast LL is directly
included as constraints in the UL. The bi-level problem is thus presented by
(4.23)-(4.26) in addition to the LL’s system of Karush-Kuhn-Tucker (KKT)
equations (A.1)-(A.22) given in the appendix ??.

2) Affine Daily Demand On the LL, the final customers optimize their
charging schedule according to an objective of minimum cost incurred:

Min.zLL=fLL(eRT
v,h, e

SOC
v,h , e

NSE
v,h , e

UoS,off
v , eUoS,off

v ) (4.45)

=
∑
v

∑
h

eRT, Y
v,h · γY

h︸ ︷︷ ︸
I

+eNSE
v,h · Ξv︸ ︷︷ ︸

II


+ eUoS,on,Y

v ·CUoS,on + eUoS,off ,Y
v ·CUoS,off︸ ︷︷ ︸

III

,
including terms for costs of supplied (4.45.I), non-supplied (4.45.II) energy, and
network UoS charges (4.45.III).
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As provided in the nomenclature, the required information for day-ahead
scheduling, by individual PEVs are listed under the two headlines LL PEV pa-
rameters and LL PEV Mobility parameters. Part of this information is directly
available to the final customers, such as the maximum battery rate of discharge
and charge P v, the maximum, minimum battery SOC Ev, Ev or the grid-to-
battery and vice-versa efficiencies, ηYv , ηZv . These would come as specifications
to the purchased vehicle or if the grid connection point is the limiting factor,
the rating of a plug could be easily consulted. These data are not changing over
time as opposed to next day’s mobility, i.e., fleet availability νv,h, consumption
ρv,h, initial ιSOC

v and final φSOCv conditions of the SOC. Nevertheless, it can be
asserted that means for making a good forecast may exist either automatically
integrated in the charging intelligence of the vehicle, or, by good rule of thumb
from personal experience.

The LL objective function in (4.45) is subject to the following constraints,
which further explain all its elements. The charging decision eRT,Y

v,h is con-
strained to the periods of availability νv,h and when connected, it is limited to
the connection capacity P v:

∀v, h: g1 =eRT,Y
v,h − νv,hP v≤ 0 : µg1

v,h. (4.46)

The SOC variable eSOC
v,h has the physical capacity limit of the battery Ev as its

upper bound:

∀v, h: g2 =eSOC
v,h − Ev≤ 0 : µg2

v,h. (4.47)

Equality h1 tracks the typical energy balance of each individual vehicle, in
which the current SOC eSOC

v,h is equal to the previous hour’s SOC eSOC
v,h−1 plus

the energy intake eYv,h · ηYv , less the energy consumption during driving ρv,h. In
h = 1, the balance is initialized with ιSOC

v and does without the previous hour’s
SOC:

∀v, h : h1 =eYv,h · ηYv − eSOC
v,h − ρv,h + eSOC

v,h-1︸ ︷︷ ︸
h∈{2..|H|}

+ ιSOC
v︸ ︷︷ ︸
h=1

= 0 : θh1

v,h, (4.48)

where eYv,h is met by charging eRT
v,h and non-supplied energy eNSE

v,h . Note that
in the LL objective (4.45.II), the latter is penalized with the user-specific will-
ingness to pay Ξv. This cost of non-supplied energy (NSE) is interpreted as the
reservation price, which is set at the price of the next best alternative to fulfill
vehicle demand for mobility, e.g. at the price of secondary fuel for hybrid PEVs.

To make the charging schedule responsive to the retail prices, γYh determines
the total demand per vehicle, which is given by:

∑

h

eYv,h = etot
v (4.49)
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Dv ≤ etot
v ≤ Dv, (4.50)

with Dv = Ev−ιSOC
v +

∑
h
ρv,h

ηv
and Dv = φSOCv −ιSOC

v +
∑
h
ρv,h

ηv
, where φSOCv

is the minimum final SOC at the end of the optimization horizon. In-between
its bounds, etot

v follows an affine relationship with retail prices, in which the
slope α is:

αv =
Dv −Dv
Ξv − λ̃D

=
Ev − φSOCv

Ξv − λ̃D
, (4.51)

where λ̃D ≥ 0 is some reference price, defining the left hand starting point on
the x-axis. Below this price, the problem is designed to be infeasible, as it is
unlikely that a strategic aggregator would not require a significant margin above
its procurement cost.

While (4.49) and (4.50) are implicitly included, the explicit constraint ad-
mitted in the LL optimization is:

∀v : h2=Dv − αv ·
(
γ̃Y − λ̃D

)
−
∑

h

[
eRT,Y
v,h + eNSE

v,h

]
+sv=0 : θh2

v , (4.52)

where γ̃Y is defined as the mean retail price level 1
|H|
∑
h γ

Y
h and the last term

sv is included as slack for robustness and feasibility of the model. Compared
to earlier formulations, the NSE cost Ξv here is the mean hourly retail price
threshold above which etot

v is below its minimum, i.e. Dv. With further increas-
ing price levels, the respective vehicle is assumed to gradually replace electricity
consumption from the aggregator eRT

v,h by eNSE
v,h . To this end, the following two

constraints ensure, that Dv is always met (4.53), and that eNSE
v,h does not surpass

its conceptual boundary (4.54):

∀v: g3 =Dv −
∑

h

(
eRT,Y
v,h + eNSE

v,h

)
≤ 0 : µg3

v , (4.53)

∀v: g4 =
∑

h

eNSE
v,h −Dv ≤ 0 : µg4

v . (4.54)

These demand side reactions are further illustrated by the diagram in Fig. 4.5.
Note that the equality (4.52) has to be met for ∀v, but not on an hourly basis.
This means that the LL is still free to react to the price signal and can allocate
the charging in the cost optimal periods. To this end, it captures the function-
ality of cross-elasticity and is preferred tieing demand reactions to hourly price
levels.

In order to apply capacity UoS network charges CUoS,on and CUoS,off ,
the variables eUoS,on,Y

v and eUoS,off ,Y
v take the values of the respective highest

consumption within the subsets of on-peak
∣∣Hon ∣∣ and off-peak

∣∣∣Hoff
∣∣∣ periods of

the time horizon through:

∀v, h∈Hon

: g5=eRT,Y
v,h -eUoS,on,Y

v ≤ 0 : µg5

v,h∈|Hon|, (4.55)

∀v, h∈Hoff

: g6=eRT,Y
v,h -eUoS,off ,Y

v ≤ 0 : µg6

v,h∈|Hoff |. (4.56)
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Mean Retail Price:
1
|H|Σhγh

Total Demand:

etotv

Dv

Ξvλ̃D

Dv

αv

Supplied Energy
Non-Supplied Energy

Figure 4.5: Affine Price-Demand Relationship

The dual variables related to inequalities g and equalities h are denoted µg

and θh, respectively. Another set of inequalities and respective dual variables
{g7. . . g11} : {µg7

. . . µg11} that are not explicitly given above but of equal for-
mal importance, refers to the non-negativity constraints of all involved variables
∀v, h : (eRT,Y

v,h , eSOC
v,h , eNSE

v,h , eUoS,off ,Y
v , eUoS,off ,Y

v ) ≥ 0.

4.3.1.5 Combining LL with UL with Affine Demand

Having formulated the UL and the LL independently, the following lines elab-
orate how to represent the final MPEC joining the two. The LL problem can
be completely replaced by its first order optimality conditions. Since the LL
is linear and thus convex, its recast can be directly included as constraints of
the UL. The bi-level problem is thus presented by (4.23)–(4.27) in addition to
the LL’s (4.46)–(4.56) with its system of KKT-stationarity equations, because
any local optimum is a global one. To this end, the partial derivative of the
Lagrangian form of (4.45) is taken with respect to primal decision variables,
which at the optimum have to fulfill the first-order stationarity condition:

∇L
( ...
)

= ∇f
( ...
)

+ µᵀ·∇g
( ...
)

+ θᵀ·∇h
( ...
)

= 0. (4.57)

These are given in (??)–(??) of the appendix. However, instead of includ-
ing the KKT-feasibility and -complementarity of inequalities {g7. . . g11} ⊥
{µg7

. . . µg11}, this formulation makes use of the strong duality theorem [79,
pp. 37]:

cTx = λT b, (4.58)

which leads to the optimality condition given in (4.59). Hence, an equivalent
single-level optimization problem is obtained, which is a non-convex and non-
linear MPEC.
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zLL=cT x=λT b=
∑
v


∑
h

µg1

v,h·
(
-νv,hP v

)
+µg2

v,h·
(
-Ev

)
+θh

1

v,h·

-ρv,h+ιSOC
v︸ ︷︷ ︸
h=1


 (4.59)

+ µg3

v · (Dv) + µg4

v · (−Dv) + θh
2

v ·
[
Dv − αv ·

(
γ̃Y− λ̃D

)])
Discretizing Retail Prices The only three instances of non-linearity in the
problem remain 1) the multiplication of price γYh and demand eRT,Y

v,h in the UL
objective function (4.23) as well as 2) in the LL primal objective function (4.45),
in addition to 3) the dual of the affine-demand constraint θh3

v with sum of retail
prices from γ̃Y in the LL dual objective function (4.59). However, fortunately
all of these terms are bi-linear and involve the retail price . Hence, discretizing
γYh with reasonable granularity (e.g., step size ∆γ = e{}.001/kWh) seems a
sufficiently accurate approximation. This can be done as follows:

m = ∆γ · Σk2k−1 · bk , (4.60)

where bk are |k| binary variables. Thus, the charging cost between PEV and
aggregator, i.e. the product of the total hourly demand Σv,h

[
eRT,Y
v,h

]
= etot

with the margin m can be linearized as follows:

etot ·m = etot ·∆γ · Σk2k−1 · bk (4.61)
= ∆γ · Σk2k−1 · zk ,

where zk are |k| positive continuous variables, representing the margin-demand
product, when summed up over k and subject to the two following constraints:

∀k: 0≤ zk ≤M· bk , (4.62)
∀k: 0≤ etot − zk ≤M·(1− bk) , (4.63)

which ensure that if the binary bk takes the value 0, zk is forced to be 0, while
in case of bk = 1 ⇒ etot-zk = 0, which means zk takes the value of etot.

Since the affine-demand constraint dual θh2

v must be capable of taking pos-
itive and negative values, the product θh2

v · m can be linearized similarly as
follows:

∀v: θh2

v ·m =
[
θ+h2

v − θ−h2

v

]
·m (4.64)

= Σk

(
z̃+
k,v − z̃−k,v

)
· ∆γ · 2k−1· ,

where, z̃+
k,v − z̃

−
k,v are, respectively, the positive and negative continuous compo-

nents of θh2

v ·m, when subject to:

∀k, v: 0 ≤ z̃+
k,v ≤M · bk , (4.65)

∀k, v: 0 ≤ θ+h2

v − z̃+
k,v ≤M · (1− bk) , (4.66)

∀k, v: 0 ≤ z̃−k,v ≤M · bk , (4.67)

∀k, v: 0 ≤ θ−h2

v − z̃−k,v ≤M · (1− bk) , (4.68)
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Replacing non-linearity by (4.60)–(4.68), leads to and MPEC formulation as a
single-stage MIP.

Comparing different approaches to represent the UL Both presented
approaches, 1) the Reference Schedule and 2) Affine Daily Demand, have their
advantages and disadvantages. This paragraph briefly outlines their pros and
cons, before alluding to other possible implementations, that however, have not
been studied in the following cases.

The advantage of approach 1) lies in the explicit modeling of the discomfort
and possibility to find a unique charging schedule according to the reference
when there is no time-dependent electricity price signal. However, a clear dis-
advantage of this approach is that at the price of NSE, there is a discrete all or
nothing demand response from the lower level, when the UL increases prices up
to the individual reservation, or willingness to pay. On the upside of 2), a linear
reaction of the total daily demand is given, which provides a smooth feedback to
the UL based on the slope of the affine gradient. Nevertheless, on its downside,
the concept also has its limits. Arguably, in reality the demand does not follow
this constant rate of change with the mean electricity price, but rather reacts
to hourly signals like in 1).

There are at least two other possible ways to model the LL reaction to the
UL without a reference schedule, which our just briefly-sketched and commented
on in the following:

1. Budget constraint:
Σv,h

[
eRT,Yv,h · γYh

]
≤ B, (4.69)

where B is a fixed budget that cannot be exceeded for the electricity
expenditures. The constraint could be visualized as in Fig. D.1a of the
appendix.

2. Hourly affine demand constraint:

eRT
v,h = Dv,h − α · γYh , (4.70)

which would resemble the sketch in Fig. D.1b of the appendix. Even
though, this type of constraint would alleviate some of the complexity,
the drawback of this kind of constraint is, that the hourly demand is
basically already set by the price and there is no continuous scaling, hence
to optimality conditions needed and the whole bi-level structure becomes
obsolete.

Day-Ahead Planning vs. Operational Day Please note that the above
proposed model for ILC does not include the subsequent stage of the operational
day, it only provides an optimal decision at the time of making day-ahead trans-
actions under various assumptions. Some of the most prominent ones are the
single-stage decision framework together with the 24-hour foresight. In reality
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however, it is very common to settle potential differences between two subse-
quent trading floors. For simplification, day-ahead vs. balancing is commonly
assumed in literature that looks at this type of problem. The aggregator would
then be at least balancing responsible, i.e., be financially responsible for energy
deviations from previous commitments. Different electricity market designs with
regard to the imbalance pricing mechanisms exist today. The major differences
between the designs lie in the way, capacity for balancing is reserved by the
TSO, the way imbalance settlement fees are calculated as well as how costs
are allocated among the balancing responsible parties. If second-stage variables
would be included here, at least the UL would account for the balancing stage.
At the retail side on the LL, however, one could assume two things, either that
only day-ahead planning is carried out, or that similarly as the aggregator com-
mits positions day-ahead to the market, the PEV would commit the aggregator
based on an ex-ante agreed imbalance settling. This would require further com-
munication, as as well as intelligence in the battery and charging management
systems.

The absence of uncertainty and forecasting errors significantly improve the
economics of decision making and therefore, the final result should be taken
as an optimistic approximation. References [119], as well as [73] contain two
operational management algorithms coordinating the PEV charging to fulfill
previous market commitments and thereby minimizing deviation costs.

4.4 Methods for Generating Stochastic Parame-
ters

As described in the DLC stochastic model, there are two main sources of un-
certainty faced by a PEV aggregator: market price uncertainty and uncertainty
about mobility, which boils down to resource availability and demand.

The former is a known subject of research and includes forecasting of futures
prices as well as day-ahead, regulation, intra-day, and balancing market prices
[133, Chapter 3]. The latter uncertainty regarding PEV availability and demand
is less explored, but may be significant. It may be approximated by modeling
the stochastic processes that determine the mobility of each vehicle in the fleet,
i.e., the trips traveled, during which the vehicles are unavailable because of
disconnection, which make up the energy demand.

In the following, the methods used for generating stochastic parameters are
briefly described. However, since these methods do not manifest important
contributions of this thesis, the full set of information can be accessed in the
appendix.

4.4.1 Time Series Based Price Forecasting

(S)ARIMA and GARCH Specification
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L Time-series index for backward shift or lag ∈ N
φL Auto-regressive (AR) coefficient at lag L [p.u.]
θL Moving average (MA) coefficient at lag L [p.u.]
ΦL Seasonal AR coefficient at lag L [p.u.]
ΘL Seasonal MA coefficient at lag L [p.u.]
ΓL, ΥL GARCH and ARCH coefficients at lag L [p.u.]
c, σ2 Time-series constant and variance [e, e2]

In the following subsections, this document compiles steps that are followed for
SARIMA time series model identification, estimation and scenario generation to
provide a sufficiently good forecasting model for the EEX 2011 electricity market
data. In particular, the 8760 hourly data points for the EPEX spot day-ahead
market are analyzed and used for building a time series model. Furthermore, in
this document, the methodology to construct corresponding real-time balancing
market prices for imbalance settlement based on so-called single price for bal-
ancing energy across all four German control areas (reBAP) is presented. This
includes a general introduction, how imbalance settlement fees can be modeled
as well as a time series model identification and estimation for the 2011 reBAP
data.

Time series analysis has proven in various studies to be a very convenient
instrument to forecast for instance day-ahead market clearings. The challenge
lies in capturing characteristics such as daily and weekly seasonalities, high
frequency and high volatility. Especially irrational bidding behavior by market
agents, make price series more volatile than for instance demand series [139].

Estimating parameters of auto-regressive integrated moving average (ARIMA)
models, is well described by [140], [141]. ARIMA relate current prices to past
prices and current errors to past errors. They can be characterized by (p, d, q)
corresponding to the number of autoregressive terms p, the differencing or-
der d, and the number of moving-average terms q, respectively, while seasonal
SARIMA models include differencing for the daily or weekly seasonality. This
study uses the notation from [133], given by SARIMA(p, d, q)× (P,D,Q)S :1−

p∑
j=1

φjB
j

1−
P∑
j=1

ΦjB
j

(1−B)d
(

1−BS
)D

yt=

1−
q∑
j=1

θjB
j

1−
Q∑
j=1

ΘjB
j

εt
(4.71)

with a seasonal component of P autoregressive parameters Φ1,Φ2...,ΦP , Q mov-
ing average parameters Θ1,Θ2, ...,ΘQ and a differentiation order D.

4.4.1.1 Day-Ahead Spot Prices

Single hour prices from the EPEX spot price auction market are presented in
the following. First, the prices from the EPEX auction market are shown in
Fig. 4.6a. In 4.6b, the same prices are drawn in 24 hour intervals for 365 days,
including the mean daily price over all days. For this illustration and all further
analysis the original data has been changed from a quarterly hour resolution to
an hourly resolution by unweighted simple averaging. It can be observed that the
hourly time series exhibits typical features of day-ahead market prices in electric
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(b) EPEX Auction Market Spot Price in 24
Hour Intervals for 365 Days

Figure 4.6: EEX 2011 Data Description

power system: high volatility, daily and weekly seasonality, comparatively large
share of outliers as well as non stationary mean and variance.

4.4.1.2 Real Time Balancing Prices

Notes on Balancing Market Forecasting Forecasting balancing prices is
not as straight forward as day-ahead spot prices. In the case of balancing
prices, capacity and energy price have to be joint together into an energy price
for the given period. There are very many different market designs. One of
the most distinguishing characteristics pertains to single- or two-price systems.
In the single price system, market participants may have a financial interest in
speculating about the net system deviations, whereas the two-price system is
usually designed to make it unprofitable to engage in balancing. All four TSOs
in Germany used to employ a single-price system and settle deviations only 20
days after real time.

Note that this document is only concerned with the imbalance settlement
prices and not with the capacity auctioning prices for regulating power. In
Germany there has been a reform of calculating the single so-called single price
for compensation energy across all four German control areas (reBAP) in late
2012. The calculation methodology is based on average cost pricing. The reBAP
basically takes into account all balancing energy costs in all control areas, which
are equally distributed over the system imbalances, netted over each quarter
hour [142].

Data The reBAPs for each month were first joined in one single time series.
Then quarter hourly values were aggregated together as unweighted hourly av-
erages. The resulting data are shown in 4.7, where the time series of the hourly
prices (reBAP) and system deviations, denoted NRV in Germany, are plotted
together with a scatter plot showing estimated bi-variate kernel density depicted
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Figure 4.7: Single Price for Compensation Energy: reBAP 2011

as a contour graph.
From the figures it becomes evident that the German system was more often

short of balancing energy than otherwise, which would have hinted strategic bid-
ding behavior of market participants. There appears to have been a systematic
negative deviation of the system. [137] show a similar graph for 2012 data and
suggest some significant changes in the way single compensation energy prices
should be computed and published. Namely, a one price-system without puni-
tive charges, computed using an approach based on marginal costs of control
energy delivery and close-to-real-time publication. There is an argument that
theoretically, balancing markets should be cleared as close as possible to the
period of physical energy delivery so that as precisely as possible the available
production means and the actual consumption needs are known. Nevertheless,
in the following a two-price system based on average pricing is assumed.

4.4.1.3 Remarks on the Balancing Price Prediction

The balancing prices λ+
h,ω,λ

−
h,ω are 24-h vectors for each scenario, i.e. matrices

with dimensions of |Ω|×|H|. Each of these scenarios corresponds to a simulated
sample path of a potential realization of the prices. The software used to carry
out this simulation is the Econometrics Toolbox in MatLab.

Choosing the right forecasting horizon is not a trivial matter. Of course,
it could be chosen to have the value 24, but then all sample paths would be
completely independent of each other. As this is a day-ahead optimization
problem, it is assumed that in reality balancing would be carried out hourly,
e.g., 10 minutes ahead of real time. The intention is to approximate these
decisions as realistically as possible beforehand. Therefore, at day-ahead, what
is simulated, is the use of the forecasting model for balancing prices at each
hour, one hour ahead of real time, using the actual original series up until the
hour before as an input to have temporal correlations between the sample paths.
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This means that the respective functions are called with forecasting horizon of
one hour each h once, with increasing length of the realized historical series.

4.4.2 Mobility Simulation

This section provides further clarification of the scenario generation of the PEV
data for mobility. The used method for the prediction is rather straight forward.
It is a Monte-Carlo simulation realized by means of a manually programmed set
of MatLab functions that conduct consecutive draws from the indicated cumu-
lative probability distribution functions. In principle, all sampling is carried out
independently, as the original data sources do not provide conditional proba-
bilities. However, for coherent outcomes in terms of starting and arrival times,
length and duration of the trip, some back-testing is included which triggers re-
sampling in case of inconsistency until the prescribed cardinality of the scenario
set is achieved.

In the following, the nomenclature specific to the mobility scenario genera-
tion is provided.

Indexes and Abbreviations

d ∈ D Index of type days 1..5 within weekly horizon.

t ∈ T Index of trips.

l ∈ L Index of length classes of trips t.

Inputs

|⊗| Number of equiprobable scenarios to be generated.

πT
d The probability of travel on a certain day d, ∈ [0, 1].

πH
d,h The probability of starting a trip on a specific day d and hour h,

∈ [0, 1].

πL
d,l The probability of a trip to be within a certain length class l on a

specific day d, ∈ [0, 1].

E |t|d The expected number of trips conditional on traveling vehicles for a
given day, ∈ N+.

E [s] The expected traveling velocity or driving speed in km/h, ∈ R+.

ηv PEV Drive Train Efficiency in kWh/km, ∈ [0, 1] .
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Model Parameters

Td,v Binary matrix indicating the travel of a vehicle, ∈ {0; 1}.

Sd,v,t Positive integer matrix indicating the trip starting hour, ∈ H.

Rd,v,t Positive integer matrix indicating the trip return hour, ∈ H.

Ld,v,t Positive real matrix indicating the trip length, ∈ R+.

Other Flow Chart Conventions

Generic processing step.

ω←0 Initialize scenario counter.

ω←ω+1 Increment scenario counter.

� Decision block.

λT(ω) Random draw from πT
d .

d·e Ceiling function evaluation of .

Output

Ad,v,h,ω Binary matrix indicating availability in scenario ω, ∈ {0; 1}.

Ed,v,h,ω Positive real matrix indicating the energy consumption in kWh for
scenario ω, ∈ R+.

To represent the uncertainty in driving behavior, a two-state single-node Monte-
Carlo simulation for mobility scenario generation is used. For a PEV fleet of a
given size and composition as well as technological parameters of vehicle classes
and battery specifications, the algorithm intends to approximate the known
statistical properties of driving behavior in the input data to the above described
optimization programs.

In short, it is assumed that there exist information on: The expected number
of trips for each of the moving vehicles on a given day ntravgd and vehicle specific
expected constant trip speeds ϑc to calculate trip durations given the distance.

For modeling the fleet unavailability, mainly three types of information were
obtained, given by [23] in the form of discrete cumulative distribution functions
(CDFs):

• The probability of travel on day d, πtraveld = π̂traveld .

• The probability of starting a trip on a certain day d and hour h, πstartHd,h =∑4
j=1 π̂

startH
d,t·4−j .

• The probability of a trip to be of a certain length l on a specific day
πranged,l = π̂ranged,l − π̂ranged,l−1 ,
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where the week is represented by a set of typical days with similar characteris-
tics, i.e. d ∈ {Monday, Weekdays, Friday, Saturday, Sunday}, the time slots
resolve the day in 24 hours, h ∈ {1, 2, ..., 24}, and the trip lengths l are sorted
into 20 different classes with increasing intervals between class centers. Hats,ˆ
, refer to the original unchanged data from [23], πstartd,t is aggregated from orig-
inal t 96 15-Minute to 24 hourly data points and πranged,l is transformed from
original CDF to adjusted probability distribution function (aPDF). For further
details please refer to the appendix. In particular, the numerical data for the
distributions are given in Tab. D.2, Tab. D.1 and Tab. D.4.

Scenario Generation for PEV Mobility Data Flow charts have been
used for a long time and experience in many practical engineering applications
still supports the use of these types of diagrams for communicating algorithm
content. In fact, evidence from teaching experiments corroborates that the use
of flow charts may improve accessibility and understanding of complex compu-
tation structures. To this end, this section makes use of flow charts to convey
part of the algorithm contents. The symbol convention is standard: rectangle
or plain text for generic processing commands, conditionals or decisions are rep-
resented as a diamond or rhombus, and the arrows simply indicate the direction
of flow.

