
ALGORITHMIC TECHNIQUES FOR THE
MICRON AUTOMATA PROCESSOR

A Thesis
Presented to

The Academic Faculty

by

Indranil Roy

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology
August 2015

Copyright c© 2015 by Indranil Roy



ALGORITHMIC TECHNIQUES FOR THE
MICRON AUTOMATA PROCESSOR

Approved by:

Professor Srinivas Aluru, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor David A. Bader
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Alberto Apostolico
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Richard Vuduc
The School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Sudhakar Yalamanchili
School of Computational Science and
Engineering
Georgia Institute of Technology

Date Approved: 24 April 2015



To my family, loved ones and friends.

iii



PREFACE

This dissertation is the first in-depth study on the use of the Micron Automata Processor,

a novel re-configurable co-processor that supports direct hardware implementation of a set

of non-deterministic finite automata over a streaming input. This study is made interesting

by the fact that this co-processor will be the only commercially available processor which

is directly based on the Multiple Instruction Single Data architecture. This allows it to

efficiently handle a class of applications which are inherently difficult to compute using

existing processors.

By design, this processor is well-suited to accelerate applications which need to find

all occurrences of thousands of complex string-patterns in the input data. This document

details our research to implement such applications on this processor and evaluate the per-

formance benefits. We have also significantly widened the scope of the applications which

can be accelerated through this processor by finding ways to solve some classic graph

problems such as finding maximal cliques and Hamiltonian cycle/paths in a graph, and

problems which can be reduced to those graph problems, such as the boolean satisfiabil-

ity (SAT) problem. We have outlined various strengths and weaknesses of the processor,

and describes techniques to estimate performance. These algorithmic and estimation tech-

niques are already being used by other researchers to provide solutions to a wide variety of

problems such as Brill tagging and Association Rule Mining.

This processor has been in the making for the past eight to nine years. Our research

group was the first outside the company, that the developers reached out to for application

development in 2011. Subsequently, two other academic groups joined later. The pro-

cessor was unveiled to the world in November 2013, at the Supercomputing conference.

Since then, many other researchers have joined the effort through the Center for Automata

iv



Processing.

Initially, the aim of our group was to accelerate problems in string pattern matching

from the field of bioinformatics. We started with accelerating the search for known string

patterns called motifs in protein sequences and extended it to accelerate the discovery of

unknown motifs in biological sequences, a known NP-complete problem.

While coming up with a solution for the latter, it became evident that this processor can

be used to solve various problems on unweighted graphs. However, the following trans-

formations are imperative for solving graph problems on the Automata Processor. First,

the nodes and edges in the graph must be represented using strings which can be streamed

to the co-processor. Second, the graph problem must be converted into a string-pattern

matching problem which can be evaluated using automata over the streaming data. We

developed algorithmic techniques to represent nodes and edges of any generic graph using

strings, and create efficient automata which can be used to solve a variety of graph prob-

lems including finding cliques, Hamiltonian path and cycles, connected components, and

single-source shortest paths; and other problems like boolean satisfiability which can be

reduced to graph problems. These techniques are detailed in this dissertation.

It is hoped that the the advent of this processor will galvanize the field of automata-

based applications by providing a means to support their implementation in hardware. To-

wards that end, this dissertation contributes many algorithmic techniques and automata-

design strategies which can be used to develop applications which run efficiently on this

new processor.

v



ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincerest gratitude to those who con-

tributed towards the completion of this thesis.

First and foremost, I thank my principal advisor Dr. Srinivas Aluru. His guidance,

patience and support throughout my doctoral studies has been exemplary. Without him this

dissertation would not have been possible.

I am also grateful to Dr. David A. Bader, Dr. Professor Alberto Apostolico, Dr. Profes-

sor Richard Vuduc, and Dr. Sudhakar Yalamanchili for their valuable time and suggestions.

Their varied experience and in depth knowledge has often provided guiding light and pro-

vided validation to the research that I conducted.

I will forever be indebted to my parents. Their sacrifices in getting me here are momen-

tous. I must also thank my roommates Yuzhu and Rahul for being with me through thick

and thin over the past few years. They have developed mutual respect for each other solely

on the capability of tolerating me. Besides them, I owe gratitude to my delightful labmates,

with whom I passed the best part of most days. They have made my workload considerably

lighter.

Finally, I would like to thank Paul Dlugosch, Paul Glendenning and Michael Leventhal

from Micron Technology, Inc. for various collaborations which were required to bring this

work to fruition.

vi



Contents

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II MICRON AUTOMATA PROCESSOR . . . . . . . . . . . . . . . . . . . . . 8

2.1 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Configuration Stage . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Execution Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Automata Elements . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Programming Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

III GENERATING EFFICIENT ANML-AUTOMATA . . . . . . . . . . . . . . 15

3.1 Translating classical NFAs to ANML-NFAs . . . . . . . . . . . . . . . . 15

3.1.1 Handling ε-transitions . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Removing Redundancies in ANML-NFA . . . . . . . . . . . . . . 17

3.2 Counter Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Boolean Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Group-of-Two (GoT) . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Handling Look-ahead Assertions . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Going Beyond Regular Languages . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



3.5.2 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Application Developers Notes . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Minimizing Reconfiguration Time . . . . . . . . . . . . . . . . . 30

3.6.2 Avoiding Stalls to Handle Output . . . . . . . . . . . . . . . . . . 31

3.6.3 Maximizing Resource Utilization . . . . . . . . . . . . . . . . . . 32

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

IV HIGH PERFORMANCE PATTERN MATCHING . . . . . . . . . . . . . . 34

4.1 Fast-SNAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Snort Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Protomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Estimation model . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Snort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 PROTOMATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V FINDING DE-NOVO PATTERNS IN BIOLOGICAL SEQUENCES . . . . 58

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Design of Building Blocks for Motif Search on Automata Processor . . . . 60

5.2.1 Bounded Mismatch Identification Automaton . . . . . . . . . . . 60

5.3 Overview of Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Finding Cliques in Multipartite Sequence Graph . . . . . . . . . . . . . . 63

5.4.1 Overview of the Proposed Algorithm . . . . . . . . . . . . . . . . 63

5.4.2 Pruning the Clique Search Space . . . . . . . . . . . . . . . . . . 64

5.4.3 Clique Management and Pruning the Node Search Space . . . . . 64

viii



5.4.4 Clique Finding using Automata Processor . . . . . . . . . . . . . 65

5.4.5 Automata Processor Implementation Details . . . . . . . . . . . . 67

5.4.6 qPMP solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Searching for Motifs Consistent With Cliques . . . . . . . . . . . . . . . 69

5.5.1 Arranging Candidate Motifs as Search Trees . . . . . . . . . . . . 70

5.5.2 Handling Large Search Trees . . . . . . . . . . . . . . . . . . . . 71

5.5.3 Overview of the Proposed Algorithm . . . . . . . . . . . . . . . . 72

5.5.4 Filtering candidate motifs With Less Than d Mismatches With At
Least One Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.5 Phase 2: Identifying Actual Motifs from Eligible Candidates . . . 79

5.6 Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6.1 Established run-time Features of the Automata Processor . . . . . 86

5.6.2 Execution Time for Finding n-cliques . . . . . . . . . . . . . . . 86

5.6.3 Execution Time for Motif Discovery from Cliques . . . . . . . . . 88

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VI SOLVING GRAPH PROBLEMS - I . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.1 Boolean Satisfiability (SAT) Problem . . . . . . . . . . . . . . . . 91

6.1.2 Modified Requirement Specification . . . . . . . . . . . . . . . . 93

6.1.3 Overview of Changes . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Overview of the Algorithm . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 Automata Design . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.3 Macro Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VII SOLVING GRAPH PROBLEMS - II . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Representing A Generic Graph Using Strings . . . . . . . . . . . 103

ix



7.1.2 Automata Design . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Finding Acyclic Paths in Graphs . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Overview Of The Algorithm . . . . . . . . . . . . . . . . . . . . 106

7.2.2 Basic Path Extension Edge Automaton . . . . . . . . . . . . . . . 106

7.2.3 Path Extension Edge Automata . . . . . . . . . . . . . . . . . . . 108

7.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.5 Heuristics For Pruning Search Space . . . . . . . . . . . . . . . . 112

7.2.6 Job Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.7 Estimating Speed-up . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.8 Additional Improvements . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Building Shortest Path Trees in Graphs . . . . . . . . . . . . . . . . . . . 115

7.3.1 Overview Of The Algorithm . . . . . . . . . . . . . . . . . . . . 116

7.3.2 Basic Edge Macro . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VIIICONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Scope For Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix A — BOUNDED MISMATCH COUNT AUTOMATON . . . . . . 135

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

x



List of Tables

1 Comparison of run-times from ps scan and PROTOMATA. . . . . . . . . . 55

2 Estimated and actual run-times of various stages of Motomata . . . . . . . 87

xi



List of Figures

1 Example 1: State-diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Example 1: Equivalent ANML NFA . . . . . . . . . . . . . . . . . . . . . 11

3 Hierarchical layout of processing elements in an AP chip . . . . . . . . . . 13

4 Example 1: Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Example 2: State-diagram with ε-transitions . . . . . . . . . . . . . . . . . 17

6 Example 2: Equivalent ANML-NFA . . . . . . . . . . . . . . . . . . . . . 17

7 Example 3: ANML-NFA with all-input-start STE . . . . . . . . . . . . . . 18

8 Example 1: Optimized ANML-NFA . . . . . . . . . . . . . . . . . . . . . 19

9 ANML-NFA without any counter-element to accept exactly 50 repetitions . 20

10 ANML-NFA with counter-element to accept exactly 50 repetitions . . . . . 21

11 ANML-NFA to accept repetitions above a minimum threshold . . . . . . . 22

12 ANML-NFA to accept repetitions within a range . . . . . . . . . . . . . . 23

13 Group of Two (GoT) STEs. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

14 Latched-STE using a GoT . . . . . . . . . . . . . . . . . . . . . . . . . . 24

15 Using the select and enable lines of the GoT . . . . . . . . . . . . . . . . . 25

16 Handling look-ahead assertions using a boolean AND element. . . . . . . . 26

17 Difference beteen ANML and PCRE lookaheads . . . . . . . . . . . . . . 27

18 Expressing non-regular languages using ANML: Example 1 . . . . . . . . 28

19 Expressing non-regular languages using ANML: Example 2 . . . . . . . . 29

20 Using a GoT to regulate output generation. . . . . . . . . . . . . . . . . . . 32

21 ANML-NFA for a SNORT rule with 3 lookaheads . . . . . . . . . . . . . . 41

22 Occurrence of the PROSITE motif . . . . . . . . . . . . . . . . . . . . . . 45

23 The Enable macro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

24 The Locate-occurrence automaton. . . . . . . . . . . . . . . . . . . . . . . 50

25 The Global-match automaton. . . . . . . . . . . . . . . . . . . . . . . . . 51

26 The Bounded Mismatch Identification automaton . . . . . . . . . . . . . . 60

27 Shorthand representations of the (l,d) match automaton . . . . . . . . . . . 61

xii



28 Automaton to check if node is a neighbor of every bucket. . . . . . . . . . 68

29 Automata to identify neighboring cliques of a node. . . . . . . . . . . . . . 69

30 Search tree for S = actgtc with up to one mismatch. . . . . . . . . . . . . . 70

31 Search tree partitioned into multiple layers . . . . . . . . . . . . . . . . . . 72

32 Unique subtrees in each layer of the search tree. . . . . . . . . . . . . . . . 73

33 Local Mismatch Matrix and Global Mismatch Matrix . . . . . . . . . . . . 75

34 Reduction of boolean SAT problem to a graph problem . . . . . . . . . . . 92

35 Clique-automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

36 Clique macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

37 String labels of nodes and edges in a graph. . . . . . . . . . . . . . . . . . 103

38 Finding Hamiltonian paths starting at node 0. . . . . . . . . . . . . . . . . 107

39 Basic Path Extension Edge Automaton . . . . . . . . . . . . . . . . . . . . 107

40 Basic edge macro for extending acyclic paths. . . . . . . . . . . . . . . . . 109

41 Path extension multiple edge macro. . . . . . . . . . . . . . . . . . . . . . 110

42 Extended path extension multiple edge macro . . . . . . . . . . . . . . . . 114

43 Basic tree extension edge macro . . . . . . . . . . . . . . . . . . . . . . . 117

44 Alternate basic tree extension edge macro . . . . . . . . . . . . . . . . . . 124

45 Tree extension multiple edge macro . . . . . . . . . . . . . . . . . . . . . 125

46 Alternate tree extension multiple edge macro . . . . . . . . . . . . . . . . 126

47 Modified tree extension multiple edge macro . . . . . . . . . . . . . . . . 126

48 Finding all connected components in a graph. . . . . . . . . . . . . . . . . 127

49 Bounded Mismatch Count Automaton . . . . . . . . . . . . . . . . . . . . 136

xiii



SUMMARY

Our research is the first in-depth study in the use of the Micron Automata Pro-

cessor, a novel re-configurable streaming co-processor which is designed to execute thou-

sands of Non-deterministic Finite Automata (NFA) in parallel. By design, this processor

is well-suited to accelerate applications which need to find all occurrences of thousands

of complex string-patterns in the input data. We have validated this by implementing two

such applications, one from the domain of network security and the other from the domain

of bioinformatics. Both these applications are significantly faster than their state-of-art

counterparts based on existing accelerators. Our research has also widened the scope of

the applications that can be handled using this processor by designing algorithms to solve

graph problems. In order to make this possible, we developed fundamental techniques

to represent nodes and edges in the graph using strings, and convert the graph problem

into a string-pattern matching problem. Subsequently, we created efficient automata which

identify the patterns representing output graph structures like maximal-cliques, connected

components, Hamiltonian paths, Hamiltonian cycles, etc. These techniques have been used

in applications such as discovery of new motifs in biological sequences, and solving chal-

lenging instances of the boolean satisfiability problem. These applications and algorithms

have not only guided other developers who joined the program later, but also yielded valu-

able feedback and design-inputs for the next generation of the chip which is currently in the

design phase. We hope that this work paves the way for the early adoption of this upcoming

architecture and continues to aid in the development of efficient solutions to some of the

problems which are currently computationally challenging.

xiv



Chapter I

INTRODUCTION

The capability to perform complex and numerous pattern-matching operations in parallel

is commonly found in nature. For example, it lies at the basis of natural language process-

ing, object recognition and analytical skills required to compose and understand the text

and diagrams in this document. Even insects and animals use pattern-matching subcon-

sciously to search for food, hunt, identify threats etc. However, our current computers are

not adept at this kind of computing. This is partially because of the rarity of processors

based on the Multiple Instruction Single Data (MISD) architecture, necessary to perform

multiple pattern matching operations on a single input data in parallel. In fact, barring the

systolic arrays, whose classification as MISD is questionable, there are no known commer-

cially available processors for this basic classification of processors described in Flynn’s

taxonomy [30].

The most challenging part of building high performance MISD machines is to provide

routing capability to stream the same data to thousands of processing units operating in par-

allel. Hardware implementations have been proposed since 1982 [29]. However, not much

has come to fruition till date. Most recent efforts [75, 11, 54, 74, 72] concentrate on the

utilization of high-performance reconfigurable Field-Programmable Gate Array (FPGA)

processors to implement parallel pattern-recognition engines in hardware. However limita-

tions still remain in these implementations. In [25], the authors have provided an extensive

review of the related literature and categorized these limitations on ten key criteria, the

most important of which being space and power efficiency.

However, some very interesting developments have been reported recently. IBM in-

troduced its SyNAPSE chip [40] in 2014 whose processing units are highly connected

1



‘brain-like’ neurons. The most recent chip has one million such neurons. Similarly,

Hewlett Packard announced that they would release a device in 2017, grandly named The

Machine [38], which uses memristors to unify memory and compute operations. With

large scale interconnectivity within these memristors, they hope to perform large scale

graph pattern-matching operations at high speeds. DNA-computers [49] employ biological

molecules as processing units which interact with other molecules swimming around in the

same chemical solution. Because, even a small volume of solution contains an extremely

large number of biological molecules, it is expected that the right sequence of interactions

will be carried out in at least a few instances. The idea is to use an exponential number of

processing elements to compute an exponential number of operations in polynomial time.

This method can be used to solve very complex problems such as finding the Hamiltonian

path in a graph [6].

Another idea proposed since the 1990s has been the implementation of processing in

memory [47]. Although, this idea has promise, all attempts to manufacture such a chip

failed in the 1990s. This is partially attributed to the manufacturing technology at the time

which limited the amount of circuitry that could be fitted inside a single chip. Since then,

the capacity of memory chips have grown exponentially based on Moore’s law, but the

growing disparity of speeds between the CPU and the memory has also led to the so-called

memory-wall. Therefore, memory manufacturers are having a re-look at this technology.

In this dissertation, we will look at one such attempt by Micron Technology, Inc. Chris-

tened the Automata Processor (AP) [25], it has been in the works for close to a decade

now. For the majority of this duration, the project was shrouded in secrecy. In 2011, our

research group was the first group outside Micron, whom the developers talked to about

the technology. The goal of the ensuing collaboration was to find innovative solutions to

accelerate a wide variety of applications using this chip.

Subsequently, in the November of 2013, the chip was unveiled to the rest of the world

during the Supercomputing conference at Denver, Colorado. Since then, many research

2



groups have joined this effort and the chip production has reached advanced stages. Some

initial batches have already been manufactured and tested within the company premises. It

is expected that the chip will become available in the market in late 2015.

The AP chip is a reconfigurable co-processor which is designed to compute thousands

of Non-deterministic Finite Automata (NFA) in parallel on a single input data stream. It

uses Dynamic Random Access Memory (DRAM) technology to provide the underlying

MISD architecture. As this chip is specialized to carry out only string-pattern recognition

operations, it is both space and power-efficient. Besides, it is much easier to program for

these specific operations than a general-purpose FPGA.

However, although the programming environment is very simple, coming up with effi-

cient algorithms and automata for this processor may need ingenuity and innovation on be-

half of programmers who are trained on traditional processing platforms. The AP provides

new operations and new avenues of parallelism to exploit, while curtailing the capability to

execute others. This might require take some time and learning to get used to.

This research was the first attempt to understand these concepts and establish some ba-

sic ground rules for the design algorithmic techniques and automata for the AP. It is hoped

that this will aid developers in future to master this technology quickly and create solutions

for problems which are challenging to solve using existing processor technologies.

In our endeavour, we progressively tackled harder and harder problems. We started with

accelerating pattern-matching applications for which the use of the chip follows naturally,

i.e. applications that need to find all occurrences of thousands of complex string-patterns

in an input string. We graduated to handling various classical problems in unweighted

graphs, for which the solutions were not intuitive. Along the way, we devised techniques

to optimize the automata in terms of size, as well as execution time, by overcoming critical

performance and routing bottlenecks.

Besides these, we developed assessment techniques to accurately estimate the run-times

of applications, by taking into account the overheads of various steps in different stages in

3



the execution pipeline. By analysing the run-times of various parts of the applications

using these techniques, we could provide critical feedback to the developers of the chip to

make various refinements. Some of these refinements have already made their way into the

current generation of the chip, while others will be incorporated in the next generation of

the chip, which is currently in the design phase.

The rest of this dissertation is organized as follows. In Chapter 2, we have described

the AP hardware from an application developer’s perspective. Although limited, this de-

scription is succinctly captures the prominent features of the chip required to understand

the algorithm designs in the rest of the document. Readers who are interested to know more

about the architectural features of the hardware are directed to the online portal [5] and the

following research paper [25].

In Chapter 3, simple ways to convert NFAs expressed as classical state-diagrams to

ANML-NFA is described. ANML (pronounced as animal) stands for Automata Network

Markup Language which is used to define automata for the AP. We have also outlined

various optimization strategies for ANML-NFA. This may be useful to automata theory

experts to convert existing automata designs to ANML-NFA. The goal is to galvanize the

huge body of work which currently lies dormant for want of a suitable hardware.

Next, we delve into an intuitive use of the AP to accelerate applications which search for

all occurrences of thousands of complex string-patterns in input data-streams. We chose

two applications, one from the network security domain and the other from the field of

bioinfomatics. The first application is called Fast-SNAP (for Fast-SNort using AP) and

searches for all occurrences of over 4394 signatures of network intrusion in network data.

These signatures have been obtained from the Snort [61] database. Using the resources on

a single AP board, Fast-SNAP is estimated to support deep packet inspection of network

data packets using all these signatures from the Snort database at 8− 11 Gbps. This is at

least an order of magnitude faster than other applications using GPUs and FPGAs.

The second application is called PROTOMATA (for PROTein autOMATA) and looks

4



for all occurrences of 1308 protein motifs in protein sequences. These motifs have been

downloaded from the PROSITE [66] database. Depending on the size of the input data and

search settings, PROTOMATA can be about half a million times faster than its single-CPU-

based counterpart. The above two applications are described in Chapter 4, and can serve

as model implementations for other similar applications. Most of the automata parts are

designed as modular macros which can be imported as is into future applications or with

few minor modifications.

Once PROTOMATA was developed, which looks for occurrences of known motifs in

the input data, the next logical step was to use the AP to accelerate the search for new

unknown motifs. This second problem is significantly more difficult. In fact, the search

for one of the simplest kinds of motifs called (l,d)-motifs is known to be NP-complete.

The computational problem was first formulated by Pevzner in the year 2000 [57] and is

called the planted motif search problem. Both exact and approximate solutions to this

problem exist. Approximate algorithms are significantly faster, but they sometimes miss

out on subtle motifs which are biologically important. Although exact algorithms to find

all motifs exist, they take exponential time.

One of the ways to find these motifs is to reduce the problem to finding maximal cliques

in an n-partitioned graph. A clique is a sub-graph wherein any two nodes are connected to

each other. In an n-partitioned graph, the nodes are divide into n disjoint partitions, and no

two nodes from the same partition are connected to one another. Therefore, the size of a

maximal clique in a n-partitioned graph is at most n.

One aspect of this transformed graph problem was that the nodes in the graph represent

strings, and the edges between them represented a bounded number of mismatches between

these strings. We started with developing an automaton to count the number of mismatches

between any two strings, by programming the first string as an automaton and streaming

the other string to see which accept state the automaton reached. This automaton was

then extended to a clique-finding automaton. The automaton was designed in such way

5



that its structure was agnostic of the input string with which it was designed. Multiple

instances of such an automaton can be compiled and loaded quickly, once the input strings

are provided. The complete application called MOTOMATA (for MOtif auTOMATA) is

described in Chapter 5.

Developing MOTOMATA gave us a critical insight into solving graph problems us-

ing the AP. If graph nodes represent strings and edges represent a relation between those

strings, then automata can be developed to check these properties in parallel leading to

significant speed-up. This led us to developing solutions for other graph problems using

generic graphs.

We designed a strategy to assign string labels to nodes in a generic graph, and define

a relationship between those labels to signify the existence of an edge. The label of nodes

which are connected by an edge exhibit this relationship, otherwise not. Some graph prob-

lems can be described as string-pattern-matching problems in this transformed notation.

Automata designed to check for these relationships can then be executed in parallel in the

AP to provide speed-up. We used this technique to solve various graph problems.

For example, the boolean satisfiability (SAT) problem checks whether there is some

assignment of values T RUE and FALSE to the variables of a boolean formula, such that

the formula evaluates to T RUE. This is a well-known NP-complete problem which can

also be reduced to finding cliques of size n in an n-partitioned graph. We have already

solved this problem in MOTOMATA. However, the characteristics of the input in the SAT

problem is different from those of the input in MOTOMATA, lending the former to be

non-viable solution as a SAT solver. Therefore, we had to come up with a new solution as

described in Chapter 6.

In the planted motif search problem and the boolean SAT problem, the input itself is not

a graph, but the algorithm converts it into one by representing different parts of the input

as nodes in a graph. The edges between the nodes are not present in the input either, but a

condition for the existence of an edge is provided. The objective of the algorithms is to find

6



a set of nodes which satisfy the connectivity constraint of a certain output graph structure,

i.e. cliques of a certain size. Therefore, the primary goal of the automata is to check for the

existence of all edges that are required to satisfy this connectivity constraint.

However in many other graph problems, all the nodes and edges are already listed in the

input. Therefore, checking for the existence of edges is not the computational challenge.

Instead, the problem is to arrange nodes and edges in the input graph into output graph

structures such as search trees and acyclic paths. Besides, the graphs in the previous two

problems where specialized i.e. the nodes were distributed into n-partitions. This is not the

case with problems on generic graphs.

In Chapter 7, we describe methods to transform any input graph into a string notation

which can be handled on the AP. Further, we define automata to use this string notation

to identify the placement of the nodes and edges into the output structures for applications

such as finding single-source shortest paths, connected components, and Hamiltonian paths

and cycles in the graph. Some of these methods are estimated to be significantly faster

than state-of-art implementations on other platforms, while others serve in demonstrating

fundamental algorithmic techniques for future research.

In future, these methods may be improved to provide better performance or support a

wider variety of graph problems, e.g. problems involving weighted graphs. Also, there

is significant potential for research into exploring streaming solutions for graph problems

using a single compute node connected to one or more AP(s), a fast flash-based I/O, and

a large main-memory bank. Not only can such a system reduce the demands on cost,

power and space, but may also provide efficient solutions to the large graph problems where

exploiting data-locality may be difficult.

We have come a long way, starting with basic string-pattern matching applications to

accelerating classic NP-hard graph problems. Some of the methods and techniques devel-

oped during this research have already started to aid other researchers to provide innovative

solutions [73, 78] using the AP. It is hoped that this trend will continue into the future.

7



Chapter II

MICRON AUTOMATA PROCESSOR

The Automata Processor is one of the very few, if not the only processor based on the

MISD architecture. The implementation of this architecture is done by using the Dynamic

Random Access Memory (DRAM) technology. In a DRAM chip, a memory address and

operation can be broadcast on every clock cycle to every memory cell in the chip using a

system-wide bus. In AP, the memory-cells are replaced by processing elements and instead

of a memory address and operation, one byte from the input data stream is broadcast in

every clock cycle. A programmable routing network is used to connect the processing

elements to one other. Through this routing network, elements activate each other in every

clock cycle. Finally, an output handling unit is added to report whenever the occurrence of

a pattern is detected.

The software required for programming the AP is available from an online develop-

ers portal [5]. A Software Development Kit (SDK) can be downloaded which describes

methods to define and compile the automata and load the same into an AP. The SDK also

provides run-time environment to handle all run-time operations.

Although, the chip is still not available, the SDK provides provides limited capability

to simulate the execution of small automata inside the AP chip using a command-line in-

terface. If a visual interface is desired, a work-bench can be downloaded to create, edit and

simulate ANML-NFA through a graphical user interface. and visualize their execution over

test data streams.

2.1 Programming Model

Executing programs on the AP involves two stages, namely the configuration stage and the

execution stage. In the configuration stage, the user-defined automata are programmed into

8



the AP; and in the execution stage, these automata are executed in parallel on streaming

data. If an automaton reaches its accept state, an output is created along with the offset in

the stream where the event occurred.

2.1.1 Configuration Stage

The configuration stage can be further broken down into the compilation and loading steps.

In the compilation step, the user-defined automata are converted into machine-loadable

images using the AP compiler which comes with the SDK. This step involves executing

complex place-and-route algorithms which may take considerable time based on the input

automata. On the other hand, loading images into the AP board is extremely fast. For

example, the entire AP board can be loaded with new automata in about 50 milliseconds.

According to well-known theory, finite automata and regular expression (regex) are

equivalent, i.e. any finite automata can be represented as a regex, and vice-versa. The AP

compiler also accepts regex defined in PCRE. In this case, the compiler internally converts

them into their equivalent automata and then creates the loadable image from the same.

2.1.2 Execution Stage

During the execution stage, all the data strings to be checked are organized into a data flow.

The host application running on the CPU uses the run-time environment to stream the data

flow to the AP. On the AP, one byte from the data flow is broadcast to all the processing

elements in every clock cycle. Henceforth, the data byte is called a symbol and the clock

cycle is called a symbol-cycle. 128 million symbols can be processed per second, giving

rise to a processing rate of 1 Gbps.

At the beginning of the first symbol-cycle, only the processing elements marked as

start-elements are active. Each start-element processes the first symbol in the data flow. If

a match occurs, then the start element activates all elements connected to its outgoing lines.

All elements which are activated in the current symbol-cycle, process the next symbol from

the data flow in the next symbol-cycle, and the process continues.

9



If an element is programmed as a reporting element, then on a match, an output event

is generated, wherein an output vector is recorded in an output buffer. The execution con-

tinues from the next symbol-cycle as long as there are symbols left in the data flow and at

least one processing element is active.

Asynchronously, the run-time environment reads the output vector from the output

buffer to the main memory, decodes it and presents the host application with the id(s)

of the reporting element(s) which generated the output and the offset in the data flow where

the output event occurred. In case, the input patterns were defined as regexes, id(s) of the

matched regex(es) are returned instead of the id(s) of the reporting element(s).

2.1.3 Automata Elements

The PCRE syntax is well known to the programming community. However, the ANML

language is new. Therefore, we briefly introduce it here.

The processing elements in ANML are very similar to the classical state-diagram repre-

sentation. In a state-diagram, the states are depicted using circles and transitions between

the states are drawn as directed edges. A state is identified using state-labels, which are

placed inside the circle. In our examples, we have chosen integers to represent state-labels.

Similarly, each edge is accompanied by an edge-label which appears above the arrow de-

picting the edge. The edge-label could be a symbol, or a set of symbols on which the

transition occurs. Such a set is called a character-class. A start state is depicted using

a short incoming arrow (with no source), and an accept state is shown by marking the

boundary of the circle with double lines.

In the beginning, only the start state is active. The symbols of the search string are

processed one by one. If a state is active and the symbol to be processed is present in the

edge-label of any of its outgoing edge, then the state at the end of that edge is made active

for the next symbol. The process continues till either all the states are inactive or one of

the accept states becomes active. In the latter case, the string is accepted by the automaton.

10



Thus, traversing the state-diagram from a start state to an accept state while concatenating

the edge labels on the way defines a string accepted by the automaton.

The set of all the strings accepted by an automaton is called its language, and the set of

all the symbols appearing in these strings is called its alphabet. For example, the automaton

whose state-diagram is shown in Figure 1 accepts the string bb while traversing the states

1,2 and 5. Its language is {aab,bab,bb}, and its alphabet is {a,b}. The alphabet of all the

automata discussed throughout the rest of this chapter is {a,b}.

a

ba
b

a

b

1

3

2

4

5

Figure 1: State-diagram of automaton to accept strings from the language {aab, bab, bb}.

In ANML, an edge transition is programmed as a State Transition Element (STE). An

STE is represented using a circle with the edge-label placed inside it. States in the clas-

sical NFA are captured using connections between the STEs. Each STE representing an

incoming edge into a state is connected to all STEs representing the outgoing edges of that

state. Every STE representing an outgoing edge of the start state is marked as a start STE.

A start STE is represented by a circle with a triangle attached to the top. Similarly, STEs

representing incoming edges into an accept state are marked as reporting STEs. The bound-

ary of a reporting STE is marked with double lines. The schematic representation of the

ANML-NFA equivalent to the state-diagram shown in Figure 1, is presented in Figure 2.

b

aa

b

a b

Figure 2: Equivalent ANML-NFA for classical NFA shown in Figure 1.

