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T̂ Local approximation of M centered on an element with LLORMA.
ˆ̂T Global approximation of M with LLORMA.

Ks
h A kernel function with bandwidth h centered on a point s.

Bh(s) The neighborhood of indices near a matrix element s.
E(T̂ )(s, h) Average squared-error within a neighborhood of a matrix element s.
[n] The set of integers {1, ..., n}
‖X‖F Frobenius norm of matrix X.
‖X‖∞ Infinite norm of matrix X.
‖X‖∗ Nuclear (trace) norm of matrix X.
� Entry-wise matrix product. [A� B]i,j = Ai,jBi,j
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SUMMARY

Recommendation systems are emerging as an important business application as

the demand for personalized services in E-commerce increases. Collaborative filtering

techniques are widely used for predicting a user’s preference or generating a list of

items to be recommended. In this thesis, we develop several new approaches for

collaborative filtering based on model combination and kernel smoothing. Specifically,

we start with an experimental study that compares a wide variety of CF methods

under different conditions. Based on this study, we formulate a combination model

similar to boosting but where the combination coefficients are functions rather than

constant. In another contribution we formulate and analyze a local variation of matrix

factorization. This formulation constructs multiple local matrix factorization models

and then combines them into a global model. This formulation is based on the

local low-rank assumption, a slightly different but more plausible assumption about

the rating matrix. We apply this assumption to both rating prediction and ranking

problems, with both empirical validations and theoretical analysis.

We contribute with this thesis in four aspects. First, the local approaches we present

significantly improve the accuracy of recommendations both in rating prediction and

ranking problems. Second, with the more realistic local low-rank assumption, we

fundamentally change the underlying assumption for matrix factorization-based rec-

ommendation systems. Third, we present highly efficient and scalable algorithms

which take advantage of parallelism, suited for recent large scale datasets. Lastly, we

provide an open source software implementing the local approaches in this thesis as

well as many other recent recommendation algorithms, which can be used both in

research and production.
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Chapter I

INTRODUCTION

1.1 Recommendation Systems

As the demand for personalized services in E-commerce increases, recommendation
systems are emerging as an important business application. Amazon.com, for ex-
ample, provides personalized product recommendations based on previous purchases.
Other examples include music recommendations in Pandora, movie recommendations
in Netflix, and friend recommendations in Facebook.

Broadly speaking, any software system which actively suggests an item to purchase,
to subscribe, or to invest can be regarded as a recommender system. In this broad
sense, an advertisement also can be seen as a recommendation. In this thesis, we
mainly consider a narrower definition of personalized recommendation system that
base recommendations on user specific information.

There are two main approaches to personalized recommendation systems: content-
based filtering and collaborative filtering. The former makes explicit use of domain
knowledge concerning users or items. The domain knowledge may correspond to user
information such as age, gender, occupation, or location [28], or to item information
such as genre, producer, or length in the case of movie recommendation.

The latter category of collaborative filtering (CF) does not use user or item informa-
tion with the exception of a partially observed rating matrix. The rating matrix holds
ratings of items (columns) by users (rows) and is typically binary, for example like vs.
dislike, or ordinal, for example, one to five stars as in Netflix movie recommendation.
The rating matrix may also be gathered implicitly based on user activity such as a
web search followed by click through, which may be interpreted as a positive value
judgement for the chosen hyper-link [52]. In general, the rating matrix is extremely
sparse, since it is unlikely that each user experienced and provided ratings for all
items.

Hybrid collaborative and content-based filtering strategies combine the two approaches
above, using both the rating matrix, and user and item information. [103, 150, 104,
88, 66, 7, 104, 125]. Such systems typically obtain improved prediction accuracy over
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content-based filtering systems and over collaborative filtering systems.

We can also classify recommender systems according to their main goals. [41] Recom-
mending good items may be the most important goal in many recommender systems.
Amazon.com, for example, tries to suggest items which are potentially attractive to
particular users. Another goal is optimizing utility, the profit to the company for in-
stance. This can be seen as a slight modification to the first goal, as a weighted sum
of recommended items. Lastly, predicting unseen ratings on an item by a user is also
a popular use of recommender systems. Netflix, for example, estimates how many
stars will be given by a user to a movie. Based on this prediction, it can recommend
movies to those who gave high scores.

This thesis, among the various recommender systems, focuses on collaborative filter-
ing (CF), mainly for rating prediction. As collaborative filtering methods use only
the rating matrix which is similar in nature across different domains, the results
and conclusions in this thesis can be applied to any CF-based recommender systems
independent of the domain.

1.2 Collaborative Filtering

Collaborative filtering systems are usually categorized into two subgroups: memory-
based and model-based methods. Memory-based methods simply store the rating
matrix and issue recommendations based on the relationship between the queried user
and item and the rest of the rating matrix. Model-based methods fit a parameterized
model to the given rating matrix and then issue recommendations based on the fitted
model.

The most popular memory-based CF methods are neighborhood-based methods,
which predict ratings by referring to users whose ratings are similar to the queried
user, or to items that are similar to the queried item. This is motivated by the as-
sumption that if two users have similar ratings on some items they will have similar
ratings on the remaining items. Alternatively, if two items have similar ratings by a
portion of the users, the two items will have similar ratings by the remaining users.

Specifically, user-based CF methods [12] identify users that are similar to the queried
user, and estimate the desired rating to be the average ratings of these similar users.
Similarly, item-based CF [117] identify items that are similar to the queried item, and
estimate the desired rating to be the average of the ratings of these similar items.
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Neighborhood methods vary considerably in how they compute the weighted aver-
age of ratings. Specific examples of similarity measures that influence the averaging
weights are include Pearson correlation, vector cosine, and mean-squared-difference
(MSD). Neighborhood-based methods can be extended with default votes, inverse
user frequency, and case amplification [12]. A recent neighborhood-based method
[128] constructs a kernel density estimator for incomplete partial rankings and pre-
dicts the ratings that minimize the posterior loss.

Model-based methods, on the other hand, fit a parametric model to the training
data that can later be used to predict unseen ratings and issue recommendations.
Model-based methods include cluster-based CF [134, 22, 26, 118, 146], Bayesian clas-
sifiers [92, 93], and regression-based methods [136]. The slope-one method [82] fits a
linear model to the rating matrix, achieving fast computation and reasonable accu-
racy.

A recent class of successful CF models are based on low-rank matrix factorization.
The regularized SVD method [11] factorizes the rating matrix into a product of two
low-rank matrices (user-profile and item-profile) that are used to estimate the miss-
ing entries. An alternative method is Non-negative Matrix Factorization (NMF) [78]
that differs in that it constrain the low-rank matrices forming the factorization to
have non-negative entries. Recent variations are Probabilistic Matrix Factorization
(PMF) [115], Bayesian PMF [114], Non-linear PMF [75], Maximum Margin Ma-
trix Factorization (MMMF) [124, 108], and Nonlinear Principal Component Analysis
(NPCA) [147].

Some recent work suggested that combining different CF models improve the predic-
tion accuracy. Specifically, a memory-based method linearly combined with a latent
factor method [8, 70] retains the advantages of both models. Ensembles of maximum
margin matrix factorizations were explored to improve the result of a single MMMF
model [29]. A mixture of experts model [125] proposes to linearly combine the pre-
diction results of more than two models. Feature-weighted linear stacking [123] uses
dynamic weights for linear combination of recommenders.

Some representative methods listed above will be briefly reviewed in Chapter 2. For
more information on recommender systems and collaborative filtering, several well-
written surveys [1, 126, 57] may be useful. Also, Several experimental studies may
provide useful information [12, 53, 80].
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Table 1.1: Standard Datasets for Collaborative Filtering.

Dataset Name User Count Item Count Rating Count Density
MovieLens 100K 943 1,682 100,000 6.30%
MovieLens 1M 6,039 3,883 1,000,181 4.27%
MovieLens 10M 69,877 10,681 9,905,064 1.33%
Yelp 43,878 12,742 215,903 0.03%
EachMovie 72,916 1,628 2,811,983 2.37%
Netflix 480,046 17,770 95,947,878 1.12%
BookCrossing 278,858 271,379 1,149,780 0.002%

1.2.1 Netflix Prize and Dataset

The Netflix competition1 was held between October 2006 and July 2009, when Bel-
lKor’s Pragmatic Chaos team won the million-dollar-prize. The goal of this compe-
tition was improving the prediction accuracy of the Netflix movie recommendation
system by 10%. The winning team used a hybrid method with temporal dynamics to
account for dates in which ratings were reported [70, 9]. The second-placed team,
The Ensemble [123], achieved comparable performance to the winner team, with a
linear combination with non-constant weights.

Although the Netflix competition has finished, the dataset used in that competition
is still used as a standard dataset for evaluating CF methods. It has 480,046 users
and 17,770 items with 95,947,878 ratings. This represents a density level of 1.12%
(total number of entries divided by observed entries). Table 1.1 lists other standard
datasets including MovieLens, EachMovie, and BookCrossing.

1.3 Research Questions

Since Netflix competition, a plethora of new recommendation algorithms have been
proposed. Most of them are arguing that they are the state-of-the-art, and performing
better than existing methods. The question we focus in this thesis is what is the best
way of building a recommendation system with collaborative filtering. We pose the
following questions, and will search an answer for each of them throughout this thesis.

Q1. What are the existing CF models for rating prediction, and what is
the best?

1http://www.netflixprize.com
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As a starting question, we first survey the current state-of-the-art CF-based recom-
mendation algorithm. Several more detailed questions will follow: What are the ex-
isting CF models? How do they predict unseen ratings? What is the best-performing
CF algorithm, in what sense? Is this always superior to others?

If one is always better than others, our answer will be simple; we always use the
best-performing recommender system for every application. Otherwise, we need to
research the next questions. To answer this question, we first survey existing models,
implement them, and experimentally evaluate them in multifaceted ways, in Chap-
ters 3 and 4.

Q2. If one is not always the best, how can we combine multiple CF models?

Given that multiple models perform better or worse than others depending on the
region of the rating matrix, that is, depending on the target user and item, how can
we combine models so as to improve the overall prediction accuracy the most? Many
possible solutions can be used, such as decision trees.

To maximize the advantage of combining multiple models, we consider a weight func-
tion that is dependent on the target user and item. A previous work [123] proposed
a similar approach with human-crafted features (weights). Can we automate this
feature learning process? How much can it be efficient and scalable? Chapter 5 will
discuss these questions and our solution.

Q3. Instead of combining existing models, can we learn local models as
well as weights?

Without assuming that we already have a set of (state-of-the-art) recommendation
models in hand, can we learn participating models as well as the weights at the
same time? In this way, each model can focus more on some local properties with
particular set of users and items, which were not possible with a global model. There
are several questions to implement this idea: How do we divide the entire matrix into
local regions? What form of local models do we learn? How should we combine local
models to produce the final estimation? What theoretical assumption and guarantees
do we have? We answer these questions in Chapter 6.

Q4. Can we use local models to improve quality of ranking as well?

In addition to the rating prediction problem, recently people focus more on ranking
problem in recommendation systems. As our main practical purpose with a recom-
mendation system is finding out and recommending several most preferrable items
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Table 1.2: Summary of research questions we pose and solve in this thesis.

No. Research Questions Chap.
Q1 Is there a CF model performing always the best? If so, what is it? 3, 4
Q2 How can we combine existing CF models to improve performance? 5
Q3 Can we learn local models and weights at the same time? 6
Q4 Can we apply our local approach to ranking problems? 7

for each user, we do not need to waste our effort to estimate the number of stars
(preference score) precisely. Instead, what we really need is the top k items poten-
tially the user will like. In this sense, we can formulate recommendation problem as a
ranking problem. In Chapter 7, we apply our local approach to this ranking problem
formulation to achieve better accuracy and faster computation.

Table 1.2 summarizes research questions we listed in this section.

1.4 Thesis Statement

Local approaches, dividing users and items into subcommunities, learning group-
specific models for each of them, and combining them to estimate unseen preferences,
significantly improve the performance of collaborative filtering-based recommendation
systems in terms of rating prediction and ranking accuracy as well as computational
efficiency and scalability.

1.5 Research Contributions and Impact

We summarize our contribution to the research community as well as the wider au-
diences in society.

1.5.1 Better Quality of Recommendations

First of all, we present several local approaches that significantly improve the accuracy
of recommendations. Ensembles of CF with non-constants weights in Chapter 5 and
Local Low-Rank Matrix Approximation (LLORMA) in Chapter 6 lower root-mean
squared error (RMSE) significantly. Although the improvement in RMSE looks small
(less than 0.001), it has been shown since the Netflix competition that lowering the
RMSE by 0.0001 is extremely difficult. Local collaborative ranking in Chapter 7 also
improves ranking quality in terms of average precision and NDCG.
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Local low-rank matrix approximation was not just verified by offline tests with stan-
dard datasets, but also was implemented and tested in industry including Google and
Amazon during the author’s internship. It was verified that local approaches in this
thesis were effective to improve recommendation quality in real production, though
we cannot provide exact figures publicly.

1.5.2 Theoretical Aspects

In addition to the improvement shown with experiments, we present important fun-
damental observations for collaborating filtering. The global low-rank assumption
has been prevailing in most previous works, but the local low-rank assumption pre-
sented in Chapter 6 fundamentally changes the underlying assumption for recom-
mendation systems using matrix factorization. We show that the diminishing returns
phenomenon we undergo with higher rank under the global low-rank assumption is
mainly because we are stuck at local optimum, not because it is the best solution. We
also provide theoretical analysis of the proposed local low-rank matrix approximation
method.

1.5.3 Computational Aspects

The algorithms presented in this thesis are highly efficient and scalable for large scale
dataset. Local low-rank matrix approximation (Chapter 6) and local collaborative
ranking (Chapter 7) can run either in clusters or in a multiprocessor machine in
parallel. As the learning process takes less time with a local model than with a global
one, and as every local model can be learned at the same time (at least in theory,
assuming that we have enough machines), the overall computation time for learning
process is even shorter than previous global models despite even superior accuracy.
We verify efficiency of our proposed algorithm with large scale data including Netflix
dataset as well as real production data from Amazon Instant Video service. With
sufficient computing resources, we proved that local approaches in this thesis can run
fast enough for real production use.

1.5.4 Open Source Software

We distribute local approaches in this thesis (LLORMA and LCR) with many other
baselines in the toolkit PREA presented in Chapter 3. (http://prea.gatech.edu)
Researchers both in academia and industry will take advantage of this open source
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toolkit. For research scientists, state-of-the-art algorithms implemented in PREA
will be great baselines to compare with their new methods. In industry, engineers
can easily compare many candidate recommendation algorithms to find the one best
fitting to their needs in applications. In some cases, simple and fast algorithm will be
the best, while some other applications may allow heavy offline computation to get
more accurate estimation.

PREA toolkit (Chapter 3) has been widely used in various areas of research commu-
nities, including recommendation systems [99, 95, 96, 97, 98, 14, 63, 62, 116, 113],
natural language processing [68], crowd-sourcing [61, 60], optimization [111, 106],
computer vision [127], and computer networks [5, 6, 4, 43]. Even outside of computer
science and engineering, PREA is used as a tool for matrix factorization in Material
Science and Engineering, Aerospace Engineering, and so on.

1.6 Organization

The remainder of this dissertation is organized as follows. We start with review-
ing brief history of collaborative filtering and representative methods in Chapter 2.
Specifically, we will focus on memory-based (neighborhood-based) methods and matrix-
factorization approaches in detail. Also, we review evaluation schemes and metrics
widely used in research community.

In Chapter 3, we introduce recommendation algorithms toolkit PREA (Personal-
ized Recommendation Algorithms Toolkit), including why it is needed, how it is
structured, and what features it has. In Chapter 4, we compare state-of-the-art CF
methods in a standardized manner using the toolkit. The experiment is designed
to investigate what algorithms perform better in various situations and with several
different evaluation measures.

Chapter 5 describes a CF ensemble model similar to mixture of experts, using dy-
namic weights depending on input, based on an observation that each CF methods
performs better or worse for particular set of users and items from the experimental
study. In Chapter 6, we further extend the ensemble model to learn both individual
models and their dynamic weights together, by significantly relaxing the low-rank
assumption to local models. We present two types of learning algorithms and discuss
their theoretical bounds. In Chapter 7, we apply this local low-rank assumption to
the ranking problem. We develop an efficient parallel learning algorithm with various
ranked loss functions, and present our experimental results on standard datasets.
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Chapter 8 reviews related work. Lastly, in Chapter 9, we summarize our work pre-
sented in this thesis, concluding with our contributions and future research direc-
tions.
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Chapter II

REVIEW OF COLLABORATIVE FILTERING

We start by reviewing previous research in recommendation systems and collabora-
tive filtering. Section 2.1 introduces classical recommendation systems, including the
very first use of the term collaborative filtering. In the following sections, we briefly
explain some representative methods both in neighborhood-based and matrix factor-
ization approaches. Lastly, we introduce how recommendation systems are evaluated
in Section 2.5.

2.1 Classical Examples

In the early 1990’s, the Internet or data communication was not that prevalent. Only
few people used dedicated news groups or e-mail services. We start by introducing
several pioneering examples of recommendation systems, although some terminologies
may differ from those used in today’s recommendation systems or machine learning
research community.

Tapestry [40] tried to control flood of text information by filtering out unimportant
ones, such as spam mails. It was this work that introduced the term collaborative
filtering for the first time, in the sense that people collaborate to help one another
perform filtering, by recording their reactions to documents they read. Tapestry sys-
tem is based on databases, using index and its dedicated language TQL (Tapestry
Query Language). With this system, users can annotate the usefulness of a partic-
ular text, which can be used for other users to filter them out. Figure 2.1 shows
architecture of Tapestry system. This is regarded as the first idea of filtering useful
information, based on other users’ feedback, though it did not discuss detailed algo-
rithm for how to find similar users, or how to recommend in a personalized manner.

GroupLens [109] was another system based on text service, specifically on news. At
the time it was proposed, the number of garbage articles was getting explosive with
the emergence of Internet on public. This was making difficult to filter useful ones by
traditional methods such as manual filtering or splitting threads of articles. The goal
of GroupLens was enabling users to predict the quality of news articles before reading
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Figure 2.1: System architecture of Tapestry [40], which introduced the concept
of collaborative filtering for the first time.

them. GroupLens proposed user-based collaborative filtering, which finds other users
who have similar taste, then shows their ratings on the article. Similar users were
calculated by Pearson-r correlation, and scores were weighted-averaged based on the
similarity between users. (User-based collaborative filtering will be discussed in more
detail in Section 2.3.) GroupLens also discussed how to use the calculated score
as well as presented its graphical representation. Figure 2.2 illustrates GroupLens
system flow.

Virtual community [50] was the first recommender systems on the multimedia (movie)
domain. In human-computer interaction perspective, it tried to solve a problem of
searching or recommending multimedia data and to develop a user interface for such
systems. The goal of virtual community was interacting and influencing other peo-
ple, without causing communication costs. It suggested four design goals, which are
considered important in modern recommendation systems as well: 1) ease of use, 2)
confident recommendation, 3) scalability, and 4) generalized framework. By adopting
both train/test set validation (widely used in machine learning and data mining com-
munity) and user study (widely used in human computer interaction community), it
established evaluation schemes used for recommendation systems.

Last example is Ringo [121], a personalized music recommendation system. This
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Figure 2.2: System flow of GroupLens [109], a pioneer of memory-based collabo-
rative filtering system.

work is considered as an important example, since it described detailed algorithm as
well as various similarity measures and evaluation metrics. Under the assumption
that there are general trends and patterns within the taste of a person, it applied
user-based collaborative filtering approach. Specifically, it builds and maintains user
profiles from their subjective ratings on items. When it processes a query from a user,
it looks for other users having similar interests by comparing these profiles. It finally
recommends a list of items that those similar users prefer.

2.2 Rating Prediction Problem

Suppose we have n1 users and n2 items. Those users can annotate their subjective
ratings on items. The set T of possible ratings can be either a binary set (e.g, {Like,
Dislike} or {+1, -1}), an ordinal (discrete) set (e.g, {A,B,C,D,F} or {1, 2, 3, 4, 5}), or
a bounded continuous set (e.g, {r ∈ R : 1 ≤ r ≤ 5}). A rating matrix M ∈ T n1×n2

contains users in rows 1, ..., n1, items in columns 1, ..., n2, and ratings in cells. When
a user u rates an item i, we observe a rating in Mu,i. Table 2.1 is an example of a
rating matrix with 5 users and 5 items with T = {1, 2, 3, 4, 5}, where higher score is
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Table 2.1: An example of rating matrix.

Item a Item b Item c Item d Item e

User A 5 2
User B 3 1 4
User C 4 2 2
User D 5 2
User E 5 1

considered higher preference. For instance, the user A likes item a very much, but
does not like item e.

Since it is almost impossible for a user to experience all items, most recommendation
system dataset is extremely sparse. In other words, very small portion of ratings are
observed and most are unknown. We define density as the ratio of observed ratings
to the whole matrix size. For the rating matrix in Table 2.1, for example, its density
is

d =
2 + 3 + 3 + 2 + 2

5× 5
=

12

25
= 48%. (2.1)

Note that density of standard datasets like Netflix or MovieLens ranges around 1%
to 5%, as shown in Table 1.1.

Rating prediction problem is predicting the unseen ratings from the sparse rating ma-
trix M , making use of all observed ratings. Semantically, it corresponds to predicting
how much the user likes the item. Unlike contents-based systems, we assume that
we do not have any contents information such as users’ age or gender, items’ genre
or release year. We describe representative algorithms to solve this problem in next
section.

2.3 Neighborhood-based Approaches

The idea of neighborhood-based collaborative filtering stems from an observation that
similar users or items share taste. We expect to find interesting items within preferred
items of similar users, for example.

This approach can be applied to both user-centric and item-centric views. In a user-
centric view, to recommend items to a particular user u, we refer to a set of other
users who are similar to u. Inspecting ratings by those similar users, we try to list
items which the user u may like but he did not see yet. In an item-centric world, on
the other hand, we seek items which are similar to items the user u likes. These two
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basic directions construct user-based and item-based collaborative filtering algorithm,
described in detail below.

2.3.1 User-based Collaborative Filtering

Suppose we have a rating matrix M , and we are about to predict an unseen rating of
item i by user u. In user-based collaborative filtering, we first seek neighbors of the
user u. For this, we need a similarity measure between two users. At this point, we
assume a black box computing similarity between two users. This will be discussed
later. By calculating similarity between u and all other users, we can select k most
similar users to u. To predict the rating Mu,i, we use ratings of these k similar users.
The easiest way may be the simple average of available ratings on the item i by those
similar users. More sophisticated way is an weighted average, based on similarity
between the target user u and its neighbors. Formally,

M̂u,i =

∑
v∈U sim(u, v)Mv,i∑

v∈U sim(u, v)
(2.2)

where U is the set of similar users with u, and sim is the similarity black box.

Let’s illustrate this approach by an example, using Table 2.1. Suppose we are about
to predict a rating by user A on item c. Let’s assume that the neighbor size k = 2, the
neighbor user set U = {C,E}, and user similarity is sim(A,C) = 0.8, sim(A,E) =

0.6, respectively. Then, we can compute (2.2) as follows:

M̂A,C =
0.8× 2 + 0.6× 1

0.8 + 0.6
=

2.2

1.4
≈ 1.57 (2.3)

That is, we predict that the user A would have rated item c as score of 1.57, indicating
that he does not really like it. This makes sense semantically, as both neighbor users
C and E rated the item c parsimoniously, 2 and 1 points respectively.

Now, the only thing we need is how to create the black box computing similarity
between two users. There are several ways to compute this, including the following:

Pearson Correlation

sim(u, v) =

∑
j(Mu,j − M̄u)(Mv,j − M̄v)√∑

j(Mu,j − M̄u)2
√∑

j(Mv,j − M̄v)2
(2.4)

where M̄u and M̄v are the average of ratings by user u and v, respectively, and the
summation is only over observed ratings.
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Cosine Similarity

sim(u, v) =
Mu ·Mv

|Mu||Mv|
(2.5)

where Mu and Mv are the row vectors corresponding user u and v, respectively.

Mean Squared Difference

sim(u, v) =
1

|C|
∑
i∈C

(Mu,i −Mv,i)
2 (2.6)

where C is a set of items rated both by user u and v.

Mean Absolute Difference

sim(u, v) =
1

|C|
∑
i∈C
|Mu,i −Mv,i| (2.7)

where C is a set of items rated both by user u and v.

2.3.2 Item-based Collaborative Filtering

Item-based CF [117] resembles user-based CF, only the role of rows and columns is
interchanged. To determine the rating of item i by user u, it seeks neighbors of the
item i, rather than user u. By calculating similarity between i and all other items, we
can select k most similar items to i, just as we did with users in user-based method.
The predicted rating can be calculated exactly in the same way:

M̂u,i =

∑
j∈I sim(i, j)Mu,j∑

j∈I sim(i, j)
(2.8)

where I is the set of similar items to i and sim is the similarity function between two
items. We can use similarity measures in (2.4) – (2.7) using column vectors i and j

of rating matrix M , instead of row vectors.

[117] argues item-based approach performs more accurately than user-based coun-
terpart, because item neighborhood relationship tends to be more stable than user
relationships. That is, users tend to change their preference as time goes, so the user
neighbor group may not be accurate in many cases. (The success of temporal dynam-
ics used by Netflix winner [72] is also based on this observation.) Item relationship,
on the other hand, tends to be more stable, since the intrinsic property of items (e.g,
genre) does not change as time goes. Item-based approach can take advantage of this
in computational aspect as well, by pre-computing item similarity offline.
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2.3.3 Extensions

There are some important extensions applicable to memory-based collaborative fil-
tering approaches. [12]

Instead of computing similarity only on observed ratings, we apply default voting for
unseen ratings. This is effective especially when the rating matrix is very sparse, as
we have much smaller chance to find co-rated items or co-rating users. The default
value may be determined differently depending on the type of dataset. For example,
we may apply neutral value for rating matrix of movies, as we do not know the
preference of unseen movies. For a purchase history data, however, we may give
negative preference on unseen part, as it may indicate dislike.

Inverse user frequency is based on an observation that universally liked items are not
that useful in capturing similarity. Inverse user frequency emphasizes less common
items with higher weights, while degrade weights of popular items.

Case amplification is used to emphasize highly-weighted cases further, while make
lowly-weighted cases negligible. This is effective to reduce noise in the dataset.

2.3.4 Complexity, Pros and Cons

Both user-based and item-based CF belong to memory-based methods, since it main-
tains the whole rating matrix in memory and predicts ratings when it is asked. As
it does nothing but storing the whole matrix in the memory, training time is negligi-
ble. If we pre-calculate user or item similarity offline, user-based CF takes O(n2

1n2)

and item-based CF takes O(n1n
2
2), respectively. For querying time, it takes O(n1)

searching time for user-based CF and O(n2) for item-based CF. (Recall that n1 is the
number of users and n2 is the number of items.)

Memory-based collaborative filtering is simple and easy to understand. Since it uses
similar users or items to predict a rating or to generate a recommendation list, it is
also easy to explain why those items are recommended. This justification elevates
credibility of the recommendation system. [129]. However, memory-based approaches
are not as accurate as matrix factorization methods discussed in the next section.
Also, memory-based CF is not that scalable, so it is not proper for large-scale systems
requiring accurate prediction.
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U 

V 

M = UVT 

Figure 2.3: An example of matrix factorization.

2.4 Matrix Factorization Approaches

Matrix factorization is another approach to solve rating prediction problem defined
in Section 2.2. Recall that we have a sparse rating matrix M ∈ R

n1×n2 , and we are
going to fill in missing values in this matrix, based on observed entries.

