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PREFACE

Electronic structure theory is simultaneously one of the most promising and one of the

most frustrating areas of science. Through electronic structure theory and extensions

thereof, we have the formal tools to describe any chemical phenomenon to essentially

exact precision, if we could only solve the necessary equations. This last bit is,

however, the sticky wicket - a truly remarkable realization is that one can write down

the exact electronic Schrödinger equation and the exact molecular Hamiltonian in

four lines, and yet many lifetimes have been spent looking for tractable and accurate

solutions to this problem. The advent of the computer and extensive mathematical

and numerical developments over the past eighty years have helped markedly, to the

point that the predictions of theoretical chemistry can meet experimental accuracy for

many problems. However, many important problems remain unsolved, particularly

those involving large systems with multiple length- and time-scales and those with

multiple physical processes contributing to the observable variables of the system. A

classical example is the proposed use of theoretical chemistry in the problem of in

silico drug design. Here, one must describe the complicated and delicate noncovalent

interaction between the ligand and target with a high degree of accuracy, and then

also account for the important and difficult of effects of conformational averaging and

solvent interactions with a similar level of accuracy.

With some notable exceptions, the overall methodology of electronic structure

theory is well developed, and most of what remains is to improve the computational

efficiency and utility of the hierarchy of these methods. With regard to efficiency,

much progress has been made in recent years in the use of rank reduction and locality

approaches to reduce the computational burden of the simulation. These approaches
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are particularly elegant in that they work by taking advantage of the physics un-

derlying the chemical process, often yielding robust approximations with enormous

tractability gains. With regard to utility, there has recently been renewed interest in

extracting more chemically useful information from the results of extensive electronic

structure computations. These approaches often provide robust partitions or expla-

nations of chemical phenomena, and provide a compelling complement to chemical

intuition. Together, these advances in efficiency and utility are vastly improving our

ability to apply electronic structure to important real-world problems.
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SUMMARY

Quantum chemistry is plagued by the presence of high-rank quantities, stem-

ming from the N -body nature of the electronic Schrödinger equation. These high-

rank quantities present a significant mathematical and computational barrier to the

computation of chemical observables, and also drastically complicate the pedagogical

understanding of important interactions between particles in a molecular system. The

application of physically-motivated rank reduction approaches can help address these

to problems. This thesis details recent efforts to apply rank reduction techniques in

both of these arenas.

With regards to computational tractability, the representation of the 1/r12 Coulomb

repulsion between electrons is a critical stage in the solution of the electronic Schrödinger

equation. Typically, this interaction is encapsulated via the order-4 electron repulsion

integral (ERI) tensor, which is a major bottleneck in terms of generation, manipu-

lation, and storage. Many rank reduction techniques for the ERI tensor have been

proposed to ameliorate this bottleneck, most notably including the order-3 density

fitting (DF) and pseudospectral (PS) representations. Here we detail a new and

uniquely powerful factorization - tensor hypercontraction (THC). THC decomposes

the ERI tensor as a product of five order-2 matrices (the first wholly order-2 com-

pression proposed for the ERI) and offers great flexibility for low-scaling algorithms

for the manipulations of the ERI tensor underlying electronic structure theory. THC

is shown to be physically-motivated, quite accurate, and uniquely efficient for some

of the most difficult operations encountered in modern quantum chemistry.

On the front of chemical understanding of electronic structure theory, we present

our recent work in developing robust two-body partitions for ab initio computations

xxii



of intermolecular interactions. Noncovalent interactions are the critical and deli-

cate forces which govern such important processes as drug-protein docking, enzyme

function, crystal packing, and zeolite adsorption. These forces arise as weak resid-

ual interactions leftover after the binding of electrons and nuclei into molecule, and,

as such, are extremely difficult to accurately quantify or systematically understand.

Symmetry-adapted perturbation theory (SAPT) provides an excellent approach to

rigorously compute the interaction energy in terms of the physically-motivated com-

ponents of electrostatics, exchange, induction, and dispersion. For small intermolec-

ular dimers, this breakdown provides great insight into the nature of noncovalent

interactions. However, SAPT abstracts away considerable details about the N -body

interactions between particles on the two monomers which give rise to the interaction

energy components. In the work presented herein, we step back slightly and extract an

effective 2-body interaction for each of the N -body SAPT terms, rather than immedi-

ately tracing all the way down to the order-0 interaction energy. This effective order-2

representation of the order-N SAPT interaction allows for the robust assignment of

interaction energy contributions to pairs of atoms or functional groups (the A-SAPT

or F-SAPT partitions), allowing one to discuss the interaction in terms of atom- or

functional-group-pairwise interactions. These A-SAPT and F-SAPT partitions can

provide deep insight into the origins of complicated noncovalent interactions, e.g., by

clearly shedding light on the long-contested question of the nature of the substituent

effect in substituted sandwich benzene dimers.
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CHAPTER I

INTRODUCTION TO TENSOR HYPERCONTRACTION

1.1 The Electron Repulsion Integral

1.1.1 Origins

This section serves to explain where and how the electron repulsion integral tensor

arises in the standard approach to electronic structure theory.

The major technical goal in electronic structure theory is the solution of the

electronic Schrödinger equation, e.g., in its time-independent form,107,264,265,33,290,109

Ĥ|Ψn〉 = En|Ψn〉, (1)

together with the constraints of wavefunction orthonormality,

〈Ψm|Ψn〉 = δmn, (2)

and fermionic antisymmetry,

|Ψn(. . . , ~xi, . . . , ~xj, . . .)〉 = −|Ψn(. . . , ~xj, . . . , ~xi, . . .)〉. (3)

In the above, |Ψn〉 is the electronic wavefunction for state n and En is the corre-

sponding electronic energy. Each electron carries coordinates of position and spin

~x ≡< ~r, s >. Ĥ is the electronic Hamiltonian,

Ĥ ≡ −
∑
i

1

2
∇2 −

∑
i,A

ZA
riA

+
∑
i>j

1

rij
. (4)

Here i and j label electrons, while A labels nuclei. The first term corresponds to

the kinetic energy of the electrons, the second to the electron-nuclear attraction, and

the third to the electron-electron repulsion. The scalar ZA is the charge of the A-th

nucleus. Note the use of atomic units here and throughout.290
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A major source of complexity in electronic structure theory is the electron-electron

repulsion term, which provides a coupling element between pairs of electrons. This,

in turn, implies that the wavefunction |Ψn〉 is an true many-body quantity, with

nonzero correlations between any 2-, 3-, 4-, etc-tuples of electrons. Working directly

with N -body wavefunctions is prohibitively difficult (both computationally and math-

ematically). Therefore, an immediate formal simplification is usually invoked to treat

the N -body wavefunction as a linear combination of antisymmetrized direct prod-

ucts of a set of orthonormal one-electron wavefunctions {ψp(~x)} (often referred to as

“spin-orbitals,” assumed to be real unless otherwise noted),

|Ψn〉 ≡
∑

~T={...p...q...}

C~T |Φ~T 〉. (5)

Here ~T = {. . . p . . . q . . .} is an occupation number vector, determining the combina-

tion of N spin orbitals to occupy, and the sum runs over all possible combinations.

C~T is the amplitude of the ~T -th antisymemtrized direct-product wavefunction. The

antisymmetrized direct-product wavefunctions or “Slater determinants” are,279

|Φ~T 〉 ≡
1√
N !
A(N) [. . . ψp(~xp) . . . ψq(~xq) . . .] . (6)

Here A(N) is an N -body antisymmetrizer, which generates all possible permutations

of N electrons in N spin orbitals, additionally with a parity factor of −1 applied for

every pairwise swap.

The space of all possible N -electron Slater determinants for K spin orbitals is

called a “Fock space,” (technically, an N -electron Fock subspace) and thus this gen-

eral parametrization of the wavefunction is often termed a “Fock-space approach.”109

Note that each Slater determinant is fully antisymmetric, and thus the full wave-

function will automatically obey the antisymmetry property. However, aside from

fermionic correlation, the particles in a single Slater determinant are uncorrelated.

Thus, the Coulomb correlation induced by the electron-electron repulsion term in the
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Hamiltonian is built in by taking a weighted sum over all Slater determinants. In

principle, this Fock-space approach is formally exact, if a complete set of one-particle

spin orbitals {ψp(~x)} is used to build the Fock space, and if all Slater determinants in

the Fock space are retained in the parametrization of the wavefunction. In practice,

a finite number of spin orbitals must be used for computational tractability (typically

accomplished via a finite-basis expansion). Moreover, in the overwhelming majority

of cases, the number of Slater determinants included in the Fock-space expansion

must be restricted [restricted configuration interaction (CI) approaches],274,271 or else

the coefficients of the Slater determinants must be approximated in some advanta-

geous way [restricted coupled cluster (CC) approaches].45,270 The truncation of the

Fock-space expansion is absolutely critical for computational tractability, as the di-

mension of the Fock space grows as K!/(N !(K −N)!), i.e., factorially in the system

size.

Note that there do exist alternative methods to parametrize the wavefunction in

terms of 2-, 3-, etc-particle objects.131,165,300,296,305 These “geminal expansion” ap-

proaches offer compellingly fast convergence to the exact wavefunction, but are often

enormously expensive.

In Fock-space approaches, a critical step is to develop expressions for the repre-

sentation of the Hamiltonian operator in the basis of Slater determinants,

H~T ,~U ≡ 〈Φ~T |Ĥ|Φ~U〉. (7)

The quantity H~T ,~U is a Hermitian matrix, which may be directly diagonalized to yield

the electronic energies and coefficients of the Slater determinants which build up the

full wavefunctions. This general type of approach is referred to as “configuration

interaction” or CI. A remarkable realization is that the matrix elements H~T ,~U , while

seemingly N -body expectation values over the operator Ĥ, can always be written in

terms of one- and two-electron quantities. The reason for this is that the Hamiltonian

is (at most) a two-particle operator, so the operation of Ĥ on the Slater determinant

3



|Φ~U〉 can always be written as a linear combination of N -electron Slater determinants

differing from |Φ~U〉 by at most two spin orbitals. For a nonzero matrix element H~T ,~U ,

the bra 〈Φ~T | must overlap with some contribution from the ket Ĥ|Φ~U〉. Therefore,

since the Slater determinants are orthonormal basis functions of the Fock space,

nonzero matrix elements H~T ,~U exist only for determinants with occupations ~T and ~U

which differ by at most two spin orbitals.

The Slater-Condon rules279,49 provide explicit formulae for the nonzero matrix

elements. For identical Slater determinants:

H~T ,~U =
∑
p ∈ ~T

〈p|ĥ|p〉+
1

2

∑
p,q ∈ ~T

〈pq||pq〉. (8)

For Slater determinants differing by one spin orbital, e.g., ~T = {. . .m . . .} and ~U =

{. . . n . . .},

H~T ,~U = 〈m|ĥ|n〉+
∑
p ∈ ~T

〈mp||np〉. (9)

For Slater determinants differing by two spin orbitals, e.g., ~T = {. . .mp . . .} and

~U = {. . . nq . . .},

H~T ,~U = 〈mp||nq〉. (10)

Note that for these rules to work, the Slater determinants must be first permuted to

be in maximum coincidence, keeping track of parity factors as this is done.

The one-electron matrix elements are the one-electron integrals,

〈p|ĥ|q〉 ≡
∫
R4

d4x1 ψp(~x1)

[
−1

2
∇2 −

∑
A

ZA
r1A

]
ψq(~x1), (11)

and the two-electron matrix elements are the antisymmetrized electron repulsion in-

tegrals,

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉. (12)

The electron repulsion integrals are written in terms of the physicist’s electron repul-

sion integrals over spin orbitals,

〈pq|rs〉 ≡
∫∫

R8

d4x1 d4x2 ψp(~x1)ψq(~x2)
1

r12

ψr(~x1)ψs(~x2), (13)
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which are alternatively expressed in terms of the chemist’s electron repulsion integrals

over spin orbitals,

[pq|rs] ≡
∫∫

R8

d4x1 d4x2 ψp(~x1)ψq(~x1)
1

r12

ψr(~x2)ψs(~x2) = 〈pr|qs〉. (14)

The one-electron integrals form an order-2 tensor, which is relatively easy to generate

and manipulate. The electron repulsion integrals form an order-4 tensor, which is

much harder to deal with. Therefore, much of the lore of Fock-space approaches

is devoted to mitigating or amortizing the complexity and storage of the electron

repulsion integral tensor.

1.1.2 Definition

The electron repulsion integral (ERI), written in the chemist’s notation in spatial

form, is,

(pq|rs) ≡
∫∫

R6

d3r1 d3r2 φp(~r1)φq(~r1)
1

r12

φr(~r2)φs(~r2). (15)

For a one-particle spatial basis set {φp(~r)}, this encapsulates the electrostatic inter-

action of a particle in coordinate ~r1 represented by the product of basis functions

ρpq(~r1) = φp(~r1)φq(~r1) with another particle in coordinate ~r2 represented by the prod-

uct of basis functions ρrs(~r2) = φr(~r2)φs(~r2). In the limit that the basis functions

approach Dirac delta functions, the charge distributions of the two electrons approach

point charges, e.g., ρpq(~r1)→ QP δ(~r1 − ~rP )δpq, and the classical limit results,

(pq|rs)→ δpq
QPQQ

rPQ
δrs. (16)

Here we have generalized the one-particle spatial basis {φp(~r)} slightly from the

orthonormal one-particle spin orbitals {ψp(~x)} in the Fock-space discussion above. In

the present discussions, a one-particle basis set {φp(~r)} could refer to a non-orthogonal

atomic-orbital basis, the spatial part of an orthonormal one-particle spin-orbital ba-

sis (e.g., Hartree-Fock orbitals), any subset thereof, or really any other one-particle
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quantity. Unless explicitly stated, we will consider only the case of an exponentially

decaying atom-centered basis set (e.g., Gaussian or Slater functions in finite systems).

1.1.2.1 Properties

The ERI is an order-4 tensor providing the spectral representation or image of the

symmetric-positive definite 1/r12 Coulomb operator in the basis of direct products of

basis functions {ρpq(~r) ≡ φp(~r)φq(~r)} (the “pair space”). The properties of both the

Coulomb operator and the pair space lead to a number of interesting and important

properties in the ERI tensor.

The position-space form of the Coulomb operator G ≡ 1/r12 is the spatial repre-

sentation of the Green’s function of the Poisson equation on R3,

− 1

4π
∇2V (~r1) = ρ(~r1). (17)

The Poisson equation is an elliptic, linear, second-order partial differential equation

which relates the charge density ρ(~r) to the corresponding electrostatic potential

(ESP) V (~r). As the Green’s function, the Coulomb operator is the solution of the

Poisson equation for a Dirac delta source,

− 1

4π
∇2G(~r1, ~r2) = δ(~r1 − ~r2). (18)

This is easily solved by Fourier transformation to reciprocal space, in which the

problem is algebraic, and then back-transformation to position space, yielding the

expected solution G(~r1, ~r2) = 1/r12.

The Coulomb operator is a local, finite-ranged, symmetric positive definite, two-

particle operator. Locality implies that the operator depends only on the span of

the pair space, and cannot see the details of the individual basis functions in each

basis function product. An equivalent way to define this property is to say that the

Coulomb integrals reduce to the 6-space integral above, rather than the more-general
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12-space integral from a generic nonlocal operator,

〈pr|ô|qs〉 ≡
∫∫

R12

d3r1 d3r2 d3r′1 d3r′2 φp(~r1)φr(~r2)ô(~r1, ~r2, ~r
′
1, ~r
′
2)φq(~r

′
1)φs(~r

′
2). (19)

The property of locality will prove invaluable in the development of reduced rank

representations for the ERI for two reasons. One is that locality allows one to exploit

rank redundancy in the pair space, paving the way for density fitting and related

approaches. Another is that locality allows for multiplicative separability of the basis

functions in position space, eventually yielding the pseudospectral and tensor hyper-

contraction representations.

The finite-ranged property of the Coulomb operator, which distinguishes it from

zero-range operators, such as the Skyrme force278 or Slater exchange model280, is

actually a prize understatement. The Coulomb operator is essentially the worst-case

scenario in terms of its spectral behavior. The operator exhibits a nasty singularity

as r12 → 0+, and is markedly long-ranged as r12 → ∞. The harmonic decay at long

range implies that the operator may never be accurately truncated at some suitably

large value of r12. The singularity at the origin correspondingly implies that the

operator will have slow convergence in reciprocal space, due to the high frequency

transients as r12 → 0+. The singularity is a further source of complexity if grid-based

resolutions of the ERI are attempted in position space.

The symmetric positive definite (SPD) property of the Coulomb operator is re-

lated to the indistinguishability of particles (symmetry) and to the principle that like

charges repel (positivity). This property will be carried through in several forms in

the ERI tensor, and is an important property to maintain in approximate resolutions

of the ERI.

The pair space is composed of the span of direct products of the orbital basis

functions, i.e., {ρpq(~r) ≡ φp(~r)φq(~r)}. In principle, a complete orbital basis φp(~r)

would span the complete square-integrable Hilbert space in three-space, e.g., L2(R3),

and thus the pair space would span the space of integrable functions in three-space,
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e.g., L1(R3). In practice, a finite set of smooth functions is usually chosen for the

orbital basis, and thus the pair space also lives in the space of smooth functions.

Näıvely, the pair space basis scales quadratically with the size of the orbital basis

(which itself scales linearly with the size of the system). However, for atom-centered

basis sets, the pair space is often markedly numerically redundant, implying that

many pairs or combinations of pairs are not needed for accurate representation of

the electronic structure problem. This is particularly the case for large molecules

and/or large basis sets. There are two reasons for this. The first the spatial sparsity

of the rapidly-decaying atom-centered basis functions implies that asymptotically

only a linear number of basis function pairs are nonvanishing, particularly in large

molecules. The second is that many of the nonvanishing products generate the same

class of shapes in the pair space, particularly in large basis sets. For instance, the

same-center product of an S and a D orbital gives a pair-space function which looks

like a D function, just as a product of two P functions also looks like a D function. In

practice, these two considerations jointly imply that the näıvely quadratic scaling pair-

space basis can be accurately replaced by a linear-scaling auxiliary representation.

For real orbitals, the ERI tensor obeys the following 8-fold permutational symme-

try,

(pq|rs) = (pq|sr) = (qp|rs) = (qp|sr) (20)

= (rs|pq) = (rs|qp) = (sr|pq) = (sr|qp)

This symmetry may be used to avoid computing or storing redundant integrals,

though the logic of where each integral contributes yields some additional code com-

plexity.

The ERI tensor is SPD with respect to the matrix of chemist’s integrals,

Dpq(pq|rs)Drs > 0 ∀ D (21)

8



and also SPD with respect to the matrix of physicist’s integrals,

Dpq〈pq|rs〉Drs > 0 ∀ D (22)

Note the use of the generalized Einstein summation convention for tensor contractions

here and throughout. The SPD property of the chemist’s integrals corresponds to the

principle that like charges repel. It is critical to maintain the SPD property in the

chemist’s integrals or approximations thereof, particularly in variational procedures

such as self-consistent field (SCF) theory. Failure to do so can lead to situations

where electrons attract each other within certain parts of the pair space, and may

collapse toward the smallest wavefunction possible within the span of the finite basis

employed. This “variational collapse” problem is a major barrier to certain classes of

numerical approximation, such as local flavors of density fitting.194 The SPD property

of the physicist’s integrals appears to be less practically important, and many of the

most popular ERI approximations do not obey this property.

An important practical consideration is the rapid growth of the ERI tensor with

respect to the system size. In general, the ERI tensor scales as O(N4) where N is

some measure of the system size (typically the primary basis size Np). Even with

8-fold permutational symmetry built in, this quickly becomes a major storage bottle-

neck. Using double precision (64-bit) integrals, at 100 basis functions, the ERI tensor

consumes roughly 100 MB, and can safely be assumed to reside in core memory. By

400 orbitals, the ERI tensor consumes 26 GB, and is approaching the limits of core

memory on all but the heaviest of nodes. By 1000 basis functions, the ERI tensor

consumes 1 TB, and is approaching the limits of disk storage on most heavy nodes.

Note that the largest production-level jobs typically encountered in modern quantum

chemistry research may have 5000-10000 basis functions. For the largest of these,

the ERI tensor would consume 10 PB of storage. Clearly, algorithms or schemes to

attenuate or eliminate the storage of the ERI tensor are necessary to perform these

computations.
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1.1.3 Sparsity Considerations

In finite basis atom centered basis sets, such as those composed of Gaussian or Slater

functions, the exponential decay of the basis functions can often be practically ex-

ploited to accelerate computations, e.g., by means of the Cauchy-Schwarz inequal-

ity,105

|(pq|rs)| ≤
√

(pq|pq)(rs|rs) (23)

As the centers of the basis functions p and q (or r and s) are pulled apart, their pair

distribution ρpq(~r) will decay exponentially, extinguishing the integral (pq|rs). The

Cauchy-Schwarz inequality can be used to provide an upper bound for the integral’s

magnitude under this decay, and can be used to determine if an integral need be

computed at all. For example, many codes utilize a user-specified integral cutoff pa-

rameter δ, which is often in the range of 10−8 to 10−12 Hartree. If the Cauchy-Schwarz

estimate for an integral is below δ, the integral is not computed, and is effectively

clamped to zero. In practice, this sieving must be done by basis shell (all basis func-

tions of differing angular momentum generated from the same radial Gaussian or

Slater function) rather than basis function, to preserve rotational invariance.

In tight, small basis sets such as 6-31G*102 or cc-pVDZ,70 Cauchy-Schwarz sieving

works reasonably well, and yields an asymptotically quadratic number of integrals

that must be computed. However, the use of augmented or large basis sets quickly

overwhelms the pair space with pairs containing one or two diffuse functions. These

pairs decay much more slowly with distance than in tight, small basis sets, markedly

decreasing the utility of Cauchy-Schwarz sieving. Moreover, Cauchy-Schwarz sieving

depends strongly on the geometry of the molecular system. Linear systems will exhibit

rapid onset of the quadratic regime, while globular systems will persist in the quartic

region for much longer.

Other problems with Cauchy-Schwarz sieving exist. One is that the method es-

timates many integrals to be near δ, but they are then clamped all the way to zero,
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potentially ignoring the buildup of many small contributions to a nontrivial total. An

additional concern (which is inherent in any cutoff-based method) is that discontinu-

ities in potential surfaces are certain to exist.

Additional considerations may augment or accelerate the application of Cauchy-

Schwarz sieving. In density-based screening, the Cauchy-Schwarz bound is applied

in concert with the magnitudes of elements of the density matrix or other quantity

that the ERI is multiplied by to generate an upper bound of the ERI-vector product

contribution.105 These contributions may be neglected if they fall below a product

threshold γ, which is usually of roughly the same order as δ. Density based sieving

is particularly useful when the state vector is sparse and couples at least one basis

function from each particle in the ERI (an “exchange-type” contraction), as the spar-

sity of the state vector will overcome the slow 1/r12 decay of the ERI, often leading

to asymptotically linear scaling.

Note that the Cauchy-Schwarz or density-based sieves do not factor any infor-

mation about the coordinate r12 into their estimates, and thus do not produce tight

upper bounds. As discussed previously, 1/r12 is extraordinarily long-ranged, and it

is not usually considered numerically acceptable to screen based on distance in r12

with anything but the smallest of thresholds. However, in some cases, the observed

decay of the relevant ERIs is faster than 1/r12. For example, if a theory needs only

ERIs which excite from one subspace to another, orthogonal subspace (e.g., the hole-

particle excitations in some correlated theories), the relevant part of the product space

carries only dipolar and higher products. This implies that the ERIs will decay as at

least 1/r3
12, and might be profitably screened based on distance in r12. The family of

multipole-bound integral estimate (MBIE) methods167 provide tighter bounds than

Cauchy-Schwarz sieving to take advantage of this decay.

In practice, sieving methods are reasonably easy to implement, and can produce

marked gains in efficiency for large systems with small, tight basis sets. The price
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one must pay for these gains is that much effort must be placed on producing efficient

codes for the evaluation of the electron repulsion integrals (or common products

thereof). This is a major mathematical and computer science problem, and has led

to myriad schemes for the evaluation of the needed integrals. E.g., for Gaussian

basis sets, the McMurchie-Davidson,193 Obara-Saika,210 and Rys258 approaches are

but three of the most popular of many possible schemes. In all of these schemes, it

typically costs tens to thousands of floating point operations (FLOPs) to evaluate a

given integral, and it has proven quite difficult to make these routines run at the peak

performance available on a given machine.

1.1.4 Existing Factorizations of the ERI

A critical realization that has slowly and continuously been occurring over the past

fifty years is that it is never the ERIs that are needed, but rather, their effective

contractions with state vectors such as density matrices and wavefunction amplitudes.

For instance, in Hartree-Fock (HF) self consistent field (SCF) theory, the rate-limiting

steps are the construction of the Coulomb matrix,290

Jpq ≡ (pq|rs)Drs, (24)

and the exchange matrix,

Kpq ≡ (pr|qs)Drs. (25)

Here Drs is the SCF one-particle density matrix (OPDM). To form these contractions,

the most straightforward approach is to build the necessary ERIs analytically and then

contract with the relevant parts of the OPDM. This is the basis for integral-direct (ID)

SCF methods,5,105 which rely heavily on Cauchy-Schwarz and density-based sieving

for efficiency, among other tricks.

An alternative approach is to directly build the Jpq and Kpq contractions in some

effective way. One technique which has enjoyed considerable success in recent years

is the idea of “early contraction” in McMurchie-Davidson and other ERI generation
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schemes, in which the contraction of the ERIs with the density matrix is built into

the integral evaluation routines themselves, often saving considerably in terms of

FLOPs.321 However, this only reduces the prefactor of ID-SCF approaches, and does

not affect the scaling or general reliance on ERI evaluation codes.

Another extremely interesting general approach is to approximate rewrite the ERI

tensor as a product of several low-rank factor tensors. This provides several possible

advantages:

1. The generation and storage of the low-rank factor tensors may be markedly

easier than the generation and storage of the full ERI tensor.

2. The composition of the ERI tensor in terms of factor tensors may allow for the

reduced-scaling construction of an ERI-state vector product in terms of several

low rank intermediates.

3. The computational effort is shifted to tensor contraction operations, which are

markedly efficient and scalable on modern computer hardware (e.g., through

the use of GEMM calls using well-developed BLAS implementations170).

Factorization approaches do carry a number of possible disadvantages:

1. In molecular problems with atom-centered basis sets, the factorization of the

ERI tensor is necessarily a numerical approximation, which must be carefully

controlled to ensure that the desired accuracy is retained in the chemical ob-

servables being computed.

2. Factorization approaches often introduce additional complexity into quantum

chemistry codes, both in terms of the formation of the factor tensors and in

their use to form effective ERI-state vector products.

For canonical example, consider the (not so) hypothetical case of an accurate
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factorization of the ERI with the topology,

(pq|rs) ≈ bCpqb
C
rs. (26)

That is, the order-4 chemist’s integrals (pq|rs) are factored as an outer product of

order-3 factor tensors bCpq. With this representation, we can reduce the complexity of

the Coulomb contraction from O(N4) to O(N3) through the judicious use of a small

intermediate,

Jpq ≈

bCpq [bCrsDrs

]︸ ︷︷ ︸
dC

 . (27)

The exchange contraction cannot be factored, due to the “pinned” appearance of

the p and q indices in the factor tensor bCpq. However, we can take advantage of the

low-rank formulation of the OPDM in SCF theory in terms of the occupied orbitals,

Dpq = CpiCqi, (28)

where i is the occupied orbital index (much smaller than the AO-basis index p).

Together with the low-rank ERI tensor, this gives,

Kpq ≈
[
bCprCri

]︸ ︷︷ ︸
ECpi

[
bCqsCsi

]︸ ︷︷ ︸
ECqi

. (29)

This scales as a low-prefactor O(N4), and is formulated entirely in terms of efficient

GEMM operations. This example, together with the “density fitting” (DF) approach

to form the factor tensors bCpq, forms the basis for density-fitted SCF (DF-SCF).312

For small- to medium-sized molecules in large basis sets, DF-SCF is among the most

efficient approaches to SCF theory.

What remains is to develop an algorithm for the accurate and efficient factorization

of the ERI tensor. Many approaches to this problem exist, with varying topologies of

factorization possible. The best approaches are deemed “physically-motivated rank

reduction approaches” and operate by developing a rapidly converging approximate
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factorization of the ERI tensor based on observations of the physics of the ERI itself.

That is, these approaches do not attempt to brute-force a factorization, but rather

work with the existing structure of the ERI to let a natural rank sparsity drive the

factorization.

1.1.4.1 Density Fitting

One of the most successful rank reduction approaches for the ERI tensor is density

fitting (DF).324,67,68,156,76,299,245,144,312 DF asserts that the quadratic number of gener-

alized densities in the pair space ρpq(~r) ≡ φp(~r)φq(~r) can be accurately represented

in a linear number of auxiliary functions χA(~r),

ρpq(~r) ≈ dApqχA(~r). (30)

Here, dApq is the problem-specific tensor of density fitting coefficients. In this repre-

sentation, the ERI tensor may be decomposed as,

(pq|rs) ≈ dApq(A|B)dBrs, (31)

where (A|B) is a two-index ERI between auxiliary functions,

(A|B) ≡
∫∫

R6

d3r1 d3r2 χA(~r1)
1

r12

χB(~r1). (32)

The density fitting coefficients are typically solved by minimizing the square of

the residual in the generalized densities with respect to an error metric o(~r12),

O[dApq] ≡
∫∫

R6

d3r1 d3r2

ρpq(~r1)− ρ̃pq(~r1)︸ ︷︷ ︸
dApqχA(~r1)

 o(r12)

ρpq(~r2)− ρ̃pq(~r2)︸ ︷︷ ︸
dApqχA(~r2)

 . (33)

Many choices for the error metric have been proposed: δ(~r12) (the overlap metric),324

1/r12 (the Coulomb metric),67 erfc(ωr12)/r12 (the complementary Ewald metric),142

etc. By far the most popular is the Coulomb metric, which eventually leads to the

density fitting factorization,

(pq|rs) ≈ (pq|A)(A|B)−1(B|rs), (34)
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where −1 indicates a matrix inverse, and (pq|A) are the three-index ERIs,

(pq|A) ≡
∫∫

R6

d3r1 d3r2 φp(~r1)φq(~r1)
1

r12

χA(~r2). (35)

Defining the symmetrically-fitted three-index tensor,

bCpq ≡ (pq|A)(A|C)−1/2, (36)

this leads to the symmetric DF factorization,

(pq|rs) ≈ bCpqb
C
rs. (37)

This is precisely the factorization used in the discussion of Coulomb and exchange

matrices above, and inherits all of the corresponding merits and limitations.

Note that for general density fitting metrics, it has been demonstrated by Dunlap

that the alternative robust DF formulation,69

(pq|rs) ≈ dBpq(B|rs) + (pq|A)dArs − dApq(A|B)dBrs, (38)

will be free of first-order errors due to the residuals in the generalized densities

δρpq(~r) ≡ ρpq(~r)− ρ̃pq(~r). That is, the principle component of the error in the robust

DF formulation is quadratic in the density residuals. This may significantly increase

the fidelity of the DF approximation, at the cost of replacing the one-term “SVS”

representation299 of Equation 31 with the three-term expansion of Equation 38. How-

ever, for the special case of the Coulomb metric, the SVS and robust representations

are identical, and both reduce to the simple, one-term formulae of Equations 34 or 37.

This largely explains the widespread adoption of Coulomb-metric density fitting - the

one-term symmetric formula of Equation 37 may be used, and yet the factorization

remains free of first-order error.

One complication of density fitting is the need to introduce an auxiliary basis set

{χA(~r)}. In general, this is accomplished by optimizing an auxiliary basis set for a

given primary basis set and class of electronic structure problems. For example, the
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cc-pVXZ-JKFIT sets312 are designed to provide an accurate representation of the J

and K matrices of SCF theory for the Dunning cc-pVXZ basis sets,70 whereas the

cc-pVXZ-MP2FIT sets313 are designed to accurately represent the hole-particle exci-

tation space for MP2 and other correlated methods. In practice, optimized auxiliary

basis sets have between 2−5× the number of functions as the primary basis sets, e.g.,

in the range of several dozen to a few hundred auxiliary functions per atom. Lower

ratios of auxiliary functions to primary functions occur for large and/or diffuse bases

sets (e.g., aug-cc-pV5Z), for which the pair-space is more redundant. Thus, efficiency

of the DF approximation increases for larger and more-diffuse basis sets, providing

an important complement to sparsity-based accelerations which break down in these

environments.

DF preserves the eightfold symmetry of the ERI tensor, along with the positive

definiteness of the chemist’s ERIs. The formal positive definiteness of the physicist’s

ERIs is lost, but this is rarely if ever found to be an issue in practical computations.

1.1.4.2 Cholesky Decomposition

A closely related alternative to density fitting is the pivoted Cholesky decomposition

(CD) of the ERI tensor.24,254,151,8,6 The resultant factorization is,

(pq|rs) ≈ LCpqL
C
rs. (39)

The factors LCpq are found by applying the recursive pivoted Cholesky-Crout algorithm

to the SPD chemist’s integrals,

1. Set the residual matrix Rpq,rs to the original ERI tensor (pq|rs).

2. Choose the next expansion vector C ≡ pqmax where pqmax is the pair index with

maximal element on the diagonal of the residual tensor Rpq,pq. This selection is

referred to as “pivoting.” If RC,C < δ, terminate the algorithm.

3. Form the diagonal Cholesky element LCC =
√
RC,C .
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4. Form the rest of the C-th Cholesky vector as LCpq = RC
pq/L

C
C for pq 6= C.

5. Repeat from 2.

In practice, the residual matrix Rpq,rs is not explicitly stored. Instead, the diagonal

elements Rpq,pq are stored and the other elements are computed on the fly via Rpq,rs =

(pq|rs)− LCpqLCrs.

Note that due to Sylvester’s criterion [the property that every principal minor

of (pq|rs) must be SPD for (pq|rs) to be SPD] implies that this algorithm reduces

Chebyshev norm (the maximum residual) of the chemist’s ERI in each step. If the

algorithm is carried out to N2
p factors C, the residual will be exactly zero. In practice,

the factorization is terminated after only a linear number of expansion vectors NC ,

which is typically in the range of 3−5× the size of the primary basis Np, corresponding

to δ in the range of 10−4 to 10−7.

There is a deep connection between DF and CD approaches. In the former, the

auxiliary basis is constructed of a priori empirically specified auxiliary functions. In

the latter, a system-specific auxiliary basis is constructed on the fly by examining

the span of the pair space to successively include the next-most-optimal auxiliary

function C. In general, this function C is not centered on any one atom. In the often-

invoked one-center CD approach (1C-CD),7 the pivots C are restricted to be taken

from the set of pq with both p and q on the same atom. This approximation is no

longer formally guaranteed to converge to zero error as the auxiliary basis is expanded,

but is often quite accurate in practice. Moreover, 1C-CD places CD and DF on a

one-to-one footing, as both now use an auxiliary basis constructed of atom-centered

Gaussians.6

In practice the CD factorization of the ERI tensor is not used as often as DF,

even though the CD factorization is somewhat more efficient in terms of number of

expansion vectors NC for a given accuracy. One reason for this is that the CD al-

gorithm requires that every existing vector LCpq be used in the construction of the
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next Cholesky vector. Thus, the entire LCpq tensor must be stored in memory to avoid

an excessive number of disk operations in forming the Cholesky vectors, limiting the

maximum tractable system size to roughly 1000 primary basis functions. Another

reason is that analytical gradients of the Cholesky ERIs are notoriously difficult to

derive - tractable progress along these lines has thus far only been achieved in the

context of 1C-CD and the concomitant duality with DF.10 CD is used widely in cer-

tain contexts - especially in high accuracy computations on small molecules (such as

CD coupled cluster approaches60), or in theories such as coupled-cluster of symmetry-

adapted perturbation theory for which custom auxiliary bases are not available for

the DF approach. Generally, one finds that the -JKFIT and -MP2FIT auxiliary ba-

sis sets are sufficiently accurate for general Fock-type and correlation-type methods,

respectively, but the application of CD allows one to be more certain that the appro-

priate accuracy is retained in the ERI tensor. From this point forward, when we refer

to DF, it should be understood that we view CD as a particular flavor of DF and are

also including it within the discussion.

1.1.4.3 Pseudospectral Representation

The DF approach provides excellent compression of the ERI tensor to order-3 ob-

jects, recasts the problem in terms of tensor contractions, and succeeds in breaking

the scalings of Coulomb-type contractions. However, it is unable to break the scalings

of exchange-type contractions, due to the pinned occurrence of the p and q indices in

the same three-index tensor. An alternative approach which manages to “unpin” the p

and q indices is the pseudospectral (PS) representation.80,81,82,83,251,250,93,188,190,187,187,246,85,150,208,162

The PS approach starts by contracting over ~r2 in the ERI, yielding a representation

of the ERI tensor written as an integral over only ~r1,

(pq|rs) =

∫
R3

d3r1 φp(~r1)φq(~r1)Vrs(~r1), (40)
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where Vrs(~r1) is the ESP of the generalized density ρpq(~r2) in coordinate ~r1,

Vrs(~r1) ≡
∫
R3

d3r1
1

r12

φr(~r2)φs(~r2). (41)

At this point, it is noted that the ESPs of the generalized densities are all finite -

the 1/r12 singularity has been extinguished by contraction against the finite span of

the ρrs(~r2) pair-space functions. The schwerpunkt of pseudospectral theory is the

introduction of a quadrature grid {< ~rP , wP >} to resolve the integral in ~r1 via∫
R3 d3r1 f(~r1) ≈ wPf(~rP ). This exposes the multiplicative separability of the pair

space in position-space, unpinning the indices p and q,

(pq|rs) ≈ wPR
P
p R

P
q V

P
rs . (42)

Here RP
p ≡ φp(~rP ) is the collocation matrix (the values of the basis function on

the grid), and V P
rs ≡ Vrs(~rP ) is the collocation of the ESP to the grid. V P

rs may

easily be computed from standard nuclear attraction integral routines. For conceptual

convenience, we may write this factorization as,

(pq|rs) ≈ XP
p X

P
q V

P
rs , (43)

where XP
p ≡

√
wPR

P
p is the weighted collocation matrix.

It is apparent that the PS approach decomposes the ERI as a product of three

tensors - two order-2 collocation matrices and an order-3 ESP matrix. Thus the order

of PS is the same as DF. Whereas DF expands the ERI over an auxiliary basis of

smooth functions, PS expands the ERI over an effective auxiliary basis of Dirac delta

functions. In practice, the DF auxiliary basis is usually much smaller (e.g., a factor of

tenfold smaller) than the PS quadrature grid. Therefore, PS does not usually provide

the same level of compression that DF provides. The principal benefit of PS is the

enhanced flexibility of the factorization obtained by unpinning the p and q factors.

For canonical instance, the exchange matrix may now be formed in O(N3) operations,

Kpq ≈
[
XP
r

[
V P
qs

[
XP
s Drs

]]]
. (44)
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This particular factorization underlies the extremely successful Jaguar31 and ORCA207

packages for large-scale SCF computations.

Note that in the full PS approach, a slightly different form of the factorization is

actually used,81

(pq|rs) ≈ QP
p R

P
q V

P
rs . (45)

This arises from the understanding of the ERI as an expectation value of the ESP of

each rs pair in the primary basis space,

(pq|rs) = 〈p|V̂rs|q〉 =

∫
R3

d3r1 φp(~r1)Vrs(~r1)φq(~r1). (46)

In this understanding, the PS approach may be written as,

(pq|rs) ≈ QP
p V

P
rsR

P
q . (47)

Here RP
q is an operator used to project from spectral space q to a discrete represen-

tation of physical space P . The ESP operator V̂rs is then applied in physical space,

where it is diagonal. The operator QP
p then projects the result back onto spectral

space. If RP
p is used for the second projector, components of the physical-space rep-

resentation of V̂rs|q〉 outside of the primary basis will be accidentally projected onto

〈p|, if a finite quadrature grid is used (alias). This effect can be attenuated by the

use of a dealiasing projector,

QP
p = Ppt [RQ

t wQR
Q
u ]−1︸ ︷︷ ︸

S̃−1
tu

RP
uwP . (48)

Here the labels t and u refer to a united basis set built as the union of the primary basis

set {φp(~r)} and a “dealias basis set” {ξz(~r)} which is chosen to be orthogonal to the

primary basis set. The projector Ppt = δpt annihilates the dealias basis space in the

last step in the product. Broadly speaking, this approach decomposes the spectrum of

any physical-space signal into contributions from the primary basis set and the dealias

basis set, and discards the latter. This means that any alias in the signal V P
rsR

P
q that
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lies in the span of the dealias basis set will be removed from the PS approximation,

lowering the error. Practically speaking, this approach can lower the error of the

PS approximation by roughly an order of magnitude for a given grid size, with no

increase in the computation time. Formally, the error in the PS approximation will

be zero if either the quadrature grid or the dealias basis are complete, but in practice,

both must be expanded together to prevent the matrix S̃tu from becoming singular.

Physical-space quadrature grids for molecular geometries83,20,88,205,297,204,180,87,73,44

are found in several areas in electronic structure theory, including Kohn-Sham density

functional theory (KS-DFT)153 and PS theory. These quadrature grids are extremely

interesting objects. Molecular geometries are notoriously difficult to accurately dis-

cretize, due to the large range of length scales involved. For instance, a standard

rectilinear or spherical grid will fail to efficiently capture the rapid oscillations of

molecular integrands near the nuclei and the smooth but rather slow decay of the

integrals in the tails of the density field. Practical grids are instead designed to track

the molecular geometry. These are typically constructed as a sum of atom-centered

spherical grids, each of which is further decomposed as a direct product of angular171

and radial grids.83,20,205,297,204,87 Smaller angular grids may be used near the nucleus

to prevent crowding, or near the periphery, where a slowly varying integrand is ex-

pected, leading to “pruned” atomic grids.83,88 These atomic grids are then stitched

together via an atomic weighting scheme.20,297 Such a scheme assigns the physical

space nearest each atom to that atom’s spherical grid, allowing for the most efficient

spherical integration grid to capture each part of the integral. The atomic weighting

scheme is designed so that each point in space is counted exactly once over all of the

atomic grids, and so that the partitioning weights vary smoothly from one atom to

the next. Both PS83 and DFT20,88,205,297,204,180,87,73,44 grids were developed in roughly

the same timeframe. In recent years, the development of DFT grid technology has

progressed more than PS, so modern PS implementations typically use small DFT
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grids for their quadratures.

Dealias basis sets must also be specified for each primary basis set in the full PS

theory. Typically these are found by placing functions of larger and smaller radial

extent around and between the functions present in the primary basis set, and also

by adding functions of one or two higher angular momenta than present in the pri-

mary basis set. Dealiasing has fallen somewhat out of favor in recent years, due to

concerns of p↔ q interchange symmetry and the additional complexity of specifying

the dealiasing basis set. For instance the “chain-of-spheres exchange” [COS(X)] ap-

proach208 eschews dealiasing, and instead directly uses the representation of Equation

43. Note that this avoidance of dealiasing may be a bit premature - an unpublished

“Löwdin-style” dealiasing scheme for PS which preserves p↔ q interchange symmetry

is,

XP
p ≡ Ppt[R

Q
t wQR

Q
u ]−1/2RP

u

√
wP . (49)

Note that PS loses many of the formal properties of the ERI tensor. The pq ↔ rs

particle interchange symmetry is lost, as is the p ↔ q symmetry in the full PS

theory. Additionally, the chemist’s and physicist’s ERIs are no longer Hermitian,

and thus cannot be positive definite. Moreover, the practical accuracy of PS is much

lower than DF. The root cause of this is the extremely ill-conditioned nature of the

Vrs(~r1) contributions to the integrands. For example, as the ρrs(~r) densities approach

Dirac delta functions at center A (this occurs in the core-core integrals), the ESP

approaches 1/r1A, and exhibits a marked transient for small r1A. This is particularly

an issue for SCF-type theories, where the core integrals contribute significantly. One

approach to attenuate this issue is to replace certain one-, two-, or even three-center

ERIs by their analytical counterparts.93 This complicates the implementation of PS

codes (and especially their gradients), but can significantly improve accuracy. Even

with analytical corrections, the PS grid space remains significantly larger than the

corresponding DF space. For sub-mH accuracy, on the order of 1000 points per atom
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are often required, e.g., roughly tenfold greater than the corresponding number of DF

auxiliary functions.

1.2 Tensor Hypercontraction

1.2.1 Motivation

To this point, the successes and shortcomings of DF and PS theories exhibit re-

markable complementarity - DF is less flexible but more accurate, and vice-versa for

PS. This suggests that there might exist another approach which merges the best

properties of these two methods, and might have additional advantages. Such an

approximate representation of the ERI tensor might exhibit the following properties,

1. Respect the full eightfold symmetry and at least the SPD nature of the chemist’s

integrals, as DF does.

2. Provide enhanced flexibility by unpinning the p and q indices, as PS does. If

this and the previous point are achieved together, this necessarily provides for

separability of the r and s indices, which is not possible in DF or PS.

3. Retain accuracy properties which are more closely related to DF than to PS,

i.e., sub-mH errors in computed energies with auxiliary expansions with at most

a few hundred vectors per atom.

4. If possible, compress the ERI to order-2 factor tensors. This is not possible in

either DF or PS.

These goals were attained by the introduction of the tensor hypercontraction factor-

ization (THC) for the ERI tensor.

1.2.2 Development

THC has the factorization topology,

(pq|rs) ≈ XP
p X

P
q Z

PQXQ
r X

Q
s , (50)
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and arises for physically-motived reasons. The THC representation was developed

from 2011 to the present by Edward Hohenstein, Robert Parrish, Todd Mart́ınez, and

David Sherrill, with additional technical contributions from Sara Kokkila, Chenchen

Song and Lee-Ping Wang. A brief historical sketch of the development is included

below, to illuminate some of the unusual terminology and interpretations that have

occurred throughout the literature reports on this topic,

1. We considered the idea of “double pseudospectral” factorization of ERI tensor,

wherein a PS-type quadrature was applied in both coordinates of the ERI tensor.

This idea immediately is plagued by the singularity of the 1/r12 operator, but

it was suggested that this method might have some utility in ERIs involving

the Ewald operator erf(ωr12)/r12. This was the first time the order-2 THC

factorization (pq|rs) ≈ XP
p X

P
q Z

PQXQ
r X

Q
s was encountered in our work, and

it was shown that this could reduce second-order Møller-Plesset Perturbation

Theory (MP2) to O(N4) for the first time.

2. We first solved the problem of the singularity of 1/r12 by applying PARAFAC

decomposition to the three-index overlap integrals of SVS-type overlap-metric

density fitting, leading to “PF-THC.” This was shown to accurately reduce MP2

and MP3 to O(N4) with minimal loss in accuracy.121

3. We attempted to apply PS quadrature and DF renormalization of the 1/r12

operator to avoid the costly PARAFAC decomposition in PF-THC, leading to

an approach known as PS-THC. This approach required too many quadrature

points to be practically useful, due to an interesting mismatch in the spans of

the DF auxiliary basis and the PS quadrature.

4. We circumvented the failure of PS-THC by replacing DF renormalization of

1/r12 with direct least-squares renormalization, leading to the very-accurate

and simple grid-based LS-THC method.216
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5. We applied LS-THC to the opposite-spin amplitudes of coupled-cluster singles

and doubles (CCSD), proving that this led to an accurate and wholly O(N4)

factorization of the previously O(N6) method.122

6. We investigated a number of technologies for the construction of the LS-THC

quadrature grid, in the context of THC-MP2. Discrete Variable Representation

(DVR) technology was found to produce the most efficient grids, but THC-MP2

was found to be largely robust to the specifics of the grid generation.217

7. We demonstrated that PS-THC and LS-THC are identical and exact in the

polynomial basis sets encountered in nuclear structure computations, leading

to the exact THC (X-THC) representation in this limit. Besides its lossless

utility in nuclear physics, X-THC demonstrates why LS-THC succeeds but PS-

THC fails in the molecular problem.218

8. We applied LS-THC ERIs to produce efficient implementations of approximated

coupled cluster (CC2) and excited-state CC2 (EOM-CC2) methods, leading to

accurate O(N4) implementations of these methods which are competitive with

the best DF-based implementations.119,120

9. We applied a new flavor of “weighted” LS-THC ERIs to the notoriously approximation-

resistant particle-particle ladder term in CCSD, providing a 10× acceleration

of that term and a 2.4× speedup of the overall CCSD method over the best DF

implementation.223

Below, we present a review of the salient details of THC ERIs. We begin by

presenting X-THC to demonstrate how the factorization arises naturally in a perfect

basis set. Then we describe the various machinery (PF-THC, PS-THC, LS-THC,

etc) required to develop an accurate approximation in finite basis sets composed of

atom-centered functions, for use in electronic structure theory.
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1.2.2.1 Exact Tensor Hypercontraction

For a 1D problem, consider a basis set of No functions, each built of a polynomial

Pp(x) of up to degree Np, multiplied by a weight function v(x) which is the same for

all basis functions,

φp(x) ≡ Pp(x)v(x). (51)

The pair space for this problem {ρrs(x)} = {φp(x)φq(x)} näıvely contains N2
p func-

tions, but is easily seen to be spanned by the 2Np-function auxiliary basis,

χA(x) ≡ PA(x)v2(x), (52)

where PA(x) is a polynomial of up to degree 2Np. It is also noted that an exact

2Np-node Gaussian quadrature {< xP , wP >} exists for the overlap matrix of the

auxiliary basis set,2

(AB) ≡
∫
D

d1x χA(x)χB(x) = wPχA(xP )χB(xP ). (53)

The exact Gaussian quadrature for an arbitrary weight function v(x) and domain D

can always be found, e.g., by the Golub-Welsch algorithm.91

Now consider the equivalent of the ERI tensor in these coordinates, i.e., the ex-

pectation value of a local, spatial, two-particle interaction operator ô,

(pq|ô|rs) ≡
∫∫

D2

d1x1 d1x2 φp(x1)φq(x1)o(x1, x2)φr(x2)φs(x2). (54)

The first stage is to introduce an exact resolution of the identity for the pair space,

1̂ ≡ |A)(A| (for convenience the auxiliary basis is assumed to be orthonormal), leading

to the SVS-type density fitting representation,299

(pq|ô|rs) = (pqA)(A|ô|B)(Ars), (55)

where,

(pqA) ≡
∫
D

d1x φp(x)φq(x)φA(x), (56)
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and,

(A|ô|B) ≡
∫∫

D2

d1x1 d1x2 χA(x1)o(x1, x2)χB(x2). (57)

Note that this is exact for this problem due to the polynomial closure of the pair space.

This exact DF representation has been known and exploited in nuclear structure

computations38,294,90 for at least as long as approximate DF representations have

been employed in electronic structure theory. The second, less obvious, step is to note

that the three-center overlap integrals are all representable by linear combinations of

two-center auxiliary basis overlap integrals, and thus may be directly resolved by the

Gaussian quadrature for the auxiliary basis overlap metric,

(pqA) = XP
p X

P
q Y

P
A . (58)

Here we define the collocations, XP
p ≡ φp(xP ) and Y P

A ≡ wPχA(xP ). Now, collecting

a useful intermediate,

ZPQ ≡ Y P
A (A|ô|B)Y Q

B , (59)

we arrive at the X-THC representation,217

(pq|rs) = XP
p X

P
q Z

PQXQ
r X

Q
s . (60)

I.e., an exact and separable compression of the N4
p integral tensor in terms of a

product of Np × 2Np collocation matrices and a 2Np × 2Np grid-to-grid interaction

matrix. Note that the operator ZPQ has a rich interpretation as the physical-space

collocation of a renormalized or “dealiased” ô operator which has been cleaned up by

projection through the auxiliary basis to remove components that lie outside the span

of the pair space. This renormalization allows the operator to be collocated at the

finite set of quadrature points without picking up any alias, regardless of the details

of ô.

Note that the auxiliary basis {χA(x)} and Gaussian quadrature {< xP , wP >}

must be chosen together to provide for an exact representation. If a larger auxiliary
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basis is selected, there will be less dealiasing of the ô operator, and a larger Gaussian

quadrature will be required to remove the remaining parts of the renormalized oper-

ator which lie outside the pair space. Moreover, the auxiliary basis must be chosen

to (at least) span the pair space, or the dealiasing step will falsely remove valid parts

of the ô operator which lie in the pair space. This will shortly explain the practical

failure of PS-THC vs. LS-THC.

For ND problems, a basis selected as a direct product of 1D polynomials will

exhibit an X-THC factorization of very similar structure as in the 1D case.

1.2.2.2 PARAFAC Tensor Hypercontraction

The first tractable THC-type representation of the ERI tensor in molecular electronic

structure theory was actually proposed in a somewhat obscure paper by Boys and

Rajagopal in 1966,36 and involved a form of double pseudospectral plus a heuristic

renormalization of the 1/r12 operator at short range based on intermediates often seen

in Boys’s work on analytical ERI formulae in Gaussian basis sets. This approach was

not widely adopted, primarily because of Boys’s other excellent work on analytical

integral evaluation, which proved to be much faster (and more accurate) for small

molecules than his THC proposal. That this elegant and extremely forward-looking

paper was overlooked is a considerable shame - for instance, we were not even aware

of this work’s existence until our fourth paper in the THC series.

In our own work, the first tractable THC-type representation of the ERI tensor

was PARAFAC tensor hypercontraction (PF-THC, earlier referred to as THC-DF).121

This approach starts from the SVS-form of DF within the overlap metric,299

(pq|rs) ≈ (pqA)(AB)−1(B|C)(CD)−1(Drs). (61)

Here (AB) are two-index overlap integrals,

(AB) ≡
∫
R3

d3r1 χA(~r1)χB(~r1), (62)
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and (pqA) are the all-important three-index overlap integrals,

(pqA) ≡
∫
R3

d3r1 φp(~r1)φq(~r1)χA(~r1). (63)

It is then noted that for a primary and auxiliary basis composed of exponentially

decaying functions, the three-center overlap integral tensor is sparse and low-rank,

and may be accurately represented by the PARAFAC decomposition,42

(pqA) ≈ XP
p X

P
q Y

P
A . (64)

Here P is a linear-scaling index whose size is specified by the user prior to locating

the X and Y factors. If we then define,

ZPQ ≡ Y P
A (AB)−1(B|C)(CD)−1Y Q

B , (65)

we arrive at a THC form,

(pq|rs) ≈ XP
p X

P
q Z

PQXQ
r X

Q
s . (66)

In PF-THC, no physical form for the X and Y factor tensors is proposed. Rather,

the PARAFAC decomposition of the three-center overlap integrals is asserted, and

later found to be accurate with a linear number of auxiliary factors P . The factors

X and Y are determined by Alternating Least Squares (ALS) PARAFAC decomposi-

tion.281 A random guess for X and Y is made. Then, the optimal X is determined by

least-squares fitting to the overlap integrals, under the current choice for Y . Next, the

optimal Y is determined for the new X. This procedure is continued until the factors

stop changing to within some threshold ε. It was found that mH accuracy could be

obtained for MP2 and MP3 correlation energies with a PARAFAC expansion with

twice the number of P factors as functions in the primary basis set.