11



The processing of a search string by the ANML-NFA can be described as follows. The

symbols are processed one by one, one symbol per symbol-cycle. The start STE(s) are

active on the first symbol-cycle. During a symbol-cycle, active STEs check the symbol

against its label, and if a match occurs, activates all STEs on its outgoing edges. If a

reporting STE is matched, then the string is accepted by the ANML-NFA and an output is

generated.

Besides STEs, ANML-NFA can contain special processing elements called counter

elements and boolean elements. These elements do not process any symbol from the data

stream. Neither do they consume a symbol-cycle to complete their processing.

A counter-element is activated when STEs connected to its input line are matched in a

symbol-cycle. On being activated, the counter increments the value stored in an internal

count register by one. If the count value reaches a value stored in a target register, then

the processing elements connected to its output line are activated for the next symbol-

cycle. The target value is a 12-bit number and up to four counter elements can be cascaded

together to provide a 48-bit counter.

Boolean elements can be used to emulate multiple input AND, OR, NOT, NAND, NOR,

sum-of-product and product-of-sum gates. If the incoming lines of a boolean element are

simultaneously activated in such a way that the boolean logic is satisfied, then the STEs

connected to the outgoing lines are activated for the next symbol-cycle. Due to timing

restrictions, a boolean element cannot be connected to another boolean element, and a

counter element can only be connected to its input line.

These elements can be used for the compaction of automata, as well as defining au-

tomata which represent languages which are not regular. This has been discussed in detail

in the next chapter.

12



2.2 Programming Resources

A single AP chip contains 49,152 STEs, 768 counter elements, and 2,304 boolean elements

arranged hierarchically into rows, blocks, and half-cores. The physical routing capability

reduces as we move up the hierarchy. All 16 STEs within a single row can be connected

to each other and to the boolean or counter element in the row. Every fourth row contains

a counter element and the other three rows contain a boolean element each. However,

elements from different rows need to be connected using block routing lines, 24 of which

are shared by the 16 rows in a block. The connectivity between STEs from 96 blocks in

a half-core is even more limited and is therefore avoided in our automata designs. STEs

from different half-cores cannot be connected to each other, thus setting the upper limit on

the size of an automaton to be the size of a half-core. The hierarchical layout of processing

elements in an AP chip is shown in Figure 3.

Figure 3: Hierarchical layout of processing elements in an AP chip.

However, an AP chip does not interface with the host-processor directly. Multiple AP

13



chips are arranged into an Automata Processor board (AP board) which is then connected

to the host-processor. Currently, development AP boards come in three form factors.

The smallest AP board contains two AP chips and connects to the host-processor over

the Universal Serial Bus (USB) interface. The two AP chips are organized into a single

rank. The rank contains a high-speed intra-rank bus which allows two separate data flows

to be streamed to the two AP chips in parallel, or a common data flow to be broadcast

to both the AP chips. In the latter case, the two AP chips are said to constitute a logical

core. This provides the flexibility of either having a higher processing rate of 2 Gbps or the

capability to search for a larger number of patterns against a single data flow at 1 Gbps.

The second AP board contains 32 AP chips and is connected with the host-processor

using a high-speed Peripheral Component Interconnect Express (PCIe) interface. The chips

are organized into 4 ranks containing 8 chips each. Similar to the previous example, all the

chips in the single rank can be organized into a single logical core or into multiple logical

cores of 1, 2, 4 or 8 chips. This is also done to provide flexibility. If a large number of

patterns need to be programmed, and they do not fit inside a single AP chip, then a logical

core with up to 8 AP chips within a rank can be used. However, in this case, the data

processing rate falls to 1 Gbps for the entire rank. On the other hand, if all the patterns can

be fit inside a single chip, then they can be replicated on all 8 chips on the rank 8 different

streams can be processed in parallel giving a processing rate of 8 Gbps. Using the 4 ranks

on the board, a large number of patterns can be handled at a cumulative processing rate

of between 1 Gbps(one logical core in a single rank) and 32 Gbps (eight logical cores per

rank).

The third AP board is the largest of the three and contains 48 AP chips organized into

6 ranks. It is also connected to the host-processor using a PCIe interface. Cumulatively,

this AP board contains 2,359,296 STEs, 36,864 counter elements and 110,592 boolean

elements. This is sufficient to accommodate thousands of patterns at the same time as we

shall see in the next two chapters.

14



Chapter III

GENERATING EFFICIENT ANML-AUTOMATA

Having understood the processing elements in the AP, let us now look at how to convert

a classical NFA expressed as a state-diagram to an ANML-NFA, i.e. an NFA defined in

ANML. A simple method to do this was introduced in the previous chapter. This method

can be extended to handle state-diagrams with even ε-transitions. The ANML-NFA derived

in this way may be optimized further, which we shall see in this chapter.

Firstly, the difference in representation brings about redundancies in the ANML-NFA.

For example, even if the starting state-diagram is optimal, the resultant ANML-NFA may

not be so. We need to identify these redundancies and remove the same.

Secondly, The counter and boolean elements have no equivalents in the classical state-

diagram representation. This not only provides means to compress the ANML-NFA further,

but also allows the expression of languages which are richer than the regular languages

represented by classical regular expressions and NFAs.

Finally, the AP architecture has its own set of characteristics like different run-times for

different operations, hardware bottlenecks, and hierarchical organizations. These charac-

teristics place some restrictions on design of efficient ANML-NFA. We will conclude this

chapter with general guidelines to design automata in adherence to the above characteristics

and avoid performance bottlenecks.

3.1 Translating classical NFAs to ANML-NFAs

Let us revisit the simple automaton and translation technique discussed in the previous

chapter. The classical and ANML representations have been reproduced in Figure 4. Each

state-transition (edge) in the state-diagram is represented using an STE in the ANML-

NFA. The label of the edge is programmed as the label of the STE, and shown inside the

15



circle representing the STE. States in the state-diagram are captured using the connections

between the STEs. Each STE representing an incoming edge into a state is connected to all

STEs representing the outgoing edges of that state. Every STE representing an outgoing

edge of the start state is marked as a start-STE. Similarly, STEs representing incoming

edges into an accept state are marked as reporting STEs. The start-STEs are delineated

with a triangle at the top of the STE and perimeter of reporting STEs are demarcated using

double lines.

a

ba
b

a

b

1

3

2

4

5

(a)

b

aa

b

a b

(b)

Figure 4: Classical and ANML representation of automaton to accept strings over the al-

phabet {a,b} and from the language {aab, bab, bb}.

3.1.1 Handling ε-transitions

In a classical NFA, an ε-transition is defined as a spontaneous transition from one state to

another without consuming any symbol from the input string. An ε-transition is depicted

in a state-diagram by an edge with the ε label. For example, in Figure 5, transitions from

state 1 to state 2 and state 2 to state 4 are ε-transitions.

Handling ε-transitions out of a start state was introduced in [25]. Here, we define a

general technique to handle any ε-transition using the concept of ε-closure. The ε-closure

of a state is defined as the set of states, containing itself and all the other states in the NFA

which can be reached from that state by following only ε-transitions. For example, the

ε-closure of state 1, depicted as ϒ(1), is {1,2}. Similarly, ϒ(2) = {2} and ϒ(4) = {4,5}.

16



a

b

b

a

2

3

1 4

5

Figure 5: State-diagram of an automaton with ε-transitions.

Our technique to convert classical NFA to ANML-NFA can be extended to handle ε-

transitions as follows. First, the ε-closure of every state is computed. Then, each STE

representing an incoming edge into a state u should be connected to all STEs representing

outgoing edges of a state v, where v ∈ ϒ(u). If u is a start state, then all the STEs repre-

senting outgoing edges of v are marked as start STEs, ∀v ∈ ϒ(u). Similarly, if ∃v ∈ ϒ(u),

where v is an accept state, then all the STEs representing incoming edges of u are marked

as reporting STEs. The equivalent ANML-NFA to the state diagram shown in Figure 5, is

shown in Figure 6.

baa b

Figure 6: Equivalent ANML-NFA of for classical NFA shown in Figure 5.

3.1.2 Removing Redundancies in ANML-NFA

3.1.2.1 All-input-start STE

The start STE discussed until now is active only during the first symbol of the string. It

is called start-of-data STE. However, the architecture allows a start STE to be configured

as an all-input-start STE, which is active on every symbol of the input string. Schemati-

cally, such a start-state is depicted using a solid triangle. For example, ST E1 and ST E2 in

Figure 7b represent all-input-start STEs.

All-input-start STEs can be used to minimize the ANML-NFA by identifying STEs

which are active in every symbol-cycle. Consider the ANML-NFA shown in Figure 7a.

17



First, identify every start-of-data STE which has a loop to itself and whose label contains

all the symbols in the alphabet (represented by ∗). Such an STE is active on every symbol-

cycle, and is therefore converted to an all-input-start STE. Next, consider all the start-

of-data STEs connected to the outgoing edges of these all-input-start STEs. These STEs

are also active on every symbol-cycle and are converted to all-input-start STEs. If any of

these new all-input-start STEs also have the label ∗, then the process continues in iterations

until no new all-input-start STEs are found. AS a final step, all the incoming edges into

any all-input-start STE are removed, as they are redundant. The optimized ANML-NFA

corresponding to the one shown in Figure 7a, is shown in Figure 7b.

a b

b

STE5

b

STE4

STE2STE1 STE3

(a)

a b

b

STE5

b

STE4

STE2 STE3STE1

(b)

Figure 7: Modifying ANML-NFA using all-input-start STE.

3.1.2.2 Minimizing the Number of STEs

The automaton shown in Figure 1 cannot be represented by any state-diagram having less

than six edges. However, its equivalent ANML-NFA, shown in Figure 8a, containing six

STEs is not optimal! The optimal ANML-NFA contains four STEs as shown in Figure 8c.

Amazingly, there is no way to translate the four STEs in this ANML-NFA into a classical

state-diagram with four edges. This is because two of the STEs in the optimal ANML-NFA

represent two edges each in the classical automaton.

The following steps may be used to identify and remove redundant STEs in an ANML-

NFA:

18



b

aa

b

a b

(a) Original

b

aa

b

a

(b) Intermediate

b

a

b

a

(c) Optimized

Figure 8: Optimizing ANML-NFA to accept the words from the language {aab, bab, bb}.

1. Identify all non-reporting STEs with no outgoing edges to any other STE. Such an

STE cannot reach any reporting STE and should be removed along with all its in-

coming edges.

2. Any remaining STEs with no outgoing edges to other STEs must be reporting STEs.

Merge all such STEs with the same label into a single reporting STE. For example,

both the reporting STEs in Figure 2 can be merged into a single reporting STE as

shown in Figure 8b.

3. Starting at a reporting STE, traverse backwards (following incoming edges in the

reverse direction) in a breadth first fashion. For any STE, if two or more incoming

edges originate from STEs with the same label, that do not have any other outgoing

edges, then these edges should be merged along with the originating STEs. For

example, in Figure 8c, the two STEs with label a connected to the reporting STE are

merged into a single STE.

4. Repeat the above step for all reporting STEs with no outgoing edges.

It is important to remember that an all-input-start STE is different from a start-of-data

STE and therefore can not be merged even if they have same label and satisfy all the other

conditions mentioned in the steps above.

19



3.2 Counter Elements

A counter element can be used to generate compact automata whenever a pattern con-

tains a repeating sub-pattern. For example, the ANML-NFA shown in Figure 9 checks for

substrings wherein the sub-pattern ab repeats 50 times consecutively followed by the sub-

pattern aa, i.e. substrings accepted by the regular expression (ab){50}aa. The equivalent

ANML-NFA using a counter element is shown in Figure 10.

aa

STE1 STE2 STE3 STE4 STE99 STE100 STE102

babab a

STE101

Figure 9: ANML-NFA to identify substrings accepted by the regular expression (ab)

{50}aa.

A counter element contains a programmable 12-bit target-value, two input lines namely

count-line and reset-line, and an outgoing-line. The outgoing-line can be configured to

generate a pulsed or latched output. In our diagrams, a counter element is represented

as a rectangle. The target-value is shown in a solid rectangle inside this rectangle. The

count-line and the reset-line are shown as triangles on the left boundary, inscribed with the

characters C and R respectively. The outgoing-line on the right is accompanied with the$

symbol or the  symbol to denote the pulsed-output or the latched-output respectively.

The counter element functions as follows. The programmer sets the target-value for

the counter based on the automata design. The counter element contains a counter-value

(not shown in the ANML-NFA) which stores the current value of the counter at run-time.

At the beginning of execution, the counter-value is set to 0. If during a symbol-cycle, the

count-line is activated, then the counter-value is incremented by 1. However, if the reset-

line is activated, then the counter-value is reset to 0. If none of the input lines are activated,

then the counter-value remains unaltered. When the counter-value equals the target-value,

the counter element activates its outgoing-line. If the counter element is programmed to

20



Rb

ba

a

STE1 STE2

STE4

C

50

STE3

STE6

aa

STE5

Figure 10: Using a counter element with pulsed-output to identify substrings matching the

regular expression (ab){50}aa.

generate a pulsed-output, the outgoing-line is activated only for the next symbol-cycle.

However, if it is programmed to generate a latched-output, the outgoing-line is activated

until either the counter element is reset or the end of the data-flow is encountered.

The ANML-NFA shown in Figure 10 searches for substrings which are accepted by the

regular expression (ab){50}aa. The occurrence of the pattern ab in the string increases the

count-value by one by activating the count-line. However, the occurrence of the patterns aa

or bb results in the count-value being reset to 0 by activating the reset-line. Therefore, only

when the pattern ab occurs 50 times consecutively, the counter-value reaches the target-

value and the outgoing-line is activated.

Since the counter element is programmed to generate a pulsed-output, ST E5 attached to

its outgoing-line is activated only for the next symbol cycle. This means ST E6 reports only

if the pattern aa follows exactly 50 consecutive repetitions of the pattern ab, and no more. If

it is desired that the pattern aa occurs after at least 50 consecutive repetitions of the pattern

ab, then the counter can be programmed with a latched-output as shown in Figure 11. In this

case, ST E5 is activated as long as the pattern ab continues to repeat consecutively beyond

the 50th reiteration, i.e. the counter is not reset. Hence, this automaton finds substrings

which match the regular expression (ab){50,}aa.

If both lower and upper bounds are desired on the number of repetitions, then two

21



Rb

ba

a

STE1 STE2

STE4

STE6

aC

50

STE3

a

STE5

Figure 11: Using a counter element with latched-output to identify substrings matching the

regular expression (ab){50,}aa.

counter elements can be used as shown in Figure 12. The counter element CT R1 takes

care of the lower bound (of 50), whereas CT R2 manages the upper bound (of 100). CT R1

activates ST E5 on every symbol-cycle after the 50th consecutive repetition of the pattern

ab is found. However, the output of CT R2 resets CT R1 as soon as the 100th consecutive

repetition is encountered, and continues to do so until both CT R1 and CT R2 are reset or

the end of the data-flow. Hence, this ANML-NFA reports substrings which are matched by

the regular expression (ab){50,100}aa.

In all the above examples, only back-to-back repetitions allow the counter-value to be

incremented to the target-value. However, the counter-elements themselves do not place

any such restrictions. For example, if the counter element in Figure 11 is never reset, then

ST E6 would report every occurrence of the pattern aa after 50 occurrences of the pattern

ab have been found. In Section 3.4, we discuss some interesting uses of such a capability.

Similar to an STE, any counter element can also be programmed to be a reporting

element. Additionally, it is redundant to have more than one STE with the same label

connected to the same input line of a counter-element. Therefore, the methods described in

Section 3.1.2.2 to remove all redundant STEs starting with reporting STEs with the same

label can also be applied to remove the redundancy in this case.

22



C

Rb

ba

a

STE1 STE2

STE4

50

STE3

C

R
100

CTR1

CTR2

STE6

aa

STE5

Figure 12: Using two counter elements to identify substrings matching the regular expres-

sion (ab){50,100}aa.

3.3 Boolean Elements

3.3.1 Group-of-Two (GoT)

All STEs in the AP are physically organized in Group of Twos (GoTs) which share an

OR gate and a 3-input multiplexer with a programmable select signal. A GoT is shown in

Figure 13 along with all its routing lines. The programmable routing lines are depicted by

solid lines.

STE1

STE2

GoT
OUTPUT

MUX
SELECT

MUX
ENABLE

Figure 13: Group of Two (GoT) STEs.

23



The OR gate in the GoT structure allows it to be configured as a latched-STE. A latched-

STE activates the outgoing line of the GoT on every symbol-cycle subsequent to the one in

which ST E2 is matched. Figure 14a shows a GoT programmed to emulate a latched-STE

programmed with the symbol a. For succinctness, henceforth in this paper, a latched-STE

is represented using the symbol shown in Figure 14b.

STE1

STE2

SELECT
OR

a

DEVICE
CLOCK

(a) Implementation.

a

(b) Symbol.

Figure 14: Latched-STE with label a.

The multiplexer-select and enable lines provide further flexibility. For example, con-

sider the programming of a GoT shown in Figure 15a. By default, the enable line is con-

nected to the device clock of the AP. However, it can be connected to a special End-Of-Data

(EOD) signal which can be passed at specific symbol-cycles in the data-flow. Therefore,

even if ST E2 is activated and matched on any symbol-cycle, the downstream pattern match-

ing continues only after the symbol-cycle where the EOD signal is asserted. If the matching

of the label in ST E2 has to be anchored at a symbol accompanied with the EOD signal,

then the connections can be made as shown in Figure 15b with the multiplexer select line

choosing the output from ST E2.

If ST E2 in the above examples is a reporting STE, the output is generated only on

symbol cycles when the EOD signal is asserted. This decreases the rate of output generation

at the cost of losing information on the exact location in the input data where the match

24



STE1

STE2

SELECT
OR 

a

EOD

(a) Remember match and activate

on EOD signal.

STE2
a

STE1

SELECT
STE2

EOD

(b) Match only if symbol is accom-

panied with EOD symbol

Figure 15: Using the select and enable lines of the GoT for added flexibility.

occurred. This is useful in driving performance as discussed in Section 3.6.2.

The connections in the GoTs described above need not be explicitly defined by the

user. All these features: latched/unlatched, anchored/un-anchored, reporting/non-reporting

are abstracted as attributes of STEs in ANML. However, if the programmer uses the EOD

signals in his/her automata designs, then he/she has to specify the symbol-cycles in which

the EOD signal must be asserted, because by default it is not asserted on any symbol-cycle.

Other than the OR gates in the GoTs, the AP has dedicated 16-input boolean ele-

ments which can perform the OR, AND, NOR, NAND, sum-of-product and product-of-sum

boolean operations. The outgoing-line of a boolean element is activated if the input lines

are activated in a combination (0 for inactive and 1 for active) which satisfies the boolean

operation of the element. Like all other processing elements in AP, boolean elements can

also be programmed as reporting elements.

3.4 Handling Look-ahead Assertions

Look-ahead is an assertion defined in many modern pattern-recognition libraries such as

Perl Compatible Regular Expressions (PCRE) [3] which allows the matching of a pattern

in the subsequent part of the string without consuming any symbols. This allows defining

25



patterns succinctly which otherwise would be very complex to represent using a regular

expression or classical NFA.

3.4.1 Example 1

Consider a language of strings which contain all the substrings aa, ab, ba and bb. In

PCRE, this can be written as (?=.*aa)(?=.*ab)(?=.*ba)(.*bb). It can be interpreted

as follows: Starting at the beginning of the string, look-ahead in the string for the first

occurrence of the pattern aa. If aa is found, then look-ahead for the first occurrence of the

pattern ab. If ab is found, then repeat the same for the pattern ba. If all the three are found,

then start consuming symbols to find the first occurrence of the pattern bb.

Figure 16 shows the equivalent ANML-NFA using a boolean AND element. It works as

follows: ST E1 and ST E2 check for the pattern aa in the string. Since ST E1 is an all-input

start STE, the search may begin at any offset in the string. Once the pattern is found, ST E2

which is a latched STE keeps activating the first input line of the boolean AND element.

Similarly, ST E3 and ST E4 look for the pattern ab and so on. When all the patterns aa, ab,

ba and bb have been found, all the input lines to the boolean AND element become active.

The AND function is satisfied and the boolean element being a reporting element reports

this occurrence.

b

b

a

a

STE1 STE2

a

STE3 STE4

a

STE5 STE6

b

STE7 STE8

b

Figure 16: Handling look-ahead assertions using a boolean AND element.

26



3.4.2 Example 2

Though the above PCRE and ANML-NFA accept the same strings, they differ in the num-

ber of symbols consumed before the match is reported. In case of the PCRE, it is the length

of the shortest prefix of the string ending with the (last) pattern bb. For the ANML-NFA,

this number is the length of the shortest prefix containing all the four patterns.

Consider the PCRE which looks for the pattern a after the lookahead assertions have

been satisfied, i.e. ((?=.*aa)(?=.*ab)(?=.*ba)(.*bb))a. This can be represented by

an equivalent ANML-NFA as shown in Figure 17. Since the search for the pattern a should

immediately follow the matching of pattern bb, these two are concatenated and become the

new input to the boolean AND element.

b

a

a

a

STE1 STE2

a

STE3 STE4

a

STE5 STE6

b

STE8 STE9

b

STE7

b

Figure 17: ANML-NFA accepting the same strings as the PCRE ((?=.*aa) (?=.*ab)

(?=.*ba) (.*bb))a.

3.5 Going Beyond Regular Languages

Counter and boolean elements provide the capability to remember information beyond the

set of states which are active at any given point of time. The additional expressive power

that this provides to ANML-NFA is a matter of ongoing research. For example, ANML-

NFA with counter elements can emulate cellular automaton like Rule 110 which is known

27



to be Turing-complete. However, such a discussion is outside the purview of this paper.

However let us look at an example of an ANML-NFA which defines language that are not

regular, i.e. language that cannot be expressed using any classical regular expression or

NFA.

3.5.1 Example 3

Consider a language very similar to the languages defined in Examples 1 and 2. A strings

in this language contain the symbol a after all the patterns aa, ab, ba and bb have appeared

at least once in the string. This pattern cannot be expressed using look-aheads in PCRE,

but can be easily represented by modifying the ANML-NFA shown in Figure 16 to the one

shown in Figure 18. Once all the input lines to the boolean element are activated, the AND

condition is met, and ST E9 is activated to check if the next symbol is a. On all subsequent

symbol-cycles also, ST E9 is activated by the boolean element, as all its input lines originate

from latched STEs which have already been matched. Therefore, as soon as the symbol a

is encountered, a match is reported.

b

b

a

a

STE1 STE2

a

aSTE3 STE4

a

STE5 STE6

b

STE7 STE8

b

STE9

Figure 18: ANML-NFA which accepts strings which contain the symbol a after all the

patterns aa, ab, ba and bb have appeared at least once in the string.

28



3.5.2 Example 4

Finally, consider the language consisting of strings where the patterns aa and ba occur at

least 50 times each. Again, this language cannot be defined with regular expressions or

even extended regular expression libraries like PCRE. However, the simple ANML-NFA

for the same is shown in Figure 19.

C

R

b

a

STE1

50

C

R
50

CTR1

CTR2

STE3

a

a

STE2

STE4

Figure 19: ANML-NFA which accepts strings where the patterns aa and ba occur at least

50 times each.

3.6 Application Developers Notes

The programming model on the AP is as follows. ANML-NFAs defined by the user are

compiled into a machine readable image which is then loaded into the AP. Once the AP has

been programmed with the loaded image, the input strings are organized into a data-flow

which is then streamed to the AP. Whenever, a pattern is matched an output-vector is stored

inside an internal buffer to be read out to the host application running on the CPU, where

it can be decoded and suitably handled. In this section, we identify aspects of the above

mentioned operations which may lead to performance bottlenecks and describe general

guidelines for automata-design which minimize or avoid these bottlenecks.

29



3.6.1 Minimizing Reconfiguration Time

Compilation of ANML-NFA involves executing complex place-and-route algorithms to

map elements of the user-defined ANML-NFA to physical elements on the Automata Pro-

cessor board (AP board). This may take between seconds to hours based on the complex-

ity and number of ANML-NFA to be compiled. Therefore, whenever possible, this step

should be completed before-hand, and the images kept ready to be loaded at run-time. In

this manner, the incurred cost at run-time is that of loading them which is in the order of

50 milliseconds.

Compilation of ANML-NFA ahead of time is possible for a variety of applications

such as rule-based network intrusion detection or motif-based protein characterization. In

these applications, the patterns to be looked for are known well in advance. For other

applications, this might not be true. However, in some cases, although the patterns and their

corresponding automata are not known ahead of time, all the required automata at run-time

are copies of a few template ANML-NFA(s), where the copies of the same template differ

only in the labels of STEs or target-values of counter elements. Such an application is

defined in [62].

If the template ANML-NFA is known ahead of time, then it can be defined as an

ANML-macro. The macro is compiled into an image which can be replicated easily

throughout the AP board without running any place-and-route algorithms. Also, assigning

the labels/target-values in all the copies of the macro can be done extremely fast. Therefore,

the total time required to program the AP-board is the time required to generate the actual

labels plus the time required to load the image onto the AP-board. As discussed earlier,

the latter takes about 50 milliseconds. Another advantage of using macros is that they are

modular in nature, making them reusable as building blocks for other ANML-NFA.

30



3.6.2 Avoiding Stalls to Handle Output

When one or more reporting STE(s) are matched in a symbol-cycle, an output-vector is

stored in an internal output-buffer. Though storing this output-vector can be completed

within the same symbol-cycle, reading this vector out of the buffer to the host application

may take between 91 and 291 symbol-cycles. Although the buffer can hold 1024 output-

vectors at any given time, if the vectors are generated too frequently, then the output-buffer

fills up and the execution has to be stalled till the buffer can be emptied sufficiently. This

can considerably slow-down the execution.

The output-vector is a bit-vector, whose length depends on the number of output-

regions from which the reports are generated in that symbol-cycle rather than the number of

reports themselves. Although, the programmer has no control over the mapping of report-

ing STEs to output-regions, substantial reduction in output-handling time can be affected

by batching as many output-generating events into the same symbol-cycle as possible. For

example, if the location of a match in the data-flow is not required, then output can be

generated only at the end of the data-flow. This can be done by programming the reporting

STEs to be latched and generating output only on receiving an EOD signal (as described in

Section 3.3), and the EOD signal being asserted only on the last symbol in the data-flow.

Alternatively, if an approximate location of a match in the input string is desired, the

modification of an automaton can be done as illustrated in Figure 20. ST E2 of the original

automaton shown in Figure 20a is modified to ST E2 and ST E3 of automaton shown in

Figure 20b. ST E2 and ST E3 are part of a single GoT. A special character which lies outside

the alphabet {a,b} is required because EOD signal cannot be used to reset a latched STE.

Hence, once a pattern is matched, it will be reported in all subsequent intervals. The special

character is used to reset the latch. It is streamed at regular intervals in the data-flow. The

EOD signal is asserted in the preceding symbol. The special character resets the latch by

deactivating ST E2 and ST E3 in the modified automaton.

Since the special character is not part of the alphabet, the modified automaton does

31



ba

STE2STE1

(a) Original automaton.

ba

STE3

STE2

SELECT
OR 

EOD

a|b

STE1

(b) Modified automaton to report match at the end of an

interval marked by an EOD signal and a special character.

Figure 20: Using a GoT to regulate output generation.

not have any active STEs at the beginning of the next interval other than the all-input-

start ST E1. Therefore, if an occurrence of the pattern spans across the interval boundary,

then such an occurrence is not detected. Thus, the interval boundaries should be chosen at

locations where such occurrences cannot occur or could be neglected. Otherwise, sufficient

overlap between the end of an interval and the beginning of the next should be provided.

3.6.3 Maximizing Resource Utilization

As discussed in the previous chapter, the physical routing capability decreases as one goes

higher up the hierarchy of rows, blocks and half-cores in an AP chip. In the our experience,

even a naı̈ve implementation of thousands of small patterns from large databases in the field

of network intrusion detection and bioinformatics lead to very high resource utilization.

This is because each automaton generally fits inside a single row, where the connectivity

is not a issue. Even when the automaton spans multiple-rows, automaton generated from

regular expressions generally have a linear chain-like shape which can be partitioned into

rows with very few connections between elements from different rows.

However, efficiently mapping large automata containing hundreds of processing ele-

ments and interconnection lines, such as the ones discussed in [62] require more careful

thought. As a rule of thumb, it is better to design automata which can be broken into small

32



clusters of highly connected STEs with very few inter-cluster connecting lines. Also, since

the number of processing elements is very high, it may be desirable to design automata

which duplicate processing elements to decrease the demands on routing. This may actu-

ally provide higher resource utilization by decongesting the interconnection bottleneck.

3.7 Summary

In this chapter, we have described how to convert any NFA to ANML-NFA. We have also

discussed several optimization techniques to minimize the size of the ANML-NFA and

avoid performance bottlenecks. Finally, we have shown how the boolean and counter ele-

ments can be used to describe ANML-NFA which may be difficult or impossible to define

using regular expressions or classical state-diagrams.

33



Chapter IV

HIGH PERFORMANCE PATTERN MATCHING

By virtue of being able to execute a large set of NFAs on a single input data stream, the

Automata Processor is naturally poised to provide hardware acceleration to applications

which need support for finding all occurrences of thousands of complex string patterns

in a data-stream. Examples of such applications include network intrusion detection and

characterization of protein sequences using motifs.

The acceleration of these applications using existing accelerators like GPUs, special-

purpose ASICs, and FPGAs have been widely studied. Some of the primary challenges

to overcome towards achieving this acceleration include (1) broadcasting the same data-

stream to all the string pattern-matching operations in parallel (2) executing NFA without

state-space explosion and (3) supporting the search for thousands of patterns in parallel.

Among the reported solutions, GPU-based solutions enjoy better generality and clock-

speeds over other accelerators. However, they struggle to handle execution divergence in

its executing threads, i.e. if any of the threads makes a conditional jump which is different

from the others, then all the executing threads are preempted, and a new set of threads are

loaded. This is a serious impediment when threads are programmed to search for different

patterns. Besides, state-space explosion in the case of handling NFAs continues to be a

major hurdle. On the other hand, custom-made ASIC designs are either too specific or

limited by their memory capacity and bandwidth requirements.

The best results thus far have been reported by solutions exploiting the reconfigura-

bility and parallelism of FPGAs. Through the concurrent execution of multiple Non-

deterministic Finite Automata (NFA) in hardware, significant speed-up is obtained and

state-space explosion is avoided. However, even the largest FPGAs cannot fit beyond a few

34



hundred NFAs at a time. Therefore, applications involving thousands of patterns have to

partition the same into subsets and search for their occurrences iteratively. This adds to the

complexity and loss of performance.

We have implemented two applications from two different fields to study and demon-

strate their acceleration using the AP. The automata developed for these applications il-

lustrate the various design considerations to bear in mind to derive maximum performance

benefits from the AP. Besides this, we have estimated the run-time of the applications using

accurately known features such as on-board capacity, automata load time, data streaming

rate and output handling throughput.

The first application, called Fast-SNAP (for Fast-SNort using AP), a rule-based Net-

work Intrusion Detection (NID). These rules are obtained from the popular Snort database [4].

We developed techniques to transform a rule into one or more PCREs. However, some of

these PCREs cannot be compiled by the AP compiler. In such cases, the rules are converted

into ANML-NFA.