A high level overview of the mobility simulation algorithm used for gener-
ating PEV mobility data is provided in Fig. 4.8. Between the processing steps
of data input and output the algorithm is grouped into four modules which
are inter-connected through looping over the different dimension, according to
the random draws carried out from the different PDFs: travel on a given day,
starting hours for trips, lengths of the realized trip and the resulting availabil-
ity profiles. With the given inputs, in Module I, a first sampling of travel
probability is carried out before Module II draws the trip start hours for
the traveling vehicles. By sampling from trip length statistics, return hours
are calculated in Module III. Finally, with some plausibility checks, Module IV
calculates the outputs in terms of availability and energy demand for the
PEV fleet in the given scenarios.

Break down in specific algorithm modules In addition to the overview
chart, the processes within each of the four modules are described in technical
detail by means of specific flow diagrams. To enhance accessibility to the flow
charts, the following text discusses Module I in detail, see Fig. 4.9. It is given
as a step-by-step example, while modules II to IV are given in the appendix of
this document.

To this end, Fig. 4.9 documents, how in a first step both the scenario counter
ω as well as the binary matrix indicating the PEV travels on a certain day
Td,v are initialized with zeros. In the second step the scenario counter ω is
incremented and the index for day counters d is set to 1. The third block
visualizes the first decision via a diamond shaped element to check whether the
days are within the horizon. If this is found true, a loop over the entire fleet is
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Module I:
Travel on Day Td,v

Module II:
Trip Start Hour Sd,v,t

Module III:
Trip End Rd,v,t

and Length Ld,v,t

Module IV:
Availability Ad,v,h,ω and
Energy Demand Ed,v,h,ωOutput

Input

Figure 4.8: Overview Flow Chart of Mobility Simulation Algorithm

initiated, where the actual randomization is taking place. A a random variable
generator finds a value between 0 and 1 to take the inverse of the cumulative
travel distribution to find, whether each car is traveling or not. This process
step being of most importance for the Monte-Carlo sampling, is marked with
red text color.

The Algorithm’s Output Structure Furthermore, one can categorize two
sets of “PEV variables” that are relevant in the provided simulation algorithm.
Please note that all of these are the realized values for the second stage of
the previously described stochastic DLC optimization program. In the ILC
scheduling, there is only one decision stage.

One set refers to the stochastic processes from the mobility. From the per-
spective of the optimization model, these are exogenous, i.e. represented by
input parameters in the form of matrices that are defined over the dimension
of scenarios ω, which can be found under the heading “Stochastic PEV Fleet
Mobility” in the nomenclature:

νv,h,ω Binary fleet availability ∈ {1, 0}
ρv,h,ω SOC loss from driving [kWh]

Simply to be clear and to avoid ambiguity, the “PEV variables” pertaining
to the mobility, within the context of this thesis document, are denoted mobility
parameters even though they may describe realizations of stochastic processes
(or variables).

The other set of “PEV variables” is the one containing the endogenous de-
cision variables, and are hence part of the optimization outcome in the optimal
solution. These can be found under the heading “Second Stage, Wait-and-See
Decision Variables” in the nomenclature of the DLC optimization program:
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ω ← 0 ; Td,v ← 0

ω ← ω + 1 ; d← 1

d ≤ |D|

v ← 1

v ≤ |V|

Td,v,ω ← λT (ω) v ← v + 1

d← d+ 1

Input

ω ≤ |Ω|

Output

Module I

no

Module IV

Module II

no

yes

yes

yes

no

Figure 4.9: Detailed Flow Chart for Module I of the Algorithm

eRT,Zv,h,ω , eRT,Yv,h,ω Net real-time energy discharged and
charged

eSOC
v,h,ω Battery SOC

However, please note that the “PEV variables” pertaining to the charging
and SOC levels, within the context of this manuscript, are denoted PEV decision
variables. These are also defined over the scenario index ω, because these may
take different optimal values for different scenarios.

Mainly, the mobility parameters are considered an input to the problem and
the proposed model could be applied to solve case studies for which the mobility
scenarios would have been generated in a different way, with a special focus on
the temporal correlations. To give an example, [73] provides a very detailed
model which would serve perfectly to generate appropriate input.

However, accurate models for mobility representation, i.e. for forecasting
future behavior of PEV fleet is a whole new field of research in the realm of
transportation simulation science, this thesis doesnot contribute or innovate in
that field. The contributions of this thesis are seen more in the formulation and
application of the optimization model to take decisions by the aggregator under
risk consideration, for a given set of inputs.

Interplay of Availability and Consumption The decision variable eSOC
h

conveniently tracks the SOC while being connected to the system indicated
by the availability ν=1, as well as while being disconnected from the system,
indicated by the availability ν=0. Caution has to be paid while generating the
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mobility scenarios. The SOC losses from driving ρv,h are strictly greater than
zero, when the vehicle is not available.

To provide an illustrative example of how these data should conceptually look
like in a given scenario realization, please see the following two tables but note
that this is a stylized illustration for 3 cars and 6 periods:

νv,h h

v

1 0 1 0 1 1

0 0 1 0 0 1

1 0 1 1 0 1

ρv,h h

v

0 1 0 1.5 0 0

2 1 0 1.6 2 0

0 2 0 0 1 0

It can be seen how SOC loss from driving occurs only when availability to
the system is 0, because of disconnection and driving, and vice versa.

A sample of the aggregated two-state output is provided in the graphical
illustrations of Fig. 4.10. Shown are the resulting connection and disconnection
over the course of one week, i.e., 168 hourly periods, 10, 100 and 1000 vehicles, as
well as 20 scenarios. The standard error bars allude to the order of magnitude
in which input data for optimization problems can, with a relatively strong
dependence on the fleet size, vary for the same day and hence, in how far these
variations may impact the optimal scheduling outcome.

For the interested reader, a detailed a step-by-step description of the algo-
rithm can be found in the appendix.

.

4.5 Concluding Summary on the Methodology
This chapter has presented the first most technical sections of the thesis. It
has provided the developed approach to tackle the thesis objectives, explaining
the main characteristics of the different methodologies used in this thesis and
highlighting the used mathematical optimization and simulation models that
are later on employed for computing numerical results.

At first, the general decision framework of PEV aggregators in modern,
unbundled power systems has been presented, before detailing the specific as-
sumptions taken for the subsequent models.

Then, to give structure to the different parts of the models here presented,
they have been sorted according to the control modes employed for the decision
making involved in PEV scheduling according to market and network signals.
Two optimization models, one within the stochastic programming framework,
and another within the complementarity modeling framework are presented.
The former is able to depict the decision making of a PEV aggregator exercis-
ing direct load control, while scheduling its market involvement in day-ahead
markets according to balancing prices. The latter is a tool for the PEV aggre-
gator with indirect load control to endogenously determine optimal retail prices
given tariff constraints. Centered around the single firm profit perspective of
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Figure 4.10: Uncertainty of Mobility: Availability and Consumption
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the aggregator, both models determine optimal PEV charging schedules in the
short term, day-ahead planning horizon for 24-hours, while taking into account
network use-of-system prices, and being capable of finding individual energy
quantities for each modeled PEV.

To this end, the models are required to be fed with input parameters regard-
ing market prices and PEV mobility. Therefore, in the last two sections of this
chapter, the simulation models to forecast PEV mobility and electricity market
prices both for the day-ahead clearings, as well as the imbalance settlement fees
of a supposed dual, or two-price system are reported.





Chapter 5

PEV Coordination with DLC

Via a set of case studies, this chapter applies the afore-described model for
direct load control and computes numerical results for further analysis. The
case studies have been selected to highlight certain aspects of PEV coordination
under DLC. In that sense each one of them is self-sufficient yet complementary
to the others.

According to the research objectives laid out in Part I of this thesis, the
first three case studies look at PEV coordination for market participation the
direct load control approach. The described model for the optimal decision mak-
ing of plug-in electric vehicle aggregators participating in day-ahead electricity
markets under uncertainty and risk aversion is applied.

First, in subsection 5.1.2, a large-scale case study, without network represen-
tation highlights aspects of risk management, while calculating basic values that
stand in favor of this approach. Then, subsection 5.1.2 features a small-scale
case study with very stylized data mainly to motivate stochastic programming
methodology. Finally, subsection 5.2 combines the two previous studies, as it
applies the PEV energy retail problem with interactions in day-ahead and bal-
ancing markets from the aggregator’s perspective, taking into account location
dependent network UoS tariffs in the form of capacity prices for active power.

5.1 Market Participation Under Uncertainty

The following case study is published in [74].

5.1.1 Large Scale PEV Fleet Participation

This very first case study applies the developed methodology to a realistic set of
data. Hence, it shows how the model can be used to maximize PEV aggregator
profits taking decisions in day-ahead and balancing markets while considering
risk aversion. Under uncertain market prices and fleet mobility, the proposed
two-stage linear stochastic program finds optimal PEV charging schedules at

117
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Table 5.1: Maximum Likelihood Estimation Results: Model Parameters

Model Specification AR MA SAR SMA Constant GARCH (1,1) Variance

Day-Ahead SARIMA(1, 1, 2)× (1, 1, 2)168 φ1 = 0.775
θ1 = −0.657

Φ1 = −0.189
Θ24 = 0.152

cD = 0.585× 10−3
Γ1 = 0.550, Υ1 = 0.287

θ2 = −0.318 Θ168 = −0.704 cσ2 = 3.323

Balancing ARIMA(2, 1, 2) φ1 = 0.616
θ1 = −1.103

-
-

cB = −0.034
Γ1 = 0.581, Υ1 = 0.246

θ2 = 0.1295 - cσ2 = 220.1

the vehicle level, assuming that the aggregator can exercise DLC. Specifically,
it highlights the effects of including the CVaR term in the objective function
and calculates two metrics referred to as the expected value of aggregation and
flexibility.

5.1.1.1 Uncertainty of Input Data and Parameter Settings

Market Data Acquisition 2011 data for the day-ahead market spot price
(EPEX) and the single price for balancing energy across all four German con-
trol areas (reBAP) have been obtained from the European Energy Exchange
platform [143] and 50 Hertz Transmission [142].

Market Price Scenario Generation These data, converted to hourly res-
olution, have been used to estimate parameters of ARIMA models [140], [141].
The ARIMA models are characterized by the number of auto-regressive terms,
the differencing order, and the number of moving-average terms, respectively,
while seasonal SARIMA models include differencing for the daily or weekly sea-
sonality. To account for time-dependent variance, σ2 terms are estimated using
GARCH models. Parameters from the maximum likelihood estimation for both
EPEX and reBAP can be viewed in Tab. 5.1.

Using the error terms from the time-series estimation, 200 equiprobable sce-
narios are generated over a 24-hour horizon. The reBAP is treated as a single
price-time series and after the scenarios are generated, the two-price system is
emulated from the obtained data, see appendix. Another approach would be to
combine SARIMA models with Markov Processes [144].

The typical day-ahead market is cleared 12-36 hours ahead, while prices
for the coming 12 hours are already determined by the previous clearing. The
balancing prices are predicted over a one-hour horizon. This horizon is chosen
to replicate presumed conditions, in which rolling forecasts are performed every
hour with updated information on past price realizations . The conditions in
the system correspond to day 301 of the year (Monday, October 28). From the
6000-hour training period, the observed series and inferred residuals are used as
pre-samples.

Fig. 5.1 and 5.2 show the price scenarios and hourly volatilities for both
EPEX and reBAP. The box plot figures and the variance plots indicate the
amount of uncertainty and variability in the input data. An illustration of the
time-series forecasting is given as follows. The original series plotted against the
model forecasts for the validation period in hour 6000-8760 is shown in Fig. 5.3
and characterized in different levels of zoom. Also, for a given time interval,
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Figure 5.1: Scenarios for day-Ahead Market Prices
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Figure 5.2: Variance and box plot of system imbalance price spread

observed data of the original series are sequenced by the sample paths for the
forecasting, while the mean and the 95-percentile regions are plotted in addition,
see Fig. 5.4.

Mobility Simulation To represent the uncertainty in driving behavior, the
two-state single-node Monte-Carlo simulation for mobility scenario generation
has been used as described in the previous chapter. 200 equiprobable mobility
scenarios are generated and combined with the 200 price scenarios. Please note,
this is a simplified means of attaining input data serving the main purpose of the
given case study, but are arguably not comparable to more advanced methods
for mobility scenario generation, as used in e.g. [73].

For the case study, data on German driving statistics is taken as provided
by the MID Mobility Survey Data given in [23], [65], [66]. The data is collected
from a survey with a comparably large number of individual participants and
thus responses. However, the data was only collected on a given day of the
week, respectively. So the challenge lies in connecting the diurnal simulations,
represented by 5 typical days of the week, to a weekly result profile. Fig. 5.5
shows the respective probability distributions defining the case study input,
notably the probability of starting a trip at a given time and the probability
of different trip length classes. For further reference, these and more numerical
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Figure 5.3: Example Simulation with SARIMA(1, 1, 2)× (1, 1, 2)168
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Figure 5.4: Sample Paths for given Forecasting Period

values are provided in Tab. D.1, Tab. D.2, Tab. D.3 and Tab. D.4 of the appendix
with supplemental material.

Client-Side PEV Parameters On the client side, the wholesale price com-
ponent is a flat rate of γY = e 0.033 /kWh, excluding the tariff components
related to using the network. This parameter is calibrated to achieve an ade-
quate level of profits for the aggregator, which would in reality be set by the
degree of competition in the retail market. Just to provide an illustrative num-
ber for comparison, according to the digital information board of EPEX SPOT,
the average EPEX base price cleared for the year 2011 was € 51.12 per MWh
or € 0.05112 per kWh.

In the numerical results provided here in the thesis, discharging is always
turned off. Only uni-directional cases are provided, and thus making γZ irrele-
vant for this specific application, without questioning its general validity.

The PEV fleet features characteristics mainly based on [64], [145], including
available battery capacity Ev = 12 [kWh] and (dis-)charging efficiency ηZ =
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ηY = 0.93 [p.u.]. Regardless of the scenario, the target SOC is the same as the
initial SOC forcing equal net energy exchange over the course of the day for all
vehicles, i.e., in all mobility sub-scenarios ιSOCv = 8 kWh and φSOCv = 8 kWh.
In this case, the values are identical, which is similar to modeling water reservoirs
with daily cycles. However, other settings with differing initial and final values
would be possible as well.

Risk Parameters Unless otherwise indicated in specific runs, the parameters
for controlling the risk are 1− α = 0.05, and β = 0.01.

In order to illustrate the applicability of the above presented model with its
main features, a uni-directional, charging-only example is studied. Discharging
is turned off. Therefore, setting the transaction cost parameter, τ to value close
to but smaller than 1, i.e. ≈ 0.99 is not necessary.

Since discharging is turned off, this case study presents only results regarding
uni-directional battery charging. Nevertheless, as long as the discharging can be
priced appropriately according to the energy processed - for more information
on the cost of battery degradation, please refer to the specific section in the
literature review, Chapter 3 - the conclusions from the there presented results
are transferable. However, for the sake of simplicity and ease of understanding
the main contributions of this model, it is not deemed necessary to include
discharging.

5.1.1.2 Number of Scenarios and Stability of the Solution

[129] proposes a stochastic optimization of PEV participation in electricity mar-
kets, using SCENRED to reduce scenarios and to represent vehicles at a fleet
level, while incorporating VaR in the coordination. SCENRED is a well estab-
lished tool for the reduction of scenarios modeling random data processes [146].
For the given two-stage program the scenario reduction can be directly imple-
mented within GAMS using the built-in SCENRED2 library, specifying either
prescribed cardinality of the reduced set of scenarios, or relative probability
distances between the resulting distributions.

A critical issue when using scenario-based stochastic programming is the
actual number of scenarios to consider. Too few scenarios might result in inac-
curacies, while too many could be computationally burdensome. In a calibration
step, to determine the right number of scenarios, a reduction technique is carried
out as much as necessary while trading off the stability of the objective function
value and the computation time. Taking an initial set of scenarios, the problem
is solved, while both objective function value and execution time are recorded
for an iteratively increasing number of reduced scenarios The scenario-reduction
algorithm, thus, uses a prescribed cardinality, i.e., not accuracy, of the reduced
set of scenarios as the stopping rule. During this calibration, the objective
function value stabilizes when including approximately 40 scenarios; however,
including up to 100 scenarios does not involve a significantly higher compu-
tational burden. Beyond this value, the increase in computation time does
not justify the improvement in uncertainty approximation through the larger
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scenario-reduction set. Therefore, scenario reduction with prescribed cardinal-
ity of the reduced set equal to 100 is carried out.

5.1.1.3 Expected Value of PEV Flexibility

After scenario-reduction, the economic benefit of aligning the PEV schedule with
market prices is quantified. To estimate this value of flexibility, first, the optimal
objective function value, (4.1) in the original formulation with DLC is denoted
zDLC as opposed to that of a schedule over which the aggregator cannot exercise
control znoC. Therefore, a reference charging schedule Ěv,h,ω is obtained from
a trivial optimization in which the objective is immediate charging after each
trip:

Minimize eRT,Y
v,h,ω · h, (5.1)

and subject to a constraint that ensures post-trip charging:

Σh1e
RT,Y
v,h,ω ≤ Σh1

ρv,h,ω
ηv

. (5.2)

This charging schedule is found ignoring market-side prices (4.2)-(4.5) and re-
laxing market balance (4.6), (5.9) and CVaR (4.12)-(4.13) constraints while only
enforcing the physical constraints given by availability (4.9), SOC balance (4.7),
lower SOC bounds (4.11) as well as initial and final SOC conditions (4.10).

Finally, to calculate the resulting profits of such a charging schedule, Ěv,h,ω
is forced as the solution to the original problem formulated in (4.1)-(4.13). This
is achieved by fixing the decision variables pertaining to real-time charging to
the consumption as it could occur in an uncontrolled mode

eRT,Y
v,h,ω

fix
= Ěv,h,ω .

The EVPEVF is then calculated as

zflex = zDLC − znoC and zflex%= zDLC−znoC
znoC

. (5.3)

5.1.1.4 Expected Value of PEV Aggregation

To analyze how much the stochasticity of a single PEV’s mobility influences
the economics of the charging schedule in the day-ahead planning, the following
disaggregation and calculation is proposed. For the given fleet of |V| = 1000
vehicles, the problem is solved with varying aggregation sizes of the sub-fleet∣∣Vk
∣∣. The (number |K|, size

∣∣Vk
∣∣) pairs of the sub-fleet are set to every possible

combination of two integer factors of the total fleet size, which in this case are
a total of 16 pairs: (1,1000); (2,500); (4,250); (5,200); (8,125); (10,100); (20,50);
(25,40); (40,25); (50,20); (100,10); (125,8); (200,5); (250,4); (500,2); (1000,1).
For each of these pairs, the problem given in (4.1)-(4.13) is solved for every
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Table 5.2: Expected Value of Aggregation for Selected Sub-Fleet Sizes

Sub-Fleetsize
∣∣Vk∣∣ 1000 250 40 25 10 4

# Aggregations |K| 1 4 25 40 100 250

zsf =Σk[E
{

ΠTot
ω

}
+β·CVaR]k [e] 16.89 16.71 16.48 16.01 14.47 13.61

EVPEVA zagg [e] - 0.18 0.41 0.89 2.43 3.28
Relative EVPEVA zagg|V|

zDLC
[%] - 1.08% 2.43% 5.24% 14.37% 19.42%

sub-fleet, hence in this case a total of 2340 times. Then, for each (number, size)
pair, the sum of the expected profits of the k sub-fleet problems is computed as:

zsf = Σk[E
{

ΠTot
ω

}
+ β·CVaR]k . (5.4)

This leads to the EVPEVA, which is then calculated as:

zagg = zDLC − zsf .

Controlling the CVaR The main part of the analysis focuses on the in-
clusion of the CVaR measure and the sensitivity of the solutions to the risk
aversion of the PEV aggregator. Starting from a risk-neutral case with β = 0,
the problem given in (4.1)-(4.13) is successively solved for increasing weighting
factors: β = [.01, .02, .13, .20, .31, .47, .72, 1.10, 1.69, 2.60, 3.98]. The effects
on the distribution of profits ΠTot

ω , as well as on day-ahead vs. balancing trad-
ing positions, indicated by diurnal expected schedules and the scenario weighted
total sums of eD,Zh,ω , e

D,Y
h,ω , e

B+
h,ω , e

B−
h,ω , e

RT,Z
v,h,ω , and eRT,Y

v,h,ω , are analyzed.

5.1.1.5 Numerical Results

The EVPEVF is significant. It amounts to

zflex = zDLC − znoC = € 16.93−€ 12.72 = € 4.21 (5.5)

and
zflex% =

zDLC − znoC

znoC
= 33.1% . (5.6)

Essentially, there is value in aligning demand with market price signals.
For selected (|K|,

∣∣Vk
∣∣)-pairs, the results relating to the EVPEVA are sum-

marized in Tab. 5.2. It can be observed that with further disaggregation (|K| ↑,∣∣Vk
∣∣ ↓) the expected mean sub-fleet profit decreases. This finding is intuitive,

as it is supported by the law of large numbers: the confidence with which day-
ahead forecasts of vehicle mobility, i.e., energy demand and unavailability, can
be carried out increases with the fleet size. Hence, a larger fleet incurs lower
imbalance settlement fees as compared to the same fleet broken up in smaller
sub-fleets. In effect, the more vehicles are controlled by the same entity, the
better the individual vehicles compensate for the uncertainty in mobility of the
others within the same aggregation.
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Figure 5.6: Cumulative Profit Distributions for Increasing Risk Aversion

Regarding risk aversion in the form of CVaR weights, Fig. 5.6 shows the
cumulative distribution functions of the scenario profits plotted for different
levels of β. The effect of risk control results in the absolute decrease of the
expected loss in the lowest (1-α)-quantile scenarios of the profit distribution.
It can be observed that improvements in the lower tail of the distribution, i.e.,
higher worst-off scenarios, are accepted at the cost of altering the shape of the
upper part. However visible, it has to be noted that the overall effect seems less
pronounced in this graphical resolution.

In the supplemental Fig. D.5, it can be seen how the variability of the objec-
tive function and its components over all elements in the reduced scenario set
behaves. Although the relative stochasticity of the mobility reflected in retail
revenue ΠC

ω is rather small with the large fleet size|V| = 1000, the total profit is
mainly driven by moderately high prices when selling excess balancing energy.

To analyze these effects quantitatively, in Fig. 5.7 the numerical results of
the expected profits E{ΠTot

ω } are plotted against their corresponding CVaR
values ζ − 1/ (1− α) Σωπω · ıω. The results illustrate how increasingly risk
averse PEV aggregators trade off expected profit for higher CVaR. The efficient
frontier indicates a critical level of β, beyond which additional risk aversion
would induce negligible impact on the CVaR and would not effectively control
the losses in expected profits. For the given numerical case, this level is β > .31.

Having presented that hedging against adverse lower-tail profits is achieved,
the analysis forthwith turns to strategies of reaching outcome distributions
with lower risk. Therefore, for selected risk aversion levels, Tab. 5.3 provides
the different trading positions taken in the respective markets: cumulative en-
ergy quantities of day-ahead purchases Σh,ωπωe

D, Y
h,ω as well as expected positive

Σh,ωπωe
B,+
h,ω and negative Σh,ωπωe

B,−
h,ω balancing. Interestingly, the results are

rather counter-intuitive: for the same mobility requirement, which is consti-
tuted by the expected aggregated real-time charging Σv,h,ωπωe

RT, Y
v,h,ω , higher risk

aversion and controlling for the CVaR leads to altered day-ahead purchases such
that less negative and more positive balancing is required. This is consistent
with the findings in [70]. However, it has to be noted that the strong shift from
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Figure 5.7: Risk Aversion: higher CVaR and lower Expected Profits

Table 5.3: Expected Trading Positions in the Different Markets

β 0.01 0.08 0.13 0.31 0.47 3.89

Σh,ωπωe
D,Y
h,ω [kWh] 2655 2575 1773 1604 1310 1181

Σh,ωπωe
B,+
h,ω [kWh] 1276 1339 2031 2166 2361 2457

Σh,ωπωe
B,−
h,ω [kWh] 653 636 525 492 393 360

Σv,h,ωπωe
RT,Y
v,h,ω [kWh] 3278 3278 3278 3278 3278 3278

day-ahead towards the involvement in balancing positions may be the result of
the simplifying but necessary assumption of full foresight within the 24-hour
scenarios in the second stage of the optimization. At the cost of lower expected
profit, the opportunity of balancing the inherently flexible schedule provides the
aggregator with diminished uncertainty, which improves the CVaR.

In the absence of futures markets and bi-lateral contracts, on its own the
PEV aggregator’s only means of controlling risk lies in the amount and timing
of day-ahead purchases and balancing. Note that day-ahead purchases are made
under uncertainty, while balancing is made with full knowledge of prices as well
as diurnal energy requirement and unavailability. For selected risk-aversion lev-
els, the diurnal schedules of the day-ahead market positions are given in Fig. 5.8
and the expected deviations in the balancing market are given in Fig. 5.9.