One issue with PF-THC is the reliance on SVS-type DF in the overlap matrix,

which may be much less accurate than Coulomb-metric DF. This was later found

to not be a problem - one may also apply PF-THC within Coulomb-metric density
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fitting by taking the PARAFAC decomposition of the three-index Coulomb integrals

(pq|A). These integrals are less element-wise sparse than (pqA), but exhibit the

same PARAFAC-type rank-sparsity. However, by the time this realization occurred,

LS-THC had already superseded PF-THC as our preferred approach.

1.2.2.3 Pseudospectral Tensor Hypercontraction

A major issue with PF-THC was the large computational effort and reliance on a

random guess inherent in the PARAFAC decomposition of (pqA). It was quickly re-

alized that a physically-motivated and direct PARAFAC of (pqA) existed: quadrature

resolution on a molecular integration grid of the form {< ~rP , wP >},

(pqA) ≈ XP
p X

P
q Y

P
A , (67)

where XP
p ≡ φp(~rP ) and Y P

A ≡ wPχA(~rP ). This pseudospectral THC (PS-THC) was

implemented, but was surprisingly found to be practically inefficient - on the order

of 1000 points per atom were required for mH accuracy. An understanding of the

origins of the failure of PS-THC was provided by X-THC - in PS-THC, the auxiliary

basis and quadrature grids are chosen independently, precluding the existence of a

proper dealiasing step. For instance, one could imagine increasing the fidelity of the

auxiliary basis within a fixed molecular quadrature grid - this should presumably

make PS-THC more accurate, by lowering the underlying DF error. However, in the

limit of a complete auxiliary basis set, the PS-THC ZPQ operator trends to the raw

1/rPQ operator that plagues double pseudospectral theory, meaning that an infinite

quadrature grid is required. Thus, increasing the fidelity of the auxiliary basis actually

causes the PS-THC error to go up. In principle, the quadrature grid can also be made

larger to compensate, but in practice it was found that by the time mH accuracy is

achieved, the PS-THC grid is too large for practical deployment of the THC ERIs.

Note that one need not start from overlap-metric SVS DF for PS-THC. For in-

stance, one may start from Coulomb-metric DF i.e., (pq|rs) ≈ (pq|A)(A|B)−1(B|rs)
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and apply a PS-THC representation with XP
p as above and a Z operator chosen as,

ZPQ ≡ V P
A (A|B)−1V Q

B , (68)

where,

V P
A ≡ wP

∫
R3

d3r2
1

r2P

χA(~r2). (69)

This corresponds to applying the PARAFAC (pq|A) ≈ XP
p X

P
q V

P
A via quadrature in

~r1. This inherits the same problems as overlap-metric PS-THC, but was later used

accurately and effectively in the context of atomic symmetry-adapted perturbation

theory (A-SAPT)222 with much larger grids.

1.2.2.4 Least-Squares Tensor Hypercontraction

A much more accurate representation is least-squares THC (LS-THC),216 which arises

from the realization that in an X-THC-like scheme, one does not need the explicit

form of the renormalized interaction operator, but rather its collocation to the grid

points, i.e., the matrix elements ZPQ. In LS-THC, we determine ZPQ to provide for

the minimal vector 2-norm of the residual of the THC ERIs, e.g., the Z operator that

minimizes the sum of the squares of the error of the approximate integrals. This is

accomplished by minimizing the quadratic positive-definite metric,

O(ZPQ) =
1

2

∥∥(pq|rs)−XP
p X

P
q Z

PQXQ
r X

Q
s

∥∥2

F . (70)

Owing to the linearity of the THC ERIs in Z, there exists an analytical solution,

ZPQ =
[
XP
pqX

P ′

pq

]−1

︸ ︷︷ ︸
[SPP ′ ]

−1

XP ′

p′q′(p
′q′|r′s′)XQ′

r′s′︸ ︷︷ ︸
EP ′Q′

[
XQ′

rsX
Q
rs

]−1

︸ ︷︷ ︸
[SQ′Q]

−1

. (71)

In the above SPP
′

is the grid metric matrix, and accounts for the differing spans of

the pair space and grid space. The matrix EP ′Q′ is the projection of 1/r12 through

the pair space and from there onto the raw quadrature grid (the dealiasing step). The

formation of EP ′Q′ is the rate-limiting step in the factorization - this scales as O(N5)
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if exact ERIs are used, or O(N4) if DF ERIs are decomposed, using any choice of

metric.

One ambiguity in LS-THC is the use of the quadrature grid weights - if the com-

putations were carried out at infinite precision, it would not matter what weights

were applied in the collocation matrix, as the least-squares fitting procedure effec-

tively determines its own weights. However, in practice, the grid metric matrix SPP
′

is extremely ill-conditioned, due to redundant linear combinations of grid points. In

these cases, it is considered best practice to construct the metric matrix so that its

eigenvalues convey the magnitude of physical significance of each eigenvector, and

then to discard contributions from eigenvalues below a certain threshold when form-

ing matrix powers. Typically, small eigenvalues are discarded to provide for a given

relative condition number in the metric matrix, e.g., to use the part of the metric that

provides for a relative condition number of 1010. In an atom-centered Becke-type grid

(discussed above in the review of PS theory), this can be accomplished by exploiting

the information contained in the quadrature grid weights {wP}. We have found that

the choice XP
p ≡ 4

√
wPφp(~rP ) makes sense topologically (as it allows the quadrature

grid to integrate the pair-space overlap matrix exactly once if no least-squares fitting

is applied), and significantly improves the condition number of SPP
′
. Moreover, this

application of weights imparts knowledge of the volume element into the grid metric

matrix, providing for a more-physically-sensible elimination of redundant combina-

tions of grid points in the pseudoinversion.

Note that besides a grid-based renormalization process, LS-THC can also be

viewed as the first stage of a more-general ALS PARAFAC decomposition wherein

both the X and Z tensors are optimized,

O(ZPQ, XP
p ) =

1

2

∥∥(pq|rs)−XP
p X

P
q Z

PQXQ
r X

Q
s

∥∥2

F . (72)

The solution of this latter “optimal THC” or OT-THC procedure would necessarily

require an iterative procedure due to the nonlinear couplings between and within the
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X and Z tensors, but might provide better accuracy than LS-THC. As it is, LS-THC

is very simple because it is only the first stage in OT-THC, but proves to be quite

accurate because a physically-motivated choice was made for the “guess” of the factor

tensor XP
p .

In practice, LS-THC has proven to be markedly accurate and robust in small grids

with at most a few hundred points per atom. For example, in our first study on the

method, LS-THC-MP2/cc-pVDZ correlation energies were found to be accurate to

roughly 0.05 kcal mol−1 in molecular systems with roughly 60 atoms, using grids with

roughly 150 points per atom. Note that no serious attempt was made to optimize the

grids for this paper - optimized grids with half as many points have been found to

provide comparable accuracy.217,154 Moreover, the errors in energy differences com-

puted with LS-THC ERIs generally benefit from favorable error cancellation of at

least one order of magnitude,154 as is seen with DF methodology.

1.2.2.5 Weighted Least-Squares Tensor Hypercontraction

There exists an interesting dichotomy between DF and LS-THC - both employ a least-

squares fitting procedure, but the nature of the objective function is quite different

between the two cases. One particularly extreme exposition of the difference is that,

for a set DF auxiliary basis or LS-THC quadrature grid, the DF approach can “cheat”

and continue to provide accurate chemical results if the primary basis is expanded,

while the LS-THC approach will necessarily diminish in accuracy as the primary basis

is expanded. The origin of this effect stems from the nature of the least-squares fitting

equations. For DF, the fitting is separately optimized for each pair-space function.

E.g., if we apply DF to a primary basis including the pair-space function ρpq(~r), and

then expand the basis to also include ρp′q′(~r) pair-space functions, the fit for the ρpq(~r)

function is unchanged. This is not the case in LS-THC - all of the pair-space residuals

contribute to a joint objective function. This implies that when the pair space span
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is increased, LS-THC compromises by making a larger error for all integrals. Thus,

LS-THC does not possess one of DF’s best strengths - that the auxiliary basis may be

constructed to provide for the highest accuracy in integrals that are likely to be most

relevant to chemical observables while tolerating larger relative error in less-important

integrals.

Weighted LS-THC (W-LS-THC)223 is designed to partially overcome this prob-

lem. In this scheme, we modify the LS-THC objective function by including weights

to inform the least-squares fitting procedure of the expected relative importance of

various integrals. For instance, if a set of weights {ξp} exists which encapsulates the

importance of each orbital p (in any desired rotation of the orbital basis), the LS-THC

objective function may be modified as,

O(ZPQ) =
1

2

∥∥ξpξqξrξs [(pq|rs)−XP
p X

P
q Z

PQXQ
r X

Q
s

]∥∥2

F . (73)

This implies only a minor modification of the formula for the W-LS-THC ZPQ,

ZPQ =
[
XP
pqξ

2
pqX

P ′

pq

]−1

︸ ︷︷ ︸
[SPP ′ ]

−1

ξ2
p′q′X

P ′

p′q′(p
′q′|r′s′)XQ′

r′s′ξ
2
r′s′︸ ︷︷ ︸

EP ′Q′

[
XQ′

rs ξ
2
rsX

Q
rs

]−1

︸ ︷︷ ︸
[SQ′Q]

−1

, (74)

where ξ2
pq = ξpξpξqξq.

The initial application of W-LS-THC was THC-CCSD. In this approach, an MP2

natural orbital (NO) computation295 is first performed as a model for the forthcoming

(and much more expensive) CCSD computation.239,270 The MP2 NOs provide a ro-

tation of the occupied and virtual spaces to a basis in which the contributions to the

correlation energy diminish at a near-maximal rate (the NO eigenbasis), along with a

metric for how much each NO function contributes to the correlation process (the NO

eigenvalue or occupation, ηp). For reasons of dimensionality, the square roots of the

occupations are the appropriate weights for W-LS-THC, e.g., ξp ≡
√
|ηp|, with the W-

LS-THC fitting performed in the MP2 NO basis. This approach was found to reduce

the errors of THC-CCSD by a factor of tenfold relative to standard LS-THC without
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any increase in computational complexity, and is particularly critical in larger basis

sets such as cc-pVTZ. One can view this overall idea as a machine learning approach

- the MP2 computation provides a cheap model to discover the relevant portions of

the orbital space, following which the more-expensive CCSD model is applied with

an acceleration scheme that takes advantage of the knowledge obtained in the MP2

stage of the computation.

1.2.3 Tensor Hypercontraction Publications

The remainder of this half of the thesis document consists of four papers detailing

the development and deployment of THC ERIs in electronic structure theory. These

works include,

1. The development and interpretation of X-THC integrals within Hermite func-

tion basis sets, adapted from Ref. 218.

2. The development of LS-THC ERIs and deployment in THC-MP2, adapted from

Ref. 216.

3. The introduction and exploration of new grid technologies for LS-THC ERIs in

the context of THC-MP2, adapted from Ref. 217.

4. The development of W-LS-THC and practical application to THC-CCSD, adapted

from Ref. 223.

The interested reader is referred to the other papers in this series,

1. Our original THC paper, describing PF-THC and applications to O(N4) MP2

and MP3.121

2. The use of the LS-THC factorization for the compression of wavefunction am-

plitudes to produce O(N4) CCSD and related methods.122

3. The application of LS-THC ERIs to provide O(N4) THC-CC2.119
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4. The application of LS-THC ERIs to provide O(N4) THC-EOM-CC2 for excited

states.120
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CHAPTER II

EXACT TENSOR HYPERCONTRACTION

The following is adapted from Ref. 218.

2.1 Abstract

Configuration-space matrix elements of N -body potentials arise naturally and ubiq-

uitously in the Ritz-Galerkin solution of many-body quantum problems. For the

common specialization of local, finite-range potentials, we develop the eXact Tensor

HyperContraction (X-THC) method, which provides a quantized renormalization of

the coordinate-space form of the N -body potential, allowing for a highly separable

tensor factorization of the configuration-space matrix elements. This representation

allows for substantial computational savings in chemical, atomic, and nuclear physics

simulations, particularly with respect to difficult “exchange-like” contractions.

2.2 Introduction

The physics of many-body quantum systems is often captured by local, finite-range

N -body potentials V̂ (x1, . . . ,xN), where x is any convenient parametrization of the

physical space, e.g., position space (x ≡ r) or momentum space (x ≡ k). Given

some real, finite, one-particle Ritz-Galerkin basis set {ψi(x)}, the configuration-space

representation of V̂ is the integral tensor,

〈i . . . n|V̂ |i′ . . . n′〉 =

∫
dx1 . . .

∫
dxN (75)

ψi(x1) . . . ψn(xN)V̂ (x1, . . . ,xN)ψi′(x1) . . . ψn′(xN).
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The generation, manipulation, and storage of this tensor is a major hurdle in many-

body quantum simulations. In order to overcome the computational difficulties inher-

ent to such high order tensors, it is common to introduce simplifying approximations.

For example, the Slater approximation280 has been applied to reduce the numerical

expense of treating exchange terms involving the local, two-body Coulomb potential.

Unfortunately, such approximations can fail, as exemplified by the often spectacular

self-interaction errors induced by local approximations to exchange interactions227.

Another canonical example is nuclear density functional theory (DFT), in which even

more severe approximations are often invoked, e.g., the substitution of actual three-

body potentials by density-dependent two-body terms306, and the use of zero-range

two-body Skyrme-like potentials278 in place of the more realistic finite-range two-

body Gogny potential59. These approximations often lead to qualitative errors such

as divergences in the two-body pairing channel209, instabilities in random-phase ap-

proximation computations with zero-range three-body forces30, and the breakdown

of standard post-mean-field methods65,66,166,26 for potentials with fractional density

dependences. It is clear that an improved technique for faithful and direct treatment

of arbitrary local potentials would be preferable to computationally-motivated range

limitation and truncations.

In this Letter, we show that an exact and separable decomposition exists for any

local potential in a finite basis set built from polynomial functions in any desired pa-

rameterization of the physical space. This decomposition is motivated by our recently

introduced Tensor HyperContraction (THC) method for electronic structure121,216,122,

which provided a phenomenological approximation for the electron repulsion integrals

involving the Coulomb potential in non-polynomial basis sets. The new eXact Tensor

HyperContraction (X-THC) representation reveals two points of great importance

for both electronic and nuclear structure problems. First, THC approximation of the

Coulomb interaction is exact for basis sets which can be expressed in polynomial form
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(and thus the approximation in electronic structure arises only because the basis func-

tions used were of non-polynomial form). Secondly, THC approximation is applicable

not only to the two-body Coulomb interaction but also to arbitrary local potentials

commonly encountered in nuclear structure (such as the Coulomb, Gogny, local forms

of realistic three-body potentials, etc.). Since the nuclear problem is already com-

monly formulated in terms of polynomial basis sets, this implies that many problems

in nuclear structure can now be treated exactly with the lossless scaling reduction

afforded by the X-THC representation. The first of these points may aid markedly in

the search for more efficient THC approximations in electronic structure, while the

second may yield unprecedented physical fidelity in nuclear structure computations

(especially within the context of nuclear DFT).

Below, we first demonstrate the key features of the X-THC representation through

the representative example of a one-dimensional, two-body problem in Cartesian co-

ordinates using Hermite functions. The D-dimensional, N -body generalization of

X-THC is then presented. Finally, we present an example implementation of X-THC

for the finite-range Gaussian potential in a basis of Hermite functions, demonstrating

that X-THC is both lossless and markedly efficient in practice.

2.3 Theory

2.3.1 X-THC Example

Consider a one-dimensional (D = 1) problem in Cartesian coordinates, involving a

finite basis of M + 1 Hermite functions {ψi(x)} (labeled from 0 to M) with a local

two-body (N = 2) potential V̂ ≡ V̂ (x1, x2). The potential matrix elements are,

〈ij|V̂ |i′j′〉 ≡
∫∫

dx1 dx2 (76)

ψi(x1)ψj(x2)V̂ (x1, x2)ψi′(x1)ψj′(x2).

The first stage in X-THC is to note that all (M + 1)2 products ψi(x1)ψi′(x1) are

exactly spanned by an orthonormal “auxiliary” basis {χA(x1)} consisting of 2M + 1
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Hermite functions with a slightly modified spatial range, χA(x1) ≡ ψA(
√

2x1),

ψi(x1)ψi′(x1) =
∑

A[ii′A]χA(x1), (77)

where,

[ii′A] ≡
∫
R

dx1 ψi(x1)ψi′(x1)χA(x1). (78)

This resolution is well known in the context of nuclear physics38,294,90, and is analogous

to the popular Density Fitting (DF) procedure of electronic structure theory324,67,299.

In this context, the decomposition is exact thanks to the closure properties of the

polynomial-based Hermite functions. The integrals are now given as,

〈ij|V̂ |i′j′〉 =
∑
AB

[ii′A][jj′B]GAB, (79)

where,

GAB ≡
∫∫

R2

dx1 dx2 χA(x1)χB(x2)V̂ (x1, x2). (80)

Thus, the fourth-order integral tensor is expressed as a product of second- and third-

order tensors. Even though we have compressed the fourth-order tensor, this rep-

resentation still precludes scaling reduction in “exchange-like” terms. A canonical

example of such a term is the pairing field in Hartree-Fock-Bogoliubov theory,

∆ij ≡
∑
i′j′

〈ij|V̂ |i′j′〉κi′j′ =
∑
ABi′j′

[ii′A][jj′B]GABκi′j′ , (81)

where κ is the pairing tensor. Despite the factorization, computing this term still

scales as O(M4) = O(M2ND).

The critical step in THC is to resolve the three-index overlap integral [ii′A] to

“unpin” the indices i and i′ across some additional linear-scaling index P . That is,

we seek a decomposition of the form [ii′A] =
∑

P X
P
i X

P
i′ Y

P
A , where the range of P

is O(M). Thanks to the choice of a polynomial basis, the overlap integral is exactly

integrated by a 2M + 1-node Gaussian quadrature (in this case, Gauss-Hermite)
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defined by the nodes and weights {< xP , wP >}2. Therefore, the quadrature grid

index provides a natural decomposition of the overlap integral,

[ii′A] =
∑
P

wPψi(xP )ψi′(xP )χA(xP ) =
∑
P

XP
i X

P
i′ Y

P
A , (82)

where XP
i ≡ ψi(xP ) and Y P

A ≡ wPχA(xp). This is reminiscent of the discrete variable

representation103,61,177,19 or pseudospectral80 techniques of chemical physics. Defining

the intermediate ZPQ =
∑

AB Y
P
A G

ABY Q
B , the full integral (76) is thus expressed as,

〈ij|V̂ |i′j′〉 =
∑
PQ

XP
i X

Q
j Z

PQXP
i′X

Q
j′ . (83)

This X-THC representation of the integral tensor is the key for the exact O(M3) =

O(MND+1) treatment of the pairing term, via several intermediate summations, in-

dicated here by brackets for clarity,

∆ij =
∑
PQi′j′

XP
i X

Q
j Z

PQXP
i′X

Q
j′ κi′j′ (84)

=
∑
P

XP
i

[∑
Q

XQ
j

[
ZPQ

[∑
i′

XP
i′

[∑
j′

XQ
j′ κi′j′

]]]]
.

2.3.2 Interpretation

At first glance, the Z operator is a mere mathematical intermediate, but there exists

a much richer interpretation: it is a quantized renormalization of the coordinate-

space representation of the potential operator V̂ . To see this, we first consider the

continuous, renormalized potential operator V̄ , defined as,

V̄ (x1, x2) ≡
∑
AB

χA(x1)χB(x2)GAB. (85)

This operator is not equivalent to the original in physical space, i.e., V̂ (x1, x2) 6=

V̄ (x1, x2), yet the matrix elements of both operators are identical, i.e., 〈ij|V̂ |i′j′〉 =

〈ij|V̄ |i′j′〉. The renormalized operator is simply the raw operator V̂ with all compo-

nents outside of the finite product space {ψi(x1)ψi′(x1)} ⇔ {χA(x1)} projected out
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in each coordinate. This projection is serendipitous: the coordinate-space integrand

involving V̄ and the products of basis functions are exactly resolved by the Gaussian

quadrature for the auxiliary basis, while the corresponding integrand for V̂ is not

exact under any finite quadrature due to the presence of “alias” components outside

of {ψi(x1)ψi′(x1)}. Applying the Gaussian quadrature, we can quantize the renor-

malized operator V̄ to produce the discrete operator Ṽ , adding quadrature weights

to account for the spatial contribution of each point,

Ṽ (x1, x2) ≡ wPwQδ(x1 − xP )δ(x2 − xQ)V̄ (x1, x2). (86)

As with V̄ , the matrix elements of Ṽ are identical to those of V̂ . Integrating Ṽ instead

of V̂ naturally exposes the X-THC factorization,

〈ij|V̂ |i′j′〉 = 〈ij|Ṽ |i′j′〉 (87)

=

∫∫
dx1 dx2 ψi(x1)ψj(x2)Ṽ (x1, x2)ψi′(x1)ψj′(x2)

=
∑
PQ

XP
i X

Q
j Z

PQXP
i′X

Q
j′ .

Here, the elements ZPQ are simply the quantized values of the renormalized potential,

with the weights rolled in, i.e., ZPQ = wPwQV̄ (xP , xQ). An example involving a

Gaussian potential in Hermite functions is shown in Figure 1. The renormalized

potential (right) clearly shows the effects of projection from the raw potential (left).

The locations of the quantization to ZPQ (the positions at which V̄ can be discretized

in a lossless manner) are indicated with small white x’s on the right.

This understanding of the Z operator reveals that while X-THC is built from DF

and DVR techniques, the resultant supersedes both of the originals. In the context of

local potentials and polynomial basis sets, DF is always exact, but does not provide

separability of the i and i′ indices, precluding scaling reductions. DVR techniques

do provide separability, but are only exact when an infinite quadrature is used, for

an arbitrary choice of local potential. By contrast, X-THC’s particular merger of
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Figure 1: Example of the X-THC process for a one-dimensional, two-body Gaus-
sian potential V̂ (x1, x2) = exp(−x2

12) in Hermite functions {ψi(x)} up to M = 5.
Left: raw V̂ (x1, x2). Right: renormalized, quantizable V̄ (x1, x2). White x’s indicate
the collocation locations of the Gauss-Hermite quadrature to the quantized operator
Ṽ (x1, x2).

DF and DVR yields a perfect dealiasing renormalization within a finite quadrature,

providing a decomposition that is both exact and separable for an arbitrary choice of

local potential.

2.3.3 Generalized X-THC

The generalization of the one-dimensional, two-body, Hermite function example above

to N -body potentials in D-dimensions and other choices of polynomial direct-product

bases is straightforward. For X-THC to hold, the one-particle basis must be of the

D-dimensional direct-product polynomial type, i.e., ψi(r) ≡
∏D

µ=1 Piµ(rµ)vµ(rµ). In

each dimension µ, Piµ is a polynomial of up to degree iµ, and vµ is an arbitrary weight

function (analogous to the Gaussian term in the Hermite functions above). Such basis

sets are widely used in atomic and nuclear many-body physics in various coordinate

systems. Use of a direct-product polynomial basis automatically guarantees closure:

for the Mµ + 1 functions in the µth dimension, the span < ψiµ(rµ)ψi′µ(rµ) > lies

wholly inside a 2Mµ + 1-function auxiliary basis, defined by a set of polynomials

orthogonal with respect to the weight |vµ(rµ)|4. Additionally, all quadratic products

of auxiliary functions are exactly integrated by a 2Mµ + 1-node Gaussian quadrature

{< rPµ , wPµ >} which can always be found, e.g., by the Golub-Welsch algorithm91.
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These properties allow for the X-THC factorization,

〈i . . . n|V̂ |i′ . . . n′〉 = (88)

∑
P ...W

XP
i . . . X

W
n Z

P ...WXP
i′ . . . X

W
n′ ,

with each XP
i being the direct product of the D underlying X

Pµ
iµ

. ZP ...W is the

generalization of ZPQ to the case with N -body auxiliary integrals GA...N .

Within the X-THC representation, the representative generalization of the pair-

ing term, ∆i...n ≡ 〈i . . . n|V̂ |i′ . . . n′〉κi′...n′ , now scales as O(MND+1
µ ), rather than

O(M2ND
µ ), with no approximation or restriction on the form of the local, finite-range

potential V̂ .

It is worth noting that common techniques to reduce the cost of treating exchange-

like terms involve approximating the potential to be direct-product separable over

Nw terms, e.g., by approximating the Coulomb operator as a sum of separable Gaus-

sians64,253. This reduces the conventional or DF cost of forming the generalized pairing

tensor to O(MND+N
µ ). X-THC can be applied to this approximate separable poten-

tial, producing an O(MND+1
µ ) implementation. However, the separable form gives

no particular scaling advantage in the X-THC formalism, and can only reduce the

prefactor and memory requirements. A more severe approximation is the invocation

of a zero-range potential. This is typically formulated as a DVR-type quadrature in

coordinate space, which can be exact depending on the form of the zero-range op-

erator63. The asymptotic scaling of a pairing term involving a zero-range potential

is O(MND+1
µ ), due to the first or last transformation into or out of the grid index.

Remarkably, this is the same asymptotic scaling as X-THC. The zero-range potential

will generally have lower prefactor than X-THC (as there is only one grid coordinate

in the zero-range potential), but the asymptotic scalings are identical, and thus the

tractability limits should be comparable. A summary of the scaling reductions af-

forded with various factorization approaches and local potentials is shown in Table
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1.

Table 1: Computational scalings for the pairing term of an arbitrary local potential
in several approaches. Mµ is the order of the polynomial basis in the µth degree of
freedom, and the potential is N -body in D dimensions. For simplicity, we consider
the isotropic case where Mµ is the same in all dimensions in this comparison. Nw is
the number of terms retained in a separable approximation to the potential.

Approach General Local Separable Local Zero-Range
Conventional O(M2ND

µ ) O(NwM
ND+N
µ ) O(MND+1

µ )
X-THC O(MND+1

µ ) O(NwM
ND+1
µ ) O(MND+1

µ )

2.3.4 Practical Demonstration

To illustrate the numerical equivalence and practical utility of the X-THC approach,

a hybrid MATLAB/C++ code was developed to produce generalized pairing fields

for D-dimensional, N -body forces in Hermite functions. A complete description of

the code is presented in the supplemental material.

We have verified that the X-THC generalized pairing fields are exact within ma-

chine precision (as expected mathematically). Figure 2 shows the computational

gains which can be achieved from the X-THC factorization using a representative

example of N = 2 and D = 1, 2, 3. For a general local potential, X-THC is several

orders of magnitude faster than conventional approaches for the largest Mµ studied

here. When the potential is written in separable form, the X-THC scaling advantage

is less dramatic, but X-THC becomes less costly for the largest Mµ used in Figure

2. The X-THC approach allows one to retain the general local potential and calcu-

late the exact pairing tensor in similar (or even less) computational effort as with an

approximate separable potential.
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Figure 2: Wall times for pairing tensor formation as a function of Mµ for N = 2
(log-log scale). Nw = 8 for the separable potential.

2.4 Summary and Outlook

In this Letter, we have demonstrated that an exactly quantized renormalization of

any local, finite-range N -body potential exists in any situation where the primary ba-

sis set may be composed of polynomial-based functions. This X-THC representation

provides for substantial computational scaling reduction of contractions involving the

local potential integral tensor, for instance by reducing the formation of a represen-

tative generalization of the pairing tensor from O(M2ND
µ ) to O(MND+1

µ ).

In electronic structure, the concept of X-THC helps to codify and rationalize

our existing Least-Squares Tensor HyperContraction (LS-THC) approximation for

non-polynomial basis sets216. The least squares procedure introduced in that work

actually performs an implicit renormalization of the potential. Since the basis sets

used in our previous applications of LS-THC were not direct products of polynomials

(but rather atom-centered Gaussian functions), the decomposition was necessarily an
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approximation. As the X-THC limit is approached, the fidelity of the approximation

will depend on both the basis set resemblance to a set of polynomial-based functions

and the efficiency of the quadrature. The physical picture provided by X-THC’s

explicit renormalization process will almost certainly aid in the search for enhanced

approximate THC recipes for non-polynomial basis sets.

In nuclear structure, the potential applications for X-THC are immediate and

substantial. A crucial finding of this work is that the formal scaling of operations

involving arbitrary local potential operators is identical to that of zero-range op-

erators, without any loss in accuracy. This implies that the finite-range two-body

Gogny potentials of nuclear DFT can immediately be applied with the same compu-

tational complexity as the more approximate zero-range Skyrme potentials. Tractabil-

ity gains should be even more marked for three-body potentials, paving the way for

Hamiltonian-based nuclear energy densities derived from effective, local, finite-range

two- and three-nucleon pseudopotentials, which would be free of the current artifacts

of zero-range nuclear DFT.
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CHAPTER III

LEAST-SQUARES TENSOR HYPERCONTRACTION

The following is adapted from Ref. 216.

3.1 Abstract

The Least-Squares Tensor HyperContraction (LS-THC) representation for the Elec-

tron Repulsion Integral (ERI) tensor is presented. Recently, we developed the generic

Tensor HyperContraction (THC) ansatz, which represents the fourth-order ERI ten-

sor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and

T. J. Mart́ınez, J. Chem. Phys., 137, 044103 (2012)]. Our initial algorithm for

the generation of the THC factors involved a two-sided invocation of overlap-metric

density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC

Tensor HyperContraction (PF-THC). LS-THC supersedes PF-THC by producing the

THC factors through a least-squares renormalization of a spatial quadrature over the

otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for

the LS-THC factors exists. Using this formula, the factors may be generated with

O(N5) effort if exact integrals are decomposed, or O(N4) effort if the decomposi-

tion is applied to density-fitted integrals, using any choice of density fitting metric.

The accuracy of LS-THC is explored for a range of systems using both conventional

and density-fitted integrals in the context of MP2. The grid fitting error is found

to be negligible even for extremely sparse spatial quadrature grids. For the case of

density-fitted integrals, the additional error incurred by the grid fitting step is gen-

erally markedly smaller than the underlying Coulomb-metric density fitting error.

The present results, coupled with our previously published factorizations of MP2

and MP3, provide an efficient, robust O(N4) approach to both methods. Moreover,
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LS-THC is generally applicable to many other methods in quantum chemistry.

3.2 Introduction

The Electron Repulsion Integral (ERI) tensor is,290

(µν|λσ) =

∫∫
R6

φµ(~r1)φν(~r1)
1

r12

φλ(~r2)φσ(~r2) d3r1 d3r2, (89)

where the indices µ, ν, λ, and σ refer to atomic orbital (AO) basis functions. Writ-

ten in chemists’ notation as above, the ERI tensor is easily seen to represent the

Coulomb interaction between the generalized charge densities ρµν(~r1) = φµ(~r1)φν(~r1)

and ρλσ(~r2) = φλ(~r2)φσ(~r2).

The ERI tensor is a formidable source of complexity in electronic structure theory,

due to the immense computational cost of integral generation, the heavy storage re-

quirements, and the ungainly presence of the ERIs in tensor contraction operations.

To reduce this complexity, many authors have developed numerical approximation

techniques ranging from sparsity considerations105,167,191 to multipole moment ap-

proaches322,323,287 to density fitting (DF, also known as resolution of the identity

or RI)324,67,68,299,245,144,312 or Cholesky decomposition (CD)24,254,151,8,6 compression to

pseudospectral (PS) representation.80,81,82,83,251,250,93,188,190,187,187,85,150,208,162

Of these techniques, density fitting/Cholesky decomposition and pseudospectral

representation are particularly relevant to this study. Density fitting,324,67,68,299,245,144,312

which has many conceptual similarities to Cholesky decomposition,24,254,151,8,6 ex-

ploits the fact that the generalized densities ρµν(~r1) = φµ(~r1)φν(~r1) are often largely

redundant and can be approximately represented with an auxiliary basis {χA(~r1)},

comprised of O(N) functions,

φµ(~r1)φν(~r1) ≈ dAµνχA(~r1). (90)

Here dAµν are the density fitting coefficients, which are typically determined by least-

squares fitting with respect to the 1/r12 fitting metric (the Coulomb metric), leading
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to a factorization of the form,

(µν|λσ) ≈ (µν|A)(A|B)−1(B|λσ) = (µν|A)(A|C)−1/2(C|B)−1/2(B|λσ) = βCµνβ
C
λσ.

(91)

The Einstein summation convention is used here and throughout this paper, i.e. there

is an implicit sum over the repeated indices A, B, and C, which represent auxiliary

basis functions. The integrals are defined as,

(µν|A) =

∫∫
R6

φµ(~r1)φν(~r1)
1

r12

χA(~r2) d3r1 d3r2, (92)

and,

(A|B) =

∫∫
R6

χA(~r1)
1

r12

χB(~r2) d3r1 d3r2. (93)

The factorization of Equation 91 exploits the low-rank interactions between the gen-

eralized densities, and is able to reduce the fourth-order ERI tensor to the product

of two third-order tensors by separating µν from λσ. However, the indicies µ and ν

(and similarly λ and σ) remain “pinned” to each other, preventing reduced scaling fac-

torizations of “exchange-like” terms, such as the exchange potential of Hartree-Fock

theory,

Ks
µν = (µλ|σν)Ds

λσ, (94)

where Ds
λσ is the one-particle density matrix corresponding to electrons of spin s. As

with all exchange-like terms, the contraction indices for this term (λ and σ) appear

on both sides of the chemists’ ERI, precluding an O(N3) factorization with density

fitting, because the µ and λ (and likewise σ and ν) indices remain pinned in the DF

approximation.

A conceptual improvement over density fitting is the pseudospectral method,80,81,82,83,251,250,93,188,190,187,187,85,150,208,162

which integrates over one of the electronic coordinates using a numerical quadrature

in physical space (with gridpoints ~rP and quadrature weights wP ), leading to,

(µν|λσ) ≈ wPR
P
µR

P
ν A

P
λσ. (95)
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The collocation matrix in this expression is defined as,

RP
µ = φPµ (~rP ), (96)

and the grid representation of the Coulomb potential is,

APλσ =

∫
R3

1

r2P

φλ(~r2)φσ(~r2) d3r2. (97)

One aspect of the pseudospectral method which distinguishes it from previous quadra-

ture methods used in electronic structure theory is replacement of one of the collo-

cation matrices by a least-squares fitting matrix Q that guarantees the numerical

procedure will reproduce the matrix of overlap integrals,

(µν|λσ) ≈ QP
µR

P
ν A

P
λσ, (98)

where Q is determined as,

QP
µ = Sµξ

[
RQ
ξ wQR

Q
η

]−1

RP
η wP . (99)

Here Sµξ is the overlap metric between basis functions φµ and φξ. This factorization

is able to separate µν from λσ, and also “unpins” the indices µ and ν, thus expressing

the ERI tensor as a product of one third-order and two second-order tensors. This

finally allows for the exchange potential to be factorized so that it can be evaluated

in O(N3) operations,

Ks
µν = (µλ|σν)Ds

λσ ≈ QP
µ

[
APσν

[
RP
λD

s
λσ

]]
. (100)

This unpinning of indices is an extremely desirable property, as it allows factoriza-

tion of further equations that involve contraction of the integrals (for example, with

density matrices or wavefunction coefficients).187 Unfortunately, the pseudospectral

method as described so far does not provide sufficient accuracy for electronic structure

applications. Successful applications have required extensive dealiasing and analytic

integral corrections.81,93,208 The results can also be quite sensitive to the grids which
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are used. In practice, this means that successful applications of the pseudospectral

method require the development and optimization of both atomic grids and dealiasing

sets. Furthermore, many of the two-electron integrals need to be calculated analyti-

cally (e.g., integrals where two or more of the basis functions are located on the same

atomic center). Exploiting the factorization when some of the integrals need to be

treated as full four-index quantities requires very careful programming.

Recently, we developed the PARAFAC Tensor HyperContraction (PF-THC) rep-

resentation, which was the first method to provide full separability of the four indices

in the ERI tensor in O(N4) effort.121 The PF-THC representation of the ERI tensor

is,

(µν|λσ) ≈ XP
µX

P
ν Z

PQXQ
λ X

Q
σ . (101)

We consider this to be the characteristic factorization of all variants of THC. Here, X

and Z are second-order tensors, with P and Q each being a “decomposition index,”

analogous to the grid point indices in pseudospectral or the auxiliary basis function

indices in density-fitting approaches. In general, the range of these decomposition

indices should be proportional to the size of the basis set (with a modest proportion-

ality factor) if the approach is to be useful. In the PF-THC method, the symmetric

overlap-metric density fitting approximation is first invoked,299

(µν|λσ) ≈ (µνA)(AB)−1(B|C)(CD)−1(Dλσ), (102)

where the new integrals are,

(µνA) =

∫
R3

φµ(~r1)φν(~r1)χA(~r1) d3r1, (103)

and,

(AB) =

∫
R3

χA(~r1)χB(~r1) d3r1. (104)

The three-center overlap integrals (µνA) are then separated by a PARAFAC de-

composition,42 which is obtained in practice by an iterative alternating least-squares
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algorithm,281

(µνA) ≈ XP
µX

P
ν Y

P
A , (105)

where P is the new decomposition index, which is implicit in the PARAFAC proce-

dure. After forming the X and Y factors via PARAFAC, the intermediate Z matrix

is built as,

ZPQ = Y P
A (AB)−1(B|C)(CD)−1Y Q

D , (106)

which completes the factorization above. The factorization was used to produce

an implementation of MP2 and MP3200 with demonstrated scaling of O(N4). This

should be compared with the usual scaling behaviors of MP2 and MP3: O(N5) and

O(N6), respectively. Furthermore, we showed that this factorized form yielded chem-

ical accuracy in the energies when restricting the range of the decomposition index

P to twice the number of functions in the auxiliary density-fitting basis set.

The existence of a THC factorization which can be formed in O(N4) is sufficient

to provide significant scaling gains for many methods in electronic structure the-

ory; PF-THC already realizes this goal. However, several of the technical details in

PF-THC are improvable. Most obviously, the requirement of a generic PARAFAC

decomposition of the three-index overlap integral tensor mandates the use of an im-

plicit, iterative algorithm. While the prefactor of such a PARAFAC algorithm could

doubtless be improved by the implementation of a more advanced method than the

alternating least-squares algorithm used in our last paper, a highly desirable feature

of an alternative THC factorization would be the presence of an explicit factoriza-

tion. Besides greatly attenuating the overhead of the THC factorization, this property

would also facilitate the computation of analytic gradients and response properties.

Additionally, the PF-THC method of our last paper started from a double-overlap

density fitting approximation, which is generally found to be less accurate (for a given

number of auxiliary basis functions) than the preferred Coulomb-metric density fit-

ting. Thus, an alternative THC factorization that starts from either exact integrals
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or Coulomb-metric density fitting is highly desirable.

Herein, we develop Least-Squares Tensor HyperContraction (LS-THC), which pro-

vides an accurate, efficient alternative to PF-THC. LS-THC begins by invoking a nu-

merical quadrature in both electronic coordinates of the ERI, effectively attempting a

two-sided application of pseudospectral representation. Such a quadrature is always

numerically singular due to the presence of zeros in the denominator of 1/r12, so the

quadrature is renormalized by least-squares fitting against the desired electron repul-

sion integrals. Remarkably, an analytical formula for the renormalized quadrature is

obtained. This formula requires O(N5) operations if exact ERIs are fitted, or O(N4)

operations if the ERIs are instead approximated by density fitting. The preferred

Coulomb metric may be used in place of the overlap metric for this step. We detail

an algorithm for the formation of the LS-THC factors using either exact integrals

or DF integrals. The algorithm is flexible enough to allow distinct fits for subsets

of the two-electron integrals, which can increase the accuracy in correlated methods.

We also discuss the interpretation of LS-THC and PF-THC as two examples of a

much larger class of potential THC-type methods. Practically, we demonstrate the

error of LS-THC within our O(N4) THC-MP2 code, and find the grid fitting error

of LS-THC to be of the same order or or smaller than that of the Coulomb-metric

DF approximation, even when using coarse atom-centered quadrature grids (≈ 150

points/atom, i.e. ≈ 20 points/basis function). Finally, we close by commenting on

some of the potential applications for LS-THC within electronic structure theory.

A rather large number of classes of indices appear in this work, so we summarize

the majority below,

• µ, ν, λ, σ, ξ, η: Atomic Orbital (AO) basis indices, which in this work are atom-

centered contracted Gaussian functions. The size of these indices is given by

Nµ ∝ N , where N is the measure of system size (electrons or atoms).

• A,B,C: Auxiliary basis indices, which for DF are atom-centered Gaussian
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functions, and for CD are implicit arbitrary-center combinations of contracted

Gaussian functions. The size of these indices is given by NA ∝ Nµ.

• P,Q: “Decomposition” indices, which for PF-THC are an implicit basis found

by PARAFAC decomposition, and for LS-THC are points in a physical space

quadrature grid. The size of these indices is given by NP ∝ Nµ.

• i, j: Occupied Molecular Orbital (MO) basis indices, which, in this work, always

exclude core orbitals. The size of these indices is given by Nocc ∝ Nµ. MO-basis

terms with this index are preferred, as Nocc � Nvir ∼ Nµ, given reasonably large

basis sets.

• a, b: Virtual MO basis indices. The size of the these indices is given by Nvir ∝

Nµ. MO-basis terms with this index are avoided where possible, as Nvir ∼

Nµ � Nocc, given reasonably large basis sets.

• p, q, r, s: Arbitrary AO- or MO-basis indices or subsets thereof, used to gener-

alize LS-THC to AO or MO ERIs of a specific type. The size of these indices

Np depends on the class of orbital used, but is always ∝ Nµ.

Although all of the indices should have ranges which are ∝ Nµ, they each have

different prefactors. We expect that the size of the ranges can be ordered roughly as

N2
µ � NP > NA > Nµ > Nvir > Nocc. Finally, any mention of density fitting from

this point forward refers to the the preferred Coulomb-metric type; density fitting of

the two-sided overlap metric type was only used in the previous PF-THC method.
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3.3 Theory

3.3.1 Least-Squares THC

Näıvely, we might expect to find a THC-like representation of the ERI tensor by

two-sided quadrature as,

(µν|λσ) ≈ RP
µR

P
ν wP

1

rPQ
wQ︸ ︷︷ ︸

ZPQ

RQ
λR

Q
σ , (107)

where the collocation matrix is,

RP
µ = φµ(~rP ). (108)

Unfortunately, for any finite quadrature using the same grid on both sides, this ap-

proach will fail because of the Coulomb singularity for grid points where ~rP = ~rQ

(regardless of the choice for the quadrature weights w).

Therefore, we abandon a direct quadrature, and instead seek an implicit operator

Z which is optimal in a least-squares sense. Given a primary basis {φµ} and the

factor RP
µ , we wish to minimize,

O ≡ 1

2

∥∥∥(µν|λσ)−RP
µR

P
ν Z

PQRQ
λR

Q
σ

∥∥∥2

, (109)

with respect to the elements of Z. Below, the joint collocation is used for convenience,

RP
µν = RP

µR
P
ν . (110)

The stationary condition is,

∂O

∂ZP ′Q′
= −RP ′

µν∆µνλσR
Q′

λσ = 0, (111)

where the residual is,

∆µνλσ = (µν|λσ)−RP
µνZ

PQRQ
λσ. (112)

Inserting Equation 112 into Equation 111 and expanding yields,

RP ′

µν(µν|λσ)RQ′

λσ = RP ′

µ′ν′R
P
µ′ν′Z

PQRQ
λ′σ′R

Q′

λ′σ′ . (113)
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Leading finally to the analytical result,

ZPQ =
[
RP
µ′ν′R

P ′

µ′ν′

]−1

RP ′

µν(µν|λσ)RQ′

λσ

[
RQ′

λ′σ′R
Q
λ′σ′

]−1

. (114)

If NP is at least Nµ(Nµ+1)/2 (the maximum rank of the space of quadratic products

φµ(~r1)φν(~r1)), and if the joint collocation matrices are full rank, the two-electron

integral is exactly resolved, as,

RP
µν

[
RP
µ′ν′R

P ′

µ′ν′

]−1

RP ′

µ′′ν′′ = δµν,µ′′ν′′ . (115)

This property can be easily verified by substituting the full SVD of the joint collo-

cation matrix into the expression on the left-hand side. This provides an interesting

interpretation for LS-THC as resolving the identity δµν,µ′′ν′′ approximately, in a man-

ner that guarantees separability of the indices.

Note that while this procedure may be conceptually understood to start from a

two-sided invocation of the pseudospectral approximation (which one might expect to

be even less accurate than a one-sided invocation), the least-squares fitting procedure

endows the factors with explicit knowledge of the two-body operator used. This is not

present in even one-sided pseudospectral, so LS-THC may prove to be markedly more

accurate than pseudospectral methods, albeit at higher cost of factor determination.

A more thorough derivation which does not rely on the generalized Einstein con-

vention is available in the appendix.

3.3.2 Choice of Grid

Having outlined the generic LS-THC algorithm, a physical-space quadrature grid

(both gridpoints and their associated quadrature weights) must be provided to com-

plete the method. The grids selected for this study are of the atom-centered Becke

type,20,205,297,88 with modified radial quadratures that more properly reflect the distri-

bution of radial spatial ranges in the products of basis functions. Pruning is applied to

reduce the orders of the spherical Lebedev quadratures near the nuclei or tails, result-

ing in grids with approximately four times as many points as the number of auxiliary
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functions in the corresponding MP2 auxiliary basis. A more extensive study identi-

fying even sparser grids for use in LS-THC is forthcoming. However, the minimally

optimized grids used in this study already exhibit negligible errors, indicating that

the LS-THC fitting procedure is quite robust in dealing with a nearly arbitrary choice

of spatial quadrature grid. These grids are included in supplemental material for all

systems considered in this study.

3.3.3 Collocation Weighting

In practice, the physical space metric matrix S, defined as,

SPP
′ ≡ RP

µ′ν′R
P ′

µ′ν′ , (116)

can be numerically ill-conditioned for two reasons. First, the grid may include points

where all basis functions have negligible magnitude, e.g. in regions far from all the

nuclei in the molecule. Second, there could be true numerical redundancy between lin-

ear combinations of points, which should be eliminated. Typically, pseudoinversion is

invoked to deal with the latter problem. However, simply performing pseudoinversion

on the above quantity also discards information about the “tail regions” of the basis

functions. Even though the absolute magnitude of the basis function values at the

outermost grid points may be small, nevertheless the relative values for different basis

functions are meaningful. This information is valuable and it would be preferable not

to discard it. Thus, we have found it useful to re-weight the collocation matrices to

avoid penalizing points in the decaying regions due to their small absolute value. We

then use pseudoinversion to remove the remaining near linear dependencies.

Up to this point, we have not used the weights associated with the grid points for

quadrature grids. There are a number of ways to include these quadrature weights if

desired. Perhaps the simplest is to refer to Equation 101. As the collocation matrices

appear four times, associating the quadrature weights with the collocation matrices
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as,

XP
µ = 4

√
wPR

P
µ , (117)

ensures that the weight associated with the diagonal term (P = Q) is the expected

value. We find that incorporating the quadrature weights in the collocation matrices

in this way significantly improves the condition number of the grid metric, and this

definition is used in the results below. Here and throughout, we use X to denote

the generalized re-weighted collocation matrix. With this weighting applied, small

eigenvalues in the matrix S correspond to true near linear dependencies, and may be

safely ignored below some cutoff which is slightly larger than the machine epsilon. In

this work, we use a relative cutoff ε of 10−10 in the pseudoinversion,

[SPP
′
]−1 ≡ UPiλ

−1
i UP ′i : SPP

′
= UPiλiUP ′i, and λi > ελ1. (118)

Here λi is the i-th eigenvalue (all ≥ 0), and λ1 is the largest eigenvalue. The choice

of X and S−1 described above is used for all computations in this work.

3.3.4 Low-Rank Formation

In the construction of the LS-THC factors, the first step is the formation of the “grid

metric” inverse of S, [
SPP

′
]−1

=
[
XP
µ′ν′X

P ′

µ′ν′

]−1

. (119)

The formation of S scales as O(NµN
2
P ) ∝ O(N3), as we can exploit the definition of

the joint collocation matrices, XP
µν = XP

µX
P
ν ,

SPP
′
=
[
XP
µ′X

P ′

µ′

] [
XP
ν′X

P ′

ν′

]
. (120)

The inversion scales formally as O(N3
P ) ∝ O(N3). In practice, it might be possible

to reduce this considerably by exploiting sparsity, but we have not explored this.

Having discussed the formation and inversion of the grid metric matrices, the next

step needed for construction of ZPQ in Equation 114 is the formation of what we will
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call the E matrix,

EPQ = XP
µν(µν|λσ)XQ

λσ. (121)

This step scales as O(N4
µNP ) ∝ O(N5). Although such scaling might be acceptable

for some methods (where it replaces the integral transformation), it is surely not

acceptable for MP2 theory, as we have already developed a O(N4) THC-MP2 code,

presuming the THC factors are available. Conveniently, lower scaling can be easily

achieved in this step by replacing the true ERIs in Equation 101 by their density-fitted

approximations (in the Coulomb metric, as defined in Equation 91),

(µν|λσ) ≈ βCµνβ
C
λσ, (122)

we may form the E matrix as,

EPQ =

[
XP
µνβ

C
µν

][
βCλσX

Q
λσ

]
. (123)

This now scales as O(N2
µNANP ) ∝ O(N4). Note that since we are fitting the DF

ERIs in place of the exact ERIs, we expect the error to be bounded from below

by the underlying, but typically quite reasonable, DF error. Moreover, if additional

accuracy is required, but is limited by the DF error, the DF auxiliary basis may be

increased significantly, with increased computational cost incurred in the formation

of the LS-THC factorization, but not in the subsequent application of the LS-THC

factors.

The final step is the formation of the Z operator as,

ZPQ =
[
SPP

′
]−1

EP ′Q′
[
SQ
′Q
]−1

. (124)

This requires O(N3
P ) ∝ O(N3) operations.

3.3.5 MO-Basis Formation

In practice, it is often advantageous to perform the LS-THC fitting in the same basis

as the target method for LS-THC factorization, rather than fitting the AO-basis
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integrals and transforming the factors X. For example, in MP2, only integrals of the

type (ia|jb) appear. This yields two potential advantages.

1. The resultant Z operator will be tuned specifically to minimize the 2-norm

of the residual for the target ERIs, yielding enhanced accuracy by excluding

contributions to the residual from ERIs outside of the target space. Note that

this means that Z need not always be positive definite, nor even symmetric. In

fact, one could imagine using a different quadrature grid for each class of orbital

products, in which case the Z operators need not even be square.

2. The smaller size of one or more of the target indices with respect to Nµ (for

example, i) can be used to reduce the prefactor of the formation of the E matrix

in either exact or DF LS-THC.

In the computational algorithm section below, we will use the generic MO-basis in-

dices p, q, r, and s to denote that LS-THC fitting can be performed in an arbitrary

basis which spans the subset of ERIs required. In the practical demonstration of MP2

accuracy later, we will use LS-THC to fit only the integrals required in frozen-core

MP2, i.e., (ia|jb), where the innermost core occupied orbitals are excluded.

3.3.6 Computational Algorithm

Here, we detail efficient computational algorithms for the formation of the LS-THC

factors for a given set of generic integrals (pq|rs), which are obtained from the AO-

basis as,

(pq|rs) = Cp
µC

q
ν(µν|λσ)Cr

λC
s
σ. (125)

The C matrices are typically the Hartree-Fock orbital coefficients, though there is

certainly no restriction to this case. For our purposes, we will assume that the indices

are chosen so that p ≤ q and r ≤ s to minimize the floating pointer operation (FLOP)

count in the formation of the E matrix, e.g., that the relevant integrals for MP2 are

ordered (ia|jb) instead of (ai|bj).
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Algorithm 1 details the generic formation of the LS-THC factorization of the

ERIs. The choice of exact or DF ERIs is buried in the subroutines to form the

projection tensor E, which also contain the rate limiting O(N5) or O(N4) operations,

respectively. All other operations require at most O(N2) memory and O(N3) FLOPs,

with the eigendecomposition for the pseudoinversion of S expected to dominate. The

minimum required memory is essentially 3N2
P double precision variables.

Algorithm 1 Generic LS-THC algorithm.

1: procedure LS THC({φµ},XP
µ , Cp

µ, Cq
µ, Cr

µ, Cs
µ )

2: XP
t = Ct

µX
P
µ , t ∈ {p, q, r, s} . O(NµNpNP )

3: EP ′Q′ = Build E DF(. . .) or Build E Exact(. . .) . O(N4) [DF] or
O(N5) [Exact]

4: SPP
′
=
[
XP
p X

P ′
p

] [
XP
q X

P ′
q

]
. O(NpN

2
P )

5:
[
SPP

′]−1 ≡ UPiλ
−1
i UP ′i ∀ λi > ελ1 . Pseudoinversion, O(N3

P )

6: SQQ
′
=
[
XQ
r X

Q′
r

] [
XQ
s X

Q′
s

]
7:

[
SQQ

′]−1 ≡ UQiλ
−1
i UQ′i ∀ λi > ελ1 . Shallow copy

[
SPP

′]−1
if pq = rs

8: ZPQ =
[
SPP

′]−1
EP ′Q′

[
SQ
′Q
]−1

. O(N3
P )

9: return < XP
p , X

P
q , Z

PQ, XQ
r , X

Q
s >

10: end procedure

Algorithm 2 details one possible algorithm for the formation of the E matrix

in O(N5) operations using exact integrals and a conventional disk-based AO-to-MO

transformation. This algorithm requires O(N2) memory and O(N5) FLOPS, with

GEneralized Matrix Multiplication (GEMM) routines applicable for all of the FLOP-

heavy steps. As the O(N4) DF algorithm is preferred in practice, this algorithm is

not heavily optimized. Many other variants involving direct algorithms with various

levels of transformation exist, but are not pursued here.

Algorithm 3 shows the steps necessary to form the E matrix in O(N4) using DF

integrals. Note that the DF fitting is postponed to the very end of the computa-

tion, after the orbital indices have been projected onto the grid index. This avoids

storage of an O(N3) tensor, which would involve both disk I/O and an expensive

out-of-core transposition. As it stands, the algorithm requires O(N2) memory and
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Algorithm 2 Conventional algorithm for EP ′Q′ .

1: procedure Build E Exact( {φµ}, XP
p , XP

q , XP
r , XP

s , Cp
µ, Cq

µ, Cr
µ, Cs

µ )
2: Form (pq|rs) = Cp

µC
q
ν(µν|λσ)Cr

λC
s
σ . Disk AO-to-MO transform, O(N4

µNp)

3: Initialize EP ′Q′ = 0
4: for all blocks rsblock, bounded by memory do
5: Read (pq|rs) . O(N4

p )
6: for all blocks P ′block, bounded by memory do
7: ΓP

′
rs = XP ′

p X
P ′
q (pq|rs) . Rate limiting, O(N4

pNP )

8: EP ′Q′+ = ΓP
′

rsX
Q′
r X

Q′
s . O(N2

pN
2
P )

9: end for
10: end for
11: return EP ′Q′

12: end procedure

O(N4) FLOPs, with GEMM routines applicable for all of the FLOP-heavy steps.

The minimum required memory is essentially 3N2
A double precision variables.

Algorithm 3 Density-fitted algorithm for EP ′Q′ .