In matrix factorization, we approximate the given matrix M with a product of two
low-rank (say r), dense matrices U ∈ R

n1×r and V ∈ R
n2×r:

M ≈ UV � (2.9)

where r 	 min(m,n).

Each entry in M is approximated as an inner product of two vectors, one row from
U and one row from V . Specifically, Mu,i is approximated by UuV

�
i . Figure 2.3

graphically shows how this works. The red element (M3,2), for example, is expressed
as the inner-product of two (light) red vectors, corresponding row vector of U and
column vector of V �. Blue and green elements are also expressed in the same way.

Our learning task is determining the value of matrices U and V by enforcing U�
i Vj to

be similar to Mi,j for all observed entries. Although the rating matrix M is sparse,
U and V would be dense matrices, provided that we have at least one observation
for all users (rows) and all items (columns). As U and V are dense matrices, we can
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estimate unseen entries by taking inner-product of two corresponding vectors from
U and V . The exact way of learning U and V differs depending on algorithms. We
introduce some representative methods below.

2.4.1 Regularized SVD

Singular Value Decomposition (SVD) decomposes a matrix M ∈ R
n1×n2 into

R = UΣV � =
d∑

k=1

σkukv
�
k (2.10)

where U ∈ R
n1×d is a set of left singular vectors, V ∈ R

n2×d is a set of right singular
vectors, and Σ ∈ R

d×d is a diagonal matrix with singular values. Without loss of
generality, we can sort singular vectors in decreasing order of σk. When we take
singular vectors corresponding to r largest singular values, we get the best rank-r
approximation to M

M̂ = UΣV � =
r∑

k=1

σkukv
�
k , (2.11)

in terms of least squares.

Our goal in collaborative filtering is the opposite: given M , we want to find U and
V , where minimizes squared error between M and UV � on observed entries. The
objective function E(U, V ) we want to minimize is given by

E(U, V ) =
∑

(u,i)∈Ω

(
[UV �]u,i −Mu,i

)2
=

∑
(u,i)∈Ω

(
r∑

k=1

Uu,kVi,k −Mu,i

)2

. (2.12)

where Ω is a set of indices of observed entries. In addition to (2.12), we may need
regularization to avoid overfitting. We add R(U) and R(V ) to the end of (2.12),
preventing values in U and V from being too large. Several different form of reg-
ularization can be possible, but we use L2-regularization (ridge regression) to make
E(U, V ) differentiable. The modified objective function is then

E(U, V ) =
∑

(u,i)∈Ω

(
[UV �]u,i −Mu,i

)2
+ λR(U) + λR(V ) (2.13)

=
∑

(u,i)∈Ω

(
r∑

k=1

Uu,kVi,k −Mu,i

)2

+ λ

m∑
u=1

r∑
k=1

U2
u,k + λ

n∑
i=1

r∑
k=1

U2
i,k. (2.14)

where λ controls relative importance between least square fitting and regularization
terms. (Note that we can use different regularization coefficient for U and V .)
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To minimize (2.14), we use gradient-descent, since least square problem of a partially-
observed matrix is non-convex. Algorithm 2.1 describes gradient-descent framework.
Considering a single term in E(U, V ), we have

Eu,i(U, V ) =

(
r∑

k=1

Uu,kVi,k −Mu,i

)2

+ λ

r∑
k=1

U2
u,k + λ

r∑
k=1

U2
i,k. (2.15)

Partial derivatives of (2.15) with respect to single elements in U and V are given by

∂Eu,i(U, V )

∂Uu,k

= 2Vi,k

(
[UV �]u,i −Mu,i

)
+ 2λVi,k (2.16)

∂Eu,i(U, V )

∂Vi,k

= 2Uu,k

(
[UV �]u,i −Mu,i

)
+ 2λUu,k (2.17)

which are used for updating in Algorithm 2.1. The parameter μ in Algorithm 2.1
controls learning speed. It runs until UV � converges to M over observed entries Ω.
Due to the non-convexity of the problem, the converged U and V may depend on
initial values.

Algorithm 2.1 Regularized SVD
Input: M ∈ R

n1×n2 , μ
while ‖M − UV �‖ > ε do

for all (u, i) ∈ Ω, k = 1, · · · , r do
Uu,k := Uu,k − μ

∂Eu,i(U,V )

∂Uu,k

Vi,k := Vu,k − μ
∂Eu,i(U,V )

∂Vi,k

end for
end while
Output: U , V

2.4.2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a matrix factorization technique approx-
imating M ≈ UV � under the constraint that all entries in U and V should be
non-negative. This requirement can be important in some applications where the
representation of each element is inherently non-negative, or it seeks low-rank matri-
ces which are enforced to have only non-negative values. For example, a text doc-
ument is represented as a vector of non-negative numbers with the term-frequency
encoding. Each element in this representation is the number of appearances of each
term in the document, so it is non-negative. Another example is image processing.
Digital images are represented by a matrix of pixel intensities, which is inherently
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non-negative. In natural sciences such as chemistry or biology, chemical concentra-
tions or gene expressions are also non-negative. [67] In recommendation systems, a
rating matrix is also usually non-negative. Although other matrix factorization meth-
ods may allow negative entries in factorized low-rank matrices, it still makes sense to
enforce non-negativity as the original data is non-negative.

Objective function which is minimized in NMF is either Euclidean distance

E(U, V ) =
∑

(u,i)∈Ω

(
[UV �]u,i −Mu,i

)2
, (2.18)

or Kullback-Leibler divergence

E(U, V ) =
∑

(u,i)∈Ω

(
Mu,i log

Mu,i

[UV �]u,i
−Mu,i + [UV �]u,i

)
. (2.19)

Lee and Seung [79, 119] present multiplicative update rules for both Euclidean dis-
tance and Kullback-Leibler divergence objective functions. For Euclidean distance,
the update rules are

Vi,k ← Vi,k
[U�M ]i,k
[UUV �]i,k

, (2.20)

Uu,k ← Uu,k
[MV ]u,k

[UV �V ]u,k
. (2.21)

For Kullback-Leibler divergence, the update rules are

Vi,k ← Vi,k

∑
u Uu,kMu,i/[UV �]u,i∑

u Uu,k

, (2.22)

Uu,k ← Uu,k

∑
i Vi,kMu,i/[UV �]u,i∑

i Vi,k

, (2.23)

which were proved to converge in [119]. Note that these multiplicative update rules are
possible thanks to the non-negativity constraints, and converge faster than additive
update rules.

2.4.3 Probabilistic Models

Matrix factorization based on SVD was extended to probabilistic models by two sem-
inal papers [115, 114]. Probabilistic matrix factorization (PMF) [115] is represented
as a graphical model in the left panel of Figure 2.4. Assuming Gaussian observation
noise, conditional distribution over the observed ratings is given by

p(M |U, V, σ2) =

n1∏
u=1

n2∏
i=1

[
N (Mu,i|U�

u Vi, σ
2)
]Iu,i (2.24)

20



Figure 2.4: Matrix factorization using graphical models. Left: Probabilistic ma-
trix factorization (PMF) [115], Right: Bayesian probabilistic matrix factorization
(BPMF) [114].

where Iu,i is 1 if (u, i) ∈ Ω, and 0 otherwise. Priors are also assumed to have zero-mean
spherical Gaussian distributions,

p(U |σ2
U) =

n1∏
u=1

N (Uu|0, σ2
UI) (2.25)

p(V |σ2
V ) =

n2∏
i=1

N (Vi|0, σ2
V I) (2.26)

Putting them together, the log of the posterior distribution is given by

ln p(U, V |M,σ2, σ2
U , σ

2
V )

= − 1

2σ2

n1∑
u=1

n2∑
i=1

Iui(Mu,i − U�
u Vi)

2 − 1

2σ2
U

n1∑
u=1

U�
u Uu −

1

2σ2
V

n2∑
i=1

V �
i Vi

− 1

2

((
n1∑
u=1

n2∑
i=1

Iu,i

)
ln σ2 +mr ln σ2

U + nr ln σ2
V

)
+ C, (2.27)

where r is the rank of low-rank approximation, and C is a constant that does not
depend on the parameters. If we fix hyperparameters {σU , σV } as constants, the
log-posterior shrinks to objective function of SVD (2.15).

Although it looks similar to SVD, PMF extends SVD with probabilistic interpretation.
In SVD, regularization parameters were chosen somehow by hand. [115] proposed
type II maximum likelihood estimator for choosing the regularization parameters.
This leads to natural extension to fully-Bayesian treatment, introduced in Bayesian
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PMF [114]. Unlike PMF using point estimates, Bayesian PMF (BPMF) estimates
the whole posterior probability distribution. The graphical model used in BPMF is
shown in the right panel of Figure 2.4.

As in (2.24), the likelihood of the observed ratings are given by

p(M |U, V, σ2) =

n1∏
u=1

n2∏
i=1

[
N (Mu,i|U�

u Vi, σ
2)
]Iu,i

. (2.28)

The prior distributions over U and V are extended to have hyperparameters instead
of zero-mean and fixed precision in PMF:

p(U |μU ,ΛU) =

n1∏
u=1

N (Uu|μU ,Λ
−1
U I) (2.29)

p(V |μV ,ΛV ) =

n2∏
i=1

N (Vi|μV ,Λ
−1
V I) (2.30)

where ΛU and ΛV are precisions, corresponding to the inverse of variances σ2
U and σ2

V

used in PMF. BPMF further introduces Gaussian-Wishart priors over user and item
hyperparameters ΘU = {μU ,ΛU} and ΘV = {μV ,ΛV }:

p(ΘU |Θ0) = N (μU |μ0, (β0ΛU)
−1)W(ΛU |Λ0, ν0) (2.31)

p(ΘV |Θ0) = N (μV |μ0, (β0ΛV )
−1)W(ΛV |Λ0, ν0) (2.32)

where W is Wishart distribution, and Θ0 = {μ0, ν0,W0} is its parameters. The
predictive distribution for unseen rating M̂ is given by

p(M̂u,i|M,Θ0) =

∫∫
p(M̂u,i|Uu, Vi)p(U, V |M,ΘU ,ΘV )p(ΘU ,ΘV |Θ0)d{U, V }d{ΘU ,ΘV }.

(2.33)
As exact evaluation of (2.33) is analytically intractable, [114] used MCMC (Markov
Chain Monte-Carlo)-based sampling for approximate inference. With Gibbs sampling,
(2.33) can be approximated by

p(R̂ui|R,Θ0) ≈
1

K

K∑
k=1

p(M̂u,i|U (k)
u , V

(k)
i ). (2.34)

Figure 2.5 shows performance of BPMF with r = 30 and r = 60. As indicated in the
figure, it takes relatively long time to achieve good test RMSE.

2.4.4 Other Matrix Factorization Models

Besides several methods we introduced so far, there are hundreds of variations and
extensions on matrix factorization methods for collaborative filtering. We list some
of them before finishing this section.
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Figure 2.5: Accuracy and computational overhead of Bayesian probabilistic ma-
trix factorization (BPMF) [114].

Maximum Margin Matrix Factorization (MMMF) [124] resembles maximum margin
classifiers such as support vector machines (SVM). It utilizes low-norm, instead of low-
rank, factorizations by solving a semi-definite optimization problem. [108] improved
original MMMF to faster and more scalable version, by a direct gradient-based op-
timization algorithm. [29] proposed ensembles of MMMF models, achieving better
prediction accuracy.

Non-linear Matrix Factorization (NLPMF) [75] proposed a non-linear model for ma-
trix factorization using Gaussian process latent variable models. Applying stochastic
gradient descent, NLPMF is scalable to millions of observations without approxi-
mate methods. Rating prediction is done by a similar way with neighborhood-based
methods discussed in Section 2.3.

Fast Non-parametric Matrix Factorization [147] developed a fast optimization algo-
rithm for non-parametric matrix factorization method. Non-parametric models can
be preferred to parametric low-rank models thanks to its flexibility, but its drawback
is computational overhead and limited scalability. Fast Non-parametric Principal
Component Analysis (NPCA) algorithm turns out to be efficient as well as achieves
good accuracy.
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2.5 Evaluation of Recommendation Systems

Recommendation systems can be evaluated in various ways. When a system is de-
ployed as a real application, it may be tested with real users on a real situation. That
is, one or more recommendation engines are implemented on a target system, and
each user is directed to test those recommenders. From the system log, we can ob-
serve how users are influenced by the system. We may also survey them directly. This
kind of user study is widely used in human computer interaction (HCI) or computer-
supported cooperative work (CSCW) research community. However, user study is
very costly in general. Also, we need to take burden to open imperfect version to real
users. This may give negative experience, making them to avoid using the system in
the future.

Instead of online experiment with real users, we can do offline experiments using pre-
viously gathered dataset. In this section, we focus on evaluation of recommendation
algorithms, in machine learning and data mining perspective. We introduce various
evaluation metrics and strategies which have been used in recommendation system
research community [49, 41] as well as which is used throughout this thesis.

2.5.1 Metrics for Prediction Accuracy

When our main task is predicting unseen ratings, we usually want to quantify how
accurate the predicted rating is. Formally, we define a recommendation system f(u, i)

as a function, returning predicted rating for item i by user u. For a set of indices Ω

of m test entries, we compare the predicted rating and the observed true rating. This
test set is not supposed to be seen by the recommendation system before it finishes
learning phase. The three most widely-used metrics include

Mean Absolute Error (MAE)

MAE =
1

m

∑
(u,i)∈Ω

|f(u, i)−Mu,i|, (2.35)

where f(u, i) is our prediction on item i by user u, and Mu,i is the ground truth,

Normalized Mean Absolute Error (NMAE)

NMAE =
MAE

rmax − rmin

, (2.36)

where rmax and rmin indicate the maximum and minimum possible rating in the
dataset, respectively. This measure surely scales between [0, 1], and
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Root Mean Squared Error (RMSE)

RMSE =

√
1

m

∑
(u,i)∈Ω

(f(u, i)−Mu,i)2. (2.37)

RMSE tends to give more penalty to big mistakes than MAE. Traditionally, MAE

was used in general. Since the Netflix prize, RMSE has become more popular.

Asymmetric Measures

In addition to these three metrics, [80] introduced asymmetric measures, which have
been widely used in classification problems. Asymmetric losses reflect the idea that
false-positive and false-negative (See Table 2.2.) may result in quite different situa-
tions. For example, diagnosing a patient with cancer as normal brings about much
serious result than its opposite. In recommendation systems, the same problem can
happen. Specifically, recommending an item which is not preferable may disgrace the
trustworthiness more than missing an item which is preferable.

Formally, the metrics above can be generalized to the form

ASYM =
1

m

∑
(u,i)∈Ω

L(f(u, i),Mu,i) (2.38)

where L is defined by a matrix or a function returning a real number. Based on the
spirit above, an example of asymmetric loss can be defined as

L(x, y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 3 4

0 0 0 2 3

0 0 0 1 2

6 4 2 0 0

8 6 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.39)

L(x, y) in (2.39) indicates the penalty when the system predicts a rating as x (row)
for real rating y (column), on a system with ordinal ratings between 1 and 5. For
instance, predicting 1 as 2 or 2 as 1 does not give penalty, since the item is not
recommended to the user. This is same for the case of 4 as 5 or 5 as 4 as they are still
recommended after all. When we predict 4 as 1, L(x, y) gives penalty corresponding
to their difference as MAE. However, if it is the opposite way, it gives twice penalty
of that, as we believe recommending bad items will cause more serious problem. This
kind of loss matrix or loss function can be defined arbitrarily based on our belief. We
observe that MAE or RMSE can be seen as a special case of this asymmetric measure.
Since all of these measures are errors, lower values mean better performance.
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Table 2.2: Classification matrix for recommendation systems.

Recommended Not-recommended
Preferred True-Positive (TP) False-Negative (FN)
Not-preferred False-Positive (FP) True-Negative (TN)

2.5.2 Metrics for Classification Accuracy

Another way of evaluating recommendation algorithm is viewing recommendation
process as a classification problem. Based on the ground truth, we can classify each
rating as one of {Preferred,Not-preferred}. We want to recommend preferred items,
but not to recommend not-preferred. Among the four cases in Table 2.2, TP and
TN are considered correct. Using the table, there are two important measures for
accuracy of classifiers:

Precision measures the ratio of correct recommendations among the list of recom-
mended items. If we have 6 preferred items by the user in the recommended list of
10 items, the precision is 0.6, for example.

Prec =
{Recommended

⋂
Preferred}

{Recommended} =
TP

TP + FP
(2.40)

Recall measures the ratio of the user’s preferred items covered by the recommenda-
tion list. If there are 20 preferred items by the user in the system and the system
suggests 5 of them, the recall is 0.25, regardless of the length of recommendation list.

Recall =
{Recommended

⋂
Preferred}

{Preferred} =
TP

TP + FN
(2.41)

Recall has a property that it is monotonically non-decreasing with the increase of
recommendations. An extreme silly recommender suggesting all items to all users
always achieves highest recall. However, increasing the number of recommended
items in general reduce its precision. In other words, there is a trade-off between
precision and recall.

F1 is a good measure taking both of them into account:

F1 =
2 · Prec ·Recall

Prec+Recall
(2.42)

The higher all of these three measures are, the better the recommender system is.
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2.5.3 Metrics based on Ranks

Rank-based Metrics use relative order of recommended items rather than exact scores
of them. Below is a list of rank-based measures, which are also used in web search
engine evaluation.

Half-Life Utility Score (HLU) [12] is one of the most popular metrics based on
ranking. Suppose we recommend an ordered list of items to a user. Naturally, we
would expect that the user will see the list from the top to the bottom, and he may
stop either when he finds an interesting one or when he feels the list is not useful to
him. We want to estimate how likely the user will actually retrieve the recommended
items. Assuming an exponential decay with a half-life α, HLU evaluates how many
actually preferred items are located in the front of the recommended list. Overall
score is in relative scale to the maximum possible score of the target user. Formally,
an HLU score HLUu for user u and overall score HLU is given by

HLUu =

n1∑
j=1

1

2(idx(j)−1)/(α−1)
(2.43)

HLU =

∑
u HLUu∑

u HLUmax
u

(2.44)

where idx(j) is the index of the item j in the recommended list, and α is the half-
life, the number of items in the list where the probability of retrieval drops to half.
For example, if α = 5, we assume that users will see the item ranked in the 6th
position with half probability of the one in the 1st position. HLUmax

u is the maximum
possible score for the user u. This is achieved when the recommended items are sorted
by the user’s actual preference. [41] argues that this is a proper measure when the
recommender system is aimed to optimize utility.

Normalized Discounted Cumulative Gain (NDCG) is a popular metric for
measuring effectiveness of a web search engine or other information retrieval applica-
tions. Discounted Cumulative Gain (DCG) measures the usefulness of an item based
on its rank in a recommended list. NDCG normalizes the DCG in order to com-
pensating varying length of recommendation list. For this, DCG score is divided by
maximum possible gain with the given list. This is conceptually similar to HLU, but
gives slightly different result. Formal definition of DCG and NDCG with a list of p
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recommendations is given by

DCGu = rel1 +

p∑
i=2

reli
log2 i

(2.45)

NDCGu =
DCGu

DCGmax
u

(2.46)

where reli is the relevance of the item in the index i in the recommended list to the
target user. NDCG is the normalized version of DCG by maximum possible one.
This DCGmax

u is also achieved when the recommendation list is sorted by the user’s
actual preference.

Kendall’s Tau is a distance measure, representing the number of discordant pairs
among m items. Formally,

KTu =
m∑
i=1

∑
j<i

I[(f(u, i)− f(u, j))(Mu,i −Mu,j) > 0] (2.47)

where F (u, i) is our prediction of rating on item i by user u, and Mu,i is the ground
truth of it. I is an indicator function returning 1 if the condition is true, and 0
otherwise.

Spearman’s distance is the square of Euclidean distance between two rankings
interpreted as vectors. Formally, for a predicted ranking vector x and a ground truth
ranking vector y over m items, Spearman’s distance is

SPu =
m∑
i=1

(xi − yi)
2. (2.48)

Before finishing this section, we relate the two important categories of evaluation:
rating prediction accuracy (Section 2.5.1) and ranking-based metrics (Section 2.5.3).
One question we may have is whether reducing RMSE is really meaningful to users.
This is a natural question, since reduction in RMSE seems almost negligible. For
instance, the Netflix prize winner achieved RMSE of 0.8567, but so many participants
failed to win the million dollar prize as their RMSE were slightly larger than 0.8567,
such as 0.86 or so.

[72] conducted an interesting experiment to verify that reducing RMSE is actually
a meaningful task, in top-k recommendation situation. Assuming that we recom-
mend k items to users, the order is important as we discussed in 2.5.3. Our goal in
recommendation is therefore locating interesting items on the top (or relatively high
rank) of the list. The experiment measured the place of interesting items (observed as
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highest score) within the recommendation list among 1,000 randomly selected items.
Comparing the location of interesting items in recommended list, [72] found that a
system with lower RMSE actually locates interesting items on higher rank in aver-
age. This experiment proves lots of efforts the research community made on reducing
RMSE were actually meaningful in practice.
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Chapter III

RECOMMENDATION ALGORITHMS TOOLKIT

In this chapter, we introduce our recommendation algorithm toolkit named PREA
(Personalized Recommendation Algorithms Toolkit)1, which is publicly available as
an open-source software.

3.1 Motivation

A wide variety of algorithms have been proposed by the research community for
recommendation systems. Unlike classification where comprehensive packages are
available, existing recommendation systems toolkits lag behind. They concentrate
on implementing traditional algorithms rather than the rapidly evolving state-of-the-
art. Implementations of modern algorithms are scattered over different sources which
makes it hard to have a fair and comprehensive comparison.

Our PREA implements a wide variety of recommendation systems algorithms. PREA
offers implementation of modern state-of-the-art recommendation algorithms as well
as most traditional ones. In addition, it provides many popular evaluation methods
and datasets. As a result, it can be used to conduct fair and comprehensive com-
parisons between different recommendation algorithms. The implemented evaluation
routines, datasets, and the open-source nature of PREA makes it easy for third parties
to contribute additional implementations.

Not surprisingly, the performance of recommendation algorithms depends on the data
characteristics. For example, some algorithms may work better or worse depending
on the amount of missing data (sparsity), distribution of ratings, and the number of
users and items. It is likely that an algorithm may perform better on one dataset
and worse on another. Furthermore, the different evaluation methods that have been
proposed in the literature may have conflicting orderings over algorithms [41, 80].
PREA’s ability to compare different algorithms using a variety of evaluation metrics
may clarify which algorithms perform better under what circumstance.

1http://prea.gatech.edu/
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3.2 Program Structure and Implementation

PREA is a multi-platform Java Software (version 1.6 or higher required). It is com-
patible with MS Windows, Linux, and Mac OS. The toolkit consists of three groups of
classes, as shown in Figure 3.1. The top-level routines of the toolkit may be directly
called from other programming environments like Matlab. The top group implements
recommendation algorithms. The bottom-left group contains basic data structures
and data management part. The last group (bottom-right) implements evaluation
metrics, statistical distributions, and other useful functions.

Figure 3.1: Class Structure of PREA Toolkit

The input data file format of PREA is ARFF2, which is used in the widely-used
machine learning toolkit WEKA3.

Since users provide ratings for only a small subset of items in general, virtually all
recommendation systems datasets are sparse. For this reason, PREA implements
sparse (rather than dense) ARFF format. Also, data representation in the toolkit uses
a sparse matrix representation for the rating matrices. Specifically, we use Java’s data
structure HashMap to create a DataMap class and a SparseVector class. We tried
some other options including TreeMap, but we chose HashMap due to its superior
performance over others. Figure 3.2 (left) shows an example of a sparse vector,

2Full description about ARFF can be found at http://www.cs.waikato.ac.nz/˜ml/weka/arff.html
3http://www.cs.waikato.ac.nz/˜ml/weka/
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Figure 3.2: Sparse Vector (left) and Matrix (right) Implementation

containing data only in indices 1, 3, and 6.

We construct a SparseMatrix class using an array of SparseVector objects. To facili-
tate fast access to rows and columns, both row-oriented and column-oriented reference
arrays are kept. This design is also useful for fast transposing of sparse matrices, sim-
ply done by interchanging rows and columns. Figure 3.2 (right) shows an example of
sparse matrix.

PREA also uses dense matrices in some cases. For example, dense representations
are used for low-rank matrix factorizations or other algebraic operations that do not
maintain sparsity. The dense representations are based on the matrix implementa-
tions in the Universal Java Matrix Package (UJMP)4.

Below is the list of rating prediction algorithms in PREA:

• Baselines (Constant, Random, User/item Average): make little use of person-
alized information for recommending items.
• Memory-based Neighborhood algorithms (User-based, item-based collaborative

filtering and their extensions including default vote, inverse user frequency):
predict ratings of unseen items by referring those of similar users or items.
• Matrix Factorization methods (SVD, NMF, PMF, Bayesian PMF, Non-linear

PMF): build low-rank user/item profiles by factorizing training dataset with
linear algebraic techniques.
• Others: recent state-of-the-art algorithms such as Fast NPCA and Rank-based

collaborative filtering.

We provide popular evaluation metrics as follows:

• Accuracy for rating predictions (RMSE, MAE, NMAE): measure how much the
predictions are similar to the actual ratings.

4http://www.ujmp.org/
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• Rank-based evaluation metrics (HLU, NDCG, Kendall’s Tau, and Spearman):
score depending on similarity between orderings of predicted ratings and those
of ground truth.

3.3 Evaluation Framework

For ease of comparison, PREA provides the following unified interface for running
the different recommendation algorithms.

• Instantiate a class instance according to the type of the recommendation algo-
rithm.
• Build a model based on the specified algorithm and a training set.
• Given a test set, predict user ratings over unseen items.
• Given the above prediction and held-out ground truth ratings, evaluate the

prediction using various evaluation metrics.

Note that lazy learning algorithms like the constant models or memory-based algo-
rithms may skip the second step.

The train and test split can be constructed in various ways. [41] introduced four
strategies for splitting training and test set: (a) predicting each test case based on
other ratings prior to that, (b) using ratings after a specific date as test set, (c)
splitting the ratings into a fixed proportion of train and test set for each user, or
(d) sampling some portion of ratings uniformly randomly, regardless of date, user, or
item.

Moving from (a) to (d) loses reality of simulation, being simpler and faster. We im-
plemented train/test set split with option (d). Although it seems to lose some reality,
we can actually apply this method without much distortion, as we can assume that
individual preference is not changing so fast in many applications. Also, this method
is the only choice when the dataset does not provide the rated date information. For
more general usage, we split the set without using date information.

3.4 Contribution

PREA contributes to recommendation system research community and industry by
(a) providing an easy and fair comparison among most traditional recommendation
algorithms, (b) supporting state-of-the-art recommendation algorithms which have
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not been available on other toolkits, and (c) implementing different evaluation criteria
emphasizing different performance aspects rather than a single evaluation measure like
mean squared error.

The open-source nature of the software (available under the Berkeley Software Distri-
bution (BSD) license) may encourage other recommendation systems experts to add
their own algorithms to PREA. More documentation for developers as well as user
tutorials are available on the web (http://prea.gatech.edu).

Table 3.1 compares PREA with other open-source recommendation toolkits. Ma-
hout5, which incorporated Taste6, provides an implementation of many memory-based
algorithms. It also supports powerful mathematical and statistical operations as it is
a general-purpose machine learning toolkit. Duine7 provides a way to combine multi-
ple algorithms into a hybrid system and also addressed the cold-start situation. Cofi8

implements several traditional algorithms with a simple design based on providing
wrappers for publicly available datasets. MyMedia9 is a C#-based recommendation
toolkit which supports most traditional algorithms and several evaluation metrics.