The observations pertaining to the nearly risk-neutral, i.e., β = 0.01, sched-
ule of day-ahead positions are straightforward: among other small positions, the
PEV aggregator purchases more than 2 MWh in hour 3 as well as ca. 0.2 MWh
in hour 16, which directly correspond to the smallest values of the expected
market prices E{λD

h }. This leads to expected positive balancing positions in
hours 8 (0.1 MWh) and 15-17 (0.23-0.27) for which the expected prices E{λB

h }
show a favorably strong negative expected imbalance price spread. Vice versa,
expected negative balancing is the outcome for hour 3 with a rather large posi-
tion of 0.5 kWh. In expected terms, this seems reasonable because day-ahead
price spreads are minimal and imbalance price spreads close to zero. Another
small position in hour 9 shows moderately low day-ahead price and among the
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Figure 5.8: Risk Aversion Shift in Diurnal Day-Ahead Schedules

second highest imbalance price spread.
At the other end of the spectrum, a highly risk-averse schedule β = 3.89 of

a PEV aggregator exhibits a reduced day-ahead position in hour 3 but a new
position in hour 7. The balancing shift is in accordance: there is pronouncedly
more positive balancing for hours 3, 4, 5, and 7, whereas the negative balancing
is reduced in hours 3 and 7.

A key observation is that the risk aversion does not necessarily lead to de-
creased profit variability. It can be seen that day-ahead as well as balancing
schedules do not decrease positions in those hours for which the price variance
is higher, for back reference, compare Fig. 5.1 and (5.2). The distribution of
prices in the respective hourly periods, indicated both by the box plot as well
as the absolute variance, shows, which positions are more likely to be volatile
and, thus, prone to more uncertainty. However, the aggregator’s hedging strat-
egy against risk includes more than the preparation against adversely variable
profit. Rather, the positioning of the PEV aggregator is driven towards those
hours with higher worst-off outcomes, even at the cost of giving up part of the
expected profitability and lower variance of the profits.

5.1.1.6 Operational Day vs. Day-Ahead Planning

It is true that in the formulation presented, the optimization phase for the oper-
ational day is only approximated. In reality, the proposed model only provides
an optimal decision at the time of making day-ahead transactions under vari-
ous assumptions. One of the most prominent ones is information about future
scenarios. The 24-hour foresight within one scenario path significantly improves
the economics of making decisions and therefore, the final result should be taken
as an optimistic approximation. However, for the sake of tractability, this as-
sumption appears important, given the modeling of the rest of the problem. If
this perfect foresight was taken away, additional decision stages would have to
be enforced by nonanticipativity constraints, which in this case are complicat-
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Figure 5.9: Changes in Positive and Negative Balancing Schedules

ing, because they are linking even more variables. Furthermore, if this was not
modeled as a two-stage problem, the scenario reduction techniques provided by
the SCENRED package could not be applied in the straight forward manner
as it is now. Therefore, it seems fair to admit this important simplification as
necessary and therefore acceptable.

5.1.1.7 Tractability and Scaling Limits of the Approach

Most bidding approaches proposed so far, including [130], schedule vehicles as
an aggregate. Others, such as reference [72] however, do actually not schedule an
aggregate but rather determine schedules for individual vehicles. The rationale
for not representing vehicles individually is computational tractability [76]. It
is therefore interesting to analyze the limits of the proposed approach and to
see whether it could be applied larger fleets. The following paragraphs hence
elaborate on the limits of computational tractability of the proposed approach.

Clearly, the advantages of detailed representation of individual vehicles comes
at the cost of losing the ability to model very large fleets on the same machine
at the same time. However, as mentioned in the future work paragraph of the
conclusions, future work on decomposition techniques seems promising. And in
general it is believed that both aggregate as well as individual vehicle formula-
tions have their advantages.

Computational tractability is indeed an issue, which for the practical purpose
of this thesis is understood as follows: the problem instance becomes intractable
if it takes longer to solve it than its time horizon or any other system compo-
nent, e.g. available memory, reaches its resource limit. Naturally, this time is
determined by the machine or system of machines that the problem instance is
solved on. Here, the tractability is is merely reported for the available 64-bit MS
Windows©2003 Server machine with 32 GB RAM and an Intel© Xeon™ E-
5520 CPU clocked at 2.26 GHz. However, the evolution of computing power is
difficult to predict. Especially, with the development of parallel, cloud comput-
ing services and their costs, it might be acceptable to acknowledge the possibility
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Figure 5.10: Tractability of the Stochastic DLC Model

of a dedicated PEV aggregator being able to solve very large instances of this
problem to schedule PEVs individually approximately within the coming decade.

To estimate the limits of the proposed approach on the given machine, the
mobility scenario generation algorithm was used to create two new tensors νv,h,ω
and ρv,h,ω in the dimensions of |V| × |H| × |Ω| = 10 000 × 24 × 200. All other
inputs remaining the same, iterative GAMS calls from MatLab with the sub-
problem only including the first j vehicles of |V|, with j = {2, 3, 4...|V|} are
solved and computation times recorded with tic and toc function commands.
Fig. 5.10 illustrates the results of this analysis.

5.1.1.8 Remarks on Risk Management Under DLC

Via a stochastic linear programming approach, this case study has assessed
sequential decision making by a PEV aggregator under uncertainty and risk
aversion. With 1000 vehicles, 200 initial, and 100 reduced scenarios for market
prices and mobility, the expected value of PEV flexibility under direct load con-
trol by the aggregator has been found to be substantial. It lies in the range of
33%. Furthermore, with the proposed methodology, the relationship of profits
and the fleet aggregation size is derived, suggesting that with further disaggrega-
tion, the expected mean sub-fleet profits decrease considerably. These are likely
due to decreasing forecasting errors and consequentially diminishing relative im-
balance settlement penalties. This expected value of PEV aggregation has been
found to lie in the range of 19% comparing the scheduling of 250 four-vehicle
big sub-fleets with the scheduling of one fleet of 1000 vehicles.

The study finally points out that there might be a potential of and strate-
gies for controlling risk via CVaR modeling. In the given case, the conditional
value at risk can be approximately reduced from € 8.2 to € 6.1 decreasing the
expected value of aggregator profit from € 16.9 to € 15.2 during a scheduling
horizon of 24 hours. To avoid losses on the lower end of the profit distribution,
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the PEV aggregator reduces day-ahead positions and strongly increases positive
balancing. Consistently, the negative balancing positions are slightly decreased.
It must be noted that this observed shift of demand from the day-ahead to the
balancing market is partly due to the assumption of perfect foresight in the
second stage of the model. Nevertheless, this observation seems coherent with
better forecasts of driving patterns in the operational stage.

Taking a broader policy perspective, the implications of these findings mainly
concern electricity market design. The level of uncertainty involved in the self-
scheduling of a PEV aggregator requires sequential trading floors for an efficient
allocation of resources. These are existent today. Thus, the supposed decision-
making framework seems adequate for such new electric power system agents
to integrate successfully in this environment.

With the proposed methodology, conclusions concerning the viability of the
assumed business model cannot be drawn, as they mainly depend on the ex-
ogenously set retail prices, ergo the customer’s willingness to pay. While this
case study suggests that the aggregator can achieve an expectation value of raw
trading profit in the range of €-cent 1.5 to 1.7 per vehicle during the analyzed
24-hour horizon, it could just as well be much more or less than that. But as-
suming that this result is based result on good assumptions regarding the retail
price, one can estimate the net present value of supplying an individual vehicle
via DLC for the aggregator. Extrapolating the expected raw trading profit to
annual terms yields € 6.16 per vehicle. Assuming perpetuity of the cash flows
and a weighted average cost of capital for the aggregator of 10 % p.a. yields a
net present value of € 61.69 per vehicle, or € 61 685 for the entire fleet with
1000 vehicles. Larger fleets, i.e. further aggregation should provide higher yields
per vehicle.

Nevertheless, this first large-scale DLC case study has made it clear that
a different type of modeling is necessary to make an improved assessment of
the aggregator’s business model, in which retail prices are set endogenously
according to the final customer’s price elasticity. The following case studies of
Chapter 6 intend to tackle this by means of modeling indirect load control.
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The case study presented in the following subsections is published in [147] .

5.1.2 Illustrating the Importance of Uncertainty

Thus far, the large scale DLC case study has calculated results based on full
nonanticipativity between the first-stage, here-and-now decision variables and
the second-stage, wait-and-see variables. This second case study now intends
to relax this assumption. It uses standard methodology to calculate well estab-
lished stochastic programming quality metrics:

• the value of the stochastic solution (VSS) and

• the expected value of private information (EVPI) for the established PEV
energy retail aggregator model.

Applied to a real medium voltage system with urban characteristics and realistic
spatial PEV mobility, information with different precision levels of the mobility
forecasts are included at the first-stage here and now decisions.

All this is carried out to justify the effort of analyzing the aggregator’s deci-
sion making under uncertainty and further motivating the use of the stochastic
programming approach. Therefore, this section analyzes whether or not it is
even necessary to account for the uncertainty involved via the proposed scenario-
based approach. It may be sufficient to merely schedule the charging of PEV
according to expected values of the supposedly uncertain parameters, whether
this provides unacceptable opportunity costs.

Please note, to distinguish between existing literature it is deemed impor-
tant to mention that [70] analyzed the effect of certainty gained when trading
in shorter term adjustment markets on wind power producers. Aligned with the
findings for the first DLC case study, [70] shows that in principle, the closer to
real time the producer can participate in markets, the better the forecast, i.e.,
yielding a smaller forecasting error, and therefore the more profitable because
imbalance settlements are reduced. In this section containing the second DLC
case study, however, a different approach is used to assess certainty gain. By
including limited, indicative mobility forecasts as information at the first-stage
here and now decisions, impacts on typical stochastic programming quality met-
rics can be observed. The standard methodology of calculating the VSS and
EVPI is followed, before results are presented.

5.1.2.1 Quality Metrics in Stochastic Programming

To motivate the use of the stochastic programming framework [133, pp. 48-57,]
including various sources of uncertainty [91], the following quality metrics are
studied. Let zsto be the value of the objective function with binding nonantic-
ipativity constraints, then the following holds:
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Expected Value of Perfect Information - EVPI The EVPI is a measure
of how much would one be willing to spend for acquiring a perfect forecast:

zEVPI = zpf − zsto, (5.7)

where zpf with perfect forecast stands for the objective function value with
fully relaxed nonanticipativity constraints. It is a theoretical measure that helps
quantify the importance of using a stochastic programming approach.

Value of the Stochastic Solution - VSS: The VSS is a measure of how
much it would be worth to know the distribution of the stochastic inputs beyond
their mere expectation value:

zVSS = zsto − zdet, (5.8)

where zdet is the objective function value when first-stage decision variables
are fixed at the optimal solution of the problem, in which stochastic inputs are
replaced by expected values. A practical interpretation of this quality metric is
that it represents the potential benefit from solving the stochastic program over
solving a deterministic, i.e. a lot smaller and computationally less demanding,
program in which expected values have replaced random parameters.

Since the aggregator’s scheduling problem treats the maximization of profits,
by definition zpf ≥ zsto ≥ zdet and thus zEVPI ≥ 0, and zVSS ≥ 0.

5.1.2.2 Information Constraints

The mathematical formulation, as provided in Chapter 4 on the Developed
Approach, includes a brief discussion of the common constraint alternatives for
nonanticipativity (5.9) and offer-curves (5.10):

∀h, ∀ω, ω′ : eD,Yh,ω = eD,Yh,ω′ , eD,Zh,ω = eD,Zh,ω′ , (5.9)

∀h, ∀ω, ω′,
(
λDh,ω ≤ λDh,ω′

)
: eD,Zh,ω ≤ e

D,Z
h,ω′ , eD,Yh,ω′ ≤ e

D,Y
h,ω . (5.10)

Note that offer-curves (5.10) are a relaxation of nonanticipativity constraints
(5.9). Hence, when including both, (5.10) is overruled. When only including
(5.10), the program has more knowledge available at the first-stage decision
making, permitting it to distinguish between different day-ahead price scenarios.

Besides these common constraints and to gain further insights, one can con-
struct further degrees of information available to the DLC scheduling aggregator,
pertaining to information about other stochastic processes revealed only close
to real time. This case study specifically analyzes the effects of including ei-
ther one of the following constraints, pertaining to different aspects of the PEV
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mobility behavior.

∀h, ∀ω, ω′,
( ∑
v∈V

νv,h,ω =
∑
v∈V

νv,h,ω′

)
: eD,Yh,ω = eD,Yh,ω′ , eD,Zh,ω = eD,Zh,ω′ .

(5.11)

∀h, ∀ω, ω′,
( ∑
v∈V

ρv,h,ω =
∑
v∈V

ρv,h,ω′

)
: eD,Yh,ω = eD,Yh,ω′ , eD,Zh,ω = eD,Zh,ω′ .

(5.12)

By including one single constraint out of (5.11)-(5.12) per run, different levels
of restrictions are applied to the decision making at the first stage of day-ahead
market involvement. Since, (5.11) and (5.12) are each a relaxation of (5.9), it
would be misleading to introduce the contraints progressively. On the contrary,
it is important to test them each one at a time.

Equation (5.11) makes knowledge of an indicative mobility forecast avail-
able, in the form of νv,h,ω. Thus it would allow to distinguish between scenarios
of high and low unavailability, measured by the connection and disconnection of
each vehicle in the respective hours. And finally, (5.12) permits a perfect aggre-
gated mobility forecast in the form of ρv,h,ω. With the help of this forecast the
program could distinguish between scenarios of high and low unavailability and
consumption, measured by the SOC reductions during travel. The disconnection
of each vehicle in the same hour would be implied automatically. This would
leave the program only with second stage uncertainty regarding the balancing
market prices.

5.1.2.3 Case Study Definition and Specific Input Data

Day-Ahead Market Price Scenarios The stylized day-ahead market price
scenarios, constituted by three vectors of 24 hourly price elements are depicted
in Fig. 5.11. Note that these are not generated by time series but manually con-
structed for illustration purposes. These are all following the same diurnal price
profile with a high maximum price of approx. E

{
λD
}

+ 20% e/kWh occurring
at night (21h), low minimum price of approx. E

{
λD
}
− 30% e/kWh occurring

during the early morning hours (3h), which can be regarded as representative
for a typical market outcome in Spain.

Balancing Market Price Scenarios Presented in Fig. 5.12, the imbalance
price settlements, %+

h and %−h , express the ratio of real-time price to each hourly
day-ahead market price. There exist different probabilities to have increasing
(πB1 = 0.6) or decreasing(πB2 = 0.4) positive imbalance, and the amount of
imbalance represented in the prices are time dependent.

Client Side Prices On the client side, the sales price component attributable
to wholesale, excluding network tariff components, is γY = 0.065 e/kWh.
Again, discharging is turned off in the uni-directional case, hence γZ becomes
irrelevant.



134 CHAPTER 5. PEV COORDINATION WITH DLC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Hour [h]

D
a
y
−

A
h
e
a
d
 P

ri
c
e
 λ

D
 [
E

U
R

 p
e
r 

k
W

h
]

 

 

OFF−Peak Periods ON−Peak Periods

λ
D

1
, π

D1
=0.2

λ
D

2
, π

D2
=0.4

λ
D

3
, π

D3
=0.4

E[π
Dω

⋅λ
D

ω
]

γ
∨
=ϑ

∨
=0.065

E[λ
D

1
]= 0.045

E[λ
D

2
]= 0.055

E[λ
D

3
]= 0.07

E[λ
D

ω
]= 0.056
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Table 5.4: Mobility Sub-Scenario 1 - νv,h,M1, ρv,h,M1 , ϕv,ω

7 8 9 10 11 12 13 14 15 16 17 18

V
eh

ic
le
s

1 1.52 1.86 3.95 2.46 2.45
2 3.95 1.44 3.95 3.95 0.1 1.68 2.26
3 0.95 2.45 2.14 2.86
4 2.26 2.45 2.68 2.22
5 2.14 2.95 2.14 2.22

Hours h ∈ H [h]

Table 5.5: Mobility Sub-Scenario 2 - νv,h,M2, ρv,h,M2, ϕv,ω

7 8 9 10 11 12 13 14 15 16 17 18

V
eh
ic
le
s

1
2 2.95 2.68 2.14 2.14
3
4
5

Hours h ∈ H [h]

Table 5.6: Mobility Sub-Scenario 3 - νv,h,M3, ρv,h,M3, ϕv,ω

7 8 9 10 11 12 13 14 15 16 17 18

V
eh

ic
le
s

1 0.52 0.86 3.95 0.46 0.45
2 3.95 0.44 3.95 3.95 0.1 0.68 0.26
3 0.95 0.45 0.14 0.86
4 0.26 0.45 0.68 0.22
5 0.14 0.95 0.14 0.22

Hours h ∈ H [h]

Table 5.7: Mobility Sub-Scenario 4 - νv,h,M4, ρv,h,M4, ϕv,ω

7 8 9 10 11 12 13 14 15 16 17 18

V
eh
ic
le
s

1
2 0.95 0.68 0.14 0.14
3
4
5

Hours h ∈ H [h]
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Table 5.8: PEV Fleet Characteristics [23], [145]

Parameter PEV Units
Available Battery Capacity Ev 12 [kWh]
Dis-, Charging efficiency ηZ = ηY 0.93 [p.u.]
Initial SOC ιSOCv 8 [kWh]
Final SOC φSOCv 8 [kWh]

PEV Data - Unavailability Scenarios Suppose a small fleet of 5 vehicles,
which are made up of PHEVs only, whose characteristics are mainly based on
[64], [145], are shown in Tab. 5.8.

The PEV mobility sub-scenarios M1, M2, M3 and M4 are equiprobable
(πM1..4 = 0.25). The numerical data specifying this mobility is depicted in
Tab. 5.4, 5.5, 5.6 and 5.7, which show ϕv,ω, as well as νv,h,ω overlaying ρv,h,ω.
For the sake of readability, empty columns 1-6 and 19-24 are not shown, however,
dark shaded cells indicate disconnection and unavailability νv,h,ω, while the
numbers inside the cells show the consumption ρv,h,ω. Paying close attention
to the details, it can be observed that the stylized mobility is constructed such
that M1 and M3 represent the same high unavailability, while M2 and M4 show
very high availability. Furthermore, the following holds:

∀v, h : νv,h,M1 = νv,h,M3 ≥ νv,h,M2 = νv,h,M4. (5.13)

Further differentiation within the subgroups of even and uneven mobility sub-
scenarios is given by the amount of traveling or energy consumption:

∀v, h : ρv,h,M1 ≥ ρv,h,M3 and ρv,h,M2 ≥ ρv,h,M4. (5.14)

The final set of scenarios could take the shape of different possible combi-
nations. The detailed composition of the scenarios and their sub-scenarios,
together with probabilities can be accessed in the supplemental material of
Fig. D.5.

Vehicle Location and Network Pricing This case study also makes as-
sumptions about vehicle location and network pricing. However, since it is not
the focus of this case study and the same assumptions are made in the next
case study, they are not detailed here. For further information please refer to
the subsequent case study on charging with network use-of-system tariffs.

5.1.2.4 Anticipativity in Optimization Runs

All calculations were performed running MatLab© for handling input and
output data. For comparison, the optimization problem was formulated and
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Table 5.9: Case Study Problem Summary

Run Obj. Fn. [€] CPU Time [s] Total Iterations Equations Non-Zeros Real Variables

Base Run 0.59 80 15 0.343 1866 152 137 554 041 106 536

Run 1A 0.52 37 77 0.359 2036 178 633 607 033 106 536

Run 2A 0.52 37 78 0.328 2047 169 417 588 601 106 536

Run 1B 0.53 25 84 0.328 2018 172 297 594 361 106 536

Run 2B 0.53 28 82 0.343 2039 169 705 589 177 106 536

Table 5.10: Results: Stochastic Programming Metrics

Run EVPI [€] EVPI [%] VSS [€] VSS [%]

Run 1A 0.07 42 38 14.17 0.03 268 6.24

Run 2A 0.07 42 37 14.17 0.03 269 6.24

Run 1B 0.06 54 31 12.29 0.04 149 7.79

Run 2B 0.06 51 33 12.22 0.04 179 7.84

solved in GAMS© Build 24.0.1 employing the CPLEX™ 12.5.0 solver on a
64-bit MS Windows©7 machine with 8.00 GB RAM and an Intel© Core™ i7-
3770 CPU clocked at 3.4 GHz.

To calculate the quality metrics introduced above, the simulation procedure
consists of five runs with the following characteristics. The unconstrained base
case does not take into account any of the information restrictions for stochastic
programming, it is therefore equivalent to determining zpf, i.e., the objective
function value with perfect forecast. The four remaining runs are then including
different information constraints as follows:

RUN 1A Full Nonanticipativity: all nonanticipativity constraints are fully
binding. Hence, in the first stage decision for each hour, the pro-
gram cannot differentiate between different scenarios. Hence, only
one optimal energy quantity for the day-ahead market schedule is
found. Only information constraint (5.9) is binding.

RUN 2A Full Offer-curve Constraints: the nonanticipativity constraints are
relaxed to find multiple day-ahead pairs of price and optimal energy
quantity. Only information constraint (5.10) is binding.

RUN 1B Nonanticipativity but with Indicative Mobility Forecast: similar to
Run 3, but with aggregated information about αv,h,ω vehicle avail-
ability. It is not known how much is consumed in each hour. Only
information constraint (5.11) is binding.

RUN 1B Nonanticipativity but with Detailed Mobility Forecast on Hourly Con-
sumption of each Vehicle: similar to Run 4, but with perfect aggre-
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gated mobility forecast including both availability and consumption.
Only information constraint (5.12) is binding.

Runs 1A and 2A take day-ahead market prices as the basis of information, while
Runs 1B and 2B take data on PEV mobility as the basis of information.

5.1.2.5 Results

As a problem summary, Tab. 5.9 gives an overview of the case study results
and shows the size of the problem in the different runs. On a high level valid
for all runs, it can be observed that the problem is solved in very little time,
i.e. roughly one third of a second. This is expected as the fleet of vehicles is
very small and the problem is purely linear. Solver iterations do not significantly
surpass the 2 000 mark. Furthermore, the linear characteristic of the formulation
accords with the absence of any binary and integer variables. However, since
wait-and-see decisions for state-of charge as well as charging and discharging
are represented on a detailed vehicle basis, the amount of real variables, with
ca. 100 000, is rather high for such a small case study. Adding to the problem
of dimensionality is the inclusion of distribution network use-of-system prices
for each node.

Furthermore the results regarding the stochastic programming quality met-
rics can be accessed in Tab. 5.10, where for all the runs, EVPI and VSS are
listed. The detailed analysis in for the specific cases follows underneath.

The base run sets the benchmark to the result of which all following runs are
measured against. The optimal objective function value is found at 0.59 80 15.
Since it is the least constraint of all runs, it exhibits the smallest problem
instance in terms of solver iterations, equations and non-zeros. There are no
indications for the quality metrics, as the base run is needed to be the reference
for computing the VSS and EVPI values of the other runs to follow.

Full Nonanticipativity Run 1 comes along with the biggest problem in-
stance (178 633 equations and 607 033 non-zeros) compared to all others. It
stands for the typical two-stage stochastic problem formulation in which no in-
formation about future outcomes are available at the first stage. Because the
feasible region is so constraint, it shows the lowest objective function value with
0.52 37 77. It has hence an EVPI of 0.07 42 38, which - put in relation to the
base run optimum of the objective function - amounts to a 14.17%. The VSS is
similarly significant with 0.03 268 and 6.24%, respectively.

These results give rise to the main finding of this study: both quality met-
rics indicate an advantage of using the stochastic programming for the given
problem. This suggests that with the combined uncertainty of market prices
and fleet mobility, finding optimal day-ahead market schedules can justifiably
be done well with the stochastic programming framework used in this thesis.

Full Offer-Curve Constraints Run 2 shows very little difference to the
previous one. It appears that even though problem size decreases eminently,
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the solution shows almost no improvements at an objective function value of
0.52 37 78. Hence, EVPI and VSS are the same as in Run 1. The reason for
this is assumed to lie in the structure of the day-ahead price scenarios and the
aggregated availability and consumption of the vehicles. Since all three day-
ahead sub-scenarios follow the same price profile only at different levels, the
cost signals giving preference to one hour over another are the same. Also,
each day-ahead market sub-scenario has the same sub-branches of mobility and
balancing uncertainty, thus making it unprofitable to distinguish between price
levels.

Nonanticipativity with Indicative Mobility Forecast Run 4 takes sec-
ond rank in terms of constraints and non-zeros. Accordingly the objective func-
tion value amounts to 0.53 25 84, which implies an EVPI of 0.06 54 31, 12.29%
respectively. Here the program is allowed to find a schedule that also alternates
with the scenario counter. This means that in the given set up it is valuable
to know whether there is more or less travel. This is even true although for
instance consumption values still differ very much among scenarios with same
travel. Thus it is possible to distinguish between scenarios of different unavail-
ability, even though the amount of consumption that lies behind this disconnec-
tion is unknown to the program. The VSS of 0.04 149 or 7.79% still suggests
that scheduling according to expected values of involved stochastic processes
would lead to a significantly worse outcome.

Nonanticipativity with Detailed Mobility Forecast on Hourly Con-
sumption of each Vehicle Finally, Run 5 resolves the uncertainty regarding
mobility, which leads to a slightly better result than the previous run with the
objective function value at optimum 0.53 28 82, which implies an EVPI of 0.06
54 31, 12.22%. The VSS of 0.04 179 or 7.84% still suggests that scheduling
according to expected values of involved stochastic processes would lead to a
significantly worse outcome.