The second application is called PROTOMATA (for PROTein autOMATA). It looks for

the presence of sequence-motifs in protein sequences. These motifs have been derived from

the PROSITE database [66] and are originally defined in a proprietary syntax. Although,

translating them into equivalent PCRE is relatively straight-forward, executing these PCRE

would encounter performance bottlenecks for some use-cases of this application. There-

fore, the motifs are instead represented as ANML-NFA, which include special additional

parts to avoid these bottlenecks. PROTOMATA is described in detail in Section 4.2.

4.1 Fast-SNAP

In this section, we briefly discuss the state-of-the-art of Snort-based NID systems, followed

by a brief introduction to Snort rules, and finally a detailed description of the Fast-SNAP

application.

35



4.1.1 Background

Snort [61] describes signatures of anomalous activity in networks as string patterns and

searches for occurrences of any of these patterns in network packets to detect an intrusion.

The signatures are maintained in a database in the form of rules, one each for every known

signature. The ruleset is updated as and when new signatures are discovered. The number

of rules has seen a steady rise with the increase in the frequency and complexity of cyber-

attacks. At the time of writing this paper, the ruleset contains 5,310 active rules. In order

to deal with increased network traffic and cyber-attacks, accelerated solutions using GPUs

and FPGAs have received considerable attention in literature.

The first GPU-based solution [70] used DFA-based pattern-matching. This solution

was found to be suboptimal as some patterns led to state-space explosion when converted

to DFAs. Cascarano et al. [15] proposed the first NFA-based engine using GPUs which

involved maintaining a global NFA transition table along with vectors for active and fu-

ture states. They reported a maximum throughput of about 1.5 Gbps for Snort534 ruleset

from [12]. Zu et al. [79] noted that this approach suffered from the problem of serialization

of threads because of execution divergence. They addressed the problem by identifying

compatible states, i.e. states that cannot be active simultaneously, and then using these

compatible states to create virtual-NFAs from the original NFAs . Using the virtual-NFAs,

they reported a maximum throughput of nearly 13 Gbps for synthetic pattern sets generated

with the workload generator from [9].

FPGA-based solutions rely on configuring the processor to concurrently execute mul-

tiple NFAs in hardware [53, 11, 55, 74, 72]. Yang et al. [74] used a modified version of

McNaughton-Yamada algorithm to convert PCRE-based regexes to modular NFAs with

multi-character transition labels. This allowed them to reach a maximum throughput of

10.3 Gbps. Mitra et al. [53] reported an interface throughput of 12.9 Gbps on the SGI

RASC RC 100 blade connected to SGI ALTIX supercomputing system, by transforming

36



PCRE op-codes generated by the Snort rules compiler to Very High Speed Integrated Cir-

cuit (VHSIC) Hardware Description Language code. However, the capacity of even the

largest FPGAs is not enough to accommodate large rulesets [11, 55, 74], requiring them to

be partitioned and programmed iteratively as multiple subsets.

The Snort rules database is updated as and when new signatures are discovered by a

community of developers in the field. The number of rules has seen a steady rise with the

increase in the frequency and complexity of cyber-attacks. At the time of writing this paper,

the database contains 5,310 active rules. Even the accelerated solutions discussed above

are finding it difficult to scale with this ever-increasing rulesets and network bandwidth

demands.

4.1.2 Snort Rules

Snort rules are written in a lightweight description language. Each rule contains a header

section and an options section. The header section specifies the protocol, source, and desti-

nation of the network packet for which the rule is active, and the type of action to be taken

if the rule is matched. The options section consists of one or more keywords belonging to

one of the following categories: general, non-payload detection, payload detection, and

post-detection. Detailed documentation of the Snort syntax can be found online [4].

General keywords provide common information about the rule such as an sid, which

specifies the unique integer id of the rule. Non-payload detection keywords describe anoma-

lous values for various fields in the header section of a network packet. On the other hand,

payload detection keywords identify patterns to look for only in the data section of a net-

work packet. Finally, the post-detection keywords specify actions to be taken if an occur-

rence of the signature is detected.

For example, consider the following sample rule:

37



alert tcp any any -> any 80 ( sid:42; content:"foo"; content:"bar";

distance:10; pcre:"/foo[0-9]{10}bar"; )

The header section of the above rule states that this rule is active for tcp packets going to

port 80 and it raises an alert if all the patterns are matched in a packet. The options section

of the rule lists four keywords, separated by semicolons. The first keyword specifies that

the sid of the rule is 42. The following three keywords are of the payload detection type,

on which we will focus for the rest of this section.

Most of the patterns in the SNORT rules are defined using payload detection keywords.

These patterns either specify exact-strings (represented by the keyword content) or PCRE

(represented by the keyword pcre). Our sample rule contains two exact-string patterns

(namely foo and bar) and one PCRE pattern (namely /foo[0-9] {10}bar).

In addition to the keywords to specify patterns, a rule may contain modifier keywords.

A modifier is associated with the previous pattern in the rule, and adds extra constraints on

the matching of the pattern. For example, our sample rule contains the modifier distance

which has an argument of 10. This modifier mandates that the occurrence of previous

pattern (namely bar) and the one before that (namely foo) is separated by exactly 10

characters. Such modifiers placing distance constraints between the occurrence of on one

or more patterns in a rule are henceforth referred to as distance-modifiers. Other modifiers

restrict the search for occurrences of the previous pattern to a specific part of the payload.

We call this kind of modifiers as location-modifiers. A rule is triggered if all the patterns

defined in the rule are matched within the constraints specified by the modifiers in the input

data-stream, which in the case of payload detection keywords, is the data-section of the

network packet.

Notice that, in the sample rule, there is some redundancy in the exact-string patterns

combined with their distance constraints and the PCRE pattern. More specifically, the latter

accepts a subset of the strings accepted by the former. This is useful for existing solutions

to avoid the execution of the computationally expensive PCRE-engine on the entire input

38



data set. Instead, the search is broken down into two stages. In the first stage, the data

is filtered out using fast exact-string matching algorithms. Only, the packets suspected of

having malicious content undergo Deep Packet Inspection (DPI) using the PCRE-engine in

the second-stage. However, this convention is not universally followed by all rules in the

SNORT database.

4.1.3 Methodology

4.1.3.1 Configuration Stage

About 83% of the active rules in SNORT can be efficiently implemented using the AP. The

remaining 17% contain the keywords byte test, byte jump, or byte extract. These

rules extract various parameters for the pattern matching operations from specific bytes in

the input data-stream. The implementation of these rules on the AP would would require

reprogramming the device based on the input data. Therefore, the checking for these rules

should be carried out using existing methods.

For each rule to be implemented in AP, we create PCRE or ANML-NFA using three

steps. In the first step, we extract the non-payload detection and payload detection key-

words from the rules and partition them into different buckets based on the location-modifiers.

Within the same bucket, keywords from the same rule are combined into a single PCRE or

ANML-NFA using steps 2 and 3. In step 2, the keywords from the same rule which are

related to each other through distance constraints are combined into a single PCRE. Then

in step 3, if more than one PCRE is created for a rule, then they are expressed as a single

ANML-NFA using a boolean AND gate. These steps are described in detail below using

an extended version of our sample rule.

39



alert tcp any any -> any 80 ( sid:42; content:"foo"; content:"bar";

distance:10; pcre:"/foo[0-9]{10}bar"; content:"kludge"; http_header;

content:"cluft"; http_header; content:"baz"; http_header;

content:"qux"; http_header; content:"abc"; http_uri; )

Step 1. Handling Location-Modifiers Searching for the occurrences of a pattern can be

restricted to a particular section of the payload through the use of the location-modifiers.

Additionally, location-modifiers can specify whether the pattern should be matched in the

raw data or the normalized data.

In the first step, separate buckets are created corresponding to each location-modifier

defined in SNORT. Then, for each rule, patterns qualified by different location-modifiers

are placed in their respective buckets along with the sid of the rule. This allows us to

program patterns from different buckets into different logical cores, and stream only the

data relevant to the location-modifier to that logical core. For our sample rule, the patterns

foo, bar, and /foo[0-9]{10}bar are placed in the general bucket; kludge, cluft, baz,

and qux in the http header bucket; and abc in the http uri bucket.

Step 2. Handling Distance-Modifiers Distance-modifiers specify constraints on the lo-

cation of the occurrence of a pattern in the data stream relative to an anchor. This anchor

could either be the beginning of the stream or the end of the occurrence of the previous

pattern. Keywords offset and depth are used to specify minimum and maximum distances

from the beginning of the stream; whereas, keywords distance and within define minimum

and maximum distances relative to the occurrence of the previous pattern.

In the second step, patterns within each bucket are considered separately. Patterns

belonging to the same rule which are related through distance-constraints are combined

into a single PCRE using repetition quantifiers. For example, patterns foo and bar in our

sample rule are linked by a distance-modifier and belong to the general bucket. Hence, they

40



are combined to the PCRE: foo.{10}.*bar.

Step 3. Generating Final Regex or ANML-NFA After combining patterns into PCRE

in the second step, multiple PCRE for a rule may be left in a bucket. All such PCREs

should match in the data stream (in any order) for a rule to be triggered.

In the third and final step, if there is more than one regex for a rule in a bucket, then

they are converted into ANML-NFA using a boolean AND element and latched-STEs as de-

scribed in Section 3.4 of Chapter 3. For example, there are four patterns in the http header

bucket: kludge, cluft, baz, and qux. The ANML-NFA for the same is shown in Fig. 21.

Notice that the classical NFA for this automaton is fairly complex and large because it

needs to capture all the combinatorial ways in which the substrings kludge, cluft, baz,

and qux may be ordered in the data-flow.

g

x

z

tf

a

u

ed

u

b

q

u

l

l

c

k

Figure 21: ANML-NFA corresponding to regex with 3 lookaheads: (?=.*kludge)

(?=.*cluft) (?=.*baz) .*(?:qux).

Note: In the beginning, for the ease of implementation, we considered combining all

the PCRE pertaining to a single rule from the same bucket into a unified PCRE using

lookahead assertions. The definition of lookahead assertions may be found in the PCRE

specification [3]. For example, the patterns in the http header bucket can be expressed as a

PCRE with three lookaheads: (?=.*kludge)(?=.*cluft)(?=.*baz).*(?:qux). How-

ever, the AP compiler does not accept this PCRE as it has more than two lookahead asser-

tions. This is because the ANML-NFA corresponding to PCRE with lookahead assertions

41



is very large. Instead, the ANML-NFA described above is considerably smaller.

At the end of these steps, in every bucket, there is at most one pattern (regex or ANML-

NFA) per rule. Automata from each bucket can be compiled into a single image which can

be loaded into a separate logical core at run-time. However, some buckets may contain

very few automata or correspond to segments in the network packet which are very short.

Automata from such buckets are combined and a single composite image is generated to

be loaded into the same logical core.

4.1.3.2 Execution Stage

Since the automata are already compiled, the images are directly loaded into the AP board

and the processing of the network packets begins instantaneously. The host application

breaks a network packet into different segments and generates the data-flow correspond-

ing to each logical core on the AP board. The sid of a rule is reported whenever the

corresponding automata detects an occurrence in a network packet. In case, a rule is pro-

grammed as multiple automata, pertaining to keywords with different location modifiers,

then the host application triggers the necessary action(s) specified in the original SNORT

rule, only if, all the constituent automata generate a report within the same network packet.

Even after loading the automata for all the SNORT rules, significant portions of a AP

board remain unused. Therefore, the logical cores may be replicated and data from different

network packets may be streamed to different logical cores in parallel. In this way, a very

large number of automata is executed in parallel on the AP board and the implementation

of a very high throughput DPI engine is realized.

4.2 Protomata

PROTOMATA scans for all occurrences of protein motifs in protein sequences. A motif is

described as a small conserved region in the protein sequence which plays a biologically

meaningful role in the behavior of the protein, such as defining a binding or catalytic site,

42



enzymatic activity, etc. PROTOMATA first downloads the list of all known protein mo-

tifs from the PROSITE database. Then, for each motif, an NFA-based pattern-macro is

created which can identify the occurrence of the motif in any protein sequence. Finally,

additional macros are added to this pattern-macro to provide various user functionality and

performance benefits. Once these NFAs have been programmed into the processor, protein

sequences can be streamed, and all occurrences of the motifs can be checked in parallel.

In this section, we briefly describe the PROSITE pattern-motifs, the state-of-art of finding

the occurrence of these motifs in protein sequences, and the PROTOMATA application in

detail.

4.2.1 Background

PROSITE is a large annotated database of known protein motifs. The motifs are described

as either pattern-motifs or profile-motifs. A pattern-motif is expressed using PROSITE pat-

tern notation described in Section 4.2.1.1. On the other hand, profile-motifs use a weight-

matrix-based method to calculate similarity. PROTOMATA only scans for occurrences of

pattern-motifs, and henceforth in this chapter, the words ‘pattern-motifs’ and ‘motifs’ are

used interchangeably. Currently, PROSITE has 1308 pattern-motifs.

ScanProsite [21] is an online tool provided by PROSITE to scan protein sequences

for occurrences of motifs present in the database. The following modes of operations are

supported:

• Use case 1: Protein sequences(s) can be submitted to be scanned against all the

motifs in the PROSITE database.

• Use case 2: Motif(s) can be submitted to be scanned against a protein database

(UniProtKB, PDB, or user-defined).

• Use case 3: Motif(s) and protein sequence(s) can be submitted to be scanned against

each other.

43



A Perl-based version of the tool called ps scan can be downloaded for execution on a

local machine. Similar programs were developed by academic groups [31, 67, 46, 64, 35,

71, 22, 34, 32] and commercial companies [68] in the early 1990s. However, we could not

trace these implementations and had to limit our comparative studies to ps scan only.

4.2.1.1 PROSITE pattern notation

Each motif consists of a sequence of pattern elements separated by a concatenation symbol

‘−’. The pattern elements are defined as follows:

• A single character represents a single amino acid in accordance to the international

standard [41].

• A list of characters within brackets (character class) denotes any one of the amino

acids in the list. For example, [ST ] denotes either the amino acid Serine (represented

by S) or the amino acid T hreonine (represented by T ).

• A list of characters within curly brackets (complementary class) denotes any amino

acids but the ones listed in the curly brackets. For example, {ST} denotes any amino

acid that is neither Serine nor T hreonine.

• The lower case letter x denotes any amino acid.

• The character < at the beginning of the motif denotes that the match is anchored to

the N-terminal (beginning) of the protein. For example, < S denotes the amino acid

Serine at the beginning of the sequence, and [< S] denotes beginning of sequence or

the amino acid Serine.

• The character > at the end of the motif denotes that the match is restricted to the

C-terminal (end) of a protein sequence. For example, T > denotes the amino acid

T hreonine at the end of the sequence, and [> T ] denotes end of sequence or the

amino acid T hreonine.

44



• A single number within parenthesis denotes repetition of a pattern element. Two

numbers within parenthesis denotes repetition within the range. For example, S(3)

represents the repetition of the amino acid Serine exactly 3 times, and T (3,5) indi-

cates the amino acid T hreonine is repeated anywhere between 3 and 5 times.

• End of a motif is denoted by the period character ‘.’ .

For example, Fig. 22 shows the occurrence of the PROSITE motif PS00430 in the

Lissencephaly-1 homolog (D3BUN1) protein sequence.

4.2.2 Methodology

In order to generate the required automata, the database of motifs is downloaded peri-

odically (or on user request) and all the pattern-motifs are extracted from the same. For

each motif in this database, two ANML-NFAs are generated. The design of these NFAs

allows enabling the search for this motif at run-time by including its id in a preamble-

sequence streamed at the beginning of the data-flow. The first automaton called the Locate-

occurrence automaton is used when the location of each occurrence of an enabled motif

has to be reported. The second automaton called the Global-match automaton is used

when the user provides multiple protein sequences and only motifs which occur in all the

sequences need to be reported. This automaton generates a single match report at the end

of the streaming of all the sequences, thereby reducing the frequency of output-generation

<x(10,115)-[DENF]-[ST]-[LIVMF]-[LIVSTEQ]-V-{AGPN}-[AGP]-[STANEQPK].

MVLTNKQKEELNGAILDYFDSSGYKLTSTEFTKETNIELDPKLKGLLEKKWTSVIRLQKKVMDLEAKVSQLEEELNNGGRGPARRGKEDALPRQPEKHVLTGHRNCINAVRFHPL FSV I VSASEDA 
TMRIWDFDSGDFERTLKGHTNAVQDIDFDKSGNLLASCSADLTIKLWDFQSFDCIKTLHGHDHNVSCVRFLPSGDQLVSSSRDKSIKVWETATGYCTKTLTGHEDWVRKVIVSEDGTTLASCSND QTA
RVWNLAKGECLLTFREHSHVVECLAYSPANIVEVPGSLLSTPEGKAKAKAGAGGTSFGQAGYLATGSRDKTIKIWELATGRCLQTYIGHDNWVRSIKFHPCGKYLISVGDDKSIRVWDIAQGRCI KTINE
AHSHFISCLDFCSHNPHIATGGVDDIIKIWKLG

Figure 22: Occurrence of the PROSITE motif PS00430: TonB-dependent receptor proteins

signature 1 (< x(10,115)− [DENF ]− [ST ]− [LIV MF ]− [LIV ST EQ]−V −{AGPN}−

[AGP]− [STANEQPK].) in the Lissencephaly-1 homolog (D3BUN1) protein sequence.

45



and increasing the overall performance. If the location of the occurrence of these com-

mon motif(s) within each sequence is also desired, then a second pass is used wherein the

Locate-occurrence automata are programmed and only the search for the common motifs

is enabled. We now describe both these designs in detail.

4.2.2.1 Automata Design

For the simplicity of expression, the STE labels in the diagrams are represented as follows:

• An upper-case letter represents an amino acid. An STE-label with one or more upper-

case letters represents the character class containing the ASCII equivalent of the

letters in the upper and lower cases. For example, the label A represents the char-

acter class [4116,6116] and label AGV represents the character class [4116,4716,5616,

6116,6716,7616].

• ∑ represents the character class containing the ASCII equivalent of all letters repre-

senting amino acids in upper and lower cases.

• . represents the entire 8-bit symbol-set, i.e. [0016− f f16].

• The letter p followed by a numeral represents a parameterized label.

• All other labels are 2-digit hexadecimal numbers.

Each motif is assigned a unique PROTOMATA-id which is a 2-byte (4-digit hexadeci-

mal) number. This id is different from the PROSITE-id and a simple one-to-one mapping is

maintained on the host application to provide the necessary interface between the user input

(using the PROSITE-ids) and the working of PROTOMATA (using the PROTOMATA-ids).

A preamble-sequence is streamed at the beginning of the data-flow which contains the

PROTOMATA-ids (both bytes) of only those motifs whose search has to be enabled. For

46



example, if the search for all the motifs has to be enabled, then the preamble-sequence con-

tains the PROTOMATA-ids of all the motifs. On the other hand, if the search for frequently-

occurring motifs has to be disabled, then the PROTOMATA-ids of only the rest of the mo-

tifs are included in the preamble-sequence. Thus the preamble-sequence is changed based

on user input. However, preamble-sequences for standard choices are pre-calculated and

stored. The end of the preamble-sequence is earmarked by the f f16 character. In order

to avoid any confusion between this end-marker and the first (most significant) byte of a

PROTOMATA id in the preamble-sequence, the range of the latter is restricted from 016 to

f e16, i.e. the PROTOMATA-ids lie between 016 and f e f f16.

4.2.2.2 ANML Macro

If multiple ANML-NFAs use a common sub-automaton where the instances differ only in

the labels of the STEs, then such a sub-automaton can be defined as a macro. The labels

of the STEs which vary across the instances are parameterized to be defined at compile-

time or before loading. STEs within macros can be marked as start and/or reporting STEs,

and the processing elements inside the macro are connected to processing elements outside

the macro through input and output terminals. Additionally, macros may be nested inside

other macros. The use of these features of ANML macros to define automata in a modular

manner is described in Section 4.2.2.1.

Enable Macro The Enable macro is part of both the Locate-occurrence and the Global-

match automata. It processes the preamble-sequence and activates the subsequent pro-

cessing elements only if the PROTOMATA-id of the associated motif is present in the

preamble-sequence. This obviates the need to reprogram the AP chip every time the user

enables the search for a different set of motifs.

The Enable macro is shown in Fig. 23. ST E 1 and ST E 3 is active for the first symbol

in the preamble-sequence. ST E 1 activates ST E 2 for the second symbol-cycle. ST E 1 and

ST E 3 are in turn activated by ST E 2 for the third symbol-cycle. This process continues

47



STE 1 STE 2 STE 3 STE 4

^ff . p1 p2

STE 5 STE 6

ff Σ

STE 7 STE 8

^ff .

i1

o1 o2

Figure 23: The Enable macro.

till the end of the preamble, i.e. ST E 1 and ST E 3 are active on every odd symbol-cycle

and ST E 2 is active on every odd symbol-cycle. ST E 3 matches the first byte of every

PROTOMATA-id in the preamble. If a match is found, then ST E 3 activates ST E 4 to

check the second byte of the id. If both the bytes are matched then ST E 5 is activated

to indicate that the PROTOMATA-id was detected in the preamble-sequence. In order to

remember this till the end of the preamble-sequence, ST E 7 and 8 activate ST E 5 on every

even symbol-cycle. ST E 5 is connected to the outgoing port which is used to enable the

subsequent processing elements in the automaton.

The output port o1 is used to enable the search of the motif only at the first symbol of

the protein sequence, whereas the port o2 is used to enable the search at every subsequent

symbol. This feature allows the handling of motifs anchored to the beginning of the se-

quence (only o1 is used), and motifs which can occur anywhere in sequence (both o1 and

o2 are used) with the same Enable macro. The utility of the input port i1 will be clear when

we describe the Repeat macro. Notice that all instances of this macro for different motifs

only differ in the labels of ST E 3 and ST E 4. Hence their labels are parameterized.

Pattern Macros Two pattern-macros called the Report-on-match macro and Continue-

on-match macro are created for each motif. The first macro is used in the Locate-occurrence

automaton shown in Fig. 24 and the second macro is used in the Global-match automaton

shown in Fig. 25. Both these macros correspond to the same motif PS00430 shown in

48



Fig. 22, i.e.: < x(10,115)− [DENF ]− [ST ]− [LIV MF ]− [LIV ST EQ]−V −{AGPN}−

[AGP]− [STANEQPK].

The Locate-occurrence automaton creates an output report as soon as the occurrence

of a motif is detected in the data-flow (thereby marking the location of the occurrence).

Therefore, ST E 8 of the macro corresponding to the last pattern element in the motif is

programmed as a reporting STE. On the other hand, in the Global-match automaton, ST E

8 of the Continue-on-match macro is used to enable the Repeat macro if the occurrence of

the motif is found in the protein sequence. The significance of this along with using two

separate output ports o1 and o2 emanating from the ST E 8 will become evident when we

discuss Global-match automaton.

Locate-occurrence Automaton The PROTOMATA-id of the above mentioned motif is

18a16. Notice that, the parameters p1 and p2 of the Enable macro in Fig. 24 have been

set to 116 and 8a16 respectively. Furthermore, even though the motif is anchored to the

beginning of the protein sequence, the output port o2 of the enable macro is connected to

the input port i1 of the pattern macro. This is because the first pattern element < x(10,115)

needs to process up to the first 115 amino acids appearing in the protein sequence. Also

note that the automaton is compilable even though the input port i1 of the Enable macro is

left unconnected.

Global-match automaton In some use-cases, the desired output identifies only those

motifs which are present in all the input protein sequences. A simple way to handle these

use-case involves finding the motifs which occur in each individual protein sequence using

the AP, and then identifying the common motifs using the host processor. The problem

with this method is the rate of output generation on the AP may be quite high. Instead,

the Global-match automaton generates a single output event at the end of streaming of the

data-flow, identifying only the common motifs.

In order to do this, the data-flow is constructed as follows: Multiple sequences are

49



^ff . 1 8a ff Σ

^ff .

i1

o1 o2

D
E
N
F

i1

10

C

R

115

C

R

S
T

L
I
V
M
F

L
I
V
S
T
E
Q

V

^
A
G
P
N

A
G
P

S
T
A
N
E
Q
P
K

STE 1 STE 2 STE 3 STE 4 STE 5 STE 6 STE 7 STE 8

CTR 1

CTR 2

Enable macro

Report-on-match macro

Figure 24: The Locate-occurrence automaton.

separated by a 0a16 character (ASCII equivalent of the newline character) and end of the

data-flow is marked by the 016 character. A motif common to all the protein sequences

should be matched in all the sequences serially. This is done with the help of the Repeat

macro shown in Fig. 25. ST E 9 and ST E 10 in this macro are activated once a motif is

matched in a sequence. ST E 9 then keeps itself and ST E 10 activated till the 0a16 character

marking the end of the sequence is encountered.

On matching the 0a16 character , ST E 10 activates ST E 11 and the Continue-on-match

macro to check for the occurrence of the motif starting at the first character of the next pro-

tein sequence. If the motif need not be anchored to the beginning of the protein sequence,

then ST E 11 also activates the Enable macro which in turn activates the Continue-on-match

macro on every subsequent character of the next protein sequence. At the end of stream-

ing of all the protein sequences, ST E 12 of the Repeat macro is active only if the motif

has occurred in all the protein sequences and an output report is generated on processing

the 016 character, otherwise not. Notice that the connection from the output port o2 of the

50



o2

^ff . 1 8a ff Σ

^ff .

i1

o1 o2

0a 00Σ

i1 i2
o1

D

E

N

F

i1

o1

10

C

R

115

C

R

S

T

L

I

V

M

F

L

I

V

S

T

E

Q

V

^

A

G

P

N

A

G

P

S

T

A

N

E

Q

P

K

STE 9 STE 10 STE 11

STE 1 STE 2 STE 3 STE 4 STE 5 STE 6 STE 7 STE 8

CTR 1

CTR 2

Enable macro

Continue-on-match macro

Repeat macro

Figure 25: The Global-match automaton.

Continue-on-match macro to the input terminal i1 of the Repeat macro allows the motif to

be matched anywhere within the protein sequence. If the motif needs to be anchored to the

end of the protein sequence then only output port o1 of the Continue-on-match macro is

connected to the input terminal i1 of the Repeat macro.

4.3 Performance Evaluation

For both these applications, the PCRE regex and ANML-NFA can be defined and compiled

before-hand. Therefore, although the compile-times of both these applications have been

reported here, they do not figure in the run-time calculations. All the CPU-based opera-

tions (compilation and execution of host-application) are executed on a quad-core Intel(R)

Core(TM) i5-3570 CPU, running at 3.4 GHz with 8 GB of main memory.

51



The correctness of the ANML-NFA and their ability to find all the matching occur-

rences have been verified using a simulator which comes with the SDK. However, the

space and time constraints restrict the simulations to be limited to a small number of pat-

terns at a given time. Therefore, the run-times for real use-cases are estimated by using

accurately known input streaming time, output-handling handling time and the possible

process-stalling that it may generate. These times can be calculated precisely because the

length of the input and the occurrences of patterns in the input data is known.

The computation on the host application comprises of fetching the input data, orga-

nizing the same into a data-flow, stream the data-flow to the AP board, and take actions

based on the occurrence of patterns as reported by the AP. This is not expected to be the

bottleneck for the applications discussed in this chapter and can be easily hidden by an

asynchronous multi-threaded pipeline.

4.3.1 Estimation model

The number of symbol-cycles (t) required to read out an output-vector from the output-

buffer can be calculated as t = 40×r+32, where r is the number of output regions in which

at least one reporting STE is matched in that output event. The AP chip contains a total

of 6 output regions. Therefore t = 72 and t = 272 correspond to the best case (r = 1) and

worst case (r = 6) scenarios. Unfortunately, the placement of the automata within different

output-regions of a AP chip is currently outside the control of the programmer. Hence, for

our estimation, we have always assumed the worst case, i.e. t = 40×min(p,6)+32 where

p is the number of reporting STEs matched in the output event.

4.3.2 Snort

Owing to delays in receiving necessary software, the implementation of Fast-SNAP is an

ongoing process. Here, we briefly outline the preliminary results.

52



4.3.2.1 Configuration overhead

The current ruleset from the Snort database can be downloaded from the Snort website. The

conversion of the active rules to the equivalent PCRE regex or ANML-NFA takes about 3

minutes. Compiling these regexes and ANML-NFA takes about 2 hours.

4.3.2.2 Run-time estimation

We assign different logical cores for rules related to the header and payload sections of a

data packet. The host application running on the CPU handles the packet decomposition

and schedules the streaming of the payload section to a logical core handling the payload

rules, and the header section to a logical core handling the header rules. Since the process-

ing of any section is only dependent on the length of the section, and length of a section is

typically fixed in a network packet, this scheduling is fairly simple, and can be pipelined

with the streaming of the data to the AP, thus obviating the overhead of this operation.

All the regexes and ANML-NFA for checking signatures of intrusion related to the

body section of the network packet can be fit inside a logical core of size 4, whereas all the

rules for the header sections require a logical core of size 2. Therefore, with an AP board

containing 6 ranks of 8 chips each, we can support a data rate 8 Gbps. This is done by

employing the first 4 ranks to contain two logical cores each for checking the body section

of the 8 network packets in parallel. The remaining 2 ranks can be employed to contain the

8 logical cores required to support the scanning of 8 header sections in parallel.

However, better throughput can be derived by taking into account the asymmetry in the

lengths of header and payload sections of the data packet for better load balancing. As the

header section is typically much smaller than the payload section, the logical core handling

the same would be idle most of the time. We attain better load balancing by making multiple

copies of the payload section handling logical core for every header section handling logical

core on the AP board. While, the header section from multiple packets are handled serially

by the header section handling logical core, their payload sections are handled in parallel

53



by the multiple payload section handling logical cores. Using this scheme, a throughput of

11 Gbps can be supported by making 11 copies of the payload handling logical cores of 4

chips each, while employing the remaining 4 chips on the AP board to support 2 copies of

the header section handling logical cores.

At the time of writing this document, a more fine-grained partitioning of the rules re-

lated to the payload section is being undertaken. This will allow the partitions to be pro-

grammed into smaller logical cores than of size 4, so that higher parallelism, and hence

higher throughput can be derived using a single AP-board.

4.3.3 PROTOMATA

4.3.3.1 Configuration overhead

A file named prosite.dat can be downloaded from the PROSITE website which contains

all the pattern-motifs in the database. The conversion of these motifs from the PROSITE

pattern notation to the ANML-NFAs described in Section 4.2.2.1 takes about 1.6 seconds

and compilation of these ANML-NFA takes about 20 minutes. All the Locate-occurrence

automata for the motifs can be programmed using half the resources on a single AP chip.

Similarly, all the Global-match automata can be fit into a single AP chip.

4.3.3.2 Run-time estimation

The run-times of the ps scan application and PROTOMATA are compared in Table 1 using

all the motifs from PROSITE and various proteomes (all proteins from a single organism)

from the UniProtKB database [50]. The Swiss-Prot and the TrEMBL sections list the man-

ually annotated sequences and the computationally analysed sequences from the database

respectively. The number of protein sequences from the proteomes and their combined

lengths are expressed in columns 3 and 4 respectively. The two search settings are whether

‘greediness’ (reporting the longest possible match starting at a location) is enabled or not;

and if the search for ‘frequently occurring motifs’ is enabled or not. The latter has a huge

impact on the number of motif occurrences found in the protein sequences, as captured in

54



Table 1: Comparison of run-times from ps scan and PROTOMATA.