As indicated in Table 3.1, existing toolkits widely provide simple memory-based algo-
rithms, while recent state-of-the-art algorithms are often not supported. Also, these
toolkits are generally limited in their evaluation metrics (with the notable exception
of MyMedia). In contrast, PREA provides a wide coverage of the the most up-to-
date algorithms as well as various evaluation metrics, facilitating a comprehensive
comparison between state-of-the-art and newly proposed algorithms in the research
community.

5https://cwiki.apache.org/confluence/display/MAHOUT/Recommender+Documentation
6http://taste.sourceforge.net/old.html
7http://www.duineframework.org/
8http://www.nongnu.org/cofi/
9http://www.ismll.uni-hildesheim.de/mymedialite/
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Chapter IV

EMPIRICAL ANALYSIS OF COLLABORATIVE

FILTERING

In this chapter, we use PREA introduced in Chapter 3 to compare several collabo-
rative filtering techniques – both classic and recent state-of-the-art – in a variety of
experimental contexts. Specifically, we compare their performance on various number
of items, number of users, and sparsity level, using a number of performance criteria.
Our conclusions identify what algorithms work well and in what conditions.

4.1 Experimental Design

Table 4.1 lists recommendation algorithms to be compared. There are three elemen-
tary baselines: a constant function (identical prediction for all users and all items),
user average (constant prediction for each user-based on their average ratings), and
item average (constant prediction for each item-based on their average ratings). The
memory-based methods listed in Table 4.1 are classical methods that perform well
and are often used in commercial settings. The methods listed under the matrix fac-
torization and others categories are more recent state-of-the-art methods proposed in
the research literature.

In our experiments we used the Netflix dataset, a standard benchmark in the CF
literature that is larger and more recent than alternative benchmarks. To facilitate
measuring the dependency between prediction accuracy and dataset size and density,
we sorted the rating matrix so that its rows and columns are listed in order of de-
scending density level. We then realized specific sparsity pattern by selecting the top
k rows and 
 columns and subsampling to achieve the required sparsity.

Figure 4.1 shows the density level of the sorted rating matrix. For instance, the top
right corner of the sorted rating matrix containing the top 5,000 users and top 2,000
items has 52.6% of density. In other words, there 47.4% of the ratings are missing.
The density of the entire dataset is around 1%. We subsample a prescribed level
of density which will be used for training as well as 20% more for the purpose of
testing. We cross-validate each experiment 10 times with different train-test splits.
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Table 4.1: List of Recommendation Algorithms used in Experiments

Category Algorithms
Constant

Baseline User Average
Item Average
User-based [126]

Memory User-based with Default Values [12]
-based Item-based [117]

Item-based with Default Values
Regularized SVD [102]

Matrix NMF [79]
Factorization PMF [115]

-based Bayesian PMF [114]
Non-linear PMF [75]
Slope-One [82]

Others NPCA [147]
Rank-based CF [128]

The experiments were conducted on a dual Intel Xeon X5650 processor (6 Core, 12
Threads, 2.66GHz) with 96GB of main memory.

4.2 Observations

4.2.1 Dependency on Data Size and Density

We start by investigating the dependency of prediction accuracy on the dataset size,
in terms of user count and item count, and on density of observed ratings. Of par-
ticular interest, is the variability in that dependency across different CF algorithms.
This variability holds the key to determining which CF algorithms should be used
in a specific situation. We start below by considering the univariate dependency of
prediction accuracy on each of these three quantities: number of users, number of
items, and density level. We then conclude with an investigation of the multivariate
dependency between the prediction accuracy and these three variables.

Figure 4.2 graphs the dependency of mean absolute error (MAE) on the number of
users (top row), the number of items (middle row), and density (bottom row), with
each of the three panels focusing on CF methods in a specific category (memory-based
and baselines, model-based, and other). When one variable is varied, the others were
fixed to 5,000 users, 2,000 items, and 3% of density. The RMSE evaluation measure
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Figure 4.1: Rating density (cumulative in the top panel and non-cumulative in
the bottom panel) in Netflix rating matrix, sorted by descending density of rows
and columns. See text for more details.
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Figure 4.2: Prediction loss as a function of user count (top), item count (middle),
and on density (bottom).
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shows very similar trend. Also, the default voting variants of the user-based and item-
based CF methods did not produce notable changes. Here is a list of our observations:

• In general, the best performing algorithm is regularized SVD.

• Matrix factorization methods in general show better performance when the
dataset size is sufficiently large. (> 3, 000 users and > 1, 000 items).

• When the dataset size is sufficiently small, there is very little difference between
matrix factorization and the simpler neighborhood-based methods. Also, the
simple baselines (user average and item average) work remarkably well for low
density.

• Regularized SVD, PMF, BPMF, and NLPMF tend to be the most sensitive
to variation in dataset size. Interestingly, item average and item-based are
sensitive only to variation in user count, while user-based is only to variation in
item count.

• Slope-one, NMF, NPCA, and rank-based are relatively insensitive to the dataset
size.

• User-based, item-based, slope-one, PMF, and BPMF are largely dependent on
density, while the three baselines and NMF are relatively independent from
density.

• User-based CF performs well when user count is small and item count is large.
Item-based CF, on the other hand, works well when item count is small and
user count is large. They show similar dependency pattern on density level.
This is in stark contrast to their different dependencies on the user and item
count.

• As the density level increases the differences in prediction accuracy of the dif-
ferent algorithm shrink.

• The performance of slope-one and PMF degrade significantly at low densities,
performing worse than the weakest baselines. Nevertheless both algorithms
feature outstanding performance at high densities.

The univariate dependencies examined previously show important trends but are
limited since they examine variability of one quantity while fixing the other quantities
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Figure 4.3: MAE Contours for simple method (Lower values mean better perfor-
mance.)
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Figure 4.4: MAE Contours for advanced method (Lower values mean better
performance.)
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to arbitrary values. We now turn to examine the dependency between prediction loss
and the three variables (user count, item count, and density) altogether. We do so
by graphing the MAE as a function of user count, item count, and density.

Figure 4.3–4.4 shows the equal height contours of the MAE as a function of user count
(x axis) and item count (y axis) for multiple density levels (horizontal panels) and for
multiple CF algorithms (vertical panels). Note that all contour plots share the same x
and y axes scales and so are directly comparable. Intervals between different contour
lines represent a difference of 0.01 in MAE and so more contour lines represent higher
dependency on the x and y axis. Analogous RMSE graphs show similar trend to
these MAE graphs. Below is a summary of our observations:

• The univariate relationships discovered earlier for fixed values of the remaining
two variables do not necessarily hold in general. For example, the conclusion
that PMF is relatively sensitive to user count and item count at 1% sparsity
level and 3% sparsity level is not longer valid for 5% density levels. It is thus
important to conduct a multivariate, rather than univariate, analysis of the
dependency of the prediction loss on the problem parameters.

• The shape of the MAE contour curves vary from algorithm to algorithm. For
example, the contour curves of constant, user average, user-based, and user-
based with default values are horizontal, implying that these algorithms depend
largely on the number of items, regardless of user count. On the other hand, item
average, item-based, and item-based with default values show vertical contour
lines, showing a high dependency on the user count.

• Higher dependency on user count and item count is correlated with high depen-
dency on density.

• Generally speaking, baselines are relatively insensitive, memory-based methods
are dependent on one variable (opposite to their names), and matrix factoriza-
tion methods are highly dependent on both dataset size and density.

4.2.2 Accuracy Comparison

Figure 4.5 shows the best performing algorithm (in terms of MAE) as a function of
user count, item count, and density. This was drawn by superimposing contour lines
in Figure 4.3 and 4.4 and by selecting the best-performing one in each area. Our
observations are as follows:
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Figure 4.5: Best-performing algorithms in MAE for given user count, item count,
and density.

• The identity of the best performing algorithm varies non-linearly, dependent on
user count, item count, and density.

• NMF is dominant low density cases while BPMF works well for high density
cases (especially for high user and item count).

• Regularized SVD and PMF perform well for density levels 2%-4%.

We can conclude that matrix factorization methods are generally better in most
regions. BPMF performs best with sufficient information, while NMF works best
when the data is relatively lacking. Analogous RMSE graphs show similar trends
with regularized SVD outperforming other algorithms in most regions.

4.2.3 Computational Considerations

As Figure 4.6 shows, the computation time varies significantly between different al-
gorithms. It is therefore important to consider computational issues when deciding
on the appropriate CF algorithm. We consider three distinct scenarios, listed below.

• Unlimited Time Resources: We assume in this case that we can afford arbi-
trarily long computation time. This scenario is realistic in some cases involving
static training set, making offline computation feasible.

• Constrained Time Resource: We assume in this cases some mild constraints
on the computation time. This scenario is realistic in cases where the training
set is periodically updated, necessitating periodic re-training with updated data.
We assume here that the training phase should tale within an hour or so. Since
practical datasets like Netflix full set are much bigger than the subsampled one
in our experiments, we use much shorter time limit: 5 minutes and 1 minute.
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Figure 4.6: Computation time (Train time + Test time) for each algorithm.
Legend on the right indicates relation between color scheme and computation time.
Time constraints (5 minutes and 1 minutes) used in this article are marked as well.
User count increases from left to right, and item count increases from bottom to
top in each cell. (Same way to Figure 4.3–4.4.)

• Real-time Applications: In this case, we assume severe constraints on the
computation time. This scenario is realistic in cases where the training set
changes frequently and radically. We require here that the training phase should
not exceed several seconds.

Figure 4.5 and 4.6 show the best performing CF algorithm (in terms of MAE) in
several different time constraint cases, as a function of the user count, item count and
density. We make the following observations.

• When there are no computation constraints, the conclusions from the previ-
ous sections apply. Specifically, NMF performs best for sparse dataset, BPMF
performs best for dense dataset, and regularized SVD and PMF perform the
best otherwise (PMF works well with smaller user count while Regularized SVD
works well smaller item counts).

• When the time constraint is 5 minutes, Regularized SVD, NLPMF, NPCA, and
Rank-based CF (the ones colored darkly in Figure 4.6) are not considered. In
this setting, NMF works best for sparse data, BPMF works best for dense and
large data and PMF works best otherwise.
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Figure 4.7: Best-performing algorithms with varied constraints.

• When the time constraint is 1 minutes, PMF and BPMF are additionally ex-
cluded from consideration. Slope-one works best in most cases, except for the
sparsest data where NMF works best.

• In cases requiring real-time computation, the user average is the best algorithm,
except for a small region where item average is preferred.

4.3 Conclusion

In addition to the conclusions stated in Section 4.2, we have identified seven groups
of CF methods, where CF methods in the same group share certain experimental
properties:

• Baselines: Constant, User Average, Item Average
• Memory-based methods: User-based, Item-based (with and without default val-

ues)
• Matrix-Factorization I: Regularized SVD, PMF, BPMF, NLPMF
• Matrix-Factorization II: NMF
• Others (Individually): Slope-one, NPCA, Rank-based CF.
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Table 4.2 displays for each of these groups the dependency, accuracy, computational
cost, and pros and cons.

To sum up, we conclude with this experimental study that no CF algorithm performs
best in every situation. Depending on variables such as dataset size or density, each
algorithm may perform well or not. In other words, some simple method may perform
quite well for some special cases, while state-of-the-art methods may fail to beat such
simple methods in some cases. We complete this section with summary of our three
major conclusions.

• Accuracy: Matrix-Factorization-based methods generally have the highest ac-
curacy. Specifically, regularized SVD, PMF and its variations perform best as
far as MAE and RMSE, except in very sparse situations, where NMF performs
the best. Slope-one achieves computational efficiency and not so bad accuracy
at the same time. Memory-based methods, however, do not have special merit
other than simplicity.

• Dependency: All algorithms vary in their accuracy, based on the user count,
item count, and density. The strength and nature of the dependency, however,
varies from algorithm to algorithm and bivariate relationships change when
different values are assigned to the third variable. In general cases, high depen-
dence on the user count and item count is correlated with high dependency on
density, which appeared to be the more influential factor.

• General Trade-off : There is trade-off between better accuracy and other
factors such as low variance in accuracy, computational efficiency, memory con-
sumption, and a smaller number of adjustable parameters. That is, the more
accurate algorithms tend to depend highly on dataset size and density, to have
higher variance in accuracy, to be less computationally efficient, and to have
more adjustable parameters. A careful examination of the experimental results
can help resolve this trade-off in a manner that is specific to the situation at
hand. For example, when computational efficiency is less important, Matrix-
Factorization methods are the most appropriate, and when computational effi-
ciency is important, slope-one could be a better choice.
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Chapter V

ENSEMBLES OF COLLABORATIVE FILTERING

METHODS

We observed in the previous chapter that CF algorithms perform better or worse
depending on data size or density. In addition to this, we found out that they predict
ratings for some users or some items more accurately than others. For example,
a method predicts famous items especially better than others. Departing from this
observation, we propose an ensemble method with dynamic weights, which are learned
automatically from data. We explain dynamic weights and stagewise feature induction
method in turn, then conclude with experimental result.

5.1 Ensemble Methods

Ensemble learning in general refers to a process of combining multiple models such
as classifiers or regressors in a strategic manner to solve a particular computational
intelligence problem. Ensemble learning is primarily used to improve the performance
of a model, or reduce the likelihood of an unfortunate selection of a poor one. [105]

To see the power of ensemble methods, let’s think of the simplest ensemble model,
an average of q models:

F (x) =
1

q

q∑
k=1

fk(x). (5.1)

Suppose that fk(x) = h(x) + εk(x), where h(x) is the truth and εk(x) is the error of
kth model. Then, the expected sum-of-squared error of kth model is given by

Ex[εk(x)
2] = Ex[(fk(x)− h(x))2]. (5.2)

Thus, the average error Eind of individual models is given by

Eind =
1

q

q∑
k=1

Ex[εk(x)
2]. (5.3)
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In the same manner, the expected error Eens of the ensemble model is

Eens = Ex[(F (x)− h(x))2]

= Ex

⎡
⎣(1

q

q∑
k=1

fk(x)− h(x)

)2
⎤
⎦ = Ex

⎡
⎣(1

q

q∑
k=1

εk(x)

)2
⎤
⎦ (5.4)

If we assume that the error has zero mean (Ex[εk(x)] = 0) and uncorrelated (Ex[εk(x)εl(x)] =

0 when k �= l), we have Eens ≥ 1
q
Eind. On the other hand, it can be proved that

Eens ≤ Eind where the equality is held when errors are completely correlated. Putting
them together, we can conclude

1

q
Eind ≤ Eens ≤ Eind, (5.5)

meaning that ensemble models perform usually better than individual models, as the
error of each individual model is neither completely correlated nor independent.

Although ensemble models have enjoyed success in many machine learning problems
including classification, regression, or clustering, it is somewhat surprising that they
have had relatively little success in the collaborative filtering literature. Generally
speaking, ensemble or combination methods have shown only a minor improvement
over the top-performing CF methods. The cases where ensemble methods did show an
improvement (for example, the Netflix prize winner [72] and runner up), relied heavily
on manual feature engineering, manual parameter setting, and other tinkering. In this
chapter, we suggest a successful application of ensemble methods on collaborative
filtering domain.

5.2 Dynamic Weights

For convenience, we denote a CF method as a function f(u, i), returning a preference
score for an item i for a user u, and the family of potential CF methods as F . Ensemble
methods combining multiple CF models from F are denoted with upper-cases.

As discussed in the previous chapter, recommendation systems perform better than
others depending on situations. In addition to this, we also found that different
recommendation systems perform better than others for some users and items but
not for others. In other words, the relative strengths of two distinct CF models
f1(u, i), f2(u, i) ∈ F depend on the user u and the item i whose rating is being pre-
dicted. One example of two such systems appears in Figure 5.1 that graphs the test-set
loss of two recommendation rules (user average and item average) as a function of the
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Figure 5.1: An example of two simple algorithms that perform differently de-
pending on item popularity.

number of available ratings for the recommended item i. The two recommendation
rules outperform each other, depending on whether the item in question has few or
many ratings in the training data. We conclude from this graph and experimental
result in Chapter 4 that algorithms that are inferior in some circumstances may be
superior in other circumstances.

An inescapable conclusion is that the weights αk in the combination should be func-
tions of user u and item i rather than constants. That is, a linear combination of q
recommender systems fk(u, i) is written by

F (q)(u, i) =

q∑
k=1

αk(u, i)fk(u, i) (5.6)

where αk(u, i) ∈ R. We define non-constant combination weights αk(u, i) that are
functions of the user and item that are being predicted. We propose the following
algebraic form

αk(u, i) = βk hk(u, i), βk ∈ R, hk ∈ H (5.7)

where βk is a parameter and hk is a function selected from a family H of candidate
feature functions.

The combination (5.6) with non-constant weights (5.7) enables some CF methods fk
to be emphasized for some user-item combinations through an appropriate selection
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of the βk coefficients. We assume that H contains the constant function, capturing
the constant-weight combination within our model.

Substituting (5.7) into (5.6) we get

F (q)(u, i) =

q∑
k=1

βk hk(u, i) fk(u, i), βk ∈ R, hk ∈ H, fk ∈ F . (5.8)

Note that since hk and fk are selected from the sets of CF methods and feature func-
tions respectively, we may have fj = fl or hj = hl for j �= l. This is similar to boosting
and other stagewise algorithms where one feature or base learner may be chosen mul-
tiple times, effectively updating its associate feature functions and parameters. The
total weight function associated with a particular f ∈ F is

∑
k:fk=f βkhk(u, i).

A simple way to fit β = (β1, . . . , βq) is least squares

β∗ = argmin
β∈C

∑
u,i∈Ω

(
F (q)(u, i)−Mu,i

)2
, (5.9)

where Mu,i denotes the rating of user u on item i in the training data and the sum-
mation ranges over all ratings in the training set. A variation of (5.9), where β is
constrained such that αk(u, i) ≥ 0, and

∑q
k=1 αk(u, i) = 1 endows F with the following

probabilistic interpretation

F (u, i) = Ep {f | u, i} , (5.10)

where f represents a random draw from F , with probabilities p(f |u, i) proportional
to

∑
k:fk=f βkhk(u, i). In contrast to standard combination models with fixed weights,

(5.10) forms a conditional expectation, rather than an expectation.

Feature-weighted linear stacking (FWLS) [123] also has suggested ensembles with
non-constant weights. FWLS selects 25 useful features for weight functions by close
human inspection on data. Although it has achieved comparable performance to the
winner in Netflix competition, this manual selection of features is too labor intensive.
Also, a feature may or may not be useful depending on dataset. To overcome these
drawbacks, we present an approach automatically inducing local features from data
in the next subsection.

5.3 Stagewise Feature Induction

In contrast to [123] that manually defined features, we induce the features hk from
data. The features hk(u, i) should emphasize users u and items i that are likely to
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lead to variations in the relative strength of the f1, . . . , fq. In this section, we consider
two issues: 1) defining the set H of candidate features, and 2) a strategy for selecting
features from H to add to the combination F .

5.3.1 Candidate Feature Families H

We denote the sets of users and items by U and I respectively, and the domain of
f ∈ F and h ∈ H as U × I. The set Ω ⊂ U × I is the set of user-item pairs present
in the training set, and the set of user-item pairs that are being predicted is ω ∈ Ωc.

We consider the following three unimodal functions on U × I, parameterized by a
location parameter or mode ω∗ = (u∗, i∗) ∈ U × I and a bandwidth h > 0

K
(1)
h,(u∗,i∗)(u, i) ∝

(
1− d(u∗, u)

h

)
I (d(u∗, u) ≤ h) , (5.11)

K
(2)
h,(u∗,i∗)(u, i) ∝

(
1− d(i∗, i)

h

)
I (d(i∗, i) ≤ h) ,

K
(3)
h,(u∗,i∗)(u, i) ∝

(
1− d(u∗, u)

h

)
I (d(u∗, u) ≤ h) ·

(
1− d(i∗, i)

h

)
I (d(i∗, i) ≤ h) ,

where I(A) = 1 if A holds, and 0 otherwise. The first function is unimodal in u,
centered around u∗, and constant in i. The second function is unimodal in i, centered
around i∗, and constant in u. The third is unimodal in u, i and centered around
(u∗, i∗).

There are several possible choices for the distance functions in (5.11) between users
and between items. For simplicity, we use in our experiments the angular distance

d(x, y) = arc cos
( 〈x, y〉
‖x‖ · ‖y‖

)
(5.12)

where the inner products above are computed based on the user-item rating matrix
expressing the training set (ignoring entries not present in both arguments).

The functions (5.11) are the discrete analogs of the triangular kernel Kh(x) = h−1(1−
|x−x∗|/h)I(|x−x∗| ≤ h) used in non-parametric kernel smoothing [137]. Their values
decay linearly with the distance from their mode (truncated at zero), and feature a
bandwidth parameter h, controlling the rate of decay. As h increases the support size
|{ω ∈ Ω : K(ω) > 0}| increases and maxω∈Ω K(ω) decreases.

The unimodal feature functions (5.11) capture locality in the U×I space by measuring
proximity to a mode, representing a user u∗, an item i∗, or a user-item pair. We define
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the family of candidate features H as all possible additive mixtures or max-mixtures
of the functions (5.11), parameterized by a set of multiple modes ω∗ = {ω∗

1, . . . , ω
∗
r}

Kω∗(u, i) ∝
r∑

j=1

Kω∗
j
(u, i) (5.13)

Kω∗(u, i) ∝ max
j=1,...,r

Kω∗
j
(u, i). (5.14)

Using this definition, features functions hk(u, i) ∈ H are able to express a wide variety
of locality information involving multiple potential modes.

5.3.2 Feature Induction Strategy

We discuss in this subsection the strategy for identifying useful features from H and
adding them to the model F in a stagewise manner.

Adapting the stagewise learning approach to the model (5.8) we have

F (q)(u, i) =

q∑
k=1

βk hk(u, i) fk(u, i), (5.15)

(βk, hk, fk) = argmin
βk∈R,hk∈H,fk∈F

∑
(u,i)∈Ω

(
F (k−1)(u, i) + βkhk(u, i)fk(u, i)−Mu,i

)2
.

It is a well-known fact that stagewise algorithms sometimes outperform non-greedy
algorithms due to resistance to overfitting (see [110], for example). This explains the
good generalization ability of boosting and stage-wise linear regression.

From a computational standpoint, (5.15) scales nicely with q and with the training
set size. The one-dimensional quadratic optimization with respect to β is solved via
a closed form, but the optimization over F and H has to be done by brute force or by
some approximate method such as sampling. The computational complexity of each
iteration is thus O(|H| · |F| · |R|), assuming no approximation are performed.

Since we consider relatively small families F of CF methods, the optimization over F
does not pose a substantial problem. The optimization over H is more problematic
since H is very large, and potentially infinite. We address this difficulty by restricting
H to a finite collection of additive or max-mixtures kernels with r modes, randomly
sampled from the users or items present in the training data. Our experiments con-
clude that it is possible to find useful features from a surprisingly small number of
randomly-chosen samples.
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Algorithm 5.1 details the stagewise algorithm. It starts with the best-performing
candidate as f1(u, i) with a constant feature. Then, in each iteration, it seeks the
best candidate algorithm fk(u, i) and corresponding feature function hk(u, i) which
produces the lowest validation error when combined with the current combination
F (k−1). Then, we optimize over β by least squares. Note that H′ in Line 7 denotes
the set of samples of h ∈ H. This is because we cannot search over all h ∈ H due to
the computational infeasibility.

Algorithm 5.1 Learning β for combined model
1: f1 ← argminf∈F RMSE(f)
2: h1 ← 1
3: β1 ← 1
4: for k = 2→ q do
5: H′ ← random samples from H
6: for f ∈ F do
7: for h ∈ H′ do
8: // Preparing data matrices:
9: for n = 1→ m do

10: dn ← f(un, in)− F (k−1)(un, in)
11: end for

12: Z ←

⎛
⎜⎜⎜⎝

d1 d1h(u1, i1)
d2 d2h(u2, i2)
...

...
dm dmh(um, im)

⎞
⎟⎟⎟⎠

13: y ←

⎛
⎜⎜⎜⎝

Mu1,i1 − F (k−1)(u1, i1)
Mu2,i2 − F (k−1)(u2, i2)

...
Mum,im − F (k−1)(um, im)

⎞
⎟⎟⎟⎠

14: // Solving quadratic programming:
15: βf,h ← argminβ(Zβ − y)T (Zβ − y)

16: RMSEf,h ←
√

1
m
(Zβf,h − y)T (Zβf,h − y)

17: end for
18: end for
19: fk, hk ← argminf∈F ,h∈H RMSEf,h

20: βk ← βfk,hk

21: end for
22: return f1, ..., fq, h1, ..., hq, β1, ..., βq
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5.4 Experiment

5.4.1 Experimental Design

We used the recommendation algorithm toolkit PREA (Chapter 3) for candidate
algorithms, including three simple baselines (Constant model, User Average, and
Item Average) and five matrix-factorization methods (Regularized SVD, NMF [79],
PMF [115], Bayesian PMF [114], and Non-Linear PMF [75]), and Slope-one [82]. We
evaluate the performance using the Root Mean Squared Error (RMSE), measured on
the test set.

Table 5.1 lists 5 experimental settings. SINGLE runs each CF algorithm individu-
ally, and chooses the one with the best average performance. CONST combines all
candidate algorithms with constant weights αk,

F (q)(u, i) =

q∑
k=1

αkfk(u, i). (5.16)

FWLS [123] combines all candidate algorithms with non-constant weights as in (5.6).
For CONST and FWLS, the weights are estimated from data by solving a least-square
problem. STAGE combines CF algorithms in stage-wise manner. FEAT applies the
feature induction techniques discussed in Section 5.3.2.

To evaluate whether the automatic feature induction in FEAT works better or worse
than manually constructed features, we used in FWLS and STAGE manual features
similar to the ones in [123] (excluding features requiring temporal data). Examples
include number of movies rated per user, number of users rating each movie, standard
deviation of the users’ ratings, and standard deviation of the item’s ratings.

The feature induction in FEAT used a feature space H with additive multi-mode
smoothing kernels as described in Section 5.3.1 (for simplicity we avoided kernels
unimodal in both u and i). The family H included 200 randomly sampled features

Table 5.1: Experimental setting. (C: Combination of multiple algorithms, W:
Weights varying with features, S: Stage-wise algorithm, I: Induced features)

Method C W S I Explanation
SINGLE Best-performed single CF algorithm
CONST O Mixture of CF without features
FWLS O O Mixture of CF with manually-designed features
STAGE O O O Stagewise mixture with manual features
FEAT O O O O Stagewise mixture with induced features
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(a new sample was taken for each of the iterations in the stagewise algorithms). The
r in (5.14) was set to 5% of user or item count, and bandwidth h values of 0.05 (an
extreme case where most features have value either 0 or 1) and 0.8 (each user or item
has moderate similarity values). The stagewise algorithm continues until either five
consecutive trials fail to improve the RMSE on validation set, or the iteration number
reaches 100, which occur only in a few cases. We used similar L2 regularization for
all methods (both stagewise and non-stagewise), where the regularization parameter
was selected among 5 different values based on a validation set.

5.4.2 Data and Candidate Algorithms

We experimented with the two standard MovieLens datasets: 100K and 1M, and with
the Netflix dataset. In the Netflix dataset experiments, we sub-sampled the data
since (a) running state-of-the-art candidate algorithms on the full Netflix data takes
too long time – for example, Bayesian PMF was reported to take 188 hours [114],
and (b) it enables us to run extensive experiments measuring the performance of
the CF algorithms as a function of the number of users, number of items, voting
sparsity, and facilitates cross-validation and statistical tests. More specifically, we
sub-sampled from the most active k users and the most often rated 
 items to obtain
pre-specified data density levels. As shown in Table 5.2, we varied either the user or
item count in the set {1000, 1500, 2000, 2500, 3000}, holding the other variable fixed
at 1000 and the density at 1%, which is comparable density of the original Netflix
dataset. We also conducted an experiment where the data density varied in the set
{1%, 1.5%, 2%, 2.5%} with fixed user and item count of 1000 each.

