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SUMMARY

Client devices operating at the edges on the Internet, in homes, cars, offices,

and elsewhere, are highly heterogeneous in terms of their hardware configurations,

form factors, and capabilities, ranging from small sensors to wearable and mobile

devices, to stationary ones like smart TVs and desktop machines. With recent and

future advances in wireless networking allowing all such devices to interact with each

other and with the cloud, it becomes possible to combine and augment the capabilities

of individual devices via services running at the edge – in edge clouds – and/or via

services running in remote datacenters.

The virtual platform approach to combining and enhancing such devices

makes possible the creation of innovative end user services, using low-latency com-

munications with nearby devices to create for each end user exactly the platform

needed for current tasks, guided by permissions and policies controlled by its access

control leveraging user context and social network services. To end users, virtual

platforms operate beyond the limitations of individual devices, as natural extensions

of those devices that offer improved functionality and performance, with ease-of-use

provided by cloud-level global context and knowledge.

xiii



CHAPTER I

INTRODUCTION

There have been substantial recent changes in the computing environment accessible

to end users, driven by always-connected client devices, software services, and cloud

computing. Coupled with an ever-growing number of client devices able to connect

to the Internet, there is now an improved opportunity for applications to more ac-

curately capture each person’s life and provide assistance in daily tasks. Software

services like Google Maps are essential for applications on such devices, because they

allow applications to analyze captured data to permit them to better understand and

predict people’s behavior. Cloud computing scales not only their computing capabil-

ity, but also provides data about past actions and the actions of others. The idea of

virtual platforms (VPs) explored in the thesis proposes a new execution environment

that offers clean, high-level abstractions for such devices, services, and the cloud, so

that applications leverage them in a consistent and transparent way.

1.1 Motivation

Today’s client devices are highly diverse in terms of their hardware configurations,

form factors, and capabilities, ranging from wearable devices and smartphones to the

stationary ones at home, for example, large-screen TVs and home PCs equipped with

convenient keyboards. In addition to the availability of an unprecedented number of

such devices, there is an ever increasing number of sensors [11] that can substantially

enrich interactions of people with their devices and environments. Recent high-end

smartphones, for instance, have more than 10 embedded sensors, and there already

are 6 sensors on average in roughly 30 to 40% of today’s mobile phones [14, 24],

and a similar trend is seen for emergent wearable devices. Similarly and mirroring
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the growth in device-embedded sensors, there is an increasing presence of sensors in

users’ external environments, ranging from those in controlled settings like homes,

cars, or hospitals, to those in public settings like sports venues, entertainment, or

parks. Along with the advent of such devices and sensors, advances in network

technology, including high-speed wireless and mobile communications driven by low

hardware costs, have facilitated the underlying trend for all of those devices to become

network-enabled[49]. Increased levels of device connectivity – to each other and to

the Internet – cause software services like social network services (SNS) to play an

increasingly important role in capturing a user’s current relationships with people and

the world. For example, SNS has become a medium via which users pursue common

interests across those in Friend relations, by sharing ideas, activities, and events.

Finally, popularized cloud services are potentially able to augment devices’ innate

capabilities such as their storage size and compute abilities [76] as well as those for

the software services. At the same time, the cloud has become a medium not only for

enhancing individual devices’ capabilities, but for offering better personalized services

to users via accumulating and analyzing device-collected data like Apple’s Siri.

Such progress in device and services backed by network connectivity promotes

a new trend in applications, which is the movement from a traditional model in

which each application engages only with some single device currently being used

to new models in which applications take full advantage of distributed resources

across dynamic sets of devices and services, no matter who owns them. This model

brings potential opportunities for applications to interact with and assist users in

their daily lives: to help capture user intent and context [36], to drive intuitive and

meaningful user interactions, and to assist with specific tasks as in elder care [111],

efficient driving [118], etc. Those applications, however, face challenges when seeking

to leverage and use the dynamic sets of sensors and resources present on client devices

and clouds, since all of the underlying resources and services tend to operate in a

2



highly isolated and fragmented manner.

This thesis explores new ways for applications to exploit the capabilities of vir-

tual platforms at the edge of network comprised both of many nearby devices and

the remote cloud. Virtual platforms are constructed automatically, where SNS and

current user context are used to guide their construction and use (i.e., permissions

and policies) for participating end users. Virtual platforms create the resource pools

that deliver capabilities to the applications that require them, and access controls

concerning the use of such capabilities are enforced via access control policies. To

illustrate, consider a user who wants to edit video clips via some application installed

in her smartphone. The single device model constrains the application to use the

smartphone’s processor, memory, screen, and storage, whereas device couplings al-

lows it to use, for example, the processor of the high-end home server that supports

a special instruction set to process multimedia data, the large storage on the cloud,

and the TV as a display screen, as well as other nearby – neighborhood – devices

based on existing SNS relationships. Such couplings, therefore, make it possible for

the application to acquire for its use the ‘best-fit’ capabilities from distributed nearby

and cloud resources, to run with the fidelity, delay, and throughput desired by end

users.