1: procedure Build E DF( {φµ}, XP
p , XP

q , XP
r , XP

s , Cp
µ, Cq

µ, Cr
µ, Cs

µ )

2: LP
′

ν = Cq
νX

P ′
q . O(NµNpNP )

3: LQ
′

σ = Cs
σX

P ′
s . O(NpNµNP )

4: for all blocks Ablock bounded by memory do
5: Build (A|µν) for the current block . O(N2

µNA)
6: (A|pν) = (A|µν)Cp

µ . O(N2
µNpNA)

7: (A|pP ′) = (A|pν)LP
′

ν . Rate-Limiting, O(NµNpNANP )
8: MP ′

A = (A|pP ′)XP ′
p . O(NpNANP )

9: (B|rσ) = (B|λσ)Cr
λ

10: (B|rQ′) = (B|rσ)LQ
′

σ

11: MQ′

B = (B|rQ′)XQ′
r . Shallow copy MP ′

A if pq = rs
12: end for
13: Build (A|B) . O(N2

A)
14: (A|B)−1 ≡ UAiλ

−1
i UBi : ∀ λi > ελ1 . Pseudoinversion, O(N3

A)

15: EP ′Q′ = MP ′
A (A|B)−1MQ′

B . O(NAN
2
P )

16: return EP ′Q′

17: end procedure

3.3.7 Optimal THC

It should be noted that the factor tensor XP
µ need not be related to a physical-space

grid, nor even defined explicitly at all. In fact, one might imagine that the ideal case
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would be, for a given size NP , to find the completely generic X and Z such that,

O ≡ 1

2

∥∥∥(µν|λσ)−XP
µX

P
ν Z

PQXQ
λ X

Q
σ

∥∥∥2

, (126)

is minimized, thus producing the optimal factorization in the 2-norm sense. For a

given NP , this Optimal Tensor HyperContraction (Opt-THC) decomposition is ex-

pected to be more accurate than the above LS-THC, as the X factors provide addi-

tional degrees of freedom over those in Z. Unfortunately, the coupled determination

of the X and Z factors lies outside the scope of even PARAFAC decomposition, and

therefore would require a custom (and likely quite costly) iterative O(N5) algorithm

to form. Nonetheless, Opt-THC is useful as a pedagogical tool, as it represents es-

sentially the maximum attainable accuracy and generality within the low-rank THC

structure of the ERI tensor. All other flavors of THC are specific derivatives which

remove one or more degrees of freedom from Opt-THC. LS-THC restricts the X

factor to be a predefined collocation factor corresponding to a physical-space grid,

but then allows the Z operator to be fully unconstrained and determined in a least-

squares manner. PF-THC uses both symmetric overlap-metric density fitting and

PARAFAC, and, as such, does not obtain the least-squares property for either X or

Z. Yet another example that falls within the framework of Opt-THC is the seminal

work of Hackbusch and co-workers.27 Here the factorization is of the form,

(µν|λσ) ≈ XP
µX

P
ν X

P
λ X

P
σ , (127)

where the factors X are now the free variables. This is equivalent to Opt-THC with

the restriction that the factor ZPQ be the identity δPQ. Therefore, this technique can

be viewed as a doppleganger of LS-THC, in which the Z factor is preselected and the

X factor is determined by least-squares. Unlike LS-THC, no analytic form exists for

these X factors; their determination requires a four-way PARAFAC decomposition,

severely limiting the size of systems to which the method may be applied.
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Rank-reduction ideas like the THC family of approximations could also be useful

in the context of wavefunction coefficients. For example, the amplitudes for double

excitations in configuration interaction and coupled cluster theories have a similar

four-index structure as that of the ERIs. Early work by Olsen, et al.211 applied a

tensor factorization inspired by natural orbital decompositions to single- and double-

excitation configuration interaction. More recently, Bell, et al.25 used high-order

singular value decomposition for the T2 amplitudes in coupled cluster to obtain a

factorization similar in spirit to THC, albeit at steep computational cost. In the

future, we will explore the possibility of combining the THC factorization for both

ERIs and wavefunction coefficients, and we can expect that the Opt-THC framework

will provide important guidance in this endeavor.

Finally, we note that there may exist other THC variants which have advantages

over LS-THC for certain applications. Additionally, alternative choices of X may

exist within LS-THC that are superior to collocation matrices.

3.4 Results

3.4.1 Computational Details

The LS-THC algorithms detailed above were implemented in a development version

of the open-source PSI4 quantum chemistry package.298 The accuracy of the LS-

THC method is established by comparisons of LS-THC-MP2, DF-MP2, and LS-

THC-DF-MP2 energies for a range of chemical systems. Here, LS-THC-MP2 refers

to THC-MP2 with LS-THC performed on the exact integrals (LS-THC-MP2 is thus an

approximation to MP2), whereas LS-THC-DF-MP2 refers to THC-MP2 with LS-THC

performed on the density-fitted integrals (LS-THC-DF-MP2 is thus an approximation

to DF-MP2). In particular, we consider linear alkanes and alkenes with up to twenty

carbon atoms, acenes from benzene to pentacene, alanine helices with up to five

residues, and water clusters with up to twenty water molecules. These systems contain
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both one- and three-dimensional geometries and a variety of chemical environments.

Geometries for these systems are available in supplemental data, along with the grids

used for the LS-THC procedure.

All MP2 computations were performed in the cc-pVDZ basis,70 using the stan-

dard frozen core approximation. Spherical harmonics were used for all the basis sets

in these calculations. For DF-MP2 or LS-THC-DF-MP2, the cc-pVDZ-RI auxiliary

basis was used in the MP2 part.313 All of the SCF computations used density fit-

ting in the cc-pVDZ-JKFIT basis set;312 this affects the MP2 reference and the three

approximate methods identically. Additionally, after formation of the factors, the

LS-THC-MP2 and LS-THC-DF-MP2 computations were carried out in our wholly

O(N4) THC-MP2 module, which requires an additional Laplace denominator ap-

proximation. The Laplace denominators are approximated by the extremely efficient

minimax quadratures of Braess and Hackbusch,37,293 and were chosen to produce er-

rors at least an order of magnitude smaller than those discussed below (< 1µH); thus

all errors discussed in the paper can be taken to arise solely from the DF or LS-THC

approximations.

3.4.2 Accuracy Verification

The errors of THC-MP2, DF-MP2, and LS-THC-DF-MP2 energies compared to con-

ventional MP2 are presented in Figures 3 to 7, for linear alkanes, linear alkenes, linear

acenes, alanine helices, and water clusters, respectively. Note that for the alkanes and

alkenes, we use the convention that N corresponds to the number of two-carbon units

in the polymer; thus the N = 10 alkane corresponds to C20H42. A table containing

the sizes of primary basis sets, auxiliary basis sets, LS-THC grid points, and active

occupied/virtual orbitals for the largest system of each class is presented in Table 2.

The accuracy plots show qualitatively the same trends across all classes of chemical

systems. For THC-MP2, the error is explicitly zero for the first few systems, as the
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Figure 3: LS-THC-MP2 (blue bars), DF-MP2 (green bars), and LS-THC-DF-
MP2 (red bars) errors compared to conventional MP2/cc-pVDZ, for linear alkanes
C2NH4N+2, with up to 20 carbon atoms. Note that the blue LS-THC-MP2 bars are
nonzero, but quite small on this scale.

Table 2: Number of primary basis functions, auxiliary basis functions, LS-THC
grid points, and active occupied/virtual orbitals for the largest system of each class
encountered in this study. The primary basis set is cc-pVDZ and the auxiliary basis
set is cc-pVDZ-RI.

System Nµ NA NP Nocc Nvir

C20H42 490 1708 9524 61 409
C20H22 390 1428 7084 51 319

Pentacene 378 1428 6548 51 305
Alanine Pentamer 499 1834 9316 74 399

(H2O)20 480 1680 9720 80 380

quadratic growth of the ov product space has not yet surpassed the linear growth

of the grid size P . This numerically verifies the identity discussed in Equation 115.

The critical practical finding is that the growth of the LS-THC error after this point

is passed is linear (not quadratic), and possesses a remarkably small slope. This

strongly implies that the LS-THC representation of the ERI tensor captures the
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Figure 4: As in Figure 3, but for linear alkenes C2NH2N+2 with up to 20 carbon
atoms. Note that the blue LS-THC-MP2 bars are nonzero, but quite small on this
scale.
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Figure 5: As in Figures 3–4, but for linear acenes from benzene (N=1) to pentacene
(N=5).
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Figure 6: As in Figures 3–5, but for helical alanine polypeptides, from (Ala)1 to
(Ala)5.
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Figure 7: As in Figures 1-4, but for water clusters ranging from H2O to (H2O)20.

correct physics and is more than just a forced least-squares decomposition. In fact,

the pure LS-THC approximation with exact ERIs is often much more accurate than
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the usual DF-MP2 approximation, for the LS-THC grids and auxiliary basis sets used

here. A final piece of practical serendipity is the behavior of the LS-THC-DF-MP2

errors. Mathematically, we might expect that first approximating the ERIs by density

fitting and then fitting these approximate integrals to a quadrature grid could result

in a nonlinear growth of the two sources of errors. However, it appears that the

LS-THC-DF-MP2 errors are essentially additive (with the LS-THC part of the error

being almost negligible). This last finding allows for the existence of an accurate and

explicitO(N4) MP2 code using LS-THC technology, and also provides for efficient and

accurate generation of the LS-THC factors in O(N4) for other correlated methods.

While the accuracy plots are all qualitatively similar, the quantitative differences

may give insight into the performance of the LS-THC factorization. The linear alkanes

and alkenes both exhibit particularly superb accuracy, which could be attributed to

the strongly one-dimensional nature of these systems, and the concomitant sparsity

this induces in the ERI tensor. This trend is also borne out in the similarly excellent

error properties for water clusters; though this system is truly three-dimensional, the

larger average distances between functions in the ov product space make many of

these products negligibly small, and the LS-THC capitalizes on this. However, this is

not to say that LS-THC is overly dependent on sparsities in the ERI tensor; for the

much less sparse cases of acenes and alanines, the LS-THC error is slightly higher,

but is still entirely acceptable for any application that could have used density fitting,

e.g., nearly all applications of MP2. Thus, it appears that LS-THC is robust in non-

sparse chemical environments and yet can also take advantage of sparsity patterns

when they are present to produce an extremely accurate approximation.

3.5 Conclusions

The LS-THC method is an analytical, accurate, and physically-motivated variant of

the THC ansatz for the approximate representation of the ERI tensor. LS-THC fixes
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the X factor tensors of the generic THC representation to arise from a physical-space

grid collocation, and then determines the optimal Z factor tensor by least-squares

minimization under the given choice of X. In a serendipitous bit of mathematics, the

least-squares Z factor has an analytical expression that is relatively easy to compute.

Once the Z operator is formed, LS-THC is used in the same manner as any other THC

flavor, with the fourth-order ERI tensor expressed as a product of five second-order

tensors, paving the way to significant scaling reductions in many methods in electronic

structure theory. In this work, we have shown that LS-THC is remarkably accurate,

using even a rather näıve choice of physical-space quadrature grid. In particular, LS-

THC is largely robust against the sparsity patterns or bonding arrangements of the

system, and thereby overcomes the severe accuracy problems associated with other

grid-based methods in electronic structure. Additionally, we have shown that the LS-

THC factorization can be formed in O(N4) time using Coulomb-metric density-fitted

integrals; the error of such a factorization is essentially the sum of the separate errors

of the LS-THC and DF steps. As the LS-THC error has been shown to be of the

same order or smaller as the DF error, this allows for accurate and explicit O(N4)

formation of the complete MP2 energy, when coupled with our previously developed

THC-MP2 code.

The development of LS-THC exposes many new challenges and opportunities in

electronic structure theory. The former are primarily related to the maturation of

the LS-THC factorization. In particular, efficient physical-space quadrature grids

(and efficient technologies to generate these grids) must be located and established.

Work is already underway in our groups to this end, and preliminary results indicate

that carefully selected grids may significantly decrease the number of points required

for a given accuracy compared to the rather standard Becke-type grids used here.

Another important consideration is efficient formation of the LS-THC factorization.

In particular, the pseudoinversion of the grid metric may soon become rate-limiting
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in terms of both wall time in the eigensolver and required memory, as this array is

several times larger than the corresponding density fitting metric matrix. However,

it is easily shown that the grid metric matrix is extremely sparse due to spatial

locality of the basis functions; an efficient inversion procedure must be developed

to capitalize on this fact. Yet another concern is the development of a flexible and

powerful library for the generation and especially memory handling of the many Z

operators that will arise for different classes of integrals in LS-THC applications to

general correlated methods; the reduction from fourth-order ERIs to second-order Z

operators is important, but is not such a panacea that these objects may be assumed

to require negligible storage. Finally, the accuracy of LS-THC must be established for

a much broader range of chemical systems, basis sets, methods, and properties. We

expect that a thorough benchmark study will follow shortly, after a few intermediate

developments which implement the above considerations.

In terms of opportunities, LS-THC shows great promise for the accurate scaling

reduction of many difficult terms in correlated methods. As just one example, it is

almost trivial to show that the most vexing O(N2
occN

4
vir) terms in CCSD239,268,267 can

be evaluated in O(N2
occN

2
virNP ) operations with LS-THC ERIs. Also, the existence

of an explicit O(N4) LS-THC factorization with density-fitted integrals implies that

LS-THC may not be limited to methods with extremely high scalings; the crossover

point may be as low as DF-MP2. Further afield, it may be possible that LS-THC can

be applied to more exotic objects than ERIs. A preliminary study of the application

of LS-THC to wavefunction amplitudes has already been completed in our groups.122

Finally, the LS-THC factorization should generalize rigorously to the many-electron

integrals of F12 theory,165,300,296,305 potentially allowing for substantial savings and/or

avoided approximations in these areas. In any case, LS-THC appears to combine

conceptual simplicity with excellent accuracy properties, and is therefore a prime

candidate for many future studies.
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3.6 Alternative LS-THC Derivation

Here, we present an alternative and more thorough derivation of the explicit form of

the LS-THC Z operator for the ERIs in the generic basis (pq|rs), and an arbitrary

set of factors XP
p , XP

q , XQ
r , and XQ

s . For clarity (and at variance with the main

text of this paper), we eschew the Einstein summation convention here and write out

summations explicitly.

First, we define the joint collocations, for convenience,

XP
pq ≡ XP

p X
P
q and XQ

rs ≡ XQ
r X

Q
s . (128)

The desired approximation is,

(pq|rs) ≈
∑
PQ

XP
pqZ

PQXQ
rs. (129)

The residual tensor is,

∆pqrs ≡ (pq|rs)−
∑
PQ

XP
pqZ

PQXQ
rs. (130)

The elementwise square of the residual tensor is,

Opqrs ≡ ∆pqrs∆pqrs (131)

= (pq|rs)2 − 2(pq|rs)
∑
P ′Q′

XP ′

pq Z
P ′Q′XQ′

rs

+
∑
P ′Q′

XP ′

pq Z
P ′Q′XQ′

rs

∑
PQ

XP
pqZ

PQXQ
rs.

The approximation above can be made to be rigorous by constraining the complete

choice Z ≡ ZPQ to minimize the square of the 2-norm (i.e., the vector Frobenius

norm) of the residual tensor, which is simply the sum of the elementwise square of

the residual tensor. We add a trivial factor of 1/2 to make things easier later; this

does not affect the final result,

O ≡ 1

2

∑
pqrs

Opqrs =
1

2

∑
pqrs

(
(pq|rs)−XP

pqZ
PQXQ

rs

)2
=

1

2
‖∆‖2 . (132)
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The weak form of the minimization condition is the stationary condition,

O(Z∗) ≤ O(Z) ∀ Z⇒ ∂O

∂ZP ′′Q′′
=

1

2

∑
pqrs

∂Opqrs

∂ZP ′′Q′′
= 0, ∀ P ′′, Q′′. (133)

We must first derive the response of a single element of the square of the residual

tensor to a change in the Z operator,

∂Opqrs

∂ZP ′′Q′′
= −2

∑
P ′Q′

(pq|rs)XP ′

pqX
Q′

rs δP ′P ′′δQ′Q′′ (134)

+
∑
P ′Q′

XP ′

pqX
Q′

rs

∑
P,Q

XP
pqZ

PQXQ
rsδP ′P ′′δQ′Q′′

+
∑
PQ

XP
pqX

Q
rs

∑
P ′,Q′

XP ′

pq Z
P ′Q′XQ′

rs δPP ′′δQQ′′ .

The last two terms are equivalent, and can be combined by interchange of the sum-

mation indices, leading to,

∂Opqrs

∂ZP ′′Q′′
=
∑
P ′Q′

δP ′P ′′δQ′Q′′× (135)

[
−2(pq|rs)XP ′

pqX
Q′

rs + 2XP ′

pqX
Q′

rs

∑
P,Q

XP
pqZ

PQXQ
rs

]
.

Thus the total stationary condition (with the factor of 1/2) is,

∂O

∂ZP ′′Q′′
=
∑
P ′Q′

δP ′P ′′δQ′Q′′
∑
pqrs

(136)

[
−(pq|rs)XP ′

pqX
Q′

rs +XP ′

pqX
Q′

rs

∑
P,Q

XP
pqZ

PQXQ
rs

]
= 0 ∀ P ′′, Q′′.

As the Kronecker deltas appear on the outside, we can discard them and simply work

in terms of P ′ and Q′. Also factoring this expression to expose the common XP ′
pq and

XQ′
rs factors leads to the equation,

⇒ −
∑
pqrs

XP ′

pq

[
(pq|rs)−

∑
P,Q

XP
pqZ

PQXQ
rs

]
XQ′

rs = 0 ∀ P ′, Q′. (137)
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The minus sign may be trivially removed. We recognize that the quantity inside the

brackets is the residual,

⇒
∑
pqrs

XP ′

pq ∆pqrsX
Q′

rs = 0 ∀ P ′, Q′. (138)

Thus the projection of the residual onto the fitting subspace is asserted to be zero;

this is the classic mathematical finding of all least-squares procedures. Rearranging

Equation 137 to split the difference across the equals sign yields,

⇒
∑
pqrs

XP ′

pq (pq|rs)XQ′

rs =
∑
pqrs

∑
P,Q

XP ′

pqX
P
pqZ

PQXQ
rsX

Q′

rs ∀ P ′, Q′. (139)

The sums over pq and rs on the right may be separated, forming the intermediate grid

metric matrices SP
′P and SQQ

′
, which are symmetric positive semidefinite. Similarly,

all four indices pqrs on the left may be summed over, forming the intermediate EP ′Q′ ,

⇒
∑
pqrs

XP ′

pq (pq|rs)XQ′

rs︸ ︷︷ ︸
EP ′Q′

=
∑
P,Q

[∑
pq

XP ′

pqX
P
pq

]
︸ ︷︷ ︸

SP ′P

ZPQ

[∑
rs

XQ
rsX

Q′

rs

]
︸ ︷︷ ︸

SQQ′

∀ P ′, Q′. (140)

So,

EP ′Q′ =
∑
PQ

SP
′PZPQSQQ

′ ∀ P ′, Q′. (141)

Multiplying on the left by
[
SP
′P
]−1

and on the right by
[
SQQ

′]−1
finally gives the

analytical solution,

⇒ ZPQ =
∑
P ′Q′

[
SP
′P
]−1

EP ′Q′
[
SQQ

′
]−1

. (142)

Switching to matrix notation, we define X1 ≡ Xpq,P , X2 ≡ Xrs,Q, and I ≡ Ipq,rs. In

this notation, the fully expanded form of the above is,

Z =
[
X1
>X1

]−1
X1
>IX2

[
X2
>X2

]−1
= S1

−1ES2
−1. (143)

This is the (slightly generalized) matrix-notation analog to Equation 114.

Note that only the joint collocation appears above; this means that this least-

squares form holds for more complicated factors XP
pq which are not separable in p
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and q. This allows for the existence of alternative density-fitting-like factorizations.

However, this finding probably has little practical utility, as the true power of LS-THC

is inherently in the separability of the joint collocation.
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CHAPTER IV

MOLECULAR GRIDS FOR TENSOR

HYPERCONTRACTION

The following is adapted from Ref. 217.

4.1 Abstract

We investigate the application of molecular quadratures obtained from either stan-

dard Becke-type grids or discrete variable representation (DVR) techniques to the

recently-developed least-squares tensor hypercontraction (LS-THC) representation of

the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to

renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-

space quadrature grid. While this procedure is technically applicable with any choice

of grid, the best efficiency is obtained when the quadrature is tuned to accurately

reproduce the overlap metric for quadratic products of the primary orbital basis.

Properly selected Becke DFT grids can roughly attain this property. Additionally,

we provide algorithms for adopting the DVR techniques of the dynamics community

to produce two different classes of grids which approximately attain this property.

The simplest algorithm is radial discrete variable representation (R-DVR), which di-

agonalizes the finite auxiliary-basis representation of the radial coordinate for each

atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic

partitioning to produce the full molecular quadrature grid. The other algorithm is

full discrete variable representation (F-DVR), which uses approximate simultaneous

diagonalization of the finite auxiliary-basis representation of the full position opera-

tor to produce non-direct-product quadrature grids. The qualitative features of all
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three grid classes are discussed, and then the relative efficiencies of these grids are

compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give

essentially the same accuracy and efficiency as R-DVR grids; however, the latter are

built from explicit knowledge of the basis set and may guide future development of

atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly

fewer points than either Becke or R-DVR schemes.

4.2 Introduction

Physical-space quadrature grids for molecular geometries are ubiquitous in chemi-

cal physics. The design of such grids is not altogether straightforward, as molecular

geometries exhibit myriad 1-, 2-, and 3-dimensional conformations, with arbitrarily

complex internal arrangements possible. The task is simplified somewhat in that

molecular geometries can be reasonably viewed as a superposition of spherical atoms,

which provides a rough natural discretization of the problem. However, desired in-

tegrands (such as the electronic density or various physical-space potentials) often

vary on many length-scales, e.g., the need to capture both nuclear cusps and expo-

nential tails in accurate integration of the electron density.153 This inhibits the use

of standard grids for common orthogonal coordinate systems. For example, if nested

rectilinear grids are used in the context of the electron density, enormous refinement

is required in the vicinity of the nuclei, as rectilinear quadrature rules are ill-suited

for cusps and other transients at arbitrary positions. Despite these foreboding prop-

erties, many examples of efficient quadrature rules for “molecule-shaped” integrands

exist in the literature. One of the most widely adopted examples is the Becke family

of atom-centered grids,20,88,205,297,204,180,87,73,44 which bears strong resemblance to the

class of grids developed for pseudospectral methods by Friesner.83 Both of these grid

classes partition space into a series of atom-centered integrals, each one of which is

completable to the whole of 3-dimensional space. These atom-centered integrals are
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performed by a direct product of quadratures in the radial and solid-angle coordi-

nates, which are then stitched back together to form the full molecular integral by

means of a fuzzy Voronoi weighting procedure. Because these grids are built from

explicit knowledge of the nuclear positions, they can be robust against length-scale

changes near the nucleus, and, moreover, contain a number of points that is strictly

proportional to the number of atoms in the molecule, regardless of the particulars

of the molecular geometry. These grids have been used to integrate a plethora of

quantities, from the electron density and Kohn-Sham exchange-correlation potential

(the original objective)20,237 to atomic volumes (e.g., the Becke exchange dipole mo-

ment method)23 to spin and charge-transfer characteristics (e.g., constrained density

functional theory)328,329 to nonlocal correlation potentials (e.g., the VV09 and VV10

nonlocal van der Waals functionals)62,308,309 to frequency-dependent response func-

tions,111,197 as just a few examples. One obvious arena in which such grids have seen

less widespread use is in representation of the electronic Hamiltonian, particularly the

electron repulsion integral tensor. There is good reason for this absence: evaluation

of the electron repulsion integral tensor requires a double integral over the simultane-

ously singular and long-ranged 1/r12 Coulomb operator. A notable attempt to treat

this operator with physical-space quadrature is the aforementioned pseudospectral

method,80,81,82,83,251,250,93,188,190,187,187,246,85,150,208,162 which applies a quadrature in only

one coordinate of the double integral to avoid singular integrands. Recent work in our

groups has identified a procedure to regularize the singularities in the physical-space

1/r12 operator to produce a finite, renormalized operator tuned to the one-particle

basis used.216 This renormalization allows for one of the first practical treatments of

the electron repulsion integral by physical-space quadrature (but c.f. early work by

Boys and Rajagopal along similar lines in Ref. 36). This work seeks to explore and

develop tuned quadrature grids for use with this procedure. To do this, we will first

identify the required integrand, and then borrow techniques from the discrete variable
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representation literature of the dynamics community to adjust or wholly depart from

the established Becke molecular grids.

Recently, we introduced the tensor hypercontraction (THC) representation for the

electron repulsion integral (ERI) tensor.121,216,122 This technique extends density fit-

ting (DF)324,67,68,299,245,144,312,24,254,151,8,6 and pseudospectral (PS)80,81,82,83,251,250,93,188,190,187,187,246,85,150,208,162

methods to represent the four-index ERI tensor,290

(pq|rs) ≡
∫
R6

φp(~r1)φq(~r1)
1

r12

φr(~r2)φs(~r2) d3r1 d3r2, (144)

as,

(pq|rs) ≈ XP
p X

P
q Z

PQXQ
r X

Q
s . (145)

Here p, q, r, and s can refer to an arbitrary subset (including the whole set) of

the primary orbital basis set {φp(~r)} composed of Np functions. The generalized

Einstein summation convention is used here and throughout this paper; repeated

indices present on only one side of an equation are summed over.

The least-squares variant of THC (LS-THC) preselects the X factors in some

(hopefully) physically-motivated manner, and then the factor Z is tuned to produce

an optimal factorization of the target integrals, in the 2-norm. Formally, LS-THC

is valid with any choice of preselected factor X, though the accuracy and efficiency

will depend strongly on this choice. One convenient choice selects the matrix X to

be the weighted collocation matrix from a physical-space quadrature based on NP

gridpoints ~rP and their corresponding weights wP ,

XP
p ≡ 4

√
wPR

P
p = 4
√
wPφp(~rP ). (146)

For later convenience, we also define a joint collocation (an analogous collocation

matrix to XP
p , but in the space of charge distributions, i.e. quadratic products of

basis functions):

XP
pq ≡ XP

p X
P
q , (147)
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and similarly for RP
pq. Once the choice of factor X has been made, LS-THC constrains

Z to minimize the square of the vector 2-norm in the residual tensor,

O(ZPQ) ≡
∥∥(pq|rs)−XP

p X
P
q Z

PQXQ
r X

Q
s

∥∥2

F . (148)

The stationary condition leads to an analytical formula for the LS-THC Z operator,

ZPQ = S−1
PP ′E

P ′Q′S−1
QQ′ . (149)

Here the E matrix is the projection of the ERIs onto the grid, defined as:

EP ′Q′ ≡ XP ′

pq (pq|rs)XQ′

rs , (150)

and S is the grid metric matrix,

SPP ′ ≡ XP
pqX

P ′

pq . (151)

As long as the X matrix is nonsingular and the number of gridpoints NP is at least as

large as the number of quadratic orbital products N2
p , the decomposition of Equation

145 is exact because,

XP
pqS
−1
PP ′X

P ′

p′q′ = δpq,p′q′ . (152)

However, the LS-THC decomposition is useful only when NP is much less than N2
p .

Ideally, NP ∝ Np, in which case decreased computational scaling can be expected

when evaluating contractions with the decomposed integrals.

The results of our last three papers216,122,119 indicate that LS-THC with a linear-

scaling quadrature-based X factor is quite accurate in a wide variety of test molecules

for a number of different correlation methods. To provide a physical justification for

this choice of X, it is helpful to step back and consider an exact resolution of the

identity:

(pq|rs) = Spq,p′q′S
−1
p′q′,p′′q′′︸ ︷︷ ︸

δpq,p′′q′′

(p′′q′′|r′′s′′)S−1
r′′s′′,r′s′Sr′s′,rs︸ ︷︷ ︸

δr′′s′′,rs

. (153)
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The new integrals Spq,p′q′ are four-index overlaps,

Spq,p′q′ ≡
∫
R3

φp(~r)φq(~r)φp′(~r)φq′(~r) d3r. (154)

Next, we resolve the overlap integrals by quadrature,

Spq,p′q′ = wPR
P
p R

P
q R

P
p′R

P
q′ . (155)

Defining XP
p ≡ 4

√
wPR

P
p (this is the origin of the fourth-root in Equation 146):

Spq,p′q′ = XP
p X

P
q X

P
p′X

P
q′ . (156)

Given N4
p gridpoints, this quadrature can be made exact. Thus, the introduction of

a quadrature does not necessarily imply any approximation. We now substitute the

quadrature for the overlap integrals in Equation 153, yielding,

(pq|rs) = XP
pqX

P
p′q′S

−1
p′q′,p′′q′′(p

′′q′′|r′′s′′)S−1
r′s′,r′′s′′X

Q
r′s′︸ ︷︷ ︸

ZPQ

XQ
rs, (157)

which reveals a THC factorization,

(pq|rs) = XP
p X

P
q Z

PQXQ
r X

Q
s . (158)

Thus, we have found an exact and explicit THC factorization of the ERI tensor which

relies only on the existence of an exact quadrature for the four-index overlap integrals

Spq,p′q′ . If the weighted collocation factor X from this quadrature were substituted

into the LS-THC Z recipe of Equation 149, an equivalent Z operator would arise with

zero residual. This provides the physical motivation for a quadrature-based X factor:

in practical LS-THC, we will use a weighted collocation X from an approximate

quadrature with O(Np) gridpoints for the overlap integrals Spq,p′q′ . The present work

explores several methods for finding efficient approximate quadrature grids for this

application.

The presentation above is exact given a set of gridpoints and weights which per-

form the quadrature exactly. Formally, this requires a number of gridpoints NP ∝ N4
p .
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In practice, this may not be the case because the primary basis space {φp(~r)} and

quadratic product space {φp(~r)φq(~r)} could be largely redundant. Indeed, both of

these spaces lie in L2(R3), and in a complete basis they are thus asymptotically of

the same complexity. In practice, this means that the N2
p products φp(~r)φq(~r) can

be accurately represented in a much smaller auxiliary basis of NA functions {χA(~r)},

where ideally NA ∝ Np. This is the basis for the well-known density fitting (DF)

approximation,

φp(~r)φq(~r) ≈ dApqχA(~r). (159)

Here dApq are the density fitting coefficients. In practice, an accurate density fitting

approximation is obtained with auxiliary bases comprised of 2-5× the number of

functions in the primary basis set.

It is also apparent that the space of integrands {φp(~r)φq(~r)φp′(~r)φq′(~r)} also lies

in L2(R3), and thus shares the same asymptotic complexity class as φp(~r). In prac-

tice, this means that we might be able to accurately integrate the four-index overlap

integrals (pqp′q′) with a quadrature containing strictly NP ∝ Np points. A well-

known piece of supporting evidence for this claim is the existence of Becke DFT-style

quadrature grids;20 these grids are arbitrarily completable for smooth functions in R3,

with a number of points strictly proportional to the number of atoms (and thereby

Np) in the system. However, the Becke grids are typically chosen to accurately inte-

grate the density field and exchange-correlation potential. As the functional forms of

these integrands are varied and not known at initialization, the Becke DFT grids are

often quite dense, with thousands of points required for each atom. Here, we devise

procedures to generate grids tailored to LS-THC, leveraging the knowledge that we

will be integrating functions of the form φp(~r)φq(~r)φp′(~r)φq′(~r). We show that, due to

the simple nature of the required integrand encountered in LS-THC, grids built from

either coarse Becke grids or discrete variable representation methodology can provide

remarkably compact and accurate grid representation of the ERI.
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A natural simplification at this point is to work in terms of an auxiliary basis

{χA} (composed of ∝ Np functions) in place of the quadratic product basis {φpφq},

appealing to the fact that the spans are nearly equal,

(pqp′q′)⇔̃(AA′). (160)

Here the two-index auxiliary overlap integrals are,

(AA′) ≡
∫
R3

χA(~r)χA′(~r) d3r. (161)

Thus, to obtain a linear number of quadrature points for THC, we will develop quadra-

ture grids which accurately and efficiently integrate the overlap metric in an auxiliary

basis. We will then substitute these truncated quadratures into LS-THC. The least-

squares fitting determination of the Z factor will allow further fine-tuning of the

accuracy in Equation 158.

Besides considering coarse variants of standard Becke grids, we also introduce

two new schemes for developing multidimensional grids, both of which build on ideas

from discrete variable representations (DVR). The first radial DVR (R-DVR) scheme

uses a Becke DFT-like20 atom-centered direct-product grid, with modified radial

quadratures. The second full DVR (F-DVR) scheme uses approximate simultane-

ous diagonalization techniques to produce a true 3-dimensional non-direct-product

DVR. Within theoretical chemistry, DVR techniques have been explored thoroughly

by the dynamics community, especially in the context of variational computation of

ro-vibrational states. A pair of useful review articles is given in Refs. 18 and 176.

DVR was technically introduced in one dimension by Harris and co-workers in 1965

(though it was not known as DVR at the time), where the technique was used to pro-

vide a collocation from a basis of appropriately chosen spectral functions to a basis of

physical-space nodes at which the potential matrix is diagonal, by finding the rotation

of the spectral basis that is maximally localized.103 It was later shown that this is

equivalent to a Gaussian quadrature, if the basis functions are built from orthogonal
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polynomials (as is almost always done).61 DVR was formalized and connected to the

variational basis representation by Light and coworkers in 1982–1985, in a series of

papers which also generalized DVR to non-Gaussian-quadrature cases, and to mul-

tiple dimensions.177,106,175 For the case of multidimensional problems, DVR provides

an additional advantage: if the multidimensional basis is built as a direct product

of 1-dimensional DVR functions, many products can be removed if their underlying

DVR node occurs in a region where the potential is large (because the wavefunction

of interest will nearly vanish at these points), often leading to spectacular sieving.48

For the 3-dimensional molecular problem, we are concerned with the case of a basis of

local, atom-centered functions such as contracted Gaussian-type orbitals, for which a

direct-product grid is often unacceptably redundant. For the development of F-DVR

for the molecular problem, we follow the ideas of Carrington and coworkers, who use

approximate simultaneous diagonalization of the separate components of the position

operator to produce an elegant non-direct-product DVR basis.55 This simultaneous

diagonalization procedure has been applied in other contexts in theoretical chemistry

by a number of authors, including applications in NMR,310 Green’s functions,234,236

scattering problems,235 and maximally-localized Wannier functions.99 Carrington and

coworkers have also used simultaneous diagonalization in another context, by obtain-

ing efficient one-dimensional basis sets for direct-product bases via simultaneous di-

agonalization of the position and Hamiltonian operators.56,57 Additionally, Avila and

Carrington have used Smolyak quadrature methods to develop efficient non-direct-

product quadrature grids in a pathway distinct from simultaneous diagonaliztion.12

Note that in LS-THC methods, we often apply a DF auxiliary basis in a separate

context from grid determination, to reduce the scaling of the formation of the E

matrix of Equation 150. To distinguish between the two, we will refer to the auxiliary

basis used for the E matrix as the DF auxiliary basis, and to the auxiliary basis used

for R-DVR or F-DVR grid formation as the DVR auxiliary basis. Typically, the DVR
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auxiliary basis is chosen to have 2-3× the number of functions as the corresponding

DF auxiliary basis.

4.3 Theory

Below, we briefly review the pedagogical mechanics of DVR by building up from

1-dimensional Gaussian quadrature (GQ) to 1-dimensional discrete variable repre-

sentation (1-DVR) to N -dimensional discrete variable representation (N -DVR). We

then use these ideas to develop radial discrete variable representation (R-DVR) and

full discrete variable representation (F-DVR) molecular grids for use in LS-THC ap-

plications.

We wish to produce efficient, minimal quadratures for quartic products of primary

basis functions,

(pqp′q′) ≈ wPR
P
p R

P
q R

P
p′R

P
q′ . (162)

As an initial simplification, we will assert that the quadratic product space is suffi-

ciently redundant to allow for an accurate representation in an auxiliary basis, thus

reducing the problem to,

(pqp′q′)⇔ (AA′) ≈ wPR
P
AR

P
A′ . (163)

The task now is to determine O(Np) nodes and weights (~rP and wP , respectively) for

the accurate integration of (AA′), under a given choice of DVR auxiliary basis {χA}.

The notation for the DVR auxiliary basis sets is as follows,

• {χA}-raw auxiliary basis set, generally not orthonormal.

• {ψA}-orthonormalized auxiliary basis set, typically chosen with respect to some

arbitrary prescription, such as the definition of generating polynomials or a

canonical orthogonalization procedure. When using canonical orthogonaliza-

tion, we apply a relative eigenvalue cutoff of 10−10 for all results shown in this

work.
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• {ξP}-DVR function set, a unitary transformation of the orthonormalized auxil-

iary basis set which most closely resembles a finite set of Dirac delta functions.

This basis exactly spans {ψA}, and is orthonormal.

As we never refer to the primary basis set in this section, we will drop the “auxiliary”

label, and just refer to the basis set, orthonormal basis set, and DVR function set,

respectively. Also, in the context of THC, the quadrature is usually denoted with

the index P , as in {< ~rP , wP >}. However, within a DVR framework, there is a

one-to-one correspondence between the functions in the basis {ψA} (with labels A

to D) and the grid nodes (with labels P ). These labels are interchangeable, but we

choose to switch from A-D labeling to P labeling to emphasize the critical step in

the DVR procedure when the finite-basis representation of the position operator (the

“DVR function” basis {ξP}) is introduced.

4.3.1 1-Dimensional Gaussian Quadrature

The overriding goal of this paper is to produce accurate quadratures for overlap

matrices (AA′) with a number of grid points NP that is proportional to the number

of basis functions NA. For a general class of basis functions {χA}, no exact quadrature

limited to O(NA) points exists, as there are N2
A integrands. Thus, we will instead

ask for the “best” quadrature with the restriction that NP = NA. In one-dimension

and for the special class of basis functions built on orthogonal polynomials, it is well-

known that an exact quadrature for (AA′) can be obtained with NP = NA, using the

formalism of Gaussian quadrature (GQ). The process of constructing an arbitrary

GQ will provide important inspiration for the construction of similar approximate

grids in non-polynomial bases.

A GQ may be constructed for any basis set of the form,

ψA(x) = PA(x)v(x), (164)

where v(x) is a weight function, and PA(x) is a polynomial of up to degree A (A is
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numbered from 0 to NA − 1 in this context). The polynomials are chosen to satisfy

orthonormality,

(AA′) =

∫
R
ψA(x)ψA′(x) dx = δAA′ . (165)

Note that we could have started from a non-orthonormal class of polynomial-based

functions {χA(x)} (e.g., simple monomials) and then used an orthogonalization pro-

cedure to build {ψA(x)}.

There are many conceptual algorithms for the production of Gaussian quadratures.

The most relevant to this discussion is the Golub-Welsch algorithm,91 which simply

states that the nodes of the Gaussian quadrature are the eigenvalues of the position

operator within the orthonormal basis {ψA(x)},

XABQBP = QAPxP , (166)

where,

XAB ≡ (A|x̂|B) =

∫
R
ψA(x)xψB(x) dx. (167)

The eigenvectorsQAP define a rotation of the basis {ψA(x)} to a “DVR function” basis

{ξP (x)} which most closely resembles a set of Dirac delta functions (the eigenfunctions

of the position operator in the complete basis), under the finite support of the chosen

basis,

ξP (x) = QAPψA(x). (168)

For the polynomial basis of Equation 164, the DVR function basis possesses a re-

markable “interpolating zeros” property,

ξP (xQ) = δPQξP (xQ). (169)

That is, at each quadrature node, all of the DVR functions are exactly zero except

for one. This property allows one to uniquely pick out the part of any integrand

in ξP (x)ξP (x) by sampling at xP , and is critical to exactness of the quadrature.

Exploiting the orthonormality of the DVR functions, for any integrand lying entirely
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within the span of the finite product space (i.e., z(x) =
∑

PQ ZPQξP (x)ξQ(x)), we

have, ∫
R
z(x) dx =

∑
PQ

ZPQ

∫
R
ξP (x)ξQ(x) dx︸ ︷︷ ︸

δPQ

=
∑
P

ZPP . (170)

Thus, we need only determine the part of the integrand ZPP that lies in ξP (x)ξP (x).

This step is trivial, due to the interpolating zeros property in the DVR basis, as,

z(xP ) = ZQRξQ(xP )ξR(xP )δPQδPR = ZPP [ξP (xP )]2. (171)

leading to,

ZPP =
z(xP )

[ξP (xP )]2
. (172)

Therefore, the positive-definite weights of the GQ are determined as,

wP =
1

[ξP (xP )]2
. (173)

The mathematics above are somewhat abstract and can be clarified with an exam-

ple. Consider the nondimensional Hermite functions (solutions to the 1-dimensional

quantum harmonic oscillator),94

ψA = H
(0)
A (x) exp(−x2/2). (174)

Here H
(0)
A (x) is the A-th physicists’ Hermite polynomial,2 multiplied by an extra

normalizing factor of (
√
π2AA!)−1/2. The orthonormal Hermite functions from A = 0

to A = 6 are shown in the top panel of Figure 8. The position operator in the

orthonormal Hermite basis is simply the tridiagonal (with zero diagonal),

XAB =

∫
R
ψA(x)xψB(x) dx =

√
A+ 1

2
(δA+1,B + δA,B+1). (175)

Diagonalizing this matrix to produce QAP and xP yields the quadrature nodes and

DVR functions, shown in the bottom panel of Figure 8. This is, in fact, the well-

known Gauss-Hermite quadrature rule. Close inspection of the nodes indicates that
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Figure 8: GQ scheme for the Hermite functions ψ0 to ψ6. Top: orthonormal spectral
basis set {ψA(x)}. Bottom: DVR function set {ξP (x)}, Because this is a Gaus-
sian quadrature, the DVR basis is a true interpolating set, with the exact property
ξP (xQ) = δPQξP (xQ). These interpolation nodes correspond to the zeros of the next
basis function outside of the set, ψ7(x).

the interpolating zeros property is indeed obtained. In fact, the interpolating zeros

happen to occur exactly at the zeros of the next Hermite function outside of the

finite set {ψA(x)}, as seen in the bottom panel. Demanding this property is a pop-

ular alternative to the Golub-Welsch algorithm, but is not as relevant to our later

consideration of quadratures in more exotic bases than polynomials. A very impor-

tant consideration for GQ is that this set of interpolating functions was constructed

with a unitary transformation, i.e., the orthonormality is maintained in the set of

interpolating (DVR) functions.

Another important way to view this process is depicted in Figure 9, which depicts

a DVR function for the case where the Hermite functions range from A = 0 to A = 10.

The DVR functions provide the best-possible approximations under the finite support

of the chosen basis to the Dirac delta functions that are the true eigenfunctions of

the complete-basis position operator. We then switch from spectral space {ξP (x)}

to position space xP by conceptually replacing ξP (x) with the Dirac delta function
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Figure 9: Conceptual representation of the Gaussian quadrature or discrete variable
representation scheme, in this case ξ2(x) and its Dirac delta partner, corresponding
to the Hermite functions from ψ0 to ψ10. The eigenfunctions and eigenvalues of the
position operator are determined in the orthonormal basis. The eigenfunctions are
finite spectral approximations to Dirac delta functions, and the eigenvalues provide
the discretization of the otherwise continuous position operator. To move from spec-
tral space to physical space, the DVR functions are replaced in a one-to-one fashion
by weighted Dirac delta functions placed at the eigenvalues of the finite position
operator.

√
wP δ(x − xP ). For the case of a polynomial basis set, with the interpolating zeros

property, this last substitution is amazingly not an approximation. In more exotic

basis sets, the interpolating zeros property will be lost and the substitution will be a

physically-motivated approximation.

4.3.2 1-Dimensional Discrete Variable Representation

The first of two problems (see following section for the second) at this point is that

the molecular auxiliary basis set {χA(~r)} does not have a simple polynomial-based

form of Equation 164, even for a spherically symmetric single atom. Even in the

1-dimensional case, a completely general (i.e., non-polynomial) basis set {χA(x)}

implies that no exact NA-point quadrature exists for the N2
A elements of the overlap

matrix, as the equations are grossly overdetermined.
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Starting from GQ but moving to a general basis set, we could maintain the interpo-

lating zeros property by breaking the orthonormality in the DVR functions (implying

QAP is not a unitary transformation), or we could retain the orthonormality in the

DVR functions but break the interpolating zeros property. Following the DVR liter-

ature, we do the latter, choosing a unitary transformation QAP that approximately

retains the interpolating zeros property. It turns out that simply applying the Golub-

Welsch algorithm in the general orthonormal basis {ψA(x)} accomplishes this goal

admirably, for well-behaved classes of functions. The rationale is that in the com-

plete basis set, the eigenfunctions of the position operator will converge to true Dirac

delta functions, regardless of the underlying construction of the basis. In the finite

basis, this property is approximately retained, and the eigenfunctions of the finite-

basis position operator approximately resemble Dirac delta functions. Thus, for a

completely generic raw basis {χA(x)}, we first extract an orthonormal representation

of the basis {ψA(x)}, e.g., by canonical orthogonalization, and then determine the

approximate quadrature by Equations 166, 167, and 173.

A concrete example of this process is DVR in a basis of unit-length particle-in-a-

box wavefunctions,94 i.e.,

ψA(x) =
√

2 sin(Aπx), x ∈ [0, 1]. (176)

Here A ranges from 1 to NA. The particle-in-a-box basis {ψA(x)} for NA = 6 is shown

in the upper panel of Figure 10. The application of the Golub-Welsch algorithm is

shown in the bottom panel. It is apparent that the interpolating zeros property is ap-

proximately, but not exactly retained. Therefore, we expect that the quadrature will

approximately reproduce the overlap metric, but will incur error (so-called “alias”)

proportional to the square of the magnitude of the near-zero DVR functions at each

grid node. The error of this DVR quadrature in reproducing the overlap metric (AA′)

is shown in Figure 11. It is apparent that the quadrature performs remarkably well,

considering that only 12 parameters were available to integrate 36 elements of the
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Figure 10: DVR scheme for the particle-in-a-box wavefunctions ψ1 to ψ6. Top:
orthonormal spectral basis set {ψA(x)}. Bottom: DVR function set {ξP (x)}. Because
this is a DVR and not a GQ, the DVR basis is a not a true interpolating set, and
only exhibits the approximate interpolation property ξP (xQ) ≈ δPQξP (xQ). These
interpolation nodes correspond approximately to the zeros of the next basis function
outside of the set, ψ7(x).

6-by-6 overlap matrix. The errors in each element are typically on the order of 0.05,

though the maximum error is 0.182. Most of the error is committed on the diagonal,

and the parity selection rule is maintained exactly. The largest error occurs at the

terminal (66) overlap element, which is the most oscillatory integrand, and suffers

from the loss of completeness that could be provided by ψ7 and higher functions.

Building a DVR quadrature with ψ7 added, and then recalculating the quadrature

for the overlap matrix up to (66) reduces the error of (66) to 0.025, and the maximum

error (still on the diagonal) to 0.051. Therefore, we note that adding higher functions

to the DVR basis provides a convenient way to increase the fidelity of the quadrature

for the overlap matrix (i.e. to “dealias”).

4.3.3 N-Dimensional Discrete Variable Representation

The second problem facing our extension of GQ to the molecular problem is that

the molecular auxiliary basis is fully 3-dimensional and not trivially separable for the
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Figure 11: Error of DVR quadrature scheme for the particle-in-a-box wavefunctions
ψ1 to ψ6. Depicted is the quadrature error EAA′ in the overlap matrix (AA′), computed
as EAA′ ≡ δAA′−ψA(xP )wPψA′(xP ). Note that the exact overlap matrix is the identity
(AA′) = δAA′ .

atom-centered Gaussian functions in common use. Two primary approaches will be

applied to attack this problem.

The first approach (R-DVR) applies direct-product expansions to produce molecu-

lar quadrature grids. An excellent example of this technique is the nearly-ubiquitous

Becke DFT-style quadrature grid.20 This class of grid is based on partitioning of

the full molecular quadrature into atom-centered spherical quadratures, followed by

direct-product separation of the atom-centered quadratures into radial and angular

parts. Separate DVRs for the expected functions in the radial {< ρPρ , wPρ >} and

angular {< ΩPΩ
, wPΩ

>} coordinates may be simply combined to produce each atomic

quadrature,

{< ~rP , wP >} ≡ {< ρPρ , wPρ > ⊗ < ΩPΩ
, wPΩ

>}. (177)

For the case of atom-centered Gaussian or Slater functions, the existing Lebedev-

Laikov quadrature rules for the solid angle are already essentially optimal, and do

not need to be modified.171 However, standard Becke-type DFT grids use largely

prescriptive quadrature rules for the radial coordinate,20,297,204 which may or may not
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reflect the distribution of radial functions in the auxiliary basis {χA(~r)}. Therefore,

we will apply 1-dimensional DVR techniques in the radial coordinate to produce

the radial discrete variable representation (R-DVR) class of quadrature grid. While

this choice of grid has better physical motivation of the radial quadratures than

Becke grids, it still retains the overarching direct-product flavor of the Becke grid,

and will therefore necessarily be somewhat redundant in representing the span of

the non-direct-product auxiliary basis, even when pruning is applied to the spherical

quadratures.

The second approach (Full DVR or F-DVR) applies the Golub-Welsch algorithm

in 3-dimensions by approximately simultaneously diagonalizing the Cartesian repre-

sentation of the position operator. This results in true “molecule-shaped” quadrature

grids with none of the direct-product structure of the Becke or R-DVR grids. These

grids directly reflect the underlying structure of the full auxiliary basis {χA(~r)}, and

may thus be more efficient than R-DVR grids.

4.3.4 Radial Discrete Variable Representation

The idea behind R-DVR is quite simple: in Becke atom-centered DFT grids,20,205,297,204,288,171

instead of using radial quadratures based on mappings of standard Gaussian quadra-

tures to the domain ρ ∈ (0,∞), we will instead use 1-dimensional DVR quadratures

built from the finite support of the radial coordinate in the DVR auxiliary basis.

For our problem, the finite radial span in the raw basis consists of all integrals of

the form,

SAB =

∫ ∞
0

ρ2χA(ρ)χB(ρ) dρ. (178)

where, for a contracted Gaussian-type basis set, the radial basis functions are,

χA(ρ) = NA

∑
iA

KiA exp(−αiAρ2). (179)

Here, αiA is the orbital exponent and KiA is the contraction coefficient. The normal-

ization is chosen so that SAA = 1. The polynomial Cartesian products have been
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absorbed into the spherical harmonics, which will be integrated in a direct-product

sense by Lebedev-Laikov quadratures. Therefore, the raw DVR basis for each atom

contains one function for each basis shell, with all shells being treated equally, re-

gardless of angular momentum. One consequence of this is that severe redundancy

often exists within the atomic DVR basis, corresponding to shells of different angu-

lar momenta that have nearly identical radial behavior. The elimination of much

of this redundancy by a technique such as canonical orthogonalization can improve

the efficiency of the R-DVR quadrature markedly. For instance an S and P shell

with the same radial distribution will be combined by canonical orthogonalization,

resulting in only one radial node. The Lebedev-Laikov grid placed at this radial node

integrates, by design, all spherical harmonics up to its maximum degree, and can

therefore integrate all products of these two functions without a need for a second

radial node.

To produce the R-DVR radial quadrature at each atom, the radial overlap metric

is first constructed, and canonically orthogonalized to produce the orthonormal basis,

via the linear transformation W ,

ψB(ρ) = WABχA(ρ). (180)

The position operator ρ̂ is then constructed in the finite basis {χA(ρ)} as,

R′AB =

∫ ∞
0

ρ3χA(ρ)χB(ρ) dρ. (181)

and then transformed to the orthonormal basis {ψA(ρ)},

RAB = WCAR
′
CDWDB. (182)

This matrix is then diagonalized obtain the DVR functions and the radial nodes {ρP},

RABQBP = QAPρP . (183)

The DVR functions are given as,

ξP (ρ) = QBPWABχA(ρ), (184)
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Figure 12: R-DVR scheme for Ne atom with a cc-pVDZ-RI DVR auxiliary basis set.
Top panel: canonically-orthogonalized radial basis {ψA(ρ)}. Bottom panel: DVR
function set {ξP (ρ)}. Note that, in both frames, the square-root of the inner-product
weight is rolled into the functions as ψA(ρ) = ρψ′A(ρ), for clarity. Because this is a
DVR and not a GQ, the DVR basis is a not a true interpolating set, and only exhibits
the approximate interpolation property property ξP (ρQ) ≈ δPQξP (ρQ).

and the grid weights are determined as,

wP =
ρ2
P

[ξP (ρP )]2
. (185)

where the inner-product weight ρ2 is absorbed into the traditional DVR weight.

Figure 12 shows the R-DVR scheme for a neon atom in a cc-pVDZ-RI313 DVR

auxiliary basis set. The orthonormal basis {ψA(ρ)} is somewhat jumbled, as it is

obtained from a canonical orthogonalization procedure. However, the DVR basis

{ξP (ρ)} is quite regular, very nearly reproducing the interpolating zeros property.

Algorithm 4 depicts the procedure for producing the R-DVR grid for an arbitrary

molecule and DVR auxiliary basis. Lines 4-12 form the heart of the R-DVR prescrip-

tion by producing a physically-motivated radial DVR quadrature instead of using a

standard quadrature rule as in Becke grids. All other steps are identical to those used

to construct Becke grids.

Pruned selection of the Lebedev-Laikov grid at each radial node (for both the
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Algorithm 4 R-DVR grid generation.

1: procedure R-DVR( Molecule {< xi, yi, zi, Zi >}, Molecular DVR basis {χ′A(~r)}
)

2: Compute Standard Angular Orientation
3: for all Atoms i in Molecule do
4: Select {χA(~r)} ≡ {χ′A(~r)} ∀ A ∈ i
5: SAB =

∫∞
0
ρ2χA(ρ)χB(ρ) dρ

6: R′AB =
∫∞

0
ρ3χA(ρ)χB(ρ) dρ

7: Find WAB : WCASCDWDB = δAB . Canonical Orthogonalization,
εrel ≡ 10−10

8: RAB = WCAR
′
CDWDB

9: RABQBP = QAPρP
10: ξP (ρP ) = QBPWABχA(ρP )
11: wP = ρ2

P/[ξP (ρP )]2

12: Radial Quadrature for Atom is {< ρP , wP >}
13: for all Radial Nodes P in Radial Quadrature do
14: Select a Spherical Quadrature {< ΩD, wD >} for ρP . Prune based on

ρBragg−Slater

15: Add {< (ρP ,ΩD), wPwD >} to Atomic Quadrature
16: end for
17: Apply Standard Angular Orientation
18: Translate Atomic Quadrature to Nuclear Center < xi, yi, zi >
19: end for
20: Apply Becke Atomic Partitioning
21: return Molecular Quadrature {< ~rP , wP >}
22: end procedure
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Becke and R-DVR grids) is accomplished by means of a heuristic but reasonable

envelope function,

L(z ≡ ρP/ρBragg−Slater) = dLmax (1.0erf(1.2(z − 0.0))− 0.5erf(1.2(z − 1.5))− 0.5)e .