Settings ps scan PROTOMATA

Database Organism(s)
#Protein

sequences

#Amino

acids
Greediness

Frequently

occurring

motifs

#Motif

occurrences run-time

(in ms)

Streaming

time

(in ms)

Output

handling

time

(in ms)

Overall

run-time

(in ms)

Speed up

(approx.)

UniProtKB/

Swiss-Prot

E.coli 4305 1,360,331

enabled
enabled 65,826 213,064 11 52 102 2,088

disabled 1,644 209,168 11 2 61 3,428

disabled
enabled 65,826 216,152 11 52 102 2,119

disabled 1,644 211,922 11 2 61 3,474

human 20,183 11,336,473

enabled
enabled 630,396 1,238,029 89 493 543 2,279

disabled 24,332 1,217,581 89 20 139 8,759

disabled
enabled 630,476 1,220,367 89 493 543 2,279

disabled 24,385 1,196,148 89 20 139 8,605

all 479,406 174,899,570

enabled
enabled 9,761,277 23,413,614 1,367 7,626 7,676 3,050

disabled 755,365 23,632,751 1,367 591 1,417 16,678

disabled
enabled 9,767,490 24,039,496 1,367 7,631 7,681 3,129

disabled 761,442 23,623,676 1,367 595 1,417 16,671

UniProtKB/

TrEMBL

E.coli 4,333 1,372,277

enabled
enabled 66,552 216,273 11 52 102 2,120

disabled 1,655 211,773 11 2 61 3,471

disabled
enabled 66,552 219,984 11 52 102 2,156

disabled 1,655 213,158 11 2 61 3,494

human 67,084 22,252,781

enabled
enabled 1,226,823 3,290,032 174 959 1009 3,260

disabled 38,812 3,225,670 174 31 224 14,400

disabled
enabled 1,226,906 3,265,080 174 959 1009 3,235

disabled 38,865 3,205,392 174 31 224 14,309

all 18,394,018 6,583,760,868

enabled
enabled 1,681,423,194 980,991,184 51,436 1,313,612 1,313,662 746

disabled 1,327,068,910 962,727,380 51,436 1,036,773 1,036,823 928

disabled
enabled 1,690,088,977 962,368,859 51,436 1,320,383 1,320,433 728

disabled 1,322,376,307 942,714,285 51,436 1,033,107 1,033,157 912

the next column.

The run-times of ps scan and PROTOMATA are listed next. For PROTOMATA, the

‘streaming time’ is the estimated time required to stream all the input protein sequences

in the absence of any stalling by the output-handling bottleneck. The ‘output handling

time’ lists the time required to read out all the output-vectors from the output-buffer. In

our tests none of the motif occurrences happened on the same symbol-cycle. Therefore,

the time taken to read out the vector should be around 72 symbol-cycles. However, for

55



our calculations, we have assumed this number to be 100 to take care of any unforeseen

overheads in the handling of the pipeline. The ‘overall run-time’ has been arrived at by

taking a maximum of the input and output-handling times and adding 50 milliseconds to

account for the load-time.

The speed-up greatly depends on the size of the input data, and whether the search for

the frequently occurring motifs is enabled or not. If the input data is not large enough, the

run-time is dominated by the load-time as in the case of the E.coli proteome. If the search

for frequently occurring motifs is enabled, the number of motif occurrences and hence the

rate of output generation is greatly enhanced which slows down the overall processing rate.

By using this setting, the speed-up varies between 2088 times and 3260 times. If the search

for the frequently occurring motifs is disabled (general practice in the field), then expected

speed-up goes up to between 3428 times and 16668 times.

The above results are calculated considering a single logical core executing on the AP

board, i.e a maximum processing-rate of 1 Gbps. For the use-case demonstrated above, 48

logical cores can be executed in parallel on the AP board, because the associated automata

can be fit inside a single AP chip. Therefore, if the input size is large enough it can be

broken into 48 parts and streamed to 48 logical cores in parallel. However, if the input size

is not large enough, the speed-up is not be linear, as the processing of the individual parts

may be dominated by the load time. For example, consider the case of all proteomes in

the UniProtKB/Swiss−Prot database being scanned in a greedy fashion with the search

for occurrences of frequently-occurring motifs disabled. The streaming time and the output

handling time with 48 logical cores working in parallel would be 136748≈ 29 milliseconds

and 59148 ≈ 13 milliseconds respectively. Thus the overall run-time is expected to be 79

milliseconds, i.e. dominated by the 50 milliseconds of load-time. Even then, there is an

almost 18 times further speed-up using the 48 logical cores. For larger input sizes like all

proteomes in the UniProtKB/TrEMBL database, similar calculations show a more linear

speed-up (almost 46 times), which is approximately a 0.7 million times speed-up over

56



ps scan.

4.4 Summary

The design of AP inherently lends itself well to the acceleration of software which check

for occurrences of thousands of pattern in an input data stream. Using this capability, two

applications called Fast-SNAP and PROTOMATA were developed. Fast-SNAP conducts

deep packet inspection by checking for signatures of network intrusion in network data-

packets. On the other hand, PROTOMATA searches for patterns called motifs in protein

sequences which are linked to biologically meaningful operations or characteristics. Both

these applications show significant speed-up over contemporary methods. Besides, the

techniques and methods described in this chapter are both generic and modular and may be

used by other applications needing similar processing capabilities.

57



Chapter V

FINDING DE-NOVO PATTERNS IN BIOLOGICAL SEQUENCES

In the last chapter, we looked at the use of AP for its design-goal, i.e. to accelerate ap-

plications which check for occurrences of thousands of string-patterns in parallel. In this

chapter, we look at its use in a more non-intuitive manner. In fact, this application was the

first published paper [62] on accelerating a complex application using the AP. It laid the

foundations for understanding how to solve graph problems using the Automata Processor.

The application solves an important problem of finding similarities between biologi-

cal sequences defined in more detail in Section 5.1. We designed an exact algorithm for

solving this using NFA programmed into the AP. Our algorithm, termed MOTOMATA for

MOTif autOMATA, not only has lower execution times but can also handle more challeng-

ing instances of the problem which are hitherto unsolved. Macros used in the algorithm is

described in Section 5.2. An overview of the algorithm is provided in Section 5.3. The al-

gorithm is divided into two distinct stages. The first stage is the most time-consuming and

is accelerated using the AP. This is detailed in Section 5.4. Section 5.5 describes a CPU-

implementation of second stage of the algorithm. The expected times of the first stage and

the actual run-times of the second stage is presented in Section 5.6. These run-times for

various sizes of the problem are a few order of magnitudes faster than those reported by

prominent software based methods.

5.1 Background

Large repositories of genetic data have been produced through numerous sequencing projects,

a trend that was significantly accelerated during the last decade. An important part of

the analysis of this data consists of finding patterns in DNA, RNA or protein sequences.

Discovery of these patterns called motifs helps in the identification of transcription factor

58



binding sites, transcriptional regulatory elements and their consequences on gene functions,

variants causing human diseases, and therapeutic drug targets.

The problem of motif search has been classified into the following three types: Planted

(l,d) Motif search Problem (PMP), Simple Motif search Problem (SMP), and Edit-distance-

based Motif search Problem (EMP). Of these three types, PMP has been studied in the

greatest detail and is described as follows. Given n sequences of length m each, find a motif

M of length l which occurs in all the sequences with up to d mismatches. For example,

given the input sequences AGTCTCTCGAG, T TAGACGGTCA, and GATCAGT TCAC,

and l = 4, d = 1, the motif CTCA occurs in all the three sequences. Note that the motif

itself need not be present in its exact form in any of the sequences, which is the case in

this example. The generic form of the PMP is defined as the Quorum Planted Motif search

Problem (qPMP), where the motif M is present in at least q of the n sequences. PMP (and

therefore qPMP) has been shown to be NP-complete [28].

Although the first motif was discovered in 1970 [45], this problem is far from being

satisfactorily solved. Approximate algorithms [7, 48, 44, 59, 36] use statistical analysis to

reach for solutions faster, but are not guaranteed to identify all motifs [57], sometimes even

significant ones. On the other hand, exact algorithms [57, 60, 19, 24, 8, 23, 16, 58, 26, 14,

27, 52, 56] can identify all the motifs, but take large amount of time and memory to do

so. Since all exact algorithms return the same answers, they are evaluated based on their

execution time. For this evaluation, 20 sequences of length 600 are randomly generated by

using characters from the alphabet. Similarly, a motif M of length l is generated. For each

sequence, an occurrence of M with up to d random mismatches is planted at a random lo-

cation in the sequence. Run-times are only reported for instances of (l,d) which are known

to be challenging. For these instances, apart from the planted motif, additional motifs are

expected to be found in the sequences. Examples of such instances are (19,7), (21,8),

(23,9), and (25,10). At the time of this writing, the shortest execution time reported for

the (26,11) instance on a 48 core machine is 46.9 hours, and the (28,12) instance remains

59



unsolved to the best of our knowledge.

5.2 Design of Building Blocks for Motif Search on Automata Processor

The key to solving problems on the AP is to cast the algorithms in terms of NFA. Once

again, the design philosophy is to develop NFA with fixed topologies which can be pre-

compiled as macros. This gives us the advantages of simplicity, modularity and speed.

Below, we describe a building block automaton that is used throughout our application. It

is designed to represent a sequence of length l and accept input strings of length l which

differ from it in at most d positions.

5.2.1 Bounded Mismatch Identification Automaton

For sequence S = s1s2s3...si...sl , our automaton design consists of 2d + 1 rows of STEs

arranged in l columns. Column i corresponds to symbol si: the label of STEs in that column

recognizes si if the row number is odd, and recognizes anything other than si (described as

ŝi) if the row number is even. The STEs in odd rows are connected in a linear chain to

reflect continued matching of symbols. Each mismatch causes skipping of two rows.

s1 s2 s3 s4 s5

^s1 ^s2 ^s3 ^s4 ^s5

s2 s3 s4 s5

^s2 ^s3 ^s4 ^s5

s3 s4 s5 s7

^s3 ^s4 ^s5 ^s7

s6

^s6

s6

^s6

s4 s5 s7 s8s6

^s8

^s6

^s7

Figure 26: An automaton to accept strings with at most 3 mismatches from s1s2 . . .s8.

60



The automaton has l−d STEs in every odd numbered row and l−d+1 STEs in every

even numbered row, thereby requiring a total of (2d +1)l−2d2 STEs. An STE is present

in column i and row j only if j ≤ min(2i,2d+1) and j ≥ 2d−2(l− i). Intuitively, the last

d symbols are recognized in successively lower rows with accept states restricted to last

two rows. An example of the automaton for l = 8 and d = 3 is shown in Figure 26.

For succinctness, we refer to the bounded mismatch identification automaton as the

(l,d) match automaton. If this automaton is used as a building block within a more complex

automaton, the acceptance states of the (l,d) match automaton will cease to be so, but

instead are connected to other STEs as needed. Similarly, we may wish to use (l,d) match

automaton to detect patterns at the beginning of an input string or internal to an input

string. For succinctness, we refer to these four cases using shorthand diagrams illustrated

in Figure 27.

^Sl

SlS1 (l,d)
match

^S1

(a)

^Sl

SlS1 (l,d)
match

^S1

(b)

S1

^Sl^S1

Sl(l,d)
match

(c)

S1

^Sl^S1

Sl(l,d)
match

(d)

Figure 27: Shorthand representations of the (l,d) match automaton with (a) all-input-start

STEs and no reporting STEs, (b) start-of-data STEs and no reporting STEs, (c) all-input-

start STEs and reporting STEs, and (d) start-of-data STEs and reporting STEs.

5.3 Overview of Proposed Algorithm

Let S1,S2, . . . ,Sn denote the n input sequences, where Si = si
1si

2 . . .s
i
m. For convenience

of presentation we assume all sequences are of length m, though this assumption is not

made in the algorithm. Let Si
j denote the substring of Si of length l starting from position

j (1 ≤ j ≤ m− l + 1), i.e. Si
j = si

js
i
j+1 . . .s

i
j+l−1. Define a multipartite sequence graph

G on l-mers in the input sequences as follows: Node ui
j in the graph represents Si

j. An

61



edge (ui
j,u

i′
j′) is drawn if and only if i 6= i′ and the Hamming distance between Si

j and Si′
j′

is ≤ 2d. Graph G is therefore a multipartite graph with n partitions P1,P2, . . . ,Pn, where

Pi =
{

ui
j | 1≤ j ≤ m− l +1

}
contains nodes corresponding to unique l-mers from Si.

Observation 1. Let M be an (l,d) motif occurring in the n sequences as S1
j1,S

2
j2, . . . ,S

n
jn ,

respectively. Then, the nodes u1
j1,u

2
j2, . . . ,u

n
jn in G form a clique.

Proof. Consider any two nodes ui
ji and uk

jk . Since M is an (l,d) motif, the Hamming

distance between M and Si
ji , and between M and Sk

jk , is at most d. It follows that the

Hamming distance between Si
ji and Sk

jk is at most 2d. Hence, an edge exists between nodes

ui
ji and uk

jk in G.

Note that the converse need not be true; i.e, there may be cliques of size n in G without

a corresponding (l,d) motif in the sequences. This can happen, for example, if a potential

candidate motif is at a distance of more than d from each of two l-mers Si
ji and Sk

jk , but

these two l-mers agree at some positions where they differ from the candidate, leading to a

shorter distance (≤ 2d) between them.

We exploit this observation in our MOTOMATA algorithm as follows. In the first stage,

we identify all cliques of size n in the graph G. In the second stage, we search all possible

candidate motifs for each clique to identify one or more motif sequences, if they exist.

Although identifying cliques greatly limits the search space, finding cliques is quite

difficult. In the case of PMP, finding a clique of size n is tantamount to finding a maximal

clique in the graph G, which is NP-hard. Knowing the size of the maximal clique and the

multipartite nature of the graph does simplify the problem somewhat. However, for the

challenge problems, the ratio of number of edges in the graph G to the number of edges

retained in a clique is 20,000:1 [57]. This leads to large run-times for microprocessor based

algorithms.

In the second stage, every clique found in the first stage is targeted for possible motif

discovery. Consider a clique and an l-mer sequence T corresponding to one of its nodes. If

62



a motif is present, it must be within a Hamming distance of d from T . Therefore, a search

tree is created by arranging all sequences of length l within a Hamming distance of d from

T . Each root-to-leaf path in the tree corresponds to a possible motif. Each such path is

checked to see if it is at a Hamming distance of at most d from all the l-mers corresponding

to the other nodes in the clique.

We developed the following algorithm for tree traversal. First, the tree is decomposed

into layers, each layer containing subtrees rooted at a specific depth. The tree is built in such

a way that the number of distinct subtrees in a layer are quite limited. Also notice that for all

paths in subtrees from a layer, the substring to be matched from the sequence represented

by a node in the clique remains the same. These observations are used to quickly find the

number of mismatches between any path in the subtrees and the corresponding substrings

of the l-mers from the cliques. Next the tree is traversed using a depth-first branch-and-

bound technique, but at the granularity of the subtrees instead of individual nodes.

5.4 Finding Cliques in Multipartite Sequence Graph

We first present an algorithm to find cliques of size n, denoted n-cliques from here onwards,

required for solving PMP. This can be easily adapted later to identify q-cliques (q ≤ n)

needed for the qPMP problem. A clique is represented by the set of nodes contained in it.

5.4.1 Overview of the Proposed Algorithm

We seek an exact solution to the clique finding problem. However, algorithmic techniques

for pruning the search space without losing valid solutions, and economizing number of

STEs required, are crucial to solving problems of practical interest. In addition, our al-

gorithmic techniques should be amenable to AP implementation, which can only store

automata and process streaming data.

We propose an iterative clique finding algorithm that incrementally builds cliques of

increasingly larger size, starting from one. Initially, all nodes in G are considered 1-cliques.

In iteration i, we extend i-cliques to form (i+1)-cliques.

63



5.4.2 Pruning the Clique Search Space

Storing all i-cliques requires significant storage and processing capabilities. Thus, we seek

to eliminate as many i-cliques as possible from further consideration, before proceeding to

the next iteration. We define node u to be a neighbor of clique C, if either 1) u ∈C, or 2)

u /∈ C and u is connected to every node in clique C. Recall that an i-clique consists of i

nodes each of which is from a distinct partition of G.

Observation 2. Let C be an i-clique. If ∃ partition P such that no u ∈ P is a neighbor of C,

then C is not a subclique of any n-clique.

Proof. An n-clique must contain exactly one node from each of the n partitions. If clique

C does not already contain a node from partition P, and if it cannot be extended to include

any node from partition P, then it is not a subclique of any n-clique.

This observation is used to weed out i-cliques that do not have a neighbor in each of the

partitions. Note that the i partitions which contributed to the i-clique can also be included

as part of the test, with no change in results. By definition, a node already in the clique

is considered a neighbor to the clique. While these tests seem wasteful, they eliminate

the need to keep track of partitions associated with each clique, and treat all partitions

uniformly with respect to any clique of any size. This simplicity greatly aids in mapping

the tests onto the AP.

5.4.3 Clique Management and Pruning the Node Search Space

An i-clique contains a node each from i distinct partitions. Multiple cliques, the nodes of

which are derived from the same set of partitions, are grouped into buckets. Thus, there are(n
i

)
buckets for storing i-cliques. Each bucket is given a unique n-bit bucket id, with each

bit indicating the presence or absence of a particular partition in its cliques. We extend the

notion of a neighbor to buckets. A node u is a neighbor of bucket B if u is a neighbor of at

least one clique C ∈ B.

64



As with clique pruning, it is also possible to identify nodes that can never be part of

an n-clique, and thus remove them from future consideration, including, in subsequent

building of cliques.

Observation 3. Let C be an n-clique in G. In iteration i, each u ∈C must be a neighbor of

all buckets containing i-cliques.

Proof. Consider a bucket B containing i-cliques. Without loss of generality, let P1,P2,P3,

. . . ,Pi denote the partitions from which nodes in a clique in B are drawn. Then, ∃ a sub-

clique D of C, containing only those nodes of C which are from any of P1,P2,P3, . . . ,Pi. It

is clear that D is a clique in B, and each u ∈C is a neighbor of D.

This observation can be used in reverse to prune the node search space. Buckets con-

taining i-cliques are in place at the beginning of iteration i. In this iteration, if we find a

node that is not a neighbor of one of the buckets containing i-cliques, then that node cannot

be a part of any n-clique. Not only can that node be removed, all cliques that currently

contain this node can also be removed. Organizing cliques into buckets is needed to iden-

tify such nodes, and their removal in turn paves the way for pruning cliques that contain

any such nodes. Pseudocode describing the clique identification algorithm is described in

Algorithm 1.

5.4.4 Clique Finding using Automata Processor

The most time consuming part in the algorithm is to test each surviving node in the graph

in each iteration to see if it is a neighbor of all buckets. A node u that fails this test is

removed along with all cliques containing u. A node u that passes the test survives for the

next round. In addition, the testing process finds all cliques that u is a neighbor to. This

information is then used to extend those cliques to include u, so that cliques for the next

iteration are formed.

Cliques are maintained on the CPU. Node testing is carried out on the AP, by imple-

menting nodes as automata and buckets of cliques streamed as input. To do so, recall that

65



Algorithm 1: Algorithm for finding n-cliques in graph G.

Input : G, l,d

Output: All n-cliques in G

nodeBasedNCliquesSearch (G, l,d)

for i = 1 to n−1 do

for every node u ∈ P j ∀ j : 1≤ j ≤ n do

if u is a neighbor of all buckets in this iteration then
Create cliques of size i+1 by adding u to all cliques that u is a neighbor

of.

Calculate bucket id for new cliques by setting the jth least significant bit

to 1.

end

else

Remove u and all cliques containing u.

end

end

if any bucket becomes empty then
Stop and report no cliques.

end

end

return all cliques from last bucket

66



a node represents an l-mer from one of the input sequences. To test if a node u is neighbor

to a clique C, we need to check if u is connected to each v ∈C. By definition, u and v are

connected if the Hamming distance between their corresponding l-mers is ≤ 2d. Thus, we

can use a (l,2d) match automaton for the l-mer represented by u and stream v. To perform

such tests on all nodes in C, we simply stream the concatenation of l-mers of each of its

constituent nodes. Thus, an i-clique translates to a stream of length il, and multiple succes-

sive tests can be conducted by linking the output of the recognizing automaton to its input.

The topology of the automata for all nodes is identical, but labels inside the STEs vary. We

purposefully achieve this for efficient execution on the AP.

5.4.5 Automata Processor Implementation Details

To delimit boundaries between nodes, cliques, and buckets when streaming input, we use

special characters {X ,Y,Z,B} not part of the sequence alphabet. These delimiters help to

purge the (l,2d) match automaton and remember various state information. Let X2d denote

a sequence of 2d consecutive X characters. We use Y , X2dZ, X2dB and E to mark node,

clique, bucket, and data flow boundaries, respectively.

Logically, one continuous data flow is generated by the CPU for each iteration, and

streamed twice: Once to identify which nodes survive, and the second time to create cliques

for the next iteration using these nodes. In iteration i, the data flow consists of a sequence of

all buckets containing i-cliques with appropriate node/clique/bucket/data flow delimiters.

The order of buckets, of cliques within a bucket, and of nodes within a clique, is irrelevant.

Despite this logical view, actual data need not be copied in each iteration to make up the

data flow. All the l-mers and the delimiters are stored once in the physical memory. Logical

chunks permitted in the definition of the data flow to the AP are flexibly used to point to

the actual locations of the l-mers and delimiters to produce the desired logical data flow.

To identify if node u is a neighbor of all buckets in the data flow, we designed the

automaton shown in Figure 28. The (l,2d)-match building block accepts l-mers within a

67



E

^Sl

SlS1
(l,2d)
match

^S1

^X Y X Z

Y X Z ^B B

STE1 STE2 STE3 STE4

STE5 STE6 STE7 STE8 STE9 STE10

Figure 28: Automaton to check if node is a neighbor of every bucket.

Hamming distance of 2d from the l-mer represented by u. The STEs 5, 7, and 9 are reached

when a neighboring node, clique, and bucket, respectively are found in the data flow. STEs

6 and 8 are parking states used to wait for the transition between two consecutive cliques,

and from an accepted clique to the end of its current bucket, respectively. The X2d part of

delimiter sequences is needed to flush the (l,2d) match automaton in preparation for next l-

mer match. Note that u survives for next iteration if there is at least one neighboring clique

in each bucket. Thus, the clique neighborhood test should be activated for each clique, even

if the prior clique neighborhood test is failed. To achieve this, STEs 1 through 4 are used to

bypass cliques not neighboring u. STE 4 is reached at the end of every clique, and triggers

clique neighborhood test machinery for the next clique.

If STE 9 is active at the penultimate character of the data-flow, then node u is a neighbor

of all buckets in the data-flow. The delimiter at the end of the data-flow generates an output

recognizing u to be retained for the next round.

Nodes that survive the neighborhood test as indicated by their automata reaching the

respective acceptance states, are reported to the CPU. We then program the AP using the

automaton shown in Figure 29 for every surviving node. The purpose of this automaton is

to identify each neighboring clique of a node so that the clique can be extended to include

68



Z
^Sl

SlS1
(l,2d)
match

^S1

Y X Z
STE1 STE2 STE3STE4

Figure 29: Automata to identify neighboring cliques of a node.

the node by the CPU. Not surprisingly, this automaton is very similar to that in Figure 28.

ST E 3 triggers output with identification of each neighboring clique. The offset into the

data flow where the clique is found is used by the CPU to identify the clique.

5.4.6 qPMP solution

The qPMP problem takes a factor of
(n

q

)
larger run time than the PMP problem on a con-

ventional CPU. The qPMP solution on the AP is very similar to the PMP solution, requiring

only minor changes. The algorithm is run for only q− 1 iterations instead of n− 1 itera-

tions. On line 4 of the nodeBasedNCliquesSearch function, instead of requiring u to be a

neighbor of all buckets of size i, u is retained if it is a neighbor of any bucket of size i. This

is equivalent to checking if u is a neighbor of any clique in the data flow, the corresponding

automaton for which has already been described in Figure 29.

5.5 Searching for Motifs Consistent With Cliques

Let C be an n-clique of nodes {u1
j1 ,u

2
j2 , . . . ,u

n
jn} identified in stage one of the algorithm. Let

T i = Si
ji be the l-mer corresponding to node ui

ji , i.e., the l-mer starting from position ji in

input sequence Si. By writing T i = t i
1t i

2 . . . t
i
l , we can simplify the notation by dropping the

starting position of T i in Si.

If a motif is present, then it must be at a Hamming distance of ≤ d from each of the

sequences in {T 1,T 2,T 3...T n}. Therefore, if we enumerate all sequences of length l at

a Hamming distance of ≤ d from T 1, the search for a motif can be confined to this set

of sequences. Each such sequence can be tested by checking if it is within a Hamming

69



distance of ≤ d from all the other sequences in {T 2,T 3, . . . ,T n}, and if so, declared a

motif.

5.5.1 Arranging Candidate Motifs as Search Trees

To enumerate potential motifs, a search tree is constructed based on T 1. The tree has l +1

levels, where the root node is at level 0. Each node in the tree is assigned a single character

label. We define the string label of a node v as the concatenation of labels in the nodes on

the path from root to v. Let wv ≤ d denote the Hamming distance between the string label

of v at level i and the sequence t1
1 t1

2 . . . t
1
i . If wv < d, then the leftmost child of v has the label

t1
i+1 and a weight of wv. All other children of v represent a possible substitution for t1

i+1

and are arranged in lexicographic order from left to right, and assigned a weight of wv +1.

If wv = d, then v has only one child with the label of t1
i+1 and a weight of wv. An example

search tree for S = actgtc allowing a maximum of 1 mismatch is shown in Figure 30. The

label of each node is shown inside the circle, whereas the Hamming distance of its string

label is shown adjacent to the circle. If a motif is present, then it must be the string label of

a leaf in this tree.

cc

t

g 1

t 0

111

1

0 1

1a 1 1 1 1 1

c g t

cg t c cac

a

0

0 1 1

1 1

tc g t t 1t 1t 1t

1a0 1 1 1 1 gc t g g 1g 1g 1g 1g 1g 1g

t 0 1a 1 1 1 1 1c g 1 1 1t t t t t 11 1 1 1 1t t t t t t

c 1a 1 1 1 1 1g 1 1 1c c c c 11 1 1 1 1c c c c c c0 1 1 1c c ct

Figure 30: Search tree for S = actgtc with up to one mismatch.

70



Let pi denote the number of nodes at level i of the search tree for the genomic alphabet

= {a,c,g, t}.

pi =


∑

i
j=0 3 j.

( i
j

)
if 1≤ i≤ d;

∑
d
j=0 3 j.

( i
j

)
if d < i≤ l;

Each term in the summation is the number of nodes at level i with a weight of j. For large

values of l and d, the search tree can be extremely large. However, two key observations

greatly help in scanning this tree quickly.

Observation 4. For any two nodes u and v appearing at the same level in a search tree

with wu = wv, the subtrees rooted at u and v are identical if we disregard the labels of u

and v. Since w can only take values between 0 and d, the number of distinct subtrees at any

level of the tree is bounded by d +1. This is illustrated in Figure 31.

5.5.2 Handling Large Search Trees

For large values of l and d, the search tree is very large, and a naive branch-and-bound algo-

rithm which continues scanning the subtree rooted at any node v at level i only if its string

label has ≤ d mismatches with i-length prefix of all the sequences in {T 2,T 3, . . . ,T n}, is

too slow. Instead, our algorithm provides a much faster solution by dividing the search tree

into numerous subtrees, and combining the computations for a large number of identical

subtrees.

We partition the levels of the search tree into λ layers with each layer containing a

consecutive set of levels, with the exception that a level at the boundary of two consecutive

layers is included in both. Let R = {r1,r2, . . . ,rλ} denote the number of levels in the λ

layers. If r = dl/λe, then r1 = r2 = · · ·= rλ−1 = r and rλ = l− (λ −1)× r+1. Each layer

is partitioned into subtrees of nodes from the top level in the layer. Due to Observation 4,

the number of distinct subtrees in any layer is min((i− 1)r,d)+ 1. This is illustrated in

Figure 32 where the search tree is partitioned into three layers containing three levels each.

Notice that the root nodes of the subtrees are not assigned any character label.

71



t 0 a c g

t

1t

111

1

0 1

c g t

cg t c cac

a

0

0 1 1

1 1

cc

0 1

t 0 a 1 1 1c g 1

c 1a 1 1 1 1 1c g c 1c0

g 1

0

1 1 1

1

1a0 1 1 1 1 gc t g g 1g

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1c

1

1t

1g

1

1t

1g

1

1t

1g

1

1t

1g

1

1t

1g

1

Layer 1

Layer 2

Layer 3

Figure 31: Search tree shown in Figure 30 partitioned into multiple layers.

For each layer, we define the substring label of a leaf node v as the concatenation of

labels in the nodes on the path from the root to v in the subtree to which v belongs. For

example, the substring label of the leftmost leaf node in Layer 1, 2 and 3 of Figure 32 are

ac, tg and tc respectively. Note that each candidate motif sequence is the concatenation

of λ substring labels, one each from layers 1 to λ . These constituent substring labels are

henceforth denoted as µ1,µ2, . . . ,µλ . Similarly, every sequence T i is partitioned into λ

subsequences τ i
1,τ

i
2, . . . ,τ

i
λ

, where the length of µ j and τ i
j is equal, ∀ j1≤ j ≤ n.

Observation 5. If the Hamming distance between a candidate motif and T i is at most d,

then ∑
j
k=1 H(µk,τ

i
k)≤ d (∀ j1≤ j ≤ λ ), where H(µk,τ

i
k) represents the Hamming distance

between µk and τ i
k.

5.5.3 Overview of the Proposed Algorithm

The identification of actual motifs from the list of candidate motifs represented by string

labels of leaf nodes in the search tree is divided into two phases. In phase 1, we prune the

search space by identifying candidate motifs which have at most d mismatches from at least

72



111

1

0 1

c g t

cg t c cac

a

0

0 1 1

1 1

cc

0 1

t 0 a 1 1 1c g 1t

c 1a 1 1 1 1 1c g c 1c0

g 1

t 0

0

a 1 1 1 1

1

c g t

1a0 1 1 1 1 gc t g g 1g

Layer 1

Layer 2

Layer 3

Figure 32: Unique subtrees in each layer of the search tree.

one sequence T i, where 2 ≤ i ≤ n. We call them eligible candidate motifs with respect to

T i. This phase uses a branch-and-bound technique based on Observation 5: Evaluation of

a candidate motif at layer j+1 continues only if ∑
j
k=1 H(µk,τ

i
k)≤ d, and only those candi-

date motifs for which the above condition is met at layer λ are termed as eligible candidate

motifs. For each layer j, further acceleration is obtained by combining the operations for

substring labels from the layer which have the same number of mismatches with τ i
j. Phase

1 has been described in detail in Section 5.5.4.