A desirable property of virtual platform for applications is to have uniform access

to underlying resources, whether those are provided by home devices or remote/edge

cloud components. Further and essential to running applications across such resources

are mechanisms that manage devices and cloud services as members of existing cou-

plings, as well as an organized way to control resource access. The aforementioned

use of SNS provides such functionality. The goal of virtual platforms is to propose

a high-level abstraction and execution environment combining all of accessible re-

sources, services, and data beyond the boundary of a single and individual user and

device.

3



1.2 Thesis Statement and Contributions

This thesis develops and explores system-level support for running end user appli-

cations across pools of resources present in users’ homes, neighborhoods, and other

nearby facilities, as well as in the remote datacenters provisioning cloud service. The

approach maintains these pools and uses them to dynamically compose and main-

tain for each application the set of resources that match its current needs. Termed

a Virtual Platform (VP), its resources are uniformly accessible to the application,

used as if they were present in an imaginary single device, but are actually internally

comprised of local, nearby, and remote cloud resources, with a novel access control

mechanism.

The thesis claims the following key advantage for virtual platforms compared

to isolated devices: by creating a virtual platform as an abstraction consisting of

uniformly accessible local and remote resources, and by using current user context

and social network services for access control, applications can obtain higher levels of

performance, improved ease-of-use, and improved fidelity, going beyond the limitations

of individual devices.

The approach chosen to provide uniform access is for the system infrastructure

to represent and run applications as sets of computational, sensing, actuation, user

interaction, and storage services, with individual services mapped to the resources

where they run best. An example is a service using a camera device on a child’s phone,

with display and interaction services running on the mobile device currently used by

the parent, perhaps along with a storage device in the cloud and with support services

that perform data routing and interpretation. Permissions to run in this fashion would

be provided as long as the parent and the child maintain friend relationships on a

jointly used SNS.

Specific contributions of this thesis include the followings:
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• VP software manages and dynamically composes distributed networked re-

sources that are from both local/personal and remote/public devices and ma-

chines, where any of those entities can be active participants in running the

services desired by end users, and where all resources in the infrastructure are

available to the applications being run.

• Participation in a VP is guided by permissions and policies controlled through

a novel access control service leveraging current user context and social network

services (SNS), thus making it possible to share devices owned by different end

users and/or residing at different locations. This is done in a privacy-preserving

manner. With the access control service, the infrastructure can extend and alter

a VP without the need for direct and repeated user interaction or consultation.

• VP software tracks the availability of networked resources and/or decides what

resources should be used by some VP instance to meet its current needs. Allo-

cations are guided by policies aware of current device capabilities and network

conditions.

Figure 1 suggests the idea of virtual platforms as a new execution environment

integrated diverse distributed resources for the applications.
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Figure 1: The virtual platform as a new execution environment.

6



CHAPTER II

BACKGROUND

There is an increasing number of devices that users interact with in homes and offices,

driven by continued improvements in device capabilities and network connectivity.

While these devices are capable of interoperating with each other to enhance appli-

cations’ user experiences with regard to their hardware capabilities, current systems

and software remain lacking in terms of their ability to freely combine their capabili-

ties to provide the most current value to applications serving end users. For instance,

it should be easy for applications and users to take media being played out on a

mobile device and display it on a homes large-screen TV as soon as the person using

the device enters her home. It should be similarly easy to evict power-hungry tasks

or applications on the battery-operated mobile devices and instead, move them to a

desktop at home.

Our initial explorations concerning applications’ ability to run across multiple

devices centered on a proof-of-concept system, the Stratus infrastructure [66], which

dynamically constructs – synthesizes – virtual platforms from the devices present

in end user environments like homes or offices. A virtual platform constructed by

Stratus is an abstraction of a single logical device consisting of resources from

diverse devices over the network. This chapter highlights the design principles and

technical challenges of the idea of virtual platforms, addressing issues like device

interoperability and other topics relevant to the VP concept.

2.1 Stratus

With the Stratus infrastructure, the goal of virtual platforms is to enhance appli-

cations’ users experiences across multiple devices in end user environments. Recent

7



studies [50, 93, 91] show that users prefer seamless and integrated interaction of those

devices rather than leaving them as many individual, isolated, and independent ones.

Such seamless integration is easily realized by Stratus , as it creates a VP as a

single abstraction across multiple devices on the network. A Stratus VP allows the

applications to easily and transparently span multiple end user devices.

2.1.1 Assumptions

As a proof-of-concept toward seamless device integration through VPs, Stratus

prioritizes design space exploration to identify the required functionality of a virtual

platform, in particular focusing on design decisions concerning the underlying system

used to construct a VP. Stratus limits its support to existing applications rather

than proposing new SDK for future applications interacting with a VP. Along with

this limitation, Stratus makes the following assumptions:

• Stratus follows the current practice for end user applications on personal

devices, which is that they assume the use of a single computing device [51].

So, Stratus provides to applications an abstraction of a single device that

actually consists of multiple, underlying networked devices. Moreover, since

users expect the same interaction experience across all of their devices [93, 91],

Stratus preserves the same computing environment across a user’s multiple

devices, shielding the applications from modification to run on a VP.