We set aside a randomly chosen 20% for test set, and used the remaining 80% for
both for training the individual recommenders and for learning the ensemble model.
It is possible, and perhaps more motivated, to use two distinct train sets for the CF
models and the ensemble. However, in our case, we got high performance even in the
case of using the same training dataset in both stages.

For stagewise methods, the 80% train set was divided to 60% training set and 20%
validation set, used to determine when to stop the stagewise addition process. The
non-stagewise methods used the entire 80% for training. The 10% of training set is
used to select regularization parameter for both stagewise and non-stagewise. The
results were averaged over 10 random data samples.
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Table 5.2: Test error in RMSE (lower values are better) for single CF algorithms
used as candidates and combined models. Data where n1 or n2 is 1500 or 2500 are
omitted due to the lack of space, as it is shown in Figure 5.2. The best-performing
one in each group is indicated in italic. The last row indicates p-value for statistical
test of hypothesis FEAT � FWLS.

Dataset Netflix MovieLens
User Count 1000 2000 3000 1000 1000 943 6039
Item Count 1000 1000 2000 3000 1000 1682 3883

Density 1.0% 1.0% 1.0% 1.5% 2.0% 2.5% 6.3% 4.3%

Si
ng

le
C

F

Constant 1.2188 1.2013 1.2072 1.1964 1.1888 1.2188 1.2235 1.2113 1.2408 1.2590
UserAvg 1.0566 1.0513 1.0375 1.0359 1.0174 1.0566 1.0318 1.0252 1.0408 1.0352
ItemAvg 1.1260 1.0611 1.0445 1.1221 1.1444 1.1260 1.1029 1.0900 1.0183 0.9789
Slope1 1.4490 1.4012 1.3321 1.4049 1.3196 1.4490 1.3505 1.0725 0.9371 0.9017
RegSVD 1.0623 1.0155 1.0083 1.0354 1.0289 1.0343 1.0154 1.0020 0.9098 0.8671
NMF 1.0784 1.0205 1.0069 1.0423 1.0298 1.0406 1.0151 1.0091 0.9601 0.9268
PMF 1.6180 1.4824 1.4081 1.4953 1.4804 1.4903 1.3594 1.1818 0.9328 0.9623
BPMF 1.3973 1.2951 1.2949 1.2566 1.2102 1.3160 1.2021 1.1514 0.9629 0.9000
NLPMF 1.0561 1.0507 1.0382 1.0361 1.0471 1.0436 1.0382 1.0523 0.9560 0.9415

C
om

bi
ne

d

SINGLE 1.0561 1.0155 1.0069 1.0354 1.0174 1.0343 1.0151 1.0020 0.9098 0.8671
CONST 1.0429 1.0072 0.9963 1.0198 1.0102 1.0255 0.9968 0.9824 0.9073 0.8660
FWLS 1.0288 1.0050 0.9946 1.0089 1.0016 1.0179 0.9935 0.9802 0.9010 0.8649
STAGE 1.0036 0.9784 0.9668 0.9967 0.9821 0.9935 0.9846 0.9769 0.8961 0.8623
FEAT 0.9862 0.9607 0.9607 0.9740 0.9717 0.9703 0.9589 0.9492 0.8949 0.8569

p-Value 0.0028 0.0001 0.0003 0.0008 0.0014 0.0002 0.0019 0.0013 0.0014 0.0023

5.4.3 Result and Discussion

Table 5.2 displays the performance in RMSE of each combination method, as well as
the individual algorithms. Examining it, we observe the following partial order with
respect to prediction accuracy: FEAT � STAGE � FWLS � CONST � SINGLE.

• FWLS � CONST � SINGLE: Combining CF algorithms (even only with
constant weights) produces better prediction than the best-single CF method.
Also, using non-constant weights improves performance further. This result is
consistent with what has been known in literature [56, 123].

• STAGE � FWLS: Figure 5.2 indicates that stagewise combinations where
features are chosen with replacement are more accurate. The selection with
replacement allow certain features to be selected more than once, correcting a
previous inaccurate parameter setting.

• FEAT � STAGE: Making use of induced features improves prediction accu-
racy further from stagewise optimization with manually-designed features.

Overall, our experiments indicate that the combination with non-constant weights
and feature induction (FEAT) outperforms three baselines (the best single method,
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Figure 5.2: Performance trend with varied user count (top), item count (middle),
and density (bottom) on Netflix dataset.
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standard combinations with constant weight, and the FWLS method using manually
constructed features [123]). We tested the hypothesis RMSEFEAT < RMSEFWLS

with paired t-test. Based on the p-values indicated in the last row of Table 5.2, we can
reject the null hypothesis with significance of 99%. We conclude that our proposed
combination outperforms state-of-the-art methods, and several previously proposed
combination methods.

5.4.4 Scalability

We complete this section with a remark on scalability of the proposed algorithm.
The proposed stagewise algorithm is very efficient, when compared to other feature
selection algorithms such as step-wise or subset selection. Nevertheless, the large
number of possible features may result in computational issues. In our experiments,
we sampled from the space of candidate features a small subset of features that
was considered for addition (the random subset is different in each iteration of the
stagewise algorithm). In the limit q →∞, such a sampling scheme would recover the
optimal ensemble as each feature will be selected for consideration infinitely often.
Our experiments conclude that this scheme works well also in practice and results in
significant improvement to the state-of-the-art even for a relatively small sample of
feature candidates such as 200. Viewed from another perspective, this implies that
randomly selecting such a small subset of features each iteration ensures the selection
of useful features. In fact, the features induced in this manner were found to be more
useful than the manually crafted features in the FWLS algorithm [123].

5.5 Summary

We started from an observation that the relative performance of different candidate
recommendation systems f(u, i) depends on u and i, for example on the activity level
of user u and popularity of item i. This motivated the development of combina-
tion of recommendation systems with non-constant weights that emphasize different
candidates based on their relative strengths in the feature space. In contrast to the
FWLS method that focused on manual construction of features, we developed a fea-
ture induction algorithm that works in conjunction with stagewise least-squares. We
formulate a family of feature functions, based on the discrete analog of triangular
kernel smoothing. This family captures a wide variety of local information and is
thus able to model the relative strengths of the different CF methods.
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The combination with induced features outperformed any of the base candidates as
well as other combination methods in literature. This includes the recently proposed
FWLS method that uses manually constructed feature function. Our method scales
up nicely to large data which is often present in real world recommendation systems.
As our candidates included many of the recently proposed state-of-the-art recommen-
dation systems our conclusions are significant for the engineering community as well
as recommendation system scientists.
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Chapter VI

LOCAL LOW-RANK MATRIX APPROXIMATION

Matrix factorization is the most common and successful approach for rating prediction
in recommendation system, as we have seen in Chapter 4. The basic underlying
assumption is the rating matrix is in low-rank, so we can express it as a product
of two low-rank matrices. In this chapter, we propose a new matrix approximation
model where we assume instead that the matrix is locally of low-rank, leading to a
representation of the observed matrix as a weighted sum of low-rank matrices. As
explained in Section 6.2.3, this can be seen as an extension of the ensemble method
discussed in Chapter 5. In the followed sections, we analyze the accuracy of the
proposed local low-rank modeling and show experimental evidence of its performance.

6.1 Low-Rank Matrix Approximation

Matrix approximation and completion are prevalent tasks in machine learning. Given
few observed matrix entries {Ma1,b1 , . . . ,Mam,bm}, matrix completion constructs a
matrix M̂ that approximates M at its unobserved entries. Matrix approximation
is used heavily in recommendation systems, text processing, computer vision, and
bioinformatics. In recommendation systems, the matrix M corresponds to ratings of
items (columns) by users (rows).

In general, the problem of completing a matrix M based on a few observed entries
is ill-posed. There are uncountably infinite number of matrices that perfectly agree
with the observed entries of M . Therefore, without additional assumptions, selecting
or constructing the completion matrix M̂ is under-specified and thus ill-defined. A
popular assumption is that M is a low-rank matrix, which suggests that it is rea-
sonable to assume that the completed matrix M̂ has low-rank. More formally, we
approximate a matrix M ∈ R

n1×n2 by a rank r matrix M̂ = UV �, where U ∈ R
n1×r,

V ∈ R
n2×r, and r 	 min(n1, n2). In many real datasets, the low-rank assumption is

realistic. Further, low-rank approximations often yield matrices that generalize well
to the unobserved entries.
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We describe in this section two standard approaches for low-rank matrix approxima-
tion (LRMA). We start by establishing the notation used throughout the chapter.
The original (partially observed) matrix is denoted by M ∈ R

n1×n2 . A low-rank
approximation of M is denoted by M̂ = UV �, where U ∈ R

n1×r, V ∈ R
n2×r, and

r 	 min(n1, n2). The set of integers {1, . . . , n} is abbreviated as [n]. The set of
observed entries of M is denoted by Ω

def
= {(a1, b1), . . . , (am, bm)} ⊆ [n1] × [n2]. The

training set is therefore {Ma,b : (a, b) ∈ Ω}. Mappings from matrix indices to a
matrix space are denoted in calligraphic letters, e.g. T , and are operators of the
form T : [n1] × [n2] → R

n1×n2 . We denote the entry (i, j) of the matrix T(a, b) as
Ti,j(a, b). A projection PΩ with respect to a set of matrix indices Ω is the function
PΩ : Rn1×n2 → R

n1×n2 defined by

[PΩ(M)]a,b
def
=

⎧⎨
⎩Ma,b (a, b) ∈ Ω

0 otherwise.

We denote by � the entry-wise product (also known as the Hadamard or Schur
products) of two matrices [A� B]i,j = Ai,jBi,j. We use three matrix norms:

Frobenius norm
‖X‖F def

=

√∑
i

∑
j

X2
i,j, (6.1)

Sup-norm
‖X‖∞ def

= sup
i,j
|Xi,j|, (6.2)

Nuclear (trace) norm

‖X‖∗ def
=

r∑
i=1

σi(X), (6.3)

For the nuclear norm σi(X) is the i’th singular value of X where for symmetric
matrices ‖X‖∗ = trace(X).

Below are two popular approaches for constructing a low-rank approximation M̂ of
M . The first one, incomplete SVD, is based on minimizing the Frobenius norm of
PΩ(M − M̂), while the second one is based on minimizing the nuclear norm of a
matrix satisfying constraints constructed from the training set.

A1: Incomplete SVD. The incomplete SVD method constructs a low-rank approxi-
mation M̂ = UV � by solving the problem

(U, V ) = argmin
U,V

∑
(a,b)∈Ω

([UV �]a,b −Ma,b)
2 , (6.4)
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or equivalently

M̂ = argmin
X

‖PΩ(X −M)‖F s.t. rank(X) = r. (6.5)

A2: Nuclear norm minimization. An alternative to (6.5) that originated from the
compressed sensing community [18] is to minimize the nuclear norm of a matrix
subject to constraints constructed from the observed entries:

M̂ = argmin
X

‖X‖∗ s.t. ‖PΩ(X −M)‖F < ε . (6.6)

Minimizing the nuclear norm ‖X‖∗ is an effective surrogate for minimizing the rank
of X, and solving (6.6) results in a low-rank matrix M̂ = UV � that approximates
the matrix M . One advantage of A2 over A1 is that we do not need to constrain
the rank of M̂ in advance. Note also that the problem defined by (6.6), while being
convex, may not necessarily scale up easily to large matrices.

6.2 Local Models for Matrix Approximation

Instead of the global low-rank assumption used in Section 6.1, we assume that the
matrix is only locally of low-rank. In this section, we detail how to learn models and
how to generalize for predicting unseen ratings, under this local low-rank assumption.

6.2.1 Learning Local Models

In order to facilitate a local low-rank matrix approximation, we need to assume
that there exists a metric structure over [n1] × [n2]. The distance d((a, b), (a′, b′))

reflects the similarity between the rows a and a′ and columns b and b′. In the case
of recommendation systems, for example, d((a, b), (a′, b′)) expresses the relationship
between users a, a′ and items b, b′. The distance function may be constructed using
the observed ratings PΩ(M) or additional information such as item-item similarity or
side information on the users when available.

In the global matrix factorization setting in Section 6.1, we assume that the matrix
M ∈ R

n1×n2 has a low-rank structure. In the local setting, however, we assume that
the model is characterized by multiple low-rank n1 × n2 matrices. Specifically, we
assume a mapping T : [n1] × [n2] → R

n1×n2 that associates with each row-column
combination [n1] × [n2] a low rank matrix that describes the entries of M in its
neighborhood (in particular this applies to the observed entries Ω):

T : [n1]× [n2]→ R
n1×n2 where Ta,b(a, b) = Ma,b .
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Note that in contrast to the global estimate in the previous section, our model now
consists of multiple low-rank matrices, each describing the original matrix M in a
particular neighborhood.

Without additional assumptions, it is impossible to estimate the mapping T from a
set of m < n1n2 observations. We assume, as is often done in non-parametric statis-
tics, that the mapping T is slowly varying. (See formal definition in the sequel and
Figure 6.2.) Since the domain of T is discrete, the classical definitions of continuity
or differentiability are not applicable in our setting. We assume instead that T is
Hölder continuous:

Definition 1. Let X be a metric space. A function f : X → R
n1×n2 is Hölder

continuous with parameters β > 0, C > 0 if

∀x, x′ ∈ X : ‖f(x)− f(x′)‖F ≤ C dβ(x, x′). (6.7)

Figure 6.1 shows a graphic illustration of the locally low-rank linear assumption: the
operator T maps matrix entries to matrices whose image is (a) low-rank, (b) slowly
changing, and (c) agrees locally with the original matrix. Assumption (b) implies
that if d(s, r) is small T (s) is similar to T (r), as shown by their spatial closeness
in the embedding R

n1×n2 . Assumption (c) implies that for all s ∈ [n1] × [n2], the
neighborhood {s′ : d(s, s′) < h} in the original matrix M is approximately described
by the corresponding entries of the low-rank matrix T (s) (shaded regions of M are
matched by lines to the corresponding regions in T (s) that approximate them).

We would like to emphasize that for illustrative purposes, we assume in Figure 1 that
there exists a distance function d whose neighborhood structure coincides with the
natural order on indices. That is, s = (a, b) is similar to r = (c, d) if |a− c| and |b−d|
are small.

Figure 6.2 shows the relationship between the neighboring entries of the original
matrix and the operator image in more detail. The original matrix M (bottom) is
described locally by two low-rank matrices T (t) (near t) and T (u) (near u). The lines
connecting the three matrices identify identical entries: Mt = Tt(t) and Mu = Tu(u).
The equation at the top right shows a relation tying the three patterned entries.
Assuming the distance d(t, u) is small, ε = Tu(t)− Tu(u) = Tu(t)−Mu(u) is small as
well.

Following common approaches in non-parametric statistics, we define a smoothing
kernel Kh(s1, s2), where s1, s2 ∈ [n1] × [n2], as a non-negative symmetric unimodal
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T
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Figure 6.1: The locally low-rank linear assumption assumes an operator that
maps matrix entries to matrices whose image is (a) low-rank, (b) slowly changing,
and (c) agrees locally with the original matrix. See text for more details.
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T (u)

Tt(t)
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Tu(t) = Tu(u) + ε = Mu + ε

Tu(u)
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Tu(t)

Tt(u)

Figure 6.2: The relationship between the neighboring entries of the original ma-
trix and the operator image. See text for more details.
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function that is parameterized by a bandwidth parameter h > 0. A large value of
h implies that Kh(s, ·) has a wide spread, while a small h corresponds to narrow
spread of Kh(s, ·). Often, it is further assumed that Kh(x) = K1(x/h)/h and that
the kernel integrates to 1:

∫
Kh(x) dx = 1. In our case, however, we have a discrete

domain rather than a continuous domain. See for instance [137] for more information
on smoothing kernels. Three popular smoothing kernels are the uniform kernel, the
triangular kernel, and the Epanechnikov kernel, defined respectively as

Kh(s1, s2) ∝ 1{d(s1,s2)<h} (6.8)

Kh(s1, s2) ∝ (1− h−1d(s1, s2))1{d(s1,s2)<h} (6.9)

Kh(s1, s2) ∝ (1− d(s1, s2)
2)1{d(s1,s2)<h}. (6.10)

We denote by K
(a,b)
h the matrix whose (i, j)-entry is Kh((a, b), (i, j)).

We describe below the local modifications of incomplete SVD (A1 ) and nuclear norm
minimization (A2 ) matrix approximations. Both extensions estimate T (a, b) in the
vicinity of (a, b) ∈ [n1]× [n2] given the samples PΩ(M).

Local-A1: Incomplete SVD

T̂ (a, b) = argmin
X

‖K(a,b)
h � PΩ(X −M)‖F s.t. rank(X) = r . (6.11)

Local-A2: Nuclear norm minimization

T̂ (a, b) = argmin
X

‖X‖∗ s.t. ‖K(a,b)
h � PΩ(X −M)‖F < ε . (6.12)

The two optimization problems above describe how to estimate T̂ (a, b) for a particular
choice of (a, b) ∈ [n1]× [n2]. Conceptually, this technique can be applied at each test
entry (a, b), resulting in the matrix approximation M̂ ≈M where

M̂a,b = T̂a,b(a, b), (a, b) ∈ [n1]× [n2] .

However, such a construction would require solving an optimization problem for each
matrix entry (a, b) and is thus computationally prohibitive. Instead, we describe
in the next subsection how to use a set of q local models T̂ (s1), . . . , T̂ (sq), where
s1, . . . , sq ∈ [n1] × [n2], to obtain a computationally efficient estimate ˆ̂T (s) for all
s ∈ [n1]× [n2].
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6.2.2 Global Approximations

The problem of recovering a mapping T from q values without assuming a strong
parametric shape is known as non-parametric regression. We propose using a varia-
tion of locally constant kernel regression [137], also known as Nadaraya-Watson local
regression:

ˆ̂T (s) =
q∑

i=1

Kh(si, s)∑q
j=1 Kh(sj, s)

T̂ (si). (6.13)

Equation (6.13) is simply a weighted average of T̂ (s1), . . . , T̂ (sq), where the weights
ensure that values of T̂ at indices close to s contribute more than indices further away
from s (note that both the left hand side and the right hand side denote matrices).
The denominator in (6.13) ensures that the weighted average sums to one.

In contrast to T̂ , the estimate ˆ̂T can be computed for all s ∈ [n1]× [n2] efficiently and
off-line (computing ˆ̂T (s) simply requires evaluating and averaging T̂ (si), i = 1, . . . , q).
The resulting matrix approximation is

ˆ̂Ma,b =
ˆ̂Ta,b(a, b), (a, b) ∈ [n1]× [n2]. (6.14)

The accuracy of ˆ̂T as an estimator of T̂ improves with the number of local models q
and the degree of continuity of T̂ . The accuracy of ˆ̂T as an estimator of T is limited
by the quality of the local estimators T̂ (s1), . . . , T̂ (sq). However, assuming that
T̂ (s1), . . . , T̂ (sq) are accurate in the neighborhoods of s1, . . . , sq, and q is sufficiently
large, the estimation error ˆ̂Ta,b(a, b)−Ta,b(a, b) is likely to be small. Detailed analysis
will be continued in Section 6.3.

6.2.3 View as an Ensemble Method

The local method discussed in this chapter can be seen as an extension from ensemble
method in Chapter 5. To see the similarity between them, we recall the prediction
formula of both methods. We rewrite (5.8) for the former and (6.13) for the latter
with same notations; inputs are user u and item i, each individual models are denoted
as fk, where k = 1, ..., q.

Ensembles of Collaborative Filtering (ECF) (Chapter 5):

F (u, i) =

q∑
k=1

βk hk(u, i) fk(u, i) (6.15)
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Local Low-Rank Matrix Approximation (LLORMA) (Chapter 6)

F (u, i) =

q∑
k=1

Kh((uk, ik), (u, i))∑q
l=1 Kh((ul, il), (u, i))

fk(u, i) (6.16)

As we can see from (6.15) and (6.16), both of them 1) combine individual models
based on locality using kernel smoothing, 2) predict unseen ratings via weighted sum
of individual models, and 3) those weights are dependent on inputs.

The main difference between them is from where fk comes. In ECF, we assume K

individual models are given in advance, and we learn only weights βkhk(u, i). In this
model, locality is applied only to the non-constant weights, as each individual model
is learned in a global manner in general. On the other hand, LLORMA learns both
local models and their weights at the same time. In other words, LLORMA relaxes
one assumption that we already have q recommender systems, extending the range
of optimization into individual models as well.

6.3 Theoretical Analysis

In this section we theoretically analyze the estimation accuracy of LLORMA. Our
analysis consists of two parts. In the first we analyze the large deviation of T̂ from T .
Then, based on this analysis, we derive a deviation bound on the global approximation
ˆ̂T . Our analysis technique is based on the seminal paper of [18]. The goal of this
section is to underscore the characteristics of estimation error in terms of parameters
such as the train set size, matrix dimensions, and kernel bandwidth.

6.3.1 Analysis of Local Models

Candes and Tao established that it is possible to estimate an n1 × n2 matrix M of
rank r if the number of observations m ≥ Cμrn log6 n, where n = min(n1, n2), C is
a constant, and μ is the strong incoherence property parameter [18]. This bound is
tight in the sense that it is close to the information theoretic limit of Ω(r n log n).

The aforementioned result is not applicable to our case since the matrix M is not
necessarily of low-rank. Concretely, when r = O(n) the bound above degenerates
into a sample complexity of O(n2 log n) which is clearly larger than the number of
entries in the matrix M . We develop below a variation on the results in [18] and [17]
that applies to the local-A2 compressed-sensing estimator T̂ .
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In our analysis, we make the following assumptions: (i) T is Hölder continuous,
(ii) T (s) is a rank r matrix that satisfies the strong incoherence property, and (iii)
the kernel Kh is a uniform kernel based on a product distance function. The Hölder
continuity assumption on T can be replaced by the following weaker condition without
affecting the results

‖Ks
h � (T (s)− T (s′))‖F ≤ αdβ(s, s′). (6.17)

We denote by Bh(s) the neighborhood of indices near s, Bh(s)
def
= {s′ ∈ [n1] × [n2] :

d(s, s′) < h} and we use n1(h, s) and n2(h, s) to denote the number of unique row and
column indices, respectively, in Bh(s). Finally, we denote γ = min(n1(h, s), n2(h, s)).

The proposition below provides a bound on the average squared-error within a neigh-
borhood of s

E(T̂ )(s, h) =
√

1

|Bh(s)|
∑

s′∈Bh(s)

(
T̂s′(s)− Ts′(s)

)2

.

Proposition 1. If |Ω∩Bh(s)| ≥ Cμ2γr log6 γ, then with probability of at least 1− δ,

E(T̂ )(s, h) ≤ αhβ√
|Bh(s)|

(
4

√
γ(2 + p)

p
+ 2

)
,

where γ = 3
√

1/δ and p = |Ω ∩Bh(s)|/|Bh(s)|.

Proof. Assumptions (i) and (iii) above imply that if Kh(s, s
′) > 0 then

‖Ks
h � (T (s)− T (s′))‖∞ < αhβ .

We can thus assume that if d(s, s′) < h, an observation Ms′ = Ts′(s′) is equal to
Ts′(s) + Z where Z is a random variable whose absolute value is bounded by αhβ.
This means that we can use observations Ms′ = Ts′(s′) for estimating the local model
T (s) as long as we admit a noisy measurement process.

Since K is a uniform kernel based on a product distance by assumption (iii), the set
Bh(s) is a Cartesian product set. We view this product set as a matrix of dimen-
sions n1(h, s) × n2(h, s) that we approximate. (Note that n1(h, s) and n2(h, s) are
monotonically increasing with h, and as h → ∞, n1(h, s) = n1, n2(h, s) = n2.) The
number of observed entries in this matrix approximation problem is |Ω ∩Bh(s)|.
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Applying Theorem 7 in [17] to the matrix completion problem described above, we
get that if |Ω ∩ Bh(s)| ≥ Cμ2γr log6 γ, then with probability greater than 1− γ−3,

‖Ks
h � (T (s)− T̂ (s))‖F ≤ αhβ

(
4

√
γ(2 + p)

p
+ 2

)
,

where p = |Ω∩Bh(s)|
|Bh(s)| is the density of observed samples. Dividing by

√
|Bh(s)| con-

cludes the proof.

If the observed samples are spread uniformly over the matrix, we have p = m/(n1n2),
so

4

√
γ
2 + p

p
+ 2 = 4

√
γ
2 +m/(n1n2)

m/(n1n2)
+ 2

= 4

√
γ(2n1n2 +m)

m
+ 2.

Multiplying αhβ/
√
|Bh(s)| yields Corollary 1.

Corollary 1. Assume that the conditions of Proposition 1 hold and in addition
the observed samples are spread uniformly with respect to d. Then, the following
inequality holds

E(T̂ )(s, h) ≤ 4αhβ√
|Bh(s)|

√
γ(2n1n2 + m)

m
+

2αhβ√
|Bh(s)|

.

If in addition the matrix M is squared (n1 = n2 = n) and the distribution of distances
d is uniform, then n1(h, s) = n2(h, s) = n/h, |Bh(s)| = (n/h)2, and γ = n/h. In this
case, the bound on E(T̂ )(s, h) becomes

4αhβ+1/2

√
2n

m
+

1

n
+

2αhβ+1

n
. (6.18)

In the case of a square matrix with uniformly spread samples, it is instructive to view
n,m, h as monotonically increasing sequences, indexed by k ∈ N and assume that
limk→∞ n[k] = limk→∞ m[k] = ∞. In other words, we consider the limit of matrices
of increasing sizes with an increasing number of samples. In the case of uniformly
distributed distances, the bound (6.18) will converge to zero if

lim
k→∞

hβ+1
[k]

n[k]

= lim
k→∞

h2β+1
[k]

n[k]

= lim
k→∞

h2β+1
[k] n[k]

m[k]

= 0.
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6.3.2 Analysis of Global Approximation

We start by showing that T̂ is Hölder continuous with high probability, and then
proceed to analyze the estimation error of ˆ̂T .

Proposition 2. If d(s, s′) < h and Proposition 1 holds at s, s′, then with probability
at least 1− δ,

‖Ks
h � (T̂ (s)− T̂ (s′))‖F ≤ αhβ

(
8

√
γ(2 + p)

p
+ 5

)
.

where γ = 3
√

2/δ.

Proof. Using the triangle inequality for ‖ · ‖F ,

‖Ks
h � (T̂ (s)− T̂ (s′))‖F ≤ ‖Ks

h � (T̂ (s)− T (s))‖F
+ ‖Ks

h � (T̂ (s′)− T (s′))‖F
+ ‖Ks

h � (T (s)− T (s′))‖F .

We apply the bound from Proposition 1 to the first two terms and use the assump-
tion that T is Hölder continuous to bound the third term. The adjustment to the
confidence level 2γ−3 is obtained using the union bound.

Proposition 3. Assume that Proposition 1 holds. Then, with probability of at least
1− δ,

E( ˆ̂T )(s, h) ≤ αhβ√
|Bh(s)|

(
12

√
γ(2 + p)

p
+ 7

)
.

where γ = 3
√

(2|Ω ∩ Bh(s)|+ 1)/δ.

Proof. Using the triangle inequality we get

‖Ks
h � ( ˆ̂T (s)− T (s))‖F ≤ (6.19)

‖Ks
h � (T̂ (s)− T (s))‖F + ‖Ks

h � ( ˆ̂T (s)− T̂ (s))‖F .