In Phase 2, each selected candidate from phase 1 is checked to see if it is eligible with

respect to all sequences T i, ∀i2≤ i≤ n, and if so, declared as an actual motif. Since the

subtree rooted at any two nodes u and v from the same level in the search tree is identi-

cal when wu = wv, we use the information gleaned from traversing the subtree rooted at

node u to decide if we need to traverse the subtree at node v. This branch and bound tech-

nique allows us to significantly accelerate Phase 2 which has been described in detail in

Section 5.5.5.

73



Sections 5.5.4 and 5.5.5 below fully describe the details of how Phase 1 and Phase 2

are designed and implemented. Note that the algorithms used for these phases are executed

on CPU alone. The reader interested only in a high-level overview of the algorithms can

safely skip to Section 5.6.

5.5.4 Filtering candidate motifs With Less Than d Mismatches With At Least One
Sequence

Instead of storing the large number of candidate motifs directly, we express them as con-

catenation of substring labels from different layers. By organizing these substring labels

into elements of a matrix, and then defining rules on how to concatenate a substring label

from one element with a substring label from another, we can represent all the candidate

motifs. For every value of i between 2 and n, our method organizes substring labels from

each layer j which have a common Hamming distance from τ1
j and a common Hamming

distance from τ i
j. This allows the algorithm to consume significantly lesser run-time and

memory by combining the operations for all substrings grouped into the same element.

5.5.4.1 Data structures required

• Local Mismatch Matrix (χ): is a 4-dimensional matrix with axes i, j,δ and δ i,

where 2≤ i≤ n, 1≤ j ≤ λ , and 0≤ δ ,δ i ≤ r. Element χ[i][ j][δ ][δ i] from layer j is

denoted by χδ i

δ
[ j], and contains the substring labels of candidate motifs from layer j,

which have δ mismatches with τ1
j and δ i mismatches with τ i

j. χδ i

δ
[ j] is assigned an

integer id = r×δ +δ i.

• Global Mismatch Matrix (ψ): is a 4-dimensional matrix with axes i, j,ρ and ρ i,

where 2 ≤ i ≤ n, 1 ≤ j ≤ λ , and 0 ≤ ρ,ρ i ≤ d. Element ψ[i][ j][ρ][ρ i] from layer j

is denoted by ψ
ρ i

ρ [ j], and represents the ( j× r)-length prefix of all candidate motifs

which have ρ mismatches with the ( j× r)-length prefix of T 1 and ρ i mismatches

with the ( j× r)-length prefix of T i. Instead of storing all these prefixes directly, it

only stores the ids of the elements from layer j of the Local Mismatch matrix. If

74



the id of χδ i

δ
[ j] is listed in ψ

ρ i

ρ [ j], then all substring labels in χδ i

δ
[ j] occur as the jth

substring of candidate motifs whose ( j× r)-length prefix has ρ mismatches with the

( j× r)-length prefix of T 1 and ρ i mismatches with the ( j× r)-length prefix of T i.

The entries for layer ( j+1) of the Global Mismatch Matrix can be generated using

the entries from layer j of the Global Mismatch Matrix and layer ( j+1) of the Local

Mismatch Matrix. This has been shown in Figure 33.

[1],

ρi

d+1

r+1δ

ρ

ρi

δi

χ δi

δ [1]

ψρ
ρi

[1]

δ

ρ

ρi

χδi

δ [2]

ψρ
ρi

[2]

d+1

r+1

[1]

[1]

[2]

[2]

[1] [2]

d+1

r+1

δ

ρ

δi

χδi

δ [λ]

ψρ
ρi

[λ]

[λ]

[λ]

[λ]

[λ]

d+1

r+1

Local 
Mismatch 
Matrix

Global
Mismatch 
Matrix

Stage 1 Stage 2 Stage λ

ρ [1] δ [1], =
ρi [1]

δi [1]

=
ψρ
ρi

[1] stores id x1, where 
x1 = r X δ [1]+ δi [1]

ρ [2] δ=
ρi [2]=
ψρ
ρi

[2] stores id x2, where 
x2 = r X δ [2]+ δi [2]

ρ +
ρi

[1]

[1] 
[2], 

δi+ [2], 

ψρ
ρi

[λ] stores id xλ, where 
xλ = r X δ [λ]+ δi[λ]

ρ [λ]=
ρi [2]= +[λ-1] [λ], ρi δi

+[λ-1] [λ], ρ δ

δi [2]

Figure 33: Representation of candidate motif sequences with respect to T i using the Lo-

cal and Global Mismatch Matrices. Elements of the Local Mismatch Matrix are used to

group all substring labels from layer j having a common Hamming distance from τ1
j and

a common Hamming distance from τ i
j. Using this Local Mismatch Matrix, the elements

of Global Mismatch Matrix represent ( j× r)-length prefix of all candidate motifs which

have a common Hamming distance from the ( j× r)-length prefix of T 1 and a common

Hamming distance from the ( j× r)-length prefix of T i.

75



• Pruned Substring Matrix (ϕ): is a 4-dimensional matrix with axes i, j,ρ, and ρ i,

where 2≤ i≤ n, 1≤ j ≤ λ , and 0≤ ρ,ρ i ≤ d. Element ϕ[i][ j][ρ][ρ i] from layer j is

denoted by ϕ
ρ i

ρ [ j] and represents the ( j× r)-length prefix of only eligible candidate

motifs with respect to sequence T i, which have ρ mismatches with the ( j× r)-length

prefix of T 1 and ρ i mismatches with the ( j×r)-length prefix of T i. ϕ
ρ i

ρ [ j] lists the ids

of elements from layer j+1 of the Local Mismatch matrix whose entries constitute

the ( j+1)th substring of eligible candidate motifs with respect to T i.

5.5.4.2 Accelerated Algorithm using Mismatch Matrices

Filling up the Local Mismatch Matrix All unique substring labels from each layer are

enumerated and organized based on their Hamming distance from τ1 and τ i, ∀i2≤ i≤ n as

shown in Algorithm 2.

Filling up the Global Mismatch Matrix Element ψ
ρ i

ρ [ j] denotes the sequence formed by

concatenating substring labels µ1,µ2, . . . ,µ j from layers 1 to j such that ∑
j
k=1 H(µk,τ

1
k ) =

ρ and ∑
j
k=1 H(µk,τ

i
k) = ρ i. Notice that if δ [k] = H(µk,τ

1
k ) and δ i[k] = H(µk,τ

i
k), then µk is

enlisted in χδ i

δ
[k], ∀k1≤ k ≤ j. Additionally, if µk is replaced by any other substring from

χδ i

δ
[k], then the resultant string also has ρ mismatches with the ( j× r)-length prefix of T 1

and ρ i mismatches with ( j× r)-length prefix of T i. Therefore, we do not need to list the

substrings individually. Instead, we can work with the ids of the elements from the Local

Mismatch Matrix. Besides, ψ
ρ i−δ i[ j]
ρ−δ [ j] [ j−1] already represents the (( j−1)×r)-length prefix

of candidate motifs which have ρ−δ [ j] mismatches with the (( j−1)× r)-length prefix of

T 1 and ρ i−δ i[ j] mismatches with the (( j− 1)× r)-length prefix of T i. Thus, for ψ
ρ i

ρ [ j]

we only need to list ids of χδ i

δ
[ j] which are non-empty, and 0 ≤ δ [ j] ≤ min(r j,ρ) and

0≤ δ i[ j]≤ min(r j,ρ
i). This provides a very compact representation of the search tree.

Figure 33 illustrates the use of Algorithm 3 to fill up the Global Mismatch Matrix.

For any eligible candidate motif with respect to T i, if its substrings from layers 1 to λ

have δ [1],δ [2], . . . ,δ [ j], . . . ,δ [λ ] mismatches with τ1
1 ,τ

1
2 , . . . ,τ

1
j , . . . ,τ

1
λ

, and δ i[1],δ i[2], . . .

76



Algorithm 2: Organizing Substring Labels from Each Layer into the Local Mismatch

Matrix.

Input : C = {T 1,T 2,T 3...T n},

R = {r1,r2, . . . ,rλ},λ ,r,n

Output: χ

ComputeLocalMismatchMatrix (C,R,λ ,r,n)

for j = 1 to λ do

for i = 2 to n do

for all substring labels from layer j do

Calculate δ = Hamming dist. from τ1
j

Calculate δ i = Hamming dist. from τ i
j

Append substring label to the list stored at χδ i

δ
[ j]

end

end

end

,δ i[ j], . . . ,δ i[λ ] mismatches with τ i
1,τ

i
2, . . . ,τ

i
j, . . . ,τ

i
λ

; then the ids of χ
δ i[1]
δ [1] [1],χ

δ i[2]
δ [2] [2], . . . ,

. . .χ
δ i[ j]
δ [ j] [ j], . . . ,χ

δ i[λ ]
δ [λ ]

[λ ] are listed in the lists stored at ψ
ρ i[1]
ρ[1] [1],ψ

ρ i[2]
ρ[2] [2], . . . ,ψ

ρ i[ j]
ρ[ j] [ j], . . .

. . .ψ
ρ i[λ ]
ρ[λ ]

[λ ] respectively, where ρ[ j] = ∑
j
k=1 δ [ j]≤ d and ρ i[ j] = ∑

j
k=1 δ i[ j]≤ d.

Filling up the Global Mismatch matrix with respect to each sequence T i (∀i2 ≤ i ≤ n)

starts from the first layer. If χ
δ i[1]
δ [1] [1] is non-empty, then the list at ψ

δ i[1]
δ [1] [1] stores the id of

χ
δ i[1]
δ [1] [1] only, signifying that all r-length prefixes of candidate motifs with δ [1] and δ i[1]

mismatches with τ1
1 and τ i

1 respectively can only be substring labels listed in χ
δ i[1]
δ [1] [1]. Now

for layer 2, the id of χ
δ i[2]
δ [2] [2] is added to the list ψ

ρ i[2]
ρ[2] [2], only if ψ

ρ i[1]
ρ[1] [1] and χ

δ i[2]
δ [2] [2] are

both non-empty; and ρ[2] = ρ[1]+δ [2]≤ d and ρ i[2] = ρ i[1]+δ i[2]≤ d. The process is

continued until no sequences can be extended using substring labels from the next layer

(no true motifs exist), or lists for all elements in layer λ have been generated.

77



Algorithm 3: Generating Compact Representation of Candidate Motifs using the

Global Mismatch Matrix.
Input : χ,R = {r1,r2, . . . ,rλ},λ ,r,n

Output: ψ

ComputeGlobalMismatchMatrix (χ,R,λ ,r,n)

for i = 2 to n do

Mark all ψ
ρ i

ρ [ j] as empty, ∀ j1≤ j ≤ λ , and ∀ρ,ρ i0≤ ρ,ρ i ≤ d

Add number x = δ × r+δ i to list ψδ i

δ
[1], where χδ i

δ
[1] is non-empty, and

∀δ ,δ i0≤ δ ,δ i ≤ r1

for j = 2 to λ do

for ρ = 0 to d do

for ρ i = 0 to d do

for δ = 0 to min(ρ,r j) do

for δ i = 0 to min(ρ i,r j) do

if ψ
ρ i−δ i

ρ−δ
[ j−1] and χδ i

δ
[ j] are non-empty then

Append id of χδ i

δ
[ j] to the list stored at ψ

ρ i

ρ [ j]

end

end

end

end

end

end

end

Filling the Pruned Substring Matrix For any sequence T i, the Global Mismatch Matrix

captures the prefix of all candidate motifs up to layer j where the number of mismatches

with the ( j× r)-length prefix of T i is ≤ d. If j = λ , then the prefix belongs to an eligible

78



candidate motif with respect to T i, otherwise not. Therefore, we want to retain only the

former and remove all instances of the latter. The Pruned Substring Matrix is used to store

the result of this operation.

Algorithm 4 uses the characteristic of an eligible candidate motif that it has an entry

in the last layer of the Global Mismatch Matrix. More specifically, the id of the element

of the Local Mismatch Matrix to which its last substring belongs to, is listed in ψ
ρ i

ρ [λ ],

where ρ and ρ i denote the number of mismatches of the candidate motif with T 1 and

T i respectively. We start filling up the Pruned Substring Matrix from the last layer. All

elements in this layer are marked as empty except for ϕ
ρ i

ρ [λ ], where ψ
ρ i

ρ [λ ] is non-empty,

∀ρ,ρ i0 ≤ ρ,ρ i ≤ d. Then, we work backwards filling in the entries for layer λ −1, and so

on. We append the id of χδ i

δ
[λ ] to the list stored at element ϕ

ρ i−δ i

ρ−δ
[λ −1], if ψ

ρ i−δ i

ρ−δ
[λ −1],

χδ i

δ
[λ ] and ϕ

ρ i

ρ [λ ] are non-empty; and ρ ≥ δ and ρ i ≥ δ i. We continue this back-tracking

process layer-by-layer till we have generated entries for all elements in layer 1.

For any eligible candidate motif with respect to T i, if its substrings from layers 1 to

λ have δ [1],δ [2], . . . ,δ [ j], . . . ,δ [λ ] mismatches with τ1
1 ,τ

1
2 , . . . ,τ

1
j , . . . ,τ

1
λ

, and δ i[1],δ i[2],

. . . ,δ i[ j], . . . ,δ i[λ ] mismatches with τ i
1,τ

i
2, . . . ,τ

i
j, . . . ,τ

i
λ

; then its first substring is listed

in χ
δ i[1]
δ [1] [1], and the ids of χ

δ i[2]
δ [2] [2], . . . ,χ

δ i[ j]
δ [ j] [ j], . . . ,χ

δ i[λ ]
δ [λ ]

[λ ] are listed in ϕ
ρ i[1]
ρ[1] [1], . . . ,

ϕ
ρ i[ j−1]
ρ[ j−1] [ j−1], . . .ϕρ i[λ−1]

ρ[λ ]
[λ −1], where ρ[ j] = ∑

j
k=1 δ [ j]≤ d and ρ i[ j] = ∑

j
k=1 δ i[ j]≤ d.

5.5.5 Phase 2: Identifying Actual Motifs from Eligible Candidates

5.5.5.1 Data Structures Required

• Individual Substring Matrix (Φ): is a 3-dimensional matrix with axes i, j and ρ ,

where 2≤ i≤ n, 1≤ j≤ λ , and 0≤ ρ ≤ d. Element Φ[i][ j][ρ] from layer j is denoted

as Φi
ρ [ j] and lists all unique jth substrings of eligible candidate motifs with respect

to a sequence T i, whose ( j× r)-length prefix has ρ mismatches with ( j× r)-length

prefix of T 1.

• Shared Substring Matrix (Γ): is a 2-dimensional matrix with axes j and ρ , where

79



Algorithm 4: Storing Only Eligible candidate motifs With Respect to Each Individual

Sequence T i ∀i2≤ i≤ n in the Pruned Substring Matrix.
Input : χ,ψ,R = {r1,r2, . . . ,rλ},λ ,r,n

Output: ϕ

ComputePrunedSubstringMatrix(χ,R,λ ,r,n)

for i = 2 to n do

Initialize all ϕ
ρ i

ρ [ j] to empty lists, ∀ j1≤ j < λ , and ∀ρ,ρ i0≤ ρ,ρ i ≤ d

Mark ϕ
ρ i

ρ [λ ] as non-empty if ψ
ρ i

ρ [λ ]is non-empty, ∀ρ,ρ i0≤ ρ,ρ i ≤ d

for j = (λ −1) to 1 do

for ρ = 0 to d do

for ρ i = 0 to d do

for δ = 0 to min(ρ,r j+1) do

for δ i = 0 to min(ρ i,r j+1) do

if ψ
ρ i−δ i

ρ−δ
[ j], χδ i

δ
[ j+1] and ϕ

ρ i

ρ [ j+1] are non-empty then

Append id of χδ i

δ
[ j+1] to list stored at ϕ

ρ i−δ i

ρ−δ
[ j]

end

end

end

end

end

end

end

80



1 ≤ j ≤ λ and 0 ≤ ρ ≤ d. Element Γ[ j][ρ] from layer j is denoted as Γρ [ j] and

lists all common substrings present in Φi
ρ [ j] ∀i2 ≤ i ≤ n. Each entry in this list is

represented as Γρ [ j][κ], where 1≤ κ ≤ |Γρ [ j]|.

• Successor Matrix (ζ ): is a 2-dimensional matrix associated with every entry Γρ [ j][κ]

in the Shared Substring Matrix. Element ζ [i][ρ i] of this matrix is denoted by

Γρ [ j][κ].ζ ρ i
where 1≤ i≤ λ and 0≤ ρ i ≤ d .It lists all values of κ ′, where Γρ [ j][κ]

and Γρ+δ [ j+1][κ ′] are the jth and ( j+1)th substrings of eligible candidate motif(s)

with respect to T i, whose ( j× r)-length prefix has ρ mismatches with the ( j× r)-

length prefix of T 1 and ρ i mismatches with the ( j× r)-length prefix of T i.

• Tolerance Array(∆): has n entries where the ith entry, denoted as ∆i stores the num-

ber of mismatches between equal-length prefixes of an eligible candidate motif and

the sequence T i.

• Minimum Tolerance Array(ϑ ): is an array of length n associated with every el-

ement of the Shared Substring Matrix, and depicted as Γρ [ j][κ].ϑ . Entries of this

array store the values of corresponding entries of the Tolerance array from a previous

traversal, when choosing Γρ [ j][κ] as the jth substring failed to yield an actual motif.

5.5.5.2 Filling Up the Data Structures

The Individual Substring Matrix is filled up as follows. For j = 1 and ∀i2≤ i≤ n element

Φi
δ
[ j] lists all substrings in χδ i

δ
[ j], where ϕδ i

δ
[ j] is non-empty. For 2 ≤ j ≤ λ , Φi

ρ [ j] lists

all substrings from elements χδ i

δ
[ j] whose ids are listed in ϕ

ρ i

ρ [ j− 1], ∀ρ,ρ i0 ≤ ρ,ρ i ≤ d,

∀δ ,δ i0≤ δ ,δ i ≤ r and ∀i2≤ i≤ n.

Then, entries of the element Γρ [ j] of the Shared Substring Matrix are computed by

listing only the substrings which are common to Φi
ρ [ j], ∀i2 ≤ i ≤ n. Finally, entries for

element Γρ [ j][κ].ζ ρ i
are calculated by finding all values of κ ′ where the substring label

Γρ+δ [ j+ 1][κ ′] is listed in element χδ i

δ ′ [ j+ 1], the id of χδ i

δ ′ [ j+ 1] is stored in ϕ
ρ i

ρ [ j], and

81



number of mismatches between Γρ [ j][κ] and τ1
j is δ . Finally, all entries in Γρ [ j][κ].ϑi are

initialized to d before starting the following branch and bound algorithm.

5.5.5.3 Branch and Bound Algorithm

If M is an actual motif sequence, then its substrings µ1,µ2, . . .µλ appear in layers 1 to λ

of the Shared Substring Matrix, such that µ j+1 appears in the Successor Matrix of µ j with

respect to every sequence T i, ∀i2 ≤ i ≤ n and ∀ j1 ≤ j ≤ λ − 1. Algorithm 5 searches for

these motif(s) in a recursive manner starting from layer 1 of the Shared Substring Matrix.

For each substring in Γρ [1], we find all common successor substrings in Γρ [2] with respect

to all sequences T i ∀i2 ≤ i ≤ n. In turn, for each of these common successors, we find

their common successors from Γρ [3], and so on. This continues till there are no common

successors at a layer j < λ , or we have found common successor(s) at layer j = λ , i.e.

actual motif(s).

First, we initialize all entries of the Tolerance Array by setting ∆i = 0, ∀i1 ≤ i ≤ n.

As we choose a substring from layer j, we add the number of mismatches between that

substring and τi to ∆i. The values of ∆i are nothing but coordinates on the ρi axis of the

Successor Matrix and help in identifying the candidate successor substrings from layer

j+1 with respect to sequence T i.

If the choice of a substring from layer j fails to generate an actual motif, with a set of

values for entries in the Tolerance Array ∆, then these values are stored in the Minimum

Tolerance Array associated with that substring. If the recursion returns to this substring

during a future traversal, then the values stored in this Minimum Tolerance Array are used

to bound the search by checking against the current values stored in the Tolerance Array.

82



Algorithm 5: Find all actual motifs from eligible candidate motifs

Input : Γ,L,∆, pre f ix, j,n,λ

Output: SUCCESS, FAILURE

RecursiveMotifSearch(Γ,L,∆, pre f ix, j,n,λ ) returnFlag = FAILURE

if ∆i ≤ Γρ [ j][κ].ϑi, ∀i1≤ i≤ n then

if j = λ then

if ∆i ≤ d, ∀i1≤ i≤ n then

Output pre f ix as actual motif, and set returnFlag = SUCCESS

end

end

else

L = FindCommonSuccessors(ρ,κ, j,Γ,∆)

for ι = 1 to |L| do

∆′i = ∆i +H(Lι ,τ
i
j+1) ∀i1≤ i≤ n

ρ ′ = H(Γρ [ j][κ],τ1
j )

Append Γ′ρ [ j+1][Lι ] to pre f ix to generate pre f ix′

f lag = RecursiveMoti f Search(ρ ′,Lι , j+1,Γ,∆′, pre f ix′,n,λ )

if f lag = SUCCESS then
returnFlag = SUCCESS

end

end

end

if returnFlag = FAILURE then

Γρ [ j][κ].ϑi = ∆i, ∀i1≤ i≤ n

end

end

Return returnFlag

83



Algorithm 5: (...contd) Find all actual motifs from eligible candidate motifs

Input : Γ,L,∆, pre f ix,n,λ

Output: All actual motifs occurring in S1,S2, . . .Sn

StartMotifSearch(Φ,Γ,d,n)

Initialize L as an empty list

for ρ = 1 to d do

if |Γρ [1]|> 0 then

for κ = 1 to |Γρ [1]| do

∆i = H(Γρ [1][κ],τ i
1) ∀i1≤ i≤ n

pre f ix = Γρ [1][κ]

Append tuple (ρ,κ) to L

RecursiveMoti f Search(Γ,L,∆, pre f ix, 1,n,λ )

end

end

end

Input : ρ,κ, j,Γ,∆

Output: List of entries in Γρ [ j+1]

FindCommonSuccessors(ρ,κ, j,Γ,∆)

Initialize empty list L

Append κ ′ to L, where κ ′ ∈ Γρ [ j][κ].ζ ∆i ∀i2≤ i≤ n

Return L

84



5.6 Performance Estimation

The AP is expected to be released soon. Hardware design has progressed to the point of

initial prototyping and accurate estimates for fundamental operations and streaming band-

width are available. As the chip is currently unavailable, it is not possible to report experi-

mental results of actual runs conducted on the chip. Despite this limitation, the techniques

presented in this paper are valuable to the community for early exploitation of the AP. In

addition, we can provide accurate and compelling estimates of run-time as described below.

As mentioned earlier, the software ecosystem for the processor is already in place in-

cluding a Software Development Kit, and two programming methodologies – 1) regular

expressions expressed in Perl Compatible Regular Expression (PCRE), or 2) automata ex-

pressed using the language ANML exclusively developed for this purpose, and associate

compilers. No cycle level simulator is currently available, but a simulator that visualizes

the execution of small size automata is available. Even if a cycle level simulator was avail-

able, CPU-based simulations are not feasible for the large problem instances that we have

demonstrated to be solvable on the AP.

First, we verified the programmability of the solution on the chip using the already

developed programming language ANML, and ensured proper compilation. We further

verified accurate execution of components such as the Bounded Mismatch Identification

automaton, as they are within the size allowed by the simulator. We then estimated run-

times based on well established costs for operations like STE label assignment time, au-

tomata load time, streaming rate, and output handling time. We also make pessimistic

assumptions when exact estimates are unavailable or data dependent operations exist in our

code.

Our analysis is presented for an AP board attached to a single CPU through a PCIe

slot. We choose 20 randomly generated DNA sequences of length 600, followed by plant-

ing of a randomly generated motif. We present results for two of the largest challeng-

ing instances in published literature – (25,10) and (26,11) solved on a 48-core system

85



by PMS8 [56] – and demonstrate numerous larger instance that could not be solved yet –

(28,12), (30,13), (32,14), (34,15), (35,16), (36,16), (37,16), (37,17), (38,17), (39,17),

(39,18), and (40,17).

5.6.1 Established run-time Features of the Automata Processor

The AP board has 6 ranks, each having 8 processors. When time on an AP (or rank)

is specified, all 48 processors (or 6 ranks) can operate in parallel, hence the same time

estimate applies for the entire board.

Assignment of labels to all STEs of precompiled automata which span an entire rank

of AP and loading the same takes at most 50 milliseconds. Once the automata is loaded, 6

data flows can be streamed to 6 ranks on the AP board in parallel at the rate of 1 Gbps per

data-flow, for a cumulative data-processing rate of 6 Gbps.

Matching of any reporting STE triggers an output of the state of all reporting STEs. It

takes one clock cycle to record output in an internal buffer but up to 240 AP clock cycles

to transfer the output out of the buffer. During this time, the AP must stall. To mitigate

this, a buffer that can hold 1024 output vectors is provided on the AP. In the ideal case, this

expanded buffer space and infrequent output generation can completely eliminate the stall.

Here, we assume the worst case and charge 240 clock cycles every time an output event is

triggered.

Other considerations include the memory required to store the image to be loaded onto

the AP and STE utilization efficiency when automata is mapped onto the physical processor

chip. The size of an image spanning an entire rank of the AP is about 25 MB.

5.6.2 Execution Time for Finding n-cliques

The maximum number of nodes in the graph G is 20 ∗ 600, realized when no sequence

contains an l-mer repeat. The size of the automaton for each node is (2d +1)l−2d2. All

of these automata do not fit simultaneously into a single AP board. Hence, the board is

reprogrammed in iterations with different subsets of automata. For each iteration, the same

86



Table 2: Estimated run-times using a single AP board for Stage 1: Finding n-cliques, and

actual run-times using a CPU implementation for Stage 2: Searching for motifs consistent

with cliques.

Stage 1 Stage 2

Number of Clique find- Maximum Minimum Average Median

(l,d) nodes per ding time time in time in time in time in

iteration minutes minutes minutes minutes minutes

(25,10) 5737 12.26 0.0037 0.0003 0.00010 0.0008

(26,11) 5243 13.96 0.0138 0.0006 0.00285 0.0021

(28,12) 4537 17.34 0.0631 0.0011 0.01099 0.0068

(30,13) 3965 21.21 0.1672 0.0035 0.04564 0.0328

(32,14) 3495 25.63 0.5766 0.0134 0.13029 0.0775

(34,15) 3104 30.62 6.0824 0.0411 0.86926 0.4541

(35,16) 2917 33.57 41.4650 0.1417 9.14443 5.4058

(36,16) 2776 36.22 16.3369 0.1023 3.49089 1.9229

(37,16) 2647 38.96 33.6622 0.3289 3.06252 1.7130

(37,17) 2618 39.50 116.8098 1.0056 37.58410 30.3302

(38,17) 2497 42.46 112.6668 1.1899 18.44524 7.8159

(39,17) 2386 45.51 52.0210 0.2940 7.37592 3.7162

(39,18) 2362 46.08 1031.6840 6.1580 180.89054 121.6833

(40,17) 2285 48.67 22.9254 0.3317 4.03950 2.3128

87



data-flow is streamed. The execution time can be estimated by computing the number of

times the AP board has to be reprogrammed to fit all the automata. Due to hardware con-

straints, the AP board cannot fully utilize all of its physical STEs. The run-time estimates

assuming a 80% STE utilization efficiency are shown in the second column of Stage 1 in

Table 2.

For our calculation, we make the unrealistic worst case assumption that all nodes sur-

vive all iterations. We divide the number of nodes with the maximum number whose col-

lective automata are programmable on a board, and multiply the run-time by this factor.

The number of buckets and the size of the cliques are fixed for every iteration. The number

of cliques per bucket however is based on the input sequences. We estimate this number

to be 500 per iteration, larger than what published algorithms consider solving [56]. Out-

put is generated only once at the end of the data stream while identifying nodes that will

be retained for the next iteration, whereas it is generated at the end of each clique when

forming cliques for the next iteration. Knowing clique sizes for each iteration and the value

of l, we can precisely estimate the stalls expected due to output. On the CPU side, we

have to update bucket ids and just assign pointers to create a logical data flow for the next

iteration. This can be easily completed while the data flow is being streamed. The time to

find 20-cliques for different (l,d) pairs is given in Table 2. In comparison, the best known

exact algorithm requires 15.5 hours to solve instances of the (25,10) problem on a single

core machine, and 21 minutes and 46.9 hours to solve instances of the (25,10) and (26,11)

problems on a 48-core machine [56].

5.6.3 Execution Time for Motif Discovery from Cliques

In order to evaluate the execution time of identifying motifs consistent with n-cliques, we

simulate the input by creating random n-cliques. For testing an instance of (l,d), first a

motif M of length l is created by randomly choosing letters from the alphabet {a,c,g, t}.

Then, each sequence corresponding to a node in the clique is randomly generated having

88



length l and between d−3 and d mismatches with M. The location of the mismatches and

the characters at those locations are also randomly chosen. The algorithm is presented with

the n sequences, l,d and r = 4. At the end of the execution, we test whether M is one of

the reported motifs and if all other reported motifs are indeed actual motifs.

We ran the test on a single quad-core Intel(R) Core(TM) i5-3570 processor, running at

3.4 GHz and with 8 GB of main memory. The algorithm is embarrassingly parallel and

OpenMP was used to run the code in parallel on all the cores. For each value of (l,d), we

ran the tests on 50 different cliques. As expected the execution time varied widely based on

the input clique. The maximum, minimum, average and median execution times in minutes

are presented in Table 2.

5.7 Summary

The AP can be programmed to identify thousands of patterns present in a data stream in

parallel. We used this capability to develop an exact algorithm for solving the Planted Motif

Search problem and the Quorum Planted Motif Search Problem. Along with demonstrating

the capability to solve large instances of this problem quickly, when compared to the state

of the art, this application showed that one can cast graph problems into string pattern-

matching problems which can then be accelerated using the AP. This laid the foundation

for solving other graph problems using the AP which we shall see in the upcoming chapters.

89



Chapter VI

SOLVING GRAPH PROBLEMS - I

In the last chapter, we looked at the first non-intuitive use of the AP, to solve a a graph

problem. In this chapter, and the next, we continue to look at similar problems using

unweighted graphs.

First, we look at problems where the input itself is not a graph, but is transformed

into one by the algorithm. The planted motif search problem discussed in the last chapter

falls under this category. The input is a bunch of sequences, subsequences of which are

represented as nodes in a graph. A condition is provided for the existence of an edge

between two nodes, but the edges themselves are not provided. The objective is to find a set

of nodes which are all connected to one another, i.e. a clique. In general, we can classify

these problems discovery of edges in a specialized graph, such that all the connectivity

constraints of an output graph structure are satisfied. We will discuss the speciality of the

graph momentarily.

In the next chapter, we look at problems where the edges are already part of the input.

Therefore, edge discovery is not part of the problem. In fact, the automata are designed

on the basis of the edges in the graph, and are called edge-automata. The design of the

automata is such that primary challenge of programming any generic graph quickly and

efficiently into the AP is overcome. Using these automata, some fundamental algorithmic

techniques have been developed to organize the edges (and hence the nodes) in the input

graph into output graph structures such as search-trees, acyclic paths, etc.