• To leverage the physical proximity of devices on the network, Stratus assumes

that all participating devices for a given VP are on the same local network with

one-hop distance. This permits a VP to be more responsive to interaction with

applications [64].

• Since all devices for a virtual platform should be trustworthy, we assume single

ownership of the devices [93] being used.
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2.1.2 Architectural Design

Current infrastructures do not offer the flexibility in device use and seamlessness

of operation required to easily realize the usage examples introduced earlier. Our

novel approach to obtaining these properties is to implement cooperative behaviors

via the virtual platform abstraction realized by the Stratus infrastructure. The

purpose of cooperation is to exploit the heterogeneity of the resources present in such

Stratus-enabled systems, to provide to end users exactly the virtual platforms they

desire.

2.1.2.1 Design Principles

Virtual platforms in Stratus seek to offer better and/or more efficient resources to

applications than what can be provided by single physical devices. To reach this goal,

Stratus permits each device to export its own diverse and heterogeneous resources,

logically decoupling those from the device. An example is a PC divided into a set

of resources including its computation, memory, storage, input and output resource,

where Stratus uses each resource over the network to construct an abstraction

of a single device, a virtual platform, needed by some end user. This decoupling

contributes to Stratus hiding the low-level details about such networked resources

(e.g., connection protocols like WiFi, Zigbee, and uPnP). Stratus never assumes

that a device has a pre-determined single role when it constructs a VP. Rather, it

leverages individual resources extracted from a device. In addition to its fine-grained

resource control, an additional principle is that users and applications should be able

to inform the Stratus infrastructure about their respective needs, in response to

which Stratus constructs a VP and operates resources that meets those needs.

Moreover, Stratus actions are also guided by system-level requirements to better

operate underlying resources, an example being controlling the energy consumption of

all devices, while it scales up and down a set of resources. Yet throughout, Stratus

9



provides interfaces for each VP that permit existing applications to transparently

access local and remote resources without requiring them to be reprogrammed. To

do this, we devise a mechanism for Stratus (i) to realize such interfaces, and (ii) to

connect them to the right resources. Lastly, Stratus maintains the same computing

environment across all devices running diverse software and hardware.

2.1.2.2 Required Functionality

The following functionality realizes the aforementioned principles: (i) Operation of a

Collection of Devices : methods and mechanisms for runtime device discovery, inclu-

sion, and exclusion in virtual platforms, thus relieving applications from these tasks,

(ii) Fine-grained Resource Control and VP Management : software for dynamic plat-

form construction and configuration, including to monitor the current properties and

capabilities of participating devices and thus, the composite properties of the virtual

platforms into which they are assembled, and (iii) APIs and methods for accepting

applications and system needs : executable encoding of applications and system needs

to drive (i) and (ii). Additional useful functionality to be explored in future work

includes authorization and rights management, in order to deal with shared devices

that may not be wholly owned by a certain user, the secure and reliable inclusion

of open facilities like those offered by public clouds, and multi-site device clouds like

those spanning multiple homes or offices. Such functions were not part of the Stra-

tus infrastructure, its implementation assuming that all participating devices are

trustworthy, that network delays to be negligible, and that there is sufficiently high

intra-cloud network bandwidth, as described in Section 2.1.1.

2.1.2.3 Key Concepts

Stratus introduces the three key concepts – Virtual Platforms, Device Cloud, and

Policies – to realize the functionality discussed above. As the VP concept is discussed

earlier, we next talk about device clouds and policies.
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Device Clouds: To realize virtual platforms, Stratus maintains a resource pool,

a device cloud, consisting of virtualized resources logically decoupled from a single

physical device. We use the term device cloud to emphasize the fact that any device

attached to or part of a Stratus-enabled device can participate in a virtual platform, as

long as the device itself is dynamically discoverable and shareable. Inherent properties

of device clouds are: (i) each cloud is comprised of a set of devices participating [94] in

some common and dynamically synthesized virtual platform, (ii) users have a seamless

experience across multiple devices [92, 112] participating in a device cloud, (iii) and,

as discussed earlier, the participating entities need not be entire devices, but may

provide only some of device components as the resources with which to construct

virtual platforms, like computation or storage resources.

Policies: Stratus maintains device clouds and virtual platforms in accordance with

two policies. Management policies enforce desired global properties for a device cloud,

while application policies act on behalf of certain classes of applications [113] or for cer-

tain workload characteristics [102]. Virtual platforms are automatically constructed

based on application policies and device clouds are continuously managed by man-

agement policies. The performance policy is a sample management policy that forces

all devices that host VPs to maximize computation performance regardless of their

power consumption. The media policy is an application policy demanding that a vir-

tual platform guarantees media files to be played without dropping frames. Stratus

policies differ from prior work on SLA- or SLO-driven system management [79] in

that they are used both for constructing and for managing platforms, with different

policies encoding different construction and management requirements.

In short, Stratus enhances end users’ experiences with their applications since

virtual platforms combine a best set of resources in device clouds to meet application

policies that can deliver performance or functionality beyond what is available on a

single physical device.
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2.1.3 Stratus Realization

System virtualization makes it easy to realize the functionality required by Stratus .