We bound the first term using Proposition 1. Since ˆ̂T (s) is a weighted average of
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T̂ (si), i = 1, . . . , q with si ∈ Bh(s), the second term is bounded by

‖Ks
h�( ˆ̂T (s)− T̂ (s))‖F

=
∥∥∥Ks

h �
(∑

i

wi∑
j wj

T̂ (si)− T̂ (s)
)∥∥∥

F

=
∥∥∥Ks

h �
∑
i

wi∑
j wj

(T̂ (si)− T̂ (s))
∥∥∥
F

≤
∑
i

∥∥∥∥∥ wi∑
j wj

Ks
h � (T̂ (si)− T̂ (s))

∥∥∥∥∥
F

≤
∑
i

wi∑
j wj

‖Ks
h � (T̂ (si)− T̂ (s))‖F .

There are |Ω ∩ Bh(s)| summands in the above term. We bound each of them using
Proposition 2. Together with the bound (6.19) this gives the desired result (after
dividing by

√
|Bh(s)|). The adjustment to the confidence level (2|Ω∩Bh(s)|+ 1)γ−3

is obtained using the union bound.

The constants in the proposition above can be improved considerably by using large
deviation bounds that are tighter than the union bound.

6.4 Algorithms

We first develop the complete algorithm by concretizing what kernels to use, how
to calculate distances, and how to select anchor points in this section. We propose
two algorithms, parallel and global LLORMA. The former is computationally more
efficient, while the latter is pursuing higher accuracy sacrifcing parallelism.

6.4.1 Parallel LLORMA

In the previous sections, we assumed a general kernel function Kh(s1, s2), where
s1, s2 ∈ [n1]×[n2]. This kernel function may be defined in several ways. For simplicity,
we assume a product form Kh((a, b), (c, d)) = Kh1(a, c)K

′
h2
(b, d) where K and K ′ are

kernels on the spaces [n1] and [n2], respectively. We used the Epanechnikov kernel
(6.10) for both K,K ′ as it achieves the lowest integrated squared error [137], but
other choices are possible as well.

The distance d in (6.10) can be defined using additional information from an outside
source describing row (user) similarity or column (item) similarity. If there is no such
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Algorithm 6.1 The Parallel LLORMA Algorithm
1: Input: M ∈ R

n1×n2 whose entries are defined over Ω
2: Parameters: kernel function K(·) of widths h1 and h2

3: rank r and number of local models q
4: regularization values λU , λV

5: for all t = 1, . . . , q parallel do
6: Select (at, bt) at random from Ω
7: for all i = 1, . . . , n1 do
8: Construct entry i: [Kat ]i := Kh1(at, i)
9: end for

10: for all j = 1,= . . . , n2 do
11: Construct entry j: [Kbt ]j := Kh2(bt, j)
12: end for
13: Set (U (t), V (t)) to be the minimizer of:
14:

∑
(i,j)∈Ω

[K(at)]i [K
(bt)]j

(
[U V �]i,j −Mi,j

)2
+ λU

∑
i,k

U2
i,k + λV

∑
j,k

V 2
j,k

15: end for
16: Output:

{
at, bt, U

(t), V (t)
}q

t=1

information available (as is the case in our experiments), d can be computed solely
based on the partially observed matrix M . In that case, we may use any distance
measure between two row vectors (for K) or two column vectors (for K ′). Empirically,
we found that standard distance measures such as the 2-norm or cosine similarity do
not perform well when M is sparse.

We therefore instead factorize M using standard incomplete SVD (6.4) M ≈ UV �

and then proceed to compute d based on the distances between the rows of factor
matrices U and V . Concretely, we used arc-cosine between users i and j:

d(i, j) = arccos

( 〈ui, uj〉
‖ui‖ · ‖uj‖

)
, (6.20)

where ui, uj are the i and j rows of the matrix U . We tried numerous other distances
and similarity scores such as the Euclidean distance and cosine similarity. The arc-
cosine score empirically performed better than the other scores we experimented with.

Besides of the distance metric, the anchor points (s1, . . . , sq) that define ˆ̂T also play a
significant role. There are several ways of choosing the anchor points. We randomly
choose among training data points unless stated otherwise. Detailed discussion is on
Section 6.5.3.

Algorithm 6.1 describes the learning algorithm for estimating the local models at
the anchor points T̂ (si), with i = 1, . . . , q. In line 14, we solve a weighted (by Kh1
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and Kh2) SVD problem with L2 regularization. This minimization problem can be
computed with gradient-based methods. After these models are estimated, they are
combined using (6.13) to create the estimate ˆ̂T (s) for all s ∈ [n1]× [n2].

The q iterations of the loop in Algorithm 6.1 (lines 5-15) are independent of each
other, and thus can be computed in parallel. The complexity of Algorithm 6.1 is q

times the complexity of solving a single regularized SVD problem. Note, however,
that Algorithm 6.1 may be in fact faster than global SVD since (a) the q loops
may be computed in parallel, and (b) the rank used in the local SVD model can be
significantly lower than the rank used in a global SVD model. If the kernel Kh has
limited support (Kh(s, s

′) is non-zero only for a few values of s′ for any given s) the
regularized SVD problems in Algorithm 6.1 would be more sparse than the global
SVD problem, resulting in an additional speedup.

Before finishing this section, we comment about the computational complexity of Al-
gorithm 6.1. Kernel smoothing part requires O(n1) and O(n2) times, respectively.
Also, regularized SVD optimization part requires O(mr). Thus, the overall com-
plexity to learn one low-rank approximation is O(max(n1, n2) +mr). With sufficient
parallel processors, our learning process will run within the same time. Practically,
it may take several constant times of it.

6.4.2 Global LLORMA

Recall that the parallel LLORMA algorithm from Section 6.4.1 constructs q local
models based on q different anchor points. It then combines the models via kernel
regression to produce M̂ using (6.13) which yields the following approximation,

M̂u,i =

q∑
t=1

K(ut, u)K(it, i)∑
s K(us, u)K(is, i)

[U (t)V (t)�]u,i. (6.21)

That is, the algorithm learns each local model independently based on different sub-
sets of the matrix (with some potential overlap). Alternatively, we can directly op-
timize a joint loss using all local models while bearing in mind the form of the final
model as given by (6.21). In this section we describe an algorithmic alternative that
minimizes the following loss with respect to {U (t), V (t)}qt=1,∑

(u,i)∈Ω
(M̂u,i −Mu,i)

2 =

∑
(u,i)∈Ω

(
q∑

t=1

K(ut, u)K(it, i)∑
s K(us, u)K(is, i)

[(U (t)V (t)�]u,i −Mu,i

)2

. (6.22)
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This optimization problem can be solved using gradient-based methods, as we use
for the global incomplete SVD. Hence, we solve jointly multiple SVD problems with
different weights (K(ut, u)K(it, i)) multiplying the original matrix. Since we can
decompose M into weighted sums,

Mu,i =

∑
t K(ut, u)K(it, i)∑
s K(us, u)K(is, i)

Mu,i ,

the objective function given by (6.22) can be rewritten as follows,

∑
(u,i)∈Ω

(
q∑

t=1

K(ut, u)K(it, i)∑
s K(us, u)K(is, i)

[(U (t)V (t)�]u,i −
q∑

t=1

K(ut, u)K(it, i)∑
s K(us, u)K(is, i)

Mu,i

)2

=
∑

(u,i)∈Ω

(
q∑

t=1

K(ut, u)K(it, i)∑
s K(us, u)K(is, i)

(
[(U (t)V (t)�]u,i −Mu,i

))2

.

(6.23)

Let us now examine the difference between the above objective with the one tacitly
employed by parallel LLORMA algorithm, which amounts to,

∑
(u,i)∈Ω

q∑
t=1

K(ut, u)K(it, i)
(
[(U (t)V (t)�]u,i −Mu,i

)2

. (6.24)

By construction, both objectives are minimized with respect to {U (t), V (t)}qt=1 using
the squared deviation from M . The difference between the two models is that (6.23)
has a square that encompasses a sum over anchor points. When expanded the term
includes the individual squared terms that appear in (6.24) as well as additional
interaction terms. Namely, parallel LLORMA minimizes the sum of square deviations
while global LLORMA minimizes the square deviation of sums. In Algorithm 6.2, we
provide the pseudocode of global LLORMA.

A priori we should expect the global version of LLORMA to result in more accurate
estimates of M than parallel LLORMA described in Section 6.4.1. However, since the
objective can no longer be decoupled, the run time global LLORMA is likely to be
longer than its parallel counterpart. We provide experimental results which compare
the two versions in terms of performance and running time in Section 6.5.2.

6.5 Experiments

We conducted several experiments with recommendation data. In Section 6.5.1, we
compare LLORMA to SVD and other state-of-the-art techniques. We also examine
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Algorithm 6.2 The Global LLORMA Algorithm
1: Input: M ∈ R

n1×n2 whose entries are defined over Ω
2: Parameters: kernel function K(·) of widths h1 and h2

3: rank r and number of local models q
4: regularization values λU , λV

5: for all t = 1, . . . , q do
6: Select (at, bt) at random from Ω
7: for all i = 1, . . . , n1 do
8: Construct entry i: [Kat ]i := Kh1(at, i)
9: end for

10: for all j = 1,= . . . , n2 do
11: Construct entry j: [Kbt ]j := Kh2(bt, j)
12: end for
13: end for
14: Minimize with respect to {(U (t), V (t))}qt=1:

15:
∑

(i,j)∈Ω

(
q∑

t=1

[K(at)]i [K
(bt)]j [U

(t)V (t)�]i,j∑
s[K

(as)]i [K(bs)]j
−Mi,j

)2

+λU

∑
i,k

[
U

(t)
i,k

]2
+λV

∑
j,k

[
V

(t)
j,k

]2
16: Output:

{
at, bt, U

(t), V (t)
}q

t=1

in the section dependency of LLORMA on the rank r, the number of anchor points
q, and the training set size. In Section 6.5.2, we compare the parallel and global
versions of LLORMA. Section 6.5.3 introduces several anchor point selection schemes
and compare them experimentally. In Section 6.5.4, we apply LLORMA framework to
implicit feedback data using complete SVD, followed by a comparison to an ensemble
of independent models to verify whether locality plays a role in Section 6.5.5.

We used four popular recommendation systems datasets. The MovieLens1 dataset is
one of the most popular datasets in the literature. We used all versions of MovieLens
dataset, namely: 100K (1K × 2K with 105 observations), 1M (6K × 4K with 106

observations), and 10M (70K×10K with 107 observations). We also tested LLORMA
on the Netflix dataset which is of size 480K × 18K with 108 observations and the
Bookcrossing dataset (100K × 300K with 106 observations). These two datasets are
much larger than the MovieLens dataset. We also report results on the Yelp dataset
(40K×10K with 105 observations), which is a recent dataset that is part of the ACM
RecSys 2013 challenge2. The Bookcrossing and Yelp datasets reflect a recent trend
of very high sparsity, often exhibited in real-world recommendation systems.

1http://www.grouplens.org/
2http://recsys.acm.org/recsys13/recsys-2013-challenge-workshop/
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Figure 6.3: RMSE of LLORMA and SVD as a function of the rank on the Netflix
dataset.

Unless stated otherwise, we randomly divided the available data into training and test
sets such that the ratio of training set size to test set size was 9:1. We created five
random partitions and report the average performance over the five partitions. We
used a default rating of (max+min)/2 for test users or items which lack any rating,
where max and min indicate respectively the maximum and minimum possible rating
in the dataset.

In our experiments, we used the Epanechnikov kernel with h1 = h2 = 0.8, a fixed step-
size for gradient descent of μ = 0.01, and a 2-norm regularization value of λU = λV =

0.001. These values were selected using cross-validation. We set and did not attempt
to optimize the parameters T = 100 (maximum number of iterations), ε = 0.0001

(gradient descent convergence threshold), and q = 50 (number of anchor points). We
selected anchor points by sampling uniformly users and items from the training points
without replacement. We examine more complex anchor point selection scheme in
Section 6.5.3.

6.5.1 Performance of Parallel LLORMA

Table 6.1 lists the performance of LLORMA with 50 anchor points, SVD, and two
recent state-of-the-art methods based on results published in [85]. For a fixed rank r,
LLORMA always outperforms SVD. Both LLORMA and SVD perform better as r

increases. Both SVD and LLORMA exhibit diminishing returns as the rank increases.
LLORMA with a modest rank r = 5 outperforms SVD of any rank. We can see that
LLORMA also outperforms the APG and DFC algorithms. For a reference, the Root

78



T
ab

le
6.

1:
R

M
SE

ac
hi

ev
ed

by
di

ffe
re

nt
al

go
ri

th
m

s
on

fiv
e

da
ta

se
ts

:
M

ov
ie

Le
ns

1M
,M

ov
ie

Le
ns

10
M

,N
et

fli
x,

B
oo

kc
ro

ss
in

g,
an

d
Y
el

p.
R

es
ul

ts
fo

r
A

P
G

[1
32

]a
nd

D
FC

w
er

e
ta

ke
n

fr
om

[8
5]

.

M
et

ho
d

M
ov

ie
Le

ns
1M

M
ov

ie
Le

ns
10

M
N

et
fli

x
Y

el
p

B
oo

kc
ro

ss
in

g
A

P
G

–
0.

80
05

0.
84

33
–

–
D

FC
-N

Y
S

–
0.

80
85

0.
84

86
–

–
D

FC
-P

R
O

J
–

0.
79

44
0.

84
11

–
–

R
an

k
SV

D
LL

O
R

M
A

SV
D

LL
O

R
M

A
SV

D
LL

O
R

M
A

SV
D

LL
O

R
M

A
SV

D
LL

O
R

M
A

R
an

k-
1

0.
92

01
0.

91
35

0.
87

23
0.

86
50

0.
93

88
0.

92
95

1.
49

88
1.

44
90

3.
37

47
3.

16
83

R
an

k-
3

0.
88

38
0.

86
70

0.
83

48
0.

81
89

0.
89

28
0.

87
92

1.
48

24
1.

31
33

3.
36

79
3.

03
15

R
an

k-
5

0.
87

37
0.

85
37

0.
82

55
0.

80
49

0.
88

36
0.

86
04

1.
47

75
1.

23
58

3.
35

83
2.

94
82

R
an

k-
7

0.
86

78
0.

84
63

0.
82

34
0.

79
50

0.
87

88
0.

85
41

1.
47

36
1.

19
05

3.
34

88
2.

88
28

R
an

k-
10

0.
86

50
0.

83
96

0.
82

19
0.

78
89

0.
87

65
0.

84
44

1.
47

08
1.

15
26

3.
32

83
2.

81
30

R
an

k-
15

0.
86

52
0.

83
70

0.
82

25
0.

78
30

0.
87

58
0.

83
65

1.
46

85
1.

13
17

3.
30

98
2.

75
73

R
an

k-
20

0.
86

47
0.

83
33

0.
82

20
0.

78
15

0.
87

42
0.

83
37

79



0.78

0.79

0.80

0.81

0.82

0.83

0.84

0 10 20 30 40 50

RM
SE

 

Number of Anchor Points 

MovieLens 10M 

SVD(rank=5)
SVD(rank=7)
SVD(rank=10)
SVD(rank=15)
LLORMA(rank=5)
LLORMA(rank=7)
LLORMA(rank=10)
LLORMA(rank=15)
DFC

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0 10 20 30 40 50

RM
SE

 

Number of Anchor Points 

Netflix 

SVD(rank=5)
SVD(rank=7)
SVD(rank=10)
SVD(rank=15)
LLORMA(rank=5)
LLORMA(rank=7)
LLORMA(rank=10)
LLORMA(rank=15)
DFC

Figure 6.4: RMSE of LLORMA, SVD, and two baselines on MovieLens 10M
(top) and Netflix (bottom) datasets. The results for LLORMA are depicted by
thick solid lines, while for SVD with dotted lines. Models of the same rank are
have identical colors.
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Figure 6.5: RMSE of LLORMA, SVD, and two baselines on Yelp (top), and
Bookcrossing (bottom) datasets. The results for LLORMA are depicted by thick
solid lines, while for SVD with dotted lines. Models of the same rank are have
identical colors.
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Mean Square Error (RMSE) we achieved (0.8337) is a better score than the goal of
Netflix competition (0.8567).3

As we can see from Figure 6.3, the improvement in the performance of SVD is rather
minor beyond a rank of 7 while LLORMA’s improvement is still evident until a rank
of about 20. Both approaches cease to make substantial improvements beyond the
aforementioned ranks and exhibit diminishing returns for high ranks. As discussed in
earlier sections, the diminishing returns of SVD for high ranks can be interpreted in
two ways: (i) The global low-rank assumption is correct and the SVD approximates
the rating matrix almost optimally. (ii) The global low-rank assumption is incorrect
and the diminishing returns are due to various deficiencies such as overfitting or
reaching an inferior local minimum. Since LLORMA improves beyond SVD’s best
performance, it deems that the second hypothesis is more plausible. The fact that
LLORMA’s performance asymptotes at higher ranks than SVD may indicate the first
hypothesis is to a large extent correct at a local region yet not globally.

Figures 6.4 and 6.5 compares the RMSE of LLORMA, SVD, and the DFC method
of [85]. We plot the RMSE of LLORMA as a function of the number of anchor points.
As in the case of Table 6.1, both LLORMA and SVD improve as r increases. Here
again LLORMA with local rank of at least 5 outperforms SVD of any rank. Moreover,
LLORMA outperforms SVD even with only a few anchor points. Figure 6.6 shows
the RMSE of LLORMA as a function of the training set size, and compares it with
global SVD of 50. We also plot results for a few other methods that have shown to
achieve very good approximation accuracy: non-negative matrix factorization (NMF)
with rank 50 [79] and Bayesian probabilistic matrix factorization (BPMF) with rank
5 [114]. The test set size was fixed to 10% of the MovieLens 1M and the RMSE
was averaged over five random train-test splits. The graph shows that all methods
improve as the training set size increases while LLORMA consistently outperforms
SVD and the other baselines.

To recap, the experimental results presented thus far indicate that LLORMA outper-
forms SVD and other state-of-the-art methods even when using relatively lower-rank
approximation. Moreover, LLORMA is capable of achieving good accuracy with
rather small number of anchor points and seems to perform well across a variety of
training set sizes.

3We provide this number merely as reference since we measured our performance on a test set
different from original Netflix test set, which is no longer available. Our result are based on a random
sub-sampling of the Netflix training data as described above. See also the discussion in [85].
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Figure 6.6: RMSE of SVD, LLORMA, NMF, and BPMF methods as a function
of training set size for the MovieLens 1M dataset.

6.5.2 Comparison of Global and Parallel LLORMA

We proposed two implementations of LLORMA in this paper: a decoupled parallel
approach (Section 6.4.1) and a global approximation version (Section 6.4.2). In ear-
lier sections, we conjectured that the global version is likely to be more accurate in
terms of RMSE as it directly optimizes the objective function. In terms of computa-
tional efficiency, however, we naturally expected the parallel version to be faster as
it can take advantage of multicore and distributed computing architectures. In this
subsection, we experimentally verify the two conjectures.

We compared the two versions of LLORMA on MovieLens 100K dataset. We tested
local rank values in {1, 3, 5, 7, 10}. The experiment was conducted on a quad-core
machine with 4 threads while suspending any other process. For both versions, we
constructed 50 local models and repeated the experiment 5 times with different anchor
points. Table 6.2 reports the average test RMSE and average elapsed time for training.
As conjectured, global LLORMA results in more accurate estimations on unseen data
than parallel LLORMA. However, the performance gap between the two approaches
reduces as the rank increases. The parallel version LLORMA runs about 3 times
faster than global LLORMA indicating that a fairly high utilization of the multicore
architecture.
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Table 6.2: RMSE and training time for Global and Parallel LLORMA on Movie-
Lens 100K.

Method Global LLORMA Parallel LLORMA
Rank Test RMSE Time Test RMSE Time
1 0.9072 6:04 0.9426 1:09
3 0.9020 10:27 0.9117 3:20
5 0.8990 14:40 0.9041 5:26
7 0.8986 19:43 0.9010 7:50
10 0.8975 28:59 0.8985 11:49

6.5.3 Anchor Points Selection

The method for selecting anchor points in LLORMA is important as it may affect
the prediction time as well as generalization performance. If the row and column
indices of the test data are provided in advance, we may choose anchor points from
the test set distribution. However, in most applications the test set is not known
apriori, and in fact is likely to increase and change in time. We therefore confined
ourselves to three sampling methods and one clustering methods based on low-rank
representation of the data. In the rest of the section we use q to denote the number
of anchor points. The following are anchor point selection methods we tried.

Complete: Sample anchor points uniformly from the entire set of indices [n1]× [n2].

Trainset: Sample anchor points uniformly from the observed entries, Ω.

Coverage: Select anchor points such that no entry in [n1]× [n2] is too distant from
the rest of the anchor points.

k-means: Run k-means clustering on the entries in Ω each represented using the
induced d-dimensional space obtained by SVD with k = q.

The first two sampling methods are straightforward. The third method, termed “Cov-
erage” was implemented by sampling aq with a > 1 user-item pairs and then adding
an anchor point whose minimum distance to existing anchor points is the largest. The
fourth selection methods that we tested is based on clustering the observed entries. It
is based on the observation that an anchor point need not be an entry in the observa-
tion matrix but may rather consist of a combination of matrix entries. Recall that we
weigh each local model based on user and item similarity. As explained in Section 6.4,
each a user (item) is represented as a row of a low-rank matrices U (respectively, V )
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attained by the global SVD, namely, M ≈ UV �. Denoting the intrinsic dimension
of U and V by d, each user and item can be represented as a d-dimensional vector.
Instead of each row of U and V , we can generalize the space of anchor points to any
point in this d-dimensional vector space. A good set of anchor points may be the
q cluster centers of the d-dimensional representations of the entries of M which is
computed using the k-means algorithm.

Table 6.3 provides performance results of Global LLORMA using different anchor
point selection methods. In the experiments we used the MovieLens 100K datasets
with 5 random train-test partitions. The results we report are based on averages over
the 5 random splits. As one may anticipate, the different selection schemes perform
similarly when q is large. For small values of q (10 or 20), we would like to underscore
the following observations. The first two methods (Complete and Trainset) perform
similarly. The clustering-based anchor point construction generally performs slightly
better than the three other methods. Somewhat surprisingly, the Coverage method
performs the worst for small values of q. Nonetheless, when q is sufficiently large all
methods achieve about the same results.

Table 6.3: RMSE for various anchor point selection schemes on MovieLens 100K
datset.

10 Local models 20 Local Models
Rank Complete Trainset Coverage k-means Complete Trainset Coverage k-means
1 0.9276 0.9296 0.9360 0.9230 0.9195 0.9206 0.9235 0.9166
3 0.9245 0.9237 0.9327 0.9208 0.9164 0.9152 0.9189 0.9134
5 0.9240 0.9221 0.9277 0.9190 0.9125 0.9128 0.9154 0.9111
7 0.9231 0.9251 0.9279 0.9202 0.9140 0.9129 0.9163 0.9103
10 0.9242 0.9271 0.9301 0.9236 0.9129 0.9125 0.9141 0.9112

6.5.4 Application to Implicit Feedback data

With explicit feedback, users actively score the items they experienced. In most cases,
explicit feedback allows users to give both positive and negative reactions. On the
other hand, there are many other sources of user feedback without requiring explicit
rating actions from users. Even though users do not rate items they have purchased
or consumed, the fact that they have chosen to experience those items also may imply
some interest on them. For instance, purchase history on an online shopping mall or
watching history in video streaming service can be interpreted as their interest on the
items.

Implicit data can be represented as a binary matrix; 1 if observed (purchased, watched,
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Figure 6.7: Test RMSE of global SVD and LLORMA on implicit feedback data.

and so on), and 0 otherwise. Usually ‘1’ is interpreted as a positive feedback, while
‘0’ as unknown (potentially positive or negative.) However, the interpretation of ‘1’
as a positive feedback can be incorrect in some cases. Suppose a user has streamed
a movie for just 5 minutes, then exited and never seen it again. This will imply that
the user was disappointed on the movie though she initially started watching it with
some interest. Although this interpretation is not as perfect as the explicit dataset
case, however, this interpretation is widely used in real applications.

Unlike the explicit data, this matrix is complete. This implies that factorizing this
matrix using SVD is very efficient. We can apply LLORMA framework to this com-
plete SVD in the exactly same manner; we first randomly choose an anchor point, and
compute user and item similarity to that anchor point. Then, we solve a weighted
SVD problem, where the weight in each element is proportional to the user weight
times the item weight. We repeat this process with different anchor points (in paral-
lel), then combine them as presented earlier.

To evaluate this idea, we conducted an experiment with MovieLens 100K dataset,
comparing performance of global SVD and LLORMA on implicit feedback data. We
first converted all numeric ratings to 1, meaning watched, to simulate implicit feed-
back. All other unknown ratings were set to 0. We set aside 20% of watch history
as the test set, and took SVD only with the remaining 80% training set. Figure 6.7
shows the test RMSE with global SVD and LLORMA. LLORMA outperforms global
SVD in all cases, but the gap gets larger with higher ranks. Also, overfitting was
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observed in both methods, but earlier with global SVD around rank 12, while with
LLORMA around rank 17. From these observations, we conclude that the local low-
rank assumption holds even with implicit feedback data, identifying sub-communities
and optimizing each of them effectively.4

6.5.5 Comparison to Ensemble of Independent Models

The algebraic form of the parallel estimator ˆ̂T as given by (6.13) is a linear combi-
nation of local models, each of which focuses on a subset of user-item pairs. This
algebraic form is reminiscent of ensemble methods [54] such as Bagging [13], where
the final model is a linear combination of simple models, each weighed by a prede-
fined coefficient. Ensemble methods such as boosting and Bagging have been shown
to be effective tools for combining models primarily for classification tasks. In this
subsection we examine the connection between LLORMA and an ensemble method
based on Bagging for low-rank matrix approximation.

There are two main differences between Bagging and LLORMA. In Bagging, the
dataset constructed for training each sub-model is uniformly sampled with replace-
ments. In contrast, LLORMA’s sampling is based on a non-uniform distribution
respecting locality as defined by the distance metric over user-item pairs. The second
difference is that Bagging assigns equal weights to each base-model. In LLORMA,
each local model is associated with a weight that is proportional to the proximity of
the anchor point to the test point. That is, the weights of the local models vary and
are determined at inference time.

We conducted two sets of experiments comparing LLORMA with Bagging. In the first
experiment, we varied the kernel widths gradually increasing the widths to the matrix
dimensions, thus ending with a uniform kernel over Ω. We normalized the kernel width
so that a value of 1 corresponds to the full dimension. As the width increases, the
overlap between local models becomes more and more substantial. In addition, the
bias of each local model increases due to the decrease in locality. Analogously, the
variance of each model decreases due to the increase in the actual training set size.

Figure 6.8 shows performance of LLORMA on MovieLens 100K dataset for various
kernel widths. The best performance is obtained for kernel width between 0.7 and

4We also tested with a real production data from the Amazon Instant Video service, from Nov
2013 to May 2014. We got similar result to the one with MovieLens, but we do not present exact
figures as the data is confidential in Amazon.
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shows the average RMSE of Bagging for reference.

0.8. The performance rapidly deteriorates as the width decreases and slowly degrades
as the width increases with an optimal width close to the middle of the range.