5.1.2.6 Summarizing Notes: Uncertainty Matters

This section has provided a methodology how to assess the effect of different
mobility forecasts for stochastic charge scheduling of aggregated PEV fleets. It
was applied to a case with a very small fleet but this permits to easily follow
the hourly implications for individual vehicles in detail. Different information
constraints were used to show the impact on optimal scheduling and operational
decisions for a retailer executing transactions in two consecutive markets under
uncertainty in inputs regarding market prices and mobility.

The computation of typical quality metrics of stochastic programming, i.e.,
the expected value of perfect information and the value of the stochastic solu-
tion, has intended to quantify the above named effects of different information
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included at the first-stage scheduling. Furthermore, it has shed light on implica-
tions for the different sources of uncertainty: day ahead market prices, mobility,
i.e., availability and consumption. Overall, the results are well aligned with the
observed tendency in literature to account for uncertainty and support the use
of stochastic optimization frameworks.
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5.2 Coordinating PEVs for Efficient Network Use

The following case study has been published in [91] .

Electricity market signals are deemed efficient to allocate resources at the
transmission system level, yet they may not always sufficiently represent the
local network status of the distribution system. The illustrative case study in
Chapter 2 has shown that high penetration levels of PEV may cause network
reinforcement, which would have an impact on investment, operation and main-
tenance costs of the infrastructures. However, while long run marginal cost
(LRMC) pricing for computing node dependent network UoS tariffs has been
proposed for integrating distributed generation, it remains unexplored in the
context of PEV charging.

Hence, this section as it applies the PEV energy retail problem with inter-
actions in day-ahead and balancing markets from the aggregator’s perspective,
taking into account location dependent network UoS tariffs in the form of net-
work capacity charges for peak demand.

In the DLC case, the retail tariff for the final customer is supposed fixed
in the medium term, and these capacity charges are accounted as costs to the
aggregator. By aligning the PEV charging schedule, in time and location, to the
network signals, the aggregator can hence further minimize its perceived costs.
Applied to a medium voltage system with urban characteristics and spatial PEV
mobility, profit optimal charging schedules for the aggregator are found.

5.2.1 Pricing Network Capacity with DSO’s LRMC

As it has been discussed in earlier sections, the operational operational challenge
of a PEV Aggregator presents a combination of the multiple problems that
are well known in electric power systems research: In particular it is similar
to that of an electricity retailer [67], sometimes also referred to as supplier or
marketer, and a large consumer with potential on-site generation [68]. If feeding
back energy to the system is considered, too, the PEV retail problem shares
characteristics with wind power producers [70], conventional power producers
under resource unavailability [69], [135], as well as with energy storage system
operators[71].

However, as it has been shown in the preceding case study, see Tab. 2.3, at the
distribution level of electricity grids, the connection of high penetration levels
of PEV potentially cause network reinforcements. This would have an impact
on investment levels of DSOs and raise network operation and maintenance
costs. For integrating distributed generation, long run marginal cost pricing for
computing node dependent network UoS tariffs has been proposed [89], [90], but
in the context of PEV charging this remains unexplored.

Assuming some degree of centralized control by an aggregation agent, the
scheduling of charging PEV presumably provides high degrees of flexibility in
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terms of timing and location of the charging. Therefore, constrained by its un-
availability due to driving and subsequent re-connection, the charging schedule
of such a fleet of PEVs could efficiently react to a combination of market signals
with UoS tariffs to avoid temporal simultaneity and local coincidence of charge
[23].

Therefore, in the following case study, a model for optimal operational deci-
sions of a PEV aggregator in the short-term is applied to a very specific set of
numerical data. The objective is to analyze, how electricity price uncertainty
and mobility-caused unavailability of the fleet in different locations affect the
optimal market involvement and profit functions of this new agent when node
dependent network UoS tariffs are considered.

Due to the above named characteristics, the coordination of charging a fleet
of electric vehicles is an interesting topic as such, however it becomes even
more challenging to see how both electricity market as well as network signals
influence optimal outcomes. The proposed stochastic optimization methodology
accounting for uncertainty of prices as well as fleet mobility is put into practice.
The stylized case study is carried out to emphasize the value of the proposed
model and its functionality.

5.2.1.1 Network Data of an Urban MV Feeder

For illustration purposes the same network as presented in [89] is chosen. Please
see Fig. 5.13 for a graphical representation of the single MV feeder in an urban
environment with the following characteristics: 17 load nodes with a total de-
mand of 4 MW and 1 MVar, of which only the active part is considered here;
all nodes have residential customers attached except for node n = 1 which is
dominated by a commercial customer’s load profile. The resulting node spe-
cific network UoS prices can be found in Tab. 5.11, taken from [89]. However,
the original prices were divided by 5 (10) for the ON (OFF) -peak CUoSn,h∈Hon

(CUoSn,h∈Hon) period to account for the shorter time horizon of one day, making
total market and grid prices approx. equal in magnitude. Also, for simplicity,
all nodes are supposed to have a medium charging option, with connection ca-
pacity Pn=7.2 kW. This is not withstanding the fact that in general the total
capacity connected at each node is much larger than Pn.

5.2.1.2 Stylized Day-Ahead and Balancing Prices

Many of the following parameters are shared with the previous case study in
5.1.2. Therefore, some references to illustrative tables and figures are pointing
back to the previous section to avoid redundancy. Nevertheless, the text details
all the necessary data.

Day-Ahead Market Price Scenarios The stylized day-ahead market price
scenarios stay the same as before, constituted by three vectors of 24 hourly
price elements are depicted in Fig. 5.11. Note that these are not generated by
time series but manually constructed for illustration purposes. These are all
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Figure 5.13: Network Topology of Urban MV Feeder as in [89]

Table 5.11: Network UoS Tariffs as Prices Related to the Used Capacity

Node n 1 2 3 4 5 6 7 8 9

CUoSn,h∈Hon [e/kWmax per day] 0.388 0.438 0.470 0.504 0.536 0.556 0.586 0.602 0.616
CUoSn,h∈Hoff [e/kWmax per day] 0.194 0.219 0.235 0.252 0.268 0.278 0.293 0.301 0.308

Node n 10 11 12 13 14 15 16 17

CUoSn,h∈Hon [e/kWmax per day] 0.640 0.678 0.618 0.522 0.532 0.514 0.538 0.624
CUoSn,h∈Hoff [e/kWmax per day] 0.320 0.339 0.309 0.261 0.266 0.257 0.269 0.312
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Table 5.12: Balancing Market Price Scenarios

Sub-Scenario # ω Probability πω %+h %−h

B1 0.6 1.2 1
B2 0.4 1 0.9

following the same diurnal price profile with a high maximum price of approx.
E
{
λD
}

+ 20% e/kWh occurring at night (21h), low minimum price of approx.
E
{
λD
}
− 30% e/kWh occurring during the early morning hours (3h), which

can be regarded as representative for a typical market outcome in Spain.

Balancing Market Price Scenarios Unlike in the previous case study of
section 5.1.2, suppose for simplicity that the balancing market outcome vectors
%+
h = λ+

h /λ
D
h and %−h = λ−h /λ

D
h , can for all hours h conveniently be reduced to

one scalar each for positive and negative deviation as depicted in Tab. 5.12. That
is, for each hour, the system has the same probability (πB1 = 0.6) to deviate
positively and the same to deviate negatively (πB2 = 0.4). In expectation
terms, the system will deviate positively (supposed systematic imbalance) and
the expected ratio of day ahead to balancing price is E [%h,ω] = 1.075, hence the
expected absolute balancing price is E

[
λ+
h,ω

]
= 0.0602.

Client Side Prices and Network Cost under DLC Because of the change
in assumption for the balancing market prices, on the client side, the sales price
component attributable to wholesale, excluding the tariff components related to
using the network is now γY = 0.058 e/kWh. The per energy unit basis compo-
nent representing the network use-of-system prices ϑY = γY = 0.058 e/kWh is
set such that both components make up the same amount in the final customer
bill.

The main assumption is that under DLC, the final customers are giving
up control and therefore should not be held responsible for the timing of the
charge. Therefore, the aggregator translates the capacity based network UoS
charges into a flat rate volumetric energy component in the final bill of the
customers. The aggregator therefore has a given revenue per energy supplied
and optimizes its cost according to its use of the network. The final customers,
given the flat rate energy component, are indifferent to the timing of the PEV
charging, as long as their energy requirements are fulfilled.

Again, charging is turned off, hence γZ becomes irrelevant.

5.2.1.3 Characteristics of a Small PEV Fleet

Unavailability Scenarios The same small fleet of 5 vehicles is supposed.
The unavailability and consumption patterns are the same as in Tab. 5.4 and
Tab. 5.5, which show αv,h,ω and ρv,h,ω, i.e., mobility sub-scenarios M1 and M2.
These are equiprobable and hence occur both with a chance of 50%. Regardless
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Table 5.13: Vehicle Home Nodes

Vehicle v 1 2 3 4 5

Home node n 17 11 4 10 14

of the scenario, the target SOC is higher than the initial SOC forcing the same
net energy exchange over the course of the day for all vehicles. That is, initial
as well as target SOCs are, in both mobility sub-scenarios at ιSOCv = 2 kWh
and φSOCv = 4 kWh, respectively.

Vehicle Location Vehicles have home nodes, to which they connect when
available for charging. These are n = (17, 11, 4, 10, 14) for v = (1, 2, 3, 4, 5).
These can be found in Tab. 5.13. In general, vehicles always connect to the
home node, however the case study includes a variation (Run 3), for which in
certain hours connected vehicles are located at node n = 1, being a charging
station located on the premises of a commercial building. For simplicity these
hours include all time of availability between first and last trip of the day.

5.2.1.4 PEV Charging with Market and Grid Signals

The results section has a two-fold objective. On the one hand, the model func-
tionality is demonstrated, and on the other hand, the impact of network capacity
charges on the profit optimal charging schedule is shown.

All calculations were performed running MatLab© for handling input and
output data. For comparison, the optimization problem was formulated and
solved in GAMS© Build 24.0.1 employing the CPLEX™ 12.5.0 solver on a
64-bit MS Windows©7 machine with 8.00 GB RAM and an Intel© Core™ i7-
3770 CPU clocked at 3.4 GHz.

Simulation Procedure With the model defined in equations (4.1), (4.2),
(4.6)-(4.10), (4.16), (4.17) and (4.19), the simulation procedure consists of three
runs with the following characteristics. Run 1 - Market Signals Only : all con-
straints and variables concerning network UoS are excluded such that only the
market signals determine the charging schedule, and hence κUoSω = 0. Run
2 - Alignment in time: network constraints are considered as well as network
charges, κUoSω > 0. Run 3 - Alignment by node: ceteris paribus all vehicles
departing from home are available at node 1 for charging during the day, i.e.
between first and last trip, hence Run 3 is given through a varied vehicle-to-
location incidence cube An

v,h,ω, not as an explicit constraint.

Charging Governed by Market Signals Only Fig. 5.14 illustrates prof-
its in different markets and scenarios for Run 1, in which all network related
constraints are yet inactive.
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Figure 5.14: Run 1: Scenario Profits with Market Signals Only
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Figure 5.15: Run 2: Scenario Profits with Grid Signals

Day-ahead profit curve ΠD
ω : the nonanticipativity constraints (4.8) ensure

that day-ahead market bids are coming in three different batches only. The
involvement results in a negative profit because only buying positions are per-
mitted with uni-directional charging, i.e. no discharging. With increasing sce-
nario number, day-ahead prices become more expensive, thus resulting in higher
costs.

Balancing profits ΠB
ω are alternating with the scenario number. Even sce-

narios with low mobility result in a positive profit, because sales are driven
by negative balancing positions to get rid of the day-ahead energy which was
scheduled for higher mean demand. Scenarios with odd numbers (high mobil-
ity) result in zero balancing requirement, because demand equals the day-ahead
schedule. With an increase in scenario number, the differences between zero
involvement and profits become greater as the net balancing prices are rising.

Client side revenues ΠC
ω are alternating with the scenario numbers because

with a flat energy tariff they are merely driven by sales volume, which is de-
termined by the mobility scenarios (high mobility equals high demand and vice
versa). Costs for network use, both for ON- κUoSω,on and OFF-peak periods κUoSω,on,
are yet zero as they are turned off in Run 1.



5.2. PEV WITH EFFICIENT USE OF NETWORKS 147

0 4 8 12 16 20 24
 0

 5

10

15

20

25

30

35

Hour [h]

E
n
e
rg

y
 [
k
W

h
]

 

 

E[e
D,buy

h,ω
]

E[Σ
n
e

RT,∨

1,h,n,ω
]

E[Σ
n
e

RT,∨

2,h,n,ω
]

E[Σ
n
e

RT,∨

3,h,n,ω
]

E[Σ
n
e

RT,∨

4,h,n,ω
]

E[Σ
n
e

RT,∨

5,h,n,ω
]

E[Σ
v,n

e
RT,∨

v,h,n,ω
]

Figure 5.16: Run 1: Expected D and RT Charging, Market Signals Only
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Figure 5.17: Run 2: Expected D and RT Charging with Grid Signals

Fig. 5.16 shows the individual and aggregated charging schedule of the PEVs
with only market signals governing the optimal outcome. The expected charg-
ing eD,Yh,ω is aligned with the day-ahead λD (as well as balancing) market price
profiles λB shown in Fig. 5.12. On an aggregated fleet level, the optimal charg-
ing occurs mainly in hours 1, 3, 5, 12, 14 and 24, which represent the signals
provided by the market prices (local minima in diurnal price profile). The high-
est expected fleet consumption at h = 3 reaches up to 32 kWh in the day-ahead
schedule (dashed line) and approx. 23 kWh including expected balancing and
fleet mobility (solid line with circle marker). Underneath, lies a stacked area,
which indicates the expected individual vehicle charging quantities for all hours
of the optimization horizon.

Fig. 5.18 presents the expected battery SOC for each vehicle v ∈ V, consis-
tent with the individual mobility schedules, i.e., availability and energy demand,
indicated in Tab. 5.4 and 5.5. The expected SOC shows how the energy con-
tained in the batteries eSOCv,h,ω evolves over time even though the total energy
exchange (set by ιSOCv and φSOCv ) is equal for all the vehicles. It can be ob-
served that charging occurs rather abruptly at once.
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Figure 5.18: Run 1: Expected Battery State of Charge, Market Signals Only
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Figure 5.19: Run 2: Expected Battery State of Charge with Grid Signals

Charging with Grid Signals Fig. 5.15, 5.17 and 5.19 summarize the results
of Run 2, where the objective function of the aggregator includes network sig-
nals in the form of capacity prices. Even though parameters CUoSn and ϑY have
been chosen such that the net expected profit remains unchanged (higher pro-
curement costs day-ahead and additional network payments are compensated
by the profits on the retail, client side), the network signals are taken into ac-
count and affect the outcome. In contrast to Run 1 a massive peak reduction
is achieved, very likely alleviating punctual network saturation. In order to ob-
serve the substantial difference, please note the difference in scale between 5.17
and 5.16. Now, with network signals, the highest expected fleet consumption at
h = 3 merely reaches approx. 5.6 kWh in the day-ahead schedule (dashed line)
and approx. 3.8 kWh in real time. Effectively demand is spread out over time
according to the two-step tariff of ON-peak and Off-peak hours. Hence, with
grid signals the SOC changes from charging evolve much smoother over time.

Alignment by Network Node Fig. 5.20 compares the expected total charg-
ing per node for Run 2 and 3. It can be observed that in Run 2 all charging
occurs at home nodes n ∈ {4, 10, 11, 14, 17}. In Run 3 on the other hand,
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Figure 5.20: Expected Total Charging per Node

with the opportunity to charge at the node of the commercial center with lower
network capacity charges prices for using the network, part of the charging is
displaced to node n = 1.

The expected total profits do not increase significantly. On the contrary,
the objective function slightly decreases by 7.14% to E

[
ΠTotal
ω

]
= 0.39 because

of higher network costs κUoS . This is because part of the charging still has to
occur after the last trip at the home node. And since use un,ω is determined
by maximum consumption, the difference in network prices CUoSn,h∈Hon between
home node and commercial center does not offset the additional cost for using
the extra node. However, if e.g. ιSOCv = φSOCv = 2 and γY = ϑY = .064,
E
[
ΠTotal
ω

]
increases by 11.8% from 0.3998 in Run 2 to 0.4471 in Run 3.

In summary the network UoS charges seem to provide the right signals in-
centivizing the program to take into account time-of-use as well as location.
With the given mobility, locational alignment of the charging can be observed
at those nodes with more favorable capacity prices depending on target SOC
and mobility need.

Problem Size Tab. 5.14 shows the size of the problem with and without
network constraints. Accounting for network node specific capacity prices may
cause increased complexity however computation time remains manageable in
its purely linear nature.

5.2.2 Temporal and Spatial PEV Charging Alignment

This section has presented a case study of the retail problem of a PEV aggrega-
tor interacting with electricity markets as well as incorporating network prices.
The demonstrated approach respects the unbundling of competitive retail and
network operation of monopolist infrastructures. Serving as an optimization tool
for accurate estimation of economic impacts, it uses well-known linear solving
technology. In addition, realistic operational decisions for a retailer executing
transactions in two consecutive markets are represented in the proposed model
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Table 5.14: Case Study Problem Summary

Run 1: Market Signals Only Run 2: With Grid Signals

Obj. Fn. Value 0.418 0.418
CPU Time 0.093 s 0.172 s
Total Iterations 583 1 753
Equations 30 349 79 333
Non-Zeros 184 789 283 549
Real Variables 52 452 53 268
Binary Variables 0 0
Integer Variables 0 0

formulation. In addition, with the stochastic programming approach, uncer-
tainty in the inputs regarding market prices and mobility can be accounted
for.

The presented case allows for observing implications on optimal scheduling.
Furthermore, the results have pointed at the fact that network capacity charges
are an efficient instrument to account for local network situations in the charging
schedules. The program schedules the PEV charging, both in alignment with
time and by network node location, while maximizing the aggregator’s profits.







Chapter 6

PEV Coordination with ILC

Similar in structure and function to the preceding chapter, via a set of carefully-
selected, complementary case studies, this chapter applies the model for indirect
load control and computes numerical results for further analysis.

6.1 PEV Coordination for ILC Market Partici-
pation

The following case study is published in [148].

6.1.1 The Shift Towards Distributed Decision Making

Before introducing the case study, the interested reader is referred to the ap-
pendix Chapter C, which provides a qualitative discussion of ILC versus DLC.
To give an additional motivation for the case study, it seems pertinent to gain
insights, how different charging algorithms can be classified in terms of their
need for infrastructure and protocols. Are the proposed optimization problems
feasible or could communication be a barrier to the realization of these? A pri-
ori, it seems reasonable to state the hypothesis that there are to some extent
conceptual similarities between the PEV charging and other back-end commu-
nication needs in smart grid, see subsection 2.4.3.

6.1.1.1 Retail Alternatives of the Aggregator

The simulations carried out for the case study have a two-fold purpose. On
the one hand, the case study presents the advantages of the proposed bi-level
methodology in which the UL and LL have influence on each other as opposed
to single agent decision making. Hence the procedures emphasize the differences
between these two categorically different approaches. On the other hand, the
case study compares different tariff alternatives of the aggregator. Hence the

153



154 CHAPTER 6. PEV COORDINATION WITH ILC

data used is given and the simulation procedure carried out has the following
structure.

Retail Tariff Alternatives to the PEV Aggregator This analysis turns
to the different aspects of reselling energy by looking at three alternative pric-
ing schemes of the aggregator to the final customer, i.e. the PEV: dynamic
hourly pricing, time-of-use tariff and a flat energy rate. In theory, under profit
maximization it is of high interest to the aggregator to obtain a very flexible
demand which can be scheduled according to varying market prices. The degree
of competition will determine the benefit that the aggregator will pass on to the
final customer by offering lower prices in resale to the final customers. The more
flexible the tariff the more freedom to reflect the actual opportunity cost of the
customers more appropriately and pass on part of the risk exposure to the final
customers.

The electricity customer always reacts to the final price that he perceives.
Beside the energy retail it is composed of net access fees, concession levies,
apportionment from feed in tariffs for renewable energy and sales tax. These are
all subject to country-specific regulation and, most importantly, not alterable
by the PEVSA in its function of a retailer. Hence, the following schemes merely
refer to the wholesale price plus the commercialization margin by the aggregator:

a. Dynamic Hourly Pricing
Under dynamic hourly pricing, the customer has access to hourly varying

final customer prices according to the finalization of the day-ahead wholesale
energy market price. In this case the aggregator would buy energy in the day-
ahead market passing on the uncertainty stemming from market volatility by
calculating a margin as a fix premium or a proportion of the final price while the
electric vehicle as a final customer would be taking the decision of charge. Then,
to the aggregator there still remains uncertainty from forecasting the timing and
amount of consumption of the vehicles in order to minimize transaction in more
costly balancing markets.

b. Time-of-Use Pricing
Under a time-of-use tariff, the customer is offered a flat rate for sub-intervals

of the day, assuming that the vehicle does not give up any control over the
charging process to the aggregator. The ex-ante calculation of the resale prices
for these periods has to take into account a two-fold purchase risk for the time
of their duration: volatility for the day-ahead market spot prices as well as the
demand uncertainty and the arising costs of trading in balancing markets.

c. Flat Energy Rate
Flat energy rates are to date a very common final customer end price and

basically constitute a single period version of the time-of-use pricing.
Depending on the tariff scheme, the arbitrage potential for the aggregator

may vary. The following graphic presents the potential arbitrage for an ag-
gregator on a typical day by visualizing the difference between set tariffs and
wholesale market price.

As introduced in the mathematical formulation and outlined once again con-
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Figure 6.1: PEV Aggregators’ Retail Tariff Alternatives

ceptually above, the relevant retail tariff options can all be summarized in the
UL variable pertaining to the hourly retail price γYh . Thus, with regard to the
tariff choice, the PEV aggregator could set constraints on the shape of the hourly
retail price curve. Given one of the following retail options, the aggregator can
decide on the profit maximizing or benefit sharing equilibrium price level:

A. flat rate tariff,

B. time-of-use (TOU) (day-night, three-step, etc.),

C. hourly prices etc.

A conceptual visualization of these alternatives in terms of positive (profit) or
negative (loss) price differences between market prices and final customer tariff is
provided in Fig. 6.1. The shaded area indicates the positive (profit) or negative
(loss) price differences between market prices and final customer tariff.

6.1.2 Case Study Data Description

Base Runs: Market Prices, PEV Data and Mobility The fleetsize is
kept small with|V|= 3 representative vehicles, or vehicle clusters. The model
horizon is reduced to|H|= 6 periods. Day-ahead electricity market prices are
assumed to have the following profile: λDh = € [.020 .040 .030 .040 .050 .010] per
kWh. The inputs regarding mobility are provided in Tab. 6.1, while initial and
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Table 6.1: Stylized Mobility: Availability νv,h and Energy Requirement ρv,h

νv,h h

v
1 0 1 0 1 1
0 0 1 0 0 1
1 0 1 1 0 1

ρv,h h

v
0 1 0 2 0 0
2 1 0 2 3 0
0 5 0 0 5 0

final SOCs are set to ιSOC
v = φSOC

v = [9 8 7] kWh. The battery SOC of each
vehicle is assumed to not exceed the battery capacity of E = 12 kWh.

In the base run and if not indicated otherwise, the levels of discomfort of
the vehicles are set to Λv= € [.001 .002 .003] per kWh. The cost of NSE for
PEV mobility is Ξv = € [.09 .10 .11] per kWh. The on- and off-peak periods are
Hon = {2..5} and Hoff = {1, 6}, respectively. The minimum price difference
between retail prices under ToU is set at ε = € .02 per kWh.

Please note that the case study has been designed in such a stylized form
with rather small data sets to ensure clarity of the model’s functionality by
being able to manually track results. Nevertheless, the proposed model could
handle much more realistic case studies with larger problem instances similar
to [72], [73].

Simulation Procedure First, the LL problem is solved isolated from the UL
(Runs 1 - 6). By doing so, the detailed functioning of the linear formulation
of the final customers decision making is illustrated. This will help to ana-
lyze the more complex interactions when considering the full bi-level structure.
Then, both UL and LL problems are combined and solved simultaneously in the
proposed MPEC formulation. In consecutive runs (I - IV and I,BS - IV,BS),
first a single-level DLC reference case is solved and then the bi-level equilib-
rium points for the three different tariff alternatives are found without and with
benefit sharing constraints.

6.1.2.1 Isolated LL: Optimization as LP

First, the LL problem given in (4.37)-(4.42) is solved isolated from the UL, with
a fixed set of parameters. In 6 optimization runs, sensitivities on the relevant
cost parameters of the LL objective function Λv and Ξv are carried out. Please
note that this is equivalent to altering γYh , as the LL decisions merely depend
on the relative weights of the respective cost terms in the objective function.

The reference schedule is determined by immediate charging: ΣvĚ
RT,Y
v,h =[0

0 9.68 0 2.15 10.75] kWh. In the base case, the retail prices are set to γYh =
λDh + .010= € [.030 .050 .040 .050 .060 .020] per kWh. One after the other,
never simultaneously, Λv is increased to the double and quadruple, while Ξv is
reduced to 1

3 and 1
5 of the respective base values.