6.1 Background

In the last chapter, we solved the problem of finding the largest clique in a specialized input

graph. The speciality of the graph is that its nodes are distributed into disjoint partitions,

90



wherein no two nodes from the same partition are connected to each other. In an input

graph with n partitions, the problem is to find all cliques of size n. If such a clique is

present, then it must be a maximal clique in the graph. This is because each node in any

clique in the graph must be drawn from a separate partition in the graph, and hence the size

of the largest clique can only grow till n. In this chapter, we discuss another problem which

reduces to the same problem.

6.1.1 Boolean Satisfiability (SAT) Problem

The boolean satisfiability (SAT) problem is the first known NP-complete problem. In fact,

it lies at the very basis of the definition [18, 43] of this class of problems. It finds use

in a wide variety of real world problems [51] such as digital circuit design, term-rewrite

systems, model-checking, artificial intelligence, haplotype inference, etc.

This well-known decision problem deals with determining whether a boolean formula

made up of boolean variables x1,x2, . . .xm is satisfiable (evaluates to T RUE) for any as-

signment of values to the variables. In its Conjunctive Normal Form (CNF), the formula is

structured as conjunction (AND, denoted as ∧) of clauses. Each clause is demarcated using

a pair of parentheses and is made up of disjunction (OR, denoted by ∨) of variables. Each

variable xi can be present as itself, called a positive literal, or its negation (NOT, denoted

as ¬). In the latter case, ¬xi is called a negative literal. For example, the boolean formula

(x∨ y)∧ (¬x∨¬y)∧ (x∨¬y), is satisfiable by assigning the values of T RUE and FALSE

to variables x and y respectively, as (T RUE ∨FALSE)∧ (¬T RUE ∨¬FALSE)∧ (T RUE ∨

¬FALSE) evaluates to T RUE.

The SAT problem can be solved by reducing it to the maximal clique finding problem.

For example, the boolean formula discussed above can be transformed into the graph shown

in Figure 34. Every clause in the boolean formula is expressed as a partition in the graph.

Every literal in the clause is denoted as a node in the partition. An undirected edge is drawn

between two nodes only if they belong to two different partitions and the conjunction of

91



the literals they represent, is satisfiable. For example, an edge is drawn between nodes

representing x and ¬y because x∧¬y is satisfied with the assignment of x = T RUE and

y = FALSE. On the other hand, no edge is drawn between nodes representing x and ¬x

because x∧¬x is not satisfiable for any value of x.

¬y ¬x 

x y 

x ¬y

Figure 34: Boolean formula (x∨y)∧(¬x∨¬y)∧(x∨¬y) reduced to maximal clique finding

problem.

If the number of clauses in the formula is n, then it can be proven that if the graph has

an n-clique, then the boolean formula is satisfiable. This is because, the nodes in a clique

represent literals from different clauses which can be mutually satisfied. Since a clique of

size n must draw one node from each partition of the graph corresponding to one literal

from each clause in the formula, mutual satisfiability of all the literals leads to the mutual

satisfiability of all the clauses, and hence the entire formula.

Each clique may contain either the positive or the negative literal of a variable. If the

positive literal is present, then the variable should be assigned the value of T RUE in the

solution. Otherwise, it should be assigned the value of FALSE. If neither the positive nor

the negative literal of the variable is present in the clique, then both values can be assigned

to the variable in the solution. For example, for the graph shown in Figure 34, nodes and

edges of an n-clique are outlined in dark circles and bold lines respectively. Since the

clique contains the literals x and ¬y, the assignment of the values T RUE and FALSE to the

variables x and y respectively provides a solution to the formula.

92



Many solvers exist for the SAT problem. However, the performance of all of them

degrades to exponential time in the worst cases. For example, in 2011, at the annual In-

ternational SAT Solver Competition, the smallest instance of the problem which could not

be solved by any solver within the stipulated time (of 5000 seconds) contained only 141

variables, 292 clauses, and 876 literals [42]. On the other hand, the biggest instance which

was solved by at least one solver contained 10 million variables, 32 million clauses and 76

million literals. Our solution does not compete with these solutions, rather compliments

them to solve small-sized but hard to compute instances.

Our method finds all the n-cliques in the graph simultaneously. Therefore, it natu-

rally solves the UNSAT problem, which is an NP-hard problem that answers the question

whether a boolean formula is not satisfiable for any possible assignment of values to its

variables. This is because, corresponding to every possible assignment for which the for-

mula is satisfied, there is an n-clique in the graph. This can be proven as follows. For

every satisfiable assignment, at least one literal from each clause is satisfied. Also, none

of these literals are complementary to one another. Therefore, the nodes corresponding to

the literals in the graph are mutually connected to one another forming an n-clique. Thus,

if our method does not find any n-cliques in the graph, then the formula does not have any

satisfiable assignment.

6.1.2 Modified Requirement Specification

We have already solved the problem of finding n-cliques in an n-partitioned graph in the

MOTOMATA application. However that solution does not provide a viable solver for the

SAT problem because of the following differences.

First of all, in MOTOMATA nodes represented strings, but in the SAT problem, we

have to define string labels for all literals in the boolean formula. This is described in

Section 6.2.2.

Second, the criteria for the existence of an edge is different in both the applications. In

93



MOTOMATA, an edge represents two subsequences which have up to a fixed Hamming

distance between them. On the other hand, an edge in the SAT problem represents two

literals which are not complementary. Two literals are called complementary if they are the

positive and negative literals of the same variable. Therefore, the automata must also be

redesigned. Although, the overall design principles are the same, the automata for the SAT

problem are significantly smaller. This is described in Section 6.2.2.

Finally, the number of partitions in the graph and the number of nodes in partition are

significantly different for both the problems. In the planted motif search problem which

MOTOMATA solves, the number of partitions and the number of nodes per partition are

20 and 600 respectively for the benchmark application. In the SAT problem, the number

of partitions is expected to be much higher, while the number of nodes per partition is

expected to be much smaller.

In MOTOMATA, the nodes are programmed as automata, and the cliques are streamed.

In each iteration, many nodes are pruned away, and the remaining nodes are combined with

the cliques to increment their size by one for the next iteration. Starting with cliques of size

one (nodes themselves), this method requires n−1 iterations to find all the n-cliques in the

graph.

At iteration i, the cliques from the same set of i partitions are organized into a bucket.

Therefore, there are
(n

i

)
buckets in iteration i. Cumulatively, the total number of buckets

streamed in the n−1 iterations is
(n

1

)
+
(n

2

)
+ . . .+

( n
n−1

)
= 2n−

(n
0

)
−
(n

n

)
= 2n−2. Since

we assume that the average number of cliques per bucket over all the iterations is 500

(far above all competing solutions), the number of cliques to be streamed over the entire

process is O(2n). This makes the run-time of MOTOMATA exponential in n. Although,

this is manageable for the planted motif search problem where n = 20, this is not a viable

solution for the SAT problem where the value of n is typically much larger.

94



6.1.3 Overview of Changes

Our method solves instances of the SAT problem where the number of variables is at most

256. The number of literals and clauses in the formula can be much larger. In the new

solution, we limit the number of iterations required to reach the solution to dlog ne by de-

signing compact clique-automata which can be used to combine cliques with cliques, thus

doubling their size in every iteration. This was not possible in the case of MOTOMATA as

the design of such compact clique-automata was not feasible for that application.

The other modification is the reduction in the number of cliques handled in every itera-

tion. In MOTOMATA, in iteration i, i-cliques from all possible combination of i partitions

in the graph were streamed. This allowed us to prune the nodes in the graph more aggres-

sively and provide a solution to the more generic quorum motif search problem. However,

this method has to handle a large number of cliques. We limit this in our new algorithm by

dividing the partitions into disjoint sets. Then, cliques from one partition is combined with

the cliques from only one other partition leading to significantly less processing time.

6.2 Methodology

Let G denote the graph generated by transforming the boolean formula and P1,P2, . . . ,Pn

denote the partitions in G. Two cliques C1 and C2 are called neighboring if every node in

C1 is adjacent to every node in C2. The nodes in two neighboring cliques can be simply

combined to generate a larger clique. We have the following two observations.

Observation 6. If an n-clique exists in G, then P1,P2, . . . ,Pdn/2e contains a dn/2e-clique

and Pdn/2e+1,Pdn/2e+2, . . . ,Pn contains a bn/2c-clique.

Proof. If C is an n-clique in G, then it contains a node from each partition in G. The nodes

in C from P1,P2, . . . ,Pdn/2e are all mutually adjacent to each other, and hence form a dn/2e-

clique. Similarly, the nodes in C from Pdn/2e+1,Pdn/2e+2, . . . ,Pn are mutually adjacent to

each other and form a bn/2c-clique.

95



Observation 7. If C1 is a subclique of an n-clique C made of nodes drawn from parti-

tions P1,P2, . . . ,Pdn/2e, and C2 is a subclique of C made of nodes drawn from partitions

Pdn/2e+1,Pdn/2e+2, . . . ,Pn, then C1 and C2 are neighboring cliques.

Proof. For every node u1 ∈C1 and u2 ∈C2, {u1,u2} ∈C. Therefore, u1 must connected to

u2, and C1 and C2 must be neighboring cliques.

6.2.1 Overview of the Algorithm

Using the above observations, Algorithm 6 works by calling the function RecursiveSAT

with all the partitions in G. It recursively divides the problem into two parts: finding all

dn/2e-cliques in P1,P2, . . . ,Pdn/2e and all bn/2c-cliques in Pdn/2e+1,Pdn/2e+2, . . . ,Pn. Cliques

of size n are then generated by combining cliques from the first part which are neighboring

to the cliques from the second part. The recursion stops, when the function is called with a

single partition, in which case, all nodes in the partition are returned as 1-cliques. At any

stage, if no dn/2e-cliques are present in the first part, or no bn/2c-cliques are present in the

second part, the functions outputs that there are no n-cliques in the graph and quits.

The identification of cliques from P1,P2, . . . ,Pdn/2e which can be combined with cliques

from Pdn/2e+1,Pdn/2e+2, . . . ,Pn is accelerated using the AP. In order to compute this, each

clique from P1,P2, . . . ,Pdn/2e is programmed as a clique automaton, and all cliques from

Pdn/2e+1, Pdn/2e+2, . . . ,Pn are streamed. Since the size of the clique-automaton is quite

small, a large number of automata can be executed in parallel to identify cliques from

P1,P2, . . . ,Pdn/2e which are neighboring to a clique being streamed.

6.2.2 Automata Design

In order to generate the string representation of the graph, each node in the graph is assigned

a string label which can then be parsed using automata. This is done on the basis of the

literal that the node represents. Each variable in the formula is assigned an unique integer

id between 0 and m−1. Each literal in the formula is then represented by a two-byte string

96



Algorithm 6: Recursive algorithm to find n-cliques in graph G.

Input : P1,P2, . . . ,Pk

Output: List of all k-cliques in P1,P2, . . . ,Pk

RecursiveSAT (P1,P2, . . . ,Pk)

if k = 1 then

Return all nodes in P1 as 1-cliques

end

else

Calculate k′ = dk/2e

{Identify all dk/2e-clique in the first part.}

L1 = RecursiveSAT (P1,P2, . . . ,Pk′)

{Identify all bk/2c-clique in the second part.}

L2 = RecursiveSAT (Pk′+1,Pk′+2, . . . ,Pk)

if L1 or L2 is empty then

Stop and report no cliques.

end

else
L3 = List k-cliques generated by combining cliques C1 ∈ L1 and C2 ∈ L2,

where C1 and C2 are neighboring cliques

Return L3

end

end

97



label. The first byte in the string label of a positive literal is set to 0, whereas in the case of a

negative literal, it is set to 1. The second byte is set to the id of the corresponding variable.

The data-flow is created for every recursive call using the cliques in list L2. The data-

flow contains a sequence of cliques in the list separated by a one-byte delimiter set to 255.

The string labels of the nodes within a clique are simply concatenated one after the other.

A simple clique automaton is shown in Figure 35. The literals corresponding to nodes

in a clique C are used to generate the labels of ST E2 and ST E4. For short, we write

xi ∈ C, if C contains a node corresponding to literal xi. Similarly, we write ¬x j ∈ C, if

node corresponding to literal ¬x j is in C. X and Y are two lists of variable ids such that

X = {i;∀xi ∈C} and Y = { j;∀¬x j ∈C}.

255

STE4

1

STE3

STE2

STE5

STE1

0 ^{Y}

^{X}

Figure 35: Clique-automaton.

ST E1 and ST E2 are used to match the string label of a node corresponding to any

positive literal in clique being streamed, namely Cs. ST E2 activates ST E1 and ST E3 if the

literal is not complementary to any negative literal ¬x j ∈C. Similarly, ST E3 and ST E4 are

used to match the string label of a node corresponding to any negative literal in Cs. ST E4

activates ST E1 and ST E3 if the literal is not complementary to any positive literal xi ∈C.

As long as no string labels in Cs are encountered which belongs to a literal complemen-

tary to any literal in C, ST E1 and ST E3 are activated by either ST E2 or ST E4 to check the

next string label. If the string labels of all the nodes in Cs are non-complementary to all of

the literals in C, then ST E5 matches the delimiter streamed at the end of streaming Cs, and

an output is generated. This signifies that C and Cs are neigboring cliques and should be

combined to generate a larger clique.

98



The combined clique is maintained on the CPU. The automata for the combined clique

differs from that of C in only the labels of ST E2 and ST E4. The new labels of ST E2 and

ST E4 can be generated by adding the variable ids of negative literals in Cs to Y , and that of

the positive literals in Cs to X .

6.2.3 Macro Design

The automaton for all cliques in the algorithm differ only in the labels of ST E2 and ST E4.

Therefore, such an automaton is amenable to be defined as a macro. However, whenever

a macro is pre-compiled it is mapped to complete logical-row(s) of an AP-chip. That is,

at the time of loading this macro, only a mapping of the logical-rows in the pre-compiled

image to the physical rows in the AP-chip has to be completed. Therefore, macro for a

single clique requiring only five STEs is compiled and mapped to 16 physical STEs.

A more efficient macro design encapsulates automata for three cliques into a single

macro as shown in Figure 36. Parameters p2, p6 and p10 correspond to list Y of the first,

second and third cliques respectively. Similarly, parameters p4, p8 and p12 capture list X

of the first, second and third cliques respectively. Parameters p1, p5 and p9 are set to 0,

whereas p3, p7 and p11 are set to 1.

255

STE4

p3

STE3

STE2

STE5

STE1

p1 p2

p4

255

STE9

p7

STE8

STE7

STE10

STE6

p5 p6

p8

255

STE14STE13

STE12

STE15

STE11

p9 p10

p12p11

Figure 36: Programming three cliques as a macro.

If the number of cliques is not a multiple of the three, then one of the macros does not

have three cliques left to be programmed. Without loss of generality, let us consider the

case where there are only two cliques left to be programmed. In such a case p9 and p10

are set to 255. Therefore, STEs for the third automaton are deactivated after processing the

99



very first symbol of the data-flow.

6.3 Performance Analysis

The actual run-time of the application depends on the instance of the problem being solved.

As this run-time cannot be simulated easily, we have with-held the analysis of the actual

run-times till the processor becomes available in a few months time. However, in this

section we provide the motivation for carrying out this exercise whenever the hardware

becomes ready.

The number of times the AP board needs to be reprogrammed is based on the number

of recursive calls made by the algorithm which is ≈ n. Note that if the number of cliques

to be programmed is larger than what can be fit inside the AP board at any given time, the

cliques have to be divided into groups and programmed iteratively. This would lead to an

increase in the total number of times the AP board needs to be programmed. None the less,

programming of the AP board merely requires relabelling the STEs of the pre-compiled

macros and loading them into the AP chips.

In every recursive function call, every literal in a clique being streamed is checked

against every literal in all cliques programmed into the AP board in parallel. At any given

time, each row in an AP chip can fit three cliques, giving rise to 9,216 cliques per chip, and

442,368 cliques per AP board (with 48 chips). If the programmed cliques are drawn from

k partitions, the speed-up reaches 442,368×k times. This number is very significant when

k equals dn/2e, dn/4e, etc. If this acceleration is summed over all recursive calls in the

algorithm, the speed-up can be written as 442,368× (dn/2e+2×dn/4e+4×dn/8e · · ·+

1)≈ 442,368× (n/2)log n times.

Although the process of identifying cliques to be merged on the AP, and the process of

combining those cliques on the CPU, can be pipelined, the latter is expected to become a

severe bottleneck in the face of the significant acceleration provided by the former. There-

fore, ways to parallelize the CPU operations needs to be investigated further.

100



Some fine tuning can also be done for function calls when the number of cliques to be

programmed into the AP is not significant. This can happen at the deepest levels of recur-

sion, where the value of k is very small, i.e. k-cliques are drawn from a very small number

of partitions. For example, at the deepest level, k = 1 and 1-cliques (nodes) from one par-

tition are checked against 1-cliques (nodes) from another. Since the expected number of

nodes per partition is typically not high, the cost of programming the AP with 1-cliques

may be higher than simply carrying out the operations on the CPU itself. Therefore, a

small cost-benefit analysis may be carried out before programming the AP with cliques

especially for function calls where the value of k is very small.

6.4 Summary

SAT is a well-studied problem which is used in various fields of computing. Although, a

wide variety of such algorithms and applications are available to solve this NP-complete

problem, there are relatively small instances of the problem which remain unsolved. We

have proposed a method to accelerate the search for solutions to such instances of the

problem using the AP.

The SAT problem can be reduced to the problem of finding an n-clique in an n-partitioned

graph, a problem that we had already solved in MOTOMATA. However, the differences in

the characteristics of the input make the MOTOMATA solution non-viable as a SAT solver.

In our new method, we have significantly reduced the number of iterations required to

reach the solution, and the number of cliques streamed per iteration. This is done by neatly

dividing the partitions in the graph into non-overlapping parts using recursion and then

considering cliques from only these parts. The cliques from one part are combined with

cliques of only one other part to generate larger cliques which are twice the original size.

All these improvements have the potential to deliver significant acceleration using the AP,

whenever the hardware becomes available.

101



Chapter VII

SOLVING GRAPH PROBLEMS - II

In the last chapter, we looked at providing a SAT solver which reduces the problem to

finding a clique in the graph using the AP. However, the transformation of the input boolean

formula to the graph gives a fixed structure to the graph i.e. the nodes in the graph are

organized into partitions and the string representation of nodes in the graph can be derived

from the input. More importantly, the edges of the graph are not available as part of input,

but discovered over the course of building the solution. A similar problem was solved for

MOTOMATA in Chapter 5. In both these problems, the discovery of edges in the graph to

satisfy the connectivity constraints of the output graph structure, namely a clique, serves as

the primary computational challenge.

In contrast, this chapter deals with problems in any generic unweighted graphs. The

nodes and edges in this graph are part of the input. The primary computational challenge is

to arrange the nodes and edges in the input graph into specific graph derived output struc-

tures like a set of acyclic paths and shortest path trees. Using the former technique, we

provide algorithms for identifying all Hamiltonian paths and cycles in a graph. Using the

latter technique, we provide algorithms for finding single-source shortest paths and con-

nected components in a graph. The algorithmic techniques we present are foundational for

providing streaming solutions to a wide variety of graph problems using the AP, especially

when exploiting data-locality is difficult.

The following transformations are imperative for solving graph problems on the Au-

tomata Processor. First, the nodes and edges in the graph must be represented using strings

which can be streamed to the co-processor. Second, the graph problem must be converted

into a string-pattern matching problem which can be evaluated using automata over the

102



streaming data. We achieve these by defining fundamental techniques to (1) Represent

nodes and edges of a generic graph using strings, and (2) Create efficient automata which

can be used to solve a variety of graph problems.

7.1 Preliminaries

7.1.1 Representing A Generic Graph Using Strings

Let G = (V,E) be the input graph where |V |= n. We assign each node a unique integer id

between 0 and n−1. The string label of a node is obtained by converting its integer id to its

base-256 representation. We then treat this as a string over the alphabet {0 . . .255}. This is

because the AP can only process strings over an alphabet size of 256, containing symbols

0 through 255. A directed edge is represented as the concatenation of the string labels

of its source and destination nodes. An undirected edge is represented using two directed

edges in opposite directions. A path is represented by the concatenation of the string labels

of the nodes along the path. Figure 37 shows the string labels of nodes and edges in an

example directed graph with four nodes. The path 0→ 2→ 3→ 1 is represented by the

string 0 2 3 1.

23

123130

01

3 2

10
02

Figure 37: String labels of nodes and edges in a graph.

7.1.2 Automata Design

There is a gap between the elegant theoretical model supported by the AP and what can

be supported efficiently in practice. To address this gap, we should design automata which

is architecture-aware, and easier/faster to compile and execute. Such automata designs

are generally built using basic building blocks. One advantage of developing algorithmic

103



building blocks and optimizing automata is to alleviate the need for future users to invest

in this difficult exercise. Care should be taken in creating automata designs that exhibit as

much generality as possible.

7.1.2.1 General Guidelines

1. Architecture-aware Automata: In principle, the AP can support any ANML-NFA

as long as the number of STEs fit within half of the resources of a single AP chip. In

practice, however, the routing network is not an all-to-all connection between all the

physical STEs on the chip. Instead, the STEs in the AP are arranged hierarchically

into rows, blocks, half-cores and cores, with increasingly limited routing capacity

between them. This has been discussed in detail in Section 3.6.3 of chapter 3. When

mapping STEs and connections in the ANML-NFA to physical STEs and routing

lines on the chip, the routing constraints have to be satisfied. This can cause some

of the physical STEs to be ‘left-out’ for lack of ability to support the required con-

nectivity. Therefore, usage of large and highly-connected automata generally causes

poor STE utilization. However, if a large automaton consists of small regions of

highly interconnected STEs which can fit inside a single row of physical STEs, but

sparsely connected to the rest of the automaton, then such an automaton can map ef-

ficiently onto the physical hardware. This will become more clear when we discuss

our automata designs in the following sections.

2. Modular Design Using Macros: Part or whole of an ANML automata can be de-

signed using macros. As discussed earlier, this has dual advantage. Firstly, the

macros can be used as modular parts in future automata. Secondly, the labels of

the STEs in a macro can be parameterized and the macro can be pre-built to be

loaded at run-time with minimum overhead. Compilation of an ANML-macro gen-

erates a mapping to the processing elements and routing lines of the nearest multiple

of complete rows in the AP chip. At run-time, multiple instances of the macro can

104



be created with different values for parameters and loaded into the AP. This process

only requires the compiler to map instances of the macros to different rows of the

AP-chip. This can be computed at a much faster rate. In fact, the time required for

this compilation is lower than the time required to load the instances into the AP.

3. Avoiding Frequent Reprogramming: Reprogramming an AP board consists of

generating new automata, compiling these new automata and loading the result into

the AP-board. This can incur significant overhead, and therefore should be used ju-

diciously. Here a distinction should be made between reprogramming the board and

relabeling the STEs of already loaded automata. The latter can be done significantly

faster, within a few milliseconds.

4. Avoiding Frequent Output Generation: As discussed in Section 3.6.2 of Chapter 3,

the processing of output in a symbol-cycle is much slower than the input. Therefore,

if the output is generated too often, the output-buffer fills up stalling the entire pro-

cessing pipeline. The design of automata and algorithms should take cognizance of

this aspect.

7.2 Finding Acyclic Paths in Graphs

In this section, we present automata and algorithms we designed to find a set of acyclic

paths in a graph that satisfy a specific criterion (e.g., all paths of length k, all paths of

length up to k, all paths containing a specific node, etc.). Our algorithmic strategy relies

on the string representation of the graph described above. These automata and algorithms

are leveraged to solve the problem of finding Hamiltonian paths and cycles in a graph.

Subsequently, we illustrate optimization techniques for extracting maximum performance

from the AP.

105



7.2.1 Overview Of The Algorithm

We find acyclic paths in a graph by programming the AP to contain edge automata, and

streaming partially constructed paths to extend their length. Partially constructed paths are

maintained on the CPU and the extension of these paths are calculated with the aid of the

AP. The length of a path is defined as the number of nodes contained in the path. Let u ∈V

be the source node from which acyclic paths have to be found. We consider all outgoing

edges of u as partially constructed paths of length 2 for the first iteration. Thereafter,

in iteration i, paths of length i+ 1 are streamed through the AP programmed with edge

automata to create paths of length i+2 for the next iteration.

A path is extended by finding an edge whose source node is the last node on the path,

and whose destination node does not occur anywhere in the path. The latter requirement

enforces the acyclic property. The edge automaton is designed to reach an accept state

if a streamed path satisfies these properties with respect to the edge represented by the

automaton. If a path cannot be extended in an iteration, it is dropped from consideration

in future iterations. The paths obtained after running the algorithm for n−2 iterations are

declared as Hamiltonian paths which originate from the source node. Figure 38b illustrates

our strategy for finding Hamiltonian paths starting from node 0 of the graph shown in

Figure 37.

7.2.2 Basic Path Extension Edge Automaton

We use dlog256 2ne length strings to represent a graph with n nodes. We describe a string

using space separated characters, such as 212 005 137 079 145. We reserve strings starting

with the character 255 for representing special strings called delimiters, and hence they

are not available for representing graph nodes. Throughout the paper, we demonstrate au-

tomata designs by considering graphs whose nodes are represented using strings of length

4, or equivalently, graphs with 223 < n≤ 231 nodes. Note this represents a range of approx-

imately 8 million to 2 billion nodes which encompasses most large-scale graphs. Let (u,v)

106



23

123130

01

3 2

10
02

(a)

Iter. 1⇒ In: 01, 02; Out: 012, 023

Edge automata 01 12 23 30 02 31

Matched path >01 >02

Iter. 2⇒ In: 012, 023; Out: 0123, 0231

Edge automata 01 12 23 30 02 31

Matched path >012 >023(X) >023

(b)

Figure 38: Iterative search for Hamiltonian paths starting at node 0. In iteration 2, the path

with string label 023 is marked with an X because extending it with edge with string label

30 generates a cycle, hence is not reported in output.

denote an edge, where the string labels of u and v are 121 144 169 196 and 251 233 227 211,

respectively. The edge automaton corresponding to the edge (u,v) is shown in Figure 39.

^{251,
255}

**

STE10 STE11STE9

**

*
STE12 STE13 STE14

STE8

STE7STE6STE5

STE3STE2STE1 STE4 STE17STE16STE15 STE18 STE19

^255

^233255 255 255 255 255^227 ^211 121 144 169 196

Figure 39: Basic path extension edge automaton for edge (121 144 169 196 ,

251 233 227 211).

The automaton works as follows. The end-of-path delimiter, 255 255 255 255 is used

to mark the end of a path. ST E5 and ST E8 are active at the beginning of every path in the

data flow. They are active at the beginning of the first path by virtue of being start-of-data

STEs (indicated in the diagram by arrowhead pointing to the STE). They are made active

at the beginning of the rest of the paths in the data flow by ST E4. ST E1 through ST E4

107



attempt to match the end-of-path delimiter at every offset in the data flow. This is realized

by making ST E1 as an all-input-start STE (indicated in the diagram by a filled arrowhead

pointing to the STE) which is active on every symbol of the data flow. Note that the end-of-

path delimiter cannot be confused with any four-byte sequence in the data flow containing

the suffix of one string label and the prefix of another.

Within a path, ST E5 through ST E14 are used to verify that the string label of v is

not matched by the string label of any node in the path being streamed. This is done by

ensuring that the string label of every node in the path differs from the string label of v in

at least one character. ST E8, ST E9, ST E10 and ST E11 check for difference in the first,

second, third and fourth characters, respectively. If ST E11 or ST E14 are matched at the

fourth character, then ST E5 and ST E8 are activated to check the string label of the next

node in the path. ST E11 and ST E14 also activate ST E15 to allow ST E15 through ST E18

to check for the string label of node u in the path. If none of the string labels of nodes in

the path matches the string label of v, and the the string label of u appears at the end of

the path, i.e., it is followed by the end-of-path delimiter, then a match report is generated.

Here, ST E19 is used to check the first symbol of the end-of-path delimiter only, because it

is different from the first symbol of the string label of every node in the graph.

7.2.3 Path Extension Edge Automata

7.2.3.1 Basic Edge Macro

The edge automata for different edges differ only in the labels of ST E8 through ST E11,

and ST E15 through ST E18. This observation allows us to define and compile the edge

automaton as a macro shown in Figure 40. Recall that macros can be compiled offline to

yield a significant reduction in overhead. An instance of the macro is created for every edge

(u,v) ∈ E. Parameters p1 through p4 are used to encode the string label of node v, and p5

through p8 to encode the string label of node u. For our example edge, the parameter values

are: p1 =ˆ{251,255}, p2 =ˆ233, p3 =ˆ227, p4 =ˆ211, p5 = 121, p6 = 144, p7 = 169,

and p8 = 196.

108



p5 p8p6 p7

**

STE10 STE11STE9

p4

**

p3p2

*
STE12 STE13 STE14

STE8

STE7STE6STE5

STE3STE2STE1 STE4 STE17STE16STE15 STE18 STE19

^255

p1255 255 255 255 255

Figure 40: Basic edge macro for extending acyclic paths.

7.2.3.2 Multiple Edge Macro

The basic edge macro shown in Figure 40 and described above is not efficient in terms

of resource utilization. Recall that each macro is compiled to the nearest multiple of a

physical row in the AP chip. The basic macro has 19 STEs, which when compiled is

mapped to two rows containing 16 STEs each. This is only about a 59% utilization. The

resource utilization can be enhanced by combining up to four incoming edges incident to

the same node v into a single macro as shown in Figure 41a. The macro saves the total

number of STEs needed by using a single STE path corresponding to node v for all four

edges, and in addition brings the total number of STEs much closer to a multiple of 16

to result in 97% resource utilization. The incoming edges into a node v are grouped into

macros of size four, with the last group possibly containing fewer than 4 edges. To use

the same topology even for the last group, the string label 255 255 255 254 is used as the

source node to add additional non-existent edges to make the total a multiple of four.

The optimizations we incorporated into the design of the multiple edge macro are de-

scribed below.

1. Avoiding routing bottleneck: The resource utilization in the AP is constrained by

the available physical routing lines. As discussed earlier, STEs within a row can

be directly connected to each other. However, connections between elements from

different rows use up block routing lines, of which there are only 24 per 16 rows

109



in a block, i.e., on average three lines per two rows. In our multiple edge macro

shown in Figure 41a, both the constituent macros, namely the cycle check macro and

the end match macro fit inside a single row each. Under this condition, the number

of block routing lines required by the complete macro is obtained by counting the

number of outgoing ports of the constituent macros. This number for the multiple

edge macro is three. Therefore, the routing lines do not form a bottleneck towards

resource utilization.

2. Minimizing redundancy: Notice that a single reporting STE is shared by the four

edges programmed in a multiple edge macro. Therefore, this STE cannot identify the

specific edge for which the macro reports an output. However, recall that every edge

in the macro has a distinct source node, and for an edge to extend a path, its source

node must be identical to the end node of the path. Therefore, this node can be used

p4

p5 p6
STE17

p13

p9 p10

p8p7 255

STE18 STE19 STE20

STE23STE22STE21 STE24

STE27STE26STE25 STE28

STE31STE30STE29 STE32

p11 p12

p14 p15 p16

p17 p18 p19 p20

End Check Macro

255 p1

**

STE10 STE11STE9

255

**

p3p2

*
255 255

STE12 STE13 STE14

STE8

STE7STE6STE5

STE3STE2STE1 STE4

STE15

Cycle Check Macro

^255

(a) Path extension multiple edge macro to handle up to four edges.