Here ρBragg−Slater is the Bragg-Slater radius, and Lmax is the maximum allowed Lebedev-

Laikov grid. This envelope function is peaked near the Bragg-Slater radius and re-

mains significant in the Van der Waals region, and approaches zero both very near

and very far from the nucleus. At each node, the next Lebedev-Laikov grid of equal

or larger maximum angular momentum to L(ρP ) is selected. Limited hand-tuning of

the scale and bias parameters inside the erf functions was performed. More complete

optimization of this pruning procedure, possibly including explicitly defined Lebedev-

Laikov orders for each radial node on each atom, is certainly a worthy topic of future

study.88,44

4.3.5 Full Discrete Variable Representation

The R-DVR scheme above corrects the placement of radial grid nodes to incorporate

explicit knowledge of the DVR basis set {χA(ρ)}, but is still quite redundant due to

the direct-product formulation in radial and angular coordinates. Here we develop

F-DVR to produce a quadrature grid with intrinsic knowledge of the 3-dimensional

polyatomic structure of the basis set.

If the basis were complete, any orthonormal basis representation of the three

Cartesian position operators (x̂, ŷ, and ẑ) would commute, and would therefore admit

simultaneous eigenstates. These eigenstates would be Dirac delta functions in 3-

dimensional space, and would form the natural position-space quadrature for this

problem. However, in a finite orthonormal basis {ψA(~r)}, the commutators are all

nonzero,

[X, Y ] 6= 0, [X,Z] 6= 0, [Y, Z] 6= 0. (186)
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Therefore, no single orthonormal transformation Q exists which diagonalizes all three

finite operators, and therefore no fully rigorous DVR function set exists.

Having acknowledged that the finite position operator components cannot be si-

multaneously diagonalized exactly, the Simultaneous Diagonalization (SD) procedure

proposes to go ahead and diagonalize anyways, at least in an approximate sense.55 The

components of the position operator are formed in the orthonormal basis {ψA(~r)},

Ri
AB = (A|r̂i|B), i ∈ [x, y, . . .]. (187)

These are the matrices X, Y , and Z in Equation 186 above. The optimal unitary

transformation Q is then located such that the sum of the squares of the off-diagonal

elements of the similarity transformed position operators is minimized,

O(Q) =
∑

i∈[x,y,z]

∑
P 6=Q

(
QAPR

i
ABQBQ

)2
(188)

The optimal Q is presently determined by a modification of the iterative Jacobi

eigenvalue algorithm134 presented generically by Bunse-Gerstner and coworkers,40

and later furthered by the development of closed-form expressions for the Jacobi

angles by Cardoso and Souloumiac.41 This algorithm considers the overall unitary

transformation to be composed as a sequence of Jacobi rotations which minimize the

sum of the squares of off-diagonal elements in all 2 × 2 minors of the full position

matrices. Rotations in one part of the matrix affect values in other parts of the matrix,

leading to the iterative nature of the algorithm. The approximately diagonalized

matrices,

riPQ = QCPR
i
CDQDQ, (189)

are formed in place by overwriting the original Ri
AB matrices.

Once the optimal Q is determined, the grid nodes are taken to be the diagonal

elements of the approximately diagonalized finite position operator,

{~rP} ≡ {< xPP , yPP , zPP >}. (190)
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The values of DVR functions are then determined at the grid nodes,

ξP (~rP ) = QBPψB(~rP ). (191)

These values approximately satisfy the interpolating zeros property. The grid weights

are then determined in the usual manner, according to Equation 173.

Algorithm 5 depicts the procedure for forming the F-DVR grid for an arbitrary

molecule and DVR auxiliary basis. Line 10 is the simultaneous diagonalization sub-

routine, which iteratively minimizes the sum of the squares of the off-diagonal ele-

ments of the finite-basis position operator with respect to the orthonormal elements

of Q.

Algorithm 5 F-DVR grid generation.

1: procedure F-DVR( Molecular DVR basis {χA(~r)} )
2: SAB =

∫
R3 χA(~r)χB(~r)d3r

3: X ′AB =
∫
R3 χA(~r)xχB(~r)d3r

4: Y ′AB =
∫
R3 χA(~r)yχB(~r)d3r

5: Z ′AB =
∫
R3 χA(~r)zχB(~r)d3r

6: Find WAB : WCASCDWDB = δAB . Canonical Orthogonalization,
εrel ≡ 10−10

7: XAB = WCAX
′
CDWDB

8: YAB = WCAY
′
CDWDB

9: ZAB = WCAZ
′
CDWDB

10: Minimize O ≡
∑

P 6=Q[QAPXABQBQ]2+[QAPYABQBQ]2+[QAPZABQBQ]2 w.r.t.
QAP

11: xP = QAPXABQBP

12: yP = QAPYABQBP

13: zP = QAPZABQBP

14: ξP (~rP ) = QBPWABχA(~rP )
15: wP = 1/[ξP (~rP )]2

16: Molecular Quadrature is {< ~rP , wP >} ≡ {< (xP , yP , zP ), wP >}
17: return Molecular Quadrature {< ~rP , wP >}
18: end procedure
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4.4 Results

4.4.1 Computational Details

R-DVR and F-DVR grid routines were coded in a development version of the open-

source PSI4 quantum chemistry package,298 alongside our existing Becke DFT quadra-

ture grids. Below we compare several representative grids from each of the Becke,

R-DVR and F-DVR methods. Thus, we start with a summary of technical details

such as the choice of pruning, radial grid scaling, and grid orientation.

In choosing grids, especially of the Becke or R-DVR type, there are many tun-

able degrees of freedom, such as maximum Lebedev grid order (Becke and R-DVR),

pruning scheme (Becke and R-DVR), radial quadrature (Becke), DVR basis (R-DVR

and F-DVR), and canonical orthogonalization cutoff (R-DVR and F-DVR). For the

purposes of this qualitative demonstration, we have made no attempt here to ex-

haustively search these, but have instead adopted a convention which qualitatively

attempts to produce Becke, R-DVR, and F-DVR grids with roughly the same num-

ber of points, with the grid density designed to be maximal in the valence region.

We start by adopting aug-cc-pVTZ-RI313 as the DVR auxiliary basis {χA}, which

completely defines the F-DVR grid. This basis also defines the radial part of the

R-DVR grid, which has 14 radial nodes for hydrogens and 28 radial nodes for first-

row elements, before canonical orthogonalization is considered. A relative canonical

orthogonalization cutoff of 1.0 × 10−10 is used in both the R-DVR and F-DVR pro-

cedures, and often cuts off a few nodes in the R-DVR procedure, corresponding to

two radial functions with a similar exponent that would ordinarily be orthogonal due

to belonging to shells of two different angular momenta. Generally this reduces the

number of R-DVR radial nodes to 11 for hydrogens and 19 for first-row atoms. We

have therefore chosen Becke grids with the same count of 11 and 19 radial nodes for

hydrogens and first-row atoms, respectively. The Becke radial quadrature applied is

the standard Treutler/Ahlrichs mapping of the Gauss-Chebyshev quadrature, scaled
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by the Bragg-Slater radius of the atom.297 For both R-DVR and Becke quadratures, a

7-th order Lebedev-Laikov grid is used, which uses 26 points to cover the solid angle.

It is well known that strict direct-product atomic grids lead to excessive crowding

of gridpoints for small radial distances. Thus, we follow the usual practice where

spherical grids are pruned so that lower-order grids are used near the nuclei and

in the tails, and the highest-order grids are only used in the valence regions. This

pruning uses a heuristic approach based on the proximity of the radial point to the

Bragg-Slater radius, producing envelopes analogous to those in Ref. 88. With this

pruning applied, the Becke and R-DVR grids have 2-2.5× the number of nodes as the

corresponding F-DVR grid. This ratio cannot be made significantly smaller without

severely compromising completeness in either the radial or spherical coordinate of

the Becke or R-DVR grids. Both Becke and R-DVR grids use the Treutler/Ahlrichs

modification of Becke’s fuzzy Voronoi partitioning of the atomic quadratures. Finally,

the Becke and R-DVR grids are aligned according to the rules of Gill and co-workers,

as is standard practice for Becke grids.88,140

For further analysis, all grids and molecular geometries are available as text and

XYZ files in the supplementary materials, along with additional high-quality views of

the grids produced for a variety of molecules. Grid and basis size parameters for the

largest system of each class studied here are presented in Table 3, with more-detailed

size information available in the supplementary materials.

The computational demands of the Becke and R-DVR methods are quite similar.

The determination of the radial quadrature at each atom in R-DVR involves only two

eigendecompositions of matrices of dimension O(10) on each side. Like Becke grids,

R-DVR grids are dominated by the atomic partitioning of the spherical quadratures,

which scales as O(NP ), if sparsity is used properly. By contrast, F-DVR is currently

considerably more involved. At present, F-DVR involves the direct eigendecomposi-

tion of the overlap matrix to form the conditioned canonically-orthogonalized basis
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{ψA}, followed by the iterative, Jacobi eigenvalue algorithm. Both of these steps are

O(N3
P ). Besides the floating point operation (FLOP) count, these steps may also

be rate-limiting for large systems due to the memory requirement, which peaks at

4N2
P in the simultaneous diagonalization step. We have not endeavored to optimize

the F-DVR method, but expect that it can be made significantly more efficient by

exploiting sparsity.

The simultaneous diagonalization algorithm developed in Refs. 40 and 41 is ap-

plicable directly with minimal modifications for the F-DVR grid construction. The

“shaking” trick applied in Ref. 40 to break spurious fixed-points is only needed in

the first iteration in systems with extremely high symmetry (for instance, an atom),

and the more-elaborate four-scale shaking trick of Ref. 55 is not needed at all. The

algorithm typically converges to the point that all further motions of the nodes are

negligible in approximately 15 Jacobi sweeps.

4.4.2 Qualitative Grid Features

Here, the qualitative features of the various grid generation methods is discussed using

a few representative molecular systems. Figure 13 compares the Becke, R-DVR, and

F-DVR grids for a single H2O molecule. Figure 14 provides the same comparison for

an anthracene molecule. Further analysis of F-DVR grids is provided in Figures 15

and 16, which depict the F-DVR grids for (H2O)3 and a three-residue alanine helix.

The coloring used at each node is roughly representative of the order of magnitude of

the raw quadrature weight, where red indicates a small weight and blue represents a

large weight. Note that larger weights typically occur further from the nuclei, which is

indicative of the ρ2 inner-product metric that would be used in spherical integration.

Additional views of these and several other systems are available in the supplementary

data, along with the grid coordinates and molecular geometries.

The quasi-direct product nature of the Becke and R-DVR grids is clearly visible
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Figure 13: Comparison of physical-space grids obtained with various generation
methods for the H2O molecule. Top panel: Becke grid with 19/11-node Treut-
ler/Ahlrichs radial quadratures (on heavy/hydrogen atoms, respectively) and a
pruned 7-th order Lebedev-Laikov spherical quadrature, for a total of 442 nodes.
Middle panel: R-DVR grid within an aug-cc-pVTZ-RI DVR auxiliary basis, with a
pruned 7-th order Levedev-Laikov spherical quadrature, for a total of 486 nodes. Bot-
tom panel: F-DVR grid within an aug-cc-pVTZ-RI DVR auxiliary basis, with a total
of 198 nodes. Gridpoints are colored according to the magnitude of the quadrature
weight on a scale from red to blue in order of increasing weight.
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Figure 14: As in Figure 13, for the anthracene molecule. Top panel: Becke grid
with 19/11-node Treutler/Ahlrichs radial quadratures (on heavy/hydrogen atoms,
respectively) and a pruned 7-th order Lebedev-Laikov spherical quadrature, for a
total of 3992 nodes. Middle panel: R-DVR grid within an aug-cc-pVTZ-RI DVR
auxilairy basis, with a pruned 7-th order Levedev-Laikov spherical quadrature, for a
total of 4300 nodes. Bottom panel: Full DVR grid within an aug-cc-pVTZ-RI DVR
auxiliary basis, with a total of 1944 nodes.
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Figure 15: Full DVR grid for (H2O)3 within an aug-cc-pVTZ-RI DVR auxiliary
basis. This grid contains 594 nodes.

Figure 16: As in Figure 15, for the (Ala)3 helix within an aug-cc-pVTZ-RI DVR
auxiliary basis. This grid contains 2478 nodes.

108



in Figures 13 and 14, where the regular structure around each atom arises from the

product of spherical and radial quadratures. This overt redundancy is somewhat

ameliorated by the pruning scheme, which is evident in the larger spherical grids

employed in the valence regions. The atomic partitioning is also visible, e.g., in the

attenuation of the weight for a radial quadrature passing from one hydrogen through

the other in the H2O example. Additionally, both grids retain the Abelian point

group of the underlying molecule, due to the choice of orientation and the octahedral

symmetry of the Lebedev-Laikov grids. After noting these similarities, the differences

between the Becke and R-DVR quadratures are also palpable: the Treutler/Ahlrichs

radial quadrature tends to contain points both much closer to and much further away

from the nucleus than R-DVR. Indeed, examination of the grid coordinate files shows

that even with small 11- or 19-node radial grids, the Treutler radial quadratures

extend significantly beyond the views shown, and also terminate several orders of

magnitude closer to the nuclei than in R-DVR. It is quite plausible that tuning the

Becke quadrature could fix this behavior, e.g., by changing the shape parameter α in

the Treutler/Ahlrichs quadrature, or picking another mapping altogether. However,

R-DVR is already accomplishing this goal, with explicit guidance from the DVR

auxiliary basis set.

The F-DVR grids are another story altogether. As seen in Figures 13 to 16, these

grids intrinsically conform to the shape of the molecule, and exhibit strong indicators

of knowledge of the underlying basis set. In particular, there are no superfluous

points, either near the periphery of the molecule, or in situations analogous to the

extinguishing of points in partitioned atomic quadratures like Becke and R-DVR.

Also notable, the F-DVR nodes seem to exhibit a shell-like structure, corresponding

to the discrete set of exponents in the underlying basis. However, this shell structure

is accomplished without the need for large numbers of points at each radial spacing

to account for the spherical harmonics. Additionally, close inspection of the structure
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for bonding regions shows that the grids exhibit nodal structure, avoiding regions at

the bond midpoints (see, for instance, the front views of the anthracene F-DVR grid

in the supplemental information).

While the F-DVR grids appear to capture the qualitative shape of the basis in an

exceedingly efficient matter, several points merit future study. The first is that these

grids do not retain any point-group symmetry of the underlying molecule. This is a

generic and often correctable problem when working with discretizations of physical

space; for instance, Becke quadratures with Lebedev-Laikov grids have been explicitly

chosen to be complete in all Abelian point groups, but do not contain the tetrahedral

point group. While the LS-THC fitting procedure will likely reduce this error to an

acceptable level for many applications, possible contamination in gradient methods

remains a valid concern. Projection or grid symmetrization techniques may be needed

to remove this error in future studies. A related concern is the bifurcation of the Jacobi

eigenvalue algorithm in the simultaneous diagonalization step: in the first Jacobi

sweep, a large number of symmetries are broken based solely on the order in which

the Jacobi rotations are performed. This implies that two slightly different geometries

may produce markedly different F-DVR grids, potentially leading to oscillations on

potential energy surfaces. A procedure to use the solution to a F-DVR grid from

a previous computation to seed a qualitatively similar grid at a new geometry is

under development in our groups. Finally, as mentioned in the computational details

section, the effort currently required to obtain a converged F-DVR grid is considerable.

However, sparsity considerations seem to offer the hope of a much faster algorithm in

the near future.

4.4.3 Quantitative Grid Fidelity

The practical fidelity of the various grid schemes is investigated by comparing LS-

THC-DF-MP2 to conventional MP2 for linear alkanes, linear alkenes, linear acenes,
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Figure 17: Energy error (kcal/mol) compared to conventional MP2 for DF-MP2 (blue
bars), LS-THC-DF-MP2/Becke (turquoise bars), LS-THC-DF-MP2/R-DVR (yellow
bars), and LS-THC-DF-MP2/F-DVR (red bars) for linear alkanes C2NH4N+2, with
up to 20 carbon atoms. See Table 3 for size parameters.

alanine helices, and water clusters. These results are depicted in Figures 17 to 21,

respectively. Each figure depicts the errors of LS-THC-DF-MP2 compared to conven-

tional MP2 for Becke, R-DVR, and F-DVR grids in a cc-pVDZ70 primary basis set,

with the cc-pVDZ-RI313 auxiliary basis used for the DF step, and the grids selected

with an aug-cc-pVTZ-RI313 DVR auxiliary basis as discussed above. The standard

frozen core approximation was used, wherein the 1s electrons on heavy atoms are not

included in the MP2 computation, as is standard practice with split-valence basis

sets. The DF-MP2 error is included in each case to give a sense of the magnitude of

error induced by the grid fitting. The sizes of the primary and auxiliary bases and

the number of grid points for each of the grid generation methods are shown for the

largest system of each class in Table 3.

For the F-DVR grids, we have found that “balancing” the quadrature weights to

ensure that SPP = 1, significantly improves the condition number of the grid metric
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Figure 18: As in Figure 17, for linear alkenes C2NH4N , with up to 20 carbon atoms.
See Table 3 for size parameters.

Figure 19: As in Figure 17, for linear acenes from benzene (N = 1) to pentacene
(N = 5). See Table 3 for size parameters.
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Figure 20: As in Figure 17, for helical alanine polypeptides, from (Ala)1 to (Ala)5.
See Table 3 for size parameters.

Figure 21: As in Figure 17, for water clusters from H2O to (H2O)20. See Table 3 for
size parameters.
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Table 3: Number of primary basis functions Np, DF auxiliary basis functions NA,
and LS-THC grid points NP , for the largest system of each class encountered in this
study. The primary basis set is cc-pVDZ, the DF auxiliary basis set is cc-pVDZ-RI,
and the DVR auxiliary basis set is aug-cc-pVTZ-RI. The various grids are constructed
as discussed in the Computational Details section.

System Np NA NBecke
P NR−DVR

P NF−DVR
P

C20H42 490 1708 9084 9524 4052
C20H22 390 1428 6644 7084 3132

Pentacene 378 1428 6064 6548 2976
Alanine Pentamer 499 1834 8442 9316 3998

(H2O)20 480 1680 8840 9720 3960

matrices in LS-THC, and improves the accuracy of LS-THC with F-DVR grids in

some cases. The balancing is accomplished in the LS-THC phase of the procedure,

when the desired pq quadratic product space is known. For each orbital space occuring

in the quadratic product space, the F-DVR collocation is replaced by the balanced

collocation,

X
′P
p ≡ vPX

P
p : vP =

1√
XP
p X

P
p

. (192)

This technique is used for all F-DVR results shown here. Unfortunately, the R-DVR

and Becke grids employed here have vanishing weights as points from one atomic

grid enter the Voronoi volume of another atom. This prevents balancing from being

employed for R-DVR and Becke grids, as such such balancing would involve scaling the

grid metric matrix by values arbitrarily near infinity. In practice, the eigenstructure

of the grid metric matrix with the default R-DVR and Becke grids already reflects the

true physical significance of the grid nodes, so the lack of balancing is not a problem

for these two grid generation methods.

These five classes of systems all show largely the same qualitative trends, though

the quantitative results do differ somewhat from plot to plot. In all cases, the grid fit-

ting error (additional error over the underlying DF error) is explicitly zero for the first
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few systems, regardless of the grid type invoked. This is because the equality in Equa-

tion 152 holds until the molecule gets large enough. At some N , the quadratic growth

in the MP2 hole-particle orbital product space overcomes the number of points, and

the grid fitting error rises linearly from this point. This seems unavoidable, but the

results hown here demonstrate that the slopes of these grid fitting error terms are

quite small.

In a quantitative sense, all three grid classes show excellent performance in LS-

THC applications, with the grid fitting error being of the same order of magnitude as

the DF error for the worst cases seen here, and far smaller in most cases. Somewhat

surprisingly, the R-DVR and Becke grids show essentially the same error/efficiency

characteristics, despite the fact that the latter were not optimized for LS-THC ap-

plications. This points to the both the robustness of the LS-THC fitting procedure

and to the remarkable efficiency of existing Becke methodology. Despite the fact that

the R-DVR grids produce no quantitative improvement over properly-chosen Becke

grids in the present work, we are confident that if additional compression is attainable

in atom-centered grids (e.g., by non-heuristic pruning or more-optimal radial node

placement), R-DVR will discover it automatically.

The F-DVR grids attain similar accuracy to R-DVR or Becke grids, but with

less than half as many points. We have experimented with reducing the Becke and

R-DVR grids to the size of the underlying F-DVR grids by lowering the size of the

radial DVR auxiliary basis or Becke radial quadrature and/or the size of the spherical

Lebedev-Laikov grids, and have found that any such reduction severely compromises

the accuracy of the R-DVR grid (to significantly worse than the DF errors encountered

here). Thus, it appears that the non-direct-product nature of the F-DVR grids affords

them with unusually high fidelity in LS-THC applications.
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4.5 Conclusions

This manuscript has investigated three schemes for the construction of molecular

quadratures for use in LS-THC representation of the ERI. The most straightforward

method is the adoption of standard Becke-style grids typically encountered in DFT

applications. Additionally, this work has introduced the R-DVR and F-DVR grid gen-

eration methods, which are based on physical understanding of the LS-THC problem

as requiring efficient approximate quadratures for the overlap matrix in an auxiliary

basis. Appealing to the DVR literature of the dynamics community, these classes of

grids determine the molecular quadrature through consideration of the eigenstructure

of the position operator in the finite DVR auxiliary basis. R-DVR diagonalizes the

finite-basis representation of the radial position operator for each atom, and uses this

explicit, one-dimensional DVR as the radial quadrature in a Becke-like direct-product

grid. F-DVR approximately simultaneously diagonalizes the finite-basis representa-

tion of the full Cartesian position operator, and obtains a non-direct-product grid

that efficiently encapsulates knowledge of the molecular geometry.

All three grid classes are shown to produce compact grids with LS-THC-DF-MP2

grid fitting errors of the same order or smaller as the underlying DF errors, with min-

imal tuning of the grid construction parameters. R-DVR and Becke schemes are both

quite accurate, but both contain at least twice as many nodes as the corresponding

F-DVR grid within the same DVR auxiliary basis. To this point, the R-DVR and

Becke schemes have resisted all efforts to produce smaller grids with similar fidelity

as F-DVR, indicating that the F-DVR grids provide a more compact representation

of the relevant portions of physical space in the molecular environment.

The R-DVR and F-DVR results shown in this manuscript are quite encouraging,

but also indicate that a significant amount of work remains, particularly for F-DVR.

The R-DVR grids are easy to form (essentially the same cost as a Becke grid), directly

encapsulate explicit knowledge of the span of the underlying basis set, are remarkably
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accurate relative to F-DVR or bare DF, and do not suffer from the loss of Abelian

symmetry or the discontinuous nature of the F-DVR grids. We therefore recom-

mend the R-DVR scheme for production-level use until several more developments

are completed with F-DVR. However, the results of this work suggest that F-DVR

is uniquely efficient in encapsulating the necessary portions of physical space for LS-

THC applications, and may soon become the grid scheme of choice, provided that a

few improvements can be made. In particular, the F-DVR grids currently require an

expensive iterative Jacobi procedure to form, for which sparsity considerations must

be adopted to produce an acceptably efficient algorithm. Additionally, modifications

must be made to ensure that the F-DVR grids produce smooth potential energy sur-

faces. Also, it would be highly desirable to produce F-DVR-like grids which preserve

at least some of the point-group symmetry of the molecular geometry, e.g., for gradi-

ent or vibrational frequency computations. Finally, both F-DVR and R-DVR would

surely benefit from a thorough optimization of the DVR auxiliary basis sets and other

free parameters. Several initiatives are underway in our groups to accomplish these

important developments.

Besides the obvious practical utility to LS-THC applications, it strikes us as ex-

ceedingly elegant that DVR can construct a wholly reasonable physical-space grid

without ever “looking” at the structure of the molecule in position-space.
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CHAPTER V

TENSOR HYPERCONTRACTION FOR COUPLED

CLUSTER SINGLES AND DOUBLES

The following is adapted from Ref. 223.

5.1 Abstract

We apply orbital-weighted least-squares tensor hypercontraction decomposition of

the electron repulsion integrals to accelerate the coupled cluster singles and doubles

(CCSD) method. Using accurate and flexible low-rank factorizations of the elec-

tron repulsion integral tensor, we are able to reduce the scaling of the most vexing

particle-particle ladder term in CCSD from O(N6) to O(N5), with remarkably low er-

ror. Combined with a T1-transformed Hamiltonian, this leads to substantial practical

accelerations against an optimized density-fitted CCSD implementation.

5.2 Introduction

Coupled cluster singles and doubles (CCSD)239 has been a cornerstone method in

electronic structure theory since its introduction over thirty years ago, e.g., as a crit-

ical portion of the “gold-standard” CCSD(T) method.240 Unfortunately, CCSD is an

extremely expensive method, scaling as O(o2v4) operations and requiring either ex-

plicit storage or integral-direct manipulations of a tensor scaling as O(v4) elements,

where o and v are the number of occupied and virtual orbitals in the system, respec-

tively. Due to this combination of high importance and high expense, CCSD seems

a prime target for the deployment of rank reduction methods. However, CCSD has

proven to be remarkably resistant to formal simplification and practical acceleration

by such techniques.
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Among the most successful rank reduction methods in electronic structure are the

density fitting (DF)68,76,299 and Cholesky decomposition (CD)24,254,151 compressions

of the electron repulsion integral (ERI) tensor. While these methods have produced

substantial formal and practical accelerations of mean-field and perturbation the-

ory methods, they are unable to reduce the complexity of the rate-limiting term in

CCSD.245 Another interesting class of methods are the pseudospectral (PS)80,84,187

and related chain-of-spheres (COS)208 quadrature representations of the ERI tensor,

which do possess the flexibility to formally reduce the complexity of the rate-limiting

term in CCSD. However, these methods require a very large number of quadrature

points to achieve sub-mH accuracy, and so have not yet achieved practical deployment

in CCSD. Recently, we have introduced the tensor hypercontraction (THC)121,216 rep-

resentation for the ERI tensor, which provides a compelling combination of flexibility

and accuracy. In this work, we will use the THC ERIs to reduce the complexity of the

most vexing term in CCSD from O(o2v4) to O(o2v2M) (where M is the dimension

of the THC quadrature grid), resulting in practical and accurate accelerations of the

method as a whole.

Note that there exist several formal schemes to wholly reduce the scaling of CCSD

below O(N6), which we do not achieve in this work. Some authors have proposed fac-

torizations of the amplitude tensors which might achieve scalings as low asO(N5),25,28

and we have recently shown that THC factorization of the ERIs and amplitudes can

produce an accurate CCSD implementation scaling as O(N4).122 However, there are

significant prefactors affiliated with such proposals. Another quite impressive area is

the family of local correlation methods,259,100 which have recently managed to pro-

duce CCSD(T)-quality results on systems as large as proteins.255,252 The combination

of THC and local correlation methodology lies outside the focus of the present study,

but is certainly an important future development.
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5.3 Theory

In this work, indices p, q, r, s (size n) represent active molecular orbitals, indices

i, j, k, l (size o) represent active occupied virtual orbitals, indices a, b, c, d (size v)

represent active virtual orbitals, indices A,B,C,D (size A) represent density fitting

auxiliary functions, and indices P,Q,R, S (size M) represent tensor hypercontraction

grid points. Often, o � v ∼ n < A < M . Additionally, we will use a generalized

Einstein summation convention in which repeated indices are asserted to be summed

over. We also assume a restricted, closed-shell Hartree-Fock reference throughout.

5.3.1 LS-THC ERIs

The THC representation of the ERI tensor is,121

(pq|rs) ≈ XP
p X

P
q Z

PQXQ
r X

Q
s . (193)

Here (pq|rs) ≡
∫
R6 d3r1 d3r2 φp(~r1)φq(~r1)r−1

12 φr(~r2)φs(~r2) is the chemists’ ERI. In the

least-squares THC (LS-THC) method,216 the factor XP
p ≡ 4

√
wPφp(~rP ) is the weighted

collocation matrix, where the quadrature grid nodes and weights are {< ~rP , wP >}.

The quantity ZPQ is determined by least squares fitting to the target integrals, with

orbital weights {ξp} (explained shortly),

O(ZPQ) =
1

2

∥∥ξpξqξrξs [(pq|rs)−XP
p X

P
q Z

PQXQ
r X

Q
s

]∥∥2

2
. (194)

Thus THC is seen to arise from attempting a quantization of the spatial coordinates

via ~r1 → {~rP} and ~r2 → {~rQ}, and then replacing the singular grid operator 1/r12 →

{1/rPQ} with a renormalized grid operator ZPQ. This understanding of the THC

representation has been shown to be exact within a linear number of grid points for

polynomial basis sets,218 and has proven to be an accurate approximation in several

areas of molecular electronic structure theory.217,119

If conventional ERIs (pq|rs) are decomposed by LS-THC, the determination of

the factor ZPQ requires O(N5) operations, with a somewhat high prefactor. This can
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be reduced by applying THC to DF ERIs,

(pq|rs) ≈ (pq|A)(A|B)−1(B|rs) = bCpqb
C
rs. (195)

Here (A|B) and (pq|A) are two- and three-center ERIs, respectively. The quantity

bCpq ≡ (pq|A)(A|C)−1/2 is the symmetrically-fitted three-index tensor. If LS-THC is

then invoked on these density fitted integrals [denoted in this work as LS-THC(DF)],

the least-squares fittings in the bra and ket become decoupled, and ZPQ has a prof-

itable intermediate representation,

ZPQ = LPCL
Q
C (196)

where,

LPC =
[
SPQ

]−1
XQ
pqξ

2
pξ

2
q b
C
pq. (197)

Here XP
pq ≡ XP

p X
P
q is the joint collocation, and SPQ ≡ XP

pqξ
2
pξ

2
qX

Q
pq is the grid-basis

Gramian matrix. The factor ZPQ can be now computed in reduced O(N4) effort.

Another plausible THC-type factorization of the ERI tensor (newly explored here)

involves applying LS-THC quadrature to only the bra of the ERI, and leaving the ket

indices pinned, i.e., (pq|rs) ≈ XP
p X

P
q A

P
rs. This factorization topologically resembles

the PS representation, except that here it is the orbital-pair electrostatic potential

APrs that is determined by least-squares, rather than the physical-to-spectral projector

QP
p ≡ [XQ

p X
Q
q ]−1XP

q of standard PS. As such, the new THC-inspired method is con-

siderably more accurate than raw PS. We refer to this variant of LS-THC as “partial

THC,” or LS-PTHC. If the ERI tensor is first represented by DF [LS-PTHC(DF)],

the factorization reduces to,

(pq|rs) ≈ XP
p X

P
q L

P
Cb

C
rs. (198)

The factor LPC is identical to that in Equation 197.

Another new feature introduced in this work is the presence of the weights ξpξqξrξs

in Equation 194. These weights allow us to obtain higher absolute accuracy in the
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THC representation for certain integrals. One intuitive choice for the weights in

the context of post-MP2 correlation methods involves the use of the unrelaxed MP2

difference density matrix γ′pq. The eigenvectors U r
p of γ′pq are the usual unrelaxed MP2

natural orbitals, and the eigenvalues η′r are the differences in occupation numbers

of the natural orbitals between the SCF and MP2 wavefunctions. η′r provides a

guide for how much each natural orbital is depleted from or accumulated into in the

correlation process. Therefore, if we choose ξr ≡
√
|η′r| and perform the THC fitting

in the natural orbital basis, we will weight the THC fitting to produce more absolute

accuracy in integrals which are likely to be more active in the CCSD correlation

process. This choice for the weights is denoted by W-LS-THC or W-LS-PTHC in

this work, and is contrasted to our previous choice of ξp ≡ 1, which will be denoted

by LS-THC or LS-PTHC.

5.3.2 THC-Accelerated CCSD

The most rate-limiting term in CCSD and related methods270 [such as configuration

interaction singles and doubles (CISD), coupled cluster doubles (CCD), configuration

interaction doubles (CID), and third-order Mller-Plesset perturbation theory (MP3)]

is the “particle-particle ladder diagram,” Aabij , which scales as O(o2v4) and involves a

O(v4) integral tensor,

Aabij = tcdij v̂
cd
ab. (199)

Here, we have invoked the T1-transformation of the Hamiltonian152 by setting v̂qspr ≡

xp′pyq′q(p
′q′|r′s′)xr′rys′s, where xp′p ≡ δp′p − tai δp′iδpa, and yp′p ≡ δp′p + tai δp′aδpi. For

CCSD, this embeds all commutators involving T1 into an effective Hamiltonian, re-

sulting in a drastically simpler set of residual equations (essentially CCD for the T2

amplitudes, plus a few simple diagrams for the T1 amplitudes). Moreover, this ap-

proach results in a formulation of CCSD with at most O(o3v3) operations on O(o2v2)

tensors, with the exception of the above diagram. As a result, Aabij is often wholly
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rate-limiting, particularly in larger basis sets.

As was first noted in the context of CID and MP3,189,190 this term can be reduced

to O(3o2v2M) via integrals represented with PS-like topology,

Aabij ≈
[
XP
a

[
APbd

[
Y P
c t

cd
ij

]]]
. (200)

Here XP
a ≡ XP

p xpa and Y P
a ≡ XP

p ypa are the T1-transformed collocations. In this

work, APbd is a PS-like intermediate formed from LS-THC(DF) or LS-PTHC(DF) in-

tegrals, and the underlying LPA operators are fit in the full active MO space to provide

fidelity in the T1-transformed integrals. For LS-THC(DF), APbd ≡ ZPQ[XQ
b Y

Q
d ], which

requires O(v2M2) overhead. For LS-PTHC(DF), APbd ≡ LPC b̂
C
bd, where b̂Cbd ≡ bCpqxpbyqd,

which requires lower O(v2AM) overhead. We symmetrize the result, Aabij ← 1/2(Aabij +

Abaji ). Note that blocking over the index P provides an immediate route to avoid stor-

age of large intermediates such as T Pdij ≡ Y P
c t

cd
ij ; only T2-sized quantities are required

[and b̂Cbd for LS-PTHC(DF)]. Full LS-THC(DF) and LS-PTHC(DF) algorithms for

Aabij are presented in the supplemental material.

Conventionally, Aabij can be evaluated in O(o2v4/4) operations involving O(v4/2)

integrals by using symmetric and antisymmetric combinations of tcdij and v̂cdab.
267 Avoid-

ing explicit storage or I/O operations involving v̂cdab is of critical importance, particu-

larly when the T1-transformation is invoked. Integral-direct algorithms in the atomic

orbital basis provide one avenue for such acceleration.152 Additionally, DF algorithms

provide an alternative means to accelerate the T1-transformation of the Hamiltonian,

and reduce I/O operations by generating v̂cdab in batches, albeit with computationally

expensive O(v4A/2) floating-point overhead.60

5.3.3 Computational Details

LS-THC(DF) and LS-PTHC(DF) implementations of Aabij have been added to an

optimized DF-CCSD implementation in a development version of the PSI4 package.298

All computations below use the cc-pVTZ basis set,70 with a DF-RHF reference in the
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cc-pVTZ-JKFIT auxiliary basis,312 and all ERIs in DF-CCSD are represented by

the cc-pVTZ-MP2FIT auxiliary basis.313 The THC grids for these computations are

pruned Becke-style grids20 extended from our R-DVR grids217 and optimized for LS-

THC(DF)-MP2/cc-pVTZ in a separate study.154 All 1s electrons on first-row atoms

are frozen in the CCSD computations. All molecular geometries, THC grids, and

benchmark results are available in the supplemental material.
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Figure 22: Absolute errors vs. DF-CCSD/cc-pVTZ for (A) C12H26 alkane (B) C12H14

alkene (C) tetracene (D) 3-alanine (E) (H2O)12.

5.4 Results and Discussion

Figure 22 depicts the absolute error profiles of the four THC-type CCSD algorithms

vs. DF-CCSD, in a cc-pVTZ basis set, for the largest members computed of our stan-

dard THC test sets. The performance for LS-THC(DF)/LS-PTHC(DF) is reasonable

(at worst 4.28 mH absolute error), while that of W-LS-THC(DF)/W-LS-PTHC(DF)

is excellent (at worst 0.58 mH absolute error). In all cases, the LS-PTHC variant

has roughly half the absolute error as the LS-THC variant, as expected. The W-LS-

PTHC(DF) errors are remarkably low, reaching at most 0.02 mH absolute error for

the three hydrocarbon test sets, with absolute errors of 0.11 mH and 0.26 mH for
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3-alanine and (H2O)12, respectively.
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Figure 23: Maximum errors for absolute and relative energies vs. DF-CCSD/cc-
pVTZ for eight low-lying (H2O)6 clusters.

It is also worth noting that THC seems to possess excellent error cancelation prop-

erties. For instance, Figure 23 contrasts the maximum errors in absolute and relative

energies of eight low-lying (H2O)6 clusters.17 Errors in absolute energies are up to

2.13 mH and 0.29 mH for LS-THC(DF)/LS-PTHC(DF) and W-LS-THC(DF)/W-

LS-PTHC(DF), respectively, but the corresponding maximum errors for relative en-

ergies are only 0.18 mH and 0.03 mH, i.e., a tenfold reduction in relative compared

to absolute error.

Figure 24 depicts the wall time for a complete CCSD/cc-pVTZ computation of

tetracene for DF, LS-THC(DF)/W-LS-THC(DF), and LS-PTHC(DF)/W-LS-PTHC(DF),

on a node with 6-core 3.2 GHz Intel Core i7 processor, 64 GB of DDR3 memory, and

3×3 TB 7200 RPM RAID0 scratch disks. Weighted and non-weighted THC/PTHC

algorithms require the same wall times. The DF-CCSD computation requires 30.7

hours of wall time, with 19.9 hours of that spent in Aabij . The corresponding values are

13.5/2.8 hours for LS-THC(DF) and 12.7/1.9 hours for LS-PTHC(DF). Aabij is thus

accelerated by a factor of 10.4×, leading to 2.4× overall speedup of CCSD. We expect
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Figure 24: CCSD/cc-pVTZ wall times for tetracene. A indicates the Aabij particle-
particle ladder diagram, BCD indicates the remaining O(N6) diagrams, and Other
indicates O(N5) or lower overhead. 19 CCSD iterations are performed.

this value to grow substantially with system and basis set size. Similar speedups are

obtained against MOLPRO,314 which uses an AO-basis algorithm for Aabij .266

This communication has demonstrated that straightforward application of the

THC representation of the ERI tensor can produce substantial computational gains

in methods such as CCSD, with remarkably little error. As CCSD has been quite

resistant to acceleration by DF/CD/PS methods for the past three decades, it is ap-

parent that THC is a uniquely powerful rank reduction method in electronic structure

theory. A particularly surprising observation is that the accuracy/efficiency results

presented in this work use THC grids optimized for the hole-particle integrals of LS-

THC(DF)-MP2: additional accuracy/efficiency may be possible by reoptimizing the

THC grids for the full MO space.
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CHAPTER VI

CONCLUSIONS REGARDING TENSOR

HYPERCONTRACTION

Tensor hypercontraction has been established as an accurate, efficient, and markedly

flexible factorization of the ERI tensor. THC compresses the ERI tensor according

to the representation (pq|rs) ≈ XP
p X

P
q Z

PQXQ
r X

Q
s , and is the first rank reduction

approach which is accurately able to decompose the order-4 ERI tensor in terms of

only order-2 factor tensors. The topology of the THC representation is physically

motivated, and arises from a two-stage argument. The first stage is to exploit the

linear closure and spatial separability of the pair space to apply a quadrature in both

coordinates of the ERI tensor. The second stage is to recognize that the singularities of

the 1/r12 operator which plague the quadrature may be removed by replacing 1/r12

with a renormalized operator which is customized for the finite pair space present

in the problem at hand. In polynomial basis sets (X-THC), these steps rely on

exact linear closure and Gaussian quadrature, and produce an exact factorization. In

molecular problems with atom-centered basis sets, linear closure in the pair space is

only numerically obtained, and linear-scaling quadrature grids are only approximate

for integrating the pair space. As a result, THC in the molecular problem is necessarily

an approximation, albeit a rapidly convergent one. For the molecular problem, there

are several possible recipes to generate the THC factorization. One of the most simple

and robust is least-squares tensor hypercontraction (LS-THC). LS-THC is similar in

spirit to X-THC, in that it applies a quadrature in both coordinates of the ERI tensor

and then seeks a renormalized operator to replace the singularity-laden 1/r12. In

practice, LS-THC only needs the grid-space collocations of the renormalized operator.
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These collocations, which make up the ZPQ tensor, are effectively determined by

solving for the ZPQ which minimizes the 2-norm of the error in the desired ERI tensor,

under the choice of XP
p from the quadrature grid. THC can be viewed as a one-step

PARAFAC decomposition of the ERI in which only the ZPQ tensor is optimized. It

is shown that LS-THC ERIs with either atom-centered Becke-type quadrature grids

or grids based on discrete variable representation (DVR) approaches can provide sub-

mH accuracy in many electronic structure theory methods with as few as 100-200

points per atom. Moreover LS-THC demonstrates systematic cancellation of errors

in computing relative properties.

There are several advantages to be had from the use of THC ERIs. One is that

the order-2 factors of THC are much easier to store than the order-4 ERI tensor or

the order-3 factor tensors of other factorization approaches. This should be particu-

larly relevant on massively parallel or GPGPU architectures, where communication

operations involving large tensors can quickly annihilate performance. Additionally,

the uniquely flexible “unpinned” THC factorization allows for a number of new al-

gorithms for electronic structure theory methods with lower scalings than previously

observed. The use of LS-THC ERIs is shown to produce the first wholly O(N4) ap-

proaches to MP2, MP3, CC2, and EOM-CC2. Moreover, LS-THC ERIs are shown

to accurately and efficiently reduce the scaling of the rate-limiting particle-particle

ladder terms in CCSD from O(N6) to O(N5), providing for a practical speedup of

10× in this term and 2.4× in the complete CCSD method. Further afield, the THC

factorization has also been asserted for the opposite-spin doubles amplitudes of CI

and CC theories, and is shown to result in an accurate and formally O(N4) approach

to CISD and CCSD.

The application of THC electronic structure theory introduces some unique chal-

lenges, many of which may be solved in the near future. An overriding requirement in

128



LS-THC is the specification of quadrature grids for use with each basis set and sub-

set of the ERI tensor. Optimization techniques similar to those used to parametrize

auxiliary basis sets for DF computations have been developed, and are beginning

to produce markedly robust and efficient grids for a range of basis sets. Another

challenge is the derivation of analytical gradients for the LS-THC ERIs - for AO-

basis LS-THC, this has been completed and is currently being tested. An additional,

global, challenge is the increased complexity of the equations of electronic structure

theory when THC representations are invoked - the large number of factors in a THC-

approximated quantity result in a hefty number of intermediate contractions that

must be performed. Determining and then implementing the optimal path through

a given contraction has previously been quite time consuming for the programmer.

This situation is slowly being ameliorated by the introduction of tensor manipulation

packages into electronic structure code stacks. A final consideration is that lower-

scaling algorithms with high prefactors do not always beat higher-scaling algorithms

with low prefactors - there is always a crossover point with respect to system size

that must be considered. In particular, it has proven difficult to universally beat

the existing state-of-the-art density fitted codes, especially at high accuracies. That

being said, the tide is beginning to turn. For methods like CCSD, where DF is not

flexible enough to provide much acceleration, THC is already providing clear advan-

tages. Even for methods where DF has reigned supreme (such as MP2, CC2, and

EOM-CC2), THC is beginning to provide crossovers, particularly in implementations

on state-of-the-art architectures such as GPGPUs.

In the end, the THC factorization of the ERI tensor arises as a natural exploita-

tion of the understanding of the ERI tensor as an amalgamation of five separate

objects - four basis functions and one Coulomb operator, stitched together over two

spatial coordinates. In exposing this underlying structure, an accurate and flexible

representation for the electron-electron repulsion is realized, and is beginning to be
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practically exploited to accelerate electronic structure computations of many types.
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CHAPTER VII

INTRODUCTION TO PARTITIONED

INTERMOLECULAR INTERACTIONS

7.1 Intermolecular Interactions

7.1.1 Background to Fuzzy Chemical Concepts

At the end of the day, the electronic Schrödinger equation (or any desired extension

thereof) is believed to exactly govern all that we can know about any chemical system.

To say that the even the exact results obtained by solving this equation are equivocal

is an understatement of massive proportions. For example, the Schrödinger equation

does not provide us with the definite energy of a chemical system, nor the position

of a given electron within that system. Rather, a list of possible discrete energies

and their probabilities is provided, along with the probability density function for

finding any electron within a given region of space. And from this ansatz, we are

expected to provide design input into the chemical technologies of tomorrow - to

decide what atomic-level substitutions will yield the next drug molecule, the next

organic photovoltaic device, the next catalytic material. How then are we to proceed?

The answer is the broad field of “fuzzy” chemical concepts - discrete and simplified

governing precepts extracted from the continuous reality of quantum chemistry. In

covalent chemistry, these concepts are well-developed and widely used - the chemical

bond,226 the Lewis structure,173 the electronegativity tables,225 or more-advanced

heuristics such as frontier orbitals86 and the Woodward-Hoffmann rules.327 These

concepts do not correspond to any unambiguous physical observable, and thus no

instrument has ever directly observed one. And yet they resonate so strongly with the

outcome of a broad range of experiments that they provide useful design information
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and allow for tractable progress in the field of chemistry. The simultaneous utility

and non-existence of these concepts is perhaps most elegantly stated by Frenking and

Krapp,79 who liken the concept of chemical bonding to the legend of the unicorn,

“A unicorn is a mystical animal whose appearance is known to everybody although

nobody has ever seen one.”

There seem to exist two broad approaches to these fuzzy concepts: chemical intu-

ition and heuristic computation. The first of these is these is the core of any organic

chemistry course - the drawing of Lewis structures, the application of the curved ar-

row notation, the annotation of partial charges, the invocation of a mix of resonance

structures. Here, the key is that no computations or numerical calculations are per-

formed. The results fall out of a richly developed set of empirical rules, where, at

each stage in the process, the chemist asserts that this bond or that dipole exists

because the diagram on the paper looks right. The magnificent finding here is that

this process works in the overwhelming majority of chemical cases, distinguishing it

from being voodoo by virtue of usually being right. In fact, the only real issue with

chemical intuition is that it only pertains to chemical problems which fall within

the span of other exhaustively-studied problems. In delicate cases or exotic chemi-

cal environments, chemical intuition may sometimes fail. In these cases, the second

approach of heuristic computation can often provide deep insights. The precept of

this area is that the chemist’s overall concept exists, but his/her intuition is incor-

rect for the particular chemical system at hand. The heuristic computation approach

instead carefully develops a robust mathematical specification of the overall concept,

and then lets the computer find the specific details for each system. E.g., in de-

scribing the electrons in benzene, the overall concept of localized electronic bonds is

correct, but the assertion of alternating single and double bonds in the carbon ring

(the Kekulé structure) is rubbish. However, if one instead performs an ab initio SCF

computation and then asserts the overall idea that the electrons can be represented
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as spatially localized objects (an orbital localization methodology), the generalized

equivalent of the Lewis structure of benzene falls out immediately. Moreover, all of

the salient details of this generalized Lewis structure are preserved - the result sums

to the total ab initio density of the system, the polarization of the C-H σ bonds are

encapsulated, and the π orbitals prove difficult to uniquely localize (in contrast to

the σ framework), indicating that they form a non-separable chemical subsystem.

Within covalent chemistry, both the chemical intuition and the heuristic com-

putation approaches to fuzzy chemical concepts are quite mature. With regard to

noncovalent chemistry, i.e., intermolecular interactions, both the concepts and the

heuristics are less-well developed. The goal of this half of the thesis is to detail our

efforts to provide a robust heuristic partition of ab initio interaction energy compo-

nents as one step along the path toward a firm set of intuitive concepts for noncovalent

chemistry.

7.1.2 Noncovalent Chemistry

Broadly speaking, noncovalent chemistry is concerned with the weak residual forces

leftover between molecules after the constituent electrons and protons have combined

to form these molecules by covalent bonding.203 Whereas a typical covalent bond

energy is on the order of 100 kcal mol−1, typical intermolecular contacts are in the

range of 1 - 20 kcal mol−1. As with all discrete concepts in chemistry, there is a

somewhat blurry line between covalent and noncovalent interactions, e.g., as demon-

strated by the longstanding debate as to whether hydrogen bonding has covalent

character.132 In general, intermolecular interactions are characterized by such forces

as electrostatics, steric repulsion, polarization, and London dispersion, and also by

the absence of significant charge transfer or charge sharing between the monomers in

question. Such noncovalent interactions are ubiquitous in chemistry, and are the driv-

ing force in a host of important processes. The supramolecular structure of DNA and
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RNA,115,282,52,229,289,213,125 affinity of drug-ligand interactions,32,164,168,198,113,174,155,74

and packing of organic crystals230,247,231,29,127 are just a few examples of systems in

which intermolecular interactions are key players.

The two most critical questions asked in the study of intermolecular interactions

are (1) how strong is the interaction and (2) why does it exhibit that strength? There

are actually several ways to phrase (1), depending on the situation. In comparing to

most experiments, one wishes to calculate the binding energy ∆Gbind at finite tem-

perature in whatever solvent environment is used in the experiment.203 That is, what

is the free energy required/released to bring the two monomers together to form the

dimer, including the effects of zero-point molecular vibrations, solvent interactions,

entropy, enthalpy, monomer deformation, and dimer interactions. Computing all of

these effects with high precision is an extraordinarily difficult process, and is over-

whelmingly likely to be intractable for a given chemical system. In order to make

some progress, we typically start instead with the last effect under consideration: the

interaction energy ∆Eint of the frozen monomers. For some experimental systems,

especially those for which the solvent effects do not dominate the binding energy and

for which the monomers are reasonably rigid, this is sufficient to provide significant

insights. Even just accurate computation of the interaction energy is a substantial

task, due to the sensitivity of the interaction to the underlying electronic structures

of the monomers. Several systematic techniques for computing the interaction energy

have been developed, including the supermolecular approach and the perturbative

approach.

A systematic answer for question (2) is critical to allow for rational design of

noncovalent interactions, e.g., to design new drug ligands or better organic catalysts.

However, this area remains quite murky. One useful arena is the application of en-

ergy decomposition analysis (EDA)147 to partition the ab initio interaction energy

134



into electostatics, steric repulsion (also called exchange), induction (a mixture of po-

larization and charge transfer), and dispersion. Many EDA-type approaches have

been proposed, including Morokuma’s EDA,147 symmetry-adapted perturbation the-

ory (SAPT),139,291,138 absolutely-localized molecular orbital (ALMO) techniques,13

etc. For small noncovalent interactions, EDA provides substantial insight into the

nature of the interaction. However, for larger systems involving multiple functional

groups on each monomers, one may find that all EDA terms play a significant role

in determining the interaction energy. E.g., in phenol dimer, one expects a mix of

hydrogen bonding and π stacking interactions from the hydroxyl and phenyl pieces,

respectively. Unfortunately, EDA methodologies generally do not contain any quan-

tification of the spatial origins of the interaction energy terms, but rather only their

total magnitudes.

For larger and more-complicated systems, chemists often talk intuitively in terms

of “contacts” between nearby functional groups on opposing monomers. These con-

tacts are often selected intuitively on the basis of functional group composition, dis-

tance criteria, and the relative orientations of the functional groups in question. For

instance, when one sees an intermolecular motif involving the topology X−H · · · : Y ,

where X and Y are electronegative atoms and the H · · ·Y distance is in the range

of 1.5 to 2.5 Å, one immediately thinks “hydrogen bond.” This implies a close in-

termolecular contact between two favorably oriented dipolar groups, contributing a

fairly large attractive component to the interaction energy (typically 2−7 kcal mol−1

depending on the specifics of X, Y , and the geometry). Other well-known contacts

include halogen bonding, π-π stacking, CH-π, cation-π, etc. The majority of these

intermolecular bonding motifs are motivated by electrostatic analysis, e.g., considera-

tion of the local multipoles of the involved functional groups. As such, these intuitive

classifications may significantly underestimate the strength of London dispersion con-

tributions, which can be substantial even for such seemingly noninteracting motifs as
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CH–CH contacts. Moreover, intuition often fails to capture a number of long-ranged

or nonclassical effects. For instance, electrostatic interactions are notoriously long-

ranged, and thus distance-based criteria may completely fail to identify the most

important electrostatic contacts in a large noncovalent complex. Regarding nonclas-

sical effects, one somewhat surprising finding in recent years is the importance of a

nonclassical “charge penetration” term in the electrostatics to a wide variety of non-

covalent interactions. Charge penetration arises due to the more-diffuse nature of the

electronic density field, relative to the point-charge distributions of the nuclei. For the

interaction between, for example, two neutral rare-gas atoms, the four contributions

to the electrostatic interaction (electron-electron repulsion, electron-nuclear attrac-

tion, nuclear-electron attraction, and nuclear-nuclear repulsion) turn on at different

rates as rAB → 0+. In the end, this leads to a small but exponentially increasing elec-

trostatic attraction between the ostensibly neutral rare gas atoms as their electronic

densities begin to interpenetrate.

These considerations have led to a general sentiment that it would be very useful

if there existed a robust methodology to quantify the strength of each ab initio in-

teraction energy term between local pieces of two interacting monomers.286 This lies

exactly in the spirit of heuristic computation approaches - the idea is to assert the

chemist’s overall picture of effective pairwise contacts between local fragments of two

interacting monomers, but let the computational algorithms robustly decide on the

exact quantitative makeup of these fragments, as well as on the assignment of the

interaction energy terms to these fragments.

7.1.3 Supermolecular Computations

The intermolecular interaction energy is defined as,

∆Eint ≡ EAB − EA − EB. (201)
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That is, what is the energy required/released to bring the system to the geometry of

the interacting dimer (which has energy EAB) from the effective system of infinitely

separated monomers frozen in their dimer conformations (which has energy EA+EB)?

A negative interaction energy indicates a favorable noncovalent interaction.

Technically, any ab initio method which computes the total electronic energy can

be deployed for the computation of the three terms in Equation 201, leading to the

conceptually simple “supermolecular” approach. However, a number of important

considerations must be accounted for in such an approach. The first is that Equation

201 involves a small energy difference (on the order of a few kcal mol−1) arising from

three very large total energies (on the order of hundreds or thousands of Hartree

each). Therefore, the individual energy computations must be converged tightly, and

any numerical approximations deployed must be carefully designed to prevent errors

from overwhelming the energy difference. This is one area where the importance of

favorable error cancellation is manifest - e.g., an energy computation using the DF

approximation will often make a large absolute error in describing the core electrons

of the dimer, but this will generally be cancelled by a corresponding error in the core

electrons of the monomer computations, leading to much reduced absolute error in

the interaction energy. The second consideration is the choice of one-particle basis

set employed. If finite atom-centered basis sets are used, an insidious difference in the

completeness of the basis set in the dimer and monomer computations is encountered,

known as basis set superposition error (BSSE). The brief explanation of BSSE is that

the dimer computation (performed in the dimer basis set) is effectively performed

in a more complete basis set than each of the monomer computations (performed in

their respective monomer basis sets), because the electrons of one of the monomers

in the dimer computation can “steal” parts of the basis functions of the opposing

monomer. This artificially stabilizes the dimer, leading to a too-favorable interac-

tion energy. Improved performance can often be obtained by applying a Boys and
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Bernardi “counterpoise correction,” which amounts to also performing the monomer

computations in the dimer basis sets.35 However, it has been demonstrated that this

formally overcorrects for the effect of BSSE. The debate on this matter continues

to this day - the current prevailing wisdom is that counterpoise correction does not

directly fix BSSE, but it does improve the smoothness of convergence with respect to

basis set.163

The third major consideration in supermolecular approach is the extreme sensitiv-

ity of the interaction energy to the electronic structure of and between the underlying

monomers and to the relative distances and orientations between the two monomers.