Run 2, is the actual base case run. Run 3 and 4 exhibit increasing cost and
discomfort, due to higher weights on Λv. Run 7 and 8 present decreasing cost
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Table 6.2: Overview of the Numerical Results for Isolated LL Optimization
Run: Specifics Energy Cost κLLPEV = Σv,he

RT
v,h · γh Discomfort: Λv · tv SOCRedctn.: Ξv · eDR

v,h

1 ASAP 0.73118 0 0
2 Base 0.51518 0.04600 0
3 Λv= [.002 .004 .006] 0.55071 0.04938 0
4 Λv= [.004 .008 .012] 0.58718 0.05498 0
5 Ξv = [.030 .033 .036] 0.45910 0.04881 0.04347
6 Ξv = [.018 .020 .022] 0.21505 0.02581 0.22400
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Figure 6.2: Lower level problem as LP: Retail Price Sensitivity

and discomfort as well as decreasing total energy demand, due to lower costs of
non-supplied energy Ξv.

Tab. 6.2 summarizes the first results from the isolated LL optimization runs,
by indicating the different terms of the LL objective function. Run 1 shows by
far the worst hypothetical charging cost. These are computed ex-post, due to
the fact that the reference schedule optimization (4.38)-(5.2) does not take into
account cost.

For the interested reader, the supplemental Fig. D.6a and Fig. D.6b in the
appendix show the results of these first LL isolated runs. In both figures the
two extreme schedules are presented by the reference case (Run 1) and the base
case (Run 2). The schedules obtained from the sensitivity Runs 3-6 tend to lie
in between for most of the periods.

The effect of applying different levels of discomfort on the optimized charging
schedule, seen in Fig. D.6a in the appendix, is in principle the same as applying
different retail price levels: The higher the discomfort or the lower the retail
price level, the more the charging schedule approaches the schedule of high
convenience and low flexibility ĚRT,Y

v,h . The effect of decreasing the cost of non-
supplied energy is contrary to the retail price and discomfort sensitivity, as
shown in Fig. D.6b of the appendix: The lower cost of non-supplied energy,
the lower the total consumption Σv,he

RT
v,h . Expensive consumption (cf. period

3) is reduced first, followed by inexpensive consumption (cf. period 1 and 6).
Discomfort remains active and influencing (cf. period 6).
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6.1.2.2 Combining UL with LL as MPEC

Tab. 6.3 provides a summary of the numerical results obtained in the combined
optimization of UL and LL in an MPEC. On a more detailed level, Tab. 6.5
and 6.7 indicate charging schedules and monetary terms for selected runs. A
total of 7 runs is carried out. The first run (I DLC) serves as a hypothetical
reference case to compare the ILC runs (2-7) runs against it. First, the UL is
given maximum freedom to maximize its profits under the three proposed tariff
schemes (runs 2-4). Then, the UL is constraint by the budget of the LL, again
under the three proposed tariff schemes (runs 5-7).

Under DLC with a flat rate (I), the retail price is exogenously set to γh =.06,
resulting in a net profit of zUL =1.0655 for the aggregator on the UL while the
PEV on the LL pay κLLPEV =1.3548 and incur a discomfort of 0.046. Given the
PEV availability and consumption, the UL can set the cost optimal schedule
with regard to the market prices. This means, as much charging is moved to
hour 6 as possible, see Tab. 6.5 for eRTv,h and 6.6 for eSOCv,h . As the aggregator
is merely interested in its own profit, discomfort is not part of the UL objective
under DLC but it can be calculated ex-post.

Under ILC with a flat rate (II), the UL sets the retail price as high as
γh =.085 and thus earns zUL =1.4072 from LL payments κLLPEV =1.9126. How-
ever, the schedule is completely unaligned with the market prices. The LL not
receiving any other incentive from the UL, it represents the outcome with zero
discomfort = 0, i.e. no deviations from the reference schedule.

ILC runs III and IV both show the same optimal schedule (and thus lower
level discomfort) as in the DLC case, however the UL makes as much as zUL =1.4322
and zUL =1.4677 of profit, respectively. This is due to the high price levels of
γoffh = .075 γonh = .095 with ToU and the considerable margin of m = 0.065
with hourly prices.

Runs I - IV exhibit arguably high profits for the UL. But in the absence
of any competition for the aggregator, these are quite plausible since the retail
prices are still lower than the cost of non-supplied energy. Also, the relative
distribution of weights on the cost terms of the LL objective function provides
that the avoided LL costs from alignment to the retail prices are higher than
the incurred discomfort.

However, there are a few remedies to show a different outcome with lower
retail prices. Conceptually, these could be justified by simulating an increased
level of competition for the PEV aggregator that would prevent it from having
excessive benefits. Besides the ones already shown in the LL isolated runs, these
remedies could be: a) setting an upper bound for prices and b) revenue caps to
a reasonable profit margin, which both finally lead to benefit sharing of the UL
to the LL.

To show the effect of benefit sharing constraints, 3 more cases are run, in
which for each retail alternative II-IV the following has to hold on the UL:

ΣhΠ
C,ILC
h ≤ (1 + bs) · ΣhκD,DLC

h , (6.1)
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Table 6.3: Result Overview: Combined UL-LL Optimization as MPEC

Run and Control I - DLC II - ILC III - ILC IV - ILC
Tariff Option Flat Rate Flat Rate Time of Use Hourly Prices

Flexibility of Charging Schedule Maximal Minimal Maximal Maximal

UL: Aggregator Profit zUL 1.0655 1.4072 1.4322 1.4677
UL-LL: Retail Price γh, γoffh , γonh or m γh = .06 γh = .085 γoffh = .075 γonh = .095 m = 0.065

LL: κLLPEV = Σv,he
RT
v,h · γh 1.3548 1.9126 1.7216 1.7571

LL: Discomfort Σv,hΛv ·
(
t+v,h + t−v,h

)
0.0460 0 0.0460 0.0460

LL: DR Cost Σv,hΞv · eDR
v,h 0 0 0 0

Table 6.4: Combined Results with Benefit Sharing

Run and Control II - ILC,BS III - ILC,BS IV - ILC,BS
Tariff Option Flat Rate Time of Use Hourly Prices

Flexibility of Charging Schedule Minimal Maximal Maximal

UL: Aggregator Profit zUL -0.1195 0.0965 0.0965
UL-LL: Retail Price γh, γoffh , γonh or m γh = .017 γoffh = .016 γonh = .036 m = 0.0043

LL: κLLPEV = Σv,he
RT
v,h · γh 0.3858 0.3858 0.3858

LL: Discomfort Σv,hΛv ·
(
t+v,h + t−v,h

)
0 0.0460 0.0460

LL: DR Cost Σv,hΞv · eDR
v,h - - -

where bs stands for the percentage of revenues above the ideal day-ahead charg-
ing cost from the most efficient charging schedule. It could be set to 100

|V| [%].
In this case, this means that the total revenue from retail on the LL (i.e. costs
for electricity on the LL) should not exceed a level of 33.3% above the most
efficient procurement cost from market purchases. In this way it would prevent
the UL to use excessive market power, or it can be understood as a natural
bound that would be consequential to an acceptable level of competition on the
PEV aggregator business. The results for these revenue cap runs are given in
Tab. 6.4.

Because of the constraint in (6.1), for the three BS runs the retail prices are
reduced to γh=.017, γoffh =.016, γonh =.036 and m=0.0043, respectively. For all
runs, the LL electricity cost equals κLLPEV =0.3858 while incurring the known
discomfort of 0.046 of the fully flexible schedule and zero discomfort of the
inflexible one. However, the UL profits now vary significantly among the runs.
In III,BS and IV,BS the profit is positive at around zUL =0.1 because of the
fully flexible schedule. In II,BS with the flat rate and the inflexible schedule the
UL has a negative profit of the same magnitude. Thus, incentivizing flexibility
on the LL can be decisive for the profit on the UL.

6.1.3 Endogenous Hourly Retail Prices
To complement existing single-level direct load control, this case study has ap-
plied the bi-level formulation for the decision making problem of a plug-in elec-
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Table 6.5: Charging Schedules for Combined UL and LL Optimization

Runs I, III and IV II - Flat Rate

eRTv,h 1 2 3 4 5 6 1 2 3 4 5 6
1 0 0 0 0 0 3.23 0 0 1.08 0 2.15 0
2 0 0 1.40 0 0 7.20 0 0 3.23 0 0 5.38
3 3.55 0 0 0 0 7.20 0 0 5.38 0 0 5.38

Table 6.6: Battery SOCs for different runs in the combined optimization

Runs I, III and IV II - Flat Rate

eSOC
v,h 1 2 3 4 5 6 1 2 3 4 5 6
1 9.0 8.0 8.0 6.0 6.0 9.0 9.0 8.0 9.0 7.0 9.0 9.0
2 6.0 5.0 6.3 4.3 1.3 8.0 6.0 5.0 8.0 6.0 3.0 8.0
3 10.3 5.3 5.3 5.3 0.3 7.0 7.0 2.0 7.0 7.0 2.0 7.0

tric vehicle aggregator given in the previous chapter. On the upper level this
aggregator bids in electricity markets and finds the optimal retail price, while
on the lower level the final customers optimize their charging subject to discom-
fort and considering demand response. The optimal charging schedule depends
on the relative weights of electricity costs, discomfort and costs of non-supplied
energy in the lower level objective function.

Results indicate that in the absence of any competition, the aggregator on
the upper level intends to maximize its profit by increasing the retail prices until
slightly below the cost of non-supplied energy to achieve high revenues but not
lose the demand through fuel switching. Furthermore, it has been demonstrated
how the indirect load control formulation finds the retail price endogenously
as opposed to ex-ante fixing the profit under direct load control. Comparing
different retail price alternatives, the upper level profit is maximized under
hourly pricing, while time-of-use and flat rate options also provide high yields for
the upper level. When simulating competition on the retail market by limiting
the revenues of the upper level it can be shown that the PEV aggregator’s
profitability depends on providing the right price signals to the final customers,
such that the most efficient charging schedule response is achieved.

Table 6.7: Procurement Costs and Client-Side Revenue

κDh
Runs 1 2 3 4 5 6
I - DLC -0.071 0 -0.042 0 0 -0.176
II - ILC Flat Rate 0 0 -0.290 0 -0.108 -0.108
III - ILC ToU -0.071 0 -0.042 0 0 -0.176
IV - ILC Hourly Prices -0.071 0 -0.042 0 0 -0.176

ΠCh
1 2 3 4 5 6

0.213 0 0.084 0 0 1.058
0.000 0 0.627 0 0.139 0.697
0.209 0 0.110 0 0 1.036
0.239 0 0.108 0 0 1.008
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6.2 PEV Coordination for Efficient Network Use
via ILC

The following case study is published in [149] .

This last case study joins many of the above treated aspects into one com-
prehensive analysis. Among others, this analysis, like previously carried out in
[149], studies the effects of DLC control architectures for the charging processes
of PEV.

6.2.1 ILC Case Study Description with Affine Demand

The case study is divided in two parts. A) First, a small-scale example with
detailed information on individual vehicles is detailed, illustrating the proposed
model’s functionality. In A.1), this example is first solved excluding network
pricing as in (4.45.I)–(4.45.II), and then, in A.2), solved including capacity-
based UoS network charges as in (4.45).III, (4.55) and (4.56). Another run,
A.3) is added, in which the aggregator is supposed to compete with others for
customers via the price interface.

B.) Further on, a large-scale case discusses scalability of the approach and
associated computational burden.

Fleet-level sensitivity analysis relates to the aggregated affine demand, for
which B.1) the threshold, i.e. the minimum possible willingness to pay is varied,
B.2) the shape, i.e. relative dispersion of the fleet’s willingness to pay distribu-
tion is altered, and B.3) the cost of minimum final SOC, i.e. energy anxiety is
analyzed.1

6.2.1.1 Market Prices, PEV Data and Mobility

The inputs and parameter settings for the small scale example can be found in
Tab. 6.8a and 6.8b. Day-ahead electricity market prices λD

h follow a typical day-
ahead profile as happened for EPEX SPOT in Germany on April 11th, 2011,
with early morning valley at h = 4, a low mid-day peak around noon and a high
evening peak at h = 20. A graph of ρv,h is provided in Fig. 6.3.

6.2.1.2 Large-Scale Fleet Parameters

The parameter settings relating to time horizon |H| and market prices λD
h re-

main the same as in the small-scale example. For all other settings on the LL
including the mobility pattern of the PEV, a Monte-Carlo simulation is carried
out. Probability distributions correspond to data provided in [23], [74] consistent

1The used notation for the Weibull distribution is as follows:

∼Wei (b, c) + a, (6.2)

where a is the left-hand side threshold, above which all other values lie, b is the shape param-
eter, and c is the scaling parameter.
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Parameter Value Units

|H| 24 hours
Hon {7, ... , 22}
Hoff {1, ..., 6}∪{23, 24}
|V| 3 vehicles

λ̃D 0.034 € /kWh
1
|H|
∑
h∈|H| λ

D
h 0.052 €/ kWh

CUoS,off 0.04 €/ kW
CUoS,on 0.08 €/ kW

(a) Price Data

Parameter Value Units
v 1 2 3

Ev 11.5 12 12.5 kWh
ηv .94 .96 .98 -/-
P v 3.6 7.2 3.6 kW
Ξv 0.11 0.12 0.13 € /kWh∑
h ρv,h 7.0 6.9 8.0 kWh
ιSOC
v 9.0 10.0 10.5 kWh
φSOC
v 7.0 6.0 5.0 kWh
Dv 5.5 3.2 2.6 kWh
Dv 9.9 9.2 10.1 kWh
αv 59.3 69.9 78.2 kWh2 /€

(b) Individual Data for 3 Vehicles

Table 6.8: Input parameter settings
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Figure 6.3: Small Case Input: SOC Reductions during Driving
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Figure 6.4: Large Case Input: Mobility

Table 6.9: Selected information for Monte-Carlo simulation

Parameter Probability Distribution
ηv min[∼ N (0.96, 0.01), 0.98]

P v =
F−1 (∼ U [0, 1])

x = [3.6 7.2 11 22] kW,
F (x) = [0.45 0.80 .95 1]

ιSOC
v ∼ N (11, 1)
φSOC
v ιSOC

v + 1
Ev max[φSOC

v + 1,∼ N (11, 1)]
Ξv ∼Wei (0.1, 1.8) + .0255

with a large mobility survey from Germany, see Fig. 6.4. Statistical moments of
the other key parameters are given in Tab. 6.9. Normal distributions are used
where possible, i.e., for ηv, ιSOC

v , φSOC
v and Ev. Different connection capacities

P v are modeled via a discrete cumulative probability function. The NSE cost,
Ξv follows a generic Weibull distribution.

With the given information, the large-scale case conducts sensitivity anal-
ysis on the key parameters defining the LL demand reaction to UL price sig-
nals. Therefore, in three sets of sensitivity runs, both aggregated fleet demand∑
v,h e

RT,Y
v,h , as well as UL profits zUL are tracked for the feasible set of retail

prices while varying input parameters λ̃D, Ξv and φSOC
v .

Computer Resources For comparisons of computational burden, used soft-
and hardware is indicated. All calculations were performed running MatLab©
for handling input and output data via GDX files. The optimization problem
was formulated and solved in GAMS© Build 24.1.2 employing the CPLEX™
12.5.1 solver for (MI)LPs, i.e. reformulated MPECs on a standard laptop 64-bit
MSWindows©2003 Server machine with 32 GB RAM and an Intel© Xeon™ E-
5520 CPU clocked at 2.26 GHz, with up to 16 threads in dynamic search and
opportunistic parallel mode.
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Figure 6.5: Numerical results: Detailed individual hourly scheduling

6.2.2 Numerical Results on an Hourly Basis

Results without Network Pricing A.1) Solving the problem with the
given data, yet CUoS,on = CUoS,off = 0, leads to the numerical results illus-
trated in Fig. 6.5. Detailed hourly data for eRT

v,h and eSOC
v,h − eNSE

v,h are provided.
It is profit-optimal for the aggregator to set a constant retail price margin of
m =€ct 6 /kWh above the hourly market prices. With this retail price level,
the LL cost-optimally consumes in h =4. The retail price margin is sufficiently
low, not causing any demand reduction below Dv. In summary, it is profit-
maximizing for the aggregator to increase prices slightly below the PEV fleet’s
conjunct willingness to pay, at which part of the demand would be lost.

The economics for UL and LL are recorded in Tab. 6.10. The detailed
numerical data is provided as supplemental material in Tab. D.7a. It is shown
that the margin leads to good profits for the UL, while the schedule is perfectly
aligned with market prices, i.e. the aggregator can purchase the energy at
minimal cost at the hours of lowest wholesale electricity market prices, given
availability and the minimum final SOC requirements. The LL faces moderate
charging cost, and does not have to afford any NSE.

Results with Network UoS Charges A.2) Including network UoS charges
alters the optimal outcome for the UL. The UL does not remain indifferent, be-
cause even though (4.23)–(4.27) and (4.52) are not affected by CUoS, the lower
level charging schedule is, and thus the UL economics. Taking into account the
PEV fleet’s cost incurred from using the network renders NSE comparatively
more attractive at lower margins for the UL. Hence, the UL profit-optimal mar-
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gin of m =€ct 4 /kWh, slightly lower than in A.1). Total energy consumption
increases due to the decreased prices. Though, because of the network capac-
ity pricing effect, eRT

v,h is evenly distributed over more hours, as can be seen in
Fig. 6.5. The detailed numerical data is provided as supplemental material in
Tab. D.7b.

This smoothed consumption due to the network signals effectively means less
alignment according to market signals and therefore higher procurement cost
for the UL. This overcompensates the additional revenue from higher demand.
The increase in LL cost is due to consuming more energy, higher average energy
cost and additional network UoS payments. Nevertheless this would be an
overall more efficient demand curve for the system. However, this conclusion is
conditional on the main assumption of exogenous market outcomes, in which the
aggregator as a price-taker has no means to influence the results of the market
clearing. If the market share and power of the aggregator would be sufficiently
high, then there could be an interest in smoothing its demand curve to avoid
price spikes.

Budget constraints as a proxy for competition A.3) The numerical re-
sults show that the profit-optimal solution includes rather high retail prices,
even though the LL reacts to these prices via demand reductions designated
through h2 of (4.52). These prices are to some extent unrealistic, yet insightful,
because they are reminding of the fact that profit maximizing monopolistic be-
havior of the UL may lead to undesirable outcomes for the demand side on the
LL. In reality, such high prices are generally avoided through adequate levels
of competition on the retail market, i.e. the aggregator would have to contend
for customers by offering reasonably low prices for his services. With the given
model, such prices can be proxied via including an upper bound on the dispos-
able budget:

∑
v,h γ

Y
h · eRT

v,h ≤ B = € 1.5. This arguably takes away a valuable
proposition of the bi-level structure, which endogenously finds the profit-optimal
price level, because the feasible region for retail prices is further constrained.
Nevertheless, it shows the model’s capability to represent the realistic decision
making of both UL and LL in a competitive retail market setting with network
UoS tariffs.

To this end, the following parameter changes are carried out before the
model is re-run: PEV, knowing that there is competition on retail prices, could
signal higher willingness to pay without fear to be taken advantage of, thus Ξv
is significantly increased to € 1.5 /kWh approximating the marginal price of
the next best alternative, such as, e.g, gasoline. Furthermore, it is assumed
that under competition, the total profits of the aggregator cannot be higher
zUL ≤€ 0.2 (0.03 /kWh), however this might not be binding if the budget
constraint is more restricting.

This leads to the results as shown in Tab. 6.10 and Fig. 6.5. The detailed nu-
merical data is provided as supplemental material in D.7c. Competition curtails
the profits to the same level as before, even though LL willingness to pay would
yield a profit optimum much higher. Thus the resulting margin leads to high
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Table 6.10: Small Case Study Results: Run A.1-3)

Variable Outcome A.1) Outcome A.2) Outcome A.3) Units

m 0.06 0.04 0.01 € /kWh
zUL 0.79 (0.057) 0.68 (0.039) 0.2 (0.007) € (€ /kWh)
κD -0.46 (-0.033) -0.7 (-0.040) -1.29 (-0.070) € (€ /kWh)
ΠC 1.25 (0.091) 1.38 (0.079) 1.5 (0.082) € (€ /kWh)
zLL 1.25 (0.091) 2.14 (0.122) 3.02 (0.164) € (€ /kWh)∑

v,h e
NSE
v,h · Ξv 0 0 0 0 0 0 € (€ /kWh)

eUoS,off ,Y
v ·CUoS,off - - 0.76 (0.043) 1.52 (0.052) € (€ /kWh)

demand, which almost fully charges the batteries by the end of the optimization
horizon. This charging is, however, smoothly spread out over the off-peak and
on-peak hours, to avoid sharp load spikes at the hours of low prices.

The ILC scheduling with hourly varying prices is valuable to the final cus-
tomers. By explicitly pricing the deviations between a preferred schedule of
biggest comfort and flat energy prices, [148] shows that the comparative value
lies in the range of 10-12% in cost savings. To indicate how much money can be
counted towards the implementation of this approach, in the following, an illus-
trative approximation of this value is provided. In Run A.3), the three vehicles
pay € 2.91 or if all energy and network capacity costs were evenly spread out
€ 0.1 per kWh: vehicle 1 incurs € 0.99, vehicle 2 € 0.91 and vehicle 3 € 1.01.
Supposing a distance of 14 200 km per year as traveled by the average vehicle
in Germany 2011, and all inefficiencies accounted, a PEV consumes around 0.35
kWh per km. A 12% comparative annual cost avoided would then be around €
60. Consequently, the net present value of a constant cash flow of € 60 over a
supposed vehicle life time of 12 years discounted at 8% p.a. is approximately €
450.

6.2.2.1 Aggregated Fleet Scheduling with ILC

Computational Characteristics In large-scale mixed-integer programming,
computational tractability tends to be an issue. To this end, Tab. 6.11 indicates
the key computational characteristics when using the proposed model to solve
the scheduling problem for fleets of |V| = [10, 100, 1000] vehicles. It appears
that even though PEV batteries and charging are modeled at an individual
level, the proposed formulation remains tractable. Equations, non-zeros in the
coefficient matrix and continuous real variables increase almost linearly with
fleet size. For the constant and relatively low amount of binary variables, the
largely scaled linear sub-problems can be solved with reasonable efficiency.

Numerical Summary The optimal solution for the run with 1000 vehicles
leads to an UL profit of zUL = € 123.97, at a margin m = € 0.062/kWh and a
total energy consumed of

∑
v,h e

RT,Y
v,h = 1996.29 kWh.
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Table 6.11: Large-Scale Summary - Computational Characteristics

|V| Solve Time [s] # Iterations Equations Non-Zeros Real Vars. Binary Vars.

10 9.8 776 856 2 654 16 565 2 888 12
100 671 1 904 814 25 964 164 334 28 538 12
1000 8 464 2 103 393 259 064 1 641 991 285 038 12

Sensitivity Analysis The following analysis makes it possible to visualize the
functional relationship between aggregated affine demand and the possible retail
price signals, see Fig. 6.6a, as well as the complete shape of the feasible region
of the UL profits, depicted in Fig. 6.6a. It indicates how sensitive the above
mentioned results are to the key parameters chosen. Without this analysis, it
would be difficult to imagine the functional shape of the feasible region that the
aggregator is given to choose from, as the outcome of the optimization problem
would only yield on point, i.e., the one with the maximum profit of the objective
function, on the curves given.

Varying the Weibull distribution parameters changes the steepness of the
aggregated demand slope, as dispersion of Ξv − λ̃D is reduced. Ξv − λ̃Dis the
difference between the lowest feasible retail price reference that is still plausible
for the aggregator, and the upper willingness to pay of the final customers. This
difference provides the range in which a given vehicle will consume energy from
the aggregator. The dispersion of this difference among the different individual
PEV in the fleet population contributes to the shape of the aggregated affine
fleet demand. The more dispersed, the less steep this aggregated affine fleet
demand. Consequently, the profit-optimal margin gets larger, and total UL
profits increase significantly. And vise versa: the less dispersed, the more steep
and the lower the total UL profits.

Besides the steepness, the statistical moment of expectation of the willing-
ness to pay Ξv plays an additional role. Given a lowest feasible retail price,
the smaller the average willingness to pay happens to be, the earlier demand
drops. To the extreme that even at zero margin the PEVs do not consume their
minimum demand any more.

Since Ξv does not have an hourly index, i.e. willingness to pay is not time
dependent, the difference in hourly market prices leads to kinks in UL profits
and LL demand, however the distribution of the parameters among vehicles
somoothens out the curves.

The same observation holds for the variation on the left-hand side of the
affine demand by setting different values of λ̃D. In the sensitivity runs for the
willingness to pay, a steeper affine demand of the aggregation is achieved, while
the profit-optimal margin moves to the right less than in the former sensitivity.
This can be taken as a proxy fora range anxiety cost function. The more the
PEV is adverse to low final SOCs, the less flexible is its charging schedule and
thus the range anxiety becomes a cost.
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Figure 6.6: Sensitivity Analysis for Varying Ξv Distributions

However, the sensitivity of the minimum final SOC proves to be the least
constructive. No valid change in both outcome variables can be observed, when
increasing the preferences of the final customers to end up with higher energy
stored by the end of the time horizon. For supplemental graphics, please refer
to Fig. D.7 and Fig. D.8.