This section briefly discusses the virtues of system virtualization for building Stratus-

like infrastructures.

2.1.3.1 Using System Virtualization

Stratus uses system virtualization to operate a device cloud and manage virtual

platforms at hypervisor level, with its current implementation using the Xen open

source hypervisor [32]. Stratus extends the concept of traditional virtual ma-

chines(VMs) such that hypervisors can interact with networked resources beyond

a single device boundary as well as local resources. A special communication chan-

nel [81] in Stratus enables this transparent remote access for hypervisors, Xen for

the Stratus infrastructure, to handle remote resources in the exactly the same way

as for local ones, so that hypervisors are capable of virtualizing remote resources with-

out additional support. In doing so, Stratus can exploit the advantages of system

virtualization, including:

• fully support existing applications, by offering them an abstraction of a single

device,

• the same system interfaces to resources, local as well as remote [78, 77], without

any dependence on vendor-specific protocols or hardware features,

• the same computing experience across all devices, by encapsulating users work

environment in a single VM and using VM migration, and

• easy disaggregation of fine-grained virtualized resources from a single physical

device.

In addition, recent study [64] shows that system virtualization can be more flexible

than the process virtualization [90, 108] and more general than language-level vir-

tualization (e.g., Java and .NET framework) or composition [100] when realizing a
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mechanism for device interoperability.

2.1.3.2 Policy Operations

Stratus ’ use of system virtualization ensures that virtual platforms are elastic

in terms of their capabilities and performance, where elasticity is obtained through

modifying the mappings from virtual to physical resources as well as by using virtual

machine migration. Such elasticity is driven by desires expressed in policies. These

determine the resources that a virtual platform should include (e.g., the policy for

processing HD video clips is designed to establish a virtual platform that includes

a HD accelerator and a large screen), and they can express additional performance

or power attributes (e.g., the platform should use minimal amounts of energy con-

sumption). Stratus uses these policies along with its information about current

devices and their resource availability to construct the right VPs and to dynamically

configure them when devices arrive or leave or when requirements change.

2.1.4 Implementation Details and Experimental Evaluations

For implementation details and experimental evaluations of the Stratus infrastruc-

ture, readers are encouraged to refer to the full paper [68]. We next summarize the

key lessons learned from Stratus , as background to the work presented in the

remainder of this thesis.

2.1.5 Discussions

We developed a proof-of-concept system, Stratus along with VPs to obtain device

interoperability and applications’ user experience improvement. Its results [68] indi-

cate that virtual platforms derived from device clouds are able to successfully deliver

the functionality in need. Advantages include higher performance, the same comput-

ing environment across multiple devices, and improved end user experiences. These

properties are due to the elastic and dynamic nature of virtual platforms, driven by
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policies encoding end user needs.

The Stratus realization of device clouds is implemented with the Xen hypervi-

sor, which allows Stratus to simplify fined-grained resources creation and control

with the existing interfaces and migration of user’s computing environment across

devices. Although virtualization makes it easy to implement such functionality, it

also imposes on Stratus the severe limitation that non-virtualized devices and on-

line services cannot be a part of a device cloud. This limits the generality of the

approach, particularly in lieu of the fact that most mobile devices are not virtualized.

Furthermore, Stratus uses VM migration to preserve the same computing envi-

ronment across multiple devices. In theory, the migration should work as far as devices

have the same hypervisor, but in reality, migration between different architecture like

ARM to x86 is difficult. It is also likely to cause heavy overhead for battery-operated

devices in terms of resource use and time taken for migration [83, 90], so a lighter

weight mechanism is desirable.

Elasticity for VPs may be limited by the strictly local scopes of individual de-

vices, i.e., VPs only use the resources existing in the current device cloud consisting

of locally available devices (see our assumptions in Section 2.1.1). The Stratus

implementation simply rejects VP creation when resources in a certain device cloud

are insufficient for meeting application needs, even if additional flexible resources are

available in remote clouds and/or in ambient devices. This indicates the need for

implementation methods that can bring such cloud and ambient resources to device

clouds, in a safe and secure manner.

2.2 Related Work

2.2.1 Providing seamless user experience based on virtualization

Prior work has used virtualization technologies to provide users with seamless comput-

ing environments. ISR [74], the Collective project [41], SoulPad [40], Keychain [30],
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Spirits [98], and Cloudlets [107] store all of a user’s computing environment and state

in virtual machines, using VM migration to move VMs to the device the user wants to

use. VMs can be migrated through a network connection, via mobile storage devices

like USB disks, and they may be assisted by nearby resources so as to avoid the po-

tential high overheads arising from accessing remote cloud resources [98, 107]. All of

these approaches target single physical platforms, however, in contrast to the Stra-

tus approach in which multiple platforms’ devices are utilized to gain improved end

user experiences. Also missing from such work is the automation via policies shown

in our work.