In our second experiment, we compared LLORMA with Bagging by taking |Ω| samples
with replacements, which in expectation covers two thirds of the observed entries.
Table 6.4 compares the performance of global SVD of rank 10 and 15, LLORMA with
100 local models, and Bagging with 100 models. Each result is the average of 5 random
splits of the dataset. It is apparent from the table that both LLORMA and Bagging
outperform global SVD. Further, LLORMA achieves lower RMSE than Bagging. The
improvement of LLORMA over Bagging is statistically significant based on a paired
t-test with p-values of 0.0022 for MovieLens 100K and 0.0014 for MovieLens 1M.
These p-values correspond to a confidence level over 99%. LLORMA also outperforms
Bagging with respect to the mean absolute error (MAE).

6.6 Nuclear Norm Minimization

The motivation for performing the experiments in the previous section with the Frobe-
nius norm minimization framework (incomplete SVD in Equation (6.11)) rather than
the nuclear norm minimization framework (Equation (6.12)) is due to the better
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Table 6.4: Comparison of the mean absolute error (MAE) and root mean squared
error (RMSE) for SVD, Bagging, and LLORMA on MovieLens dataset.

Dataset MovieLens 100K MovieLens 1M
Method MAE RMSE MAE RMSE
SVD (rank=10) 0.7189 0.9108 0.6922 0.8683
SVD (rank=15) 0.7170 0.9094 0.6913 0.8676
Bagging 0.6985 0.8930 0.6620 0.8481
LLORMA 0.6936 0.8881 0.6577 0.8423

computational scalability of the Frobenius norm approach and its huge popularity.
Nevertheless, it is worth to see whether the local low-rank assumption and LLORMA
framework is still useful in case of nuclear norm minimization problem as well. In this
section, we briefly introduce nuclear norm minimization problem in Section 6.6.1 and
how to adapt a basic algorithm into LLORMA framework in Section 6.6.2, followed
by experiments evaluating the performance of nuclear norm minimization LLORMA
in Section 6.6.3.

6.6.1 Nuclear Norm Minimization Problem

Matrix completion in compressed sensing is usually stated as the following optimiza-
tion problem:

M̂ = argmin
X

rank(X) s.t. Xi,j = Mi,j (i, j) ∈ Ω (6.25)

where M is the partially observed rating matrix and X is the output matrix with all
missing values filled. This optimization problem aims to find a matrix with as low
rank as possible after filling the missing entries in M . As the objective function in
(6.25) is our ultimate goal, it is unfortunately non-convex optimization problem. As
an alternative, analogous to the convex relaxation from L0 norm minimization to L1

norm minimization problem, it is common to minimize the nuclear (trace) norm of
X instead:

M̂ = argmin
X

‖X‖∗ s.t. Xi,j = Mi,j (i, j) ∈ Ω (6.26)

where ‖X‖∗ is the sum of singular values of X. It is known that this is the tightest
convext relaxation of (6.25).

There are many approaches solving this optimization problem in literature. Sub-
gradient descent approaches were proposed in [58, 2]. Formulating nuclear norm
minimization problem as a semi-definite programming [35, 124, 55, 45] is another
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widely-studied area. Singular Value Thresholding [16] is a simple and fast method,
iteratively cutting singular values down to achieve minimal rank. Active subspace
selection [51] approached this problem in a divide-and-conquer manner, iteratively
selecting an active subspace using the proximal gradient, finding a smooth, convex
relaxation of the smaller sub-space problem, and solving these using second order
methods. Other recent improvements in this area include [33, 149, 91, 84, 19, 87, 25].

In this thesis, we adapted the Singular Value Thresholding and the Active Subspace
Selection methods to our locally weighted variation. We compare the performance of
those methods learned in a global manner, and those based on combination of local
models. For this, we first explain how we modify these methods to LLORMA version
in the next subsection.

6.6.2 Adapted SVT Algorithm

We rewrite the constrained nuclear norm minimization problem

M̂ = argmin
X

‖X‖∗ s.t. ‖PΩ(X −M)‖F < ε .

in its Lagrangian form:

M̂ = argmin
X

‖PΩ(X −M)‖2F + τ‖X‖∗ where τ > 0. (6.27)

We first repeat the definition of the following soft-thresholding operator Dτ (Y ) from
[16]: for τ > 0 and Y ∈ R

n1×n2 ,

Dτ (Y )
def
= U diag {(σi − τ)+}V � (6.28)

where t+ = max(t, 0) and the SVD of Y is given by UΣV � with Σ = diag (σ1, ..., σr).

The SVT algorithm iteratively applies this operator:{
Xk = Dτ (Y

k−1)

Y k = Y k−1 + δkPΩ(M −Xk)
(6.29)

until a stopping condition is reached, where Y 0 = 0, k = 1, 2, 3, ..., and {δk} is a
sequence of positive step sizes (PΩ is the projection operator defined in Section 6.1).

Theorem 2 below, which is originally found in [16], argues that the iterative algo-
rithm above (6.29) converges to the unique minimizer of the nuclear norm regularized
minimization problem.
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Theorem 2. For each τ ≥ 0 and Y ∈ R
n1×n2 , the singular value shrinkage operator

(6.28) satisfies Dτ (Y ) = argminX
1
2
‖X − Y ‖2F + τ‖X‖∗.

Proof of the theorem can be found in Theorem 2.1 of [16].

Using Theorem 2, we propose an iterative algorithm similar to (6.29) for learning
each local model in the LLORMA framework. Recall that we want to solve (6.12):

M̂ = argmin
X

‖X‖∗ s.t. ‖K(a,b)
h � PΩ(X −M)‖F < ε

or equivalently

M̂ = argmin
X

1

2
‖K(a,b)

h � PΩ(X −M)‖2F + τ‖X‖∗. (6.30)

Assuming that we use a multiplicative kernel K(a,b)
h = Ka

h · Kb
h (where Ka

h reflects
similarity between the anchor user a and all other users, and Kb

h between the anchor
item b and all other items) (6.30) can be rewritten as

M̂ = argmin
X

1

2
‖PΩ(A(X −M)B)‖2F + τ‖X‖∗. (6.31)

where A and B are diagonal matrices containing Kh(a, i) in Ai,i and Kh(b, j) in Bj,j.
In other words, A = diag(Ka

h) and B = diag(Kb
h).

We propose the following adaptation of the SVT algorithm for solving the above
problem (6.31):

Xk = A−1Dτ (AY
k−1B)B−1

Y k = Y k−1 + δkPΩ(M −Xk). (6.32)

We prove that this algorithm correctly solves the optimization problem (6.31) in a
similar way to Theorem 2.

Theorem 3. For each τ ≥ 0 and Y ∈ R
n1×n2 , the singular value shrinkage operator

(6.28) satisfies A−1Dτ (AY
k−1B)B−1 = argminX

1
2
‖A(X − Y )B‖2F + τ‖X‖∗, where

A = diag(Ka
h) and B = diag(Kb

h).

Proof. Let h1(X) = 1
2
‖A(X − Y )B‖2F + τ‖X‖∗. As A and B are just linear transfor-

mations, h1(X) is still strictly convex. We need to show that its minimizer is equal
to A−1Dτ (AY

k−1B)B−1.
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Similarly to Theorem 2, X̂ minimizes h1 if and only if 0 is a subgradient of h1 at X̂,
that is,

0 ∈ A(X̂ − Y )B + τ∂‖X̂‖∗ ⇔ A(X̂ − Y )B ∈ τ∂‖X̂‖∗.

Denoting the SVD of AY B by U0Σ0V
�
0 + U1Σ1V

�
1 where the first term (subscripted

with 0) corresponds to singular values smaller than τ , while the second term (sub-
scripted with 1) the others. Assuming that X̂ = A−1Dτ (AY

k−1B)B−1, we have
AX̂B = U0(Σ0 − τI)V �

0 by definition of the soft-thresholding operator. Then,

1. A(Y − X̂)B = τ(U0V
�
0 +W ) where W = τ−1U1Σ1V

�
1 ,

2. U�
0 W = U�

0 (τ
−1U1Σ1V

�
1 = τ−1(U�

0 U1)V
�
1 = 0,

3. WV0 = (τ−1U1Σ1V
�
1 )V0 = τ−1U1Σ1(V

�
1 V0) = 0,

4. ‖W‖2 = τ−1‖U1Σ1V
�
1 ‖2 = τ−1‖Σ1‖2 ≤ 1, as Σ1 is a diagonal matrix with σi < τ

for all i.

By using the known fact ∂‖X‖∗ = {UV � + W : W ∈ R
n1×n2 , U�W = 0,WV =

0, ‖W‖2 ≤ 1}, we conclude that A(Y −X̂)B ∈ τ∂‖X̂‖∗, so X̂ = A−1Dτ (AY
k−1B)B−1

is the unique minimizer of the optimization problem argminX
1
2
‖A(X − Y )B‖2F +

τ‖X‖∗.

We note that the optimization problem above is a special case of “general convex
constraints” in Section 3.2 of [16] corresponding to

Xk = Dτ (L
�yk−1)

yk = Y k−1 + δk(b− L(Xk)) (6.33)

where L is a linear transformation mapping.

We modified the Active Subspace Selection method in a similar manner. To simplify
things, we used uniform kernel, which takes training examples with sufficiently similar
ones to the anchor points with full weights, while drops otherwise.

6.6.3 Experimental Result and Discussion

Since nuclear norm minimization does not scale to large matrix sizes as incomplete
SVD, we describe in this section an experiment with the relatively small Movie-
Lens 100K dataset. We used parallel LLORMA with uniform sampling of anchor

92



0.97

0.98

0.99

1.00

0 5 10 15 20 25 30

Te
st

 R
M

SE
 

Number of Local Models 

Epanechnikov Kernel 

kw=0.60

kw=0.65

kw=0.70

kw=0.75

Global

0.97

0.98

0.99

1.00

0 5 10 15 20 25 30

Te
st

 R
M

SE
 

Number of Local Models 

Uniform Kernel 

kw=0.55

kw=0.60

kw=0.65

kw=0.70

Global

Figure 6.9: Experimental results with nuclear norm minimization using Singular
Value Thresholding.

point selection from the training data. We tried two types of kernels, uniform and
Epanechnikov with different bandwidths as shown in Figure 6.9. (Bandwidths outside
of this range such as 0.8 did not perform as well.) The distance function was identical
to the distance function in the Frobenius norm case (see Section 6.5). The learning
rate was determined by cross validation. We split the dataset into train and test sets
randomly with a 9:1 ratio and repeated 5 times with different random train/test splits
and anchor point selections and averaged the result.

The experimental results are shown in Figure 6.9 (using Singular Value Thresholding)
and in Figure 6.10 (using Active Subspace Selection). We observe the following points:

1. LLORMA performs better than the global version of nuclear norm minimiza-
tion with both SVT and Active Subspace Selection. In case of SVT, LLORMA
reached an RMSE of 0.9725 with Epanechnikov kernel and the best kernel
width, while the global version reached 0.9838. With Active Subspace Selec-
tion, LLORMA achieved RMSE of 0.9583, while the global (original) version
did 0.9611.

2. LLORMA works better with Epanechnikov kernel (left panel of Figure 6.9)
than uniform kernel (right panel of Figure 6.9) in nuclear norm minimization
problem. This agrees with the experimental results in Section 6.5 as well. In case
of the Active Subspace Selection experiment, LLORMA with uniform kernel
outperformed the global counterpart.
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Figure 6.10: Experimental results with nuclear norm minimization using Active
Subspace Selection.

3. The best kernel widths for nuclear norm minimization (0.7 for Epanechnikov
kernel and 0.6 for uniform kernel) were different from the Frobenius norm case
(0.8). This is an expected result, as kernel width is an intrinsic parameter of
each kernel.

4. The improvement from global to local approaches is smaller than in the case of
the Frobenius norm minimization. In the case of the Frobenius norm minimiza-
tion, the improvement was from 3.6% to 4.9%, while it was lower (0.9%) in the
case of the nuclear norm.

5. Nuclear norm minimization does not perform as well as Frobenius norm mini-
mization (as measured by test RMSE). This confirms other results in the litera-
ture: 0.95 in [69] and around 0.96 in [51] on the same MovieLens 100K dataset.
There are more reports on Netflix dataset [55, 87] with comparable performance
to the baseline RMSE score (0.9525) of the Netflix competition.

Overall, we conclude that local low-rank assumption is still valid in nuclear norm
minimization problem, but it is less effective than the Frobenius norm case.

6.6.4 Computational Issues

Although nuclear norm minimization is known as the tightest convex relaxation to
the low-rank matrix factorization problem, it is limitedly used in real-world large-
scale applications due to its heavy computational overhead. Fortunately, efficiency
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and scalability have been improved in addition to prediction accuracy in this area.
For example, the Active Subset Selection method [51] is a recent algorithm, which
significantly improved the running time of nuclear norm minimization over classical
methods such as Singular Value Thresholding.

Using more efficient method for base models also improves performance of LLORMA.
In an ideal setting where we have sufficient number of machines to solely run each
local model, the overall running time will be determined by the performance of the
base model. We observed the time taken to run LLORMA minimization nuclear
norm is XXX times faster with Active Subspace Selection than with Singular Value
Thresholding. Also, we may be able to further improve performance by optimizing
each base model. For instance, SVT-based LLORMA may run slightly faster when we
do partial SVD rather than full SVD, stopping to compute SVD when we encounter
zeros in singular values.

6.7 Summary

In this chapter, we presented a new approach for low-rank matrix approximation
based on the assumption that the matrix is locally low-rank. LLORMA is highly
parallelizable and thus scales well with the number of observations and the dimension
of the problem. Our experiments indicate that LLORMA outperforms several state-
of-the-art methods without a significant computational overhead. We also presented a
formal analysis of LLORMA by deriving bounds that generalize standard compressed
sensing results and express the dependency of the modeling accuracy on the matrix
size, training set size, and locality (kernel bandwidth parameter). Our method is
applicable beyond recommendation systems so long as the locality assumption holds
and a reasonable metric space can be identified.
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Chapter VII

LOCAL COLLABORATIVE RANKING

In contrast to standard collaborative filtering models, LLORMA in Chapter 6 does
not assume that the matrix M of user-item ratings is low-rank. Instead, we assume
that M is locally low-rank where locality is defined by a neighborhood with respect to
a given metric on pairs of (row, column) indices. In this chapter, instead of squared
loss reconstruction in LLORMA, we consider a ranked loss minimization setting that
is more appropriate for real world recommendation systems. The resulting method,
Local Collaborative Ranking (LCR), outperforms standard ranked collaborative fil-
tering models as well as more traditional CF methods. Furthermore, due to the
locality assumption, this approach is highly parallelizable and scales up to large scale
datasets.

We first formalize the ranking problem in Section 7.1. In Section 7.2, we describe our
model in detail followed by experimental analysis in Section 7.3.

7.1 Label Ranking

A general label ranking problem is defined as follows. Let X be a domain of instances
and Y be a set of labels, possibly of infinite cardinality. A label ranking for an instance
x ∈ X is a total ordering over Y , where y1 � y2 implies that y1 is preferred to y2 for
x. A label ranking function f : X × Y → R returns a score indicating how much a
label y is relevant to an instance x. We learn f so as to preserve preference order as
much as possible on training data. That is, given x, for all y1 � y2 relationship, we
fit f to satisfy f(x, y1) > f(x, y2) (if possible).

In the context of recommendation systems, X is a set of users U and Y is a set of
items I. The function f(u, i) estimates a preference score for a user u ∈ U on an item
i ∈ I. We fit f such that f(u, i1) > f(u, i2) if user u prefers item i1 to item i2.

One way to learn this ranking function is to sort the output of a rating predictor using
the approach in Section 6.1. With this approach, f directly approximate f(u, i) ≈
Mu,i for all (u, i) pairs on the training set Ω. With this ranking function f , the ordered
sequence of f(u, 1), . . . , f(u, n) gives the total order over the labels for user u. (Recall
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that n is the number of items.) This approach is called a “point-wise” method.

Although it is straightforward to learn to approximate ratings with point-wise tech-
niques, doing so suffers from calibration problem [42], or in other words, the inter-
pretation of scores for one user may not be consistent with the interpretation of the
same scores by another user. Directly approximating rating values (rather than the
ordering of the ratings) misses this effect and may thus lead to lower accuracy.

However, for both users an ordered pair of items means the same thing: one item is
preferred to another. The “pair-wise” approach avoids these drawbacks by considering
the preference order seen in training data, rather than directly estimating the values
themselves. With this approach, f(u, i) does not necessarily fit to Mu,i. Instead, it
tries to preserve the relative order of preferences between two ratings from the same
user. That is, it minimizes a risk function

E(f) =
∑
u∈U

∑
i,j∈Mu

L(f(u, i)− f(u, j),Mu,i −Mu,j) (7.1)

where Mu is the set of items rated by the user u. One choice of loss function L(x, y) is
the zero-one loss, penalizing only when the signs of x and y disagrees. A differentiable
approximation for this function will be introduced later.

One drawback of the pair-wise method is its computational complexity. As the pair-
wise method sums over all pairs of ratings by the same user, its worst-case complexity
is O(k2) for k ratings or per rating average of O(k2/m). Obviously, it takes much
longer than a point-wise method, whose complexity is O(k). Fortunately, however,
rating matrices are usually very sparse, so the number of pairs may not be intractably
large. Also, since many recommendation ratings lie in a finite set of scores (for
example one to five stars), many ties are bound to occur and dropping these ties
leads to manageable complexity.

7.2 Collaborative Ranking

We now turn our attention to the main thrust of the paper where we present our
learning-to-rank algorithm by minimizing a pair-wise loss function. With a pair-
wise loss, we are not interested in the absolute ratings but rather in the difference in
preference values. Let (i, j) denote the indices of two items rated by a user u. Without
loss of generality we assume that item i is preferred over item j, namely Mu,i > Mu,j.
The training set for pair-wise losses is constructed using observed entries from Ω as
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Table 7.1: Pair-based loss functions. The scalar γ is a free parameter which
designate a target margin value. [M] stands for a multiplicative version, and [A]
for an additive version.

Loss Name Loss Function
Log-loss[M] LLog[M](ΔM,Δf) = ΔM log(1 + exp{γ −Δf})
Log-loss[A] LLog[A](ΔM,Δf) = log(1 + exp{γ +ΔM −Δf})
Exp-loss[M] LExp[M](ΔM,Δf) = ΔM exp{γ −Δf}
Exp-loss[A] LExp[A](ΔM,Δf) = exp{γ +ΔM −Δf}
Hinge-loss[M] LHinge[M](ΔM,Δf) = ΔM [γ −Δf ]+
Hinge-loss[A] LHinge[A](ΔM,Δf) = [γ +ΔM −Δf ]+

follows
{(u, i, j,Mu,i −Mu,j) : (u, i), (u, j) ∈ Ω,Mu,i > Mu,j}. (7.2)

We use the same factorization form UV � for our model with U ∈ R
m×r and V ∈

R
n×r where r 	 min(m,n). In contrast to the single rating approach presented in

Section 6.1, M̂u,i would not necessarily be an approximation to Mu,i in value. That
is, for a pair Mu,i > Mu,j, our low-rank estimation should conform with the relative
order and difference in values of M̂u,i and M̂u,j.

In the sequel, we discuss pair-based loss functions. Then, we describe a natural
adaptation of global SVD from Section 6.1 to pair-wise loss functions. Finally, we
describe the Local Collaborative Ranking (LCR) method.

7.2.1 Pair-wise loss functions

A natural loss we consider in ranking is the rate of preference disagreement, namely,
how many pairs are mis-ordered by the ranking model. We refer to this loss as the
zero-one error for pairs,

E(f) =
∑
u∈U

1

su

su∑
k=1

1[ΔMk ·Δf(xk) < 0], (7.3)

where xk designates an ordered pair rated by user u. ΔMk and Δf(xk) denote the
difference in observed and predicted rating for the pair. su is the number of ordered
items rated by the user u. We normalize each user’s pair disagreement number by su

so that each user is weighed equally. The operator 1 designates the indicator function,
1[true] = 1 and 1[false] = 0. The error described by (7.3) amounts to the average
number of pairs for which the predicted preference disagrees with the observed one
and can be viewed as an instance of the generalized ranked loss in [30].
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The zero-one loss (7.3) is not differentiable and finding an f that minimizes it is
computationally intractable. Instead, we use a smooth surrogate loss function L that
forms a convex upper bound on the zero-one loss function

E(f) =
∑
u∈U

1

su

su∑
k=1

L(ΔMk,Δf(xk)). (7.4)

We describe and experiment with two different families of margin-based loss functions,
provided in Table 7.1. The first scales the loss by ΔM , while the second constructs
an additive margin using ΔM . These losses are analogous to similar relaxations of
the zero-one loss in classification.

7.2.2 A Global Approximation

Similarly to the incomplete SVD in Section 6.1, we can learn a global model by
minimizing the loss described in (7.4). The minimization produces two matrices
U, V that when multiplied UV T they provide an estimate for ratings whose ordering
conforms to the ordering in the training data. To simplify our derivation we define a
ternary function g as follows:

g(u, i, j)
def
= f(u, i)− f(u, j)

= [UV �]u,i − [UV �]u,j

=
r∑

k=1

Uu,kVi,k −
r∑

k=1

Uu,kVj,k. (7.5)

Substituting g in (7.4) we get

E(U, V ) =
∑
u∈U

1

su

∑
(i,j)∈Mu

1(ΔMu,i,j, g(u, i, j)), (7.6)

where Mu is the list of items rated by the user u and ΔMu,i,j = Mu,i −Mu,j. Each
pair (i, j) is considered once when Mu,i > Mu,j. Since ΔMu,i,j does not depend on U

and V , it is viewed as a constant in the optimization process. U and V are fitted by
gradient-based updates:

Uu,k ← Uu,k − ν
∂E(U, V )

∂Uu,k

, Vi,k ← Vi,k − ν
∂E(U, V )

∂Vi,k

where ν is the learning rate.

We calculate below the derivative of E(U, V ) with respect to the entries of U and V

using the chain rule. To obtain the partial derivatives with respect to Uu,k, we sum
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over all pairs of two items i and j rated by the user u. In this case, we can still assume
without loss of generality that Mu,i > Mu,j. When calculating the partial derivatives
with respect to Vi,k we note that there are two possible cases: item i is preferred to
j or vice versa. The two cases contribute to the two inner summations in (7.8).

∂E(U, V )

∂Uu,k

=
1

su

∑
(i,j)∈Mu

∂L(ΔMu,i,j, g)

∂g(u, i, j)

∂g(u, i, j)

∂Uu,k

(7.7)

∂E(U, V )

∂Vi,k

=
∑
u∈U

1

su

⎡
⎣ ∑

j:Mu,i>Mu,j

∂L(ΔMu,i,j, g)

∂g(u, i, j)

∂g(u, i, j)

∂Vi,k

+
∑

j:Mu,i<Mu,j

∂L(ΔMu,i,j, g)

∂g(u, i, j)

∂g(u, i, j)

∂Vj,k

⎤
⎦ . (7.8)

The partial derivatives of g are given by

∂g(u, i, j)

∂Uu,k

= Vi,k − Vj,k (7.9)

∂g(u, i, j)

∂Va,k

=

⎧⎨
⎩Uu,k if a = i

−Uu,k if a = j
. (7.10)

The last step is the calculation of the partial derivatives of the loss functions in
Table 7.1 with respect to g. For example in the case of the multiplicative log-loss, we
have

∂LLog[M](ΔM, g)

∂g
=

∂

∂g
ΔM log(1 + eγ−g) =

−ΔMeγ−g

1 + eγ−g
.

The partial derivatives need to be adjusted if regularization is used. For example, L2

regularization (Ω(U) =
∑

u,k U
2
u,k and Ω(V ) =

∑
i,k V

2
i,k) adds a simple linear term to

the partial derivatives.

7.2.3 Local Collaborative Ranking (LCR)

In LCR, we apply the ideas of local low-rank matrix approximation to the ranked
loss minimization framework. Each local low-rank model covers a different subgroup
of users and items, which are combined in prediction time using locally constant
regression.

Extending LLORMA to ranking loss minimization is not straightforward as LLORMA
uses two kernel functions (one for users K(ut, u) and the other for items K(it, i))
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as described in Section 6.2.1, while pair-wise losses are formed based on a single
user and two items in each term g(u, i, j). This leads to three kernel functions:
K(ut, u), K(it, i), and K(it, j).

To estimate the local models, we minimize the sum of ranked losses L (as in (7.6))
for all possible item pairs of the same user. Formally, we need to solve

argmin
Ut,Vt

∑
u∈U

1

su

∑
(i,j)∈Mu

L(ΔMu,i,j, g(u, i, j)) (7.11)

where t = 1, . . . , q and ΔMu,i,j = Mu,i −Mu,j. The main difference from (7.6) is the
definition of g(u, i, j). Instead of the difference of predictions of a single global model
(f(u, i)− f(u, j)), it is now a combination of local models:

g(u, i, j) ≡ M̂u,i − M̂u,j (7.12)

=

q∑
t=1

K((ut, it), (u, i))∑q
s=1 K((us, is), (u, i))

[UtV
�
t ]u,i

−
q∑

t=1

K((ut, it), (u, j))∑q
s=1 K((us, is), (u, j))

[UtV
�
t ]u,j.

After estimating the local models, we combine them at test time using locally constant
regression (as in the case of LLORMA)

M̂u,i =

q∑
t=1

K((ut, it), (u, i))∑q
s=1 K((us, is), (u, i))

[UtV
�
t ]u,i, (7.13)

where (ut, it) is the anchor point of local model t. Note that this amounts to a convex
combination of local models, weighted by the proximity of the local anchor point to
the predicted user-item pair.

We can calculate the gradients similarly to (7.7) and (7.8), so long as the loss function
L is differentiable. Specifically, we have

∂g(u, i, j)

∂[Ut]u,k
= [Vt]i,k − [Vt]j,k (7.14)

∂g(u, i, j)

∂[Vt]a,k
=

⎧⎨
⎩[Ut]u,k if a = i

−[Ut]u,k if a = j
. (7.15)

7.2.3.1 Parallelism

Though we did not explicitly present the full description of the gradient calculation,
it is evident that it is no longer possible to parallelize the gradient computation
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as in the case of LLORMA. In LLORMA, each local model does not interact with
other local models during training, so each local model can be learned in parallel
(asynchronously). However, it is difficult to break the objective function (7.11) with
(7.12) into independent optimization problems since the estimate of each local model
influences the other local models.

Nevertheless, we can still take advantage of parallelism in a slightly different and
more complex way. As long as all local models are at the same phase of the learning
process, we only need the current global estimation M̂u,i and not the estimation
of each individual local model. Since the global estimate is the same for every local
model so long as we establish a synchronization mechanism, we can compute combined
predictions at the beginning of each iteration, freeze the values, and let each local
model use these values during the gradient estimation. We can thus still update each
local model in parallel, as long as the current estimation M̂u,i is synchronized at each
iteration.

To recap, the learning process consists of the following steps: we first initialize each
model at random; then, we repeatedly alternate between the following two steps
until a convergence criterion is met: (i) we calculate current estimations of each local
model (Estimation step), and (ii) we update each local model concurrently using the
estimations (Update step). While the estimation step requires synchronization, the
update step can be done asynchronously. Since the update step is typically the most
computationally expensive, the above computational scheme can significantly reduce
run time.

7.2.3.2 Distance and Smoothing Kernel

In order to complete the derivation of the algorithm, we need to endow the space
of recommendations with a metric between users and analogously a metric between
items. Such metrics can be constructed using side information, for example, users’
age, gender, and so on (either using standard distances or using metric learning
techniques, for example [143] or [76, 77, 31]) However, many datasets (including most
public datasets) do not include such data, in which case d can be based on the partially
observed matrix M .