For one instance, Hartree-Fock theory or uncorrected Kohn-Sham Density Functional

Theory (KS-DFT)152 does not account for the long-range correlations between elec-

trons, and thus does not capture the dispersion interaction at all. Empirical dispersion

corrections to DFT (-D approaches)96 or second-order Møller-Plesset Perturbation

Theory (MP2)200 are essentially the first two methods to even begin to capture this

interaction. Even at the level of MP2, dispersion is very poorly captured - the deli-

cate interplay between intramolecular and intermolecular correlation (coupling) is not

captured in MP2, leading to a large overestimation of the MP2-type dispersion energy

for some classes of systems. In general, extremely accurate and expensive methods,

such as coupled-cluster singles and doubles with perturbation triples extrapolated to

the complete basis set [CCSD(T)/CBS] are required for the robust computation of

interaction energies.239,240,71 The massive expense of CCSD(T)/CBS has led to a slew

of proposals for cheaper methods with higher accuracy than MP2 for the characteri-

zation of interaction energies - spin-component scaled MP2 (SCS-MP2),95 “coupled”

MP2 (MP2C),112 spin-component scaled coupled cluster (SCS-CCSD),292 etc. One

admirably simple recipe is to perform MP2 in a carefully chosen basis set (jun-cc-

pVDZ),272 which provides remarkable efficiency and accuracy vs. CCSD(T)/CBS due

to cancellation between the basis set incompleteness errors and the errors rising from
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the uncoupled treatment of dispersion in MP2.

There exist several EDA methodologies based on supermolecular computations

- Morokuma’s EDA,147 Head-Gordon’s ALMO methodology,13 etc. However, these

methods do not rigorously converge to the many-body limit of the interaction en-

ergy, as they obtain the contributions to the interaction energy as byproducts of

supermolecular computations.

An approach that directly computes the interaction energy may have the ability

to naturally avoid many of the issues discussed in this section. This leads to the

“perturbative” approach to interaction energy computations.

7.1.4 Symmetry-Adapted Perturbation Theory

Perhaps the best-developed perturbative approach for intermolecular interactions is

symmetry-adapted perturbation theory (SAPT).139,291,138 SAPT is an extension of

the older London variant of Raleigh-Schrödinger polarization theory (RSPT), with

corrections added at each order to account for the fermionic antisymmetry of the dimer

wavefunction. For a molecular dimer, SAPT partitions the molecular Hamiltonian

as,

Ĥ ≡ F̂A + F̂B + V̂ + ŴA + ŴB. (202)

Here F̂A is the Fock operator of monomer A, while ŴA is the corresponding in-

tramolecular Møller-Plesset fluctuation potential. V̂ is the the intermolecular in-

teraction operator between the particles of monomers A and B. SAPT expands the

expectation value of V̂ (the interaction energy) as a triple perturbation series in V̂ and

the two intramolecular fluctuation potentials. The zeroth-order dimer wavefunction

is a non-antisymmetrized direct product of the Slater determinants of the two un-

derlying monomers, i.e., the Hartree-Fock wavefunctions of the separated monomers.

The SAPT expansion is then written as,

Eint ≡
∞∑
nlm

E
(nlm)
pol + E

(nlm)
exch
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Here, the tuple (nlm) denotes the perturbation series order in V̂ (n), ŴA (l), and ŴB

(m). The reduced specification E
(n,l+m)
term is also often encountered. Each SAPT term

has two contributions - the RSPT polarization series term E
(nlm)
pol and an exchange

correction E
(nlm)
exch to provide for antisymmetry in the dimer wavefunction. A thorough

review of the development and derivation of SAPT terms may be found in Ref. 139.

Many flavors of SAPT have been developed over the past few decades. In the more-

traditional “wavefunction-based” SAPT above, the simplest method is SAPT0,138

which neglects all intramolecular correlation due to the fluctuation potentials. SAPT0

contains the leading terms representing electrostatics, exchange, induction, and dis-

persion, and is essentially a Hartree-Fock treatment of the first three terms, plus

an MP2-type dispersion treatment. Just as with MP2, SAPT0 may significantly

overbind polarizable systems (such as π-π contacts), due to the uncoupled treatment

of the dispersion term. As with MP2, the deployment of SAPT0 with a carefully

chosen jun-cc-pVDZ basis provides a remarkably accurate empirical correction to

this problem, and yields interaction energies which are usually within 0.5 − 1 kcal

mol−1 of CCSD(T)/CBS, at a small fraction of the cost.123,214 When implemented

with density fitting approximations, SAPT0/jun-cc-pVDZ has been routinely de-

ployed on systems with up to 220 atoms and 2845 basis functions.123,122 Many fla-

vors of higher-order wavefunction-based SAPT have also been developed. Methods

such as SAPT2, SAPT2+3, and SAPT2+3(CCD) add in intramolecular correlation

effects, higher-order inter- and intra-molecular perturbation series terms, and even

certain infinite-order summations of particularly important classes of perturbation se-

ries terms.138,257,224,326 SAPT2+3(CCD)/aug-cc-pVTZ provides an accuracy of a few

tenths of one kcal mol−1 vs. CCSD(T)/CBS, and does not rely on error cancellation

as in SAPT0/jun-cc-pVDZ.214 These methods can be routinely deployed on systems

with up to 30 atoms and 1100 basis functions, if density fitting and natural virtual

orbital truncations are applied.124,117,219 Another interesting class of SAPT methods
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is the SAPT(CCSD) approach of Korona and coworkers,161,157,158,159,160 which uses

CCSD susceptibility functions to provide a very accurate description of the interac-

tion energy, albeit for systems with only a handful of atoms. Finally, much effort has

been applied in recent years to the development of SAPT(DFT) approaches.123,118

These methods strongly resemble SAPT0, but replace the zeroth-order Hartree-Fock

description of the monomers with a more-accurate KS-DFT description which auto-

matically encapsulates intramonomer correlation effects..

One of the major strengths of SAPT is that it directly and rigorously computes

the interaction energy. As a result, the physical components of the interaction energy

fall directly out of low-order SAPT expansions,

ESAPT = EElst + EExch + EInd + EDisp (203)

The electrostatic energy is seen as the direct interaction between the unrelaxed and

unsymmetrized monomers. The exchange energy arises by the application of the

antisymmetry principle to the zeroth-order wavefunction, before any induction or

dispersion has occurred, and may be viewed as a Pauli correction to the electrostatic

energy. The induction energy arises as a response term wherein one monomer reacts

to the electrostatic environment of the other monomer by rearranging its electrons,

with an exchange correction to ensure that only Pauli-allowed polarizations occur.

For polar and/or polarizable systems, accurate computation of the induction term

requires that the monomer wavefunctions be allowed to mutually relax, i.e., that

higher-order induction terms be included. In practical computations, infinite-order

induction may be included at a Hartree-Fock level of theory by means of a hybrid

supermolecular and perturbational approach known as a δHF correction. Finally,

dispersion emerges as concerted excitations on the two monomers, corrected for the

Pauli principle.
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7.2 Partitioned Symmetry Adapted Perturbation Theory

At this point, a natural question is “where in the two monomers do these SAPT

terms arise from?” To answer this, we assert the chemist’s picture of localized contacts

between the interacting monomers, and then partition SAPT so that a fraction of each

SAPT term is assigned to each pairwise contact. In practice, this is accomplished via

a two-phase procedure. In the first phase, the many-body perturbation series terms

in SAPT are reduced to chemically sensible effective 2-body interactions between

occupied particles in the two monomers. In the second phase, a localized set of

occupied particles is selected to provide a robust partition to such moieties as atom-

or functional-group-pairs.

Note that this approach is roughly analogous to an older approach: the “cut-

and-cap” recipe. In cut-and-cap analysis, the monomers are divided into desired

constituent functional groups by the chemist, following which linking covalent bonds

between functional groups are cut and subsequently capped by hydrogen atoms to

passivate the electronic and electrostatic structure of the resulting fragments. For

each pairwise contact in the dimer, an interaction energy computation is performed

for the underlying cut-and-capped fragments, in vacuum. Cut-and-cap analysis often

provides useful insight into the origins of noncovalent interactions, but it does exhibit

a number of problems. One is that the approach ignores the true many-body nature of

the interaction energy. For instance, the exact limit of the total interaction energy is

not obtained from the sum of pairwise interactions, even if exact interaction energies

are computed for the underlying fragments. In particular, the effect of intramolecular

polarization is not captured in the cut-and-cap analysis, often leading to substantial

errors in the sum of isolated interaction energy computations. By contrast, the parti-

tioned SAPT approach extracts an effective two-body interaction between each pair

of fragments while respecting the many-body limit of the interaction energy.
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7.2.1 Order-2 Partition of SAPT0 Terms

In general, the SAPT contributions to the interaction energy are many-body pertur-

bation series terms. Each term may involve, two, a few, or even an infinite number

of quasiparticle indices. Each index pertains to one or the other monomer, and may

involve a nucleus or occupied orbital (the occupied space of the underlying monomer)

or a virtual orbital (the vacuum around the monomer). The first task in partitioned

SAPT approaches is to find an effective two-body interaction for each SAPT term

which matches chemical intuition for what that term represents.

One particular question encountered in partitioned SAPT theory is the considera-

tion of the physicality of the occupied vs. the virtual space. In the second-quantization

treatment of the correlation energy,109 the equations are invariant to occupied-virtual

interchange, and thus both are referred to as “quasiparticles” and treated on the same

footing. However, in partitioning SAPT, we are seeking to explain which portions

of the generalized Lewis structures of the underlying monomers give rise to each in-

teraction. For example, if we remove a chemical functional group from one of the

monomers, we expect the major effect to be that direct interactions with that group

disappear, followed by smaller effects involving the rearrangement of the electronic

density in nearby groups. This consideration obviously implies that the occupied

space is the relevant quantity. Thus, in all partitions below, we will focus on the

occupied space indices, and sum immediately over the virtual space indices.

It is found that a chemically intuitive order-2 partition of the full SAPT0 inter-

action energy is easily obtained. Below, we demonstrate the general approach to this

partition with three examples of increasing complexity. The list of indices used for

these examples is presented in Table 4. A full partition of SAPT0, together with

complete explanation and justification, is presented in Ref. 222, included further

below.
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7.2.1.1 Electrostatics

The electrostatic term encountered in SAPT0 is,

E
(10)
elst,r ≡

∫∫
R6

dr1 dr2 ρA(~r1)
1

r12

ρB(~r2) = 2V B
aa + 2V A

bb + 4vabab +
ZAZB
rAB

. (204)

Here V P
ij is a nuclear attraction integral of the form (ij|P ), and vjlik is an ERI of the

form (ij|kl). This term involves only two indices: the protons and electrons A of

monomer A and the protons and electrons B of monomer B. Thus the term is directly

a two-body interaction energy, and the partition is, e.g.,

E
(10),AB
elst,r ≡

∫∫
R6

dr1 dr2 ρA(~r1)
1

r12

ρB(~r2) = 2V B
aa + 2V A

bb + 4vabab +
ZAZB
rAB

. (205)

7.2.1.2 Dispersion

The uncoupled two-body dispersion is used in SAPT0 is,

E
(20)
disp ≡ 4trsabv

ab
rs . (206)

Here trsab ≡ vrsab/(εa − εb − εr − εs) is the uncoupled dispersion amplitude. This term

involves four quasiparticles - the occupied electrons a and b and the virtual states r

and s. This corresponds to the chemist’s picture of dispersion as arising from two

coupled excitations - an a → r excitation on monomer A with a b → s excitation

on monomer B. As discussed above, we are concerned with where in the the two

monomers this interaction originated from as the interaction operator was switched

on. Thus, it is appropriate to retain indices for the occupied electrons and to sum

over the virtual states, leading to the order-2 partition,

E
(20),ab
disp ≡ 4trsabv

ab
rs . (207)

Another way to view this is the quantum interaction between the a and b electrons

via fluctuations into the vacuum provided by the r and s virtual states.
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7.2.1.3 Exchange-Dispersion

The exchange correction to the dispersion interaction used in SAPT0 is,

E
(20)
exch−disp[S2] ≡ −2trsabṽ

ab
rs . (208)

The exchange-dispersion potential, is, in the S2 approximation,

ṽrsab ≡ +1vsrab+1Ssa(2v
ra′

ba′−va
′r
ba′ )+1Ssa′(2v

ra′

ab −va
′r
ab )+1Srb (2v

sb′

ab′−vb
′s
ab′)+1Srb′(2v

sb′

ba −vb
′s
ba )

+1SrbS
b′

a′v
a′s
ab′−2Srb′S

b′

a′v
a′s
ab −2SrbS

b′

a v
a′s
a′b′+4Srb′S

b′

a v
a′s
a′b+1SsaS

a′

b′ v
rb′

a′b−2Ssa′S
a′

b′ v
rb′

ab −2SsaS
a′

b v
rb′

a′b′

+4Ssa′S
a′

b v
rb′

ab′+1Srb′S
s
a′v

a′b′

ab −2SrbS
s
a′v

a′b′

ab′ −2Srb′S
s
av

a′b′

a′b +1Sa
′

b S
b′

a v
rs
a′b′−2Sa

′

b S
b′

a′v
rs
ab′−2Sa

′

b′ S
b′

a v
rs
a′b

+ 2Srb′S
b′

a V
A
bs + 2Ssa′S

a′

b V
B
ar − 1SrbS

b′

a V
A
b′s − 1SsaS

a′

b V
B
a′r + 1SsaS

r
s′V

A
bs′ + 1SrbS

s
r′V

B
ar′ .

(209)

Altogether, this term involves the four occupied particles a, a′, b, and b′, and could

be expanded and summed to any pair of A and B contributions. However, physically,

the term represents the Pauli corrections to the dispersion contributions to remove

parts of the dispersion excitations which penetrate the occupied space of the opposing

monomer. The two new particles a′ and b′ appear in order to encapsulate the collisions

with the b → s and a → r excitations, respectively. Thus, the entire exchange-

dispersion term may be viewed as a correction to the order-2 a ↔ b interaction

partitioned in the dispersion term above. This leads us to continue to focus on the

occupied particles a and b, and to sum over the a′ and b′ particles in this term,

E
(20),ab
exch−disp[S2] ≡ −2trsabṽ

ab
rs . (210)

7.2.2 Localization Techniques

Having obtained a generic order-2 partition of SAPT0 to contributions from the

occupied spaces in the Hartree-Fock wavefunctions of the underlying monomers, the

remaining task is to provide a sensible and robust set of localized quasiparticles for

these occupied spaces. There are several possible schemes for this task, leading to a
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number of possible variants of partitioned SAPT. Note that we refer to the discrete

set of functions selected to span the occupied spaces as “quasiparticles” because they

may be composed of a collection of more fundamental particles whose amalgamation

is treated as a single unit for the purpose of the analysis. Depending on the partition

scheme, a quasiparticle may be a proton or localized occupied electron, an atom, or

an entire chemical functional group.

7.2.2.1 Protons and Electrons as Localized Quasiparticles

In electronic structure theory, the fundamental particles are electrons and protons.

The protons are already completely localized at the nuclei, and thus there is no

ambiguity in their contributions to the order-2 partition of SAPT. In the Hartree-

Fock wavefunctions of the monomers, the electrons occupy a single Slater determinant

which may be parametrized by an infinite number of sets of occupied orbitals. In

particular, any unitary transformation of the canonical Hartree-Fock orbitals yields

the same physical observables.

It has long been observed that there exists a broad class of unitary parametriza-

tions of the occupied orbitals which resonates strongly with the concept of the Lewis

structure - the concept of localized occupied orbitals. Many schemes for localized

orbitals have been proposed in the literature, all based on the general idea that the

maximally localized orbital set will directly mirror the Lewis structure of the molecule.

Some of the more prominent schemes are reviewed below,

Boys: Approximately simultaneously diagonalizes the position operators x̂, ŷ, and

ẑ.34 Boys localization is robust in large basis sets, scales as O(N3), but mixes

σ and π orbitals to produce hybrid “τ” shapes.

Pipek-Mezey: Approximately simultaneously diagonalizes the Mulliken atomic pop-

ulation operators P̂A.228 Pipek-Mezey localization scales as O(N3), preserves

σ-π separation, but is unstable in large or diffuse basis sets due to the reliance
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on Mulliken charges.

Emiston-Ruedenberg: Maximizes the self-repulsion of the localized electrons.72

Edmiston-Ruedenberg localization is robust in large basis sets and preserves

σ-π separation, but scales as O(N5) due to reliance on the ERI tensor.

Cholesky: Uses pivoted Cholesky decomposition of the SCF one-particle density

matrix to produce the local orbitals.9 Cholesky localization is a direct O(N3),

but does not produce well-localized orbitals.

Intrinsic Bond Orbitals (IBO): A much-improved Pipek-Mezey localization scheme

with the Mulliken populations operators replaced by intrinsic atomic orbital

(IAO) population operators.149 IBO scales as O(N3), preserves σ-π separation,

and exhibits robust performance in large basis sets.

We have previously used Pipek-Mezey and Boys localization schemes, but have

recently come to wholly prefer the IBO scheme. IBO converges very rapidly, even

in often-used diffuse basis sets such as jun-cc-pVDZ or aug-cc-pVTZ. Moreover, IBO

orbitals are quite transferable. For instance, we find that a C-C σ orbital in benzene

is essentially quantitatively identical to a C-C σ bond in a phenylalanine residue

in a protein, unless a substitution or nearby dipole causes a polarization of the C-

C σ bond. In the latter case, the polarization of the C-C σ bond is carried over

into the IBO localized orbital, as expected. In Pipek-Mezey orbitals in diffuse basis

sets, such polarizations are often carried over into a much larger number of localized

orbitals, with positive and negative polarizations often contributing to the total and

contaminating the analysis.

Accumulating the order-2 SAPT0 partition according to protons and localized

electrons is quite easy computationally. The SAPT0 terms are written in terms of

local occupied orbitals, and partial contractions over virtual indices and other oc-

cupied particles are carried out. This leads to what we have sometimes deemed
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as “orbital-based SAPT.” Orbital-based SAPT leads to an order-2 partition with

nuclear-nuclear, electronic-nuclear, and electronic-electronic contributions. For elec-

trostatics and induction sources, large and nearly cancelling contributions from the

repulsive and attractive components make for a muddled analysis. This mandates

the use of larger quasiparticles obtained by joining nuclear and electronic particles

together to provide a sensible analysis.

7.2.2.2 Atoms as Localized Quasiparticles

Our first major approach to partitioned SAPT accumulated to atom-pairwise contri-

butions (A-SAPT).222 Here, an atom is defined as a nucleus, plus some affiliated elec-

tronic charge. The electronic charge fields are chosen to sum to the total Hartree-Fock

density fields of the monomers, leading to non-spherical atoms with partial charges.

For electrostatic terms (electrostatics and the source terms in induction), atom-pair

contributions were directly obtained by replacing the total molecular density with

the sum of atomic densities in the relevant places in the electrostatic integrals. To

obtain a tractable and accurate method for the evaluation of the electrostatic energy,

a grid-based resolution of the electrostatic integrals was invoked, following which an

auxiliary basis was applied to regularize the 1/r12 Coulomb operator, an approach

which strongly resembles PS-THC. For terms involving electronic response (exchange,

induction response, and dispersion), contributions were first accumulated to the level

of local occupied electrons. This order-2 partition was then reduced to the level of

atom pairs via orbital atomic charges.

A key consideration in A-SAPT is the methodology used to partition the molecular

electronic density into atomic contributions. A number of approaches to atomic

partitioning exist,

Mulliken-Type: It is formally possible to use the Mulliken atomic population oper-

ators to produce atomic density fields, in a spectral-space approach. However,
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this approach has severe basis set dependency and does not produce nearly

spherical atoms.

IBO-Type: It is also possible to use the IAOs from the IBO localization methodology

to construct atomic density fields, in a spectral-space approach. This removes

the basis-set dependency above, and produces atoms with reasonable charges,

but the charge distributions are not close to spherical.

Bader-Type: Atomic basins may be identified from topological consideration of the

density field, in a grid-based approach (often referred to as atoms-in-molecules

or AIM).15 Unfortunately, these basins are not nearly spherical, and have rigid

divisions, implying that very large quadrature expansions are required to pro-

duce accurate integrals over the basins.

Hirshfeld: Overlapping and nearly spherical atoms may be developed by weighting

physical space according to the formula wĀ(~r) ≡ ρ0
Ā

(~r)/
∑

Ā′ ρ
0
Ā′

(~r).114 The

spherical proatomic densities ρ0
Ā

(~r) are taken from the neutral isolated atoms.

Hirshfeld charges are found to be closer to neutral than expected, due to the

reliance on neutral atoms for the proatomic densities.

Hirshfeld-I: A Hirshfeld approach with each proatomic density taken from a linear

combination of the neutral, cationic, and anionic variants of the free atoms.39

This is generally found to produce more sensible charges than Hirshfeld, at

the cost of introducing an iterative fitting procedure for the proatomic density

fields.

Iterative Stockholder Analysis (ISA): A Hirshfeld approach with unlimited free-

dom in the radial form of each proatomic density fields, which thus contains no

empirical parameters (beyond the form of the fitting metric).178
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For our purposes, ISA was selected due to its lack of reliance on empirical parameters.

Hirshfeld-I is expected to give similar results.

A-SAPT was found to produce useful automatic decompositions of the interaction

energy terms in large systems, and was able to answer some delicate questions for

certain terms. For instance, A-SAPT was able to show that the previous hypothesis of

the large induction energy in cation-π interactions being wholly due to the π orbitals

is incorrect - more than half of the induction energy arises from C-C and C-H σ

polarization. Moreover, A-SAPT is expected to prove quite useful in parametrizing

the atom-pairwise intermolecular interaction terms in next-generation force fields.

Rather than fitting the sum of all atom pairs to a single ab initio energy, it is now

possible to extract an effective ab initio interaction energy for each atom pair and

then fit individually to these pair potentials.

7.2.2.3 Functional Groups as Localized Quasiparticles

One area where A-SAPT fails is in quantifying the interactions between chemical

functional groups. The root of this failure is the existence of partial charges in the

concept of atoms in molecules. For instance, in considering the hydroxyl-hydroxyl

interaction in phenol, the chemist is interested in how strong this interaction is relative

to the corresponding interaction in water dimer, e.g., to the attractive dipole-dipole

electrostatic energy. However, if one sums together the ISA O and H atoms in each

phenol group, it is found that both hydroxyl groups carry a partial negative charge of

roughly −0.2 electrons. This negative charge is due to the greater electronegativity

of O vs. C, leading to the C-O σ bond being assigned more greatly to the O atom.

This, in turn, leads to an unexpected repulsive charge-charge interaction between the

hydroxyl groups, muddling the analysis. The point here is not that this interaction is

unphysical - under the choice of partition, it is entirely correct. Rather, the point is

that this contribution does not fit into the chemist’s picture of interactions between
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neutral functional groups with, at most, local dipoles. To provide a robust partition

to the chemist’s picture, we must modify our fragmentation scheme to ensure that

the functional groups do not carry partial charges.

This is accomplished by the “functional group” SAPT partition (F-SAPT).220 F-

SAPT is based on the idea that the local occupied orbitals computed under a robust

localization technique form the generalized Lewis structure of the molecule. Neutral

functional groups can then be constructed from subsets of occupied electrons and

protons. For example, in phenol, the hydroxyl group can be built from the O core

orbital, the O-H σ bond, the two lone-pair orbitals, the H proton, and seven of the

eight O protons. The phenyl group can be built from the C core orbitals, the C-C

and C-H σ framework, the three π orbitals, the H protons, and all but one of the C

protons. The hydroxyl and phenyl group are bridged by a linking σ unit, consisting

of the C-O σ orbital, one of the O protons, and one of the C protons. The phenol

monomer has now been divided into hydroxyl, phenyl, and link contributions which

rigorously sum to the total system’s density. In practice, the electrons and protons

involved in each group can be automatically selected by orbital charge considerations,

using a user-specified list of atoms specifying each functional group. To simplify the

analysis, the link unit may be assigned 50/50 to the underlying functional groups, so

long as the link unit is not significantly involved in the interaction.

The F-SAPT partition removes the charge-charge contamination of A-SAPT, but

preserves the local dipoles of the functional groups. As such, it may be viewed as a

cut-and-cap analysis which also respects the many-body limit of the interaction, par-

ticularly including the intramolecular polarizations of the various functional groups.

7.2.3 Partitioned Symmetry Adapted Perturbation Theory Publications

The remainder of this half of the thesis document consists of four papers detailing the

development and deployment of partitioned SAPT methods. These works include,
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1. The development of a general two-body partition of SAPT0 in concert with a

specific localization scheme to the level of atoms (A-SAPT), adapted from Ref.

222.

2. The development of an alternative partition to chemical functional groups via

considerations of local occupied orbitals (F-SAPT), adapted from Ref. 220.

3. The deployment of F-SAPT to investigate the origins of the substituent effect

in sandwich benzene dimers, adapted from Ref. 221.

4. A side project using ideas from F-SAPT together with Hartree-Fock-in-Hartree-

Fock embedding to yield a method capable of characterizing the magnitude and

nature of intramolecular noncovalent contacts (I-SAPT), adapted from Ref. 215.
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CHAPTER VIII

ATOMIC SYMMETRY-ADAPTED PERTURBATION

THEORY

The following is adapted from Ref. 222.

8.1 Abstract

We develop a physically-motivated assignment of symmetry adapted perturbation

theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the

A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction

energy components are computed normally under the formalism of SAPT, following

which a spatially-localized two-body quasiparticle interaction is extracted from the

many-body interaction terms. For electrostatics and induction source terms, the rel-

evant quasiparticles are atoms, which are obtained in this work through the iterative

stockholder analysis (ISA) procedure. For the exchange, induction response, and

dispersion terms, the relevant quasiparticles are local occupied orbitals, which are

obtained in this work through the Pipek-Mezey procedure. The local orbital atomic

charges obtained from ISA additionally allow the terms involving local orbitals to be

assigned in an atom-pairwise manner. Further summation over the atoms of one or

the other monomer allows for a chemically intuitive visualization of the contribution of

each atom and interaction component to the overall noncovalent interaction strength.

Herein, we present the intuitive development and mathematical form for A-SAPT

applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an

efficient series of algorithms for the computation of the A-SAPT0 partition with es-

sentially the same computational cost as the corresponding SAPT0 decomposition.
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We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence

parameter, orbital localization metric, and induction coupling treatment, and recom-

mend a set of practical choices which closes the definition of the A-SAPT0 partition.

We demonstrate the utility and computational tractability of the A-SAPT0 parti-

tion in the context of side-on cation-π interactions and the intercalation of DNA by

proflavine. A-SAPT0 clearly shows the key processes in these complicated noncova-

lent interactions, in systems with up to 220 atoms and 2845 basis functions.

8.2 Introduction

The quantitative determination and qualitative understanding of noncovalent inter-

actions are critical challenges in modern chemistry. Despite their weak magnitudes

relative to covalent bonds, noncovalent interactions are the crucial forces in a host of

important chemical applications, such as the specificity and strength of drug-ligand

interactions,32,164,168,198,113,174,155,74 the packing of organic crystals,230,247,231,29,127 the

structure of nucleic acid complexes,115,282,52,229,289,213,125 and many others. Unfortu-

nately, the magnitude and nature of noncovalent forces are quite sensitive to both

the electronic structure of the underlying monomers and the geometric arrangements

of the constituent molecules into the supermolecular cluster. As such, intermolecular

interactions are notoriously difficult to numerically quantify, even with high-accuracy

ab initio methods. Moreover, the results of ab initio computations of intermolecu-

lar interactions are presently extremely difficult to analyze, as (with the exception

of a few methods discussed below) no data is returned to indicate which pieces of

the monomers are most responsible for a given interaction energy contribution. In

this work, we present a method to directly attribute many-body interaction energy

components from symmetry adapted perturbation theory to localized regions of phys-

ical space, e.g., to provide an atomic partition of the many-body interaction energy

components.
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Noncovalent interactions are intrinsically many-body in nature: as Bohr once told

Heisenberg,108 “We must be clear that when it comes to atoms, language can be

used only as in poetry. The poet, too, is not nearly so concerned with describing

facts as with creating images and establishing mental connections.” This is borne

out in the current state of affairs in the field. Convergent ab initio methods such

as supermolecular methods or symmetry-adapted perturbation theory, which can be

expanded to the Schrödinger limit of the interaction energy, respect the accurate

many-body nature of the interaction, but cannot currently partition the interaction

components into spatial progenitors such as atoms. Alternatively, non-convergent

methods such as force fields or pairwise ab initio computations on fragments can

provide a spatial partition of the interaction components to the level of atoms or

fragments, but are definitionally pairwise in nature, and therefore cannot reproduce

the many-body effects inherent in the Schrödinger limit of the interaction energy.

In this work, we pursue an alternative paradigm, in which we allow the many-body

interaction to occur naturally, and then extract the key two-body interactions from

within the dressing of the many-body effects. Partial traces over all bodies except for

a local quasiparticle basis for the critical two-body interaction provides a quasi-atom-

pairwise picture of the interaction components, while maintaining the interaction

energy magnitude of the full many-body interaction. We stress that this partition is

neither an observable quantity, nor is it unique, but it is well-defined and carefully

chosen to mirror and amplify chemical intuition while preserving the many-body limit

in the interaction energy components.

The starting point for our approach is the methodology of symmetry adapted

perturbation theory (SAPT).139,291,138 SAPT computes the intermolecular interac-

tion as a perturbation to noninteracting monomer wavefunctions, with the added

adaption of total wavefunction antisymmetry. One powerful feature of SAPT is

that it provides a decomposition of the intermolecular interaction energy in terms
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of physically intuitive electrostatic, exchange, induction, and dispersion components,

though there do exist other methods which can provide similar decompositions.147,16,13

SAPT is formally completable to the Schrödinger limit of the interaction energy, if

the intermolecular interaction potential and intramolecular correlation potentials are

expanded to infinite-order in perturbation theory. In practice, a tractable trunca-

tion to the perturbation series must be made, resulting in the slew of SAPT flavors

in the literature. If wavefunction theory is used for the SAPT expansion, many

choices of truncation are available, including complete neglect of the intramolecu-

lar correlation potentials [SAPT0],138 many-body treatment of the intramolecular

correlation potentials and/or higher-order terms [SAPT2, SAPT2+, SAPT2+(3),

SAPT2+3],138,257,224,124 infinite-order treatment of certain terms [SAPT2+(CCD),

SAPT2+(3)(CCD), SAPT2+3(CCD)],326,117,219 or expansion of the monomer sus-

ceptibility functions [SAPT(CCSD), etc].161,157,158,159,160 Additionally, much progress

has been made recently in adapting Kohn-Sham density functional theory (DFT) to

the SAPT environment, resulting in the closely related SAPT(DFT) and DFT-SAPT

methods with excellent accuracy to cost ratios.325,110,195,111,233 Most variants of SAPT

are designed for dimer interactions, though trimer202,182,232 and even hybrid many-

monomer135,169 flavors also exist. We focus exclusively on dimer SAPT methodology

in the present work, and additionally select SAPT0 as a convenient starting point.

While SAPT0 is generally not of quantitative accuracy, we have found that semiquan-

titative accuracy can be obtained when the method is deployed in a carefully chosen

jun-cc-pVDZ basis set (cc-pVDZ on hydrogen, aug-cc-pVDZ less the diffuse func-

tions of highest angular momentum on heavy elements).124,212 By applying density

fitting324,67,68,299,76,245,144,312 and Laplace transformation4,104,37,293 numerical approxi-

mations to the implementation of SAPT0, we have developed a code that can run

SAPT0/jun-cc-pVDZ on systems with > 200 atoms and > 2800 basis functions,123,118

implying that a visualization technique developed for SAPT0 might be immediately
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applicable to large-scale intermolecular interactions. Moreover, the topologies of the

SAPT0 and SAPT(DFT) methods are essentially identical: the methodology devel-

oped in this work is immediately and directly transferable to SAPT(DFT) simply by

substituting coupled Kohn-Sham quasiparticles in place of Hartree-Fock quasiparti-

cles.

This work focuses on a spatial partition of the SAPT0 decomposition, yielding a

method we refer to as atomic SAPT0 (A-SAPT0). A-SAPT0 is one specialization

of a family of possible atomic SAPT methods (A-SAPT); we envision that further

studies will yield methods such as A-SAPT(DFT) and A-SAPT2+3(CCD). In this

manuscript, we provide the definition, justification, implementation, and initial test-

ing of the A-SAPT0 partition. The key focus of the paper is the identification of

critical two-body interactions in the SAPT0 interaction energy components and sub-

sequent local quasiparticle accumulation of these two-body interactions. For the two-

body partition, we use an extension of the diagrammatic notation developed for SAPT

by Rybek et al. to illustrate the nature of each interaction energy component.257 For

the local quasiparticle basis, we use atomic density fields obtained from the iterative

stockholder analysis (ISA) procedure of Lillestolen and Wheatley178,179,315 for electro-

static source terms, and local orbitals obtained from the Pipek-Mezey228 procedure

for the electronic response terms. We also discuss key technical developments required

for the correct and efficient implementation of the A-SAPT0 methodology. In partic-

ular, an intermediate projection from grid-based physical-space atomic density fields

to auxiliary-basis spectral-space atomic electrostatic potentials is required to regu-

larize the Coulomb singularity in the electrostatic source terms: this step borrows

heavily from our experience with the tensor hypercontraction (THC) resolution of

the electron repulsion integrals.121,216,218 Additionally, concerted application of den-

sity fitting and canonical-to-local orbital transformation yields an implementation of

A-SAPT0 with similar computational cost as the underlying SAPT0 method, with
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minimal formal modification. We then discuss two visualization schemes developed

to quickly analyze the results of an A-SAPT0 computation. In the results section,

we test the sensitivity of the A-SAPT0 partition to the grid and convergence scheme

used in the ISA procedure, the choice of orbital localization metric, and the choice

of coupled vs. uncoupled induction treatment. Finally, we deploy A-SAPT0 to in-

vestigate side-on cation-π interactions and the intercalation of DNA by proflavine,

demonstrating the compelling utility of the A-SAPT0 method in systems with more

than 200 atoms.

At this point, a brief review of existing techniques for visualizing noncovalent

interactions is appropriate. Noncovalent interactions are much less intuitive than

covalent bond arrangements, which can be conceptualized by Lewis structures173

or quantitatively visualized via local orbitals,34,72,228,9,126,149,172 electron localization

functions (ELF or LOL),21,275 atoms in molecules (AIM),14,15 or natural bond or-

bital (NBO) analyses.78 For intermolecular interactions, the sometimes-used “· · · ”

notation for hydrogen bonds is the only conceptual analog of Lewis structures, and

quantitative visualization techniques are less-well developed. Of the four intermolec-

ular forces, electrostatics is the most intuitive, and therefore, the most developed.

Plots of the electrostatic potentials of the two monomers are often use to elucidate

favorable arrangements of the dimer. Additional techniques exist for the identifica-

tion and characterization of hydrogen bonding, including ELF analysis3,51 and a very

interesting recent utilization of experimental atomic force microscopy (AFM) tech-

niques to directly measure the steric repulsion from the hybridized electronic density

along the hydrogen bond with the AFM tip.330 For general noncovalent interactions,

the recent visualization work by Johnson et al. uses real-space consideration of the

electronic density and its derivatives to illuminate regions where noncovalent inter-

actions of certain topologies may be occurring.141,50 This method is agnostic as to

intramolecular vs. intermolecular noncovalent interactions, and is applicable to large
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systems. However, the method is a heuristic based on correlations between a visual-

ization of the “non-covalent interactions (NCI)” scalar field and chemical intuition.

Also relevant is the semiempirical-based divide and conquer interaction energy de-

composition of van der Vaart and Merz,302 which can provide a subsystem-pairwise

accounting of electrostatics/exchange, polarization, and charge transfer. This method

has been used to study the genesis of large scale noncovalent interactions, such as the

biomolecule/solvent interface,206,303 protein folding,301 protein-ligand interactions,241

and protein-protein association.1 However, this methodology does not allow for the

completion of the Hamiltonian elements linking the subsystems, e.g., there is no ac-

counting for the dispersion interaction. Additionally, methods analogous to A-SAPT,

which provide visualizations based on energetic contributions assigned to atoms or

orbitals, should also be possible with molecular mechanics (MM),53 energy decom-

position analysis (EDA),147 or absolutely localized molecular orbital (ALMO) tech-

niques,13 though we are not currently aware of any examples of such visualizations.

Moreover, any such visualization techniques would not be formally completable to

the full Schrödinger limit, as might be possible with A-SAPT.

8.3 Theory

8.3.1 Notation

8.3.1.1 Mathematical Notation

A large number of classes of indices will be used in this work, so we provide a brief

enumeration of all index types in Table 4. Primes are used to distinguish repeated

indices. A generalized Einstein summation convention is used throughout: whenever

an index on the right-hand side of an expression disappears, that index is asserted to

be summed over. All expressions presented in this work pertain to SAPT between

two closed-shell reference monomers.
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Table 4: Summary of indices occurring in A-SAPT0, for monomer A and monomer
B in the first two columns, respectively.

A B Description
µ µ Primary orbital basis function (dimer-centered)
C C -JKFIT auxiliary basis function (dimer-centered)
D D -RI auxiliary basis function (dimer-centered)
P P Becke quadrature grid points (dimer-centered)
i i Becke radial node, attached to some non-ghost atom A (monomer-centered)
A B All particles of monomers, including nuclei and electrons
A B All electrons of monomers
A B Atoms of monomers, including a nucleus and assigned electronic density
A B Nuclei of monomers
Ā B̄ Electronic density assigned to atoms of monomers
a b Canonical occupied orbitals of monomers
r s Canonical virtual orbitals of monomers
ā b̄ Local occupied orbitals of monomers

8.3.1.2 Diagrammatic Notation

To support the physical understanding of the SAPT0 interaction energy components

and our order-2 partition thereof, we will use an extension of the SAPT Brandow-

type interaction energy diagrams developed in the work of Rybek, Jeziorski, and

Szalewicz,257 with some additional elements to denote the renormalized interaction

potentials and direct overlap interactions accompanying exchange terms. These di-

agrams appear in Figure 25, along with a short summary of the necessary diagram

elements. Each diagram will be explained when encountered below. Note that, in

contrast to the standard use of diagrams in coupled-cluster theory, we are using these

diagrams for pedagogical and illustrative purposes rather than for rigorous deriva-

tions.
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Figure 25: Relevant diagrams and key body selections for the A-SAPT0 order-2
partition.
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8.3.2 SAPT0 Order-2 Partition

8.3.2.1 SAPT0 Overview

The SAPT0 interaction energy is most commonly defined as

ESAPT0 ≡ E
(10)
elst,r+E

(10)
exch[S∞]+E

(20)
ind,r+E

(20)
exch,ind,r[S

2]+δ
(2)
HF,r+E

(20)
disp+E

(20)
exch−disp[S2]. (211)

These terms can be grouped to provide a chemically intuitive breakdown of the in-

teraction energy in terms of electrostatic, exchange, induction, and dispersion com-

ponents. Using the terms selected above, the decomposition may be chosen as,

Eelst ≡ E
(10)
elst,r (212)

Eexch ≡ E
(10)
exch[S∞] (213)

Eind ≡ E
(20)
ind,r + E

(20)
exch−ind,r[S

2] + δ
(2)
HF,r (214)

Edisp ≡ E
(20)
disp + E

(20)
exch−disp[S2]. (215)

A number of choices were made above, resulting in a balanced but economical decom-

position. The first is that the intramonomer correlation is entirely neglected (hence

the name SAPT0) and the SAPT intermolecular perturbation series is only explicitly

computed to second order. Second, coupled response, denoted by the subscript r, is

included in the induction terms to provide for electronic relaxation in these terms.

This treatment improves the induction energy in nonpolar systems. However, in

polar and/or polarizable systems, higher-order induced-multipole induced-multipole

induction terms still remain important, and are compensated for by the hybrid δ
(2)
HF,r

correction, computed as

δ
(2)
HF,r ≡ EHF − E(10)

elst,r − E
(10)
exch[S∞]− E(20)

ind,r − E
(20)
exch−ind,r[S

2]. (216)

This treatment pegs the sum of electrostatics, exchange, and induction to the Hartree-

Fock interaction energy. Finally, E
(10)
exch is computed with full S∞ treatment of the

antisymmetrization operator, while the induction and dispersion counterparts are only
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computed in the S2 approximation. The former can provide substantial improvements

of the steric repulsion on the exponential wall of potential energy surfaces (E
(10)
exch[S2]

is often observed to be roughly 5-10% too small at short intermolecular separation).

The error due to the S2 treatment of E
(20)
exch−ind,r is masked if the δ

(2)
HF,r correction is

used, while the error due to the S2 treatment of E
(20)
exch−disp is usually not problematic

due to the small magnitude of this term.

8.3.2.2 Electrostatics

The electrostatic term is simply

E
(10)
elst,r ≡

∫∫
R6

dr1 dr2 ρA(~r1)
1

r12

ρB(~r2) = 2V B
aa + 2V A

bb + 4vabab +
ZAZB
rAB

. (217)

Here ρA(~r1) is the total charge density (including nuclei) of monomer A, V B
aa is the

electrostatic potential matrix element between the orbital pair aa and atom B [e.g.,

V B
pp′ ≡ −(p|ZB/r1B|p′)], vabab is the standard electron repulsion integral [e.g, vp

′p′′

pp′′′ ≡

(pp′|p′′p′′′)], and ZA is the charge of nucleus A. It is apparent that the four terms in

the last expression all carry distinct physical meaning. In order, they represent the

attraction of the electrons of monomer A to the nuclei of monomer B, the attraction

of the electrons of monomer B to the nuclei of monomer A, the electron-electron

repulsion between monomers, and the nuclear-nuclear repulsion between monomers.

Each contribution is obviously two-particle in nature. It is worth noting that each of

these contributions is typically > 1000× larger than the total, as the first two terms

nearly cancel with the last two. This feature implies that any geometric partition

must be extremely careful to provide a balanced treatment of nuclear and electronic

contributions, to avoid large oscillations in the partition.

The SAPT diagram corresponding to the electrostatic term is found in the upper

right corner of Figure 25. This term involves the direct interactions of the total charge

fields on monomer A and monomer B. However, any reasonable visualization scheme

for this term must group some electronic density together with each nucleus to avoid
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visualizing extremely large, nearly cancelling quantities. The concept required here is

that of an atom A: a nucleus A with charge density ρA(~r) ≡ ZAδ(~r − ~rA) (positive),

and some localized fraction of the total electronic density Ā defined as the atomic

electronic density field ρĀ(~r) (negative). We leave the assignment and manipulation

of these atomic density fields to a later section, but for now simply assert that the

total molecular density can be decomposed into such atom-local contributions,

ρA(~r) =
∑
A

ρA(~r) =
∑
A

ρĀ(~r) + ρA(~r). (218)

If this is the case, then the electrostatic term can be decomposed into an order-2

atomic partition,

E
(10)
elst,r ≡

∑
AB

E
(10),AB
elst,r ≡

∫∫
R6

dr1 dr2 ρA(~r1)
1

r12

ρB(~r2). (219)

This choice of decomposition is denoted by the circled key bodies in the SAPT elec-

trostatics diagram. In practice, each element of this order-2 partition contains four

terms, corresponding to the matrix-element expression in the final equality of Equa-

tion 217,

E
(10),AB
elst,r ≡ ∫

R3

dr1 ρĀ(~r1)
1

r1B

ZB +

∫
R3

dr2 ZA
1

r2A

ρB̄(~r2)

+

∫∫
R6

dr1 dr2 ρĀ(~r1)
1

r12

ρB̄(~r2) +
ZAZB
rAB

.

(220)

As with the total electrostatic term, the first two terms of the atomic partition nearly

cancel the last two terms, mandating extremely accurate computation of each term.

8.3.2.3 Exchange

In the S2 approximation, exchange is a one- and two-particle electronic response,201

E
(10)
exch[S2] ≡ −2SbaS

r
bV

B′
ar︸ ︷︷ ︸

E
(10)
exch[S2][A←B]

−2SabS
s
aV

A′
bs︸ ︷︷ ︸

E
(10)
exch[S2][B←A]

−2SsaS
r
bv

ab
rs︸ ︷︷ ︸

E
(10)
exch[S2][A↔B]

. (221)
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Here Sba is an overlap integral, i.e., Sba = (ab), and V B
ar is the electrostatic potential

of monomer B, i.e., V B
ar ≡ V B

ar + 2vrbab. The SAPT diagrams corresponding to the first

and third of these terms are presented on the upper middle row of Figure 25; the

second term is obtained by reflecting the first diagram across the monomer division.

As discussed by Moszynski and et al.,201 the topology of this term is remarkably

similar to that of the uncoupled, non-symmetrized second-order Rayleigh-Schrödinger

Polarization Theory (RSPT) term,

E
(20)
pol ≡ 2

V B
ar

εa − εr
V B′
ar︸ ︷︷ ︸

E
(20)
ind,u[A←B]

+ 2
V A
bs

εb − εs
V A′
bs︸ ︷︷ ︸

E
(20)
ind,u[B←A]

+ 4
vrsab

εa + εb − εr − εs
vabrs︸ ︷︷ ︸

E
(20)
disp

, (222)

where ε is an orbital eigenvalue. In both equations, the first contributions are single-

particle excitations (generalized inductions) of monomer A in response to some field

of monomer B, all under the electrostatic field of monomer B. For exchange, the

generalized induction amplitude yra ≡ −SbaSrb is induced by the Pauli-excluded overlap

with the orbitals b of monomer B. The potential driving this amplitude is the new

overlap interaction line in the left-side exchange diagram. For polarization, the true

induction amplitude xra ≡ V B
ar/(εa − εr) is induced by the electrostatic field of the

nuclei and electrons of monomer B. Technically these contributions are three-body

in nature: the body invoking the induction, the body performing the induction, and

the body providing the field. For the purposes of partitioning, we will focus on

the first two bodies, in the understanding that there is another level of detail being

abstracted here. The second contribution in each equation is identical to the first,

but involves monomer A inducing generalized inductions on monomer B, in the field

of A. The third contributions are concerted two-particle excitations. In the case of

exchange, the generalized doubles amplitude ursab ≡ −SsaSrb encapsulates the exchange

correlation between same-spin electrons. In the case of polarization, the usual doubles

amplitude trsab ≡ vrsab/(εa + εb− εr − εs) encapsulates the Coulomb correlation between

both same-spin and opposite-spin electrons (hence the extra factor of two).
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With these observations, the order-2 partition of the exchange term in the S2

approximation is obvious, and just involves delaying summation over the occupied

spaces in Equation 221,

E
(10)
exch[S2] ≡

∑
ab

E
(10),ab
exch [S2] ≡

∑
ab

−2SbaS
r
bV

B′
ar − 2SabS

s
aV

A′
bs − 2SsaS

r
bv

ab
rs . (223)

This choice is denoted by the circled key bodies in the SAPT diagrams. In practice,

the occupied space must be taken to be composed of localized quasiparticles for a

localized partition: this will be accomplished by moving to a basis of local occupied

orbitals in a later section.

Under the S∞ treatment, exchange involves all possible tuples of permutations

between particles, and is computed as

E
(10)
exch[S∞] ≡ −2vbaab + 2T a

′

a (V B
aa′ + 2va

′b
ab − vba

′

ab ) + 2T b
′

b (V A
bb′ + 2vb

′a
ba − vab

′

ba )

+ 2T ba(V A
ab + 2vba

′

aa′ − va
′b
aa′) + 2T ba(V B

ab + 2vbb
′

ab′ − vb
′b
ab′) + 2T baT

b′′

b′ (2vbb
′′

ab′ − vb
′′b
ab′ )

+ 2T baT
a′′

a′ (2vaa
′′

ba′ − va
′′a
ba′ ) + 2T a

′

a T
b′

b (2va
′b′

ab − vb
′a′

ab ) + 2T baT
b′

a′ (2v
ba′

ab′ − va
′b′

ab′ ). (224)

Here the T blocks are made of the relevant elements of the Hermitian matrix

T ≡

 T a
′

a T b
′
a

T a
′

b T b
′

b

 =

 δaa′ Sb
′
a

Sa
′

b δbb′


−1

−

 δaa′ 0

0 δbb′

 . (225)

Despite the large number of terms, this contribution can be obtained via a handful

of generalized Fock matrices. Unfortunately, a order-2 partition of this term is not

apparent to us; this does not imply that such a partition does not exist, merely that

we have been unable to locate such a partition, as yet. In practice, the difference

between E
(10)
exch[S2] and E

(10)
exch[S∞] is at most a few percent, in the neighborhood of the

steric wall. As a convenient compromise, we will scale the order-2 exchange partition

obtained under the S2 approximation to match the S∞ result, under the assumption

of isotropic magnification at all points in physical space,

E
(10),ab
exch [S∞] ≈ E

(10)
exch[S∞]

E
(10)
exch[S2]

E
(10),ab
exch [S2]. (226)
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This scaling technique is used for all results presented in this work.

8.3.2.4 Induction

As introduced above, the second-order induction interaction is a set of single-particle

excitations of monomer A in response to the electrostatic potential of monomer B,

under the electrostatic field of monomer B. The excitations can either be uncoupled,

in which case each electron moves independently from all the others, or coupled, in

which case a concerted induction occurs to lower the energy as much as possible. In

either case, the RSPT treatment above will overestimate the induction energy, as the

single particle excitations of monomer A generally penetrate much too far into the

Pauli-excluded space of monomer B. This is compensated by the exchange-induction

correction, which can be viewed as providing a modification to the electrostatic field

which damps out the induction energy lowering in cases where the single excitation is

Pauli forbidden. Taken together, the induction and exchange-induction contributions

can be reasonably viewed as a modified induction within the Pauli-allowed space. The

diagrams depicting these two terms are shown in the lower middle panel of Figure 25.

Mathematically, the induction of monomer A in response to the electrostatic po-

tential of monomer B is given as

E
(20)
ind [A← B] ≡ 2xBarV

B′
ar . (227)

Here [xB]ra is the matrix of singles amplitudes of monomer A in response to the

electrostatic potential of monomer B.

In the uncoupled formalism, the singles amplitudes are simply given as

xBar ≡
V B
ar

εa − εr
. (228)

In the coupled formalism, the singles amplitudes are the solutions of the Coupled-

Perturbed Hartree-Fock (CPHF) equations for monomer A,[
(εr − εa)δaa′δrr′ + 4vrr

′

aa′ − vr
′r
aa′ − va

′r′

ar

]
xBa′r′ = −V B

ar. (229)
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The uncoupled amplitudes arise from neglecting all ERI contributions to the CPHF

equations.

After some manipulation from the standard forms encountered in the literature,

the exchange-induction term in the S2 approximation can be evaluated as a contrac-

tion with identical topology as the induction term, albeit with a modified “exchange-

induction potential” Ṽ B′
ar ,

E
(20)
exch−ind[S2][A← B] ≡ 2xBarṼ

B′
ar , (230)

where,

Ṽ B
ar ≡ −1vbrab − 1SbaV

A
br − 2Sbav

a′r
a′b + 1Sbav

ra′

a′b + 1Sba′v
a′r
ab − 2Sba′v

ra′

ab − 1SrbV
B
ab

− 2Srbv
bb′

ab′ + 1Srbv
b′b
ab′ + 1SbaS

r
b′V

A
bb′ + 2SbaS

r
b′v

a′b′

a′b + 1Sb
′

a′S
r
b′V

B
aa′ + 2Sb

′

a′S
r
b′v

a′b
ab

− 1Sba′S
r
b′v

a′b′

ab + 2Sba′S
a′

b′ v
rb′

ab + 1Sb
′

a S
a′

b′ V
B
a′r + 2Sb

′

a S
a′

b′ v
rb
a′b − 1SbaS

a′

b′ v
rb′

a′b. (231)

The computational effort of forming this modified potential is negligible compared

to the solution of the CPHF equations. In fact, this potential may be easily formed

by a number of generalized Fock matrix builds. See, for instance, the work of Heßel-

mann and et al.111 or Hapka et al.,101 and “unwind” their direct contractions to the

exchange-induction energy. This potential is the new “exchange-renormalization”

interaction line appearing in the exchange-induction SAPT diagram.

In either the coupled or uncoupled formalisms, the contractions to the induction

and exchange-induction terms are identical, under the choice of singles amplitudes.

The net induction for the monomer is given as

Eind[A← B] ≡ E
(20)
ind [A← B] + E

(20)
exch−ind[S2][A← B]. (232)

The induction and exchange-induction counterparts for monomer B may be obtained

by permutation of indices in the above expressions.

As with the single-particle response in exchange, we will focus on the particle that
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causes the induction and the particle that undergoes the polarization in the order-

2 partition, as indicated by the circled key bodies in Figure 25. This means that

the particles providing the field will be summed over: the assumption here is that

the particle providing the field is the same as that which causes the polarization. A

critical feature of the linear response formalism comes into play here: the response of

monomer A’s density field to the total electrostatic potential of monomer B is equal

to the sum of the responses to any series of trial electrostatic potentials which add up

to the total electrostatic potential. Therefore, we may borrow techniques from the

section on electrostatics, and solve for the response of monomer A to the electrostatic

potential of each of monomer B’s atoms. Defining the atomic electrostatic potential

from the atomic density,

V B
ar ≡ −

∫∫
R6

dr1 dr2 φa(~r1)φr(~r1)
1

r12

ρB(~r2), (233)

we see that the total electrostatic potential is maintained,

V B
ar =

∑
B

V B
ar . (234)

The induction amplitudes providing the response due to each atom may be most

easily obtained at the uncoupled level, via

xBar ≡
V B
ar

εa − εr
. (235)

Alternatively, these amplitudes may be obtained at the coupled level by solving the

CPHF equations for monomer A for each of the B atomic perturbations,

[
(εr − εa)δaa′δrr′ + 4vrr

′

aa′ − vr
′r
aa′ − va

′r′

ar

]
xBa′r′ = −V B

ar . (236)

The expense of obtaining the coupled treatment is heavy: instead of a single O(N4)

iterative procedure like a Hartree-Fock single point or gradient computation, we now

have a O(N5) iterative procedure, which is more analogous to a Hartree-Fock Hessian
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computation. In either case, once the induction amplitudes are obtained, the order-2

partition is computed as

E
(20)
ind [A← B] =

∑
aB

E
(20),aB
ind [A← B] =

∑
aB

2xBarV
B′
ar , (237)

and

E
(20)
exch−ind[S2][A← B] =

∑
aB

E
(20),aB
exch−ind[S2][A← B] =

∑
aB

2xBarṼ
B′
ar . (238)

Note that we do not add the order-2 induction contributions from A ← B and B ←

A together to make a single induction partition: it is more useful to visualize the

response of monomer A due to monomer B separate from the response of monomer

B due to monomer A.