2.2.2 Offloading the compute-intensive tasks of applications

Prior work has leveraged remote computing resources to augment the performance

of devices. Similar to the Stratus infrastructure, Cloudlets use system virtualiza-

tion to migrate a user’s VM on a mobile device to a nearby small server that offers

augmented computing performance. While Cloudlets only deal with the compute

capabilities applications, Stratus combines heterogeneous resources including hard-

ware accelerators and various I/O devices on the networked devices, to improve end

user experiences. There are also middleware frameworks for offloading compute inten-

sive tasks to resource-rich servers. Recent research like MAUI [47], CloneCloud [43],

Cyber foraging [31], and Cuckoo [71] address the issue of how to find the compute

intensive portions of an application and move those between battery-operated mobile

devices and resource-rich servers. They focus on remote cloud servers, so these sys-

tems do not have functionality that leverages the various capabilities present in the

many and often heterogeneous devices shown in the Stratus infrastructure. There

is no clear distinction between nearby and remote cloud resources in such research,

which is essential for interactive application response [107]. Like Cloudlets, their fo-

cus is on compute-intensive tasks. Finally, since they require developers to use their

15



own SDKs or special annotations to identify where to offload, existing applications

cannot easily take advantage of their capabilities.

2.2.3 Thin-Client Computing

Building on previous work like thin-client [21] computing, an alternative model offered

by cloud computing is to rely on remote server systems to provide needed functional-

ity [80, 3, 2, 23]. In this approach, user tasks and/or applications are always hosted

by a remote ‘home’ server, over the network. The distance between a client and the

server varies from one-hop to far-remote, which possibly gives rise to latency issues.

Device clouds simply extend those models to also exploit locally available devices, in

addition to using remote services. This may also help deal with the privacy and secu-

rity issued raised for cloud systems as well as improve responsiveness, by differentially

using local vs. remote service capabilities [119, 22, 6].

2.2.4 Composition of Software Modules

Technologies like CORBA, DCOM, .NET Remoting, and Java RMI help developers

compose software modules over the network or in a single machine when writing an

application. With such middleware, complexities regarding handling different proto-

cols and diverse devices are left to each application. Stratus hides such complexity

from applications through providing the interfaces that they already use. Unlike the

Stratus approach, they require existing applications to be reprogrammed in their

SDK. Also, they lack the ability to manage the resources for each service on a node

(e.g., scale up, down or dynamic resource allocation). However, they would provide

a discovery and composition mechanism to VPs since Stratus is agnostic to such

mechanisms.
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2.2.5 Context-related device interoperability

Many systems such as Gaia [103], BEACH [35] have been proposed to coordinate

software modules and diverse networked devices contained in some physical space.

Such systems assume a fixed role for each individual device at a fixed space. Stratus

makes no such assumptions. HomeOS [51] is a management framework for devices at

home, offering access controls with device interoperability via a PC-like abstraction.

To hide complexity when applications access distributed resources, SpeakEasy [52]

proposes a device-to-device interoperability protocol, and uMiddle [89] provide an

interoperability layer in the infrastructure not each edge. None provide a set of fine-

grained resources from a single device, as supported by Stratus .

2.3 New Design Principles for Future VPs

Stratus provides insights into the design and implementation of virtual platforms

created to enhance end user experience 2.1.5, along with the prior work presented in

Section 2.2.

Stratus identifies the following fundamental features as useful for realizing the

idea of virtual platforms: (i) its mechanism for fine-grained resource control and

resource pool management and (ii) its ability to offer an abstraction of a single de-

vice so that applications can transparently operate across diverse resources over the

network. We argues that a future infrastructure for VPs should maintain those ad-

vantages, but also assert the need for additional functionality to handle the cloud and

ambient resources, beyond single-person ownership. Specifically, while Stratus VPs

support existing applications, their consequent lack of awareness about the device-

rich environments in which they operate forego opportunities to explore new kinds of

applications and services. Related work has explored alternative approaches to en-

abling novel applications and software services, by composing new applications from

software modules or objects rather than entire VMs. This allows each application,
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for instance, to opportunistically offload computation-intensive tasks [47, 43, 73]. It

also helps non-virtualized resources participate in a device cloud. In such settings,

the idea of policies should be evolved to capture an application’s ‘intent’ regarding

resource composition [36], directly provided by an application, with the assumption

that applications have clear goals concerning resource use [36, 95, 122]. An example is

the manifest description in HomeOS. The disadvantage, of course, is that developers

need to use a new SDK, leading to potential lack of acceptance.

Another generalization of Stratus is one that encourages more devices to make

themselves available for participation in virtual platforms. From the VP point of

view, the more devices join a device cloud infrastructure, the better virtual platforms

can be created because of richer resource pools and consequently increased elastic-

ity. Encouraging device and resource sharing can assist in that task, but also raises

security and privacy concerns that need to be addressed.