6.2.3 Final Remarks on ILC Scheduling

By means of a mathematical problem with equilibrium constraints, this final
case study has demonstrated the use of a methodology to assess the decision
making of a plug-in electric vehicle aggregator exercising indirect load control
over a fleet of vehicles to determine profit-optimal retail prices. This client-
side reaction to the aggregator’s prices is individually given for each vehicle,
depending on local preferences and physical characteristics.

In two sub-case-studies with up to 1000 vehicles, the optimal energy quanti-
ties and economics for both aggregator on the upper level and final customers on
the lower level have been obtained. The study shows, how capacity based use-
of-system network tariffs influence the decentralized PEV charging schedules,
which are equal to those under DLC.

Furthermore, the case study points out that aggregators with full informa-
tion on local vehicle characteristics can strategically leverage the advantage of
a bi-level leader to receive excessive profits. This is grounded on the proposed
model’s characteristics not explicitly representing aspects of aggregator compe-
tition and PEV selecting aggregator’s in a functional retail market. Neverthe-
less, it serves as a basis for analyzing the strategic interactions in a two-agent
leader-follower game. The insights gained with this model are transferable for
the design of and indeed motivate the necessity of retail equilibrium models. As
a quick remedy, the case study emulates aggregator competition on the retail
market by the concept of a disposable budget. Finally, the case study presents
a manifold sensitivity analysis highlighting the impact of key parameters on the
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aggregated LL demand response and profitability of the aggregator.
It has to be noted, that the success of the proposed ILC scheduling would de-

pend on the aggregator’s forecasting ability of the PEVs optimization problems
in detail and the goodness of its estimates regarding, e.g. PEV energy require-
ments, driving patterns, and other locally available preferences. Nevertheless,
the ILC case study and the model it is based on arguably have some drawbacks
and limitations. Indeed the following points may not have been addressed to
the utmost potential:

• on the wholesale side, the aggregator is competing against other demand-
side participants for the cost optimal purchases of electricity

• on the client-side retail market, the aggregator is competing for final cus-
tomers against other agents

• the PEV’s problem to select the most competitive aggregator for their
energy purchases.

Nevertheless, in spite of these shortcomings, it is deemed a research work that
merits some interest because it sheds light on neglected parts of the aggrega-
tor’s problems, in particular, modeling the retail side with ILC, which is more
standard to the reality of suppliers today, than any DLC formulation could pro-
vide. In particular, it is important to note that the conclusions drawn from
this model are independent of these structural limitations of the MPEC bi-level
formulation.

6.3 Comparing the two ILC Case Studies

Up to this point, this section has provided two ILC case studies, which can be
compared according to the functions they serve in highlighting different aspects
of the proposed model. Both modeling approaches, and thus the way they
highlight case studies, have advantages and disadvantages.

The case study presented in Section 6.1 treats the subject of PEV coordinat-
ing purely by market signals, or prices referring to the wholesale components
of the final customer’s bill. It presents the main proof of concept that it is
possible to model ILC in a bi-level structure, decomposing the decision making
of the aggregator on the UL and the final customers on the LL. Furthermore,
it is capable to show that under the right retail pricing scheme, ILC may hold
the same scheduling outcome in terms of energy charging quantities as DLC
models. Another noteworthy advantage of the first ILC case study is the clear
distinguishing of UL and LL by first solving only the LL in isolated model runs
and providing sensitivity analysis for all the cost parameters of the LL objec-
tive function. Finally, the same case study shows the implications of modeling
the discomfort incurred by the PEV when deviating from a reference charging
schedule. This makes it possible to compare the flat rate energy retail pricing
scheme with other time differentiating tariffs under ILC.
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The main disadvantage of the first case study alludes to the same model
functionality of explicitly modeling the LL deviations from the reference sched-
ule: the penalization in the objective function requires the modeler to come up
with concrete prices. This is obviously a soft science and objective justifications
for the choice of any specific set of parameters is difficult to provide. Finally,
the last drawback of the first ILC case study pertains to the implementation
of the approach. It is formulated as an MCP and solved with a NLP solver,
i.e., PATH, although it is unlikely that there are any KKT stationarity points
that do not provide global optimality, it cannot be mathematically proven that
the found optima are necessarily global. Non-exhaustive search heuristics by
repetitively randomizing initial solutions have to be carried out to ensure that
the joint bi-level structure yields sufficiently satisfying results, i.e., that with
high levels of confidence the found solutions are likely to be global optima.

The second ILC case study as provided in Section 6.2 contains some pro-
nounced differences compared to the former. Besides modeling the market in-
teractions of the UL, passing on retail price signals pertaining to the wholesale
components of the total bill of the final customer, the second case study also
includes network UoS pricing. This changes the behavior of the final customers
and the lever that the UL has over the LL. The signal given by the aggregators’
retail prices are somewhat diluted by the additional network cost information.
Furthermore, the second ILC case study provides a representation of a larger
fleet, discussing scalability of the approach and fleet level effects. Sensitivity
analysis is carried out for the combined optimization of UL and LL together,
but with a focus on the UL.

The second case study only models one pricing scheme, hourly prices with
a constant margin above wholesale realizations, as it is deemed the most effi-
cient signal among the three alternatives previously analyzed in the preceding
ILC case study. Hence, no comparison among different retailing alternatives
can be provided with the second case study. In terms of implementation, the
discretization of retail prices provides a global answer to the bi-level problem.
Optimality is guaranteed via the CPLEX solver. However, unfortunately, due
to linear modeling choice in the explicit demand reduction, the LL total demand
simply depends on the average of the price over the considered time horizon.
This has multiple limitations. First, a given PEV is not connected at all times,
so the prices at certain hours could in reality be irrelevant for it. Second, its
energy needs might be higher at certain hours, so the prices at those hours could
have a higher weight in its decisions. The point is that the average price is not
necessarily directly related to the average cost of a PEV.

In summary, both ILC studies complement each other in the insights that
they provide. The difference in characteristics gives rise to many aspects of
modeling and implementation decisions that can be made along the way and
enrich the scientific debate on ILC.







Chapter 7

Contributions, Conclusions
and Future Work

This final chapter marks the closure of this dissertation. It concludes the re-
search carried out within this thesis by summarizing its main contributions and
results, deriving conclusions from it and pointing to possible paths of future work.
Section 7.1 starts by reporting the main contributions of this thesis in a concise
but interconnected matter. Proceeding, Section 7.2 formulates a comprehensive
answer to the research question formulated and the general research objectives
derived in the Introduction of Chapter 1, as well as the specific research objec-
tives deduced at the end of the literature review in Chapter 3. Finally, taking
the main limitations of the developed approach as a starting point, Section 7.3
indicates the research lines pertaining to future work.

7.1 Main Contributions

The contributions of this thesis compared to the state-of-the-art prior to the re-
spective publications of the results are listed underneath, point by point. How-
ever, please consider that the whole is bigger than the sum of all its parts, i.e.,
that each contribution becomes most meaningful when put into the context of
the other parts complementing it:

• This thesis has contributed by outlining the relevant parameters of a regu-
latory framework governing the efficient integration of PEV in modern
electric power systems. It has highlighted that coordination algorithms
striving for validity in fully unbundled power systems, such as, e.g., aligned
with European Directives, should note of the specific regulatory settings
that different power systems agents are subject to. In such a setting, ag-
gregators are competitive market agents at the interface of wholesale and
retail electricity markets. Here, competitiveness refers to the fact that
an aggregator carries out transactions in a market place according to its

173



174 CHAPTER 7. CONCLUSIONS

business model. Distributors, i.e., network infrastructure operators, on
the other hand, are fully regulated entities, acting in natural monopolies,
whose decisions are therefore subject to diametrically different objectives.
Furthermore, the thesis has alluded to one way of classifying charging
modes by the characteristics: location and access to the charging point,
the intermediary agents involved in facilitating the final products as well
as the level of sophistication in communication, control and optimization
strategies over the battery charging process.

• A two-stage stochastic linear program for the PEV aggregator’s
day-ahead and balancing decisions with direct load control over a large
fleet of PEV has been proposed, while accounting for risk via a CVaR term
in the objective function. The model includes uncertainty in both market
prices as well as PEV mobility parameters. Furthermore, it presents cal-
culations of two metrics named expected value of flexibility and expected
value of aggregation; the former quantifies the value associated with the
flexible timing of the charging and the latter measures the benefits from
jointly scheduling larger PEV fleets to reduce the costs of uncertainty.
The proposed scheme obtains PEV charging schedules at the level of indi-
vidual vehicles with moderate computation time when applying scenario-
reduction techniques. To model the uncertainty in PEV mobility, i.e.
availability to the power system and energy requirements, a discrete-time,
agent-based Monte-Carlo simulation of PEV mobility was used, including
various variance reduction techniques. To depict forecasting behavior of
the aggregator, SARIMA and GARCH models for day-ahead and balanc-
ing prices have been identified and their parameters estimated.

• An extension of the above DLC model has been used to calculate stan-
dard stochastic programming metrics for a stylized case with a fleet
of 5 electric vehicles. The effect of including different information con-
straints regarding market prices and mobility forecasts is used to obtain
the value of the stochastic solution and the expected value of private in-
formation for the given application.

• Set in an existing, real medium voltage distribution network with urban
characteristics and spatial PEV mobility, network UoS tariffs for ca-
pacity have been applied to the retail problem of scheduling PEV
charging by an aggregator. This is done to enhance the above DLC co-
ordination model and to overcome the lack of regulatory rigor used in a
substantial share of the PEV coordination literature. UoS tariffs based
on DSO’s long run marginal cost have been proposed as a means of in-
teraction between the aggregator as a market agent and the DSO being
the regulated network operator. These are deemed to sufficiently account
for the local situation of the network and serve as a capacity signal for
smoothing effects on the PEV load.

• A second set of models has been elaborated, conceptually presenting a
formulation of the PEV aggregator’s problem with particular focus on the
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retail interface with the final customers. It affords a decentralized opti-
mization of charging costs as well as aggregator profits, in which final cus-
tomers decide on their charging schedule, depending on the endogenously
determined and profit-optimal prices of the aggregator. These decisions
respect a potential discomfort that may arise when PEV users have to
deviate from their preferred charging schedule. Methodologically, this has
been achieved by applying complementarity modeling, which by it-
self is well known from other electricity market problems. Thereby the
main assumption of centrally coordinated direct load control for optimal
charging schedules has been relaxed to present indirect load control.
To this end, the proposed formulation is a bi-level optimization problem
given by an MPEC, in which 1) the upper level decisions on retail tariffs
and optimal bidding in electricity markets are subject to 2) the lower level
client-side optimization of PEV charging schedules.

• Again for the sake of regulatory rigor, the same capacity based network
UoS tariffs have been applied to the bi-level retail problem of scheduling
PEVs via prices. The efficient modeling of this MPEC problem in the
PEV framework avoids non-linearity with the help of the strong duality-
theorem and achieves computationally efficient solutions by discretizing
bi-linear terms employing only few integer variables. Demand side re-
ductions are modeled via an affine demand with constant profit margin,
for the aggregator using hourly time-discriminating prices. A qualitative
discussion of issues regarding the aggregator’s role and added value of its
services to power systems, as well as points to issues that could arise under
a monopolistic market of retail for PEV.

7.2 Conclusions with Respect to the Defined Re-
search Objective

The question underlying the research carried out in the context of this thesis
has been:

In the presence of resource scarcity, how should PEVs be advisably coordinated,
providing benefits to electric power systems?

The most relevant power system resources represented in this context have
been electricity generation, network capacity, as well as flexibility to respond
to unforeseen imbalances. Ideally, the coordination of PEV charging should
take into account all the above, even more so in the case of scarcity in any
of the above named resources. The power system generation side can be well
represented by wholesale energy markets. Prices in power spot exchanges are
deemed an efficient signal to allocate the available resources. PEVs aligning
their charging schedule according to day-ahead electricity market prices are a
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first step. In a second step, uncertainty should be managed because it is costly.
Laws of physics mandate to balance power system generation and demand at all
times. Yet, generator ramping limits make short-term changes in output more
costly than scheduling generation ahead of time. Finally, network capacity,
especially in distribution networks may also be limited. PEV charging schedules
are inherently flexible, having the potential to react to short-term signals and
adjust previously committed schedules at very little cost. However, stochastic
processes presenting uncertainty in prices and mobility parameters of a fleet,
may also cause costs. Aggregation of larger fleets may alleviate parts of this,
because they reduce the relative forecasting errors. Furthermore, peaks in PEV
consumption could congest networks and create a need for costly reinforcements.
An ideal PEV coordination approach should take into account cost causality
principles and if given the right degrees of freedom, smoothen demand over time
and space. However, ideal charging methods cannot override existing regulatory
frameworks that specifically define the roles of different power system agents. It
is therefore deemed crucial to properly distinguish the modeling of competitive
market agents as well as network operators acting in natural infrastructure
monopolies.

From these basic insights, the main research objective has been derived:
to propose models for decision making of existing and future power system
agents that can influence the total system efficiency, while charging plug-in
electric vehicles. The specific objectives cascading down from the main research
objective relate to the development and application of models that describe the
optimal decision making of plug-in electric vehicle aggregators exercising direct
as well as indirect load control over the charging schedule while participating in
day-ahead electricity markets. In both models, the goal is then to include an
adequate representation of the distribution network usage that is aligned with
the long run marginal cost of the distribution system operator.

To tackle the topic even more precisely, the main research objectives were
decomposed further into specific research questions. The most relevant actors,
whose decision making is most decisive for PEV coordination have been identi-
fied. The PEV aggregator focuses on the fleet management of PEV for electricity
market participation, while the distribution system operator is involved when
PEVs are efficiently charged for their capacity use in distribution networks.

Research sub-question 1a): In a given market price and mobility sce-
nario, what is the profit maximizing charging schedule of electric
vehicles? A detailed analysis of each scenario requires care and specifically
designed tools. Using the optimization programs developed in this thesis, a
PEV aggregator can optimally determine its involvement in day-ahead electric-
ity markets. The buying and selling positions taken in different hours depend
on the charging and discharging variables, which are imposed by the PEV en-
ergy requirement and constrained to the availability of the aggregated fleet of
vehicles. Given this feasible region, in principle, the program will find low price
hours for purchases and high price hours for discharges. The profit of the aggre-
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gator then mainly depends on the arbitrage between different instants in time
and thus market prices, as well as retail prices agreed with the final customers.
Such decision making is, for the most cases, likely to decrease net social cost
and drive the system towards a more efficient outcome, utilizing less expensive
generation resources.

Research sub-question 1b): How do market prices, mobility behavior
representation, retail tariffs/pricing schemes as well as storage pa-
rameters impact the profitability? Market prices and their variability do
have a pronounced effect on the profitability of the PEV aggregator’s business
model. As alluded in the answer to research sub-question 1a) the aggregator is
looking for both, arbitrage between hours, as well as for a margin over the retail
interface. Furthermore, it is of high importance to account for shorter term
markets, such as intra-day, adjustment and balancing markets. This thesis has
considered one particular occurrence of imbalance settlement systems, a two-
price system, in which imbalances are essentially penalized if they contribute to
the system imbalance. Balancing responsible parties in such a system cannot
get better off compared to their day-ahead commitments, in case they decrease
the system imbalance. Under such a system, deviations from the day-ahead
schedules can be very costly and uncertainty must be managed accordingly.

Retail tariffs and pricing schemes directly influence the profitability as they
determine the amount of revenue that can be obtained from the aggregator.
In the presented DLC models, revenues are flat rate volumetric energy tariffs
that are exogenously set. Profits can therefore be accordingly calibrated. In
the presented ILC models however, the final customers react to the retail prices
given to the PEVs with potential demand reductions.

Storage parameters, in particular inefficiencies for the energy transfer are of
less importance. They play into the energy balances and increase the amount
of money exchanged for the same net energy charged or discharged, and thus
add precision and detail to the economic approximations, however, they do not
substantially alter the conclusions that can be drawn from the numerical results.
The size, i.e. the energy capacity of the battery also does not play a very crucial
role.

Research sub-question 1c): What is the value of flexibility exhibited
by a fleet of vehicles scheduling their charging according to whole-
sale electricity market prices. Within this thesis, the aggregator’s value
of flexibility of a PEV fleet is defined as the economic benefit of aligning the
PEV schedule with market prices. To estimate this value of flexibility, first,
the optimal objective function value in the original formulation with DLC is
opposed to that of a schedule over which the aggregator cannot exercise control.
Their relative difference makes up this value. In the large-scale DLC case study
with 1000 vehicles, 200 initial, and 100 reduced scenarios for market prices and
mobility, the expected value of PEV flexibility under direct load control by the
aggregator has been found to be substantial. It lies in the range of 33%. How-
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ever, how this benefit would be shared is not answered by the DLC study. It
could mean that either the aggregator’s profits increase by this amount, or to
incentivize the PEV participation in a DLC scheme these profits could be passed
on to the final customers through tariff reduction.

Research sub-question 1d): If uncertainty in the input data is consid-
ered, what are appropriate measures to hedge against the risk expo-
sure? Considering uncertainty via a finite set of possible future realizations
of the stochastic processes involved permits the use of stochastic decision mak-
ing frameworks. With linear programming methods, it is possible to formulate
the deterministic equivalent of a two-stage decision sequence, with here-and-
now variables as well as wait-and-see variables. Nonanticipativity restrictions
constrain the former to account for the limited foresight available at the first
stage decisions. Many risk measures can be applied. The conditional value at
risk is a coherent risk measure that can be included in such stochastic linear
programs as an additional, scalably weighted term to the expected profit in the
objective function. Given a confidence level α, it enables the control of the
expected value of the lowest (1-α)-quantile scenarios of the profit distribution.
Increasing the level of risk-aversion of the PEV aggregator comes at the cost of
lower expected profits in the objective function. The case studies in this thesis
have shown that hedging against adverse lower-tail profits can be achieved, as
well as strategies of reaching outcome distributions with lower risk can be found.
The PEV aggregator may, e.g., reduce specific hourly day-ahead positions and
strongly (slightly) increase (decrease) positive (negative) balancing.

Research sub-question 1e): To what extent does the size of the fleet
impact the aggregator’s economics? The size of the aggregator’s fleet im-
pacts its economics because of the relative forecasting error and the associated
cost under the above mentioned imbalance penalization scheme. To analyze how
much the stochasticity of a single PEV’s mobility influences the economics of
the charging schedule in the day-ahead planning, a disaggregation technique has
been applied, in which the problem is solved with varying aggregation sizes of
parallel sub-fleets. It turns out that the confidence with which day-ahead fore-
casts of vehicle mobility, i.e., energy demand and unavailability, can be carried
out increases with the fleet size. Hence, a larger fleet incurs lower imbalance
settlement fees as compared to the same fleet broken up in smaller sub-fleets.
In effect, the more vehicles are controlled by the same entity, the better the
individual vehicles compensate for the uncertainty in mobility of the others
within the same aggregation. This expected value of PEV aggregation has been
found to lie in the range of 19% comparing the scheduling of 250 four-vehicle
big sub-fleets with the scheduling of one fleet of 1000 vehicles.

Research sub-question 1f): How can different controlled charging
schemes, i.e. ILC and DLC, be mathematically represented in the
decision making optimization of the PEV aggregator? The DLC ap-
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proach is rather common in literature and involves the assumption that all
decision variables, notably the charging and resulting SOCs of the vehicles are
under control of the PEV aggregator. This essentially means that the aggre-
gator can directly determine power set points and optimal energy quantities to
be charged. All constraints are directly incurred by the aggregator. Represent-
ing ILC schemes, on the contrary, involves the conceptual decomposition of the
problem ownership into two levels, and defining the information exchanged at
their interface. While the PEVs receive retail prices from the aggregator within
a given pricing scheme constraint, the aggregator incurs the demand reaction to
these price signals. This thesis has indicated that the bi-level structure common
in complementarity modeling for electricity markets can be a suitable framework
for the given problem structure.

Research sub-question 2a): What is the effect of pricing distribu-
tion system capacity by means of network UoS charges both in DLC
and ILC models? Although it is widely accepted that electricity market sig-
nals are deemed efficient to allocate resources at the transmission system level,
using uniform, zonal or locational marginal pricing, they may yet not always
sufficiently represent the local network status of the distribution system at sub-
transmission levels. Furthermore, high penetration levels of PEV potentially
cause network reinforcement, which would have an impact on investment, oper-
ation and maintenance costs of the DSO, who in turn translates these via the
grid fees to the final customers. This is an undesirable charging outcome, as
without coordination taking into account networks, the total system efficiency
is at danger. Therefore, this thesis has used relatively unexplored long run
marginal cost pricing for computing node dependent network UoS tariffs. Both
under DLC and under ILC, as shown by representative case studies, the charging
schedules are generally smoothened. Peak reductions are achieved, very likely
alleviating punctual network saturation.

Research sub-question 2b): Including network topology in the above
PEV aggregator model, represented by locational capacity prices, how
are charging schedules changing their alignment from market signals?
Ideally, mathematical formulations for PEV charge scheduling would take into
account capacity-based network UoS prices that are dependent on each network
node at MV level. The basic idea of these prices is grounded on the fact that the
use of the system is less costly at a point of supply where there tends to be spare
capacity compared to another point, where the network tends to be saturated.
This is common ground in distributed generation, as it sends a locational sig-
nal to investors of distributed energy resources, promoting locations where it is
overall less costly to connect and use the network. Given an appropriate infras-
tructure, the batteries of PEVs presumably present a certain degree of freedom
not only regarding the timing of charging, but also the location. Therefore, the
same principle could be applied to the scheduling of controlled PEV charging.

It must be noted that, indeed, if all vehicles received the same price signal
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and there were sufficient PEV penetration in the local network, congestion could
arise. Nevertheless, a remedy to congestion could in fact be an appropriate UoS
pricing of the network, not only differentiating between different nodes, but also
including time discrimination in the access tariff as this would treat vehicles at
different locations individually. PEV penetration is a slow process and as such
it can be well included in the planning processes of network operators including
both, the tariff design in the short- to medium term, as well as investment
decisions for reinforcement in congested areas. In principle, the pricing of UoS
based on capacity is already an effective tool to make use of the system. However
additionally, it sends a signal to the users that is well aligned with the long run
marginal cost of operating the network. If the lack of spare capacity is more
prominent in certain parts of the grids, the higher capacity prices give a strong
signal, always relative to the other components of the final customer bill, such
as the wholesale parts, to the PEV to smoothen the charging curve. If the
danger of congestion prevails, the UoS revenues should permit the grid operator
to reinforce the network by upgrading lines and transformer capacity.

The case studies show implications on optimal scheduling with UoS. The
results have pointed at the fact that capacity network charges are an efficient
instrument to account for local network situations in the charging schedules.
Including UoS in the proposed models schedules the PEV charging in alignment
with time and by network node location.

General Policy Recommendations Even though this thesis did not ex-
plicitly set out to provide policy recommendations, but rather contribute on a
technical modeling level, some general policy recommendations are not left un-
mentioned. The EU has set ambitions targets for the decarbonization of both
the electricity sector and transport systems. The electrification of personal-
ized mobility appears to be a promising pathway for these aims. Information
and communication technologies as well as the corresponding standards seem
ready and applicable to achieve an efficient use of the resources for when PEV
penetration levels rise. However, the regulatory frameworks should enable all
market players and system operators to fully reap the given potential. It seems
recommendable to revisit the regulation of distribution grids for a future world
of smart grids. Significant efforts should be undertaken to precisely define the
roles of future distribution system operators, transmission system operators and
market participants such as PEV aggregators.

In particular, this thesis has shown that the application of capacity-based
pricing for the use of networks could help to drive the system operation towards
higher overall efficiency. Volumetric energy charges seem less appropriate in a
capacity-driven system, which is mainly based on fixed capital costs. Therefore,
pricing schemes similar to the here-applied use-of-system network fees should
be encouraged by legislation and enacted through regulation. Ideally, the legal
framework of the European Union would seize the opportunity to harmonize the
variety of diverging solutions that are being undertaken in many different places
with the intention to apply only the best proven practices. More European



7.3. FUTURE WORK 181

integration of short-term intraday and balancing markets would be desirable.
Similar to what has been achieved by day-ahead markets would be desirable.
Electricity markets should have the lowest possible barriers, justified ideally only
by transaction costs, to incentivize a broad range of actors both on the supply
and demand side for the highest flexibility. This includes lower regulatory entry
hurdles and less discriminatory rules for aggregator participation. Variations in
wholesale prices can drive the operation schedules PEV storage units and should
therefore be visible to the optimization algorithms with as little distortion as
possible.

PEVs are a powerful integrator to link wholesale and retail markets via
dedicated supplier-aggregators. PEVs are also helpful in showing a way towards
decentralized generation schemes, where market roles change. Ideally, there
would be electricity market places that promote the final customers to engage
with the energy system to spark a transition towards a sustainable future.

7.3 Future Work

Naturally, the research work presented in this thesis has its limitations. A large
share of these shortcomings automatically translates into future research lines,
dedicated to improving or extending the developed tools for further functional-
ity. The main strands identified are mentioned in the following:

Risk Management Scenario-based linear stochastic programming has inher-
ent disadvantages compared to deterministic scheduling, because each stochastic
process considered multiplies the amount of scenarios needed to represent such
a range of outcomes. The limits of the proposed DLC approach with the regard
to computational tractability have been shown. It is likely that to solve even
larger problem instances of the given formulation, the application of decom-
position techniques to parallelize the solving algorithms for multi-cluster high
performance computing is promising.