One possible approach is to construct the distance between two users based on the
correlation of the two users (excluding unobserved ratings), and construct similarly
the distance between two items. This approach does not perform well since the
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partially observed matrix is very sparse, leading to poor estimates of correlation and
distance. Instead, we factorize M using incomplete SVD (6.4) and obtain two latent
representation matrices U and V of users and items respectively. We then proceed to
construct the distance between two users based on the normalized inner-product of

Algorithm 7.1 The LCR Learning Algorithm
1: Input: M ∈ R

m×n

2: Parameters: number of local models q, local rank r, learning rate ν, regular-
ization coefficient λ

3: Define: Ω as the set of observed entries in M
4: for all t ∈ {1, ..., q} do
5: Initialize Ut ∈ R

m×r, Vt ∈ R
n×r randomly.

6: Pick an observed pair (ut, it) from M at random.
7: end for
8: while not-converged do
9: // Estimation step (Synchronization)

10: for all (u, i) ∈ Ω do
11: wu,i ←

∑q
t=1 K(ut, u)K(it, i)

12: fu,i =
∑q

t=1
K(ut,u)K(it,i)

wu,i

[
UtV

�
t

]
u,i

13: end for
14: for all (u, i) ∈ Ω and (u, j) ∈ Ω do
15: 
u,i,j =

∂E
∂g

∣∣∣
g=fu,i−fu,j

16: end for
17: // Update step
18: for all t ∈ {1, ..., q} in parallel do
19: ∀u ∈ {1, ...,m} : [ΔU ]u ← 0
20: ∀i ∈ {1, ..., n} : [ΔV ]i ← 0
21: for all (u, i) ∈ Ω and (u, j) ∈ Ω do
22: if Mu,i > Mu,j then
23: [ΔU ]u ← [ΔU ]u + (K(ut,u)·K(it,i)

wu,i
· [Vt]i

24: −K(ut,u)·K(it,j)
wu,j

· [Vt]j) · 
u,i,j
25: [ΔV ]i ← [ΔV ]i +

K(ut,u)·K(it,i)
wu,i

· [Ut]u · 
u,i,j
26: [ΔV ]j ← [ΔV ]j − K(ut,u)·K(it,j)

wu,j
· [Ut]u · 
u,j,i

27: end if
28: end for
29: ∀u ∈ {1, ...,m} : [Ut]u ← [Ut]u − ν( [ΔU ]u

|U|·su + λ[Ut]u)

30: ∀i ∈ {1, ..., n} : [Vt]i ← [Vt]i − ν( [ΔV ]i
|U|·su + λ[Vt]i)

31: end for
32: end while
33: output: UtV

�
t , t = 1, . . . , q
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Algorithm 7.2 The LCR Prediction

1: Input: learned local models UtV
�
t (t = 1, . . . , q), test point (u∗, i∗)

2: return M̂u,i =
∑q

t=1
K(ut,u∗)K(it,i∗)∑q

s=1 K(us,u∗)K(is,i∗)

[
UtV

�
t

]
u∗,i∗

row i and row j of the matrix U ,

arccos

( 〈ui, uj〉
‖ui‖ · ‖uj‖

)
,

where we denote by ui and uj the i and j rows of U . The analogous expression with
V replacing U may be used to construct the distance between two items.

We used a product kernel K((ut, it), (u, i)) = K(ut, u)K(it, i), where each component
kernel is an Epanechnikov kernel (K(s1, s2) = 3/4(1−d(s1, s2)

2)1[d(s1, s2) < h]) with
distances computed as described above. We also tried uniform and triangular kernel,
but the performance was worse than Epanechnikov kernel, in agreement with the
theory of kernel smoothing [137].

7.2.3.3 The Algorithm

The pseudo-code of the resulting learning algorithm is provided in Algorithm 7.1.
We use an L2 regularization scheme, but other kinds of regularization can be used
instead. Prediction of an unseen test example (u∗, i∗) is described in Algorithm 7.2.

In line 2–5, we randomly initialize q local models and their anchor points. In the main
loop, lines 6 through 30, we repeat synchronizing current estimation and updating
each local model in parallel. In synchronization step (line 7–14), we prepare inter-
mediate values which are independent of local models. This includes normalization
constant for each weight (wu,i), current estimation on each observed points (fu,i), and
the gradient ∂E

∂g
for all training pairs (u, i, j). These are referred by each local model

in gradient update step, in line 15–29. Using all training examples, we update each
local model by using (7.7) and (7.8). Instead of updating with each training example,
we accumulate gradients for each user, and update at once. Note that Δu and Δi are
vectors of size r, the rank of latent matrices U and V . Each local model can proceed
this step in parallel, as they share only current estimation and gradient information
we got in synchronization step. When the estimation converges to ground truth, we
stop iterations and output q local models.
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7.3 Experiments

We conducted experiments to evaluate the performance of the proposed LCR ap-
proach on real world datasets. In the first set of experiments, we varied the LCR
hyper-parameters in order to better understand the dependency of LCR on them. In
the second set of experiments, we compared the performance of LCR method with
other well-known ranking methods for recommendation systems.

7.3.1 Experimental Setting

7.3.1.1 Data Split

We evaluate the performance of the learning algorithm by separating the data into a
training part, used to train the model, and a test part, used to evaluate it. In order
to evaluate the sensitivity of the algorithm to the size of the training set, one can
vary either the number of available training ratings per user, or the proportion of
training ratings per user, keeping the rest of the ratings for the test set. Since users
have a variable number of ratings [130, 101], the number of training and test ratings
per user can vary significantly depending on this choice.

In the literature, CofiRank [140] introduced an experimental setting which fixes the
number of training ratings per user. In this setting, we randomly choose a constant
number N of training ratings per user, and all other ratings are kept in the test set.
Users without enough ratings are dropped from the test set. For example, for a user
with 100 ratings and N = 10, we use 10 ratings for training and 90 for test. Another
user with 8 ratings is dropped as this user does not satisfy the minimum requirement.
This evaluation procedure has low variance since users in the test set typically have
a large number of ratings. The evaluation is biased towards frequent raters, as we
drop users with few ratings. This evaluation method has recently became standard
practice [140, 3, 135, 34] and thus we adopt it in our experiments where we compare
the performance of LCR with others methods (Section 7.3.3).

The alternative evaluation method keeps a fixed proportion of ratings for each user
in the training set and moves the rest of the observations to the test set (regardless
of the number of available ratings for each user). For example, if the ratio is 0.5, a
user with 100 ratings will have 50 of its ratings kept for training and the remaining
50 used for testing. A user with 8 ratings is not dropped, but trained with 4 ratings
and tested with the remaining 4 ratings. This scheme is less biased since it contains
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users with a few ratings as well as users with many ratings, but it may have higher
variance due to the inclusion of users with a small number of ratings.

We experiment with both approaches. In the first set of experiments (Section 7.3.2)
where we investigate the dependency of LCR on its hyper-parameters, we used the
fixed ratio setting. In the second set of experiments (Section 7.3.3), where we inves-
tigate the performance of LCR relative to other recommendation systems, we report
results with a fixed number of ratings (as in CofiRank). This choice was made to
facilitate a comparison with perviously published results using the fixed number of
ratings setting.

7.3.1.2 Evaluation Metrics

We use three evaluation measures, which are widely used to evaluate ranking ap-
proaches. Zero-one Error is the average ratio of correctly ordered test pairs, aver-
aged over all users and is based on the zero-one ranking loss (7.3) (giving constant
loss when the relative order of preferences contradicts the ground truth):

E0/1 =
∑
u∈U

∑
i∈Tu

∑
j∈Mu∪Tu\{i}

1

Zu

1[ΔMu,i,j · g(u, i, j) < 0],

where Zu = |U | · |Tu| · (|Mu ∪ Tu| − 1), and Mu and Tu are the set of available ratings
for user u in the train and test sets respectively.

Note that we compare the relative order of an item in the test set with all other known
ratings, including those in training set. In other words, pairs of items belonging to
the train and test sets are used as well as pairs of items that belong only to the test
set. Pairs of items only belonging to the train set are not used for testing.

Average Precision is defined as the area under the precision-recall curve, and is given
by

AvgP =
1

|U |
∑
u∈U

∫ 1

0

P (r)dr,

where the integration variable r ranges over all possible recall levels and P (r) is the
precision at recall r. In practice, the integral is replaced with a finite sum over every
position in the ranked sequence of recommendations.

DCG@k takes into account the order of recommended items in the list by discounting
the importance and is formally given by

DCG@k =
k∑

i=1

2reli − 1

log2(i+ 1)
,
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where i ranges over positions in the recommendation list and reli indicates how much
the ith item is relevant to the user (we use the observed rating score for this quantity).
NDCG is the ratio of DCG to the maximum possible DCG for that user. This
maximum occurs when the recommended items are presented in decreasing order of
user preference. NDCG is perhaps the most popular evaluation metric, reflecting the
importance of retrieving good items at the top of the ranking. In our experiments we
use NDCG with k = 10.

7.3.1.3 Datasets

We used three real-world datasets. MovieLens 100K1 contains 943 users and 1,682
items with 6.3% (user, item) pairs rated (or 6.3% dense). This small dataset is ideal
for quickly benchmarking several models, so we used it to explore the importance of
various hyper-parameters. We also used the bigger EachMovie dataset, with 61,265
users, 1,648 items, and a density 2.8% ratings. These two datasets are widely used
in the literature. In addition, we used the Yelp2 dataset (43,873 users and 11,537
items, with 0.04% ratings), which was released for the Yelp business rating prediction
challenge at ACM RecSys 2013. This dataset is the most recent one, reflecting a
recent trend of extreme sparsity.

7.3.1.4 Model Parameters

We varied the number of local models in the range {10, 20, 30, 40, 50}, the rank
or latent space dimension in the set {5, 10, 15, 20}, and the loss functions {LLog[M],
LLog[A], LExp[M], LHinge[A]} in Table 7.1 with γ = 0. We used Epanechnikov kernel
as a smoothing kernel as it achieves the lowest integrated squared error [137] (with
kernel bandwidth of 0.8). We also used L2-regularization, where the regularization
coefficient was determined by cross-validation. Cross validation was also used to
determine early stopping. In the cross validation procedure, we set aside 20% of the
training data for validation purpose. Note that different evaluation metrics typically
lead to different stopping times. In our experiments, we stopped either when the
improvement in training error got smaller than some threshold (0.001) or when the
algorithm reached 200 iterations. This is to show the speed of convergence as well
as the degree of overfitting. For real use, we stop for each particular error measure

1http://www.grouplens.org/
2http://recsys.acm.org/recsys13/recsys-2013-challenge-workshop/
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according to the separate validation set.

7.3.2 Trend Analysis

We first show how our LCR model behaves with different combinations of parameters.
Specifically, we vary the rank of each local model in {5, 10, 15, 20}, and the number of
local models in {10, 20, 30, 40, 50}. We used the MovieLens 100K dataset with fixed
ratio split (ratio = 0.5) for this part of the experiments.

7.3.2.1 Effect of the Rank

Figure 7.1 compares the performance of LCR when varying the rank of the local mod-
els. The zero-one error (left) decreases monotonically as expected, since we minimize
a smooth surrogate LLog[M] loss. When the rank gets higher, the final performance
gets better, but it takes more iterations until convergence. In other words, higher
ranks achieve better performance, but take longer to converge. Average precision and
NDCG@10 show a different trend. Unlike the zero-one error, they overfit at some
point, implying that it is important to use with these evaluation metrics cross vali-
dation for determining early stopping. With higher ranks, however, overfitting seems
less of a problem; when the rank is sufficiently large, it achieves its best performance
at the end. Note that similar results are obtained for other loss functions and number
of local models.

7.3.2.2 Effect of the Number of Local Models

Intuitively, one can imagine that increasing the number of local models in LCR would
yield a better performance, because it would reduce the variance of prediction. Fig-
ure 7.2 compares the performance of LCR when varying the number of local mod-
els. As in Figure 7.1, the zero-one error monotonically decreases and converges to
an improved score as the number of local models increases. Average precision and
NDCG@10 tend to overfit, but the tendency to overfit diminishes as the number of
local models increases. In contrast to Figure 7.1, however, more local models tend
to result in almost always better performance than less local models. This shows
that increasing the number of local models is relatively resistant to overfitting, un-
like increasing the decomposition rank (compare the right two panels of Figure 7.1
and 7.2).
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Figure 7.1: Effect of the model rank on the performance of LCR, measured by the
target error (top-left), zero-one error (top-right), average precision (bottom-left),
and NDCG@10 (bottom-right). Ranks vary in {5, 10, 15, 20}, while the number of
local models is fixed to 10. The optimized loss in the training procedure is LLog[M]
in Table 7.1 with γ = 0.
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Figure 7.2: Effect of the number of local models on the performance of LCR,
measured by the target error (top-left), zero-one error (top-right), average precision
(bottom-left), and NDCG@10 (bottom-right). The number of local models vary in
{10, 20, 30, 40, 50}, while the rank of each local model is fixed to 5. The optimized
loss in the training procedure is LLog[M] in Table 7.1 with γ = 0.
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Figure 7.3: Effect of the optimized loss on the performance of LCR, measured
in zero-one error (top), average precision (bottom-left), and NDCG@10 (bottom-
right). We tried {LLog[M],LLog[A],LExp[M],LHinge[A]} in Table 7.1 with γ = 0, while
the rank of each local model and the number of local models is fixed to 5 and 40,
respectively.

111



7.3.2.3 Effect of the Optimized Loss Function

We also compared how LCR performs when changing the surrogate loss function that
is used in the optimization procedure during the training stage. Figure 7.3 compares
the performance of LCR optimized with different surrogate losses. Training on log-
losses, in general, shows outstanding performances, as evaluated by zero-one error.
Note that LLog[A] achieves its best performance earlier than LLog[M], but tends to
overfit more. On the other hand, training by minimizing LExp[M] overfits much less as
evaluated by both average precision and NDCG. Training by minimizing LHinge[A] was
the quickest to converge among the four and performed especially well when evaluated
in terms of the zero-one error. A drawback of LHinge[A] is its significant overfitting
when evaluated by average precision and NDCG.

Figure 7.4 illustrates the behavior of the different loss functions. LLog[M] loss (left-
most) assigns almost no penalty when the estimation is correct, while relatively high
penalty for wrong prediction. This means a model minimizing LLog[M] loss focuses
on pairs which are currently incorrectly estimated, while almost ignoring other pairs.
LExp[M] loss (third) is an even more extreme loss function. These two loss functions
tend to overfit less, conjecturally because they do not fit to fine details. In other
words, they do not touch training pairs as long as they are correctly ordered with
current model. This would be advantageous to avoid overfitting to fine details of the
training examples. On the other hand, LLog[A] and LHinge[A] losses assign non-zero
penalty for correctly ordered pairs if the degree does not match precisely. As a result,
they Thus, these models would estimate more pairs correctly, leading to lower zero-
one error. However, they are subject to overfitting as they fit to fine details during
this process.

We also tried LExp[A] and LHinge[M] in Table 7.1, but we excluded them for the following
reasons. LExp[A] loss was too sensitive to hyper-parameters such as learning rate,
making it difficult to use in practical settings. LExp[A] is more extreme than LExp[M],
and thus is highly influenced by a very small portion of training examples. Models
trained on LHinge[M] achieve performance similar to but slightly worse than models
trained on LHinge[A].

7.3.2.4 Overall Comparison

As a summary, Figure 7.5 compares the final performance when varying the rank
and the number of local models. Note that higher rank generally leads to better
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Figure 7.4: Shape of loss functions used in our experiments. ΔM is assumed
to be always positive by arranging two items such that Mu,i > Mu,j . Δf may be
either positive (left-half of each plot) or negative (right-half of each plot); positive
Δf means the estimation is concordant with the real preference, while negative Δf
implies the preference order is reversed in our estimation. Thus, as we expect, each
loss function assigns higher penalty for more significant mistakes (in this figure,
larger ΔM for negative Δf).
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presented results are with LLog[A]. Models with other losses show similar trend.

performance with any evaluation metric, and more local models also leads to better
performance with all evaluation metrics. Increasing the rank and number of local
models, however, also increases computation time. (Note however that the local
models may be trained in parallel, which facilitates deployment on multi-threaded
computers and on clusters).

7.3.3 Comparison with Other Methods

7.3.3.1 Experimental Setup

In this section, we compare the performance of LCR with other models. Specifi-
cally, we compare with standard matrix factorization models (Regularized SVD [11],
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NMF [79], Bayesian PMF [115]), with least squares local matrix approximation
(LLORMA, Chapter 6), and with the ranked loss minimization methods CofiRank [140]
and GCR (matrix approximation minimizing ranked loss in Section 7.2.2).

Among the different baselines above, LLORMA is notable since it is a local matrix
approximation approach (though based on least squares minimization), and GCR is
notable since it is a global matrix approximation based on ranked loss minimization.
CofiRank is notable as it is considered a very strong baseline in recent literature.
We implemented all of the methods above within the PREA toolkit [81], with the
exception of CofiRank that made its code publicly available.

In order to compare with previous published results, we adopt here the CofiRank
weak generalization setup (see Section 6 of [140]), predicting the rank of unrated
items for users known at training time. For each user, N randomly chosen items, with
N = 10, 20, 50, are used for training. Another 10 items are set aside for validation
set, and all other items are used for testing. Users with less than N + 20 ratings
are dropped to guarantee at least 10 items can be used for testing. This is a slight
modification of the original CofiRank experimental setup, where no extra validation
set was used. This modification was also proposed in [135, 34].

7.3.3.2 Parameter Setting

For LCR, we consider all options including rank, number of local models, and opti-
mized loss function as hyper-parameters. That is, we select the best model for each
dataset and for each evaluation metric on the separate validation set. For CofiRank,
we use the same parameter values (100 dimensions and λ = 10) provided in the
original paper [140], and default values provided in the source code for unstated pa-
rameters (such as the maximum number of iterations and BMRM parameters). For
LLORMA, the rank of local models was chosen among {5, 10, 15, 20}, and the num-
ber of local models among {10, 20, 30, 40, 50}. We used the Epanechnikov kernel with
width 0.8. All other parameters were set to default values in their implementation.
Ranks of other matrix factorization methods were set to {10, 20, 30, 40, 50} (SVD),
{20, 40, 60, 80, 100} (NMF), and {2, 3, 4, 5} (BPMF). Regularization coefficients and
learning rates were chosen by cross validation.
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7.3.3.3 Result and Discussion

Table 7.2 compares LCR with competing approaches in terms of average precision
and NDCG@10.

In terms of average precision, LCR outperforms all other approaches on MovieLens
and Yelp datasets. With EachMovie, it lags behind CofiRank in some cases (N =

10, 20), but is better than others. In terms of NDCG, LCR performs better for all
datasets as well, with the exception of EachMovie with N = 50. We conclude that
LCR generally outperforms other approaches in terms of ranking metrics, such as
average precision and NDCG, which are motivated by the ranking scenario of modern
recommendation systems.

7.4 Summary

We presented in this chapter a novel collaborative ranking method based on the as-
sumption that the rating matrix is globally high-rank but locally low-rank. The LCR
approach generalizes LLORMA in Chapter 6 from least squares to ranked loss mini-
mization, and it outperforms LLORMA and state-of-the-art ranked loss minimization
methods for collaborative filtering.

It was previously observed that the local low-rank assumption applies to recommen-
dation systems in the context of least squares rating prediction. In this chapter, we
verified that the same conclusion holds when performance is evaluated using a vari-
ety of ranked loss functions. Besides providing improved ranking accuracy, our model
also scales up to large datasets due to our proposed parallel training scheme. Another
computational advantage stems from the fact that each local model may be restricted
to a rank that is lower than the rank selected for a global model. Indeed, replacing a
single rank l matrix factorization with multiple rank l′ (local) matrix factorizations
with l′ < l may lead to a win-win situation in terms of both computational efficiency
and ranking accuracy.
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Chapter VIII

LITERATURE SURVEY

8.1 Surveys and Experimental Studies

Recommendation systems emerged in 1990s in order to provide personalized services
in E-commerce. They have been popularized by the very successful Netflix compe-
tition1 held between 2006 and 2009, and since then many algorithms were proposed
for predicting ratings and constructing recommendations.

Several well-written surveys on recommendation systems and collaborative filtering
are available. Adomavicius and Tuzhilin [1] categorized CF algorithms available as
of 2006 into content-based, collaborative, and hybrid and summarized possible ex-
tensions. Su and Khoshgoftaar [126] concentrated more on CF methods, including
memory-based, model-based, and hybrid methods. This survey contains most state-
of-the-art algorithms available as of 2009, including Netflix prize competitors. A
recent textbook on recommender systems introduces traditional techniques and ex-
plores additional issues like privacy concerns [57].

There are a couple of experimental studies available. The first study by Breese et
al. [12] compared two popular memory-based methods (Pearson correlation and vec-
tor similarity) and two classical model-based methods (clustering and Bayesian net-
work) on three different dataset. A more recent experimental comparison of CF
algorithms [53] compares user-based CF, item-based CF, SVD, and several other
model-based methods, focusing on e-commerce applications. It considers precision,
recall, F1-measure and rank score as evaluation measures, with comments about the
computational complexity issue. This however ignores some standard evaluation mea-
sures such as MAE or RMSE.

8.2 Collaborative Filtering

Many memory-based CF methods predict the rating of items based on the similarity
of the test user and the training users [109, 12, 48]. Similarity measures include

1http://www.netflixprize.com/
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Pearson correlation [109] and Vector cosine similarity [12, 48]. Other memory-based
CF methods includes item-based CF [117] and a non-parametric probabilistic model
based on ranking preference similarities [128].

Model-based CF includes user and item clustering [12, 134, 146], Bayesian net-
works [12], dependence network [46] and probabilistic latent variable models [104,
86, 147]. Slope-one [82] achieved fast and reasonably accurate prediction. Matrix
factorization for recommender systems have been the focus of voluminous amount
of research especially since the Netflix Prize competition. It is clearly impossible to
review all of the existing approaches. We review here a few of the notable approaches.
[11] initially proposed applying SVD for collaborative filtering problems. [115] pre-
sented probabilistic matrix factorization (PMF) and later [114] extended matrix fac-
torization to fully Bayesian approach. [75] proposed a non-linear version of PMF.
[108] proposed a maximum-margin approach. Other examples include [71, 79, 74].

Further algorithmic improvements in matrix completion were demonstrated in [132,
65]. The work that is perhaps the most similar in to this thesis is Divide-and-Conquer
Matrix Factorization (DFC) [85]. DFC also divides the completion problems into a set
of smaller matrix factorization problems. Our approach in Chapter 6 differs DFC in
that we use a metric structure on [n1]× [n2] and use overlapping partitions. Another
matrix approximation by sub-division based on clustering was reported in [90] for the
task of seeking user and item communities.

Lastly, there is a line of research theoretically analyzing the performance of low-
rank matrix completion. [18] derived a bound on the performance of low-rank matrix
completion under noise-free assumption, and [17] adapted the analysis of [18] to noisy
settings. Some more remote related results were presented in [120, 36, 37].

8.3 Ensemble Models and Local Approaches

In addition to monolithic matrix factorization scheme, several ensemble methods have
also been proposed for collaborative filtering. DeCoste [29] suggested ensembles of
maximum margin matrix factorization (MMMF). A mixture of experts model is pro-
posed in [125] to linearly combine the prediction results of more than two models.
The Netflix Prize winner [8, 70] used combination of memory-based and matrix factor-
ization methods. The Netflix Prize runner-up [123] devised Feature-Weighted Least
Square (FWLS) solver, using a linear ensemble of learners with dynamic weights.
[73] and [85] applied ensembles to Nystrom method and DFC, respectively.
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Feature-weighted linear stacking [123] is the ensemble method most closely related to
our approach in Chapter 5. The primary difference is the manual selection of features
in [123] as opposed to automatic induction of local features in our paper that leads to
a significant improvement in prediction quality. Model combination based on locality
has been proposed in other machine learning topics, such as classification [142, 89] or
sensitivity estimation [10].

Other local learning paradigms were suggested in the context dimensionality such as
local principal component analysis [64] and local linear embedding (LLE) [112]. A
relatively recent paper on matrix completion [139] applies low-rank factorization to
clusters of points.

8.4 Collaborative Ranking

In the early 2000s, machine learning techniques were developed specifically for ranking
problems (see for instance [59]). While early approaches focused on minimizing the
pairwise zero-one loss, more recent approaches were developed to learn objectives that
better follow metrics like NDCG or average precision [140, 27], which are more in line
with real applications like product recommendation. Recent examples include [3, 135],
which proposed collaborative ranking algorithms to approximately optimize NDCG
directly; EigenRank [83], which optimizes a preference function using Kendall’s Tau
rank correlation. Additional examples are [44, 100, 138, 34, 122, 21, 131, 107].

The idea of collaborative ranking was developed and much more widely-used for
web search and label ranking. Minimizing pair-wise ranking loss was proposed in
Ranking SVM [47], RankBoost [38], RankNet [15], and FRank [133]. Wsabie [141]
used weighted approximate-rank pairwise loss in label ranking for image annotation
problem. Direct list-wise optimization over NDCG or average precision was also
intensely investigated, with a few examples being LambdaRank [32], SVMRANK [148],
AdaRank [144], and [20, 145]. Other examples of collaborative ranking in web search
are [39, 24, 23, 94].
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Chapter IX

CONCLUSIONS AND FUTURE DIRECTIONS

Recall that we posed four research questions in Chapter 1. In this chapter, we sum-
marize our answers to those questions with the proposed local approaches for collabo-
rative filtering-based recommendation systems. We then conclude with contributions
and remarks on future directions.

9.1 Conclusions

We posed four research questions in introduction, and we provided answers through-
out this thesis. We conclude with summary of those answers in this section.

Q1. What are the existing CF models for rating prediction, and what is
the best?

A1. With the toolkit PREA (Chapter 3) and experimental study (Chapter 4) based
on it, we reconfirmed that the matrix factorization and its variations are generally
performing the best for the rating prediction problem. More importantly, however,
we discovered that there is no single CF method outperforming all other CF models to
every user and for every item. Instead, we observed that some model can outperform
another model for some particular set of users and items, but it may perform poorly
for some other subset of users and items.

Q2. If one is not always the best, how can we combine multiple CF models?

A2. Starting from the observation that the relative performance of different candi-
date recommendation systems depends on the target user and item, we developed
an ensemble model of recommendation systems with non-constant weights that em-
phasize different candidates based on their relative strengths in the feature space. In
contrast to the previous work (FWLS [123]) that focused on manual construction of
features, we automated this process by developing a feature induction algorithm that
works in conjunction with stagewise least-squares. Specifically, we formulated a fam-
ily of feature functions, based on the discrete analog of triangular kernel smoothing.
This family captures a wide variety of local information and is thus able to model the
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relative strengths of the different CF methods.

The combination with induced features outperformed any of the base candidates as
well as other combination methods in literature. Our method scales up nicely to large
data which is often present in real world recommendation systems. As our candidates
included many of the recently proposed state-of-the-art recommendation systems, our
conclusions are significant for the engineering community as well as recommendation
system scientists.

Q3. Instead of combining existing models, can we learn local models as
well as weights?

A3. In Chapter 6, we presented a new approach for low-rank matrix approxima-
tion based on the assumption that the matrix is locally low-rank. We proposed the
LLORMA algorithms (parallel and global), which is highly parallelizable and thus
scales well with the number of observations and the dimension of the problem. Both
LLORMA and CF ensembles combine individual models based on locality using ker-
nel smoothing, predict unseen ratings via weighted sum of individual models, and
those weights are dependent on inputs. However, LLORMA learns both local models
and their weights at the same time, while we assumed the individuals models are
given in advance and learned only weights with CF ensembles.

Our experiments indicate that LLORMA outperforms several state-of-the-art meth-
ods without a significant computational overhead. We also presented a formal analysis
of LLORMA by deriving bounds that generalize standard compressed sensing results
and express the dependency of the modeling accuracy on the matrix size, training set
size, and locality (kernel bandwidth parameter). Our method is applicable beyond
recommendation systems so long as the locality assumption holds and a reasonable
metric space can be identified.