2

1

3
4

(b) Shorthand notation for end check macro.

Figure 41: Path extension multiple edge macro.

110



to uniquely identify the edge.

3. Optimizing output generation: Generating output at the end of each path allows the

interleaving of operations on the CPU and the co-processor. However, this scheme

may result in frequent output generation events when the length of the paths is small.

Therefore, we propose to calculate partial paths of length up to 64 (256 symbols) on

the CPU and continue the extension of these paths on the AP.

4. Minimizing run-time overhead: Even before the input graph is provided, multiple

instances of the macro which fill up the entire AP board with dummy values for

parameters can be compiled and kept ready for loading. This eliminates the need for

the compiler to even place macros at run-time. Instead, only new labels need to be

generated based on the edges in the input graph and loaded into the AP. As described

in Section 7.1, this operation can be completed in a matter of a few milliseconds.

7.2.4 Applications

The algorithm and automata developed for finding acyclic paths, described in the preceding

subsections, can be used to solve multiple graph problems of significance.

Finding Hamiltonian Paths From A Single Node The solution for finding Hamiltonian

paths originating from a single node follows directly. We begin with outgoing edges from

the node as the initial set of paths. If a path cannot be extended by any edge in an iteration,

then the path is dropped from consideration for future iterations. If none of the paths can

be extended in any given iteration, then no Hamiltonian path exists starting at node u. All

paths remaining at the end of n−2 iterations are Hamiltonian paths starting at u.

Finding All Hamiltonian Cycles All Hamiltonian cycles in G must pass through node u.

Therefore, our method to find all Hamiltonian paths originating from node u can be easily

extended to find all Hamiltonian cycles in G as follows. Let H be a Hamiltonian path in G

111



originating in node u and terminating in node v. Then, H is a part of a Hamiltonian cycle if

and only if the edge (v,u) ∈ E.

Finding All Hamiltonian Paths Let G′ be the graph obtained by adding an extra node

u′ to G, and connecting it to all the nodes in G, i.e., let G′ = (V ′,E ′), where V ′ =V
⋃
{u′}

and E ′ = E
⋃
{(u′,u) : ∀u ∈V}. Find all Hamiltonian paths in G′ that originate at u′ as per

the algorithm described earlier. Removal of the first edge from the paths found will result

in all Hamiltonian paths for G.

The number of iterations necessary to solve the Hamiltonian path problems can be cut

down in half by searching for edge extensions at both ends of the paths. This requires

incorporating additional considerations into the design of the algorithms and automata. We

do not discuss the associated details in this paper owing to space constraints.

7.2.5 Heuristics For Pruning Search Space

Finding Hamiltonian paths and cycles are known to be NP-complete problems. Various

heuristics have been proposed over the years to prune the search space, while the worst-

case remains exponential. Since our algorithms are also based on storing and extending

paths, they can leverage the existing wealth of knowledge related to heuristically pruning

the search space. For example, all the edges in the graph need not be programmed and

some of the extensions can be trivially calculated on the CPU itself. This is because some

edges must be present in all and others cannot be present in any Hamiltonian path/cycle in

a graph [63]. Extension/dropping of paths when they reach these edges can be done on the

CPU itself.

7.2.6 Job Partitioning

Even with the most optimized design, the automata corresponding to all the edges in a large

graph cannot fit inside an AP board at a given time. We define the edge-packing ratio as the

number of edges that can be programmed into a single row of the AP chip. In the automata

112



discussed so far, the best edge-packing ratio is obtained for the multiple edge macro where

four edges can be programmed into two rows, giving rise to an edge-packing ratio of 2:1.

This allows us to fit 6,144 edges in the 3,072 rows available in an AP chip. In the largest

AP board containing 48 AP chips, the number of edges that can be programmed at any

given time is 294,912. For graphs with a larger edge-count, we need to partition the edges

and handle them in rounds.

This can be used for better job partitioning by matching source nodes to edges to end

nodes of paths. Automata for the edges with the same source nodes are programmed onto

the same AP chip(s) and in the same round(s). Similarly, paths are organized on the basis

of their end nodes and streamed only in the round(s) and to the chip(s) where the edge

automata containing the same nodes as source are programmed.

7.2.7 Estimating Speed-up

Using the AP, investigation of all possible extensions of a partial path ending in node u

can be performed in parallel. This involves checking all outgoing edges of u. Therefore,

the speedup due to this approach is the average outdegree of a node in the graph. Without

considering self-loops (edges from nodes to themselves), this ratio is |E||V | . If the AP board

has p AP chips, and the ratio of clock-speed of the CPU to that of the AP is f , then speed

up can be estimated to be in the order of |E||V | ×
p
f .

Note that we are not able to report actual run-times as the AP is not yet available.

We have extensively used the available Software Development Kit (SDK) to verify the

correct functioning of all the automata described here. However, the SDK cannot simulate

problems at the scale that can be handled by the hardware, hence simulated run-times

cannot be reported.

7.2.8 Additional Improvements

Extended Multiple Edge Macro An adaptation of the multiple edge macro, called the

extended multiple edge macro is shown in Figure 42. The use of this macro leads to a higher

113



edge-packing ratio when the indegree of a node is greater than four. The macro contains

a single instance of the cycle check sub-macro to represent the common destination node,

i.e. v. The number of instances of the end check sub-macro is dependent on the indegree

of v. The macro shown in Figure 42 can handle 11 incoming edges, where the first two

instances of the end check sub-macro handle four edges each, and the third handles three

edges. The edge packing ratio of this macro is 11 : 4. This macro can be extended to use

all the 16 rows in a block to handle 47 edges incident on v, giving rise to an edge packing

ratio of 47 : 16, i.e. nearly 3 : 1. Note that this is higher than the edge-packing ratio of 2 : 1

obtained by making several copies of the multiple edge macro.

STE11

Cycle Check Macro

p4

p5

255 p1

**

STE10STE9

255

**

p3p2

*

*
255 255

STE12 STE13 STE14

STE8

STE7STE6STE5

STE3STE2STE1 STE4

STE15

p21

STE16

End Match 
Macro 3

End Match 
Macro 2

End Match 
Macro 1

2

1

3
4

2

1

3
4

2

1

3
4

Figure 42: Extended path extension multiple edge macro to handle up to 11 edges.

The resource utilization of such a design is also high. For example, the macro shown

in Figure 42 utilizes 61 out of 64 STEs available in four rows. This results in utilization of

over 95%. The average number of block routing lines required per row is 1. Therefore, the

routing lines do not create a bottleneck.

However, the macros for all edges incident to a node are no longer identical. They are

now dependent on the indegree of the node. Hence, these macros have to be computed

and compiled at runtime on the basis of the input graph. Although such a compilation will

involve pre-compiled macros only (not individual STEs), it will still incur some overhead.

114



On the other hand, by packing 1.5 times more edges per round, the algorithm will require

fewer rounds, thus incurring lower associated latency and overhead. The trade-off between

the two needs to be carefully evaluated through experiments. The option of pre-compiling

entire blocks with different combinations of macros, which can handle different number of

edges, can also be considered.

7.2.8.1 Path Extension Path Automata

Extending partial paths using edge automata suffers from the limitation that the length of

the paths grows by one per iteration. Therefore, finding Hamiltonian paths and cycles

requires O(n) iterations. A potential improvement to this approach could be the design of

path automata which identify paths that can be concatenated to one another. Such a solution

can bring down the number of required iterations to O(logn). However, any implementa-

tion using path automata needs to overcome the following challenges. First, the size of a

path automaton will grow with the length of the path. However, the hierarchical routing

network of the AP places restrictions on the size of any programmable automaton. Second,

the AP board has to be reprogrammed with new automata for every iteration, which incurs

additional cost. However, short paths can be programmed and may be effectively used to

reduce the overall run time. This remains an open avenue for investigation.

7.3 Building Shortest Path Trees in Graphs

In this section, we provide algorithms for finding single-source shortest paths and con-

nected components in a graph. These algorithms revolve around finding a shortest path

tree for a node u1 ∈V , denoted as T (u1). The shortest path tree of u1 is defined as a span-

ning tree rooted at node u1, containing the shortest path between u1 and v, ∀v ∈ {V − u1}

where a path exists between u1 and v in G. In other words, this tree captures the breadth-

first search traversal in G originating at node u1.

115



7.3.1 Overview Of The Algorithm

The algorithm for finding shortest path trees works iteratively, similar to the one for finding

acyclic paths. The tree is maintained on the CPU and is initialized with the first two levels

in the tree. Node u1 is placed at level 1 as the root of the tree. Any node connected to u1 by

an outgoing edge is placed at level 2 along with the accompanying edge.

In iteration i, the nodes at level i+ 2 of the tree are calculated. Two lists are readied

in preparation for an iteration. The first list, called visited list is represented as L1i and

consists of the nodes in the tree from levels 1 to i+1. The second list, namely last-visited

list is represented as L2i and contains the nodes at level i+1 only. The data flow contains

the string labels of the nodes in the visited list, followed by the string labels of the nodes

in the last-visited list. The order of the nodes in both the lists is inconsequential, and the

end of each list is demarcated by a special end-of-list delimiter. The end-of-list delimiter

is chosen as 255 255 255 253, which is easily distinguishable from the string labels of the

nodes in the lists through its first symbol (255).

An edge automaton is programmed into the AP for each edge (u,v) ∈ E, where u 6= v

and u,v 6= u1. The automaton generates a report if the source node is in the last visited list

of nodes and the destination node is not in the visited list node, i.e. u ∈ L2i and v /∈ L1i.

The last-visited list for the next generation, L2i+1 contains all nodes visited in the cur-

rent iteration, i.e., node v ∈ L2i+1 if the edge automaton for (u,v) generated an output in

iteration i. If L2i+1 is empty, then the processing stops because all nodes in G which are

reachable from u1 have been captured in the tree. Otherwise, the visited list for the next

iteration, L1i+1 is calculated by combining all the nodes visited in the ith iteration with all

the nodes visited in the previous iterations, i.e. L1i+1 = L1i
⋃

L2i+1. With L1i+1 and L2i+1

ready, the streaming for the next iteration starts.

Meanwhile, the CPU updates the tree with the nodes at level i+ 2. If there are more

than one shortest path between node u1 and node v, then edge automata for multiple edges

ending in v generate an output in iteration i. For the shortest path tree, we need to retain

116



* p5 p6 p7 p8p4 255p3

STE10

p2

*
STE9

p1

*

*

*

*
STE8

STE4 STE7STE6STE5

STE3STE2STE1

STE11 STE15STE14STE13 STE16 STE18STE17 STE20

STE12

STE19

255

STE23STE21 STE24STE22
* * *^255

^255

* *

Source Node Check MacroDestination Node Check Macro

^255

Figure 43: Basic tree extension edge macro to check if an edge can be attached at the next

level of the tree.

only one of these edges. We choose the edge encountered last by the host-application

during the iteration. This allows us to overwrite the record for node v without performing

any conditional checks.

7.3.2 Basic Edge Macro

All automata described in this section are also designed as macros, so that they can be

replicated and loaded quickly into the AP. Figure 43 shows the basic edge macro for any

edge (u,v) ∈ E. If this macro generates an output during iteration i, then v is added to

level i+ 2 of the shortest path tree. Parameters p1 to p4, and p5 to p6 are set according

to the string labels of v and u respectively. For example, given the edge (121 144 169 196

, 251 233 227 211), the values of p1 =ˆ{251,255}, p2 =ˆ233, p3 =ˆ227, p4 =ˆ211, p5 =

121, p6 = 144, p7 = 169, and p8 = 196.

The macro is made up of two constituent macros namely source node check macro and

destination node check macro. These two constituent macros map to two rows of STEs

on the AP chip and use a single block routing line. This design results in high resource

utilization and does not suffer from any routing bottlenecks.

ST E1 through ST E10 check for the absence of node v in the visited list. Its working is

very similar to that of the cycle check macro described in Section 7.2.3.2. The checking of

117



the next string label continues only if the current string label is non-identical to the string

label of v. This is ascertained by making sure that at least one of the symbols in both the

string labels mismatch. Only if this condition is true for the string labels of all the nodes in

the list, ST E11 is activated to check the first symbol of the end-of-list delimiter streamed

at the end of the list.

ST E16 through ST E24 check the presence of node u in the last-visited list. If node v

is absent in the visited list, then ST E15 activates ST E16 to check the first symbol of the

string label of every node in the last-visited list. It accomplishes this by cycling through

activation of the four nodes ST E12 through ST E15 after matching the end-of-list delimiter.

If the string label of any of the nodes in the last-visited list matches the string label of

u, then ST E19 activates nodes ST E20 and ST E21. If u is the last node in the list, it

generates an output immediately after parsing the first symbol of the end-of-list delimiter

which immediately follows. Otherwise, ST E21 to ST E24 cyclically activate each other

to make sure that ST E20 is active to match the first symbol of the end-of-list delimiter

whenever it is encountered.

As the size of the tree grows, the number of visited nodes becomes larger than the

number of unvisited nodes. Therefore, it is efficient to maintain and stream the latter when

this occurs. This new list is called the unvisited list and denoted by L′i.The switch from

streaming the visited list to the unvisited list can be performed when |L1i| ≥ |V |/2. At this

point, the unvisited list can be calculated as L′i = V − L1i. For all subsequent iterations,

the last-visited list continues to be updated as before; while L′i+1 is calculated as L′i+1 =

L′i−L2i+1. All other operations on the CPU remain the same.

An automaton to work on the modified data flow containing the string labels of nodes

in the unvisited list is called the alternate basic edge automaton and shown in Figure 44.

For an edge (u,v), it creates an output when v ∈ L′i and u ∈ L2i. The automaton consists of

two sub-macros, and maps to two rows in the AP chip.

The alternate destination node check macro checks for the string label of v in the string

118



labels of nodes in the unvisited list. For our example edge, parameters p1 to p4 are now

set to values p1 = 251, p2 = 233, p3 = 227, and p4 = 211. If v is not the first node in the

unvisited list, then ST E1 to ST E4 ensure that ST E5 is activated to check the first symbol

of the string label of every node in the list. If node v is found in the unvisited list, then

ST E13 is activated to start matching the end-of-list delimiter. However, if v is not the last

node in the list, ST E9 to ST E12 are used to cyclically activate ST E13 to check the first

symbol of the end-of-list delimiter, whenever it is streamed.

The alternate source node check macro contains ST E12 to ST E24 of the basic edge

macro rechristened as ST E14 to ST E26. The redistribution of the STEs across the sub-

macros is carried out so that each sub-macro fits inside a single row in the AP chip, and

uses as few block routing lines as possible.

7.3.2.1 Multiple Edge Macro

The edge-packing ratio of the basic edge macro is 1 : 2. We can increase this ratio by using

the multiple edge macro shown in Figure 45a. The source node check sub-macro is replaced

with a multiple source nodes check macro which allows the automaton to handle three edges

ending in the same node v. This automaton can be programmed into three rows, giving rise

to a edge-packing ratio of 1 : 1. Similar to the multiple edge macro designed for the acyclic

path problem, if a node has less than three incoming edges left to be programmed, then a

string label of 255 255 255 254 can be used for remaining source nodes in the automaton.

The alternate basic edge macro to check for destination nodes in the unvisited list can

also be modified in a similar manner. Instead of replacing the alternate source node check

macro, a multiple source nodes check macro is added to the automaton as shown in Fig-

ure 46. In this case, four edges can be mapped to four rows, again giving rise to an edge-

packing ratio of 1 : 1.

119



7.3.3 Applications

The algorithm described above can be used directly or adapted for solving various applica-

tions as described below.

7.3.3.1 Single-source Shortest Paths

The shortest path tree enumerates the shortest path from the node u1 to every node in G

that is reachable from u1. Hence, it acts as the solution to the single-source shortest path

problem for unweighted graphs. This problem lies at the heart of the popular Graph500 [2]

benchmark used to evaluate the performance of high performance computers.

If the actual paths between the nodes are not desired, but only the shortest distance

between them are, then the tree need not be stored. If node v is added during initialization,

then its distance from u1 is 1. Otherwise, if v is visited (added to the visited list or removed

from the unvisited list) in iteration i, then its distance from u1 is i+1.

7.3.3.2 Connected Components

A connected component of an undirected graph is defined as the subgraph in which any two

nodes are connected to each other through a path, and any node lying outside the subgraph

is not connected to any node within the subgraph. The connected component of a node is

defined as the connected component of the graph to which it belongs. In our algorithm, the

connected component of node u1 is the visited list (or the complement of the unvisited list)

generated at the end of the last iteration. Note that, for calculating the connected component

of u1 we do not need to store the shortest path tree of u1.

The search for all connected components in a graph can be carried out in two ways. In

the first technique, the components are discovered serially. A node u1 ∈V is randomly se-

lected and its connected component is identified. The nodes in this component are marked

as covered. Then, another node in V is selected which is not yet covered, and its connected

component is identified. The process is continued until all the nodes in G are covered.

120



Alternatively, the connected components in a graph can be identified by building a forest

of trees in parallel. The trees are initialized with two levels each, such that every node in the

graph is contained in only one tree and all the nodes in the graph are covered. The trees are

ordered from left to right, and the data flow comprises of the visited and last-visited lists of

the trees arranged in the same order. The automaton for an edge (u,v) is modified to report

an output if v is not present in the visited lists of the current tree and all the trees to its left;

and u is present in the last-visited list of the current tree. The modification corresponding

to the macro shown in Figure 45a is shown in Figure 47.

The destination node check macro continues to check for the string label of v against

the string labels of nodes in the visited list of trees in the data flow until a match is found.

The logic for termination of the check already exists in the previous macro. However, the

logic for continuation of search for the next tree is added through the inclusion of ST E43.

If v is not encountered in the visited list of the current tree, ST E43 is periodically activated

by ST E15 at an interval of four symbols to check for the first symbol of the end-of-list

delimiter. Only on encountering the delimiter at the end of the last visited list of the current

tree, ST E43 activates ST E8. ST E8 to ST E10 match the rest of the delimiter and activate

ST E1 and ST E4 at the start of streaming of the visited list of the next tree.

A tree stops growing under two circumstances. Either the tree already contains all the

nodes in a connected component, or all the candidate edges that can be appended to the tree

end in nodes which appear in a tree to the left. If a tree stops growing, the algorithm retains

the tree, but stops the inclusion of the visited and last-visited lists of the tree in the data

flow for subsequent iterations. The algorithm terminates when all the trees stop growing.

After the final iteration, every connected component in the graph is represented by at

least one tree. Among these trees, only the leftmost tree contains all the nodes in the

component, and should be retained. The identification of such trees can be performed

as follows. Every node in the graph is initially marked as uncovered. Starting from the

leftmost tree, if the root node is marked as uncovered, then the tree is retained and all the

121



nodes in the tree are marked as covered. Otherwise, the tree is dropped, and the process

continues with the next tree to the right. At the end of this pruning, only one tree per

connected component remains and its visited nodes are declared as a connected component.

The above algorithm is illustrated in Figure 48. In iteration 1, edge (13,7) is not re-

ported for the third tree as node 7 appears in the tree to the left. Although the third tree is

retained, streaming of its visited and last-visited list is stopped from iteration 2 onwards.

This is depicted by a horizontal line underneath the tree signifying that the tree has stopped

growing. In iteration 3, all the trees stop growing, and hence the iterations stop. All trees

with root nodes which do not appear in a tree to the left are declared as representative of

connected components in the graph, and their visited lists are declared as an individual

connected component.

The above algorithm can be enhanced by combining trees for which edge(s) with a

common end node is/are reported in the same iteration. Note that, although we have con-

ceptually described this algorithm using trees for better clarity, only the visited lists and

the last visited lists of the trees need to be maintained. Therefore, combining trees merely

comprises of set-operations on their lists. The visited list and the last-visited list of the

combined tree are the union of the visited lists and the last visited lists of the original trees

respectively. Note that the last-visited list of the combined tree may contain nodes which

lie in the interior of the tree. However, this does not influence the outcome of the following

iterations.

7.3.4 Future directions

Remembering states between iterations Currently, we do not remember the states from

one iteration to the next. This is because the overhead of remembering the state of an AP

chip is currently very high. For our current algorithm, this means incurring the overhead

to redundantly stream all the visited nodes in every iteration. However, in the near future,

the overhead for remembering the state information may be lowered significantly under

122



certain conditions. To weigh the cost of incurring this lowered overhead instead of the cost

streaming the visited nodes redundantly for each iteration would be an interesting exercise.

Another key area of research is the handling of graphs with edges assigned small integer

weights. The weight of these edges can be captured by a proportionally long chain of

STEs, i.e. the number of symbols required to traverse the edge. Alternately, a weighted

edge can be represented as proportionally long chain of nodes in the shortest path tree. In

other words, adding an edge (u,v) with weight w to the tree would mean adding a chain

containing w− 1 don’t-care nodes, one each from layers i+ 1 to i+w− 1, followed by

node v at layer i+w. In this graph, the minimum distance between v and the node at which

the tree is rooted is i+w−1.

7.4 Summary

Although, the Automata Processor is primarily designed for accelerating complex string

pattern matching applications, it can be used to solve problems on unweighted graphs. In

this chapter, we have presented some foundational techniques and algorithms for solving

a number of graph problems including Hamiltonian paths/cycles, single-source shortest

paths, and connected components using the co-processor. We illustrated strategies for im-

proving the efficiency of the automata by tailoring them to the underlying hardware. The

proposed techniques broaden the scope of the co-processor and serve as a demonstration of

a non-intuitive use of the Automata Processor for solving more general problems.

123



^255

255 * p5 p6 p7 p8

STE13 STE17STE16STE15 STE18 STE20STE19 STE22

STE14

STE21

255

STE25STE23 STE26STE24
* * *^255

* *

Alternate Destination Node Check Macro Alternate Source Node Check Macro

p1 p2 p3 p4

STE5 STE7STE6 STE8

* * *^255

STE11STE9 STE10 STE12

STE1 STE3STE2 STE4
* * * ^255

Figure 44: Alternate basic tree extension edge macro to check if an edge can be attached at

the next level of the tree.

124



**

p5 p6 p7 p8

p4 255p3

STE10

p2

*
STE9

p1

*

*

*

*
STE8

STE4 STE7STE6STE5

STE3STE2STE1

STE11 STE15STE14STE13

STE16 STE18STE17 STE20STE12 STE19

255

STE23STE21 STE24STE22
* * *^255

^255

*

p9 p10 p11 p12

STE25 STE27STE26 STE28

p13 p14 p15 p16

STE34 STE36STE35 STE38STE37

255

STE41STE39 STE42STE40
* * *^255

STE31STE29 STE32STE30
* * *^255

STE33

255

Destination  Node Check Macro

Multiple Source Nodes Check Macro

^255

(a) Tree extension multiple edge macro to check if edges can be attached at the next level of the

tree.

2

1

3

(b) Shorthand notation for multiple source nodes check macro.

Figure 45: Tree extension multiple edge macro

125



^255

255 * p5 p6 p7 p8

STE13 STE17STE16STE15 STE18 STE20STE19 STE22

STE14

STE21

255

STE25STE23 STE26STE24
* * *^255

* *

Alternate Destination Node Check Macro Alternate Source Node Check Macro

p1 p2 p3 p4

STE5 STE7STE6 STE8

* * *^255

STE11STE9 STE10 STE12

STE1 STE3STE2 STE4
* * *

Multiple 
Source Nodes 
Check Macro

^255

2

1

3

Figure 46: Alternate tree extension multiple edge macro to check if edges can be attached

at the next level of the tree.

255

**p4 255p3

STE10

p2

*
STE9

p1

*

*

*

*
STE8

STE4 STE7STE6STE5

STE3STE2STE1

STE11 STE15STE14STE13

STE12

^255

*

Destination  Node Check Macro

Multiple 
Source Nodes 
Check Macro

STE43

^255

2

1

3

Figure 47: Modified tree extension multiple edge macro to find all connected components

in a graph.

126



21

34

9

5

8
7

6

11

10

12

13
16

14 15

(a) Input graph

43 1312 1615

141051

2 6 7 8 9 11

(b) Initialization.

13

43 1312 1615

141051

2 6 7 8 9 11

7

(c) Iteration 1.

12

13

43 1615

1451

2 6 7 8 9

1110

1312

10

11

(d) Iteration 2.

5

10 11 12

87

1

2 3 4 6 9 15 16

14

13

(e) Iteration 3: All connected components declared.

Figure 48: Finding all connected components in a graph.

127



Chapter VIII

CONCLUSION

In early 2012, we set out on an interesting journey to use a completely new kind of proces-

sor to accelerate various applications in the field of bioinformatics and others. At that time,

the capabilities, shortcomings and potential of the processor was unknown. None-the-less,

the success of the processor is tied to either its excellence in solving certain commercially

important problems, or its applicability to a wide variety of problems. Towards that end,

we have established that this processor excels in its designed goals, i.e. accelerate appli-

cations which need to search for large number of string patterns in parallel. We have also

come up with some fundamental techniques to solve a variety of classic problems in com-

puter science. It is hoped that this work leads to the development of similar algorithms and

applications using the processor in future.

8.1 Challenges

In the process of developing these algorithms and applications, we overcame some chal-

lenges in using the processor, which may be pertinent to other developers. We list some of

them here. The chip was initially designed to perform high-speed string pattern-matching

operations in parallel to accelerate the search for signatures of intrusion in network data.

The signatures occur relatively infrequently in the input data. Therefore, the hardware data

pipeline was designed keeping in mind that the output generation frequency is low.

However, this is not the case with many applications, especially those in the field of

bioinformatics. We learned this with our attempt to provide an accelerated solution to

the sequence mapping problem, also known as the re-sequencing problem. This problem

deals with generating the genomic sequence of an individual belonging to a species whose

reference genome is already known. The input to this problem is numerous short-length

128



reads of the individual’s genome generated by a modern sequencing machines. However, in

the process of generating these reads, their location within the individual’s genome is lost.

Since an individual’s genome is very similar to the reference genome, a potential location

is generated by mapping the read along the reference genome based on maximum local

similarity. Generally, the first 30-40 characters of the read can be used to place the read at

a unique position along the genome. Even if an automaton can be designed to identify this

location, an output is generated on every 30th symbol. This is too frequent for the output

handling system on the chip. From our studies, we surmised, that in actual practise, the

automata that can be fit inside a single AP board could be used to map only 10 symbols

from the reads for a human-sized genome. This aggravated the output generation rate even

further.

Besides this, our initial automata designs did not map efficiently into the physical hard-

ware. Feedback from these initial designs are not only influencing subsequent automata

designs but also the design of the next generation of the chip itself. With these changes,

the next generation of the chip is expected to handle a much wider variety of automata than

what is possible with the current generation.

The choice of processing elements in the design of an automaton can play a critical

role in the efficiency of the solution. For example, for the ease of implementation, we had

initially decided to program all the signatures of intrusion in the FAST-Snap application as

PCRE. For signatures which required multiple patterns to be matched within a data packet

or packet-segment, the PCRE was designed using lookahead assertions. However, the AP

compiler does not support more than three lookahead assertions per expression. Even for

the expressions for which the compilation is possible, the generated automata consumed far

too much on-board resources than what was originally expected. This was not a compiler

shortcoming. The equivalent ANML-NFA of such an PCRE expression is significantly

large.

129



However, when these signatures are defined as ANML-NFA with a boolean AND ele-

ment as shown in Figure16 of Section 3.4 in Chapter 3, the compiled NFA requires only

about one-fourth of the resources. Similar design considerations should be exercised when

designing automata which span multiple rows on an AP-chip. If many interconnections ex-

ist between elements of one row to elements of another, then the relatively scarce inter-row

block routing lines are used up quickly. This may lead to many rows in the block remain-

ing unoccupied. Similarly, with respect to STEs, the counter and boolean elements occur

in a ratio of 1 : 64 and 3 : 64 respectively. Therefore, over-dependence of automata on the

boolean or counter elements may also lead to under-utilization of the resources on the chip.

Another challenge during the initial years of this research was the evolving software.

Today, the AP comes with a robust SDK with both command-line and a GUI-based in-

terface (workbench). The workbench allows easy visualization and debugging of the au-

tomata. The SDK has matured to provide a clean, well-defined and mostly bug-free in-

terface. When we started our research, these system software were still being designed,

developed, debugged and modified.

However, the most significant challenge was to understand how to exploit the new op-

erations and avenues of parallelism provided by the AP technology. In order to do this, it

was imperative to cast problems into string-matching problem, for which automata can be

designed. For lower execution times, these automata should compile, load and execute effi-

ciently on the AP. For exploiting maximum parallelism, 1) the automata had to be designed

such that a large number of automata can be fitted into the AP at anytime, 2) a significant

number of automata should be active for every byte being streamed to chip, and 3) the

output generation rate should be slow so that the rest of the pipeline is not stalled.

Examples of lowering programming overhead can be seen in MOTOMATA and all

graph applications. In these applications, the automata cannot be defined until input is

provided at run-time. However, doing so may lead to unacceptable programming overhead.

Therefore, all the automata are designed as macros, in which the STEs and the connections

130



between them do not change from one instance of the macro to the other. At runtime, only

the labels of the STEs are generated and the pre-compiled automata can be loaded into the

AP almost instantaneously.

8.2 Achievements

The challenges notwithstanding, the processor has many distinct features which provide

some unique capabilities. We exploited these capabilities to develop various applications

such as Fast-SNAP, PROTOMATA and MOTOMATA, boolean SAT, various graph applica-

tions including finding Hamiltonian path and cycles, connected components, single-source

shortest paths etc. All the automata designed map efficiently into the actual hardware and

consists parts which can be reused in future automata designs which require similar func-

tionality.

Our first application, Fast-SNAP uses the AP in its designed role, i.e. checking for

thousands of string patterns in parallel. Using a single AP-board, deep packet inspection

of network data against 4,396 signatures of intrusion can be carried out at up to 11 Gbps.

A more fine-tuned solution with better load-balancing based on actual network data-flows

may yield even better scanning rates. This is at least an order of magnitude faster than other

accelerated solutions.

PROTOMATA adds to this by providing the additional capability of dynamically en-

abling or disabling a programmed automaton at run-time. It also accumulates output gen-

erating events into a single symbol cycle to avoid the output-handling bottlenecks and pro-

vides better performance. For large datasets, PROTOMATA is over half a million times

faster than its single CPU counterpart.

In MOTOMATA, we inadvertently solved our first graph problem by finding all max-

imal cliques in an n-partitioned graph. By exploring these cliques in parallel, the runtime

of this method is significantly better than existing state-of-the-art solutions. MOTOMATA

can solve much larger instances of the problem than what is possible by other competing

131



software running on large CPU clusters.

Although, the underlying problem to solve the SAT problem is same as that in MO-

TOMATA, the solution needs modifications because of different input parameters on which

the run-time depends on. A new algorithm was developed employing compact clique-

automata which can handle small, but computationally challenging instances of the prob-

lem, where heuristical pruning methods used by existing SAT solvers are ineffective.