Information Constraints For the stochastic DLC scheduling with risk man-
agement, a hedging strategy was shown, which included a shift of demand from
the day-ahead to the balancing market. However, this may be partly due to the
assumption of perfect foresight in the second stage of the model. To alleviate
this assumption, future research lines could involve extending this formulation
to a multi-stage stochastic program. A first step would be to include the knowl-
edge on balancing prices after taking balancing decisions etc.

Spatial UoS DLC Scheduling Future work on spatial UoS DLC scheduling
is equally manifold. This thesis merely includes a stylized case study that shows
the functionality of the proposed PEV aggregator model as well as advantages
of the pricing methodology. In the future, it could be interesting to apply
this approach to a case with realistic mobility, big scale, real medium to low
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voltage networks and using time series models for generating market price (day-
ahead and balancing) scenarios. Furthermore, a risk aversion measure could be
included.

Bi-level Programming for ILC Also for the ILC, future work includes
further analysis of scalability. Bender’s type decomposition techniques seem a-
priori promising candidates to achieve even better computational performance.

Furthermore, under ILC, it should be pointed out that the developed math-
ematical formulation does not explicitly model the aspects of aggregator com-
petition and PEV selecting aggregator’s in a functional retail market. Notwith-
standing, it can, as mentioned in multiple instance of the manuscript, serve as
a basis for analyzing the strategic interactions in a two-agent leader-follower
game. The insights gained with this model are transferable for the design of
retail equilibrium models and indeed motivate the necessity of these. So far,
competition can merely be emulated in the form of a quick remedy, and the
next step in research could naturally be an EPEC, where the retail market
equilibrium outcomes can be approximated. In fact, mathematically speaking,
the building blocks for an EPEC are partially shared by its underlying MPECs.
To explain this, please consider the following: EPECs are essentially a means
to represent types of mathematical programs that are useful for modeling such
games when there is more than one leader, and one wants to find an equilibrium
among these and the shared lower level. In game theoretic terms, the problem
is to obtain a Nash equilibrium among multiple leaders of a Stackelberg leader-
follower problem, where there is a shared single follower. A Stackelberg game
represents a situation of asymmetric information in which the leaders correctly
anticipate the reaction of the follower to the leaders’ decisions, but the followers
take the leaders’ decisions as exogenous, naively acting as if they had no influ-
ence over the leaders’ doings. The followers’ reactions could be captured, as in
the MPEC presented in this paper. In this regard, this thesis presents the first
step towards a more exhaustive treatment of electricity retail market equilibria
with PEV.
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Appendix A

Mathematical Foundation

A.1 Complementarity Modeling for Bi-level Pro-
grams

A.1.1 KKT Conditions

A.1.1.1 For the LL with Reference Schedule

To combine both UL and LL formulations in one problem, the Karush-Kuhn-
Tucker (KKT) conditions of the LL problem are formulated. To this end, the
partial derivative of the Lagrangian form of (4.45) is taken with respect to each
of the primal decision variables, which at the optimum have to fulfill the first
order condition:

∇L
( ...
)

= ∇f
( ...
)

+ θᵀ·∇g
( ...
)

+ µᵀ·∇h
( ...
)

= 0. (A.1)

The stationarity components of the objective function in vector form are then

∇f
( ...
)

=




γYh
0

Λv · |H|
Λv · |H|
Ξv · |H|



, (A.2)

θg1

v,h·∇g1

( ...
)

= θg1

v,h·




−1
0
0
0
0



, (A.3)
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θg2
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with
( ...
)

=
(
ēRT,Yv,h , ēSOC

v,h , t̄+v,h, t̄
−
v,h, ē

DR
v,h

)ᵀ
. The constraints relating to the

KKT-stationarity are thus:

∀v, h: γY
h − θ

g1
v,h − µ

h1
v,h·η

Y
v − µh2

v,h −θg3
v,h = 0, (A.8)

∀v, h: − θg2
v,h + µh1

v,h − µh1
v,h−1︸︷︷︸

h∈{2..|H|}

+µh3
v,h︸︷︷︸

h∈{|H|}

−θg4
v,h = 0, (A.9)

∀v, h: Λv − µh2
v,h −θg5

v,h = 0, (A.10)

∀v, h: Λv + µh2
v,h −θg6

v,h = 0, (A.11)

∀v, h: Ξv − µh1
v,h −θg7

v,h = 0. (A.12)
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KKT feasibility and complementarity of the inequalities is described by the
following:

∀v, h: 0 ≤ θg1
v,h ⊥ g1 = ēRT, Yv,h − νv,hP v ≥ 0,∗ (A.13)

∀v, h: 0 ≤ θg2
v,h ⊥ g2 = ēSOC

v,h − Ev ≥ 0, (A.14)

∀v, h: 0 ≤ θg3
v,h ⊥ g3 = eRT,Yv,h ≥ 0, (A.15)

∀v, h: 0 ≤ θg4
v,h ⊥ g4 = eSOC

v,h ≥ 0, (A.16)

∀v, h: 0 ≤ θg5
v,h ⊥ g5 = t+v,h ≥ 0, (A.17)

∀v, h: 0 ≤ θg6
v,h ⊥ g6 = t−v,h ≥ 0, (A.18)

∀v, h: 0 ≤ θg7
v,h ⊥ g7 = eDR

v,h ≥ 0, (A.19)

Remaining essentially unchanged are the equality constraints regarding feasibil-
ity in the KKT optimum :

∀v, h:h1=−eRT,Yv,h ·η
Y
v − eSOC

v,h−1−eDR
v,h + ρv,h

+ eSOC
v,h︸ ︷︷ ︸

h∈{2..|H|}

+ ιSOC
v︸ ︷︷ ︸
h=1

= 0, (A.20)

∀v, h:h2=−eRT,Yv,h − t+v,h+t
−
v,h+ ĚRT,Y

v,h = 0, (A.21)

∀v, h∈{|H|}:h3= eSOC
v,h − φSOC

v = 0. (A.22)

A.1.1.2 For the Daily Affine Demand

In the LL formulation with daily affine demand, the constraints relating to the
KKT-stationarity are:

∀v, h: γY
h + µg1

v,h + θh1

v,h·ηYv + θh2

v,h − θh3

v

− µg3

v,h + µg5

v,h∈|Hon| + µg6

v,h∈|Hoff |−µ
g7

v,h = 0, (A.23)

∀v, h: µg2

v,h − θ
h1

v,h + θh1

v,h+1︸︷︷︸
h∈{2..|H|}

−µg8

v,h = 0, (A.24)

∀v, h: Λ+
v + θh2

v,h −µg9

v,h = 0, (A.25)

∀v, h: Λ−v − θh2

v,h −µg10

v,h = 0, (A.26)

∀v, h: Ξv + θh1

v,h − θh3

v − µg3

v,h + µg4

v,h −µg11

v,h = 0, (A.27)

∀v: CUoS,on − Σ
h∈|Hon|

µg5

v,h = 0, (A.28)

∀v: CUoS,off − Σ
h∈|Hoff |

µg6

v,h = 0 (A.29)
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Time Series Model Estimation

B.1 Forecasting Day-Ahead Market Spot Prices

B.1.1 Data Analysis for Model Identification
According to a famous quote, model identification is necessarily inexact, because
it is not easy to mathematically describe the real world [140].

Stabilization of Variance - Box-Cox Transformation

Since the original time series contains negative values as depicted in Tab. B.1, a
logarithm or Box-Cox transformation for further variance stabilization is a priori
not possible. Hence, a shift-parameter a is applied such that ẏt = yt + c, with
a = |mint {yt}|+ 1. For the given time series, it is set to a = |y7994|+ 1 = 37.82.
Following,

ẏ
(λ)
t =

ẏλt − 1

λ
, with λ : maxλ L(λ) = −n

2
ln
(
σ̂2

(λ)

)
+ (λ− 1)

n∑

i=1

ln (ẏi) ,

(B.1)
where λ is the optimal parameter value determined by maximising the natural
log-likelihood function L(λ), in which σ̂2

(λ) is the estimate of the least squares

variance using the transformed variable ẏ(λ)
t . For the given time series, such a

transformation with λ = 1.9188 is performed. The mean stabilizing effect can
be assessed by studying the following.

Fig. B.1 illustrates the effect of the Box-Cox transformation on the original
data series (left side figures). The upper diagrams produce histograms of the

t 122 123 148 150 151 4696 4697 7900 7902 7903 7944
yt -10.02 -10.04 -0.10 -0.04 -10.10 -0.02 -0.59 -0.10 -0.07 -9.30 -36.82

Table B.1: Negative Outliers of Original EPEX Time Series
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Figure B.1: Assessing the Effects of Transforming the Series

values in the vector data using the number of bins equal to the square root of
the number of elements in the series data, then superimpose a fitted normal
distribution. The lower, quantile-quantile plots display the sample quantiles of
the series data versus theoretical quantiles from a normal distribution. After
applying the transformation, the new series (right side figures) has a distribution
that is slightly closer to normality as compared to its distribution prior to the
transformation.

Sample and Partial Autocorrelation Function Analysis

Following the standard methodology described in [140] and [139], the sample
auto-correlation function (ACF) as well as the sample partial auto-correlation
(PACF) functions are plotted for the first 50 lags in Fig. B.2a. Tentatively,
normal and seasonal differencing of order d = 1 and D = 1, respectively, with
(1−B),

(
1−B24

)
and

(
1−B168

)
seems promising to take care of the sig-

nificant components of the respective lags in the PACF and should provide a
suitable stabilization of the mean. Fig. B.2b shows the differenced series. A sta-
tistical test, known as KPSS, of the differenced series was performed to check
trend stationarity. The null hypothesis that the univariate time series y is trend
stationary was not rejected. The series was thus found to not be a nonstationary
unit-root process.

With both ACF and PACF of the differenced series tailing off after lags 6 and
8, respectively, suggests a mixed ARMA process as a conjunction of exponentials
and damped sine waves after the first q − p lags.

Model Identification

Further on, it will be assumed that mean and variance of the differenced and
transformed series ẏ(λ)

t (1−B)
(
1−B24

) (
1−B168

)
are sufficiently stable to

continue with the parameter estimation of various ARMA models. In particular,
the resulting SARIMA(1, 1, 2)24,168, SARIMA(2, 1, 1)24,168, and SARIMA(1, 1, 1)24,168
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Figure B.2: Principal Tools of Model Identification - Differencing

are estimated and compared to each other. Further on, they will be referred to
as Model A, B and C, respectively.

B.1.2 SARIMA Model Parameter Estimation for EPEX

For all models the first 6000 observations are taken for training the model, i.e.
for the parameter estimation, though, out of these 6000, the first 200 are taken
as pre-sample data. The rest of the observations, i.e. 6001-8760 are taken
for model validation purposes in a rather strict way. That is, all models are
estimated and validated using a forecasting horizon of 1 hour in the training
period.

Preliminary Residual Analysis

After the successful convergence of the estimation algorithm, the normalized
residuals are inferred from the respective model fits using the data from the
training period. These normalized residuals are checked for normality and auto-
correlation. First, normality checks are performed by means of qq-plots as in
Fig. B.3, in which the residuals exhibit sufficient normality. Then, ACF and
PACF of the residuals are plotted. Even though the null hypothesis of the Ljung-
Box portmanteau test box1970distribution for a series of residuals exhibiting
no autocorrelation for a fixed number of lags, against the alternative that some
autocorrelation coefficient is nonzero cannot be rejected for any of the estimated
models, the respective auto-correlation plots of Fig. B.4 show significance in less
than 5% of the lags.
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Figure B.3: Residual Analysis: QQ-Plots
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Figure B.4: Residual Analysis: ACF and PACF

Model Specification AR MA SAR SMA Constant Variance

A SARIMA(1, 1, 2)24,168
φ1 =.8149

θ1 = −.9840 Φ1 = .0255
Θ24 = .2175

cA = −0.0267 σ2
A = 56704

φ2 = −.0201 Θ168 = −.6093

B SARIMA(2, 1, 1)24,168 φ1 =.7936
θ1 = −.7746

Φ1 = −.1619
Θ24 = .2175

cB = −0.0319 σ2
B = 56694

θ2 = −.2064 Θ168 = −.6093

C SARIMA(1, 1, 1)24,168 φ1 =.7893 θ1 = −.9840 Φ1 = .0505
Θ24 = .2176

cC = −0.0267 σ2
C = 56704

Θ168 = −.6093

Table B.2: Maximum Likelihood Estimation Results: Model Parameters
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Model Parameters

The result of the maximum likelihood estimation process can be viewed in
Tab. B.2, where the parameters are indicated in the multiplicative format as
introduced in equation (4.71). The result provides that seasonal moving aver-
age, constant and variance parameters are very similar in all models A, B, and
C. Accordingly, it is expected that the forecasting performance will only differ
insignificantly, yet one model must be chosen and hence further indicators are
employed.

Model Comparison and Selection

Initially, the forecasting performance is assessed using visualization of forecast
versus validation signal. Subtracting the latter from the former gives the forecast
error. Fig. B.5a, Fig. B.5b and Fig. B.5c show both plots for models A, B
and C, with zoom at different sub-axes, respectively. From the sheer graphic
analysis the forecasting performance of all three models seems almost similar and
therefore it is not possible to make out the best candidate at human eyesight.
It inevitably appears reasonable to employ quantitative statistics.

Thus, the different models are compared using the following statistics:

1. R2: Coefficient of determination, which is often used in the context of re-
gression models, whose main purpose is the prediction of future outcomes
on the basis of other related information.

2. MAPE: Mean absolute percentage error, defined as MAPE = 1
n

∑n
t=1

∣∣∣ ẏt−ftẏt

∣∣∣ ,
where ẏt is the actual value and ft is the forecast value.

3. MAE: Mean absolute error, defined as MAE = 1
n

∑n
t=1 |ft − ẏt| = 1

n

∑n
t=1 |et| .

4. AIC: Akaike Information Criterion as a measure of the relative goodness
of fit of the model. The AIC is defined as AIC = 2k − 2 ln(L) where k is
the number of parameters in the model, and L is the maximized value of
the likelihood function for the estimated model.

5. SBC: Bayesian Information Criterion or Schwarz Criterion, which is a cri-
terion for model selection among a finite set of models. It is defined as
−2 · ln p(ẏt|k) ≈ SBC = −2 · lnL+ k ln(n), where p(yt|k) is the probabil-
ity of the observed data given the number of parameters; or, the likelihood
of the parameters given the dataset, n is the number of observations in
the dataset, k is the number of parameters to be estimated. It is based,
in part, on the likelihood function L, and it is closely related to the AIC.

While statistics 1.-3. are calculated using the validation period, 4. and 5.
are inherent to the log-likelihood estimation performed on the training period.
Tab. B.3 provides a summary of the statistics for the given models. Based on
information criteria, i.e. the lower the better, of the training period, model B
is most suitable regarding AIC, while C has a better SBC. In the validation
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Figure B.5: Forecasting Performance Assessment and Comparison
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Model Specification R2 [%] MAPE [%] MAE AIC SBC
Validation (1h horizon) Training

A SARIMA(1, 1, 2)24,168 89.17514 0.419306 2.60199 83212.50500 85238.16620
B SARIMA(2, 1, 1)24,168 89.18141 0.418951 2.60123 83210.47487 85236.13607
C SARIMA(1, 1, 1)24,168 89.17508 0.419182 2.60215 83210.63556 85230.37378

Table B.3: Comparing Forecasting Performance of Different Models

period however, model B has the best fit in terms of highest determination
coefficient R2, as well as lowest forecasting errors measured MAPE and MAE.
In summary model B, SARIMA(2, 1, 1)24,168 is chosen as the best candidate of
all three models.

B.1.3 Scenario Generation

Using random perturbations, model B is used to predict 1000 sample paths,
i.e. equiprobable scenarios, over a 24 hour horizon. This horizon is chosen
to replicate real conditions, in which rolling forecasts are performed according
to the typical day-ahead market clearing in the EEX of 12-36 hours ahead,
while price for the coming 12 hours are already determined by the previous
clearing. To achieve a high range of prices, this simulation is repeated three
times for starting hours 6000, 7200 and 8400, referring to different conditions in
the system. These correspond to day 251, 301 and 351 of the year, or Sunday
September 8th, Monday October 28th and Tuesday December 17th, respectively.
This way both week-end as well as week days are covered. From the training
period the observed series and inferred residuals are used as pre-sample data
in case of the simulation at hour 6000. For 7200 and 8400 only observed series
data, but no inferred residuals are used. The results of the three simulations
can be assessed in Fig. B.6, in which the observed data of the original series
is sequenced by the sample paths. The mean and the 95-percentile regions
are plotted in addition. For a more detailed visualization of randomly selected
specific paths that the scenario generation algorithm finds at the different time
steps, please refer to Fig. ?? of the supplemental figures in the appendix.

For a realistic scenario generation of prices for a given day, the starting
period should be 1am of a given day, such that the 24 hours are be used as
scenarios with a reasonable degree of uncertainty for the day-ahead decision
making of a market participant.

B.2 Forecasting Real Time Balancing Prices

The construction of time series models that capture the characteristics of real
time balancing prices, in principle, requires the same steps as carried out for
day-ahead spot prices. One simple difference may present, which series is taken
as a point of departure. The reBAP is a single price system but the scenarios
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Figure B.6: Scenario Generation: Model B - SARIMA(2, 1, 1)24,168
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Figure B.7: Balancing Market Mechanisms in a Two-Price-System

generated are needed in another form. Therefore, before going into the details of
SARIMA model estimation, as an introduction, a methodology is given, how to
emulate two price systems from single price system data in case the underlying
stochastic programming model requires this.

B.2.1 Balancing Market Mechanisms in a Two-Price-System

The market mechanisms that drive the formation of the prices are illustrated in
Fig. B.7. It is depicted how the day-ahead market price is found in equilibrium
of marginal production cost curve on the generation side crossing with the (here
supposed inelastic) demand. Under unaltered generation conditions in real time,
if ceteris paribus only the demand side deviates from the original day-ahead
schedule, the formation of RT prices for both upward and downward deviation
are shown. However, please note that this represents the case for marginal
pricing and not for average pricing such as for the reBAP.

B.2.2 Time Series vs. Other Models for Real Time Prices

The above derived construction of a two-price system based on a single real-
time balancing price makes it by definition impossible to reconstruct situations
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in which there exist simultaneous occurrences of λ+ and λ−. No matter which
representation, of the time series λRT is chosen later, only one SARIMA model
needs to be fit directly to forecast λRT . are other approaches to do this of
course. In some two-price-systems, such as NordPool, in certain periods, the
simultaneous occurrence of λ+ and λ− is possible. However, in these systems
the balancing price calculation methodology is not based on netting all devia-
tion energy and allocating an average price to the result, like for the reBAP.
There is good literature on the subject, such as [144], which uses a combination
of two different stochastic processes, one from a SARIMA time series model,
and another from a Markov chain to model NordPool balancing prices. The
advantage lies in its capability to derive simultaneous λ+ and λ− occurrences.

Essentially, the interaction of the different stochastic processes and its effects
on replicating realistic scenarios may motivate even further research. Here only
SARIMA time series models are applied.

B.2.3 Data Analysis for Model Identification
Stabilization of Variance

The original reBAP time series contains many negative values as depicted in
Fig. 4.7. Hence, a normalization to values in the interval between 1 and 2, using
the formula:

ẏnorm,t =
yt −mint {yt}

maxt {yt} −mint {yt}
+ 1

is applied. Then, Box-Cox transformation with parameter λ = −1.8842 for
further variance stabilization is carried out.

The mean stabilizing effect can be assessed in Fig. B.8. In the upper two
histograms of Fig. B.8a, it can be observed that the hourly aggregated price data.
This, at first guess, should not lie in the physical nature of power systems, where
slight positive deviations should be as common as negative ones when forecasting
techniques imply white-noise distributions of error terms. The bi-modality is
further shown in the sub figure scatter plot of NRV versus reBAP on a quarter
hourly granularity, which also includes histograms on both axes. From there it
becomes evident that even though the net power system deviations (NRV) follow
a slightly skewed normal distribution, with overall uni-modularly, whereas there
is a double peak in the empirical distribution of the reBAP. It seems possible
that this distortion is invoked by the average pricing methodology, in which both
positive and negative deviations are netted, such that only the larger deviation
is allocated with all the costs. To avoid the resulting price being almost infinity
with the net deviation tending to zero, a price cap exists.

Sample and Partial Autocorrelation

ACF as well as the sample partial auto-correlation PACF functions are plotted
for the first 50 lags in Fig. B.9a. Tentatively, normal differencing of order d = 1,
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Figure B.8: Assessing the Effects of Transforming the Series

seems promising to take care of the significant components of the respective lags
in the PACF and should provide a suitable stabilization of the mean. Fig. B.9b
shows the transformed and differenced series. A simple statistical test of the
differenced series was performed to check trend stationarity. With both ACF
and PACF of the differenced series tailing off after lags 3 and 24, respectively,
suggests a mixed ARIMA process as a conjunction of exponentials and damped
sine waves after the first q − p lags.

Model Identification

Further on, it will be assumed that mean and variance of the differenced and
transformed series ẏ(λ)

t (1−B) are sufficiently stable to continue with the pa-
rameter estimation of various ARMAmodels. In particular, the resulting ARIMA(1, 1, 2),
ARIMA(2, 1, 1), and ARIMA(2, 1, 2) are estimated and compared to each other.
Further on, they will be referred to as Model D, E and F, respectively.

B.2.4 ARIMA Model Parameter Estimation for reBAP

Preliminary Residual Analysis

After the successful convergence of the estimation algorithm, the normalized
residuals are inferred from the respective model fits using the data from the
training period. These normalized residuals are checked for normality and auto-
correlation. First, normality checks are performed by means of qq-plots as in
Fig. B.10, in which the residuals exhibit sufficient normality. Then, ACF and
PACF of the residuals are plotted. Even though the null hypothesis of the
Ljung-Box portmanteau test that a series of residuals exhibits no autocorrelation
for a fixed number of lags, against the alternative that some autocorrelation
coefficient is nonzero cannot be rejected for any of the estimated models, the
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Figure B.9: Principal Tools of Model Identification - Differencing

Model Specification AR MA Constant Variance

D ARIMA(1, 1, 2)
φ1 = .51182

θ1 = −.95523 cD = 1.649 · 106 σ2
D = .22024 · 10−3

φ2 = .06283

E ARIMA(2, 1, 1) φ1 = .62192
θ1 = −1.06347

cE = 1.604 · 106 σ2
E = .220352 · 10−3

θ2 = .104016

F ARIMA(2, 1, 2)

φ1 = .356942 θ1 = −.796435

cF = 1.732 · 106 σ2
F = .220198 · 10−3

φ2 = .141935 θ2 = −.151239

Table B.4: Maximum Likelihood Estimation Results: Model Parameters

respective auto-correlation plots of Fig. B.11 show significance in less than 5%
of the lags.

Model Parameters

The result of the maximum likelihood estimation process can be viewed in
Tab. B.4, where the parameters are indicated in the multiplicative format as
introduced in equation (4.71). Here, no seasonal AR and MA terms are in-
cluded. The result provides that, constant and variance parameters are very
similar in all models D, E, and F. Accordingly, it is expected that the forecast-
ing performance might only differ insignificantly, yet one model must be chosen
and hence further indicators are employed.

Model Comparison and Selection

Initially, the forecasting performance is assessed using visualization of forecast
versus validation signal. Subtracting the latter from the former gives the fore-
cast error. Fig. B.12a, Fig. B.12b and Fig. B.12c show both plots for models D,
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Figure B.10: Residual Analysis - QQ-Plots for the Three Models
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Figure B.11: Residual Analysis - ACF and PACF
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Model Specification R2 [%] MAPE [%] MAE AIC SBC
Validation (1h horizon) Training

D ARIMA(1, 1, 2) 40.0970 3.3128 24.0422 -33571.65 -33542.04
E ARIMA(2, 1, 1) 40.1024 3.3127 24.0390 -33573.468 -33543.85
F ARIMA(2, 1, 2) 40.1264 3.3205 24.0343 -33565.266 -33529.73

Table B.5: Comparing Forecasting Performance of Different Models

E and F, with zooms at different sub-axes, respectively. From the sheer graphic
analysis the forecasting performance of all three models seems significantly sim-
ilar and therefore it is not possible to make out the best candidate at human
eyesight. It appears inevitably reasonable to employ quantitative statistics.

Thus, the different models are compared using the same statistics as intro-
duced above for the day-ahead market prices. Tab. B.5 provides a summary of
the statistics for the given models. Based on information criteria, i.e. the lower
the better, of the training period, model E is most suitable regarding AIC and
SBC. In the validation period however, model B has only the second best fit
in terms of highest determination coefficient R2, yet lowest forecasting errors
measured MAPE and MAE. In summary model E, ARIMA(2, 1, 1) is chosen as
the best candidate of all three models.

B.2.5 Scenario Generation
Using random perturbations, model E is used to predict 1000 sample paths, i.e.
equiprobable scenarios, over a 1 hour horizon. This horizon is chosen to replicate
presumed conditions, in which rolling forecasts are performed every hour to
update real time behavior as much as possible. As with day-ahead prices, to
achieve a high range of reBAP prices, this simulation is repeated three times for
starting hours 6000, 7200 and 8400, according to the scenarios generated above.
The results of the three simulations can be assessed in Fig. B.13, in which the
observed data of the original series is sequenced by the sample paths. The mean
and the 95-percentile regions are plotted in addition.