In summary, the following insights derived from Stratus guide our future design:

• An abstraction of a single device with a fine-grained local and remote resources,

• An enhanced infrastructure to enable new applications maximizing the device-

rich environments that devices operate, and

• A novel mechanism to encourage more devices to participate in virtual platforms

in a secure and safe way.
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CHAPTER III

PERSONAL CLOUDS: SHARING AND INTEGRATING

DEVICES TO ENHANCE END USER EXPERIENCES

This chapter extends the idea of device clouds and virtual platforms presented earlier

to propose the Personal Cloud infrastructure reflecting new design principles to

evolve the idea of virtual platforms based on what we learned from the Stratus

infrastructure. The virtual platform with the Personal Cloud infrastructure creates a

Personal Cloud (PCloud) instance for each application to transparently interact with

resources on a device or over the network. Unlike Stratus, the PCloud infrastructure

can transparently leverage resources that are not owned by the current user due to its

access control service, and helps the applications improve their scope of data beyond

a single device.

3.1 Goal

End user experiences on mobile devices with their rich sets of sensors are constrained

by limited battery life on devices and restricted form factors, as well as by the scope

of the data available locally. The goal of the Personal Cloud abstractions is to address

these issues by enhancing the capabilities of a mobile device via seamless use of local,

nearby and remote cloud resources. Such devices like smartphones are operating in

increasingly rich settings that include not only nearby sensors and machines, but

also the remote cloud. Hence, by leveraging and interacting with such potentially

cooperative resources, the capabilities of the devices can dramatically be improved,

and device users can gain enhanced interactions with their current environments [43,

44, 47, 106]. Another goal is to leverage resources beyond individual user’s ownership
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when offering a PCloud instance to the applications, which allows them to maximize

the use of all available resources in their environment.

3.2 Contributions

The idea behind Personal Clouds (PCloud) is similar in spirit to vendor-specific or

industrial solutions for integrated use of shared devices, such as Apple’s AirPlay and

Microsoft’s Smart Glass as well as DLNA. However, in contrast to those solutions

operating only across compatible vendor-certified entities, PClouds have no such con-

straint, by using a simple model of device interaction realized at a level of abstraction

below that of vendor-specific software, i.e., at the system level. Specifically, the Cir-

rostratus implementation of PClouds operates as a set of extensions of the Stratus

infrastructure in the Xen hypervisor [33], and it interacts with non-virtualized, i.e.,

devices without supporting virtualization, like Android-based smart phones, via ad-

ditional device-resident agents.

Generalizing earlier work on device clouds [66], Personal Clouds make the following

new technical contributions:

• They manage and dynamically compose distributed networked resources that

are from both local/personal and remote/public devices and machines, where

any of those entities can be active participants in running the services desired by

end users, and where all resources in the PCloud are available to the applications

being run. The digital neighborhood watch (DNW) application [38, 42] with

a PCloud instance, for instance, takes advantage of PCloud to run its face

recognition service both with and without remote cloud connectivity, albeit at

different levels of fidelity based on where and how it runs.

• Device participation in any PCloud is guided by permissions and policies con-

trolled through social network services (SNS), thus making it possible to share

devices owned by different end users and/or residing at different locations. This
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is done in a privacy-preserving manner, via a system level service for authen-

tication and authorization that uses Friend relationships on Facebook to look

up and encode the relationships of users’ participating devices. With such

SNS-defined access policies, Cirrostratus can extend and alter a user’s PCloud

without the need for direct and repeated user interaction or consultation.

• PClouds protect end user privacy by tagging data – like photos – with meta-

data about the devices on which it is captured, the users to which it belongs,

and other such semantic information. This makes it possible to automatically

sync data across of all of the devices owned by some PCloud user, e.g., with a

privacy-protected repository maintained on her home desktop vs. storing such

data in some remote SNS not controlled by her. The user can then selectively

upload photos from the repository to the SNS, and/or she can use a PCloud-

provided service that gathers photos from the SNS, e.g., from those who are

encoded as friends and have expressed their intent to share their pictures on

Facebook.

• The PCloud runtime tracks the availability of networked resources and/or de-

cides what resource should be granted to a PCloud instance to meet current

demand. This is managed by Cirrostratus with the awareness of current device

capabilities and network conditions. An example is a face recognition service lo-

cated on three different platforms (e.g., a mobile device, a nearby home desktop,

and a remote cloud) with different choices determined by current network con-

nectivity and desktop load providing different levels of performance to PCloud

users.
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3.3 Motivating Use Cases

This section demonstrates how Personal Clouds can leverage surrounding and cloud

resources to provide end users with enhanced application functionality and perfor-

mance.

The first use case implements digital neighborhood-watch functions. It uses face

recognition to distinguish neighbors from friends from others, where Cirrostratus

orchestrates its use of network-accessible resources in the home and/or on remote

cloud machines. Using local resources offers rapid response, but may suffer in terms

of accuracy due to limited volumes of face data on the home machine.

Additional use of remote machines improves accuracy by drawing on the cloud’s

global scope and data. The second use case shares devices and content among friends,

where the SNS is used to establish secure interactions across friends’ devices. The

applications enabled by this functionality include playing a video on say, a friend’s

large-screen display, capturing sound from other devices, and playing sound where

desired.