Q4. Can we use local models to improve quality of ranking as well?

A4. With the previous question, it was observed that the local low-rank assumption
applies to recommendation systems in the context of least squares rating prediction.
In Chapter 7, we verified that the same conclusion holds when performance is eval-
uated using a variety of ranked loss functions. Specifically, we presented a novel
collaborative ranking method called LCR (Local Collaborative Ranking) based on
the local low-rank assumption, that is, the rating matrix is globally high-rank but
locally low-rank. The LCR approach generalizes LLORMA in Chapter 6 from least
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squares to ranked loss minimization, and it outperforms LLORMA and state-of-the-
art ranked loss minimization methods for collaborative filtering.

Besides providing improved ranking accuracy, the LCR model also scales up to large
datasets due to our proposed parallel training scheme. Another computational ad-
vantage stems from the fact that each local model may be restricted to a rank that
is lower than the rank selected for a global model. Indeed, replacing a single rank
l matrix factorization with multiple rank l′ (local) matrix factorizations with l′ < l

may lead to a win-win situation in terms of both computational efficiency and ranking
accuracy.

9.2 Contributions

With the proposed local approaches for collaborative filtering and open source toolkit,
we contribute research community and even wider audiences with better recommen-
dation methods both theoretically and practically. We summarize our contributions
in this section.

9.2.1 Better Quality of Recommendations

First of all, we present several local approaches that significantly improve the accuracy
of recommendations. Ensembles of CF with non-constants weights in Chapter 5 and
local low-rank matrix approximation in Chapter 6 lower root-mean squared error
(RMSE) significantly. Although the improvement in RMSE looks small (less than
0.001), it has been shown since the Netflix competition that lowering the RMSE by
0.0001 is extremely difficult. Local collaborative ranking in Chapter 7 also improves
ranking quality in terms of average precision and NDCG.

Local low-rank matrix approximation was not just verified by offline tests with stan-
dard datasets, but also was implemented and tested in industry including Google and
Amazon during the author’s internship. It was verified that local approaches in this
thesis were effective to improve recommendation quality in real production, though
we cannot provide exact figures publicly.

9.2.2 Theoretical Aspects

In addition to the improvement shown with experiments, we present important fun-
damental observations for collaborating filtering. The global low-rank assumption
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has been prevailing in most previous works, but the local low-rank assumption pre-
sented in Chapter 6 fundamentally changes the underlying assumption for recom-
mendation systems using matrix factorization. We show that the diminishing returns
phenomenon we underwent with higher rank under the global low-rank assumption is
mainly because we are stuck at local optimum, not because it is the best solution. We
also provide theoretical analysis of the proposed local low-rank matrix approximation
method.

9.2.3 Computational Aspects

The algorithms presented in this thesis are highly efficient and scalable for large scale
dataset. Local low-rank matrix approximation (Chapter 6) and local collaborative
ranking (Chapter 7) can run either in clusters or in a multiprocessor machine in
parallel. As the learning process takes less time with a local model than with a global
one, and as every local model can be learned at the same time (at least in theory,
assuming that we have enough machines), the overall computation time for learning
process is even shorter than previous global models despite even superior accuracy.
We verify efficiency of our proposed algorithm with large scale data including Netflix
dataset as well as real production data from Amazon Instant Video service. With
sufficient computing resources, we proved that local approaches in this thesis can run
fast enough for real production use.

9.2.4 Open Source Software

We distribute local approaches in this thesis (LLORMA and LCR) with many other
baselines in the toolkit PREA presented in Chapter 3. (http://prea.gatech.edu)
Researchers both in academia and industry will take advantage of this open source
toolkit. For research scientists, state-of-the-art algorithms implemented in PREA
will be great baselines to compare with their new methods. In industry, engineers
can easily compare many candidate recommendation algorithms to find the one best
fitting to their needs in applications. In some cases, simple and fast algorithm will be
the best, while some other applications may allow heavy offline computation to get
more accurate estimation.

PREA toolkit (Chapter 3) has been widely used in various areas of research commu-
nities, including recommendation systems [99, 95, 96, 97, 98, 14, 63, 62, 116, 113],
natural language processing [68], crowd-sourcing [61, 60], optimization [111, 106],
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computer vision [127], and computer networks [5, 6, 4, 43]. Even outside of computer
science and engineering, PREA is used as a tool for matrix factorization in Material
Science and Engineering, Aerospace Engineering, and so on.

9.3 Future Research Directions

This dissertation advances collaborative filtering-based recommendation systems with
local approaches. Although they are effective and efficient, we might be able to further
improve them. We briefly introduce a couple of possible future research directions in
this section.

The LLORMA and LCR, the two methods under local low-rank assumption in Chap-
ters 6 and 7, might be extended in two ways:

• Better way of anchor point selection: In current LLORMA, the center
point of each local model is just randomly chosen. Although we have shown
that a random choice works well with sufficiently large number of local models,
it is still possible to waste computing power and memory, for example, if we
select very similar anchor points more than once by coincidence. Extending the
concept of anchor points from a user and item pair to any point in latent space
representing users and items may improve the prediction accuracy with smaller
number of local models.

• LLORMA on contents-based recommender systems: With user and item
features, we can deal with cold-start users and items by embedding the feature
vector to latent space. We may be able to achieve better performance by ap-
plying the local low-rank assumption for feature embeddings as well.

Also, local approaches for collaborative filtering may be useful for applications other
than recommendation systems:

• Crowd-sourcing recommendation: One major problem with crowd-sourcing-
based evaluation is coming from inadequate assignment of tasks to workers. By
recording quality of work from user feedback [60], we can build a collaborative
filtering based recommender systems to connect crowd workers to tasks. The
local low-rank assumption might be beneficial for this application as well.

• Real-time Advertising: For the perspective of websites with ad slots, real-
time ad selection is a kind of item (ad) recommendation problem for a given
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user. On the other hand, for the perspective of advertisers, they have to choose
several users to show their ads within their budget. This is more like a user
recommendation for a given item. Collaborative filtering approaches are widely
used in this area, and our local approaches might be adapted to solve key
problems such as bidding price estimation or conversion rate estimation.

126



REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans-
actions on Knowledge and Data Enginerring, 17(6):734–749, 2005.

[2] Haim Avron, Satyen Kale, Shiva Kasiviswanathan, and Vikas Sindhwani. Effi-
cient and practical stochastic subgradient descent for nuclear norm regulariza-
tion. In Proc. of the International Conference on Machine Learning, 2012.

[3] Suhrid Balakrishnan and Sumit Chopra. Collaborative ranking. In Proc. of the
ACM International Conference on Web Search and Data Mining, 2012.

[4] Ejder Bastug, Mehdi Bennis, and Mérouane Debbah. Living on the edge: The
role of proactive caching in 5g wireless networks. IEEE Communications Mag-
azine, 52(8):82–89, 2014.

[5] Ejder Bastug, Mehdi Bennis, and Mérouane Debbah. Social and spatial proac-
tive caching for mobile data offloading. In IEEE International Conference on
Communications Workshops (ICC), 2014.

[6] Ejder Bastug, Mehdi Bennis, and Mérouane Debbah. Think before reacting:
Proactive caching in 5g small cell networks. 2014.

[7] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using
social and content-based information in recommendation. In Proceedings of the
National Conference on Artificial Intelligence, pages 714–720, 1998.

[8] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In Proc. of the ACM SIGKDD,
2007.

[9] R. Bell, Y. Koren, and C. Volinsky. All together now: A perspective on the
netflix prize. Chance, 23(1):24–29, 2010.

[10] P. Bennett. Neighborhood-based local sensitivity. In Proc. of the ECML, 2007.

127



[11] D. Billsus and M. J. Pazzani. Learning collaborative information filters. In
Proc. of the International Conference on Machine Learning, 1998.

[12] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proc. of Uncertainty in Artificial Intelli-
gence, 1998.

[13] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[14] Supaporn Bundasak and Krisana Chinnasarn. emenu recommender system us-
ing collaborative filtering and slope one predictor. In Proc. of the International
Joint Conference on Computer Science and Software Engineering (JCSSE).
IEEE, 2013.

[15] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. Learning to rank using gradient descent. In Proc. of
the International Conference on Machine Learning, 2005.

[16] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value
thresholding algorithm for matrix completion. SIAM Journal on Optimization,
20(4):1956–1982, 2010.

[17] E.J. Candès and Y. Plan. Matrix completion with noise. Proc. of the IEEE,
98(6):925–936, 2010.

[18] E.J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[19] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):717–772, 2009.

[20] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proc. of the International
Conference on Machine Learning, 2007.

[21] Soumen Chakrabarti, Rajiv Khanna, Uma Sawant, and Chiru Bhattacharyya.
Structured learning for non-smooth ranking losses. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2008.

128



[22] S. H. S. Chee, J. Han, and K. Wang. Rectree: An efficient collaborative filtering
method. In Lecture Notes in Computer Science, pages 141–151. Springer Verlag,
2001.

[23] Zheng Chen and Heng Ji. Collaborative ranking: a case study on entity link-
ing. In Proc. of the Conference on Empirical Methods in Natural Language
Processing, 2011.

[24] Boris Chidlovskii, Natalie S Glance, and M Antonietta Grasso. Collaborative
re-ranking of search results. In Proc. of AAAI-2000 Workshop on AI for Web
Search, 2000.

[25] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-
backward splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[26] M. Connor and J. Herlocker. Clustering items for collaborative filtering. In
Proceedings of ACM SIGIR Workshop on Recommender Systems, 2001.

[27] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of rec-
ommender algorithms on top-n recommendation tasks. In Proc. of the ACM
Conference on Recommender Systems, 2010.

[28] Souvik Debnath, Niloy Ganguly, and Pabitra Mitra. Feature weighting in con-
tent based recommendation system using social network analysis. In Proc. of
the International Conference on World Wide Web, 2008.

[29] D. DeCoste. Collaborative prediction using ensembles of maximum margin
matrix factorizations. In Proc. of the International Conference on Machine
Learning, 2006.

[30] O. Dekel, C. Manning, and Y. Singer. Log-linear models for label ranking. 2003.

[31] J. Dillon, Y. Mao, G. Lebanon, and J. Zhang. Statistical translation, heat
kernels, and expected distances. In Uncertainty in Artificial Intelligence, pages
93–100. AUAI Press, 2007.

[32] Pinar Donmez, Krysta M Svore, and Christopher JC Burges. On the local
optimality of lambdarank. In Proc. of International ACM SIGIR Conference,
2009.

129



[33] Miro Dudik, Zaid Harchaoui, and Jérôme Malick. Lifted coordinate descent for
learning with trace-norm regularization. In Proc. of the International Confer-
ence on Artificial Intelligence and Statistics, 2012.

[34] Chaosheng Fan, Yanyan Lan, Jiafeng Guo, Zuoquan Lin, and Xueqi Cheng.
Collaborative factorization for recommender systems. In Proc. of the Interna-
tional ACM SIGIR Conference, 2013.

[35] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. A rank minimization
heuristic with application to minimum order system approximation. In Proc.
of the American Control Conference, volume 6, 2001.

[36] R. Foygel and N. Srebro. Concentration-based guarantees for low-rank matrix
reconstruction. ArXiv Report arXiv:1102.3923, 2011.

[37] R. Foygel, N. Srebro, and R. Salakhutdinov. Matrix reconstruction with the
local max norm. ArXiv Report arXiv:1210.5196, 2012.

[38] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient
boosting algorithm for combining preferences. Journal of Machine Learning
Research, 4:933–969, 2003.

[39] Jill Freyne, Barry Smyth, Maurice Coyle, Evelyn Balfe, and Peter Briggs. Fur-
ther experiments on collaborative ranking in community-based web search. Ar-
tificial Intelligence Review, 21(3-4):229–252, 2004.

[40] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12):61–70,
1992.

[41] A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of
recommendation tasks. Journal of Machine Learning Research, 10:2935–2962,
2009.

[42] Severin Hacker and Luis von Ahn. Matchin: eliciting user preferences with
an online game. In Proc. of the SIGCHI Conference on Human Factors in
Computing Systems, 2009.

[43] Kenza Hamidouche, Ejder Batu, Mehdi Bennis, and Mérouane Debbah. Le
caching proactif dans les réseaux cellulaires 5g. La Revue de l’Electricité et de
l’Electronique (REE). Dossier: Propagation et Télédetection, 2014.

130



[44] Edward Harrington. Online ranking/collaborative filtering using the perceptron
algorithm. In Proc. of the International Conference on Machine Learning, 2003.

[45] Elad Hazan. Sparse approximate solutions to semidefinite programs. In LATIN
2008: Theoretical Informatics, pages 306–316. Springer, 2008.

[46] D. Heckerman, D. Maxwell Chickering, C. Meek, R. Rounthwaite, and C. Kadie.
Dependency networks for inference, collaborative filtering, and data visualiza-
tion. Journal of Machine Learning Research, 1, 2000.

[47] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries
for ordinal regression. In Advances in Neural Information Processing Systems,
1999.

[48] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic frame-
work for performing collaborative filtering. In Proc. of ACM SIGIR Conference,
1999.

[49] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl. Evaluating collaborative filtering recommender systems. ACM Transac-
tions on Information Systems, 22(1):5–53, January 2004.

[50] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 1995.

[51] Cho-Jui Hsieh and Peder Olsen. Nuclear norm minimization via active subspace
selection. In Proc. of the International Conference on Machine Learning, 2014.

[52] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proc. of the IEEE International Conference on Data
Mining, 2008.

[53] Z. Huang, D. Zeng, and H. Chen. A comparison of collaborative-filtering rec-
ommendation algorithms for e-commerce. IEEE Intelligent Systems, 22:68–78,
2007.

[54] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.
Adaptive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

131



[55] Martin Jaggi, Marek Sulovsk, et al. A simple algorithm for nuclear norm regu-
larized problems. In Proc. of the International Conference on Machine Learning,
2010.

[56] M. Jahrer, A. Töscher, and R. Legenstein. Combining predictions for accurate
recommender systems. In Proc. of the ACM SIGKDD, 2010.

[57] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender Systems
- An Introduction. Cambridge, 2011.

[58] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm
minimization. In Proc. of the International Conference on Machine Learning,
2009.

[59] T. Joachims. Optimizing search engines using clickthrough data. In Proc. of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2002.

[60] Hyun Joon Jung. Quality assurance in crowdsourcing via matrix factorization
based task routing. In Proceedings of the companion publication of the 23rd
international conference on World wide web companion, pages 3–8. International
World Wide Web Conferences Steering Committee, 2014.

[61] Hyun Joon Jung and Matthew Lease. Crowdsourced task routing via matrix
factorization. arXiv preprint arXiv:1310.5142, 2013.

[62] Abhishek Kaleroun. Hybrid Bee Colony Trust Mechanism in Recommender
System. PhD thesis, Thapar University Patiala, 2014.

[63] Abhishek Kaleroun and Shalini Batra. Collaborating trust and item-prediction
with ant colony for recommendation. In Proc. of the IEEE International Con-
ference on Contemporary Computing (IC3), 2014.

[64] Nandakishore Kambhatla and Todd K Leen. Dimension reduction by local
principal component analysis. Neural Computation, 9(7):1493–1516, 1997.

[65] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy
entries. Journal of Machine Learning Research, 99:2057–2078, 2010.

[66] B. M. Kim and Q. Li. Probabilistic model estimation for collaborative filter-
ing based on items attributes. In Proceedings of the 2004 IEEE/WIC/ACM
International Conference on Web Intelligence, pages 185–191, 2004.

132



[67] J. Kim. Nonnegative matrix and tensor factorizations, least squares problems,
and applications. PhD thesis, 2011.

[68] S. Kim, F. Li, G. Lebanon, and I. Essa. Beyond sentiment: The manifold of
human emotions. In Proc. of the International Conference on Artificial Intelli-
gence and Statistics, 2013.

[69] Alex Kleeman, Nick Hendersen, and Sylvie Denuit. Matrix factorization for
collaborative prediction. In ICME, 2005.

[70] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proc. of the ACM SIGKDD, 2008.

[71] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering.
ACM Transactions on Knowledge Discovery from Data, 4(1):1–24, 2010.

[72] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[73] S. Kumar, M. Mohri, and A. Talwalkar. Ensemble nystrom method. In Advances
in Neural Information Processing Systems, 2009.

[74] B. Lakshminarayanan, G. Bouchard, and C. Archambeau. Robust bayesian
matrix factorisation. In Proc. of the International Conference on Artificial
Intelligence and Statistics, 2011.

[75] N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian
processes. In Proc. of the International Conference on Machine Learning, 2009.

[76] G. Lebanon. Learning Riemannian metrics. In Proc. of the 19th Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 2003.

[77] G. Lebanon. Axiomatic geometry of conditional models. IEEE Transactions
on Information Theory, 51(4):1283–1294, 2005.

[78] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788–791, 1999.

[79] D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In
Advances in Neural Information Processing Systems, 2001.

133



[80] J. Lee, M. Sun, and G. Lebanon. A comparative study of collaborative filtering
algorithms. ArXiv Report 1205.3193, 2012.

[81] J. Lee, M. Sun, and G. Lebanon. Prea: Personalized recommendation algo-
rithms toolkit. Journal of Machine Learning Research, 13:2699–2703, 2012.

[82] D. Lemire and A. Maclachlan. Slope one predictors for online rating-based
collaborative filtering. Society for Industrial Mathematics, 5:471–480, 2005.

[83] Nathan N Liu and Qiang Yang. Eigenrank: a ranking-oriented approach to
collaborative filtering. In Proc. of the International ACM SIGIR Conference,
2008.

[84] S. Ma, D. Goldfarb, and L. Chen. Fixed point and bregman iterative methods
for matrix rank minimization. Mathematical Programming, 128:321–353, 2011.

[85] L. W. Mackey, A. S. Talwalkar, and M. I. Jordan. Divide-and-conquer matrix
factorization. In Advances in Neural Information Processing Systems, 2011.

[86] B. Marlin. Modeling user rating profiles for collaborative filtering. In Advances
in Neural Information Processing Systems, 2004.

[87] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization
algorithms for learning large incomplete matrices. The Journal of Machine
Learning Research, 99:2287–2322, 2010.

[88] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative
filtering. In In Proceedings of the 2001 SIGIR Workshop on Recommender
Systems, 2001.

[89] C. J. Merz. Dynamical selection of learning algorithms. Lecture Notes in Statis-
tics, pages 281–290, 1996.

[90] N. Mirbakhsh and C. X. Ling. Clustering-based matrix factorization. ArXiv
Report arXiv:1301.6659, 2013.

[91] Bamdev Mishra, Gilles Meyer, Francis Bach, and Rodolphe Sepulchre. Low-
rank optimization with trace norm penalty. SIAM Journal on Optimization,
23(4):2124–2149, 2013.

134



[92] K. Miyahara and M. J. Pazzani. Collaborative filtering with the simple bayesian
classifier. In Proceedings of the 6th Pacific Rim International Conference on
Artificial Intelligence, pages 679–689, 2000.

[93] K. Miyahara and M. J. Pazzani. Improvement of collaborative filtering with
the simple bayesian classifier 1. (11), 2002.

[94] Ananth Mohan, Zheng Chen, and Kilian Q Weinberger. Web-search ranking
with initialized gradient boosted regression trees. Journal of Machine Learning
Research-Proceedings Track, 14:77–89, 2011.

[95] Katja Niemann and Martin Wolpers. A new collaborative filtering approach
for increasing the aggregate diversity of recommender systems. In Proc. of
the ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2013.

[96] Katja Niemann and Martin Wolpers. Usage context-boosted filtering for rec-
ommender systems in tel. In Scaling up Learning for Sustained Impact, pages
246–259. Springer, 2013.

[97] Katja Niemann and Martin Wolpers. Creating usage context-based object sim-
ilarities to boost recommender systems in technology enhanced learning. 2014.

[98] Katja Niemann and Martin Wolpers. Usage-based clustering of learning re-
sources to improve recommendations. In Open Learning and Teaching in Edu-
cational Communities, pages 317–330. Springer, 2014.

[99] Kyung-Wha Park, Byoung-Hee Kim, Tae-Suh Park, and Byoung-Tak Zhang.
Uncovering response biases in recommendation. In Workshops at the AAAI
Conference on Artificial Intelligence, 2014.

[100] Seungtaek Park and David M Pennock. Applying collaborative filtering tech-
niques to movie search for better ranking and browsing. In Proc. of the ACM
SIGKDD International Conference, 2007.

[101] Yoonjoo Park and Alexander Tuzhilin. The long tail of recommender systems
and how to leverage it. In Proc. of the ACM Conference on Recommender
Systems, 2008.

[102] A. Paterek. Improving regularized singular value decomposition for collabora-
tive filtering. Statistics, 2007:2–5, 2007.

135



[103] D. Y. Pavlov and D. M. Pennock. A maximum entropy approach to collaborative
filtering in dynamic, sparse, high-dimensional domains. In Proceedings of Neural
Information Processing Systems, pages 1441–1448. MIT Press, 2002.

[104] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering
by personality diagnosis: A hybrid memory- and model-based approach. In
Proc. of the Conference on UAI, 2000.

[105] R. Polikar. Ensemble learning. 3(12):2776, 2008.

[106] Pitaya Poompuang and Wichian Premchaiswadi. Adaptive similarity interval
for collaborative filtering optimization. International Journal of Digital Content
Technology & its Applications, 7(14), 2013.

[107] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proc.
of the Conference on Uncertainty in Artificial Intelligence, 2009.

[108] J.D.M. Rennie and N. Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In Proc. of the International Conference on Machine
Learning, 2005.

[109] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In Proc. of the
Conference on CSCW, 1994.

[110] L. Reyzin and R. E. Schapire. How boosting the margin can also boost clas-
sifier complexity. In Proceedings of the ICML, pages 753–760. Association for
Computational Linguistics, 2006.

[111] Fabio Roda. Integrating high-level requirements in optimization problems: the-
ory and applications. 4OR, 12(2):199–200, 2014.

[112] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326, 2000.

[113] Almudena Ruiz Iniesta. Estrategias de recomendación basadas en conocimiento
para la localización personalizada de recursos en repositorios educativos. 2014.

[114] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In Proc. of the International Conference on
Machine Learning, 2008.

136



[115] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems, 2008.

[116] Bhavya Sanghavi, Rishabh Rathod, and Dharmeshkumar Mistry. Recom-
mender systems-comparison of content-based filtering and collaborative filter-
ing. International Journal of Current Engineering and Technology, 2014.

[117] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative
filtering recommendation algorithms. In Proc. of the International Conference
on World Wide Web, 2001.

[118] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender systems for
large-scale e-commerce: Scalable neighborhood formation using clustering. In
Proceedings of the 5th International Conference on Computer and Information
Technology, 2002.

[119] D. Seung and L. Lee. Algorithms for non-negative matrix factorization. Ad-
vances in neural information processing systems, 13, 2001.

[120] S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization
with a low-rank constraint. In Proc. of the International Conference on Machine
Learning, 2011.

[121] U. Shardanand and P. Maes. Social information filtering: algorithms for au-
tomating word of mouth. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 1995.

[122] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic.
Climf: learning to maximize reciprocal rank with collaborative less-is-more fil-
tering. In Proc. of the ACM Conference on Recommender Systems, 2012.

[123] J. Sill, G. Takacs, L. Mackey, and D. Lin. Feature-weighted linear stacking.
Arxiv preprint arXiv:0911.0460, 2009.

[124] N. Srebro, J. D. M. Rennie, and T. S. Jaakola. Maximum-margin matrix fac-
torization. In Advances in Neural Information Processing Systems, 2005.

[125] X. Su, R. Greiner, T. M. Khoshgoftaar, and X. Zhu. Hybrid collaborative
filtering algorithms using a mixture of experts. In Proc. of the IEEE/WIC/ACM
International Conference on Web Intelligence, 2007.

137



[126] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009:4:2–4:2, 2009.

[127] J Sun, Dhruv Parthasarathy, and K Varshney. Collaborative kalman filtering
for dynamic matrix factorization. 2014.

[128] M. Sun, G. Lebanon, and P. Kidwell. Estimating probabilities in recommenda-
tion systems. In Proc. of the International Conference on Artificial Intelligence
and Statistics, 2011.

[129] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Providing justifications
in recommender systems. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 38(6):1262–1272, 2008.

[130] Tom F Tan and Serguei Netessine. Is tom cruise threatened? using netflix prize
data to examine the long tail of electronic commerce. Wharton Business School,
University of Pennsylvania, Philadelphia, 2009.

[131] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank:
optimizing non-smooth rank metrics. In Proc. of the International Conference
on Web Search and Web Data Mining, 2008.

[132] K.C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear
norm regularized linear least squares problems. Pacific Journal of Optimization,
6(15):615–640, 2010.

[133] Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma.
Frank: a ranking method with fidelity loss. In Proc. of International ACM
SIGIR Conference, 2007.

[134] L. H. Ungar and D. P. Foster. Clustering methods for collaborative filtering. In
AAAI Workshop on Recommendation Systems, 1998.

[135] Maksims Volkovs and Richard S Zemel. Collaborative ranking with 17 param-
eters. In Advances in Neural Information Processing Systems, 2012.

[136] S. Vucetic and Z. Obradovic. Collaborative filtering using a regression-based
approach. Knowledge and Information Systems, 7:1–22, 2005.

[137] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman and Hall/CRC,
1995.

138



[138] Jun Wang, Stephen Robertson, Arjen P de Vries, and Marcel JT Reinders.
Probabilistic relevance ranking for collaborative filtering. Information Retrieval,
11(6):477–497, 2008.

[139] Yi Wang, Arthur Szlam, and Gilad Lerman. Robust locally linear analysis with
applications to image denoising and blind inpainting. SIAM Journal on Imaging
Sciences, 6(1):526–562, 2013.

[140] Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, and Alex Smola. Cofi
rank: Maximum margin matrix factorization for collaborative ranking. In Ad-
vances in Neural Information Processing Systems, 2007.

[141] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary
image annotation. In Proc. of the International Joint Conference on Artificial
Intelligence, 2011.

[142] K. Woods, W.P. Kegelmeyer Jr, and K. Bowyer. Combination of multiple clas-
sifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(4):405–410, 1997.

[143] E. Xing, A. Ng, M. Jordan, and S. Russel. Distance metric learning with appli-
cations to clustering with side information. In Advances in Neural Information
Processing Systems, 2003.

[144] Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval.
In Proc. of International ACM SIGIR Conference, 2007.

[145] Jun Xu, Tie-Yan Liu, Min Lu, Hang Li, and Wei-Ying Ma. Directly optimizing
evaluation measures in learning to rank. In Proc. of International ACM SIGIR
Conference, 2008.

[146] G. R. Xue, C. Lin, Q. Yang, W. S. Xi, H. J. Zeng, Y. Yu, and Z. Chen. Scalable
collaborative filtering using cluster-based smoothing. In Proc. of ACM SIGIR
Conference, 2005.

[147] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix factoriza-
tion for large-scale collaborative filtering. In Proc. of ACM SIGIR Conference,
2009.

139



[148] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support
vector method for optimizing average precision. In Proc. of International ACM
SIGIR Conference, 2007.

[149] Xinhua Zhang, Dale Schuurmans, and Yao-liang Yu. Accelerated training for
matrix-norm regularization: A boosting approach. In Advances in Neural In-
formation Processing Systems, 2012.

[150] C.-N. Ziegler, G. Lausen, and Schmidt-Thie L. Taxonomy-driven computation
of product recommendations. In Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge management, pages 406–415,
2004.

140