For a realistic scenario generation of prices for a given day, the starting
period should be 1am of a given day, such that the 24 hours are be used as
scenarios with a reasonable degree of uncertainty for the day-ahead decision
making of a market participant.

B.3 Summary
This appendix has identified, estimated and selected two time series models
for describing German electricity market data. These models can be used to
feed input about the uncertainty spanning the realization of possible day-ahead
prices and imbalance settlement fees into scenario based stochastic programs.
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Figure B.12: Forecasting Performance Assessment and Comparison
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Appendix C

Requirements of ILC vs. DLC

C.1 Data Requirements of CCO Approaches

General Insights Comparing ILC and DLC may not be important, if carry-
ing out DLC for very large fleets is intractable from the optimization problem.
However since one of the thesis objectives is to propose mathematical programs
that tackle this challenge, for this section, the working assumption is that there
is no problem in implementing and performing such large scale optimization
instances. The discussion focuses on comparing the implications of communi-
cation alternatives and not whether these options are actually real alternatives.
Once this is determined, the constraining system component, or bottleneck, ap-
pears to be situated on the PEVSA side of the communication network, since
at this end signals from many parallel PEV could potentially arrive simultane-
ously. Furthermore, regardless of ILC and DLC, the communication network
is not the binding constraint, it rather depends on the communication protocol
that is being used on the network.

In addition, it can be assumed that the answer to the question lies in the
V2G back-end technology; ILC poses a similar problem as in any other smart
grid appliances such as studied in various research projects with collaboration
on an international scale [84]. The cost of the communication network boils
down to estimating the amount of information that needs to be exchanged, as
well as the communication technology used: possible candidates are Power-line
communication (PLC) for the public realm, where charging points with large
capacities are directly communicated with the substation, Digital Subscriber
Line technologies (xDSL ) for use in home charging modes or simple wireless
technologies such as General Packet Radio Service (GPRS) for any type of
situation where no existing physical communication layer exists. It appears
that charging control would be reliable even if realized with low bit rates in
GPRS.

For a full cost comparison, the following points would have to be clarified:
1) amount of data exchanged, 2) timing and frequency of communication, 3)
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mapping of these to the bit space, 4) use-case distinction, and 5) prices for
communication network capacity by technology.

For the approximation of cost, a small numerical example is constructed
based on the time granularity, horizon and other general assumptions made in
previous case studies: the fleet size amounts to 1000 vehicles, an entire day, i.e.
a 24 hour horizon is considered hourly periods, both for energy and capacity
pricing. Any data point is assumed to be encoded in an 8bit mapping. Fur-
thermore, this estimation exercise does not claim to be meticulously exact to
every detail, on the contrary, it merely serves as a coarse approximation and,
as such, does not include data needed for encryption or for communication set-
up sequences or for specific headers, which communicate the coding of the bit
sequences to follow.

ILC: 1) Amount, 2) Timing and Frequency of Data: Under the ILC
assumption, the functions carried out by the PEVSA are essentially the same as
known from traditional retailers, i.e., market bids have to be determined, retail
prices have to be set up and the reactions to price signals have to be forecast
on the basis of past data. Hence the following data exchange can be foreseen:

• PEVSA ⇒ PEV: The main data exchanged are prices. In the given
decision framework, the PEVSA sends one vector of 24 hours once per
day, day-ahead γh.

– If balancing is considered, additionally 24 times per day one hour-
ahead updated pricing: γD

h , γ
B
h a total of two vectors of 24 hours

• PEV ⇒ PEVSA: any given time ex-post: Daily: 24 hourly data
points for the consumption per vehicle eRT,Y

v,h

– If balancing is considered, i.e. market design framework 2), addition-
ally the PEV needs to commit to a preliminary day-ahead schedule,
which would have to be submitted as one vector of 24 hours once
per day, day-ahead eDY

v,h .

ILC: 3) Bit space mapping: This would lead to the following estimation
of minimum required bits. A total of approximately 768 bit per day, which are
composed of:

• Prices day-ahead: once per day, 1000 vehicles x 24 data points x 8 bits
per data point = 192 kbit per day

– With market design 2), pre-schedule commitment day-ahead: once
per day, 1000 vehicles x 24 data points x 8 bits per data point = 192
kbit per day

– With market design 2), hour-ahead prices : 24 times per day, 1000
vehicles x 1 data point x 8 bits per data point = 192 kbit per day



C.1. DATA REQUIREMENTS OF CCO APPROACHES 209

1 . . . 7 8 9 10 11 12 13 14 15 16 17 18 . . . 24

V
eh

ic
le

s
[h

] 1 . . . 1.52 1.86 6.41 0.45 . . .

2 . . . 4.39 8.00 0.68 2.26 . . .

3 . . . 0.95 0.45 0.14 1.86 . . .

4 . . . 2.26 0.45 0.68 1.22 . . .

5 . . . 0.14 0.95 0.14 1.22 . . .

Hours h ∈ H [h]

(a) Upon Connection

1 . . . 7 8 9 10 11 12 13 14 15 16 17 18 . . . 24
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] 1 . . . 1.52 1.86 6.41 0.45 . . .

2 . . . 4.39 8.00 0.68 2.26 . . .

3 . . . 0.95 0.45 0.14 1.86 . . .

4 . . . 2.26 0.45 0.68 1.22 . . .

5 . . . 0.14 0.95 0.14 1.22 . . .

Hours h ∈ H [h]

(b) During Connection

Table C.1: DLC Data Exchange Occasions

• Ex-post: Once per day, 1000 vehicles x 24 data points per day x 8 bits
per data point = 192 kbit per day

DLC: 1) Amount, 2) Timing and Frequency of Data: In the DLC case,
not only two directions, but also four different occasions are distinguished, at
which data needs to be exchanged. In Tab. C.1, the occasions that occur during
the course of a day are highlighted in an overlay to the input representation
table that showed the high mobility sub-scenario from ??.

Once at some undefined point in time prior to day-ahead, i.e., at the time
of establishing the contractual relationship between PEVSA and PEV, at least
the following information has to be exchanged:

• PEVSA ⇒ PEV: flat rate energy-based retail price γh,

• PEV ⇒ PEVSA: battery size via. upper and lower SOC bounds Ev, Ev
,

• PEV ⇒ PEVSA: maximum (dis-)charge rates P
Y
v , P

Z
v and

• PEV ⇒ PEVSA: energy exchange efficiencies ηYv , ηZv .

Note that efficiencies are not necessary if they are included in the energy re-
quirements. Also, note that this one-time communication at the establishment
of contracts would save resources compared to other charging models, in which,
e.g., maximum discharge rates, in the form of currents supported on each phase
are communicated at each connection [41], see following paragraph.

Each time upon connection, i.e. right in between a period of disconnection
and connection, as illustrated in Tab. C.1 a) by red dotted ovals, on average up
to 3-5 times per day:
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• PEV ⇔ PEVSA: identification, authentication and authorization v,

• PEV ⇒ PEVSA: current SOC eSOC
v,h ,

• PEV ⇒ PEVSA: hour of disconnection or duration of charge t and

• PEV ⇒ PEVSA: amount of energy required during connection eSOC
v,h+t−

eSOC
v,h .

During the time of connection, as illustrated in Tab. C.1 b) by blue dashed
rectangles, on average 22 to maximally 24 hours per day:

• PEVSA ⇒ PEV: charging set point eRT,Y
v,h .

Like in the ILC case, at any given time ex-post, e.g., daily, the metering data
has to be transmitted:

• PEV ⇒ PEVSA 24 hourly data points for the consumption per vehicle
eRT,Y
v,h

DLC: 3) Bit space mapping: From the above mentioned estimation re-
garding amount, timing and frequency of data, the bit space mapping consis-
tently derives as follows.

A total of approximately 680 kbit per day would have to be transmitted,
splitting up in:

• Before day-ahead: 1000 vehicles x 7 data points x 8 bits per data point =
56 kbit once for establishing the contract,

• Upon connection in the worst case: 5 times per day x 1000 vehicles x 6
data points x 8 bits per data point = 240 kbit per day,

• During connection and controlled charging, hour-ahead: 24 times per day,
1000 vehicles x 1 data point x 8 bits per data point = 192 kbit per day
and

• Ex-post: Once per day, 1000 vehicles x 24 data points per day x 8 bits
per data point = 192 kbit per day.

4) ILC and DLC Use-case distinction There is not fundamental difference
in use-cases evoked by the prevalent communication architecture. Both ILC and
DLC could by used in any use case. However, different use cases may render
different communication technology to be the cheapest option. Despite the
plurality of the different charging modes outlined in Chapter 2, for the sake
of simplicity in this rough estimation, it is assumed that there are mainly two
use-cases that are fundamentally different: home charging with existing xDSL,
street charging with PLC for dedicated charging stations with multiple PEVs
and high contracted DSO capacity. GPRS is only employed in cases where no
communication infrastructure exists yet.
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5) Prices for communication network capacity by technology For both
charging controls, ILC and DLC, the amount of data calculated is relatively
small. Also, the difference between ILC and DLC is almost negligible. In fact,
the amount of data and difference between ILC and DLC are so small that it
appears not necessary to carry out a full price comparison. For comparison,
common data exchange rates are indicated: GPRS provides moderate speed
operation at 56-114 kbit/s; xDSL operates in the range of 256kbit/s to 100
Mbit/s; and finally PLC can typically handle up to 576 kbit/s. To put these
numbers into the right perspective, even if the daily amounts of data had to be
transmitted at once, which is not the case, they could be handled by the slowest
GPRS standard in a matter of seconds.

C.2 Qualitative Notes on CCO Modes
From this rough estimation, a few insights may be gained. Qualitative conclu-
sions are drawn as follows:

• The standardization process for coordinated charging communications is
far advanced, the necessary technology is developed and has reached the
market already. The existing technology with regards to communication
protocols makes both ILC and DLC possible and likely to co-exist.

• In an hourly resolution model the amount of data needed to carry out
both ILC and DLC is insignificantly small and therefore negligible. Even
if daily amounts of data had to be transmitted at once, which is not the
case here, they could be handled by the slowest among the considered
communication technologies in under a minute. Even if there were no
communication infrastructures like PLC and xDSL available at any of the
charging points, the cost of GPRS communication would not appear to be
prohibitively high.

• Furthermore, the differences in data requirements between ILC and DLC
are surprisingly low. With the given assumptions of the optimization
problems presented in this thesis, in particular the hourly resolution, on a
day to day basis DLC does not need much more data exchange than ILC.
Furthermore with ILC, to consider both day-ahead and balancing prices
for the retail would require an extra schedule to be committed from the
PEV to the PEVSA, but this additional data would in total not be very
important.
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Table D.1: Travel Probability πtraveld [23], [65], [66]

πtraveld Monday Weekday Friday Saturday Sunday
Travel 0.6273 0.6586 0.6494 0.5499 0.4066

No Travel 0.3727 0.3414 0.3506 0.4501 0.5934

Table D.2: Expected Trips of Moving Vehicles [23], [65], [66]

Monday Weekday Friday Saturday Sunday
ntravgd 3.95044 3.96463 4.21066 3.59744 2.8098

Table D.3: Trip Start Hour Probability πstartHd,t [23], [65], [66]

Hour h Monday Weekday Friday Saturday Sunday
1 1.212E-03 1.893E-03 4.088E-03 6.031E-03 2.429E-03
2 1.943E-04 1.192E-03 3.262E-03 2.838E-03 1.242E-03
3 1.170E-03 6.696E-04 1.499E-03 2.889E-03 1.277E-03
4 7.647E-04 1.353E-03 2.873E-03 1.976E-03 4.130E-03
5 3.080E-03 5.862E-03 5.984E-03 1.384E-03 2.979E-03
6 1.815E-02 2.242E-02 1.717E-02 5.854E-03 5.785E-03
7 4.940E-02 5.141E-02 4.212E-02 1.305E-02 6.236E-03
8 7.007E-02 7.309E-02 6.572E-02 2.744E-02 1.827E-02
9 6.028E-02 5.966E-02 6.199E-02 6.892E-02 4.338E-02
10 6.578E-02 5.658E-02 6.035E-02 1.143E-01 6.801E-02
11 6.034E-02 5.627E-02 6.190E-02 1.199E-01 6.865E-02
12 5.684E-02 6.026E-02 5.716E-02 1.029E-01 8.973E-02
13 6.083E-02 6.525E-02 6.572E-02 9.099E-02 7.824E-02
14 5.863E-02 5.981E-02 6.860E-02 7.072E-02 8.667E-02
15 5.943E-02 6.264E-02 7.702E-02 6.825E-02 9.260E-02
16 7.976E-02 7.260E-02 8.355E-02 6.136E-02 7.352E-02
17 8.835E-02 9.267E-02 8.378E-02 4.296E-02 7.509E-02
18 8.757E-02 8.735E-02 7.397E-02 4.405E-02 7.987E-02
19 6.572E-02 6.392E-02 5.592E-02 4.967E-02 7.215E-02
20 4.480E-02 4.105E-02 4.199E-02 4.056E-02 4.310E-02
21 2.593E-02 2.561E-02 2.393E-02 2.076E-02 3.257E-02
22 2.365E-02 1.963E-02 1.802E-02 1.402E-02 2.713E-02
23 1.339E-02 1.379E-02 1.568E-02 1.801E-02 2.092E-02
24 4.665E-03 5.006E-03 7.723E-03 1.118E-02 6.036E-03
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Table D.4: Trip Range Probability πranged,l [23], [65], [66]

Trip Length l Monday Weekday Friday Saturday Sunday
1 2.292E-01 2.111E-01 2.246E-01 2.111E-01 2.002E-01
3 1.780E-01 1.783E-01 1.671E-01 1.783E-01 1.594E-01
5 9.996E-02 1.214E-01 1.175E-01 1.214E-01 1.187E-01
7 9.172E-02 8.147E-02 9.230E-02 8.147E-02 7.652E-02
9 5.679E-02 6.149E-02 6.245E-02 6.149E-02 5.714E-02

11.25 3.471E-02 4.829E-02 4.989E-02 4.829E-02 5.119E-02
13.75 6.441E-02 6.157E-02 4.999E-02 6.157E-02 6.202E-02
16.75 4.989E-02 3.950E-02 4.922E-02 3.950E-02 4.632E-02
19.25 3.439E-02 3.239E-02 3.018E-02 3.239E-02 4.356E-02
22.5 4.960E-02 5.075E-02 6.141E-02 5.075E-02 4.582E-02
27.5 3.443E-02 3.424E-02 2.369E-02 3.424E-02 4.061E-02
32.5 2.629E-02 2.515E-02 1.459E-02 2.515E-02 1.440E-02
37.5 1.196E-02 1.275E-02 1.933E-02 1.275E-02 6.620E-03
42.5 3.388E-03 8.547E-03 5.700E-03 8.547E-03 4.698E-03
47.5 1.165E-02 8.524E-03 4.608E-03 8.524E-03 7.927E-03
55 3.345E-03 7.677E-03 1.040E-02 7.677E-03 1.322E-02
65 4.005E-03 4.359E-03 3.662E-03 4.359E-03 9.155E-03
85 7.168E-03 5.143E-03 4.981E-03 5.143E-03 1.643E-02
125 3.588E-03 2.987E-03 4.433E-03 2.987E-03 8.458E-03
225 4.340E-03 2.402E-03 1.996E-03 2.402E-03 1.255E-02
400 1.233E-03 2.056E-03 1.907E-03 2.056E-03 5.082E-03
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Table D.5: Scenario Probabilities for Second DLC Case Study

Scenario ω 1 2 3 4 5 6 7 8 9 10 11 12

Probability πω 0.03 0.03 0.02 0.02 0.09 0.09 0.06 0.06 0.03 0.03 0.02 0.02

Day-Ahead D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3

Balancing B1 B1 B2 B2 B1 B1 B2 B2 B1 B1 B2 B2

Mobility M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Scenario ω 13 14 15 16 17 18 19 20 21 22 23 24

Probability πω 0.03 0.03 0.02 0.02 0.09 0.09 0.06 0.06 0.03 0.03 0.02 0.02

Day-Ahead D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3

Balancing B1 B1 B2 B2 B1 B1 B2 B2 B1 B1 B2 B2

Mobility M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4

Table D.6: Scenario Probabilities for Third DLC Case Study

Scenario ω 1 2 3 4 5 6 7 8 9 10 11 12

Probability πω 0.06 0.06 0.04 0.04 0.18 0.18 0.12 0.12 0.06 0.06 0.04 0.04

Day-Ahead D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3

Balancing B1 B1 B2 B2 B1 B1 B2 B2 B1 B1 B2 B2

Mobility M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2
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Extended Summary

Introduction and Problem Statement

What would our modern societies be like, if there wasn’t widespread access to
electricity and how would we live without motorized mobility?

It appears rather difficult to imagine contemporary societies of developed
countries without power systems as the backbone enhancing social welfare, eco-
nomic prosperity and ultimately well-being to its human constituents. There
is little doubt that also the transportation sector is an essential constituent to
modern life.

However, to mitigate adverse climatological effects of emitting greenhouse
gases, a rigorous de-carbonization of both industries has been set on the political
agenda in many parts of the world. To this end, electrifying personal vehicles is
believed to contribute to an affordable and reliable energy model that provides
tolerable environmental impact.

The latest sales statistics suggest that the overall penetration and its rate
of change still remain very low. Nevertheless, what the future holds is uncer-
tain and may include some surprises. What is well known at this point is that
plug-in electric vehicles (PEVs) are likely to exhibit a plurality of benefits and
co-benefits to modern society. They are understood as an option for increased
energy efficiency, and present a strategic development option to reduce geo-
political exposure from importing primary energy carriers. Most importantly
for the context of this thesis, they constitute an inherently flexible electricity
demand. This means that as a mobile storage technology, in principle, PEVs
promise to facilitate, among others, the integration of the quickly growing vari-
able renewable energy sources. Yet, a doubt remains:

How exactly should PEVs be coordinated, such that they provide
benefits to electric power systems in the presence of resource scarcity?

The main objective of this research is to propose decision support tools that
may improve the total system efficiency through PEV charging. To achieve
this, the thesis document sets out to establish detailed understanding of the
regulatory framework governing vertically unbundled power systems with high

xxxv



xxxvi BIBLIOGRAPHY

levels of PEV integration. In the first set of qualitative chapters, the most
relevant existing and future agents are identified and their respective objective
functions are described.

These are first and foremost, PEVs that service the mobility needs of final
customers, who drive to and connect at different supply points of the power
system, requiring variable amounts of energy. Second, medium and low voltage
distributions system operators are directly affected in their tasks of long-term
network expansion planning, mid-term tariff design and short-term operation
of the grid in secure conditions, such as voltage stability and keeping currents
within thermally dictated limits. Finally, an aggregation agent as the interface
to the wholesale electricity generators is envisaged to be in charge of procuring
energy in electricity markets, exposed to uncertainty in prices, fleet availability
and demand requirements. This aggregator could coordinate the PEV charging
either with direct load control (DLC), i.e., sending power set points to the
individual vehicles, or with indirect load control (ILC), i.e., by sending retail
price signals.

Research Methods

The thesis makes use of both qualitative and quantitative methods to attain its
objectives. In Part I it first creates a common ground of conceptual ideas, gen-
eral electric power system framework assumptions and qualitative discussions
on existing work of PEV integration. Part II then presents quantitative model-
ing, which substantiates the methodology, points to specific assumptions for the
proposed decision making tools and finally puts forward a thorough analysis of
an aggregator’s economics with a discussion of numerical results.

Contributing to the technical literature this thesis on the one hand proposes
a two-stage stochastic linear program for the PEV aggregator’s day-ahead and
balancing decisions with DLC over a large fleet of PEVs, while accounting for
the conditional value at risk in the objective function. On the other hand, it
puts forward a formulation of ILC coordination as a bi-level optimization prob-
lem given by mathematical programming with equilibrium constraints, in which
1) the upper level decisions on retail tariffs and optimal bidding in electricity
markets are subject to 2) the lower level client-side optimization of PEV charg-
ing schedules. These decisions may respect a potential discomfort that could
arise when PEV users have to deviate from their preferred charging schedule.
Set in an existing, real medium voltage distribution network with urban char-
acteristics and spatial PEV mobility, network use-of-system tariffs for capacity
have been applied to both DLC and ILC scheduling by a PEV aggregator.

It should be noted that from a regulatory perspective within the framework
of the European Union, the regulated activities carried out by a network opera-
tor in its natural monopoly are strictly unbundled from those of the competitive
aggregator agent. Thus, in the context of this thesis, it is assumed that all tasks
of the distribution system operation can be boiled down to a simplified calcu-
lation of network use-of-system (UoS) fees, which are input to the optimization
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models presented here. The UoS fees are incurred either by the aggregator
exercising DLC or by the PEVs receiving price signals under ILC.

The thesis develops simulation algorithms as well as optimization models
employing state of the art software technology, e.g., MatLab© for handling
input output data, GAMS© and CPLEX™ for optimization.

Discussion of Numerical Results and Conclusion

Regulation Matters In its qualitative analysis, this thesis has first an fore-
most highlighted that coordination algorithms striving for validity in fully un-
bundled power systems, such as, e.g., aligned with European Directives, should
note of the specific regulatory settings that different power systems agents are
subject to. In such a setting, aggregators are competitive market agents at the
interface of wholesale and retail electricity markets. Distributors, i.e., network
infrastructure operators, on the other hand, are fully regulated entities, acting
in natural monopolies, whose decisions are therefore subject to diametrically
different objectives.

Optimal PEV Coordination Furthermore, the use of quantitative tools has
lead to a number of results. Considering uncertainty, a detailed analysis of each
scenario requires care and specifically designed tools. Using the optimization
programs developed in this thesis, a PEV aggregator can optimally determine its
involvement in day-ahead electricity markets. The buying and selling positions
taken in different hours depend on the charging and discharging variables, which
are imposed by the PEV energy requirement and constrained to the availabil-
ity of the aggregated fleet of vehicles. Given this feasible region, in principle,
the program will find low price hours for purchases and high price hours for
discharges. The profit of the aggregator then mainly depends on the arbitrage
between different instants in time and thus market prices, as well as retail prices
agreed with the finals customers. Such decision making is, for the most cases,
likely to decrease net social cost and drive the system towards a more efficient
outcome, utilizing less expensive generation resources.

The Value of PEV Flexibility Within this thesis, however, the problem
owner is the PEV aggregator, whose value of flexibility of a PEV fleet is defined
as the economic benefit of aligning the total schedule schedule with market
prices. To estimate this value of flexibility, first, the optimal objective function
value in the original formulation with DLC is opposed to that of a schedule over
which the aggregator cannot exercise control. Their relative difference make up
this value. In a large-scale DLC case study with 1000 vehicles, 200 initial, and
100 reduced scenarios for market prices and mobility, the expected value of PEV
flexibility under DLC by the aggregator has been found to be substantial. It lies
in the range of 33%. However, how this benefit would be shared is not answered
by the DLC study. It could mean that either the aggregator’s profits increase
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by this amount, or to incentivize the PEV participation in a DLC scheme these
profits could be passed on to the final customers through tariff reduction.

The Value of PEV Aggregation Another central analysis of this thesis
revolves around the aggregation of fleets under uncertainty. It is found that
the size of the aggregator’s fleet impacts its economics because of the relative
forecasting error and the associated cost under the above mentioned imbalance
penalization scheme. To analyze how much the stochasticity of a single PEV’s
mobility influences the economics of the charging schedule in the day-ahead
planning, a disaggregation technique is applied, in which the problem is solved
with varying aggregation sizes of parallel sub-fleets. It turns out that the con-
fidence with which day-ahead forecasts of vehicle mobility, i.e., energy demand
and unavailability, can be carried out increases with the fleet size. Hence, a
larger fleet incurs lower imbalance settlement fees as compared to the same fleet
broken up in smaller sub-fleets. In effect, the more vehicles are controlled by the
same entity, the better the individual vehicles compensate for the uncertainty in
mobility of the others within the same aggregation. This expected value of PEV
aggregation has been found to lie in the range of 19% comparing the scheduling
of 250 four-vehicle big sub-fleets with the scheduling of one fleet of 1000 vehicles.

Efficient Network Signals Through Capacity Use-Of-System Tariffs
Although it is widely accepted that electricity market signals are deemed ef-
ficient to allocate resources at the transmission system level, using uniform,
zonal or locational marginal pricing, they may yet not always sufficiently rep-
resent the local network status of the distribution system at sub-transmission
levels. Furthermore, high penetration levels of PEV potentially cause network
reinforcement, which would have an impact on investment, operation and main-
tenance costs of the distribution system operator, who in turn translates these
into higher system costs via the grid fees to the final customers. This is an unde-
sirable charging outcome, as without coordination taking into account networks,
the total system efficiency is at danger. Therefore, this thesis has used relatively
unexplored long run marginal cost pricing for computing node dependent net-
work UoS tariffs. Both under DLC and under ILC, as shown by representative
case studies, the charging schedules are generally smoothened. Peak reductions
are achieved, very likely alleviating punctual network saturation.

The case studies provided in this thesis allow for observing implications on
optimal PEV coordination with UoS. The results have pointed at the fact that
capacity network charges are an efficient instrument to account for local network
situations in the charging schedules. Including UoS in the proposed models helps
to schedule the PEV charging both in alignment with time and by network node
location.
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