At this point, there are one or two pieces missing from the order-2 induction

partition, relative to SAPT0. In the case that the uncoupled singles amplitudes were

used (as we will always do for computational efficiency, unless explicitly indicated),

the partition will be missing the contributions due to the coupling. Additionally, in

either case, the partition will be missing infinite-order polarization effects, which are

captured in the hybrid δ
(2)
HF correction in SAPT0 theory. In either case, we will assume

that the missing effects are isotropic magnifications of the existing polarizations and

scale the partition to match the total SAPT0 induction energy, e.g.,

EaB
ind = SδSr[A← B]

[
E

(20),aB
ind [A← B] + E

(20),aB
exch−ind[S2][A← B]

]
, (239)

where the monomer-uniform scaling Sδ to account for hybrid induction is

Sδ ≡
E

(20)
ind,r + E

(20)
exch−ind,r[S

2] + δ
(2)
HF,r

E
(20)
ind,r + E

(20)
exch−ind,r[S

2]
, (240)

and the monomer-specific scaling Sr[A← B] to account for coupling is

Sr[A← B] ≡


E

(20)
ind,r[A←B]+E

(20)
exch−ind,r[S

2][A←B]

E
(20)
ind,u[A←B]+E

(20)
exch−ind,u[S2][A←B]

, Uncoupled A-SAPT

1, Coupled A-SAPT

. (241)

This scaling technique is used for all results presented in this work.
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Note that the scaling for uncoupled singles amplitudes can be avoided by using

coupled amplitudes, albeit at increased computational cost, though we show below

that the error due to scaled, uncoupled singles amplitudes is qualitatively negligible

across the S22 database. The error due to scaling for δ
(2)
HF,r is unknown at the present

time, but can be avoided in future efforts by developing A-SAPT partitions for E
(30)
ind ,

etc in higher-order SAPT.

8.3.2.5 Dispersion

As introduced in the section on exchange, dispersion is a two-particle correlation in

which pairs of a→ r and b→ s excitations occur in a coupled manner, to lower the

overall Coulomb repulsion. In SAPT0, the excitations within a monomer are each

uncoupled from all the others. This sometimes leads to substantial overbinding of

polarizable systems. However, adding intramonomer coupling requires a great deal of

effort (either via MBPT or CCD+(ST) contributions to the dispersion amplitudes,

or TD-DFT coupled susceptibility approaches). Fortunately, due to favorable error

cancelation, SAPT0 in a well-chosen basis set (particularly jun-cc-pVDZ) has been

shown to provide remarkable combination of accuracy and efficiency for a broad range

of systems.214 As with induction, the two-body dispersion initially fails to respect the

Pauli-excluded space of monomer B; the exchange-dispersion term adds a corrective

“exchange-dispersion potential” to penalize excitations which cross-penetrate each

others occupied spaces. The diagrams corresponding to these processes are depicted

in the lower panel of Figure 25.

The uncoupled two-body dispersion is

E
(20)
disp ≡ 4trsabv

ab
rs . (242)

The uncoupled amplitudes are simply

trsab ≡
vrsab

εa + εb − εr − εs
. (243)
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After some manipulation from the standard forms encountered in the literature, the

exchange-dispersion term in the S2 approximation can be evaluated as a contraction

with identical topology as the dispersion term, albeit with a modified “exchange-

dispersion potential,”

E
(20)
exch−disp[S2] ≡ −2trsabṽ

ab
rs , (244)

where

ṽrsab ≡ +1vsrab+1Ssa(2v
ra′

ba′−va
′r
ba′ )+1Ssa′(2v

ra′

ab −va
′r
ab )+1Srb (2v

sb′

ab′−vb
′s
ab′)+1Srb′(2v

sb′

ba −vb
′s
ba )

+1SrbS
b′

a′v
a′s
ab′−2Srb′S

b′

a′v
a′s
ab −2SrbS

b′

a v
a′s
a′b′+4Srb′S

b′

a v
a′s
a′b+1SsaS

a′

b′ v
rb′

a′b−2Ssa′S
a′

b′ v
rb′

ab −2SsaS
a′

b v
rb′

a′b′
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a′

b v
rb′

ab′+1Srb′S
s
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a′b′
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s
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s
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b S
b′
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′

b S
b′

a′v
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ab′−2Sa

′

b′ S
b′

a v
rs
a′b

+ 2Srb′S
b′

a V
A
bs + 2Ssa′S

a′

b V
B
ar − 1SrbS

b′

a V
A
b′s − 1SsaS

a′

b V
B
a′r + 1SsaS

r
s′V

A
bs′ + 1SrbS

s
r′V

B
ar′ .

(245)

This potential can be constructed in blocks at a few times the cost of forming the vrsab

integrals, as detailed in the supplemental material.

Obviously, the key order-2 partition involves the occupied spaces a and b on both

monomers, as indicated by the circled key bodies in the diagrams, yielding the math-

ematical partition,

E
(20)
disp =

∑
ab

E
(20),ab
disp =

∑
ab

4trsabv
ab
rs , (246)

and

E
(20)
exch−disp[S2] =

∑
ab

E
(20),ab
exch−disp[S2] =

∑
ab

−2trsabṽ
ab
rs . (247)

This partition of the dispersion energy to pairs of occupied orbitals (in particular, to

pairs of local occupied orbitals) strongly resembles the quasi-physical interpretation

of the pair energies in local correlation methodology, and has been done before for

dispersion in the context of LMP2.133,97
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8.3.3 Quasiparticle Spatial Localization

8.3.3.1 Electrostatic Source Localization

In the above order-2 partition, the total electrostatic potentials of nuclei and electrons

were encountered in the electrostatic and induction terms. These electrostatic poten-

tials drive these two types of interactions, so we refer to them as “source terms.” Due

to extraordinary cancellation between charges with opposite signs, it is necessary to

provide a highly localized spatial decomposition for these terms which balances the

nuclear and electronic contributions. The concept we are seeking here is that of an

atomic charge density field. While the qualitative decomposition of the electronic den-

sity into atomic contributions is an intuitive process, the concept has been found to

be remarkably ill-defined and ambiguous mathematically, leading to myriad schemes

for atomic partitioning in the literature. For the purposes of matching the SAPT

total energy components, accurate application of numerical integration, and intuitive

interpretation of results, we seek an atomic partitioning scheme with the following

characteristics:

Normalization: the sum of atomic densities should exactly match the total molec-

ular density, i.e.,
∑

A ρA(~r) = ρA(~r).

Smoothness: the atomic densities must decay smoothly as r → ∞, jump disconti-

nuities at bond midpoints are not allowed.

Elegance: the atomic densities should match the intuitive understanding of an atom

as a nearly spherical quantity whose normalization follows electronegativity

differences.

Intrinsicality: the atomic density partitioning should be rigorously defined in terms

of only the molecular electronic density and the positions of the nuclei; external

computations or parameters are not permitted.
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These considerations lead to our selection of the iterative stockholder analysis (ISA)

of Wheatley and co-workers.178,179,315 This method first identifies the “closest” set

of spherical atoms ρ0
Ā

(~r) = fĀ(|~r − ~rA|) to the molecular density, by minimizing the

objective functional,39

O

(
ρ0
A ≡

∑
Ā

ρ0
Ā

)
≡ −

∫
R3

dr1

[
ρ0
A(~r1)− ρA(~r1) ln

(
ρ0
A(~r1)

ρA(~r1)

)]
. (248)

The leading minus sign reflects our negative definite nature of the electronic density,

which was adopted in Equation 218. Next, the spherical but approximate “proatomic”

densities ρ0
Ā

(also called “shape functions”) are used to generate non-spherical but

exactly normalized atomic densities,

ρĀ(~r) ≡
ρ0
Ā

(~r)∑
Ā′ ρ

0
Ā′

(~r)
ρA(~r). (249)

In practice, the atomic densities are determined iteratively on an atom-centered Becke

grid,20 with nodes and weights {~rP , wP}. Given a trial set of proatomic densities, the

atomic densities can be generated by Equation 249. From a non-converged set of

atomic densities, an update to the proatomic densities can be obtained by spherically

averaging the atomic density,

ρ0
Ā(riĀ) = 〈ρĀ(~r)〉iĀ, (250)

where 〈. . .〉iĀ indicates a spherical average over the Lebedev grid at the i-th radial

node on atom Ā. Equations 249 and 250 are then iterated to self-consistency.

Once the atomic densities are generated on the Becke grid, the remaining task

is to integrate the various electrostatic source terms. Unfortunately, the grid-based

decomposition of the molecular density is no longer directly representable in the

space of orbital pairs, i.e., ρĀ(~r) 6= −2DĀ
µµ′φµ(~r)φµ′(~r). This implies that the standard

spectral-basis electron repulsion integrals cannot be used in electrostatic source terms.

At this point, we might be tempted to use the Becke quadrature weights to resolve
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the integral traces via direct numerical integration, e.g.,

E
(10),ĀB̄
elst,r

?
≈ wPρĀ(~rP )

1

rPP ′
ρB̄(~rP ′)wP ′ . (251)

Unfortunately, the grid-space Coulomb operator 1/rPP ′ has a measure-3 singularity

where P = P ′, and extremely ill-conditioned otherwise. This was the same difficulty

initially encountered in our work on the tensor hypercontraction (THC) representation

for the conventional electron repulsion integrals.121,216,218 Borrowing a trick from our

efforts in THC, we can overcome this difficulty by projecting the grid-space atomic

densities onto an auxiliary spectral basis set, using the robust Coulomb metric,

V C
Ā ≡ 〈ρĀ|r

−1
12 |χC〉 =

∫
R6

dr1 dr2 ρĀ(~r1)
1

r12

χC(~r2) ≈ wPρĀ(~rP )

∫
R3

dr2
1

r2P

χC(~r2)︸ ︷︷ ︸
vPC

.

(252)

Here, the integrals vPC resemble the usual nuclear potential integrals, albeit with a

single orbital index. This step is highly analogous to a pseudospectral projection (PS)

for each atomic density.80,81,82 In this representation, the finite, smooth support of

the auxiliary basis {χC(~r)} renormalizes the previously singular Coulomb operator.

The electronic-electronic portion of the electrostatic energy is now resolved as

E
(10),ĀB̄
elst,r ≈ V C

Ā (C|C ′)−1V C′

B̄ . (253)

Here (C|C ′)−1 is the conditioned pseudoinverse of the density fitting metric matrix,

(C|C ′) ≡
∫∫

R6

dr1 dr2 χC(~r1)
1

r12

χC′(~r2). (254)

This step is essentially a density-fitted (DF) electrostatics computation, but with

atomic resolution. In the limit that the quadrature/ISA Becke grid {~rP , wP} is com-

plete, the results will attain the ISA-complete density-fitted DF-SAPT0 limit. As the

density fitting basis is saturated, the results will approach the SAPT0 limit.

Another way to arrive at this result is to start from a density fitting resolution of

the electron-electron electrostatics term,

E
(10),ĀB̄
elst,r = 〈ρĀ|r−1

12 |ρB̄〉 ≈ 〈ρĀ|r−1
12 |χC〉〈χC |r−1

12 |χC′〉−1〈χC′ |r−1
12 |ρB̄〉, (255)
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and then realize that the integrals 〈ρĀ|r−1
12 |χC〉 are not analytical, but must be done

by quadrature, becoming the V C
Ā

quantities in Equation 252. Note, however, that the

use of density fitting is actually the critical portion of the procedure: without this

intermediate projection through a smooth spectral space, singularities would plague

the result.

In practice, the nuclear-electronic terms are not accurately treated by an inter-

mediate projection through a standard auxiliary basis, as there is no support for

extremely tight functions which represent nuclear density fields. However, this diffi-

culty is easily overcome, as the electronic-nuclear singularity is only measure-0 and

the radial and atomic components of the Becke grids ameliorate this numerical singu-

larity as the nucleus is approached. Therefore, the electronic-nuclear terms are easily

handled by direct quadrature,

E
(10),ĀB
elst ≈ wPρĀ(~rP )

1

rPB
ZB. (256)

Similar techniques are used for the formation of the atomic electrostatic potentials

for the induction terms, i.e., the quantities in Equation 233. For the electronic source,

the THC projection is used,

V B̄
ar ≈ −(ar|C)(C|C ′)−1V C′

B̄ . (257)

Here (ar|C) is a three-center Coulomb integral,

(ar|C) ≡
∫∫

R6

dr1 dr2 φa(~r1)φr(~r2)
1

r12

χC(~r2). (258)

For the nuclear source, direct integration is used,

V B
ar = −

∫
R3

dr1 φa(~r1)φr(~r1)
1

r1B

ZB. (259)

These integrals are standard nuclear potential integrals. The total atomic electrostatic

potential is just the summation of these two contributions,

V B
ar = V B

ar + V B̄
ar . (260)
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8.3.3.2 Electronic Response Localization

In the above order-2 partition, electronic response terms involving occupied orbital

labels occurred in the exchange, induction, and dispersion terms. Here “response”

indicates that these terms involve a rearrangement of the electrons of the monomers

due to an electrostatic, Pauli, or correlation source. To this point, the occupied

space has been assumed to be spanned by canonical Hartree-Fock quasiparticles a or

b, to allow for explicit forms for the uncoupled amplitudes in induction and disper-

sion. Unfortunately, these canonical occupied orbitals often span the entirety of each

monomer, precluding a localized visualization. Fortunately, once the amplitudes are

formed, we are free to transform both the amplitudes and potential integrals to any

convenient quasiparticle basis which also spans the occupied space, by means of a

unitary transformation. In particular, we seek to employ a set of quasiparticles which

have minimal spatial extent, e.g., local orbitals,

φā(~r) = Ua
āφa(~r). (261)

Here Ua
ā is a unitary transformation from the canonical occupied orbital space a to

the local occupied orbital space ā, as can be obtained from Pipek-Mezey,228 Boys,34

or several other orbital localization procedures.72,9,126,149,172

Using the canonical-basis amplitudes and the localizing unitary transformation,

we can obtain a order-2 partition over local occupied quasiparticles. For example, for

the case of E
(20)
disp ,

E
(20)
disp = 4trsabv

ab
rs = 4trsabv

a′b′

rs Ua
āU

ā
a′︸ ︷︷ ︸

δaa′

U b
b̄U

b̄
b′︸ ︷︷ ︸

δbb′

= 4
[
Ua
ā t
rs
abU

b
b̄

]︸ ︷︷ ︸
trs
āb̄

[
U ā
a′v

a′b′

rs U
b̄
b′

]
︸ ︷︷ ︸

vāb̄rs

=
∑
āb̄

4trsāb̄v
āb̄
rs =

∑
āb̄

E
(20),āb̄
disp .

(262)

Applying directly analogous substitutions in the exchange and induction response

partitions yields local occupied quasiparticle partitions for all electronic response

terms.
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If further abstraction from local quasiparticles to atoms is desired for electronic

response terms, a fuzzy weighting provided by positive-definite local occupied orbital

atomic charges may be used, e.g.,

E
(20),AB
disp = QA

ā Q
B
b̄ E

(20),āb̄
disp . (263)

Here Qā
A is the matrix of local orbital atomic charges, as obtained by any desired

population metric. We note that the popular Mulliken and Löwdin charges are quite

sensitive to basis set, so we instead advocate the use of orbital charges derived from

the ISA atomic densities,

Qā
A ≡ 〈ā|ŵA|ā〉 =

∫
R3

dr1 |φā(~r1)|2 ρĀ(~r1)

ρA(~r1)︸ ︷︷ ︸
wA(~r1)

≈ wP |φā(~rP )|2 ρĀ(~rP )

ρA(~rP )
. (264)

This definition of ISA orbital atomic charges is not unique, e.g., other authors have

very recently used the proatomic density fields instead of the true atomic density

fields for the product of orbital atomic charges.172 However, the difference in orbital-

to-atom assignment should be minor (our experience indicates that even Mulliken

charges are acceptable for qualitative purposes). The last expression above provides

a practical but approximate formula of computing these orbital atomic charges on

the Becke integration grid. This implies that the total orbital norms (the sum of Qā
A

over all A for each ā) will not exactly be unity. In practice, this error is observed

to be at most of the order of 10−5 electrons for reasonable grid sizes, and is partially

ameliorated by renormalizing the orbital atomic charges. This renormalization is used

for all results presented in this work.

Note that, in contrast to the more traditional use of local orbitals to obtain com-

putational accelerations in correlated methods,259,260 here we first form the explicit

amplitudes in the canonical orbital basis, then transform both the amplitudes and

potential integrals to the local basis. As such, we obtain the canonical dispersion

energy as a sum of local pair-energies, without needing to optimize the Hylleraas
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functional. Such a Hylleraas formalism could be employed to obtain computational

acceleration in concert with the A-SAPT partition for systems with more than a few

hundred atoms (e.g., a Saebø-Pulay local A-SAPT0). However, this is outside the

scope of the present work, which is concerned primarily with the existence of the

A-SAPT partition, rather than its computational efficiency.

8.3.4 Algorithmic Details

8.3.4.1 DF-A-SAPT0 Implementation

The A-SAPT0 code detailed above was implemented in a development branch of the

open source PSI4 ab initio quantum chemistry package,298 using density fitting tech-

niques to accelerate the computation. Our previous SAPT0 implementation from our

2011 paper [SAPT0 (’11)]118 uses density fitting and Laplace transformation tech-

niques to attain a tractability limit of several hundred atoms. However, the order-2

partitions of A-SAPT0 are incompatible with Laplace transformation acceleration of

the exchange-dispersion terms, and many additional terms are required in A-SAPT0.

To facilitate the rapid and correct implementation of A-SAPT0, we have implemented

a new DF-SAPT0 code [SAPT0 (’13)]. SAPT0 (’13) more closely resembles the DF-

SAPT(DFT) implementation of Heßelmann and co-workers111 than SAPT0 (’11).

The electrostatics, exchange, and induction terms are formulated in terms of effective

Fock matrix builds and reuse the AO-basis three-index density fitting integrals from

the underlying SCF computations via the machinery of our LibFock generalized Fock

matrix infrastructure. The rate-limiting dispersion and exchange dispersion terms

are formulated in a manner which closely resembles DF-MP2,76 using a new factor-

ization of the exchange dispersion potential detailed in the supplemental material.

For SAPT0 (’13), several sets of generalized three-index density fitting integrals are

built via a pilot version of the LibPANACHE tensor manipulation package. Then, for

each ab pair, the dispersion potential, dispersion amplitudes, and exchange-dispersion

potential are formed in O(NrNsND) effort, with the rate-limiting O(N5) steps being
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a series of DGEMM calls threaded over ab pairs.

Our DF-A-SAPT0 code [A-SAPT0 (’13)] is built as an extension of SAPT0 (’13).

The Fock term portion of SAPT0 (’13) is called to provide the exchange and coupled

induction scaling factors, and to provide a check of the numerical accuracy of the

grid-based A-SAPT0 electrostatics computation. The A-SAPT0 (’13) order-2 disper-

sion computation is topologically quite similar to SAPT0 (’13), except that we must

drive the computation over rs pairs instead of ab pairs, to obtain the canonical basis

dispersion potential, dispersion amplitudes, and exchange-dispersion potential for all

ab pairs for a given rs pair, to allow for transformation to the āb̄ basis. In practice,

this introduces a slight additional overhead because the rate-limiting DGEMM calls

are now only O(NaNbND) in size, and are not fully saturated in terms of FLOP

performance. Additionally, some small overhead is incurred in the canonical-to-local

transformation of amplitudes and potentials. As the same dispersion energy is re-

turned in both algorithms, we do not additionally compute the dispersion using the

SAPT0 (’13) algorithm. The grid-based ISA algorithms, atomic pseudospectral (PS)

projections, and voxel grid analysis portions of A-SAPT0 (’13) are all built from the

same LibFock infrastructure used to provide Kohn-Sham exchange-correlation po-

tentials in our DFT codes. The additional atomic density fitting (DF) and order-2

Fock term partitions are accomplished with generalized three-index integrals from the

LibPANACHE package, with usually minimal additional overhead. The exception is if

coupled induction is required in A-SAPT0, in which case the CPHF equations must

be solved for each atomic source.

The complete DF-A-SAPT0 (’13) algorithm is available in the supplemental ma-

terial.
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8.3.4.2 ISA Convergence Acceleration

As has been noted by other authors,307 the standard ISA algorithm discussed above

is extremely difficult to converge, particularly in later iterations and for smaller grids.

The objective functional appears to be quite ill-conditioned, especially in the tails

of the shape functions. Moreover, the universal guess for the shape functions of

ρ0
Ā

(~r) = −1 suggested by Wheatley and co-workers is quite far from the converged

solution. In our experience, this situation does not seem to be solvable by standard

quasi-Newton acceleration techniques such as Pulay’s DIIS238 (unless exceedingly

large grids are used to provide a numerically exact gradient), as no exact gradient is

available, and the solution must be constrained to be positive definite. To improve

performance of the ISA procedure, we have implemented a superposition of atomic

densities guess, much as is done in SCF computations,304 and a form of Newton-

Raphson with an approximate gradient and Hessian. Details are available in the

supplemental material.

8.3.5 Caveats and Alternatives

It is critical to remember that A-SAPT contributions are not observable quantities:

A-SAPT is merely one particularly defined partition of the SAPT perturbation series.

Intermolecular forces are intrinsically many-body interactions between indistinguish-

able particles, and the only direct observable is the interaction energy, or, more prop-

erly, the binding energy. Non-observable quantities such as A-SAPT contributions (or

even the SAPT terms themselves) should not be ascribed absolute physical realism,

and should be used only insofar as they serve to aid our chemical understanding of

intermolecular interactions.

By virtue of there being many quasiparticles in the SAPT diagrams (and many

possible choices of local bases for these quasiparticles), any order-2 partition of the in-

termolecular interaction energy components is necessarily non-unique, e.g., we could
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have focused on the localized representations of the virtual space or orbital pair space

instead of localized occupied quasiparticles. In developing A-SAPT, we have consid-

ered many choices for order-2 selection of the quasiparticles and the local quasiparticle

basis, and decided that focusing on the local occupied quasiparticles makes the most

intuitive sense. One key feature in any sensible partition is that the deletion or ad-

dition of a functional group should be accompanied by the deletion or addition of

the direct interaction energy contributions arising from the electronic and nuclear

density of that functional group. The local occupied quasiparticles directly outline

the density of the added or deleted functional group, and approach an asymptotic

and still-localizable limit in the complete basis set. This is not the case for virtual

quasiparticles, which may be infinitely diffuse in the complete basis set. This strongly

suggests that the local occupied quasiparticles should be preferred to the local virtual

quasiparticles. Indeed, such a selection has previously been used in the context of lo-

cal correlation methodology, with the intermolecular local occupied pair energies from

LMP2 or other methods being interpreted as localized contributions to the dispersion

energy.133,97

Another approach considered in the development of A-SAPT was the use the

atomic centers of the density fitting auxiliary basis functions to provide atomic as-

signment of the orbital pair spaces, particularly in the electrostatic energy. Such

methodology has been well developed by Stone and co-workers in the context of

distributed polarizabilities.256,196 However, several difficulties were found in this ap-

proach. The first is that the most accurate Coulomb metric density fitting scheme

fits the nonlocal electrostatic potential rather than the local density field, so sensible

assigment based on the atomic centers of the density fitting functions is quite diffi-

cult. Misquitta and Stone have introduced parametrized constaints into the density

fitting functional to force the auxiliary functions to represent only nearby portions

of the pair space, but the results are quite sensitive to the magnitude of the locality
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penalty.196 The second difficulty encountered in our case was that assignment based

on auxiliary function atomic centers mandates the use of a monomer-centered aux-

iliary basis, which is grossly inaccurate for the representation of the dimer-centered

pair-space basis (to the point that the sign of the electrostatic energy was often lost).

These problems with density-fitting-based partitioning led to the use of ISA atomic

density fields for the electrostatic source terms.

8.4 Results

8.4.1 Computational Details

The SAPT0 and A-SAPT0 results shown below use the jun-cc-pVDZ primary ba-

sis set,124,212 which has been shown to attain remarkable error cancellation between

the uncoupled, two-body treatment of dispersion and the basis set incompleteness,

leading to a semiquantitative method which is applicable to large systems. Density

fitting is used throughout to accelerate the Hartree-Fock and SAPT0 computations.

The jun-cc-pVDZ-JKFIT auxiliary basis is used for the Hartree-Fock computations,

the electrostatics, exchange, and induction terms, and for all Fock-like terms in the

exchange-dispersion potential. The jun-cc-pVDZ-RI auxiliary basis is used for all

ERIs explicitly occurring in the dispersion and exchange-dispersion terms, i.e., those

ERI contributions not reducible to Fock-like matrices. The frozen core treatment is

applied unless otherwise noted, affecting only the dispersion and exchange-dispersion

terms, and simply amounts to setting the dispersion amplitudes involving frozen core

orbitals to zero: other core orbitals appearing in the exchange dispersion potential

are required to account for the Pauli-forbidden space and are not deleted. The hybrid

δ
(2)
HF,r correction is included in all SAPT0 computations reported here, and is included

in A-SAPT0 via the scaling factors discussed above.

Unless otherwise noted, for the ISA procedure we use the Treutler-Ahlrichs297

flavor of the Becke molecular quadrature grids, with 302 spherical nodes and 100 radial
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nodes per atom. The ISA algorithm uses the superposition of atomic densities guess,

and is converged to ε < 10−7, using the approximate Newton-Raphson update detailed

above in every third step, with the Newton-Raphson update disabled after 1000 steps.

The default localization scheme is Pipek-Mezey, and core and valence localizations are

performed separately. The default treatment of the A-SAPT induction is uncoupled,

with scale factors to account for both the coupling and higher-order induction, as

detailed in Equations 239 to 241. The majority of these prescriptions will be justified

by performing a sensitivity analysis below.

8.4.2 Example Order-2 A-SAPT0 Results: HF Dimer

To provide a representative example demonstrating the order-2 atomic partition and

asymptotic behavior of A-SAPT, we consider the case of anti-aligned HF dimer at var-

ious intermolecular separations R. The geometry and order-2 atomic A-SAPT0/jun-

cc-pVDZ results are depicted in Figure 26. The HF monomer is defined by the

DF-MP2/aug-cc-pVDZ optimal bond length of 0.9248 Å, and the dimer geometry

is completely specified by placing the monomers in a side-on anti-parallel configura-

tion at an intermolecular separation of R. Electrostatics, induction, and dispersion

are found to exhibit power-law asymptotic decay, and are plotted on log-log scales.

Exchange is found to exhibit exponential asymptotic decay, and is plotted on a semi-

log scale. Note that the absolute values of the interaction energy components must

be taken to allow for the application of the logarithm; to illustrate the sign of each

contribution, attractive contributions are plotted with solid lines, repulsive contri-

butions are plotted with dotted lines. The induction terms for (A←B) and (B←A)

are identical due to the symmetry of the monomers, so only the former is plotted.

Least-squares power law fits of the form |Eint| = ARN are performed for electrostat-

ics, induction, and dispersion contributions, while a least-squares exponential fit of

the form |Eint| = AebR is perfomed for exchange. In each case, the seven data points
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for R ≥ 4.0 Å are used to prevent contamination from charge penetration terms at

short range. The R2 values in all cases are at least 0.996. The R2 values from the

least-squares fits are available in the supplemental material.

For electrostatics, the F· · ·H and H· · ·F interactions are both attractive, while

the F· · ·F and H· · ·H interactions are both repulsive. The sum of the former two

are slighlty larger in magnitude than the sum of the latter two, so the overall con-

tribution is attractive. The individual order-2 contributions decay as R−1 due to the

partial charges on each ISA atom, while the sum of all order-2 contributions nearly

cancels and decays as R−3, as expected of an anti-aligned dipole-dipole interaction.

At very short ranges, the F· · ·H interactions become more rapidly attractive, while

the F· · ·F and H· · ·H interactions become less rapidly repulsive, indicating charge

penetration contributions. These results are all compatible with chemical intuition

and quite similar at long range to those that might be approximately obtained in

force field computations or partitioned from an ab initio method by distributed mul-

tipole analysis (DMA).283,285,284,286 However, A-SAPT0 respects the full SAPT0 limit,

particularly including charge penetration.

The other three terms show similar results, except that there are no canceling

contributions and the individual order-2 contributions decay at roughly the same

rates as the total. For exchange, exponential decay is apparent, and is dominated by

the F· · ·F contribution, which is consistent with the larger extent of the F atoms.

Besides smaller overall magnitudes, the F· · ·H and H· · ·H exchange contributions are

also seen to decay with slightly faster rates than F· · ·F, which is consistent with the

faster decay of the tails of the H atoms. Induction is seen to exhibit R−6 decay in terms

of both individual order-2 contributions and the total, which is consistent with dipole-

induced-dipole interactions involving a permanent dipole with fixed orientation. The

terms corresponding to F←F and F←H in which the F atom of monomer A are

polarized by the partial charges on either atom of monomer B dominate this term,
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Figure 26: Order-2 atomic A-SAPT0/jun-cc-pVDZ analysis for anti-aligned HF
dimer vs. the intermolecular separation R. Electrostatics, induction, and disper-
sion contributions are plotted on a log-log scale and fitted to a power law relationship
of the form |Eint| ≈ ARN for R ≥ 4 Å. Exchange is plotted on a semi-log scale and
fitted to an exponential relationship of the form |Eint| ≈ AebR for R ≥ 4 Å. Attrac-
tive contributions are denoted by solid lines, repulsive contributions are denoted by
dashed lines. The HF bond distance is 0.9248 Å.
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as is consistent with the higher polarizability of the F atom. Dispersion shows clear

and expected R−6 decay behavior, and is almost wholly dominated by the F· · ·F

interaction.

8.4.3 Order-1 Visualization Techniques

The order-2 atomic partition developed in this work has obvious applications in pro-

viding unbiased atom-pair potentials for developing next-generation force fields, and

also contains a wealth of qualitative data on the important contacts in noncovalent

interaction. However, the latter application is possibly plagued by an overload of

data. In the HF dimer example above, each SAPT term has 4 atom-pair contribu-

tions; by the time adenine-thymine dimer is considered, this rises to 225 atom-pair

contributions per SAPT term. In this section, we develop an order-1 reduction of

the order-2 data to enable easier absorption of the salient details of the full order-2

A-SAPT partition.

To facilitate rapid interpretation of the A-SAPT results, we have developed a pair

of visualization schemes for order-1 summations of the order-2 A-SAPT partition.

The first is an atomic order-1 analysis, wherein the atoms of monomer A are colored

according to the magnitude of the atomic interaction energy term contribution,

EA
int =

∑
B

EAB
int . (265)

The physical interpretation of this metric is the amount to which atom A is attracted

to or repelled from the entirety of monomer B, in the net.

For more detailed order-1 analysis, it is also possible to roughly assign the order-

1 results directly to scalar fields in R3. These scalar fields can be evaluated on

a rectilinear grid, and then visualized with voxel rendering techniques. The key

advantage of the voxel rendering technique is for the electronic response terms, which
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are assigned on the level of detail of individual orbitals,

εAint(~r) = E ā
int|φā(~r)|2 = C ā

µE
ā
intC

ā
µ′︸ ︷︷ ︸

DA
int

φµ(~r)φµ′(~r). (266)

We have found that this analysis provides useful insight into the origins of electronic

response in exchange, induction, and dispersion, e.g., showing the breakdown of the

response between σ-framework, π-framework, and lone-pair contributions. The results

seem to be particularly intuitive if chemically relevant Pipek-Mezey orbitals, which

usually preserve σ/π separation, are employed. For electrostatic source terms, the

scalar field assignment is accomplished by weighting the discrete atomic order-1 result

by the weight function of atom A in physical space,

εAint(~r) = EA
intwA(~r) = EA

int

ρĀ(~r)

ρA(~r)
. (267)

This treatment usually provides equivalent intuition as the direct atomic visualization

technique.

As demonstrated below, these order-1 analyses are quite useful in extracting a

qualitative picture of the intermolecular interaction from the A-SAPT partition. How-

ever, the summations inherent in the order-1 partition necessarily lose some of the

specific information contained in the order-2 results. It is particularly important to

realize that if two moeities (one each on monomer A and monomer B) are in close

contact and both are active in the order-1 analysis, this might just be a coincidence.

On the converse, a moeity in monomer A that is inactive in the order-1 analysis might

have significant but cancelling contributions from two or more moeities in monomer

B. Explicit consideration of the order-2 analysis can confirm or deny the presence

or absence of an interaction predicted by consideration of the order-1 analysis. In

general, we have found that moieties in close contact and with active order-1 con-

tributions are very likely to have a significant order-2 pairwise interaction, but an

explicit check of the order-2 partition is important to confirm this suspicion.
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We are also in the process of developing an alternative order-2 partition to the

level of chemical functional groups, using the two-body diagrammatic partition devel-

oped above.220 Such a partition would combine the detailed information of an order-2

partition with roughly the level of data compression of an order-1 atomic visualiza-

tion, and would provide an important complementary alternative to order-1 atomic

analyses. Moreover, we emphasize that any use of A-SAPT in such applications as

force-field parametrizations will necessarily use the full order-2 atom-pair data: the

order-1 techniques developed here are solely for the purposes of qualitative chemical

understanding.

Below, atomic visualizations are performed using the student version of MacPy-

Mol. Voxel visualizations are performed using the open source ImageVis3D raycasting

package developed at the Scientific Computing and Imaging Institute at the Univer-

sity of Utah.77

8.4.4 Example Order-1 A-SAPT0 Results: Adenine-Thymine Dimer

As a representative example of the order-1 results obtainable by A-SAPT0, in Figures

27 and 28 we depict the order-1 atomic and voxel visualizations for the hydrogen-

bonded adenine-thymine complex, as taken from the S22 database.143 The order-2

atomic data for this system are additionally available in the supplemental material.

In all of our visualizations of interaction energy contributions, red indicates an at-

tractive contribution to the interaction energy, blue indicates a repulsive contribution

to the interaction energy. The saturation of the color indicates the relative magni-

tude of the contribution. For voxel visualizations, the color scales are the same for

all systems and terms presented in this work. For atomic visualizations, the color

scales are the same for all systems and terms presented in this work, with exception

of electrostatics, which uses a larger scale than the other terms to prevent excessive

saturation. Moreover, we use different scales for electrostatics for each monomer for

189



the proflavine intercalator example below, due to the presence of a charged species

within this complex.

Figure 27: Order-1 atomic A-SAPT0/jun-cc-pVDZ visualization for hydrogen-
bonded adenine-thymine (S22-7). Red indicates an attractive contribution, blue in-
dicates a repulsive contribution. The colormap for electrostatics uses a larger range
than the colormap for exchange, induction, and dispersion.

The adenine-thymine case demonstrates how A-SAPT mirrors and amplifies our

chemical understanding of noncovalent interactions. Considering the atomic visual-

izations first, the quite attractive electrostatics term shows the two hydrogen bonds
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Figure 28: Order-1 voxel A-SAPT0/jun-cc-pVDZ visualization for hydrogen-bonded
adenine-thymine (S22-7). Red indicates an attractive contribution, blue indicates a
repulsive contribution, green is the skeleton of the molecular density (provided for
visual reference). All colormaps are identical.

present in this complex: the blue-red· · · red colorations of the amino· · · carbonyl con-

tact and amino· · · nitrogen heteroatom contact are indicative of net favorable dipole–

charge interactions between these contacts. Explicit consideration of the order-2

atomic partition in the supplemental material confirms this indication: though the

atom-pairwise electrostatics contributions are generally nontrivial in magnitude due
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to pairwise interactions between partial charges, the amino· · · carbonyl contact and

amino· · · nitrogen contact are the largest contributors. The third C-H· · · carbonyl

contact does not light up in color, indicating that this contact does not contribute to

the overall electrostatic interaction nearly as favorably as the two hydrogen bonds, as

might be expected. The surprising finding is the net attractive carbon in the lower car-

bonyl of the thymine: this is due to the presence of three electron withdrawing atoms

bound to this carbon, producing a strong partial positive charge, followed by favorable

interactions between this partial positive charge and the excess electronic charge on

the left-most nitrogen heteroatom of the adenine. This is an example of A-SAPT am-

plifying our chemical intuition by pointing to a non-obvious process in a noncovalent

interaction. The other terms largely follow chemical intuition. The exchange is very

short-ranged, and involves primarily the amino· · · carbonyl and amino· · · nitrogen het-

eroatom contacts responsible for the two hydrogen bonds. Dispersion shows a similar

topology, though is much weaker in magnitude than exchange for this system.

A note is appropriate here regarding interpretation of the induction visualizations.

For a canonical example, consider the induction A←B term in Figure 27, correspond-

ing to the adenine polarizing the thymine. In this case, the adenine lights up with

both attractive and repulsive contributions which denote the portions of the adenine

which drive the polarization of the thymine. By contrast, the thymine lights up with

only attractive contributions, corresponding to the portions of the thymine which

undergo polarization to relax the electrostatic interaction, leading to the always at-

tractive induction interaction. For example, in the amino group· · · carbonyl group

interaction, the amino hydrogen (partial positive) pulls the carbonyl oxygen lone

pairs to the right, while the amino nitrogen (partial negative) pushes the carbonyl

oxygen lone pairs to the left. The net induction is to the right, which is favorable

in the new hydrogen· · · oxygen electrostatic interaction, and unfavorable in the new

nitrogen· · · oxygen electrostatic interaction. In the end (as is always the case), the
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total induction event is net attractive, as seen in the slight red coloring of the carbonyl

oxygen, and the greater attractive magnitude of the amino hydrogen vs. the repulsive

magnitude of the amino carbon. Similar motifs are observed for other contacts in

this visualization, and for the visualization of the induction B←A term, where the

thymine polarizes the adenine.

For this system, the induction term for adenine polarizing thymine is weak (-3.8

kcal mol−1), and primarily involves the amino group in the adenine polarizing the

carbonyl in the thymine, and (to somewhat less extent) the nitrogen heteroatom of

the adenine polarizing the amino group in the thymine. The induction term for the

thymine polarizing the adenine is stronger (-6.8 kcal mol−1), with the bulk of the effect

attributed to the thymine amino group and lower carbonyl polarizing the nitrogen

heteroatom of the adenine, with the thymine upper carbonyl polarizing the adenine

amino group providing a smaller contribution.

The voxel results show roughly the same picture as the atomic results, but can

provide additional detail for the origins of electronic response terms. For instance, the

exchange and dispersion interactions clearly involve the amino σ orbitals and carbonyl

lone pairs in the amino· · · carbonyl contact at the top, and the amino σ orbitals and

nitrogen heteroatom lone pair in the amino· · · nitrogen heteroatom contact at the

middle. This illustrates that the darker coloring of the nitrogens in the amino groups

for atomic visualization of dispersion and exchange is somewhat of a visual artifact:

in truth, the σ orbital is contributing strongly to the interaction, but is assigned

primarily to the nitrogen atom via the ISA orbital atomic charges.

Additional atomic visualizations for the entire S22 database are available in the

supplemental file, along with comparison views for other choices of parameters de-

tailed below.
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8.4.5 Parameter Selection and Sensitivity Analysis

To close the definition of A-SAPT0, we must specify the ISA grid and convergence

procedure, the choice of orbital localization metric, and the treatment of coupling

in the induction terms. This was accomplished by performing a limited parameter

search on the hydrogen-bonded adenine-thymine dimer (S22-7) to identify a set of

reasonable parameters, followed by a sensitivity study across the S22 database to

determine the influence of the selected parameter set on the A-SAPT0 partitions

and visualizations. The salient features are presented below, with the explicit data

provided in the supplemental file.

8.4.5.1 ISA Grid and Convergence Selection

The recommended ISA grid is (302,100), converged to ε < 10−7, using the approxi-

mate Newton-Raphson update in every third step, with the Newton-Raphson update

disabled after 1000 iterations. This procedure was able to converge all A-SAPT0 com-

putations presented in this work, and produces deviations across the S22 database

of less than 1 kcal mol−1 per atom pair for EAB
elst and less than 0.1 kcal mol−1 per

atom for EA
elst and EB

elst vs. results obtained in a (590,150) grid converged to ε < 10−9

using the same convergence procedure. These deviations are on the order of 1% per

element of the order-2 or order-1 partitions, and produce order-1 visualizations which

are indistinguishable to the naked eye. Deviations for terms other than electrostatics

(either due to electrostatic source or local orbital atomic charges) are even smaller.

Without the approximate Newton-Raphson update, many choices of ISA grid and

convergence criteria were unable to be converged within 2000 iterations. Moreover,

the order-1 and order-2 partitions obtained without approximate Newton-Raphson

acceleration showed substantially larger deviations from the reference than their accel-

erated counterparts, indicating that exponential slowing down of the non-accelerated

procedure may be inducing premature termination, before the ISA atomic densities
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are converged.

Though the accelerated ISA procedure sometimes requires up to just over 1000

iterations to converge, the ISA procedure is only quadratic scaling with the system

size, so the computational burden of this portion of the A-SAPT0 analysis is not

rate-limiting. Additionally, the ISA objective functional is universally convex,179

indicating that there are no concerns about uniqueness of the solution.

8.4.5.2 Localization Metric Selection

The recommended localization metric is Pipek-Mezey. Deviations between the A-

SAPT0 partitions obtained with Pipek-Mezey and Boys procedures are substantially

larger than those due to the ISA grid and convergence procedure, with maximum

deviations in the S22 database on the order of 1 kcal mol−1 per atom or atom-pair

entry for both order-1 and order-2 exchange partitions. This deviation is on the order

of 35% at worst. Deviations of the same order or smaller are observed for the other

terms involving electronic response.

The primary source of these deviations is the differential treatment of occupied

π electrons between the two metrics. Pipek-Mezey maintains σ and π separation,

while Boys hybridizes the σ and π orbitals into τ orbitals. Figures 29 and 30 depict

the differences in A-SAPT0 order-1 exchange and dispersion visualizations for the

π-stacked indole-benzene complex (S22-14), which exhibits the largest relative devia-

tions for these two terms. The voxel visualizations clearly show the effect of σ/π vs. τ

orbital partition. This deviation is not what we consider to be an error, but rather is

a form of maximum resolution of the A-SAPT0 analysis. That multiple localization

metrics exist is indicative of the fact that assignment of occupied quasiparticles to

localized regions of physical space is a somewhat ambiguous business. The good news

is that the atomic visualizations are qualitatively quite similar to the eye, regardless

of the choice of localization metric. To provide for a consistent definition for A-SAPT,
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we recommend the use of the more chemically intuitive Pipek-Mezey orbitals, but we

note that this choice over Boys orbitals is a matter of small increments rather than

anything substantial.

Figure 29: Comparison of order-1 A-SAPT0/jun-cc-pVDZ visualizations with Pipek-
Mezey vs. Boys local orbitals for the exchange term of stacked indole-benzene (S22-
14). Red indicates an attractive contribution, blue indicates a repulsive contribution,
green is the skeleton of the molecular density (provided for visual reference). The
colormaps are the same in the left and right panels.

8.4.5.3 Induction Coupling Selection

The recommended treatment for induction is uncoupled but scaled. Deviations be-

tween the A-SAPT0 partitions obtained with scaled uncoupled and coupled treat-

ments exhibit maximum deviations in the S22 database on the order of 1 kcal mol−1

per atom or atom-pair entry for both order-1 and order-2 exchange partitions. This

deviation is on the order of 30% at worst.

Figure 31 depicts the differences in the A-SAPT0 order-1 induction visualizations
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Figure 30: Comparison of order-1 A-SAPT0/jun-cc-pVDZ visualizations with Pipek-
Mezey vs. Boys local orbitals for the dispersion term of stacked indole-benzene (S22-
14). Red indicates an attractive contribution, blue indicates a repulsive contribution,
green is the skeleton of the molecular density (provided for visual reference). The
colormaps are the same in the left and right panels.

for the hydrogen-bonded adenine-thymine complex (S22-7), which exhibits the largest

absolute deviation for these terms (i.e., this example has the worst case error for

coupled induction scaling across the S22 database). The term shown is the direction

in which the thymine polarizes the adenine. Visually, the results are qualitatively

quite similar, with small quantitative deviations. The most obvious discrepancies are

the color saturations of the carbonyl groups of the thymine. The relative magnitudes

of the contributions of neighboring atoms in the source monomer are slightly altered

but the overall picture of the induction event remains unchanged. Moreover, we

would expect similar or larger effects to arise from consideration of the hybrid δ
(2)
HF,r

term, which we cannot currently account for beyond simple scaling. Due to these
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considerations and the substantial computational penalty for performing a coupled

induction computation for each atomic source, we advocate the uncoupled but scaled

approach for production-level A-SAPT0 analysis.

Figure 31: Comparison of order-1 A-SAPT0/jun-cc-pVDZ visualizations with uncou-
pled vs. coupled treatments of induction for the induction (B←A) term of hydrogen-
bonded adenine-thymine (S22-7). Red indicates an attractive contribution, blue indi-
cates a repulsive contribution, green is the skeleton of the molecular density (provided
for visual reference). The colormaps are the same in the left and right panels.

8.4.6 Application to Side-On Cation-π Interactions

As an example of the level of detail provided by A-SAPT0, we consider the case of side-

on cation-π interactions. In a previous study,186 we obtained the unexpected finding

that side-on cation-π interactions are energetically favorable. SAPT0 analysis (but

not A-SAPT0) for benzene-Na+ indicated that while the electrostatic and exchange

terms were unfavorable, a substantial favorable induction interaction is sufficient to
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stabilize the complex. At the time, it was hypothesized that this favorable induc-

tion effect was primarily the result of polarization of the π electrons of the benzene

ring toward the cation. Here we revisit this study with A-SAPT0, and additionally

consider cyclohexane-Na+.

The geometries are obtained by B3LYP/aug-cc-pVDZ optimization of the ben-

zene and cyclohexane (chair) monomers, followed by placement of the Na+ in the

ring plane, 4.0 Å from the ring center and along the line bisecting the nearest C–

C bond. This treatment places the cation near the minimum energy distance for

benzene-Na+ obtained in the previous study, and ensures that the nearest C–Na+

and H–Na+ distances are the same to within a few thousandths of one Å for both

benzene-Na+ and cyclohexane-Na+, providing a reasonably equal geometric footing

for both complexes. The geometries are available in the supplement, along with A-

SAPT0 atomic rank-1 visualizations. A-SAPT0 computations were performed with

jun-cc-pVDZ and corresponding auxiliary basis sets on the hydrocarbon rings and cc-

pVTZ and corresponding auxiliary basis sets on the Na+ (for which the jun-cc-pVDZ

auxiliary basis sets are not available). Additionally, frozen core is disabled for this

study.

Quantitative A-SAPT0 results of this analysis are available in Table 5. For the

benzene-Na+, electrostatics and exchange are both unfavorable, while dispersion and

the induction term involving polarization of the cation are both neglible. The major

stabilization is provided by the induction term involving polarization of the benzene,

with a value of -11.22 kcal mol−1, leading to an overall favorable interaction energy of

-3.31 kcal mol−1. To this point, these results are equivalent to those of the previous

study. However, considering cyclohexane-Na+, the results do not match our previ-

ous hypothesis regarding the importance of π electrons: the side-on cyclohexane-Na+

interaction is more favorable than the benzene-Na+ interaction, with total interac-

tion energies of -8.02 kcal mol−1 vs. -3.31 kcal mol−1. In both cases, the exchange,
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induction, and dispersion terms are all roughly the same, but the cyclohexane-Na+

electrostatics term is much more favorable than the benzene-Na+ electrostatics term,

with values of -1.39 kcal mol−1 vs. +4.80 kcal mol−1, respectively. The favorable

cyclohexane-Na+ electrostatics are attributed to less polar C–H bonds in cyclohex-

ane vs. benzene, plus favorable charge penetration contributions.

Table 5: A-SAPT0/jun-cc-pVDZ analysis of side-on cation-π interactions (cc-pVTZ
on Na+). Energies in kcal mol−1.

Term Benzene-Na+ Cyclohexane-Na+

Eelst +4.80 -1.39
Eexch +3.24 +4.32
Eind[A← B] -11.22 -10.82
Eind[A← B] Core -0.01 -0.01
Eind[A← B] C–C σ -2.25 -3.45
Eind[A← B] C–H σ -4.37 -7.35
Eind[A← B] C–C π -4.59 –

Eind[B← A] -0.00 -0.00
Edisp -0.13 -0.14
Eint -3.31 -8.02

Another interesting finding is that the induction terms corresponding to po-

larization of the hydrocarbon rings are nearly identical between benzene-Na+ and

cyclohexane-Na+, with values of -11.22 kcal mol−1 and -10.82 kcal mol−1, respec-

tively. This suggests that the π electrons in the benzene are not the only contributors

to the induction event. A-SAPT0 analysis shows that C–C π, C–H σ, and C–C σ

electrons all contribute significantly to the induction event in benzene-Na+, with con-

tributions of -4.59 kcal mol−1, -4.37 kcal mol−1, and -2.25 kcal mol−1, respectively.

In cyclohexane-Na+, there are more C–H σ bonds, and the C–H and C–C σ elec-

trons are less tightly held than in benzene, leading to larger contributions from the σ

framework than in benzene-Na+. These larger σ contributions are roughly the same

size as the contributions from the π electrons in benzene (missing in cyclohexane),
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resulting in comparable induction energies between the two systems. This quanti-

tative analysis is directly apparent in the A-SAPT0 order-1 voxel visualizations for

induction for these two systems, depicted in Figure 32. It is therefore evident that

π electrons are not the whole story in side-on cation-π interactions: significant C–H

and C–C σ contributions are also present. Additionally, saturated hydrocarbon rings

may be even more favorable in this interaction motif, due to additional and stronger

σ framework contributions to induction, and better electrostatic interactions.

Figure 32: Order-1 voxel A-SAPT0/jun-cc-pVDZ visualizations for the major in-
duction term in side-on cation-π interactions (cc-pVTZ on Na+) Red indicates an
attractive contribution, blue indicates a repulsive contribution, green is the skeleton
of the molecular density (provided for visual reference). The colormaps are the same
in the left and right panels.
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8.4.7 Application to DNA-Proflavine Intercalation

As an example of the new insights and tractability afforded by A-SAPT0, we have ap-

plied the method to study the intercalation of DNA by proflavine. The A-SAPT0/jun-

cc-pVDZ analysis for proflavine intercalating into a CGA step of DNA is depicted in

Figure 33. This is the same case study as was used in our 2011 DF-SAPT0 paper.118

The geometry was obtained from a crystal structure,184 with hydrogen positions de-

termined by constrained B3LYP/6-31G** optimizations. Each phosphate group was

protonated to simulate the presence of a counterion (e.g., Na+ or K+), resulting in

the DNA fragment obtaining a new neutral charge. The proflavine carries a net +1

charge.

In our previous study, we performed SAPT0 analysis for the total complex, as well

as various fragmentations of the DNA segment to elucidate the direct interactions

between the proflavine and the base-pair steps and backbone fragments. This frag-

mentation study yielded three conclusions: (1) roughly two-thirds of the interaction

energy arises from π-stacking interactions between the proflavine and the neighbor-

ing base-pair steps (2) the next-nearest neighbor base-pair step is not significantly

involved in the interaction and (3) roughly one-third of the interaction energy arises

from long hydrogen bonding interactions between the proflavine and one of the two

backbones (the backbone on the left in Figure 33). Using a single A-SAPT0 com-

putation, we are now able to obtain these three conclusions without laborious frag-

mentation studies and additional SAPT0 computations. The first two conclusions are

borne out in considerations of the exchange and dispersion A-SAPT0 plots: these two

terms clearly show strong π-stacking interactions between the proflavine and neigh-

boring base-pair steps, with minimal involvement of the backbones, and essentially

zero involvement of the next-nearest neighbor base-pair step. The third conclusion

is also visible, though two caveats should be discussed beforehand. The first caveat

is that the proflavine species carries a net positive charge, implying that any partial
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Figure 33: Order-1 atomic A-SAPT0/jun-cc-pVDZ visualization for the proflavine -
DNA intercalation complex. Red indicates an attractive contribution, blue indicates a
repulsive contribution. For the electrostatics only (1) a larger range in the colormap
is used than for exchange, induction and dispersion and (2) a larger range in the
colormap is used for monomer B than for monomer A.

charge in the DNA will light up in response to the net charge, with most of these

responses canceling. To partially ameliorate this effect, we have applied a much larger

color scale for the coloring of the order-1 electrostatics of the DNA atoms, and yet

we still see extensive illumination of the DNA fragment, most of which will cancel
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in the net. Therefore, from the perspective of the DNA, we should focus on areas

of greater relative intensity. The second caveat involves the charges in the aromatic

carbon network of the proflavine: it seems that withdrawal of electronic density from

the carbons attached to the terminal amino groups sets up a pattern of alternating

charges in the carbons in the leading edge of the proflavine (and, to a lesser extent,

in the carbons in the trailing edge of the proflavine). These oscillating charges result

in substantial alternating electrostatic contributions to the proflavine atoms, most

of which cancels in the net. We have verified that these charge oscillations are not

particular to the choice of ISA atomic density fields: charge alternations of the same

topology also occur with Natural Population Analysis (NPA),243 albeit with lower

overall magnitudes (see the supplemental material for further analysis). In the end

however, it is clear that the left end of the proflavine lights up far more than the

right end, and that the three leftmost hydrogens (two on the amino group and one

attached to the neighboring aryl carbon) are quite attractive, relative to their coun-

terparts on the right end of the proflavine. Additionally, the neighboring phosphate

lights up much more than the other three phosphates, and the nearest oxygens in the

phosphate are particularly attractive. These features all point to the existence of the

hydrogen bonding interaction between the left end of the proflavine and the neighbor-

ing phosphate group in the backbone. The difficulties of visualizing the electrostatics

in systems with either net charges or substantial charge oscillations are outstanding

challenges to be resolved in the next iteration of A-SAPT theory. Even considering

these difficulties, the method is already extremely compelling in its power to directly

elucidate the nature of large-scale noncovalent interactions.