Although, the above two applications solve the problem by using graph algorithms, the

original input is not a graph. Rather, different parts of the input are represented as nodes

in a graph. The edges in the graph are not provided, but a condition for the existence of

an edge between two nodes is provided. The task is to search for a set of nodes which are

connected in a specific way, i.e. cliques of a certain size. The primary work of the automata

is to search for the existence of all the edges required to form such a clique.

The rest of the graph problems handled in this work are different in the sense that they

involve generic graphs, where all the edges are already provided in the input. These prob-

lems do not involve edge-discovery at all. Instead, they deal with arranging the nodes and

edges in the input graph into output graph structures like search trees and acyclic paths.

We have overcome some primary challenges to solve such problems. 1) We developed a

strategy to transform parts of any generic graph into strings. 2) We have developed algorith-

mic and automata design techniques which work with these strings to provide solutions to

the problems like finding single-source shortest paths, connected components, Hamiltonian

paths and cycles in a graph.

8.3 Scope For Future Research

Although, our first attempt to provide a solution to the re-sequencing problem was not suc-

cessful, a fresh look at the problem has yielded better automata designs with significantly

better resource utilization. At the moment of writing this dissertation, a solution to provide

132



this much needed solution is being evaluated. If such an application is possible with hard-

ware resources that can be co-located with sequencing machines, then it may expedite the

advent of the era of personalized medicine.

In this dissertation, we have uncovered some basic concepts on how to program generic

graphs using this processor. Designers are already building on these concepts to handle

various other graph problems. For example, just like the occurrences of known string

patterns in network data signals malicious content, occurrences of sub-graphs of known

shapes may signal various conditions of interest in other application spaces. These graphs

and sub-graphs can be represented using string representation defined in this dissertation, or

built upon the same. For applications working on large graphs, this may lead to significant

acceleration.

Similarly, in this document unweighted edges are represented by capturing only its end

nodes. Research is ongoing on representing edges with small integral weights by using a

chain of STEs of proportional length.

The AP board can generate enormous data-rates. Each AP-chip on the board can pro-

cess data at 1 Gbps and generate data at up to 3 Gbps. Supporting this bandwidth through-

out the entire system may be a challenge. This is especially true about the external memory

(I/O) transfer rates. Though, this has been handled with reasonable success in high band-

width network switches, it might become a severe bottleneck in many other applications.

Incidentally, this is true with most modern accelerators. As a remedy, some recent re-

search [77] have investigated the use of flash-based external memory coupled with smart

middle-ware to provide near in-memory performance even for graph-applications which re-

quire random I/O access. Coupled with such remedies, AP applications may provide some

interesting results. For example, exploiting data-locality in graph analysis on a distributed

memory clusters is difficult and leads to communication bottlenecks between nodes in the

cluster. Alternatively, accelerated streaming solutions for such problems may be investi-

gated using systems consisting of smart flash-based I/O, a large main-memory bank and a

133



CPU working in unison with an AP to provide significant time, cost and energy savings.

The success of any new architecture is based on many factors, technical, financial,

user-acceptance and even good fortune to certain extent. Only time will tell whether the

Automata Processor will succeed or not. However, it certainly has the potential by virtue of

being the first truly large-scale commercially available MISD architecture which is both fast

and power efficient. It feels in a void in current processing capability space. Therefore, it

possesses some unique capabilities to execute some operations faster and more efficiently

than other existing processors. This dissertation is an effort to identify those operations

and use them in the development novel techniques and algorithms. Hopefully, this research

will be helpful to develop exciting new applications in the future using this new processing

technology.

134



Appendix A

BOUNDED MISMATCH COUNT AUTOMATON

For a sequence S = s1s2s3...si...sl , the Bounded Mismatch Identification automaton dis-

cussed in Section 5.2.1 of Chapter 5 accepts any input string of length l that is different

from S in at most d positions. However, if the count of mismatches is also required, then

the Bounded Mismatch Count automaton can be used which provides a mechanism to de-

duce the count based on the accept state reached. This automaton design consists of 2d+1

rows of STEs arranged in l columns. Column i corresponds to symbol si: the label of STEs

in that column recognizes si if the row number is odd, and recognizes anything other than

si (described as ŝi) if the row number is even. The STEs in odd rows are connected in a

linear chain to reflect continued matching of symbols. Each mismatch causes skipping of

two rows, thus allowing the row of accepting STE to reflect the number of mismatches in

the accepted pattern. An STE is present in column i and row j only if j ≤ min(2i,2d +1).

The last column of STEs are the accepting states. The design is best illustrated through an

example (see Figure 49).

This automaton requires a total of (2d+1)l−d2 STEs. The usage of the all-input start

STEs allow the matching to occur anywhere within a longer input sequence. Notice that

this automaton requires d2 STEs more STEs than the Bounded Mismatch Identification

automaton.

135



s1 s2 s3 s4 s5 

^s1 ^s2 ^s3 ^s4 ^s5 

s2 s3 s4 s5 

^s2 ^s3 ^s4 ^s5 

s3 s4 s5 s7 

^s3 ^s4 ^s5 ^s7 

s6 

^s6 

s6 

^s6 

s4 s5 s7 s8 s6 

^s8 

^s6 

^s7 

^s7 ^s8 

^s8 

s8 

s6 s7 s8 

s7 s8 

Figure 49: An automaton to accept strings with at most 3 mismatches from s1s2 . . .s8, and

reveal the number of mismatches.

136



REFERENCES

[1] “Automata Processor Software Delopment Kit: Supported PCRE Syntax.”
http://www.micronautomata.com/documentation/ap sdk/h1 known issues.html. Ac-
cessed: Apr, 2015.

[2] “Graph500.” http://www.graph500.org/. Accessed: Nov, 2014.

[3] “Perl Compatible Regular Expressions (PCRE) library.”
ftp.csx.cam.ac.uk/pub/software/programming/pcre. Accessed: Apr, 2015.

[4] “Snort.” https://www.snort.org/. Accessed: Nov, 2014.

[5] “The Micron Automata Processor Developer Portal.”
http://www.micronautomata.com/. Accessed: Apr, 2015.

[6] ADLEMAN, L. M., “Molecular computation of solutions to combinatorial problems,”
Science, vol. 266, no. 5187, pp. 1021–1024, 1994.

[7] BAILEY, T. L. and ELKAN, C., “Fitting a mixture model by expectation maximiza-
tion to discover motifs in bipolymers,” in Proceedings of the Second International
Conference on Intelligent Systems for Molecular Biology, pp. 28–36, AAAI Press,
Menlo Park, California, 1994.

[8] BANDYOPADHYAY, S., SAHNI, S., and RAJASEKARAN, S., “PMS6: A fast algo-
rithm for motif discovery,” in Proceedings of the IEEE 2nd International Conference
on Computational Advances in Bio and Medical Sciences (ICCABS), pp. 1–6, IEEE,
2012.

[9] BECCHI, M., FRANKLIN, M., and CROWLEY, P., “A workload for evaluating deep
packet inspection architectures,” in IEEE International Symposium on Workload
Characterization, pp. 79–89, Sept 2008.

[10] BECCHI, M. and CROWLEY, P., “Extending Finite Automata to Efficiently Match
Perl-compatible Regular Expressions,” in Proceedings of the CoNEXT Conference,
(New York, NY, USA), pp. 25:1–25:12, ACM, 2008.

[11] BECCHI, M. and CROWLEY, P. J., Data Structures, Algorithms and Architectures for
Efficient Regular Expression Evaluation. PhD thesis, Washington University. Depart-
ment of Computer Science and Engineering., 2009.

[12] BECCHI, M., WISEMAN, C., and CROWLEY, P., “Evaluating regular expression
matching engines on network and general purpose processors,” in Proceedings of
the 5th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’09, (New York, NY, USA), pp. 30–39, ACM, 2009.

137



[13] BUHLER, J. and TOMPA, M., “Finding motifs using random projections,” Journal of
Computational Biology, vol. 9, no. 2, pp. 225–242, 2002.

[14] CARVALHO, A. M., FREITAS, A. T., OLIVEIRA, A. L., SAGOT, M.-F., and OTH-
ERS, “A highly scalable algorithm for the extraction of cis-regulatory regions,” in
Proceedings of Asia-Pacific Bioinformatics Conference, pp. 273–283, 2005.

[15] CASCARANO, N., ROLANDO, P., RISSO, F., and SISTO, R., “iNFAnt: NFA pattern
matching on GPGPU devices,” ACM SIGCOMM Computer Communication Review,
vol. 40, no. 5, pp. 20–26, 2010.

[16] CHIN, F. Y. L. and LEUNG, H. C. M., “Voting algorithms for discovering long mo-
tifs,” in Proceedings of third Asia-Pacific Bioinformatics Conference (APBC), vol. 3,
pp. 261–271, 2005.

[17] CONSORTIUM, U. and OTHERS, “Activities at the Universal Protein Resource
(UniProt),” Nucleic acids research, vol. 42, no. D1, pp. D191–D198, 2014.

[18] COOK, S. A., “The complexity of theorem-proving procedures,” in Proceedings of
the third annual ACM symposium on Theory of computing, pp. 151–158, ACM, 1971.

[19] DAVILA, J., BALLA, S., and RAJASEKARAN, S., “Fast and practical algorithms for
planted (l, d) motif search,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 4, no. 4, pp. 544–552, 2007.

[20] DAVILA, J., BALLA, S., and RAJASEKARAN, S., “Pampa: An improved branch and
bound algorithm for planted (l, d) motif search,” tech. rep., 2007.

[21] DE CASTRO, E., SIGRIST, C. J., GATTIKER, A., BULLIARD, V., LANGENDIJK-
GENEVAUX, P. S., GASTEIGER, E., BAIROCH, A., and HULO, N., “ScanProsite: de-
tection of PROSITE signature matches and ProRule-associated functional and struc-
tural residues in proteins,” Nucleic acids research, vol. 34, no. suppl 2, pp. W362–
W365, 2006.

[22] DESSEN, P., FONDRAT, C., VALENCIEN, C., and MUGNIER, C., “BISANCE: a
French service for access to biomolecular sequence databases,” Computer applica-
tions in the biosciences, vol. 6, no. 4, pp. 355–356, 1990.

[23] DINH, H., RAJASEKARAN, S., and DAVILA, J., “qPMS7: A fast algorithm for find-
ing (, d)-motifs in DNA and protein sequences,” PloS one, vol. 7, no. 7, p. e41425,
2012.

[24] DINH, H., RAJASEKARAN, S., and KUNDETI, V. K., “PMS5: an efficient exact
algorithm for the (l, d)-motif finding problem,” BMC bioinformatics, vol. 12, no. 1,
p. 410, 2011.

[25] DLUGOSCH, P., BROWN, D., GLENDENNING, P., LEVENTHAL, M., and NOYES,
H., “An Efficient and Scalable Semiconductor Architecture for Parallel Automata
Processing,” IEEE Transactions on Parallel and Distributed Systems, vol. 99, p. 1,
2014.

138



[26] ESKIN, E. and PEVZNER, P. A., “Finding composite regulatory patterns in DNA
sequences,” Bioinformatics, vol. 18, no. suppl 1, pp. S354–S363, 2002.

[27] EVANS, P. A. and SMITH, A. D., “Toward optimal motif enumeration,” in Algorithms
and Data Structures, pp. 47–58, Springer, 2003.

[28] EVANS, P. A., SMITH, A. D., and WAREHAM, H. T., “On the complexity of finding
common approximate substrings,” Theoretical Computer Science, vol. 306, no. 1,
pp. 407–430, 2003.

[29] FLOYD, R. W. and ULLMAN, J. D., “The compilation of regular expressions into
integrated circuits,” Journal of the ACM (JACM), vol. 29, no. 3, pp. 603–622, 1982.

[30] FLYNN, M., “Some computer organizations and their effectiveness,” IEEE Transac-
tions on Computers, vol. 100, no. 9, pp. 948–960, 1972.

[31] FUCHS, R., “MacPattern: protein pattern searching on the Apple Macintosh,” Com-
puter applications in the biosciences: CABIOS, vol. 7, no. 1, pp. 105–106, 1991.

[32] FUCHS, R., “Predicting protein function: a versatile tool for the Apple Macintosh,”
Computer applications in the biosciences: CABIOS, vol. 10, no. 2, pp. 171–178,
1994.

[33] GATTIKER, A., GASTEIGER, E., and BAIROCH, A., “ScanProsite: a reference im-
plementation of a PROSITE scanning tool,” Applied bioinformatics, vol. 1, no. 2,
pp. 107–108, 2002.

[34] GEOURJON, C. and DELEAGE, G., “Interactive and graphic coupling between mul-
tiple alignments, secondary structure predictions and motif/pattern scanning into pro-
teins,” Computer applications in the biosciences: CABIOS, vol. 9, no. 1, pp. 87–91,
1993.

[35] HENIKOFF, S. and HENIKOFF, J. G., “Automated assembly of protein blocks for
database searching,” Nucleic Acids Research, vol. 19, no. 23, pp. 6565–6572, 1991.

[36] HERTZ, G. Z. and STORMO, G. D., “Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences.,” Bioinformatics, vol. 15,
no. 7, pp. 563–577, 1999.

[37] HOPCROFT, J. E., Introduction to automata theory, languages, and computation.
Pearson Education India, 1979.

[38] HP-LABS, “The Machine: A new kind of computer.”
http://www.hpl.hp.com/research/systems-research/themachine/, Nov. 2014.

[39] HULO, N., BAIROCH, A., BULLIARD, V., CERUTTI, L., CUCHE, B. A., DE CAS-
TRO, E., LACHAIZE, C., LANGENDIJK-GENEVAUX, P. S., and SIGRIST, C. J., “The
20 years of PROSITE,” Nucleic acids research, vol. 36, no. suppl 1, pp. D245–D249,
2008.

139



[40] IBM-RESEARCH, “A brain-inspired chip to transform mobility and Inter-
net of Things through sensory perception.” http://research.ibm.com/cognitive-
computing/neurosynaptic-chips.shtml, Nov. 2014.

[41] IUPAC, I., “Nomenclature and symbolism for amino acids and peptides,” Eur J
Biochem, vol. 138, pp. 9–37, 1984.

[42] JÄRVISALO, M., LE BERRE, D., ROUSSEL, O., and SIMON, L., “The international
sat solver competitions,” AI Magazine, vol. 33, no. 1, pp. 89–92, 2012.

[43] KARP, R. M., Reducibility among combinatorial problems. Springer, 1972.

[44] KEICH, U. and PEVZNER, P. A., “Finding motifs in the twilight zone,” in Pro-
ceedings of the Sixth Annual International Conference on Computational Biology,
pp. 195–204, ACM, 2002.

[45] KELLY JR, T. J. and SMITH, H. O., “A restriction enzyme from Hemophilus in-
fluenza: II. Base sequence of the recognition site,” Journal of Molecular Biology,
vol. 51, no. 2, pp. 393–409, 1970.

[46] KOLAKOWSKI JR, L., LEUNISSEN, J., and SMITH, J., “ProSearch: fast searching
of protein sequences with regular expression patterns related to protein structure and
function.,” Biotechniques, vol. 13, no. 6, pp. 919–921, 1992.

[47] KOZYRAKIS, C. E., PERISSAKIS, S., PATTERSON, D., ANDERSON, T., ASANOVIC,
K., CARDWELL, N., FROMM, R., GOLBUS, J., GRIBSTAD, B., KEETON, K.,
and OTHERS, “Scalable processors in the billion-transistor era: IRAM,” Computer,
vol. 30, no. 9, pp. 75–78, 1997.

[48] LAWRENCE, C. E., ALTSCHUL, S. F., BOGUSKI, M. S., LIU, J. S., NEUWALD,
A. F., WOOTTON, J. C., and OTHERS, “Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment,” Science, vol. 262, pp. 208–214, 1993.

[49] LIU, Q., WANG, L., FRUTOS, A. G., CONDON, A. E., CORN, R. M., and SMITH,
L. M., “Dna computing on surfaces,” Nature, vol. 403, no. 6766, pp. 175–179, 2000.

[50] MAGRANE, M., CONSORTIUM, U., and OTHERS, “UniProt Knowledgebase: a hub
of integrated protein data,” Database, vol. 2011, p. bar009, 2011.

[51] MARQUES-SILVA, J., “Practical applications of boolean satisfiability,” in 9th Inter-
national Workshop on Discrete Event Systems (WODES), pp. 74–80, May 2008.

[52] MARSAN, L. and SAGOT, M. F., “Extracting structured motifs using a suffix tree -
Algorithms and application to promoter consensus identification,” in Proceedings of
the Fourth Annual International Conference on Computational Molecular Biology,
pp. 210–219, ACM, 2000.

140



[53] MITRA, A., NAJJAR, W., and BHUYAN, L., “Compiling PCRE to FPGA for Accel-
erating SNORT IDS,” in Proceedings of the 3rd ACM/IEEE Symposium on Architec-
ture for Networking and Communications Systems, ANCS, (New York, NY, USA),
pp. 127–136, ACM, 2007.

[54] NAKAHARA, H., SASAO, T., and MATSUURA, M., “A regular expression matching
circuit based on a modular non-deterministic finite automaton with multi-character
transition,” in The 16th Workshop on Synthesis and System Integration of Mixed In-
formation Technologies, pp. 359–364, 2010.

[55] NAKAHARA, H., SASAO, T., and MATSUURA, M., “A regular expression matching
circuit based on a decomposed automaton,” in Reconfigurable Computing: Architec-
tures, Tools and Applications, pp. 16–28, Springer, 2011.

[56] NICOLAE, M. and RAJASEKARAN, S., “Efficient Sequential and Parallel Algorithms
for Planted Motif Search,” arXiv preprint arXiv:1307.0571, 2013.

[57] PEVZNER, P. A., SZE, S. H., and OTHERS, “Combinatorial approaches to finding
subtle signals in DNA sequences,” in Proceedings of the Eighth International Confer-
ence on Intelligent Systems for Molecular Biology, vol. 8, pp. 269–278, 2000.

[58] PISANTI, N., CARVALHO, A. M., MARSAN, L., and SAGOT, M.-F., “RISOTTO:
Fast extraction of motifs with mismatches,” in LATIN 2006: Theoretical Informatics,
pp. 757–768, Springer, 2006.

[59] PRICE, A., RAMABHADRAN, S., and PEVZNER, P. A., “Finding subtle motifs by
branching from sample strings,” Bioinformatics, vol. 19, no. suppl 2, pp. ii149–ii155,
2003.

[60] RAJASEKARAN, S., BALLA, S., and HUANG, C. H., “Exact algorithms for planted
motif problems,” Journal of Computational Biology, vol. 12, no. 8, pp. 1117–1128,
2005.

[61] ROESCH, M. and OTHERS, “Snort: Lightweight Intrusion Detection for Networks.,”
in LISA, vol. 99, pp. 229–238, 1999.

[62] ROY, I. and ALURU, S., “Finding Motifs in Biological Sequences Using the Micron
Automata Processor,” in IEEE 28th International Parallel and Distributed Processing
Symposium, pp. 415–424, May 2014.

[63] RUBIN, F., “A search procedure for Hamilton paths and circuits,” Journal of the ACM
(JACM), vol. 21, no. 4, pp. 576–580, 1974.

[64] SIBBALD, P. R. and ARGOS, P., “Scrutineer: a computer program that flexibly seeks
and describes motifs and profiles in protein sequence databases,” Computer applica-
tions in the biosciences: CABIOS, vol. 6, no. 3, pp. 279–288, 1990.

141



[65] SIGRIST, C. J., CERUTTI, L., HULO, N., GATTIKER, A., FALQUET, L., PAGNI, M.,
BAIROCH, A., and BUCHER, P., “PROSITE: a documented database using patterns
and profiles as motif descriptors,” Briefings in bioinformatics, vol. 3, no. 3, pp. 265–
274, 2002.

[66] SIGRIST, C. J., DE CASTRO, E., CERUTTI, L., CUCHE, B. A., HULO, N., BRIDGE,
A., BOUGUELERET, L., and XENARIOS, I., “New and continuing developments at
PROSITE,” Nucleic acids research, vol. 41, no. D1, pp. D344–D347, 2013.

[67] STADEN, R., “Screening protein and nucleic acid sequences against libraries of pat-
terns,” Mitochondrial DNA, vol. 1, no. 6, pp. 369–374, 1991.

[68] STERNBERG, M. J., “PROMOT: A FORTRAN program to scan protein sequences
against a library of known motifs,” Computer applications in the biosciences:
CABIOS, vol. 7, no. 2, pp. 257–260, 1991.

[69] TIESSEN, A., PÉREZ-RODRÍGUEZ, P., and DELAYE-ARREDONDO, L. J., “Mathe-
matical modeling and comparison of protein size distribution in different plant, ani-
mal, fungal and microbial species reveals a negative correlation between protein size
and protein number, thus providing insight into the evolution of proteomes,” BMC
research notes, vol. 5, no. 1, p. 85, 2012.

[70] VASILIADIS, G., POLYCHRONAKIS, M., and IOANNIDIS, S., “Parallelization and
characterization of pattern matching using GPUs,” in IEEE International Symposium
on Workload Characterization (IISWC), pp. 216–225, IEEE, 2011.

[71] WALLACE, J. C. and HENIKOFF, S., “PATMAT: a searching and extraction program
for sequence, pattern and block queries and databases,” Computer applications in the
biosciences: CABIOS, vol. 8, no. 3, pp. 249–254, 1992.

[72] WANG, H., PU, S., KNEZEK, G., and LIU, J.-C., “MIN-MAX: A Counter-Based
Algorithm for Regular Expression Matching,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 1, pp. 92–103, 2013.

[73] WANG, K., STAN, M., and SKADRON, K., “Association Rule Mining with the Mi-
cron Automata Processor,” in IEEE 29th International Parallel and Distributed Pro-
cessing Symposium, May 2015. To appear.

[74] YANG, Y.-H. and PRASANNA, V. K., “High-performance and compact architecture
for regular expression matching on FPGA,” IEEE Transactions on Computers, vol. 61,
no. 7, pp. 1013–1025, 2012.

[75] YANG, Y. H. E., JIANG, W., and PRASANNA, V. K., “Compact architecture for
high-throughput regular expression matching on FPGA,” in Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Communications Sys-
tems, pp. 30–39, ACM, 2008.

142



[76] YU, Q., HUO, H., ZHANG, Y., GUO, H., and GUO, H., “PairMotif+: A Fast and
Effective Algorithm for De Novo Motif Discovery in DNA sequences,” International
Journal of Biological Sciences, vol. 9, no. 4, pp. 412–424, 2013.

[77] ZHENG, D., MHEMBERE, D., BURNS, R., VOGELSTEIN, J., PRIEBE, C. E., and
SZALAY, A. S., “FlashGraph: Processing Billion-Node Graphs on an Array of Com-
modity SSDs,” in 13th USENIX Conference on File and Storage Technologies (FAST
15), (Santa Clara, CA), pp. 45–58, USENIX Association, Feb. 2015.

[78] ZHOU, K., FOX, J. J., WANG, K., BROWN, D. E., and SKADRON, K., “Brill tagging
on the micron automata processor,” in IEEE 9th International Conference on Semantic
Computing (ICSC), pp. 236–239, 2015.

[79] ZU, Y., YANG, M., XU, Z., WANG, L., TIAN, X., PENG, K., and DONG, Q.,
“GPU-based NFA implementation for memory efficient high speed regular expression
matching,” ACM SIGPLAN Notices, vol. 47, no. 8, pp. 129–140, 2012.

143



VITA

INDRANIL ROY

PERSONAL DATA

PLACE AND DATE OF BIRTH: India | 3 July 1983

ADDRESS: 1027 Hampton Street NW, Atlanta, GA 30318, USA.

PHONE: +1 515 509 4306

EMAIL: iroy@gatech.edu

RESEARCH INTERESTS

Design of parallel algorithms for high performance computing and bioinformatics.

EDUCATION

SPRING 2015 Ph.D.,Georgia Institute of Technology, Atlanta, GA.

SCHOOL OF COMPUTATIONAL SCIENCE & ENGINEERING

Minor: COMPUTER ARCHITECTURE & MIDDLEWARE

Dissertation: “Accelerated Pattern Matching using the Micron

Automata Processor” | Advisor: Prof. Srinivas ALURU

GPA: 4.0/4.0

144



SPRING 2011 Master of Science, Iowa State University, Ames, IA.

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Major: Computer Engineeing

Thesis: “UPC CHECK: A scalable tool for detecting run-time errors in

Unified Parallel C” | Advisor: Prof. Glenn R. LUECKE

GPA: 3.84/4.0

SPRING 2006 Bachelor of Engineering, The National Institute of Engineering,

Mysore, India.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

AGGREGATE OF 8 SEMESTERS: First Class with Distinction (73.61%)

PUBLICATIONS

PEER REVIEWED

• Roy, I.; & Aluru, S., “Finding Motifs in Biological Sequences Using the Micron

Automata Processor,” IEEE 28th International Parallel and Distributed Processing

Symposium, pp.415-424, 19-23 May 2014.

• Roy, I., Luecke, G. R., Coyle, J., & Kraeva, M. “A scalable deadlock detection

algorithm for UPC collective operations.” PGAS, vol. 13, pp.2-15. 2012.

• Coyle, J.; Roy, I.; Kraeva, M.; & Luecke, G.R., “UPC-CHECK: a scalable tool for

detecting run-time errors in Unified Parallel C,” Computer Science - Research and

Development, Springer-Verlag, vol. 28, no. 2-3, pp.203-209. 2012.

• Kraeva, M.; Coyle, J.; Luecke, G.; Roy, I.; Kleiman, E.; & Hoekstra, J.; “UPC-

CompilerCheck: A Tool for Evaluating Error Detection Capabilities of UPC Com-

pilers”, COMPUTATION TOOLS, The Third International Conference on Compu-

tational Logics, Algebras, Programming, Tools, and Benchmarking, pp.28-33. 2012.

• Iyenggar, A.; Tripathi, A.; Basarur, A.; & Roy, I., “Unified power management

145



framework for portable media devices,” IEEE International Conference on Portable

Information Devices, PORTABLE07. pp.1-5. 2007.

ACCEPTED FOR PUBLICATION

• Roy, I.; & Aluru, S., “Discovering Motifs in Biological Sequences Using the Mi-

cron Automata Processor”, IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB).

SUBMITTED FOR PUBLICATION

• Coyle, J.; Hoekstra, J.; Kraeva, M.; Luecke, G. R.; Kleiman, R.; & Roy, I, “UPC

Compile-Time Error Detection Test Suite.”

• Roy, I.; Jammula, N.; & Aluru, S., “Algorithmic Techniques for Solving Graph Prob-

lems on the Automata Processor”, Submitted to the 27th annual IEEE/ACM Interna-

tional Conference for High Performance Computing, Networking, Storage and Anal-

ysis (Supercomputing), 2015.

IN PREPARATION

• Roy, I.; Srivastava, A.; & Aluru, S., “Programming Non-deterministic Finite Au-

tomata on the Micron Automata Processor.”

• Roy, I.; Srivastava, A.; Becchi, M.; & Aluru, S., “High Performance Pattern Match-

ing using the Micron Automata Processor.”

• Roy, I.; & Aluru, S., “Checking Boolean Satisfiability (SAT) using the Micron Au-

tomata Processor.”

PROFESSIONAL EXPERIENCE

Engineer August 2006 - July 2008

Ittiam Systems (P) Ltd., Consulate 1, 1 Richmond Road, Bangalore, India.

146



• Power Management Framework for Multimedia Sub-System: Designed and imple-

mented framework for power optimization in portable multimedia players.

• ASF/MP4/MPG/AVI Creator: Designed, implemented, tested and supported the ASF

multiplexer. Involved in the design of MP4 multiplexer; and design and maintenance

of MPG and AVI multiplexers.

• ASF Parser: Redesigned and implemented the ASF de-multiplexer.

• Creator Subsystem: Designed, implemented and automated testing of the Creator

Subsystem.

PRACTICAL TRAINING

Intern May 2014 - August 2014

Micron Technology Inc. 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006.

• Architecture Development Group: Developed parallel algorithms to solve graph prob-

lems using the Micron Automata Processor.

Intern May 2013 - August 2013

Micron Technology Inc. 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006.

• Architecture Development Group: Developed solutions to problems in bioinformatics

using the Micron Automata Processor.

Intern May 2012 - August 2012

Micron Technology Inc. 3060 N 1st St, San Jose, CA 95134.

• Architecture Development Group: Identified challenges and bottlenecks towards im-

plementing bioinformatics applications on the Micron Automata Processor.

Research Assistant Aug 2013 - Present (except summer semesters)

Under Prof. Srinivas Aluru Georgia Institute of Technology, Atlanta, GA 30332.

147



• Designed and developed algorithms and applications using the Micron Automata

Processor.

Research Assistant May 2011 - May 2013

Under Prof. Srinivas Aluru Iowa State University, Ames, IA 50011.

• Developed parallel algorithms for analyzing data from Atom Probe Microscope.

• Designed and developed algorithms and applications using the Micron Automata

Processor.

Research Assistant January 2009 - May 2011

Under Prof. Glenn R. Luecke Iowa State University, Ames, IA 50011.

• UPC-CHECK: Developed a compile-time error detection tool for UPC under DARPA’s

High Productivity Computing Initiative.

• UPC-CTED: Wrote test cases for compile-time error detection tool for UPC.

Intern January 2006 - May 2006

Ittiam Systems (P) Ltd. Consulate 1, 1 Richmond Road, Bangalore, India.

• Power Saving Strategies in Portable Media players: Worked on increasing the audio

play-out, video play-out, and stand-by duration of a portable multimedia player.

Intern January 2005 - June 2005

IBM Global Services India Pvt. Ltd. Airport Road, Bangalore, India.

• Forecasting for Resource planning using Extrapolation and Explanatory methods in

Fulfillments Operations Department: Used complex extrapolation formulas to come

up with very accurate predictions, even with sporadic past information.

148



PROFESSIONAL SKILLS

• Parallel Algorithm Design, Automata Design, High Performance Computing, Bioin-

formatics.

• Portable Multimedia-Systems, Power Management, Multimedia container formats.

• Advanced user: C, UPC, MPI.

HONORS AND AWARDS

• Invited Talk on ”The Automata Processor for Bioinformatics” at IEEE Workshop on

Microelectronics and Electron Devices (WMED), Boise, Idaho, April, 18, 2014.

• Best Paper Award in COMPUTATION TOOLS 2012, The Third International Con-

ference on Computational Logics, Algebras, Programming, Tools, and Benchmark-

ing, July 22-27, 2012.

• 2nd Prize in national level student paper presentation contest by Computer Society of

India at Technologix’05, Mysore, India, April 1-2, 2005.

• 2nd Prize in C-programming contest by IEEE student chapter at The National Insti-

tute of Engineering, Mysore, India, May 7-9, 2005.

• Best Volunteer, Technieks’05, Association of Computer Engineers, The National In-

stitute of Engineering, Mysore, India, May 16-20, 2005.

EXTRA-CURRICULAR ACTIVITIES

Education and health-care of kids are important to me. I regularly participate in fund-

raising activities for Non-Governmental Organizations which work in this domain, espe-

cially in under-developed or developing countries.

I like sports and oratory. I was the captain of my high-school oratory team and won

many awards for the school. I represented my junior university in cricket. Currently, I like

to play tennis and climb mountains. Besides these, I like to build and fly model airplanes.

149