3.3.1 Digital Neighborhood Watch

A neighborhood watch is a community group organized by residents to forestall crimes

and vandalism. Tasks include watching for suspicious activities and persons, notify-

ing each other of such events, alerting neighbors of other neighborhood issues, and

reporting select events to external parties like the police. In this context, a face

recognition service can be used to classify persons seen in the neighborhood as res-

idents vs. others, e.g., using images taken by neighborhood or home cameras and

stored in homes’ image repositories. Such a service should be always-on, even when

the Internet connectivity is not present or when power is out, the latter requiring

its ability to run on single battery-driven devices. At the same time, face recogni-

tion accuracy heavily depends on the size of the data-set being used [62], with small
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sample data for each face, i.e., a narrow scope of data, resulting in over-fitting and

making recognition unlikely. Also important is the computational capacity available

for running these codes, with their compute requirements directly related to database

size. Further, when images are seen, it must detect and identify potential threats in a

timely manner. This makes the network bandwidth and latency between cameras and

computing resources running the service critically important. PClouds provide the

functionality needed for flexibly running neighborhood watch services. First, the face

recognition service can, of course, run on a single device, using the photos resident on

it, but second, it can obtain a wider scope of data (e.g., people’s faces in this case)

than those existing on a single user’s device by also accessing a user’s home image

repository, as well as using remote data available via SNS (or even in neighbors’ home

repositories). Third, the service can benefit from both home machines’ and remote

cloud resources’ computational capacities depending on local vs. remote network con-

ditions. Section 3.6 describes additional implementation detail about how PClouds

backed by Cirrostratus permit the face recognition service to run with these diverse

configurations.

3.3.2 Display Sharing among Friends

With high quality video clips and photos with multi-million pixels, recent smart

phones have become equipped with high resolution displays and high performance

processors. Small screen sizes continue to hamper user experiences, however. PClouds

permit mobile devices seamless access to nearby large screen displays. Our previous

work demonstrated this capability [66], but it required all personal cloud devices

(e.g., display, keyboard, and processors) to be virtualized and owned by the same

user. PClouds extend device sharing to also include non-virtualized devices and

those owned by friends. Specifically, users can share any capability of any nearby

device (e.g., a large display in this case), enabled by the use of social network services
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(SNS): the Cirrostratus infrastructure implementing this functionality ensures (i) that

the device issuing a sharing request is actually owned by a designated friend who is

identified via SNS, (ii) that the request recipient is the intended PCloud, and (iii)

that no one else is currently using the chosen target device (i.e., the display). Secure,

access-controlled sharing is realized with a security service implementing the X.509

specification and using the SNS to maintain friend relationships; the devices currently

supported include user’s home displays, storage devices, keyboards, and machines,

devices in friends’ homes (even image repositories they wish to export), and remote

cloud resources.

3.4 Approach

Personal Cloud instances are created at the hypervisor-level by the federation of

networked resources, which is best suited for the current application’s demand. In

addition to its deployment at hypervisor-level, it integrates nearby and remote cloud

resources in an uniform way that the applications are able to transparently access

any resources regardless of their locations, i.e., the local device, nearby devices, and

remote clouds. This attribute permits PClouds to service end users even when remote

cloud resources are not present and/or difficult to access due to insufficient network

connectivity or when they are expensive to use via metered connections like the 3G/4G

mobile wireless network. This is because a PCloud can also run on available and free-

of-charge user-owned resources in the environments such as the home or offices. To

this end, the Cirrostratus infrastructure can federate a user’s networked resources to

establish a personal execution environment for the applications, governed by policies

that go beyond evaluating network connectivity to also consider device ownership

and access rights, the latter managed in a secure fashion via standard Social Network

Services.
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3.4.1 Advantages of Personal Cloud Approach

The novel approach in PClouds allows applications to obtain substantial benefits

from using local, user-owned nearby vs. remote cloud resources, in part due to the

low latency of access to nearby devices and due to improved privacy when using them.

The latter is because users retain complete control over their data when storing it

locally rather than placing it into the cloud (e.g., voice, pictures, etc.). The outcome

is that a PCloud no longer limits mobile applications to run on single devices. Instead,

it can exploit the capabilities of the variety of devices available in most homes, offices,

and elsewhere, and the power of remote services present in the cloud. Advantages

derived from using PClouds compared to single devices include the following:

• Combined and augmented abilities. While mobile devices are imbued with

many built-in sensors, the interpretation of sensor outputs can benefit from

increased computational abilities and from data captured previously and/or

stored elsewhere, e.g., in nearby desktop PCs or in the cloud. A classic example

is a face recognition application using a camera on a smartphone (i.e., a local

sensor) to capture images, but leveraging other network-accessible resources

for computationally intensive work and to deal with the fact that recognition

accuracy also depends on the extent of the face database. The latter holds

because in contrast to storage in a user’s home, a cloud service can store both the

faces available in the user’s local context and those available from the Internet.

• Improved usability. While the small form factors of mobile devices may

restrict their display and keyboard sizes, this is not the case for the large-

display TV in a user’s home (or his friend’s) and the keyboard attached to his

home desktop machine. We demonstrate new and secure methods for accessing

and using/sharing such capabilities available on nearby networked devices that

are owned by users and/or their friends or other cooperative parties.