Figure 34 depicts the explicit wall time breakdown for various SAPT0 and A-

SAPT0 implementations for the proflavine intercalation complex, in the jun-cc-pVDZ

basis. All timings were performed using a single node with a six-core Intel i7-3930K

overclocked to 3.9 GHz on an ASUS P9X79 Pro motherboard, 64 GB of memory,
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and 3× 3 TB 7200 rpm scratch drives in a software RAID0 configuration. Our

2011 and 2013 implementations of DF-SAPT0 require roughly the same wall times

(69.9 hours and 64.1 hours, respectively), though the underlying algorithms are quite

different. SAPT0 (’13) is actually slightly faster (∼ 8%), due to the reuse of the three-

index integrals in the -JKFIT auxiliary basis between the SCF computations and the

Fock-like terms of SAPT0, and the new DFMP2-like formulation of the exchange-

dispersion term. A-SAPT0 (’13) is built from SAPT0 (’13), and inherits most of the

former’s performance. The first deviation is in the dispersion term, which requires

slightly longer (∼ 11%) due to the requirement of driving the computation over

NrNs contractions of O(NaNbNQ) effort in A-SAPT0 (’13), vs. NaNb contractions

of O(NrNsNQ) effort in SAPT0 (’13). The latter involves a larger DGEMM, and is

more efficient. The A-SAPT0 dispersion term also involves a small overhead from

the canonical-to-local transformation of the amplitudes and potentials. Additionally,

A-SAPT0 (’13) involves many additional steps beyond SAPT0 (’13). The worst of

these is ISA, which requires an additional 12.7 hours of wall time for this system,

using the convergence acceleration techniques discussed above. The atomic density

fitting, atomic pseudospectral, additional atomic Fock terms, and other overhead

contribute roughly 7.7 additional hours of wall time, resulting in A-SAPT0 (’13)

requiring ∼ 37% additional effort over SAPT0 (’13), for a total wall time of 87.5

hours. This is remarkably small overhead considering the additional chemical insight

provided by the A-SAPT partition: in particular, A-SAPT0 is tractable for any

system for which SAPT0 is tractable. It should be noted that the high-prefactor but

low-scaling steps present in A-SAPT0 produce considerably more relative overhead

for smaller systems (e.g., ∼ 200% vs. ∼ 37% above), but the principal concern of

tractability is not an issue for A-SAPT0.
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Figure 34: Wall time breakdown for various SAPT0 and A-SAPT0 implementations
for the proflavine intercalation complex, in the jun-cc-pVDZ basis. SAPT0 (’11) is
the DF-SAPT0 code of our 2011 paper. SAPT0 (’13) is our reference DF-SAPT0
code built on LibFock and LibPANACHE. A-SAPT0 (’13) is our DF-A-SAPT0 code,
an extension of SAPT0 (’13).

8.5 Conclusions

The A-SAPT0 partition is introduced as a physically motivated scheme for the vi-

sualization of intermolecular interactions. The method is based on the partition of

SAPT0 intermolecular interaction energy terms to spatially localized components.

We caution the reader that any such partitioning scheme is neither a physical ob-

servable nor universally unique, but we have selected the A-SAPT partition in a way

that corresponds strongly to the chemical explanation of each interaction term, while

respecting the many-body SAPT limit for the interaction energy. First, an effective

two-particle interaction is extracted from the diagram for each SAPT term. Next, an

appropriate set of local quasiparticles is introduced to close the local order-2 parti-

tion. For terms involving the electrostatic potentials of the monomers, atomic density

fields obtained from Wheatley’s iterative stockholder analysis are the relevant quasi-

particles. For terms involving the response of the monomer electronic density fields,
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local occupied orbitals are the relevant quasiparticles. Local orbital partitions can

additionally be projected onto atomic partitions via orbital atomic charges. A critical

technical development in the method is the use of a doppelgänger of tensor hypercon-

traction to project the grid-based atomic charge densities onto a spectral auxiliary

basis, to avoid problems with the Coulomb singularity and provide for an accurate,

efficient treatment of the electrostatic and induction interactions. A density fitted im-

plementation of A-SAPT0 is developed to lessen the computation cost of the method.

Additionally, an approximate Newton-Raphson scheme is developed to accelerate the

ill-conditioned ISA portion of the computation. Order-1 visualization schemes based

on atomic and voxel assignments of the A-SAPT partition are developed to facilitate

rapid and intuitive analysis of the A-SAPT data.

A-SAPT0 is found to mirror and amplify chemical intuition regarding noncovalent

interactions. Important qualitative features such as hydrogen bonding and π-stacking

interactions are correctly reproduced, while more subtle features of particular inter-

action motifs are illuminated. The sensitivity of the method to the choices of several

important parameters is probed, and the results are found to be qualitatively robust

against such choices. The recommended ISA grid and convergence procedure is found

to be quite well converged against reference computations. The choice of orbital local-

ization metric and coupling treatment in the A-SAPT0 induction terms are shown to

produce larger deviations, but the qualitative utility of the partition and visualization

is unaffected. The practical use of the A-SAPT0 partition is demonstrated in studies

of side-on cation-π interactions and of the intercalation of a CGA DNA fragment by

proflavine. In the former study, surprising contributions to the induction energy from

the σ framework are found, overturning the previous hypothesis that favorable side-

on cation-π interactions are due to the presence of π electrons. In the latter study,

a single A-SAPT0 computation (on a system with 220 atoms and 2845 basis func-

tions) is able to clearly identify three important qualitative conclusions which were
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previously attainable only through a laborious fragmentation study. Additionally,

this A-SAPT0 computation is shown to take only ∼ 37% longer than the underlying

SAPT0 computation, indicating that A-SAPT0 has the same tractability limit as

SAPT0.

This introduction of A-SAPT methodology suggests several further technical stud-

ies to improve the robustness, accuracy, and utility of the method. Within A-SAPT0,

the sensitivity of the result to the choice of ISA atomic density fields should certainly

be investigated. It is possible that another atomic charge model such as the Gaus-

sian ISA variant,307 Hirshfeld-I,39 or Atoms-In-Molecules14,15 might provide more

universal or intuitive visualizations than ISA. Additionally, more advanced visualiza-

tion techniques should be developed to aid in the understanding of the electrostatics

terms in systems with net charges, which exhibit physically correct but distracting

electrostatic contributions of opposite signs, which largely cancel in the net. Further

afield, the A-SAPT methodology should be extended to more accurate models than

SAPT0. SAPT(DFT) is an obvious first choice, as the topologies of SAPT0 and

SAPT(DFT) are functionally identical: such extension would essentially involve re-

placing Hartree-Fock quasiparticles with (coupled) Kohn-Sham quasiparticles. More

advanced wavefunction-based SAPT methods, such as SAPT2+3(CCD) should also

be compatible with A-SAPT, but will require the partition of more involved dia-

grams than SAPT0. These developments notwithstanding, A-SAPT analysis should

be helpful in myriad topics ranging from the fundamental understanding of π-stacking

interactions to the elucidation of intermolecular packing forces in organic crystals to

the design of better catalysts and drug molecules.
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CHAPTER IX

FUNCTIONAL GROUP SYMMETRY-ADAPTED

PERTURBATION THEORY

The following is adapted from Ref. 220.

9.1 Abstract

Recently, we introduced an effective atom-pairwise partition of the many-body symmetry-

adapted perturbation theory (SAPT) interaction energy decomposition, producing a

method known as atomic SAPT (A-SAPT) [R.M. Parrish and C.D. Sherrill, J. Chem. Phys.,

141, 044115 (2014)]. A-SAPT provides ab initio atom-pair potentials for force field

development and also automatic visualizations of the spatial contributions of non-

covalent interactions, but often has difficulty producing chemically useful partitions

of the electrostatic energy, due to the buildup of oscillating partial charges on ad-

jacent functional groups. In this work, we substitute chemical functional groups

in place of atoms as the relevant local quasiparticles in the partition, resulting in

a functional-group-pairwise partition denoted as functional-group SAPT (F-SAPT).

F-SAPT assigns integral sets of local occupied electronic orbitals and protons to chem-

ical functional groups and linking σ bonds. Link-bond contributions can be further

assigned to chemical functional groups to simplify the analysis. This approach yields

a SAPT partition between pairs of functional groups with integral charge (usually

neutral), preventing oscillations in the electrostatic partition. F-SAPT qualitatively

matches chemical intuition and the cut-and-cap fragmentation technique, but addi-

tionally yields the quantitative many-body SAPT interaction energy. The conceptual

simplicity, chemical utility, and computational efficiency of F-SAPT is demonstrated

209



in the context of phenol dimer, proflavine+-DNA intercalation, and a cucurbituril

host-guest inclusion complex.

9.2 Introduction

While quantitative determination of noncovalent interactions is considered to be a

critical challenge facing modern quantum chemistry, even robust qualitative chemical

explanation of such interactions is difficult to attain. Consider, for just one instance,

the large volume of work devoted to understanding the origins of interaction energy

differences between stacked substituted benzene dimers.128,54,276,277,249,318,248,116,316,242

Even simply producing a high-quality interaction energy for such a system is a

formidable task: the extreme sensitivity of the interaction to the electronic structure

of the constituent monomers and to the intermolecular orientations and distances

present in the dimer mandate the use of such methods as complete basis set coupled

cluster with singles, doubles and perturbative triples [CCSD(T)/CBS].71 For more

qualitative analysis, less demanding electronic structure methods will often suffice,

but the qualitative assignment of an interaction energy component to a particular

chemical progenitor remains a delicate art. For instance, it required many years of

effort to reach the conclusion that substituent effects in stacked benzenes could be

largely explained by local interactions between the substituent and nearby portion

of the neighboring benzene.318,316,242 Moreover, while this conclusion is quite useful

to chemists interested in pure face-to-face stacking interactions, it does not seem

to immediately transfer to slipped or T-shaped conformations of benzene dimer, or

to more exotic intermolecular motifs.11,277,249,320 At present, intuitive intermolecular

chemistry is lacking the simple and broadly transferrable pictures defining covalent

chemistry, i.e., there are few analogs of the guiding concepts of Lewis structures,

electronegativies, bond enthalpies, frontier orbitals, etc., in intermolecular chemistry.

If we cannot currently provide the applications chemist with such a rulebook with
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which to design intermolecular interactions, then we should at least provide fast and

accurate methods to determine why an arbitrary intermolecular motif has a particu-

lar interaction energy. To that end, the standard theoretical analysis these days is a

high-quality interaction energy and possibly a symmetry adapted perturbation theory

(SAPT)139 or energy decomposition analysis (EDA)147 partition of the noncovalent

interaction into electrostatics, steric repulsion, polarization, and dispersion contribu-

tions. While such analysis can provide useful insights for small model systems,273 this

insight becomes limited as one progresses to larger systems where multiple noncova-

lent contacts can occur. Unfortunately, standard SAPT or EDA methods provide

only a single value for each of the interaction energy components, precluding eluci-

dation of how each intermolecular contact contributes to the total interaction energy

and its components.

Recently, we have been working to produce a robust and efficient partition of the

SAPT decomposition into physically-localized progenitors, i.e., to assign the interac-

tion energy components to contributions from such chemically useful quasiparticles

as protons and electrons, atoms, or functional groups. In our previous work,222 we

identified an effective two-body partition of the SAPT0 expressions138 which both

matches the chemists’ intuition as to what each term represents and also respects the

many-body limit of the SAPT interaction energy. In the previous approach, terms

involving the response of the monomer wavefunctions (e.g., dispersion) used local oc-

cupied orbitals as the relevant quasiparticles, while terms involving electrostatic po-

tentials (e.g., electrostatics) grouped fractions of the molecular electronic density and

nuclei into atoms to prevent enormous oscillations in the partition. The terms involv-

ing local occupied orbitals could additionally be assigned to atoms via orbital atomic

charges, yielding a complete spatial partition of SAPT in terms of pairs of atoms. We

denoted this method atomic SAPT (A-SAPT). By automatically providing an effec-

tive atom-pairwise partition of the ab initio SAPT interaction energy, A-SAPT has
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obvious applications in the development of next-generation molecular dynamics force

fields. With respect to supporting chemical understanding of noncovalent contacts,

A-SAPT can also produce automatic visualizations which clearly show the most im-

portant chemical elements in complicated intermolecular interactions. For response

terms, A-SAPT can even provide both qualitative and quantitative understanding;

for example, it was able to identify the origin of the induction stabilization of side-on

cation-benzene and cation-cyclohexane interactions in terms of C–H σ, C–C σ, and

π orbital contributions.222 Unfortunately, as was previously reported222 for the case

of a charged proflavine+-DNA intercalation complex, A-SAPT sometimes exhibits

oscillating and nearly canceling contributions to the electrostatic energy, particularly

in systems with charged or highly polar monomers. This complicates attempts to

analyze and understand how different functional groups of atoms contribute to the

electrostatic component of the interaction energy. The root of this difficulty has been

identified as the very concept of atoms in molecules: σ bonds linking neighboring

functional groups will necessarily be assigned preferentially to the more electronega-

tive atom, leading to oscillating charges between the neighboring functional groups.

This gives rise to large charge-charge interactions between intermolecular pairs of

functional groups, obfuscating the true higher-order multipole-multipole interactions

which are intuitively expected. Note that the trouble with the atoms-in-molecules

picture only arises when a partition into chemically-relevant functional group con-

tributions is attempted. For many problems, the atoms-in-molecules picture is the

correct ansatz, e.g., as in the development of atom-pairwise force fields, for which

A-SAPT is a well-posed tool.

In this work, we ameliorate the problems with respect to chemical intuition in the

electrostatics term by switching from an atom-based ansatz to a functional-group-

based ansatz. In the new functional-group SAPT (F-SAPT) approach, integral sets
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of localized electrons and protons are assigned to chemical functional groups and link-

ing σ bonds. All of these fragments are neutral or carry a chemically-expected net

charge (e.g., the carboxylate ion functional group would carry a net charge of −1 in

our analysis), preventing canceling oscillations in the electrostatic partition. To sim-

plify the analysis, an even assignment of the link-bond contributions to their adjacent

functional groups is used after the full link-bond and functional group partition is ac-

cumulated. The division of an intermolecular interaction energy decomposition into

identifiable orbital or functional group contributions is somewhat reminiscent of the

natural orbital EDA (NEDA) technique,89 absolutely localized molecular orbital EDA

(ALMO EDA) methodology,146,145,13 fragment molecular orbital (FMO)148 based pair-

wise interaction EDA (PIEDA),75 or divide-and-conquer semiempirical techniques.302

We also note a completely different but complementary approach: the use of density-

based heuristics to visually indicate the presence of noncovalent interactions, includ-

ing those based on electron localization functions (ELF)21 or localized orbital lo-

cators (LOL),275 the non-covalent interactions (NCI) scalar field,141,50 or the recent

density overlap regions indicator (DORI).58 Finally, we note that many important

developments toward spatially localizing interaction energy components to fragments

of monomers have been made by Stone and co-workers, e.g., in distributed multi-

pole analysis (DMA) of electrostatics283,285,284,286 or distributed polarizabilities.256,196

However, these approaches work almost wholly in terms of atomic contributions, and,

as such, are much more analogous to our previous A-SAPT approach than the present

F-SAPT approach.

Below, we outline the intuitive development of the F-SAPT partition by first iden-

tifying desired characteristics of the new approach and weaknesses of other partition

methods such as the cut-and-cap fragmentation approach and A-SAPT. We then con-

struct F-SAPT to satisfy all of the desired constraints, and briefly detail the straight-

forward modifications to the A-SAPT program needed to obtain an implementation
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of F-SAPT at the level of SAPT0. As with any heuristic partition, F-SAPT can be

neither derived nor proved, so we rely on practical discussion and chemical examples

to justify the method. We focus on the most-difficult electrostatic term to simplify the

discussion, and use phenol dimer as an illustrative example. In the results and discus-

sion section, we apply cut-and-cap fragmentation, A-SAPT, and F-SAPT to provide

functional-group pairwise partitions of phenol dimer and the proflavine+-DNA inter-

calator (whose electrostatic oscillations under A-SAPT motivated this work). These

case studies demonstrate that F-SAPT produces chemically useful partitions of the

electrostatic energy while also respecting the many-body limit of the interaction en-

ergy, placing it clearly above cut-and-cap or A-SAPT methodologies. We close by

discussing a complete F-SAPT analysis for an interesting cucurbituril inclusion com-

plex.

9.3 Theory

9.3.1 Motivation: Phenol Dimer

To frame the discussion, we consider the case of phenol dimer in a hydrogen-bonded

arrangement (from the S22 database),143 depicted in Figure 35. We denote the

hydrogen-bond-donating member as monomer A, and the hydrogen-bond-receiving

member as monomer B. Standard SAPT0/jun-cc-pVDZ138,124,212 analysis indicates a

total interaction energy of −7.1 kcal mol−1, with contributions of −9.1, +9.9, −0.5,

−2.3, and −5.1 kcal mol−1 from Eelst, Eexch, Eind(A←B), Eind(B←A), and Edisp, respec-

tively. This interaction is somewhat stronger than the −5.1 kcal mol−1 of water dimer

(also from the S22 database), and considerably different in both geometry and inter-

action energy from the standard configurations of the benzene dimer. What then,

are the chemical origins of this interaction? How important is the π–π interaction

relative to the hydrogen bonding interaction, and are OH–π interactions relevant?

Below, we will pursue several approches to answer these questions, focusing on the

214



critical and difficult electrostatics term.

Figure 35: Phenol dimer geometry and functional group partitioning scheme. Ovals
denote functional group selection. Link bonds are indicated by solid black lines.
Intermolecular hydrogen bonds are indicated by dashed black lines.

To the chemist, these phenol monomers (PhOH) are intuitively defined as a

phenyl group (Ph) attached to a hydroxyl group (OH) via a σ bond, as seen in

Figure 35. Therefore, the most-useful partition of the PhOHA· · ·PhOHB interaction

would be into the pair contributions of PhA· · ·PhB, PhA· · ·OHB, OHA· · ·PhB, and

OHA· · ·OHB. There are two fundamental paradigms for such partitions. The first

is the family of fragmentation techniques, which a priori divide the monomers into

relevant subsystems, and then perform isolated pairwise interaction energy compu-

tations on the subsystems. The other is the family of many-body assignment tech-

niques, wherein a single interaction energy is computed between the two complete

monomers, and the interaction energy components are a posteriori divided between

the functional groups. A-SAPT is a member of the latter paradigm. The fragmenta-

tion approaches are compelling due to their conceptual and computational simplicity.

However, the fragment approaches have three key problems that can be remedied by

the many-body assignment techniques:

1. The computation of the interaction energy contributions in terms of pairs of iso-

lated fragments ignores possibly very large intramolecular many-body coupling

effects between different functional groups within the monomers. This implies
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that the ab initio limit cannot ever be achieved for such methods, even if a con-

vergent ab initio methodology such as SAPT or coupled-cluster theory is used

for the isolated pairwise interaction energy computations. Note that this caveat

directly applies only to explicitly pairwise interaction fragment models: higher

order fragmentation models (e.g., which include trimers and perhaps even larger

clusters) can approach the ab initio limit of the interaction energy, albeit at the

cost of losing a straightforward pairwise partition of the interaction energy.

2. When covalent bonds link two functional groups, myriad problems arise in the

division of the monomers into fragments. In particular, it is difficult to provide

a scheme which simultaneously respects particle count, charge neutrality of

adjacent functional groups, link bond polarization etc.

3. The best schemes involve cleavage of the link bonds and capping with hydrogen

atoms to maintain the neutral closed-shell nature of the fragments, which can

involve additional user effort to produce geometries and analyze results.

9.3.1.1 Fragmentation: Homolytic Cleavage

One particularly straightforward but ill-formed fragmentation approach is to simply

cleave the link bond homolytically, assigning one link electron to the Ph group and

the other to the OH group in each monomer. This effectively defines the monomers

as the neutral radical species Ph· and ·OH. Pairwise interaction energy computations

could then be performed between these radical species, e.g. (Ph·)A· · · (·OH)B. This

approach has the advantages that the particle count (the total number of protons and

electrons) is maintained and that the Ph· and ·OH are both neutral. However this

approach is frought with peril: the electronic structures of the radical fragments are

often nothing like the underlying monomer functional groups, which are stabilized by

electron pairing in the link σ orbital.
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9.3.1.2 Fragmentation: Heterolytic Cleavage

One possible remedy for the homolytic cleavage approach is to recognize that the

pairing of electrons is vital, and to assign both of the electrons in the link σ bond

to the more-electronegative functional group. This effectively defines the monomers

as the charged closed-shell species Ph+ and −OH. This approach has the advantages

that the particle count is maintained and that there are no radical species involved,

but has the distinct disadvantage that the fragments are charged to the maginitude

of a complete electron, in an oscillating +/− fashion that cancels in the net. For

instance, the −OHA· · · −OHB electrostatic interaction is dominated by a repulsive

charge-charge interaction on the order of (−1)2/R, where R is the average separation

between the hydroxyl groups. The contribution is a sizeable fraction of a Hartree, and

completely masks the expected attractive dipole-dipole interaction that characterizes

a hydrogen-bonding interaction.

9.3.1.3 Fragmentation: Cut-and-Cap

A superior approach is to homolytically cut each link bond, and then cap the unpaired

electrons in each functional group with hydrogens, each of which contains a proton

and an electron. This effectively defines the monomers as the neutral closed-shell

species benzene (Bz) and H2O. This approach maintains the pairing of electrons and

neutrality of the functional groups, and roughly retains the anisotropy of the link bond

(though the overall link bond polarity is almost always lost in the new fragments).

Unfortunately, the link bonds are essentially counted twice in this approach, as the

particle count is increased by two protons and two electrons for each link bond. Often,

the particle count effect is assumed to be minor and ignored. Alternatively, one can

subtract a hydrogen molecule placed along each link bond to maintain the particle

count, e.g., defining the phenol as Bz + H2O - H2. This correction can significantly

clutter the analysis, e.g., due to the ambiguity in assigning the H2 contributions to
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the functional groups. An additional concern is the polarization of the capped link

bonds. Link bonds are usually of X–Y topology where X and Y are heavy atoms,

and are much less polarized than the X–H and Y–H bonds they will be replaced

with, potentially cluttering the electrostatics and induction terms. Finally, one last

ambiguity arises in the placement of the protons in the capped bonds; these are often

handled by constrained DFT optimizations with all nuclei but those of the capping

hydrogens frozen, mandating additional computational effort.

This approach has previously been used to roughly elucidate the relative contri-

butions of chemical functional groups to the interaction energy, e.g., in probing the

hypothesis that substituent effects in benzene dimers are primarily direct, through-

space effects,318 or in illuminating the many competing contributors in proflavine+-

DNA intercalation.118

9.3.1.4 Many-Body Assignment: A-SAPT

An alternative to fragmentation is to compute the many-body interaction through a

convergent ab initio method, while retaining a two-body quasiparticle partition iden-

tified from the many-body interaction energy diagrams. One such method is A-SAPT,

which extracts the effective two-body partition from the formalism of SAPT (partic-

ularly SAPT0 in our previous work), and then uses either local occupied orbitals or

iterative stockholder analysis (ISA)178,179,315 atoms as the quasiparticle set. The invo-

cation of the concept of atoms is critical to obtain an automatic and sensible partition

of the electrostatic energy component and the electrostatic sources in the induction

energy component: in this paradigm, fractions of the molecular electronic density are

assigned to atoms to provide reasonable cancellation between the extremely large elec-

tronic and nuclear contributions to these terms. This atom-based assignment leads

to an efficient and black-box method which produces useful visualizations identifying

the active portions of complicated electrostatic interactions.
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For the full technical details of A-SAPT, we refer the reader to our previous

work,222 but it is appropriate at this point to provide a self-contained description of

A-SAPT, to facilitate the discussion below. The development of the A-SAPT parti-

tion is a two-stage procedure. In the first stage, the many-body interaction energy

diagrams (or corresponding algebraic equations) for a given level of SAPT are exam-

ined, and an effective two-body interaction is identified for each SAPT diagram, with

one body taken from each monomer. As the SAPT diagrams may contain anywhere

from two to an infinite number of occupied or virtual quasiparticles (and include both

electronic and nuclear contributions), this choice is not unique. However, we have

found that the identification of a chemically-sensible effective two-body interaction is

entirely straightforward, at least at the level of SAPT0 or DFT-SAPT. In particular,

we restrict the partition to occupied quasiparticles only, summing over the virtual

quasiparticles. For electrostatics and for the electrostatic sources in induction, this

is an entirely rigorous choice, as no corresponding virtual quasiparticles are present.

For exchange, dispersion, and the response portion of induction, the diagrams are

all characterized by excitations from the occupied quasiparticles to virtual quasipar-

ticles of one monomer, in response to some perturbation provided by the adjacent

monomer. For these terms, the intuitive choice for the partition is the occupied quasi-

particle from which the excitation arose, not the virtual quasiparticle to which the

excitation concluded, as we are concerned with those portions of the monomers from

which the interaction energy term originate. Having made the restriction to occu-

pied quasiparticles, the choice of a specific pair of occupied quasiparticles is obvious.

For instance, the dispersion contribution involves the trace of a double excitation trsab

with the Coulomb integral vabrs , which obviously involves only the two occupied quasi-

particles a and b. The corresponding exchange-dispersion term involves additional

occupied quasiparticles, but these encapsulate Pauli-forbidden collisions between the
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electrons involved in the double excitation and the occupied spaces of the comple-

mentary monomers, so we continue to focus on the two occupied quasiparticles a and

b.

In the second stage, an appropriate set of spatially-localized quasiparticles must

be selected to provide a spatially meaningful partition of the effective two-body in-

teration identified in the first stage. In the development of A-SAPT, our initial aim

was to provide a completely black-box partition (e.g., there was to be no invocation

of user-specified subsets of atoms to denote functional groups). Moreover, we also in-

tended to provide an automatic partition of the interaction energy to atom-pairwise

contributions, to facilitate the development of ab initio force fields. Both of these

considerations mandated the selection of atoms as the proper quasiparticles, and we

further selected the iterative stockholder analysis (ISA) method of Wheatley and co-

workers to provide these atoms.178,179,315 ISA is a variant of the Hirshfeld family of

partitions to automatically extract a set of atomic density fields which sum to the total

molecular density field. Hirshfeld-type partitions assign a spherical proatomic den-

sity to each atom, and then obtain the true atomic density contribution by weighting

the total molecular density by the ratio between the proatomic density and the to-

tal promolecular density at each point in space. This results in smooth, overlapping

atomic density fields. The difference between the various Hirshfeld-type partitions

lies in the particular choice of spherical proatomic densities: Hirshfeld114 uses the

sphericalized densities of the underlying free atoms which are neutral, Hirshfeld-I39

uses the sphericalized densities of underlying free atoms with charges selected to be

equal to those of the true atomic densities, while ISA uses spherical proatomic den-

sities which are wholly unconstrained in the radial coordinate. In the latter two

approaches, the radial forms of the proatomic densities are determined iteratively

by minimizing the information loss between the true molecular density and the pro-

molecular density. Our selection of ISA was based on the fact that ISA makes no
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a priori constraints on the proatomic densities beyond being spherical, though we

note that A-SAPT could also be easily adapted to use Hirshfeld, Hirshfeld-I, or any

other atoms-in-molecules scheme. Having selected ISA as the atoms-in-molecules ap-

proach, it remains to connect the effective two-body partition of the SAPT diagrams

to the ISA atom-pairwise contributions. For electrostatics and for the electrostatic

sources in induction, the atomic contributions are directly obtained by finding the

electrostatic potential or electrostatic energy contribution of each ISA atom. For the

exchange, dispersion, and response portition of induction, the atomic contributions

are found by first accumulating in terms of local occupied orbitals, and then assigning

fractions of each local occupied orbital contribution to atomic contributions via ISA

orbital atomic charges. This procedure closes the definition of ISA-based A-SAPT0,

yielding an atom-pairwise partition for all SAPT0 terms.

It seems obvious that A-SAPT should be able to provide a quantification of

functional-group· · · functional-group interactions, i.e., by simply summing up the

relevant atomic contributions A and B to the two functional groups A and B:

EA B
int−term,A−SAPT =

∑
A ∈ A

∑
B ∈ B

EAB
int−term,A−SAPT. (268)

Unfortunately, as noted in the context of the proflavine-DNA intercalation complex

of our previous work, A-SAPT can produce unexpected results if quantitative chem-

ical partitions of the electrostatic energy are attempted. The root of this problem

is the very concept of atoms in molecules: regardless of the definition of the atom

type (Hirshfeld,114 Hirshfeld-I,39 ISA,178 GISA,307 Bader,14 etc.), every atom in each

molecule will, in general, carry a net partial charge, determined by its arrangement

in space relative to the atoms around it, and to the electronegativities of the sur-

rounding atoms. In particular, link bonds between adjacent functional groups are

almost always assigned preferentially to the functional group with the more elec-

tronegative linking atom, leading to very large charge-charge interactions between

functional groups on the two monomers. In the case of phenol dimer, the problem is
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obvious: the greater electronegativity of the oxygen means that the OH will carry a

charge of roughly −0.2 electrons, while the Ph will carry the balance of +0.2 electrons

(at ISA/jun-cc-pVDZ as in standard A-SAPT0 analysis). This implies, e.g., that the

favorable hydrogen-bond interaction expected in the OHA· · ·OHB electrostatic inter-

action is actually dominated by the unfavorable (−0.2)2/R charge-charge interaction.

This charge-charge repulsion, plus the corresponding charge-charge repulsion of the

PhA· · ·PhB interaction, largely cancel the charge-charge attractions from the two

Ph· · ·OH interactions. Overall, this leads to a muddled analysis which obfuscates

the desired dipole-dipole and higher interactions between neutral functional groups.

Note that this phenomenon is not unique to A-SAPT: all other atom-based methods

(e.g., DMA or atom-pairwise force fields) will necessarily suffer this same artifact.

9.3.1.5 Many-Body Assignment: F-SAPT

Motivated by the failure of A-SAPT to produce a chemically reasonable functional-

group partition of the electrostatic energy, we now develop a paradigm which ame-

liorates this difficulty by directly considering chemically separable functional groups

of integral charge (usually neutral) connected by neutral link bonds. This approach

closely resembles the cut-and-cap fragmentation technique above, but retains the

possibility of reaching the ab initio limit by not performing pairwise computations in

isolation. Additionally, arbitrary division of the monomers into any desired patterns

of functional groups can easily be obtained in postprocessing, from the results of a

single SAPT-type computation on the original dimer. We refer to this new approach

as “functional-group SAPT,” or F-SAPT.

F-SAPT starts from the A-SAPT-like assertion that the interaction energy terms

can be partitioned to pairwise effective interactions between nuclei (A or B) or local-

ized orbitals (ā or b̄, doubly occupied), e.g.,

Eint−term = E āb̄
int−term + E āB

int−term + EAb̄
int−term + EAB

int−term. (269)
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A-SAPT is already nearly in this form. For instance, the exchange and dispersion

terms of A-SAPT0 are already explicitly defined in terms of local orbital pairs, and

involve no partitioned nuclear contributions. Only terms involving electrostatic po-

tentials need modification: these were previously assigned directly to atomic quasi-

particle contributions in A-SAPT, to avoid extreme oscillations in the visualization.

The new nuclear and orbital partition for F-SAPT0 is quite easily obtained, as the

contribution of each charge source to the electrostatic potential is linear. For the

electrostatics term in SAPT0 (closed-shell RHF), the partition is,

E
(10),āb̄
elst,r ≡ 4(āā|b̄b̄) = 4

∫∫
R6

d3r1 d3r2 φā(~r1)φā(~r1)
1

r12

φb̄(~r2)φb̄(~r2), (270)

where φā(~r) is the ā-th local occupied orbital,

E
(10),āB
elst,r ≡ −2(āā|ZB) = −2

∫
R3

d3r1 φā(~r1)φā(~r1)
ZB
r1B

, (271)

where ZB is the charge of the B-th nucleus, and similarly for E
(10),Ab̄
elst,r , and,

E
(10),AB
elst,r ≡ ZAZB

rAB
. (272)

For the induction term, the new partition produces separate nuclear and local orbital

contributions to the total electrostatic potential,

V B
ār ≡ −(ār|ρB) = −

∫∫
R6

d3r1 d3r2 φā(~r1)φr(~r1)
1

r12

ρB(~r2) ≡ V b̄
ār + V B

ār . (273)

where ρB(~r) is the total charge density of monomer B. Here,

V b̄
ār ≡ 2(ār|b̄b̄) = 2

∫∫
R6

d3r1 d3r2 φā(~r1)φr(~r1)
1

r12

φb̄(~r2)φb̄(~r2), (274)

and,

V B
ār ≡ −(ār|ZB) = −

∫∫
R6

d3r1 d3r2 φā(~r1)φr(~r1)
ZB
r1B

. (275)

These nuclear and local occupied orbital sources each produce linearly-additive in-

duction responses, encapsulated by the induction amplitudes xb̄ār or xBār. As in our

previous work (see Equations 18 and 19 in Reference 222), these amplitudes can be
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obtained through either the uncoupled approximation (used throughout this work,

with scalings as in the previous work) or through coupled-perturbed Hartree-Fock.

Once the amplitudes are obtained, the full pairwise partition to the induction energy

is obtained as,

E
(20),āb̄
ind(A←B) ≡ 2xb̄ār

[
V B
ār + Ṽ B

ār

]
, (276)

and,

E
(20),āB
ind(A←B) ≡ 2xBār

[
V B
ār + Ṽ B

ār

]
. (277)

Here, Ṽ B
ār is the exchange-renormalization potential of the exchange-induction term,

defined in our previous work (see Equation 21 of Reference 222). Note that the blocks

of Eind(A←B) corresponding to the nuclei A are zero, as the involvement of monomer

A in this term is an electronic response only. Further, corresponding expressions for

Eind(B←A) can be obtained by permutation of indices.

In practice, the above modifications are easily and efficiently implemented, using

the density fitting approximation324,67,68,299 in the -JKFIT auxiliary basis sets.312

These terms are actually much easier to implement and evaluate than those in the

atom-based A-SAPT partition, as the above F-SAPT expressions are all tractable in

a spectral basis set, and do not require numerical quadrature to evaluate.

The nuclear and local orbital partition above is easy to attain, but it does not

immediately yield interpretable data. One reason for this is that electronic and nuclear

sources have been split, leading to enormous and nearly cancelling contributions to

the partition. To overcome this, we group chemically intuitive electronic and nuclear

contributions into fragments A and B, including chemical functional groups and

link-bond subsystems. The mathematical form for this process is given as,

EA ,B
int−term,full ≡ wA

ā w
B
b̄ E

āb̄
int−term + wA

ā w
B
BE

āB
int−term + wA

A w
B
b̄ E

Ab̄
int−term + wA

A w
B
BE

AB
int−term.

(278)

The quantities wA
ā and wA

A are the orbital-to-fragment and nucleus-to-fragment weights,

respectively. The orbital-to-fragment weights wA
ā are always 0 or 1, as each orbital is
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wholly assigned to a single fragment in this scheme. The nucleus-to-fragment weights

are also 0 or 1 for any atom not included in a link bond, in which case the weight will

be a fraction between 0 and 1, as described below.

The general procedure for assigning orbital and nuclear weights is as follows.

First, the monomer geometry is traversed to identify bridging σ bonds between user-

specified functional groups. If linking covalent bonds are found (typically by inspec-

tion of the interatomic distances and van der Waals radii, followed by orbital charge

analysis) the corresponding link fragment will be assigned a single σ orbital bridging

the two constituent atoms (by “assigned,” it is meant that the corresponding weight

wA
â is set to 1). Once this is done, the remaining orbitals are assigned to the user-

specified functional groups according to the functional group on which each orbitals

has the largest atomic charge. With the orbital-to-fragment weights assigned, the

next task is the nucleus-to-fragment weights. To seed these weights, wA
A is set to 1

if the nucleus A is in the user-defined functional-group A , 0 otherwise. From this,

the fraction 1/ZA is removed from the weight wA
A and assigned to the weight wA ′

A ,

for each of the two atoms in the link fragment A ′. This effectively removes a proton

from each functional group involved in the link bond, and assigns these protons to

the link bond fragment, resulting in a neutral link fragment with two electrons in a

σ orbital and two protons. This shuffling of two protons to each linking σ bond is

critical to achieve a sensible partition: if the protons were left with the functional

groups, the functional groups would usually carry net positive charges while the link

bond groups would each carry a charge of −2, leading to large oscillations in the

electrostatic partition. Another way to view this division of the monomer is into a set

of neutral functional groups interconnected by a set of link fragments (each of which

loosely resembles an extended hydrogen molecule).

In practice, much of the above weight selection can be automated, with excellent

results for chemically reasonable choices of functional groups. The user first provides
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the F-SAPT post-processing script with the set of atoms defining each chemically-

relevant functional group (e.g., O and H to define the OH functional group and C5H6

to define the Ph functional group). The distances between pairs of atoms in difference

are then checked against the sum of van der Waals radii of the constituent atoms, and

candidates for link bonds are identified automatically (this can be specified manually

in special cases). For each link bond between atoms A and A′, the local orbital

corresponding to the linking σ bond is easily identified as that which maximizes

the bond-index-like metric Mā = Qā
AQ

ā
A′ , where Qā

A are local orbital atomic charges

computed at the same level as the Pipek-Mezey-like orbital localization routine. Once

the link orbitals are assigned, the remaining orbitals are assigned to the chemical

functional group containing the atom with the maximal orbital atomic charge Qā
A.

The nuclear weights are then automatically assigned as above.

A key assumption in the F-SAPT analysis is that the functional groups are chem-

ically separable entities linked by, at most, simple σ bonds. This is obvious when

one considers the weights wA
ā , which are integral, meaning that we have chosen the

partition in such a way that non-link electrons are wholly owned by a single functional

group. This implies that neighboring functional groups linked by double, aromatic,

etc. bonds, or featuring significant fractional charge transfer are not appropriate

choices within F-SAPT. We do not believe this represents a limitation of F-SAPT,

but rather a form of maximum resolution of effective quasiparticle separability in

the many-body interaction: two user-defined fragments linked by more than simple

σ bonds are actually acting as a single chemical entity, and should be treated as

such. Moreover, F-SAPT does provide for polarization of the electrons within each

functional group, to respond to neighboring functional groups (this flexibility is not

present in fragmentation approaches, which are performed on pairs of fragments in

isolation). An excellent automatic check of the validity of user-defined functional
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groups is the completeness of the orbital atomic charges,

Cā = 1−
∑
A ∈ A

Qā
A. (279)

If Cā is greater than a few hundredths of an electron pair, this is an indication that

a significant piece of this orbital lies across more than one fragment, and that the

functional group partition should be redefined.

For example, consider the F-SAPT partition scheme for phenol, depicted in Figure

36. The link σ bond is clearly identifiable from the orbital atomic charges, and

is also assigned one proton from the OH oxygen (a nuclear-to-fragment weight of

1/8) and one proton from the nearest carbon on the phenyl group (a nuclear-to-

fragment weight of 1/6). The hydroxyl group retains 7 of the 8 oxygen protons and

the hydrogen proton, as well as the oxygen 1s orbital, the OH σ orbital and the

two lone-pair orbitals. The phenyl group retains 5 of the 6 protons on the linking

carbon, the 5 remaining carbon nuclei, the 5 hydrogen nuclei, the 6 carbon 1s orbitals,

the 6 C–C σ orbitals, the 5 C–H σ orbitals, and the 3 π orbitals. Note that the π

orbitals form a delocalized system over the carbons of the phenyl group, and cannot

be unambiguously localized to subsets of these atoms. However, the π system can

be localized to the level of the phenyl functional group, which functions as a single,

separable chemical unit. The largest value of Cā for this system is 0.045 electron pairs,

indicating mild polarization of one of the oxygen lone pairs toward the π system of

the benzene.

To this point, the F-SAPT analysis produces a pairwise partition of the interac-

tion energy terms between chemical functional groups and link bond fragments, e.g.

PhA· · ·PhB, PhA· · ·OHB, PhA· · ·LinkB, etc. contributions. We refer to this level-of-

detail as a “full F-SAPT” partition. For detailed analysis, the explicit enumeration of

the link fragment contributions may be important, particularly if these (often polar)

bonds are significantly involved in the interaction. In these cases, the link bonds are

chemical entities of their own, and should be considered separately from the chemical
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Figure 36: Phenol monomer F-SAPT partitioning scheme. In full F-SAPT, one
proton from the hydroxyl O and one proton from the nearest phenyl C are assigned
to the link σ-bond to produce neutral Ph, Link, and OH fragments. In reduced F-
SAPT, the full F-SAPT partition for the Link fragment is split equally between the
Ph and OH fragments.

functional groups. However, if the link bonds do not contribute significantly to the

interaction, or if the user is only concerned with semi-quantitative trends, the anal-

ysis can be vastly simplified by assigning the link fragment contributions to the two

functional groups that they bridge, i.e.,

EA B
int−term,reduced = EA B

int−term,full + fB
B′E

A B′

int−term,full + fA
A ′E

A ′B
int−term,full + fA

A ′f
B
B′E

A ′B′

int−term,full.

(280)

Here fA
A ′ is a weight assigning all or part of the link fragment A ′ to the chemical

functional group A , which is only nonzero if A ′ and A share a nucleus. Unfortu-

nately, there is no clearly unambiguous scheme to provide these weights: one could
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imagine assigning all of the link bond to one of the two functional groups, assigning

some fraction of the link fragment to the two functional groups based on the ratio of

orbital atomic charges, or evenly dividing the link fragment between the two func-

tional groups. We have found that, for chemically reasonable choices of functional

groups, all of these schemes generally produce qualitatively identical results, with the

last two producing nearly quantitatively identical results in most cases. The last two

schemes also contain a bit more physical merit than the first: partitioning based on

orbital charges respects the concept of how much each fragment “owns” the link σ

orbital, while equal partitioning produces chemical functional groups with integral

particle counts in both electrons and protons (e.g, the OH group in phenyl contains

9 electrons and 9 protons with equal partitioning). Due to the particular elegance

of particle count of the last choice, and the lack of concrete definition of an orbital

atomic charge, we have selected the equal partitioning scheme (fA
A ′ = 0.5) for use in

simpler, semi-quantitative F-SAPT analysis. We denote this choice of partition as a

“reduced F-SAPT” analysis. By default, “F-SAPT” below refers to reduced F-SAPT,

while consideration of full F-SAPT will be explicitly enumerated.

9.3.2 Interpretations and Limitations

In the process of review, a referee raised the admirable critique that F-SAPT is nec-

essarily not the only possible decomposition of the SAPT interaction energy, and,

moreover, raised the complaint that our choice of partition ignores the virtual quasi-

particles present in the response portions of the SAPT expressions (the exchange,

dispersion, and induction response terms). We provide this section to discuss the

limitations and choices made in the development of F-SAPT.

One way to view F-SAPT is to assert that the monomers are composed of trans-

ferable collections of localized electrons and protons/neutrons (functional groups)

which, after selection under some localization metric and prescribed set of functional
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groups, are allowed to interact naturally with one another. At the level of Hartree-

Fock theory (as encountered in SAPT0 here), the protons/neutrons and occupied or-

bitals completely parametrize the states of the noninteracting monomers, albeit with

a mean-field description of the wavefunctions. If Kohn-Sham theory were invoked

(as in DFT-SAPT, which we intend to apply in later efforts), the protons/neutrons

and localized occupied Kohn-Sham orbitals could theoretically be used to completely

parametrize the exact states of the noninteracting monomers, if the exact Kohn-Sham

functional were used. To this point, no mention has been made of the concept of the

virtual space. We now ask the same question as SAPT itself asks: how do these

monomers interact with one another? Further, we will retain the labels of the local-

ized occupied quasiparticles in computing this interaction, yielding F-SAPT. In doing

so, we will arrive at the F-SAPT partition of the SAPT equations, which do contain

references to the virtual space. The virtual space appears here as a mechanism to

provide for the response of one monomer’s wavefunction in a perturbation (usually

from the other monomer). However, here we are interested only in which portion

of the monomer the electron was localized before the interaction occurred (the func-

tional group of origin), not to where it excited to after the interaction was invoked.

In this view, the virtual space is not relevant as anything other than a mathematical

construction to allow for response interactions, i.e., as a medium through which the

occupied quasiparticles interact. Further evidence for this choice is the fact that the

local occupied orbitals and nuclei directly outline the intuitive shapes of the chem-

ical functional groups, and are localizable and largely invariant to basis set size or

type. By contrast, the virtual space is intrinsically nonlocalizable, particularly in the

complete-basis or plane-wave limits. All of these considerations point to the intuitive

validity of our selection of local occupied quasiparticles in designing F-SAPT.

At this point, it is imperative to remember that (1) any partition of the interaction

energy terms into spatially-localized contributions will not correspond to any set of
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observable quantities and (2) any partition of interaction energy terms will necessar-

ily not be unique. Such partitions are intended to aid our chemical understanding of

noncovalent contacts, but should not be mistaken for absolute physical realism. We

have designed F-SAPT to correspond to chemical intuition while using only minimal

prescription (it requires only a localization metric and a human-specified set of func-

tional groups, together with the picture of interactions between localized occupied

quasiparticles discussed above), hopefully resulting in a robust, reliable partition.

See Section II.E on page 10-11 of our A-SAPT paper222 for an additional discussion

of the related ambiguities present in A-SAPT.

9.4 Results

9.4.1 Computational Details

All results presented in this work use A-SAPT0 and F-SAPT0 implementations in a

development version of the PSI4 package,298 largely according to the methodology dis-

cussed in our original A-SAPT0 paper. The dimer-centered jun-cc-pVDZ orbital basis

set is used for all computations.124,212 The density fitting approach is used to accel-

erate all Hartree-Fock312 and SAPT0111,123,118 computations, with the jun-cc-pVDZ-

JKFIT auxiliary basis set used for the Hartree-Fock wavefunctions, electrostatics, ex-

change, induction, and one-particle contributions to the exchange-dispersion terms,

while the jun-cc-pVDZ-RI auxiliary basis set is used for the two-body contributions to

the dispersion and exchange-dispersion terms. The frozen core treatment is invoked

in the dispersion term, freezing 1s electrons on first-row atoms and 1s, 2s, and 2p elec-

trons on second-row atoms. For A-SAPT, atomic assignment of the electronic density

is accomplished through the ISA procedure, using large Treutler-Ahlrichs grids with

100 radial points and 302 angular points.20,297 Scalings for infinite-order exchange,

induction coupling, and higher-order induction are applied as recommended in our

previous work.
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In contrast to our previous paper, we use intrinsic bond orbital (IBO) method-

ology developed by Knizia to provide local occupied orbitals and orbital atomic

charges.149 In our previous work, these were provided by Pipek-Mezey local orbitals228

and a form of ISA orbital charges, respectively. IBO is an extremely elegant Pipek-

Mezey-like approach that is essentially invariant to basis set quality (a major problem

with Mulliken-charge-based Pipek-Mezey). IBO methodology has very recently been

shown136 to be essentially equivalent to (albeit numerically simpler than) the quasi-

atomic minimal basis set (QUAMBO) methodology of Ruedenberg and coworkers.183

As in Knizia’s work, we use the fully contracted cc-pVTZ core and valence functions70

to define the minimal atomic orbitals, and use the fourth-power metric in the localiza-

tion procedure. Separate localizations are performed for the core and valence orbitals

(after the unified set of intrinsic atomic orbitals are generated), to prevent mixing of

core and valence spaces in the frozen-core dispersion treatment. Minimal AOs are

placed only on the active monomer: ghost atoms do not receive minimal AOs.

For cut-and-cap analyses, constrained optimizations for capping hydrogens are

performed at the B970-D2/aug-cc-pVDZ22,96 level in Q-Chem 4.1,269 with monomer-

centered basis sets. SAPT0/ jun-cc-pVDZ is used for the pairwise cut-and-cap elec-

tronic structure computations, as is consistent with the A-SAPT and F-SAPT anal-

yses. The H2 particle-count corrections are not applied in this work.

Dimer geometries, cut-and-cap fragment geometries, and complete cut-and-cap,

A-SAPT, and F-SAPT analyses for all systems and SAPT terms are provided in the

supplemental material.

9.4.2 Phenol Dimer Example

Figure 37 depicts various decompositions of the electrostatic energy for the framing

phenol dimer example of the theory section, partitioned by the cut-and-cap fragmen-

tation method, and by the A-SAPT and reduced F-SAPT many-body partitioning
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techniques. The most immediate feature of this illustration is that A-SAPT provides

a significantly weaker hydrogen bonding contribution than one might expect (vs. say

that predicted by cut-and-cap analysis), due to the obfuscating influence of parti-

tial charges on the ISA atom-based fragments. The dipole-dipole terms manage to

overcome the δ− · · · δ− charge-charge repulsion to produce a net attraction between

the two hydroxyl groups, but the magnitude of this attraction is much weaker than

expected. In fact, the A-SAPT PhA· · ·OHB interaction is significantly more attrac-

tive than that of OHA· · ·OHB, due to the spurious δ+ · · · δ− charge-charge attraction

in the former. The PhA· · ·PhB electrostatic interaction is also poorly described by

A-SAPT, with substantial repulsion arising from the δ+ · · · δ+ charge-charge term.
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Figure 37: Phenol dimer SAPT0/jun-cc-pVDZ electrostatic energy partitioned by
Cut-Cap, A-SAPT, and reduced F-SAPT schemes.

The second key feature of this figure is the strong similarity between the cut-and-

cap partition and the reduced F-SAPT partition. Both techniques clearly indicate the

OHA· · ·OHB hydrogen bonding, with electrostatic contributions of −7.9 kcal mol−1

and −8.4 kcal mol−1 respectively. The next strongest contributor is PhA· · ·OHB

interaction, with electrostatic contributions of −1.3 kcal mol−1 and −2.7 kcal mol−1,

respectively. Note that the total SAPT0/jun-cc-pVDZ electrostatic energy for this

system is −9.1 kcal mol−1, while the cut-and-cap electrostatic energy is −11.1 kcal
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mol−1, indicating that isolated pairwise computations induce an error of 2.0 kcal

mol−1 in cut-and-cap analysis. As the differences between the reduced F-SAPT and

cut-and-cap electrostatic partitions are at most 2.0 kcal mol−1, we can conclude the

F-SAPT and cut-and-cap analyses agree to within the maximum resolution of the

latter method.

The link bond contributions to the full F-SAPT electrostatic partition are not

entirely negligible, but never exceed a magnitude of 1.5 kcal mol−1, e.g., much smaller

than the total OHA· · ·OHB interaction. Moreover, partitioning the link bonds by IBO

orbital charges vs. equal assignment results in a maximum deviation of only 0.34 kcal

mol−1 in the reduced F-SAPT partition.

The results obtained for this case study are quite encouraging. F-SAPT pro-

duces chemically intuitive results for the electrostatic contributions for this system

(in contrast to A-SAPT) and also returns the many-body SAPT0 limit (in contrast to

cut-and-cap). Additionally, the ambiguities associated with link-bond assignment in

reduced F-SAPT are far smaller in magnitude than the key contributions to the elec-

trostatics partition. We have observed similar correspondence in many other chemical

systems and in the other (easier) SAPT terms.

9.4.3 Proflavine Intercalation Example

We now turn our attention to a particularly problematic and motivating case encoun-

tered in our A-SAPT paper: the intercalation of a proflavine cation into a double-

stranded CGA trinucleotide fragment of DNA, including the sugar-phosphate back-

bone. The geometry and chemical fragmentation pattern for this system are depicted

in Figure 38. The geometry184 is the same as that used in our 2011 DF-SAPT0

paper118 and our A-SAPT paper.222 Note that we have protonated each phosphate

group to simulate the presence of a counterion, resulting in a neutral DNA monomer.
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The proflavine cation carries a +1 net charge. The DNA fragment is labeled accord-

ing to the nucleotide on the left side of Figure 38, going from 5′ to 3′ (top to bottom).

The proflavine has intercalated between the C and G steps in this ordering, causing

significant distortion of the DNA structure. We label the base pairs as BP1 (C), BP2

(G), and BP3 (A), from top to bottom. The sugars are labeled according to their

side and neighboring base pair, e.g., SL1 is the left-hand sugar bonded to BP1. The

phosphates are labeled by their side and the two base pairs they link, e.g., PL12 is the

left-hand phosphate bridging BP1 and BP2, via SL1 and SL2. Sugar–base pair func-

tional groups are separated by cutting glycosidic C–N bonds, while sugar-phosphate

functional groups are separated by cutting C–O bonds.

Figure 38: Proflavine+-DNA intercalation complex geometry and functional group
partitioning scheme. Link bonds are indicated by solid green lines and emphasized
by downward-pointing dotted arrows. Intermolecular hydrogen bonds are indicated
by dashed black lines.

This is an interesting test case due to the complex interplay between various

contributions to the intermolecular interaction: in our 2011 paper,118 we performed a

coarse SAPT0/jun-cc-pVDZ cut-and-cap analysis (to the level of base pairs and back-

bones), and determined that (1) roughly 2/3 of the interaction strength comes from

π-stacking between the proflavine and neighboring base pairs, (2) the next-nearest
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neighbor base pair contributes negligibly to the interaction, and (3) roughly 1/3 of

the interaction strength comes from interactions with the closer left-side backbone,

possibly including long hydrogen bonds forming between the proflavine and left upper

phosphate. In our A-SAPT paper, the first and second findings were easily visible

in order-1 atomic visualizations of the dispersion and exchange terms, which clearly

showed the nearest-neighbor π-stacking interactions, and negligible interactions with

the next-nearest neighbor base pair. However, the third finding was much harder to

elucidate, due to the sizeable oscillations in the order-1 atomic electrostatics visualiza-

tions induced by the uneven assignment of bonds linking adjacent atoms of the DNA

fragments, under the strong driving field of the proflanine cation. By differentially

increasing the color scales in the order-1 atomic visualizations, or looking through

the extensive order-2 atom-pairwise data, it was apparent that PL12 was the most

active phosphate in the electrostatic interaction, but this was, at best, a qualitative

conclusion.

Here we revisit this problem by quantitatively partitioning the electrostatic energy

to base pair, sugar, and phosphate contributions via cut-and-cap, A-SAPT, and F-

SAPT analyses. Note that the proflavine cation is treated as a single functional group,

so the order-1 and order-2 analyses are equivalent for this system. This allows us to

use visualization techniques adapted from A-SAPT to quickly depict the relevant

interactions in the system: Figure 39 shows the qualitative and quantitative results

from these analyses. In each panel, the functional groups are colored according to

the sign and magnitude of their electrostatic interaction with the other monomer,

with red indicating attraction and blue indicating repulsion. The small numbers in

the figure indicate the quantitative electrostatic contributions, in kcal mol−1. The

color scales saturate at ±30 kcal mol−1 to provide adequate resolution for the smaller

contributions. This means that the proflavine contributions will be saturated in all

three analyses, as will some of the DNA contributions in the A-SAPT analysis.
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Figure 39: Proflavine+-DNA SAPT0/jun-cc-pVDZ electrostatic energy partitioned
to functional groups via (a) Cut-Cap, (b) A-SAPT, and (c) reduced F-SAPT schemes.
Red indicates attraction, blue indicates repulsion, white indicates no net interaction.
The color scales saturate at ±30 kcal mol−1. Small numbers indicate functional group
electrostatic contributions in kcal mol−1.
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Just as with phenol dimer, the quantitative A-SAPT electrostatic partition does

not provide much insight. The sugars have large repulsive electrostatic interactions,

while the base pairs and phosphates have large attractive electrostatic interactions.

This is easily explained when one considers that the link bonds involving sugars

are either C–N or C–O, with the C on the sugar: the electron pairs in these polar

covalent bonds will be assigned more preferentially to the N or O atoms of the base

pairs or phosphates, respectively. This means that the sugars will attain net positive

charges, while the base pairs and phosphates will attain net negative charges. The

charge-charge interactions between these partially charged functional groups and the

+1 charged proflavine cation strongly dominate the quantitative A-SAPT partition.

Within the base pairs and sugars, it is apparent that the nearest neighbor base pairs

and PL12 phosphate have the strongest electrostatic interactions, and that the next

nearest neighbor base pair is less involved. However, as was the case with order-1

atomic visualizations in A-SAPT, this is, at best, a qualitative conclusion: there are

oscillating contributions of > ±10 kcal mol−1 from all functional groups, and the

strongest overall contributor is actually SR2, with a contribution of +46 kcal mol−1.

The invocation of reduced F-SAPT markedly cleans up the electrostatic partition,

yielding results which strongly resemble cut-and-cap fragmentation, while reproduc-

ing the full SAPT0 electrostatic energy. Quoting the F-SAPT partition, the rough

conclusions from our DF-SAPT0 cut-and-cap analysis are immediately ratified, along

with additional detail. The first finding above is apparent in the substantial -12 and

-13 kcal mol−1 electrostatic contributions of BP1 and BP2, respectively, indicating

an interesting cation-π and π-stacking electrostatic interaction between the proflavine

and these two neighboring base pairs. The second finding above is apparent from the

small contributions of PL23, PR23, SL3, SR3, and BP3, which individually contribute

no more than ±1.8 kcal mol−1 to the electrostatic energy, and collectively contribute a

negligible −0.25 kcal mol−1 to the electrostatic energy. The third finding above is also
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visible, with some enhancement provided by F-SAPT. With an electrostatic contribu-

tion of −7.0 kcal mol−1, PL12 is clearly the strongest contributor from the backbone,

and is the strongest overall contributor after the nearest neighbor base pairs. This

supports our intuitive conclusion of long hydrogen bonding between proflavine and

PL12 from the 2011 paper. However, it is interesting to note that there are other

non-negligible contributors from the two backbones, e.g., SR1 (−4.0 kcal mol−1) and

SL2 (−2.7 kcal mol−1). Both of these sugars are oriented so that the lone pairs of the

ring oxygen are facing the proflavine cation, providing favorable electrostatic orienta-

tions. Additionally, SL1 is distorted so that the terminal hydroxyl group is oriented

favorably with respect to the proflavine cation; while the ring oxygen is not favor-

ably aligned for this sugar, the hydroxyl group is able to provide for a net favorable

contribution of −1.8 kcal mol−1. The contributions from SL1, PL12, and SL2 all add

to the attractive contribution of the left-side backbone, indicating that while long

hydrogen bonds with PL12 are the dominant contributors, the nearby sugars of the

left-side backbone also contribute to the overall stability of the complex. Moreover,

the favorable electrostatic contribution from SR1 is largely canceled by unfavorable

contributions from PR12, SR2, etc. This implies that our original conclusion of neg-

ligible interactions between proflavine and the right-side backbone only holds in the

net: non-trivial interactions do occur with various units of the right-side backbone,

but these nearly cancel overall.

Note that the total electrostatic energy at SAPT0/jun-cc-pVDZ is −37.9 kcal

mol−1, while the pairwise cut-and-cap electrostatic energy is −40.7 kcal mol−1, i.e., a

many-body error of −2.8 kcal mol−1. In particular, the cut-and-cap contributions are

generally slightly more attractive than their F-SAPT counterparts, which is possibly

due to the greater polarization of capping C–H, O–H, and N–H σ bonds in the cut-

and-cap analysis. F-SAPT is able to avoid this error while producing a chemically

useful partition.

239



9.4.4 Cucurbituril Inclusion Example

To demonstrate the insight provided by a complete F-SAPT analysis, we consider

a cucurbit[7]uril· · · bicyclo[2.2.2]octane-1,4-dimethanol inclusion complex (geometry

obtained from Ref. 50, originally proposed in Ref. 199), depicted in Figure 40. Inclu-

sion complexes involving cucurbituril hosts and polar or cationic guest molecules are

of great interest in supramolecular chemistry, due to their enormous binding constants

and amazing specificities. Myriad inclusion complexes involving neutral and cationic

ferrocene derivatives,137,181,244,199 cationic adamantyl derivatives,181 and neutral and

cationic bicyclo[2.2.2]octane derivatives199 as guests have been reported in both ex-

perimental and theoretical studies. The proposed origins for such strong binding

affinities are the complimentary shapes of the host and guest, which lead to strong

noncovalent enthalpic contributions, and to a remarkably small entropic penalty in

the inclusion complex, arising from the rigidity of the constituent monomers. Cationic

guests are found to have somewhat higher binding affinities, presumably due to favor-

able electrostatic interactions between the cationic side substituents of the guest and

the rings of carbonyl groups in the cucurbituril (though this favorability is somewhat

diminished by the corresponding desolvation penalty). The complex considered in the

present study does not have a cationic guest, but rather features a pair of polar, neu-

tral methanol groups attached to a bicyclo[2.2.2]octane core. This guest was proposed

in the mining minima algorithm (M2) theoretical study of Gilson and co-workers,199

and was further investigated by the noncovalent interactions index (NCI) of Yang and

co-workers.50 The NCI visualization heuristic of the latter was able to detect strong

van der Waals interactions throughout the inclusion cavity (presumably indicating

dispersion between the host and the core of the guest), and additionally indicated

that “the hydroxyl substituents on the guest establish strong hydrogen bonds with

two carbonyls of the [cucurbituril] host.”

The functional-group partition selected for this complex is depicted in Figure 40.
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Figure 40: Cucurbit[7]uril· · · bicyclo[2.2.2]octane-1,4-dimethanol inclusion complex
geometry and functional group partitioning scheme. (a) Top view. (b) Side view. (c)
Birds-eye view. (d) bicyclo[2.2.2]octane-1,4-dimethanol functional group partiton. (e)
Cucurbit[7]uril functional group partition. Ovals denote functional group selection.
Link bonds are indicated by solid black lines. Intermolecular hydrogen bonds are
indicated by dashed black lines.

For the guest, we divide the monomer into a bicyclo[2.2.2]octane core (Core) and two

methanol groups (MeOH1 and MeOH2). We alternatively could have partitioned to

the level of hydroxyl groups and obtained similar results; the main deviations between

these choices of partition are small exchange and dispersion contributions from the
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CH2 links in the methanols. For the host, we use a slightly more exotic partition

to simplify the analysis. We first perform a reduced F-SAPT analysis with 14 host

functional groups: the 7 uniquely identifiable cucurbituril units and the 7 sets of

linking CH2 pairs. Then, we assign the (minor) contributions from the CH2 pairs

evenly to their adjacent cucurbituril units (CBN). This “collapsed F-SAPT” scheme

allows us to effectively slice the linking CH2 pairs down the middle. Figures 41 and

42 depict the quantitative results from the collapsed F-SAPT partition, for all SAPT

terms. Each row of these figures depicts an individual SAPT term, while each column

within the row depicts the contributions to the core, MeOH1, and MeOH2 portions

of the guest, from left to right. The colorings of the cucurbituril units correspond

to their contributions from the current term and portion of the guest, while the

colorings of the guest units correspond to their contributions from the current term

and all cucurbituril units. The color scales saturate at ±20 kcal mol−1, implying that

the total core contributions will sometimes be saturated.

The obvious conclusion from the collapsed F-SAPT analysis is the large and favor-

able interaction between the host and guest core, which contributes −28.7 kcal mol−1

of the net interaction strength of −28.2 kcal mol−1. The major contributors to this

interaction are electrostatics (−15.1 kcal mol−1), exchange (+24.5 kcal mol−1) and es-

pecially dispersion (−33.2 kcal mol−1). The dispersion contribution is quite isotropic

througout the cucurbituril, while the electrostatic and exchange interactions are much

more anisotropic. The contributions of CB5 are the smallest overall, corresponding

to CB5 being the most geometrically distant cucurbituril unit from the guest. The

always-attractive and strongly distance-dependent electrostatic interaction between

the host and nonpolar guest core is strongly indicative of a favorable charge pen-

etration interaction (though a distributed multipole analysis would be required to

quantitatively prove this claim). The induction contribution from the cucurbituril

polarizing the core is surprisingly large, with a net contribution of −4.7 kcal mol−1.
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Figure 41: Cucurbit[7]uril· · · bicyclo[2.2.2]octane-1,4-dimethanol inclusion complex
SAPT0/jun-cc-pVDZ electrostatic, exchange, and dispersion terms partitioned by
collapsed F-SAPT scheme discussed in the main text. Left: contributions to Core.
Middle: contributions to MeOH1. Right: contributions to MeOH2. Red indicates at-
traction, blue indicates repulsion, white indicates no net interaction. The color scales
saturate at ±20 kcal mol−1. Small numbers indicate functional group electrostatic
contributions in kcal mol−1.

Each polar cucurbituril contributes a small −0.6 to −0.7 kcal mol−1 fraction, but

these add up to a substantial total. The induction term for the nonpolar guest core

polarizing the cucurbituril is quantitatively negligible (−0.3 kcal mol−1), as expected.
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Figure 42: Cucurbit[7]uril· · · bicyclo[2.2.2]octane-1,4-dimethanol inclusion complex
SAPT0/jun-cc-pVDZ induction and total terms partitioned by collapsed F-SAPT
scheme discussed in the main text. Left: contributions to Core. Middle: contributions
to MeOH1. Right: contributions to MeOH2. Red indicates attraction, blue indicates
repulsion, white indicates no net interaction. The color scales saturate at ±20 kcal
mol−1. Small numbers indicate functional group electrostatic contributions in kcal
mol−1.

The surprising finding from F-SAPT is the quantitatively negligible net contri-

bution from the methanol groups (−0.2 kcal mol−1 and +0.7 kcal mol−1 for MeOH1

and MeOH2, respectively). Evidence of hydrogen bonding with the nearest carbonyl
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units is present in favorable net contributions in the electrostatics, exchange, induc-

tion (B←A), and dispersion terms for MeOH1· · ·CB1 and MeOH2· · ·CB6. However,

this is essentially wholly canceled by unfavorable interactions in electrostatics and ex-

change from other cucurbituril units. The unfavorable electrostatic contributions are

strongest on the next two cucurbituril units clockwise from the closest contact, and

probably arise from clash between the hydroxyl and carbonyl lone pairs. The unfa-

vorable exchange contributions appear counterclockwise from the contact in MeOH1,

and on the two adjacent cucurbituril units to the contact in MeOH2, an thus are

more dependent on the distance between the host and MeOH unit than was the

case for electrostatics. Note that some of the unfavorable exchange contributions

can be attributed to the linking CH2 units in the methanols. However, repeating

the collapsed F-SAPT analysis with partitioning at the level of hydroxyl groups and

bicyclo[2.2.2]octane-1,4-CH2 indicates that this is a minor effect. In the latter analy-

sis, the two hydroxyls contribute total interaction strengths of −1.8 kcal−1 and −0.8

kcal−1 overall, e.g., much less than one hydrogen bond each. Thus it is apparent

that the presence of neutral, polar methanol or hydroxyl units do not quantitatively

stabilize the complex: a favorable dipole-dipole interaction does occur with the car-

bonyl of the nearest cucurbituril unit, but this is canceled by unfavorable electrostatic

and exchange interations with other cucurbituril units. This may help to explain the

enhanced binding affinities generally observed with cationic guests. A guest with

cationic side substituents can adopt a geometry in which the cationis are in the mid-

dle of the ring of carbonyls on both sides of the cucurbituril, interacting favorably with

all carbonyls. This is not possible for neutral side substituents possessing a dipole

oriented in the plane of the ring of carbonyls, for which a single favorable dipole-

dipole interaction will be largely canceled by unfavorable dipole-dipole interactions

with the rest of the ring. An additional, more subtle effect may also be relevant: the

symmetry-breaking hydrogen-bonded association of a neutral, polar side substituent
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to any one cucurbituril unit presents a barrier to free rotation of the guest within

the host. This barrier to rotation may present an entropic penalty relative to a guest

with a charged side substituent which does not symmetry break.

It is worth noting that the collapsed cut-and-cap, A-SAPT, and F-SAPT analyses

for this system (presented in the supplementary material) all produce quite similar

partitions for this system. For A-SAPT, this is serendipitous: the raw A-SAPT

partition summed to the level of CB units and linking CH2 pairs shows significant

oscillations in the electrostatics, but this is attenuated by the even assignment of

the links to the neighboring CB units in the collapsed analysis. Moreover, the cut-

and-cap analysis deviates from the total SAPT0 limit by 2.3 kcal mol−1, with larger

deviations in individual terms, e.g., 5.6 kcal mol−1 in exchange.

9.5 Conclusions

In this work, we have detailed an “F-SAPT” modification to the A-SAPT partition

which yields an alternative decomposition in terms of pairs of chemical functional

groups. A-SAPT provides a partition in the force-field-type picture of atom-pairwise

contributions to the interaction energy, and is therefore much more suited to the

development of ab initio force fields than to chemical understanding of complicated

noncovalent interactions. In particular, summing A-SAPT atomic contributions to

produce contributions in terms of chemical functional groups can provide non-intuitive

results, especially for the electrostatics term, due to the presence of intrinsic charges

in the A-SAPT functional groups. By contrast, F-SAPT is formulated entirely in

terms of the chemically-intuitive picture of fragments of neutral or integral charge via

assignment of whole occupied electrons or protons to fragments, thus ameliorating the

charge-charge contaminations present in the A-SAPT electrostatics partition. The F-

SAPT partition shows strong resemblence to the chemically intuitive results produced

by cut-and-cap fragmentation, but additionally respects the many-body limit of the
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SAPT approach. The F-SAPT partition is shown to be useful and robust over such

complicated intermolecular interaction motifs as phenol dimer, a proflavine+-DNA

intercalation complex, and a cucurbituril host-guest inclusion complex. Additionally,

the computational overhead of F-SAPT is very small, so F-SAPT should be tractable

on any system for which SAPT is tractable. The largest F-SAPT0/jun-cc-pVDZ

result shown in this work (proflavine+-DNA) has 228 atoms and 2845 basis functions.

Moreover, we have implemented F-SAPT0 as a minor extension to our A-SAPT0

code, so both analyses may be obtained together.

This work and the preceding one form a powerful toolset for the applications

chemist. A-SAPT provides both automatic extraction of atom-pairwise potentials

for use in force field development, and black box visualizations of the key contri-

butions in noncovalent interactions. F-SAPT provides a more chemically robust as-

signment of the contributions of individual noncovalent contacts, for use in under-

standing and designing complex intermolecular interactions. Future improvements to

the methodology include sensitivity testing over a broad range of interaction motifs

and quasiparticle localization techniques, application to more-accurate SAPT levels,

and development of a streamlined workflow for A-SAPT/F-SAPT computation and

postprocessing. We should be careful to remember the A-SAPT/F-SAPT are neither

unique, nor experimentally observable partitions of the interaction energy compo-

nents, but so far they seem to be providing robust and deep insight into the origins of

complicated noncovalent contacts. Even at the current level of completeness, we are

already beginning to use A-SAPT/F-SAPT to probe the origins of intermolecular in-

teractions in drug-ligand interactions, organic materials stacking, dispersion-assisted

hydrogen bonding, and substituent effects in stacked benzene dimers.
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CHAPTER X

ON THE ORIGINS OF THE SUBSTITUENT EFFECT IN

BENZENE DIMER

The following is adapted from Ref. 221.

10.1 Abstract

The influence of substituents on π-stacking interactions has previously been explained

by two competing hypotheses: a nonlocal effect in which the tuning of the π density

by the substituent alters the interaction (the Hunter-Sanders picture), or a local

effect in which the direct interaction of the added substituent and changed polarity

of the phenyl-substituent σ bond alter the interaction (the Wheeler-Houk picture).

In this work, we apply the recently developed functional-group partition of symmetry

adapted perturbation theory (F-SAPT) to directly quantify these two effects in situ.

The results show that both pictures do contribute to the change in interaction energy,

but that the Wheeler-Houk picture is usually dominant.

10.2 Introduction

Noncovalent π-stacking interactions are ubiquitous in nature, and have been found

to play critical roles in the stabilization of DNA,43 the strength and specificity of

drug-protein interactions,261 and myriad other areas of supramolecular chemistry.262

These interactions are strongly modulated by the presence of substituents around

the π ring,128,54 leading to a powerful avenue for the rational design of noncovalent

contacts. However, the physical mechanism by which the substituents tune the in-

teraction energy has been a source of considerable exploration and debate in the

literature.317 The long-held hypothesis of Hunter and Sanders (HS) posits that the
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substituent principally serves to inductively add or withdraw density from the π

system of the substituted benzene, thus changing the electrostatic interaction.128,129

This effect is nonlocal and indirect, as the substituent affects the second benzene

only through the π system of the substituted benzene. A second hypothesis pro-

posed by Wheeler and Houk (WH) posits that the direct interaction between the

substituent and second benzene, plus the change due to the altered polarity of the

linking phenyl-substituent σ bond (which is of C-X topology in Ph-X vs. C-H in

Ph-H) wholly explains the influence of the substituent on the interaction energy.318

This effect is local (confined to the substituent and linking σ bond) and both direct

and indirect (direct in the X· · ·Bz interaction, indirect in the changed σ· · ·Bz inter-

action316). A markedly interesting consequence of the WH hypothesis is that the π

system is not involved in the substituent effect.

To this point, the evidence presented for these two hypotheses has been admirably

thorough, but ultimately circumstantial in nature. The main evidence invoked for

the HS picture is the correlation in several experiments54,46,47 of the substituent ef-

fect with the Hammett σm constant (a loose quantification of the inductive adding-

or withdrawing-power of a substituent vs. hydrogen). However, high-level electronic

structure computations definitively show that both electron donating and electron

withdrawing substituents enhance the interaction energy for gas-phase cofacial ben-

zene dimers.276,311 Some more recent experiments also support this finding.319 Ad-

ditionally, symmetry-adapted perturbation theory139 (SAPT) shows that significant

contributions to the substituent effect are provided by enhanced dispersion interac-

tions in substituted benzene dimers.277,311 Another interesting consideration is ad-

ditivity: theoretically249,316 and, very recently, experimentally,130 it has been shown

that substituent effects are almost wholly additive in benzene dimers with multiple

substituents. This finding seems inconsistent with the HS model, given the dimin-

ishing flexibility or polarizability expected of the π system as additional substituents
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are added. For the WH hypothesis, the primary evidence is the excellent and nearly

one-to-one correlation between the substituent effect in Ph-X· · ·Bz and the direct

interaction energy in an analogous H-X· · ·Bz model system which removes the π sys-

tem of the substituted monomer completely.318,316 Note however that this evidence,

while compelling, is circumstantial: the H-X· · ·Bz model has different physics than

the true Ph-X· · ·Bz system of interest. In particular, the invocation of the H-X· · ·Bz

model a priori precludes a HS contribution. In the real system, it is possible that the

HS picture may play some role and that the WH contribution may be different than

that observed in the H-X· · ·Bz model system (due to the different electronic structure

of the X functional group and linking σ bond in Ph-X vs. H-X). Finally, it is of note

that the recent and thorough experimental study of Shimizu and co-workers130 points

strongly toward the direct interaction model of the WH picture, but states in the con-

clusions that “due to the limitation in the number of substituents in our system and

the measurement error, we cannot definitively exclude the indirect [substituent effect]

model.” It is thus apparent that a theoretical tool with the capability to provide a ro-

bust and direct quantification of the substituent effect arising from these two pictures

would provide a useful addition to this longstanding line of inquiry.

10.3 Theory

10.3.1 Difference F-SAPT Scheme

In this study, we apply the newly-developed functional-group SAPT (F-SAPT) anal-

ysis220 to probe the origins of the substituent effect in situ (i.e., directly in the sub-

stituted benzene dimers, not in truncated model systems). F-SAPT begins from the

formalism of SAPT, which provides an ab initio quantification of the electrostatics,

exchange, induction/polarization, and dispersion contributions to the intermolecular

interaction energy. F-SAPT asserts the picture that the constituent functional groups

of weakly interacting monomers are composed of collections of protons and localized
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occupied electrons, and then accumulates an effective two-body partition of the SAPT

terms according to these groupings of particles. The result is a robust classification

of the many-body SAPT interaction energy (and physical components) into effective

interactions between pairs of functional groups. With F-SAPT, we can compute the

SAPT interaction energy in Ph-X· · ·Bz and obtain contributions from the Ph func-

tional group, the X functional group, and the linking σ bond (Link). Likewise, we

can compute the SAPT interaction energy in Ph-H· · ·Bz and obtain contributions

from the Ph functional group and the Link fragment (the H proton is part of the

Link fragment in this system, so the X functional group contains no particles in this

system and its interaction energy contribution is zero). The difference in interaction

energies between these two systems, ∆Eint ≡ Eint(Ph− X) − Eint(Ph− H), is the

substituent effect we seek, and now can be partitioned into contributions from the

Ph, X, and Link fragments, e.g., ∆EPh
int ≡ EPh

int (Ph− X)−EPh
int (Ph− H). The quantity

∆EPh
int will contain the difference in interaction energy due to the polarization of the

Ph fragment by the substituent, and is the indirect HS contribution to the substituent

effect. The quantity ∆EX
int will contain the direct interaction due to the substituent,

and is the direct WH contribution to the substituent effect. The quantity ∆ELink
int will

contain the difference in interaction energy due to the altered polarity of the linking σ

bond, and is the indirect WH contribution to the substituent effect. We refer to this

process of partitioning a difference in interaction energies as a “difference F-SAPT.”

See Figure 43 for a schematic of this computational experiment. To simplify the

analysis, in this study we do not permit any contribution to the substituent effect

due to ring relaxation or intermolecular displacement: these effects are higher order

and not directly encapsulated within either the WH or HS picture.

251



Figure 43: (a) Schematic of difference F-SAPT partition of Ph-X and Ph-H to provide
Ph, Link, and X contributions. (b) Substituent placements used in this work. (c)
Substituents used in this work, ordered by σm from most donating (top) to most
withdrawing (bottom).

10.3.2 Computational Details

For the computational methodology, we use F-SAPT0/jun-cc-pVDZ with density fit-

ting accelerations in the Psi4 program,298 as described in our previous papers.222,220

The underlying SAPT0/jun-cc-pVDZ methodology has been found to be accurate

relative to coupled-cluster complete-basis set [CCSD(T)/CBS] benchmarks for in-

teraction energies.124,214 To provide the partition of the electrons into functional

groups, we use the robust intrinsic bond orbital (IBO) localization methodology

of Knizia.149 To examine the origins of substituent effects across a broad range of

withdrawing/donating substituents, we use substituted benzene dimers with -NH2,

-CH3, -OH, -F, -CN, and -NO2 substituents, and study singly-, doubly-, and triply-

substitued dimers, as seen in Figure 43. The Ph-X monomers are optimized at the

DF-MP2/aug-cc-pVDZ level of theory, and the corresponding Ph-H monomers are

obtained by removing X and placing a capping proton a distance of 1.094 Å along the

linking C-X bond. The Ph-X· · ·Bz and Ph-H· · ·Bz dimers are obtained by aligning
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the rings of the monomers and then separating by a distance R. For the results in the

primary manuscript, a uniform R of 3.90 Å from the Bz· · ·Bz DF-MP2/jun-cc-pVDZ

equilibrium is used; additional results from the individual DF-MP2/jun-cc-pVDZ

equilibrium separations of each substituted benzene dimer show the same quantita-

tive trends. More details on the computational experiment, including explicit data,

results for both choices of R, and sensitivity testing with the aug-cc-pVTZ basis set

are available in the Supporting Information. Note that the aug-cc-pVTZ analysis is

performed only to validate that there is not significant BSSE contamination in the

difference F-SAPT0/jun-cc-pVDZ analysis (e.g., due to the different atoms present

in Ph-X vs. Ph-H): F-SAPT0/jun-cc-pVDZ is expected to be much more accurate

than F-SAPT0/aug-cc-pVTZ due to systematic error cancelation in the dispersion

term,124,214 and will be used for all chemical analysis in this work. Another point of

interest is the possibility of multiple local minima in the IBO localization schemes

that all partitions rely on: we have investigated this in the Supporting Information

and found that the partitions are all quite robust to different localizations of the π

orbitals of Ph-X.

10.4 Results and Discussion

The difference F-SAPT results for singly-substituted monomers at R = 3.90 Å are

shown in Figure 44. Here, we will comment on only the singly-substituted cases,

and discuss the transferability to multiply-substituted cases below. The first major

finding from difference F-SAPT is that both the HS and WH pictures can contribute

to the substituent effect, depending on the term and substituent. The second major

finding is that the WH picture usually dominates the total. For electrostatics, the

total contribution tracks well in sign and magnitude with σm, but is dominated by

WH contributions, suggesting that the local electrostatic environments of the X+Link

groups govern this term. HS electrostatic contributions are present, but, contrary to
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Figure 44: Difference F-SAPT analysis at F-SAPT0/jun-cc-pVDZ (R = 3.90 Å, from
benzene dimer equilibrium) for singly-substituted benzene dimers. ∆Eind(Ph−X←Bz) is
negligible and therefore not shown.

expectations, are attractive for electron-donating substituents, repulsive for electron

withdrawing substituents, and the corresponding magnitudes do not track well with

σm. This suggests that HS-type electrostatic contributions are not simple differential

quadrupole-quadruple interactions, but are more likely related to differential charge

penetration (as evidenced by the opposite sign vs. that predicted by the quadrupole-

quadrupole picture) and are quite susceptible to the exact polarization of the Ph

unit by the substituent. For exchange, the total contribution is relatively constant

across all substituents, and is dominated by attractive HS contributions. Difference

density analysis of the Ph unit (see Supporting Information) indicates that nonzero
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contraction of the π clouds occurs in some form for all substituents, leading to the

attractive HS contributions seen here. However, the exact magnitude and topology

of the Ph polarization varies markedly with the substituent considered, implying that

the nearly constant magnitudes of the HS contributions to exchange are somewhat

of a coincidence. WH contributions to exchange are negligible, with the exception

of a repulsive contribution from -CH3 due to direct steric clash. For induction, only

the Ph-X monomer polarizing the Bz monomer produces a non-negligible effect (for

the other direction, the underlying Eind(Bz←Bz) induction term is only on the order

of 0.1 kcal mol−1 in magnitude to begin with, and does not change much upon sub-

stitution). The strength and sign of this induction contribution varies with σm, and

is characterized by opposing HS and WH contributions For dispersion, the total is

generally attractive and uncorrelated with σm, and is almost wholly dominated by

the WH picture (i.e., direct dispersion between the substituent and the opposing

benzene). Overall, electrostatics and then dispersion are the dominant terms, fol-

lowed by much smaller contributions from exchange and induction. Since the WH

contributions dominate the electrostatics and dispersion terms, the total substituent

effect is usually governed by the WH picture. In fact, the only substituent for which

the HS contribution is greater is -CH3, for which the larger individual exchange and

dispersion contributions from the WH picture nearly cancel.

Another consideration is transferability of the results to multiply substituted cases.

The full difference F-SAPT0/jun-cc-pVDZ partitions for singly-, doubly-, and triply-

substituted cases are presented in Figures S2-S4 of the Supporting Information, and

demonstrate remarkable additivity of all nontrivial contributions, as shown succinctly

in Figure S14. Particularly interesting is that both the WH and HS contributions are

additive: this suggests that HS effects are possibly dominated by local polarizations

of the phenyl density around added substitutents (e.g., the accumulation of phenyl

charge around the ring carbon the substituent is attached to, see below), rather than
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large scale changes of the phenyl density throughout the phenyl ring. In fact, the

only term which shows noticable nonadditivity is induction, which is expected for

this nonlinear term.

Figure 45: Difference ESP analysis at Hartree-Fock/jun-cc-pVDZ for singly-
substituted benzene monomers. The ESP is mapped onto the isodensity surface
of the substituted benzene monomer at 0.002 electron bohr−3. For difference ESPs,
red indicates areas with enhanced nucleophilicity relative to benzene, blue indicates
areas with reduced nucleophilicity relative to benzene.

Further insights are provided by plots of differences in the electrostatic potential

(ESP) between substituted and unsubstituted benzene monomers, partitioned in the

same manner as in F-SAPT. These results are available in Figure 45 for Hartree-

Fock/jun-cc-pVDZ methodology (corresponding to the treatment of electrostatics in

SAPT0/jun-cc-pVDZ). As with the F-SAPT results, both WH and HS contributions

occur, but the WH contributions usually dominate the change in the molecular ESP.

The Ph contributions to the difference ESP track quite well in sign and strength
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and magnitude with σm, but are relatively weak overall. The X+Link contributions

are much stronger, and also quite localized, producing strong electric fields in the

neighborhood of the substituent. Additional plots of partitioned differences in the

density between substituted and unsubstitutend benzene monomers are available in

the Supporting Information. These show that the extra electrons of the substituent

and altered polarity of the linking σ bond are by far the dominant effects in the

difference density, supporting the local interaction model. With regard to the differ-

ence density of the Ph unit (much smaller than X+Link), a more complicated picture

emerges than that predicted by σm alone. The principal effect for most substituents

is a concentrated accumulation of density around the ring carbon involved the linking

σ bond (especially in the σ network around this carbon), presumably to stabilize

the withdrawal along the altered linking σ bond. This accumulation of density to

cover the polarization of the linking σ bond is necessarily mirrored by a depletion

of density elsewhere in the Ph system, and usually comes from diffuse contributions

from the π system, though there is a complicated and nonuniform nodal structure of

the π difference density around the ring. The possible exception to these observa-

tions is the -CH3 substituent, which exhibits only very mild link bond polarization

and π withdrawal. With this exception identified, a very interesting picture emerges:

essentially all substituents exhibit some contraction of the π system to cover the po-

larization of the linking σ bond. This supports the observation of always attractive

HS contributions to the exchange terms above. The difference ESP for the Ph unit

seems to track with where the depletion comes from in the ring (e.g., from the π

system above the linking carbon in NH2, or from other carbons in the Ph unit for

electron withdrawing substituents), partially explaining both the trends in the Ph

difference ESP and the complicated HS contributions to the electrostatics. The main

conclusions from these analyses are (1) the local changes caused by the addition of X

and polarization of the linking σ bond dominate both the ESP and density differences
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(2) the minor Ph contributions to the difference ESP track well with the magnitude

and sign of σm, but the minor Ph contributions to the difference density do not (and

are quite complicated overall), indicating that σm is not a good measure of π electron

donation or withdrawal caused by the substituent.

Overall, the difference F-SAPT, ESP, and density analyses indicate that the HS

and WH pictures both contribute to the substituent effect in sandwich benzene

dimers. The HS picture is usually dominant in the exchange term and also contributes

to electrostatics and induction, but is much more complicated than the simple picture

of π donation or withdrawal usually advocated in discussing this picture. The WH

picture dominates the larger electrostatics and dispersion terms, and therefore is usu-

ally the dominant contributor to the total substituent effect. The only exception is if

direct steric interactions from the WH term mask attractive WH contributions from

electrostatics and/or dispersion, as occured for -CH3. Moreover, these conclusions

transfer quite readily to doubly- and triply-substituted cases, indicating additivity of

both WH and HS effects as the number of substituents is increased. In any case, this

in situ F-SAPT study of substituent effects clearly indicates the broad qualitative

correctness of the WH model, albeit with the caveat that minor HS effects do occur.
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CHAPTER XI

INTRAMOLECULAR SYMMETRY-ADAPTED

PERTUBATION THEORY

The following is adapted from Ref. 215.

11.1 Abstract

We develop a simple methodology for the computation of symmetry-adapted pertur-

bation theory (SAPT) interaction energy contributions for intramolecular noncovalent

interactions. In this approach, the local occupied orbitals of the total Hartree-Fock

(HF) wavefunction are used to partition the fully interacting system into three chem-

ically identifiable units: the noncovalent fragments A and B, and a covalent linker

C. Once these units are identified, the noninteracting HF wavefunctions of the frag-

ments A and B are separately optimized while embedded in the HF wavefunction

of C, providing the dressed zeroth order wavefunctions for A and B in the presence

of C. Standard two-body SAPT is then applied between the relaxed wavefunctions

for A and B, particularly SAPT0 in this work. This Intramolecular SAPT (ISAPT)

procedure is found to be remarkably straightforward and efficient, as evidenced by

example applications ranging from diols to hexaphenyl-ethane derivatives.

11.2 Introduction

The quantification and characterization of noncovalent interactions is an important

task for theoretical chemistry. Such interactions may occur in an intermolecular

sense, e.g., in the hydrogen bonding in two water molecules, wherein no covalent

links exist between the two molecules of interest, or in an intramolecular sense, e.g.,

in the formation of hydrogen bonds between covalently linked hydroxyl groups. In
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the former case, the intermolecular interaction energy and noninteracting zeroth-order

wavefunctions of the monomers are easily-defined quantities, and thus much success

has been obtained in developing methodology for intermolecular interactions. Exam-

ple techniques for this paradigm includes supermolecular interaction energies, energy

decomposition analysis (EDA),147 absolutely-localized molecular orbital techniques

(ALMO),13 and symmetry-adapted perturbation theory (SAPT).138,139 The latter is

particularly well developed, and has the laudable property that it is formally com-

pletable to the full ab initio limit. We will therefore focus wholly on SAPT in this

work.

By contrast, methodology for the characterization of intramolecular interactions

is virtually nonexistent. The main reason for this deficiency is that it has proven

quite difficult to isolate sensible zeroth-order wavefunctions for the intramolecular

fragments before the mutual interaction is activated. For a canonical example, when

one looks at 2,4-pentadiol (Figure 46), it is fairly obvious that there should be an

intramolecular hydrogen bond between the two hydroxyl groups (fragments A and

B), and that this should be largely but not exactly like the intermolecular hydro-

gen bond between two water molecules. However, the presence of the carbohydrate

backbone (the linker C) markedly complicates the task of choosing a noninteracting

wavefunction for A and B. On the one hand, it is difficult to determine which parti-

cles (electrons and protons) should be assigned to A, B, and C; an improper choice

can yield zeroth-order wavefunctions for A and B with intrinsic charges, that may

overwhelm the subsequent A· · ·B analysis. On the other hand, even if a chemically

reasonable set of particles is used in the partition, the robust production of zeroth-

order wavefunctions for A and B has been elusive. While the A· · ·B interaction is

weak and thus treatable by perturbation theory (e.g., SAPT), the A· · ·C and B· · ·C

interactions are extremely strong, i.e., covalent bonds! Thus, to elucidate the nonco-

valent part of the interaction, the A· · ·C and B· · ·C interactions and orthogonality
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constraints must be maintained throughout the production of the zeroth-order wave-

functions. One approach to address these considerations has been recently reported,92

using the chemical Hamiltonian approach (CHA).192 While initial tests were promis-

ing, the CHA approach is based on assignment of the basis functions to atoms, and

thus is not well-defined at the complete basis set limit. Moreover, the CHA approach

is more complicated than that proposed here.

In this work, we demonstrate that a simple, chemically reasonable, and com-

putationally robust procedure exists for the partitioning and determination of the

zeroth-order wavefunctions of A and B, and that standard SAPT can be immediately

adapted to this choice of reference.

11.3 Theory

11.3.1 I-SAPT Scheme

To frame the discussion, consider 2,4-pentadiol, depicted in Figure 46(a). We seek

to develop a SAPT procedure to elucidate the strength and nature of the A· · ·B

interaction between the two hydroxyl groups, within the linking pentane C.

The first task is to assign particles (electrons and protons) to the fragments A and

B, and the linker C. If the complete HF wavefunction is localized by a robust orbital

localization methodology, the chemical outline of the system becomes immediately

obvious. For each hydroxyl, we identify the O 1s core orbital, the O-H σ orbital,

and the two O lone pairs. For the pentane linker, we identify the five C 1s core

orbitals, the four C-C σ bonds and the ten C-H σ bonds. Further, two linking C-O

σ bonds are present (one between A and C, and one between B and C). For the

moment, let us assign these linking σ bonds to the linker C; other choices will be

discussed below. For the nuclei, we assign protons as in our functional-group SAPT

(F-SAPT) partition,220 so as to avoid charge oscillation between the fragments. That

is, we initially assign all protons on the atoms of each fragment A, B, or C to that
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Figure 46: (a) Schematic of the zeroth-order system for 2,4-pentadiol for the choice of
linking σ bonds assigned to fragment C. (b) Zeroth-order density field for 2,4-pentadiol
(links to C) superimposed with the zeroth-order density field for the corresponding
water dimer. Isosurfaces at 0.004 electron bohr−3. (c) Difference density fields super-
imposed as in (b) showing where density depletes (red) or accumulates (blue) when
the HF interaction between A and B is activated. Isosurfaces at ±0.0008 electron
bohr−3.

fragment. Then, we remove one proton from each heavy atom involved in a linking σ

bond, and instead group that proton with the fragment owning the linking σ bond,

yielding an electrically neutral σ link.

At this point, the particle assignment to the fragments is complete (and, given

a list of the atoms in A, B, and C, can be completely automated by examination

of the sum of orbital atomic charges). However, all three fragments in the system

are fully interacting at a HF level; in particular, the wavefunctions of fragments

A and B are interacting and orthogonal. The next task is to provide appropriate

zeroth-order wavefunctions with the A· · ·B interaction and orthogonality constraint
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removed. We might be tempted to find separately noninteracting wavefunctions for A,

B, and C, but this does not make chemical sense; the infinite-order HF interactions

and orthogonality constraints A· · ·C and B· · ·C are critical to provide the correct

topology of the covalent links between these fragments, and must be retained if one is

to extract the noncovalent part of the interaction A· · ·B later. To obtain the zeroth-

order wavefunctions for A and B, each with the interactions with C built in, we invoke

HF-in-HF embedding as outlined by Manby and coworkers.185 That is, we perform

a standard HF computation for the protons and electrons assigned to fragment A,

but with the Coulomb and exchange potentials of the particles of C provided as a

spin-specific external potential Ŵα
C ≡ V̂C + ĴC − K̂α

C , and with the occupied orbitals

of C deleted from the subspace in which the Fock matrix for A is diagonalized. Here,

V̂C is the Coulomb potential of the protons of C, ĴC is the Coulomb potential of the

occupied electrons of C, and K̂α
C is the exchange potential of the occupied α electrons

of C.

At this point, one obtains a set of relaxed occupied and virtual orbitals and

corresponding eigenvalues for A and B, each embedded in the HF wavefunction for

the linker C, but noninteracting and nonorthogonal between A and B. Next, one may

simply substitute the orbitals, eigenvalues, and electrostatic potentials of the A and B

systems into a standard two-body SAPT methodology, and obtain the SAPT analysis

of the A· · ·B interaction, with C built in as a modification of the vacuum.

The overall ISAPT procedure is summarized as follows:

1. Compute the HF wavefunction of the complete chemical system.

2. Localize the occupied orbitals.

3. Assign local occupied orbitals and protons to A, B, and C by consideration of

orbital atomic charges.

4. Relax the HF wavefunction for A to be noninteracting and nonorthogonal to B,
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but fully interacting and orthogonal to C (via embedding the HF wavefunction

for A in the frozen HF wavefunction for C).

5. Repeat the previous step for B.

6. Perform a standard two-body SAPT analysis between the relaxed HF wave-

functions for A and B.

11.3.2 Computational Details

All computations have been performed in a development version of Psi4,298 using

density-fitted SAPT0 (DF-SAPT0) in the jun-cc-pVDZ basis set,138,118,214 and ap-

propriate -JKFIT and -MP2FIT auxiliary basis sets. The full system’s basis set is

used throughout, analogous to a dimer-centered basis set in standard intermolecular

SAPT. Localization to identify the occupied orbitals of C is accomplished by the ro-

bust intrinsic bond orbital (IBO) methodology of Knizia149 with the cc-pVTZ cores

as the minimal AO basis set. To maintain orthogonality against C in the HF-in-HF

embedding procedure, we simply diagonalize the Fock matrix in a reduced subspace

with the columns spanning the occupied orbitals of C removed. The δ
(2)
HF,r correction

to induction is applied throughout this work, using the appropriate HF interaction

energy for the zeroth-order wavefunction for A and B embedded in C.

11.4 Results and Discussion

The chemical soundness of our approach is indicated by Figure 46(b)-(c), which com-

pares the zeroth-order density fields and difference density fields upon activation of

the HF interaction between the hydroxyls in 2,4-pentadiol and the corresponding wa-

ter dimer. The qualitative shapes of the density fields and difference density fields are

remarkably similar, with the only deviations occuring where the σ linkers would be

(assigned to C in this case). In particular, the key changes caused by the interaction

are faithfully reproduced, e.g., the interstitial polarization and charge transfer in B
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Figure 47: Comparison of ISAPT0/jun-cc-pVDZ for the hydroxyl groups of 2,4-
pentadiol to standard intermolecular SAPT0/jun-cc-pVDZ for the corresponding wa-
ter dimer. Note that −Eexch is plotted to for convenience. ISAPT partitions for the
linking σ bonds assigned to C, shared evenly between C and A or B, or assigned to
A or B are depicted.

are identical between ISAPT and supermolecular SAPT.

Figure 47 compares the ISAPT0/jun-cc-pVDZ interaction energy components for

2,4-pentadiol with SAPT0/jun-cc-pVDZ for the corresponding water dimer (this lat-

ter approach is often referred to as a “cut-and-cap” analysis). To explore the choices

of linking σ bond assignment, we have developed a code that can assign the link

bonds wholly to C, wholly to A or B, or evenly between C and A or B (in this last

case, the link bonds are frozen in second-order terms, and provide only electrostatic

potentials to the A· · ·B interaction). Overall, the interaction energy components are

in excellent agreement with cut-and-cap analysis. The agreement is particularly good

for exchange, induction, and dispersion. For these terms, assignment of the linking

σ bonds to A or B results in a larger magnitude of each interaction term, as more

occupied orbitals are involved in steric overlap or induction/dispersion response. The

disappointing case is electrostatics with assignment of the linking σ bonds to A or
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B. Here, the protons taken from the C atoms are largely unshielded by the linking σ

bond, giving rise to repulsive electrostatic contributions from the σ· · ·σ multipoles.

This contribution is chemically unexpected, but is correct given the choice of par-

ticle assignment to fragemnts. We note that such unexpected multipole-multipole

electrostatic interactions can also occur in other systems if the linking σ bonds are

given to C (see below for such examples as dipole-dipole interactions in methyl-methyl

interactions). At present, we can offer no solution to this issue, but note that this

anomaly is certainly smaller than the charge-charge or radical contamination inherent

in many other choices of molecular partition, and is consistent with our definition of

zeroth-order wavefunction.

Figure 48: ISAPT0/jun-cc-pVDZ analysis for the interaction between the two ter-
minal methyl groups in propane vs. the C-C-C bond angle θ. Links are assigned to
C.

A more torturous test is the noncovalent interaction of the methyl groups in

propane, depicted for various C-C-C bond angles in Figure 48. Note that for this

system, cut-and-cap analysis is not even qualitatively correct; the capping protons
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on the corresponding methyl dimer would be less than 1 Å apart and the resultant

steric clash would overwhelm the analysis. Here, ISAPT is able to produce a smooth

and largely sensible picture, by defining each of the methyl units A and B as the

three C-H σ bonds plus the C 1s, embedded in the field of the CH2 linking unit.

At small angles, exchange dominates the interaction, though significant dispersion,

induction, and charge penetration contributions are also apparent. The exchange

term exhibits a minimum at around 122◦, beyond which exchange increases slightly,

consistent with a mild overlap developing between the two previously uninvolved C-

H σ bonds (the outermost two C-H σ bonds in the figure). At large angles, the

interaction is dominated by repulsive electrostatic interactions, which are consistent

with the anti-aligned dipoles present in the zeroth-order wavefunctions for the methyl

groups. These dipoles arise from the sum of the three C-H bond dipoles of each methyl

group, which are not compensated by the link bond (which is assigned to C). Several

alternative choices of link bond assignment are not appropriate in this case: if the link

bonds are shared or wholly assigned to A or B, the overlap between the two linking

σ bonds causes enormous charge penetration contributions to the electrostatics and

induction terms.

A key example of the utility of ISAPT is hexaphenyl ethane (5H), and its t-Bu-

substituted derivative (5T), depicted in Figure 49. These compounds have recently

been of substantial interest in the experimental literature because the latter has been

synthesized and found to have one of the longest C-C σ bonds known (on the order

of 1.65 Å), but the former has not been experimentally observed. This is perhaps

counterintuitive, as one would expect substantially more steric clash in the t-Bu-

substituted variant. Shreiner,263 and later Shreiner and Grimme98 have hypothesized

that 5T does experience increased steric clash between the two groups on opposite

267



Figure 49: ISAPT0/jun-cc-pVDZ analysis for hexaphenyl-ethane (5H) and t-Bu-
substituted derivative (5T).

sides of the long σ bond, but this is countered by an even greater dispersion stabiliza-

tion afforded by extra t-Bu· · · t-Bu and t-Bu· · ·Ph interactions. To this point, how-

ever, no direct quantification of the interaction energy components has been possible

for this class of systems, principally because they are intractable with a cut-and-cap

style analysis. ISAPT can easily handle these systems, by defining the link unit C

as the long σ bond, and assigning the remainder to A and B. The results are quite

interesting; the increase in exchange repulsion is 47 kcal mol−1, while the increase

in dispersion attraction is 41 kcal mol−1. That is, this analysis does not support

the hypothesis of a net increase in exchange plus dispersion in 5T. Additional CH-π

contacts exist between the t-Bu and Ph groups, which are probably responsible for

the more-attractive electrostatic and induction terms in 5T, but this yields only a 9

kcal mol−1 more favorable total noncovalent interaction in 5T vs. 5H. Another pos-

sible explanation for the enhanced stability of the 5T is destabilization of the radical

268



disocciation product vs. that of 5H, e.g., by steric clash between the t-Bu groups pre-

venting favorable Ph· · ·Ph interactions. We are currently devising analyses to probe

this hypothesis. Finally, we note that the overall electrostatics and total interaction

energies for both of these systems are positive, which is a consequence of the dipoles

present upon removal of the long σ bond between A and B. This effect should almost

wholly cancel when one is considering differences between these two systems, as is

done here.

It is apparent that ISAPT is a promising approach which allows for quantification

of noncovalent interactions in systems for which cut-and-cap analysis is unsuitable.

The method is quite easy to implement within an existing two-body SAPT code, and

exhibits the same tractability limit. Future developments will involve the application

of F-SAPT techniques to the methodology (e.g., to elucidate the fraction of t-Bu

involvement vs. Ph· · ·Ph interactions in 5T), and efforts to mitigate the chemically

unexpected multipole-multipole interactions near the linking σ bonds.
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CHAPTER XII

CONCLUSIONS REGARDING PARTITIONED

INTERMOLECULAR INTERACTIONS

Effective order-2 partitions of symmetry-adapted perturbation theory interaction

components have been developed and utilized to elucidate the spatial origins of com-

plicated noncovalent interactions in large systems. These partitions are realized via

a two-stage procedure. In the first stage, an effective two-body interaction is ex-

tracted from each of the N -body SAPT perturbation series terms. In developing

these effective two-body interactions, one occupied body is selected from each of the

two monomers. The use of occupied bodies is preferred, as the occupied space pro-

vides the chemical outline of the noninteracting monomers before the interaction is

activated. For the cases of SAPT0 or SAPT(DFT), the monomer wavefunctions are

wholly specified by the nuclei and occupied electrons, making this an entirely sensible

choice. In the second stage, a local set of occupied particles is used to span the occu-

pied space. Several choices for these local occupied particles exist, leading to different

flavors of partitioned SAPT.

In atomic SAPT (A-SAPT), the electronic density of the monomers is partitioned

into atomic contributions via iterative stockholder analysis (ISA), and atoms are then

constructed by joining each electronic atomic density with its corresponding nucleus.

For electrostatic terms, atom-pairwise interaction energy contributions are directly

constructed via a grid- and auxiliary-based approach which strongly resembles THC.

For electronic response terms, contributions are first accumulated at the level of local

occupied electrons, and then assigned to atoms via fuzzy orbital atomic charges. A-

SAPT is found to produce automatic and useful decompositions, and may provide
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quite useful in the direct determination of ab initio atom-pair potentials for use in

parametrizing force fields. For the purposes of chemical intuition, A-SAPT is less

suitable due to an artifact inherent in the definition of atoms in molecules. Under

ISA or any other atomization procedure, the resultant set of atoms will necessarily

carry partial charges due to electronegativity differences. When functional groups

are identified by dividing groups of atoms joined by σ bonds, the functional groups

inherit partial charges due primarily to the polarization of the linking σ bonds. This

leads to charge-charge terms in the electrostatic partition, muddling the chemically

expected dipole-dipole (etc) results. To provide robust order-2 contributions to what

chemists typically think of as functional groups, an alternative technique is required.

In functional group SAPT (F-SAPT), order-2 contributions are initially accumu-

lated to the level of protons and localized occupied electrons. For the consideration of

localized occupied electrons, the intrinsic bond orbital (IBO) methodology is found to

produce a robust set of localized orbitals which clearly outline the generalized Lewis

structures of the monomers. From this generalized Lewis structure, net neutral contri-

butions to the functional groups and linking σ bonds can be clearly and automatically

determined, given a user-specified list of atoms to provide the functional-group defini-

tions. The linking σ bond contributions can usually be split between the two bridged

functional groups, simplifying the subsequent analysis. In the end, F-SAPT strongly

resembles the popular cut-and-cap heuristic already in use for partitioning noncova-

lent interactions, but additionally maintains the many-body limit of the interaction

energy. F-SAPT is shown to clearly and succinctly identify the relevant contacts in

a number of large and complicated noncovalent interactions.

F-SAPT provides deep insight into a number of difficult and important chemical

questions. One example is our recent study of the origins of the substituent effect in

substituted sandwich benzene dimers. For years, there has been a substantial debate

between two competing hypotheses on this topic. The Hunter-Sanders hypothesis
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posits that a substituent principally serves to inductively modulate the π density of

the phenyl group of a substituted benzene, leading to a second-order change in the

intermolecular interaction between the two phenyl rings. The Wheeler-Houk hypoth-

esis instead asserts that the substituent effect is local, and arises due to the changed

electronic environment in the immediate neighborhood of the added substituent. F-

SAPT allows us to directly partition the substituent effect into contributions from

these two hypotheses, providing the first study of these hypothesis in media res. It is

found that the Wheeler-Houk effect is dominant, but that nontrivial Hunter-Sanders

contributions do exist.

As a spinoff of these efforts, a simple method to quantify intramolecular noncova-

lent interactions (I-SAPT) has been developed, based on a mixture of F-SAPT-style

of division of a molecule into functional groups, followed by Hartree-Fock-in-Hartree-

Fock wavefunction embedding to provide sensible zeroth-order wavefunctions for the

noninteracting fragment within the field of the linking moeity. This approach allows

one to use existing two-body SAPT methodology to quantify directly intramolecular

noncovalent interactions. This approach may shed additional light on problems not

tractable with standard cut-and-cap SAPT analysis, such as the problem of unex-

pected stability in t-Butyl substituted hexaphenyl ethane vs. its unsubstituted coun-

terpart.

Many future developments and applications are possible in this general area.

Within F-SAPT and A-SAPT, the methodology should transfer directly to more-

accurate SAPT(DFT) methodology, and should also be developed for higher-order

wavefunction-based SAPT. Within I-SAPT, AI-SAPT and FI-SAPT extensions should

be easily possible, and would further enhance analysis of complicated intramolecular

interactions. A remaining technical problem is the presence of vexing dipole-dipole

terms which muddle the electrostatic interactions in certain cases in I-SAPT - this

should be investigated, and, if possible, eliminated. With respect to applications,
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many areas might benefit from the application of these methods: A-SAPT for force

field parametrization, F-SAPT for understanding of complicated noncovalent interac-

tions in drug design, crytal packing, etc, and I-SAPT for determination of the com-

petition between deformation energy and intramolecular noncovalent interactions in

flexible systems. Further afield, this general idea of robust assignment of chemical

observables to local spatial origins may be possible, e.g., to quantify the functional

group contributions to deformation energy or solvation free energy.
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[4] Almlöf, J., “Elimination of energy denominators in Møller-Plesset pertur-
bation theory by a Laplace transform approach,” Chem. Phys. Lett., vol. 181,
pp. 319–320, 1991.
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[43] Černý, J., Kabeláč, M., and Hobza, P., “Double-helical → ladder struc-
tural transition in the B-DNA is induced by a loss of dispersion energy,” J. Am.
Chem. Soc., vol. 130, no. 47, pp. 16055–16059, 2008.

[44] Chien, S.-H. and Gill, P. M. W., “SG-0: A small standard grid for DFT
quadrature on large systems,” J. Comput. Chem., vol. 27, no. 6, pp. 730–739,
2006.
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[266] Schütz, M., Lindh, R., and Werner, H.-J., “Integral-direct electron cor-
relation methods,” Mol. Phys., vol. 96, no. 4, pp. 719–733, 1999.

[267] Scuseria, G. E., Janssen, C. L., and Schaefer III, H. F., “An efficient
reformulation of the closed–shell coupled cluster single and double excitation
(CCSD) equations,” J. Chem. Phys., vol. 89, no. 12, pp. 7382–7387, 1988.

[268] Scuseria, G. E., Scheiner, A. C., Lee, T. J., Rice, J. E., and Schaefer,
H. F., “The closedshell coupled cluster single and double excitation (CCSD)
model for the description of electron correlation. a comparison with configura-
tion interaction (CISD) results,” J. Chem. Phys., vol. 86, no. 5, pp. 2881–2890,
1987.

[269] Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C.,
Brown, S. T., Gilbert, A. T., Slipchenko, L. V., Levchenko, S. V.,
O’Neill, D. P., DiStasio Jr, R. A., Lochan, R. C., Wang, T., Beran,
G. J., Besley, N. A., Herbert, J. M., Yeh Lin, C., Van Voorhis, T.,
Hung Chien, S., Sodt, A., Steele, R. P., Rassolov, V. A., Maslen,
P. E., Korambath, P. P., Adamson, R. D., Austin, B., Baker, J.,
Byrd, E. F. C., Dachsel, H., Doerksen, R. J., Dreuw, A., Dunietz,
B. D., Dutoi, A. D., Furlani, T. R., Gwaltney, S. R., Heyden, A.,
Hirata, S., Hsu, C.-P., Kedziora, G., Khalliulin, R. Z., Klunzinger,
P., Lee, A. M., Lee, M. S., Liang, W., Lotan, I., Nair, N., Peters, B.,
Proynov, E. I., Pieniazek, P. A., Min Rhee, Y., Ritchie, J., Rosta,
E., David Sherrill, C., Simmonett, A. C., Subotnik, J. E., Lee Wood-
cock III, H., Zhang, W., Bell, A. T., Chakraborty, A. K., Chipman,
D. M., Keil, F. J., Warshel, A., Hehre, W. J., Schaefer III, H. F.,

296



Kong, J., Krylov, A. I., Gill, P. M. W., and Head-Gordon, M., “Ad-
vances in methods and algorithms in a modern quantum chemistry program
package,” Phys. Chem. Chem. Phys., vol. 8, pp. 3172–3191, 2006.

[270] Shavitt, I. and Bartlett, R., Many-Body Methods in Chemistry and
Physics: MBPT and Coupled-Cluster Theory. Cambridge Molecular Science,
Cambridge University Press, 2009.

[271] Shavitt, I., “The method of configuration interaction,” in Methods of Elec-
tronic Structure Theory (Schaefer, H. F., ed.), pp. 189–275, New York:
Plenum Press, 1977.

[272] Sherrill, C. D., Takatani, T., and Hohenstein, E. G., “An assessment
of theoretical methods for nonbonded interactions: Comparison to complete
basis set limit coupled-cluster potential energy curves for the benzene dimer,
the methane dimer, benzene-methane, and benzene-H2S,” J. Phys. Chem. A,
vol. 113, pp. 10146–10159, 2009.

[273] Sherrill, C. D., “Energy component analysis of π interactions,” Acc. Chem.
Res., vol. 46, no. 4, pp. 1020–1028, 2013.

[274] Sherrill, C. D. and Schaefer, H. F., “The configuration interaction
method: Advances in highly correlated approaches,” in Advances in Quantum
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