• Increased scope. Referring to the fact that limited storage size of a device
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and current context (e.g., physical location) can benefit from data resident in

the remote cloud and captured by other devices, a storage aggregating remote

cloud and all user-own devices is shown capable of delivering improved accuracy

and utility for services offered to end users.

• High availability. Studies[47, 44, 43] show that applications on battery-

operated devices can gain performance and availability, and extend their battery

lives by offloading computationally expensive tasks from local to remote re-

sources. PCloud can do so by seamlessly tying applications running on battery-

operated devices with both nearby and remote resources.

The next section explains how we construct, maintain, and configure personal

clouds.

3.5 Architecture Design

PClouds are realized as a layered software architecture designed to operate within

dynamically changing external environments. Figure 2 depicts the main components

of the proposed architecture.

3.5.1 Applications

An application is a set of services running on a PCloud instance. An example is a

media player consisting of a storage service holding a content file, a decoding service

generating a video stream from the file, and a screen service projecting the video

stream. The PCloud API permits cloud instance creation, query of and access to

currently available services, and the construction of new services for a given one.

Designed to support existing programing models and minimize code development, a

PCloud application operates much like one running on a single device or machine. It

runs a simple preamble to create a PCloud instance, then runs its services, the latter

able to use all of the resources in PCloud. It is the responsibility of Cirrostratus and

its runtime to ensure resource availability in lieu of changing network conditions and
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Figure 2: Personal Cloud Architecture
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resource use by others.

3.5.2 Services

Applications running in some PCloud instance can transparently access both local

and remote services. This approach is similar to that of the Android Service imple-

mentation in the sense that it separates computing intensive or hardware access parts

of applications from their main execution flows.

PCloud services are like those described in the Intel processing framework [5],

but differ in implementation in using local service proxies for the services that are

run remotely. Specifically, for each remotely run service, the runtime instantiates a

local proxy that reveals how to reach the remote service, what service is required for

dependency, and what resources are needed to run it. State information is maintained,

as well, relayed by the runtime to the actual remote service location. The current

API has operations to enumerate, attach, use, and detach services, and to create and

launch new ones. System services differ from others in that they are always present

and available.

3.5.3 Personal Cloud Instance

Each PCloud presents the illusion of a single machine. Its resources may be dis-

tributed across some set of networked devices, but they are accessed in exactly the

same fashion as done by traditional applications (e.g., open, read, and write

system calls). An instance’s life-cycle transitions from its initialized, to started, to

terminated states.

The resources presented in a PCloud instance are either services or devices, and

for both types of participants, Cirrostratus exposes and maintains their capabilities.

In terms of the granularity of managned resources, Cirrostratus is very similar with

that of Stratus. For instance, a desktop machine can separately expose devices like its

disk storage, processing capacity (CPU), and large display. This means that a PCloud
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application can run across say, the CPU of a laptop, the storage on a desktop, the

keyboard of a smartphone, and a separate large-screen display of a TV, all as if

it were running on a single platform offering all of those device resources. Other

than running the aforementioned preamble, the use of hypervisor-level technologies

in Cirrostratus makes it possible for entirely unmodified single-machine applications

to run across such virtual platforms. However, users may wish to impose constraints

on the platforms being constructed. For this reason, the PCloud runtime provides

additional APIs for an application to guide a construction of such platforms: the

Intent runtime module and API can be used to submit a list of required services

along with their required capabilities. An example is the ‘re-wiring’ of a user’s display

device, to say, move the depiction of a streaming video currently being viewed by the

user on his laptop screen to his large home TV display. A PCloud instance supporting

this example may continue to use the exact same laptop resources as before, and

simply add the large home TV as a screen resource.

3.5.4 Personal Cloud Runtime

The runtime brings up a PCloud instance for an application, with its intent interface

used to describe resource requirements as Listing 3.1, e.g., a large screen with HD

resolution, presence of a face recognition service, etc. It also allocates resources for

the services being asked for a given instance.

The PCloud runtime’s tasks are (i) to establish a PCloud instance with services

per a user’s request or intent – the Intent module, (ii) to decide which resources are

most suitable for running requested services – the Composition module, and (iii) to

manage the certificate of the device owner for authentication – the Access Control

module. The Intent module builds a list of services requested by an application

and determines the types of resources needed to run them. Based on its inputs,

the Composition module interacts with Cirrostratus to allocate resources, the latter
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Listing 3.1: An example of application’s Intent

1 // intent guidelines
2 intent->guideline.topology = LINEAR
3 intent->guideline.traversal = SYNC
4 intent->guideline.tie = NONE
5
6 // initialize callback
7 intent->callback_table.callback = NULL;
8
9 // Initiate and connect a VP

10 intent->comp = &comp[0];
11 intent = intent->next;
12 intent->comp = &comp[1];
13 intent->next = NULL;
14

mapping the best-fit resources to requested services, and it establishes a PCloud

instance with such resources and services. The Access Control module works with the

authentication system service checks access permissions for the resources requested

for some specific user.

3.5.5 System Services

System Services are used to authorize applications to run, and for actions requiring

global knowledge, such as authentication and a data storage with the global scope,

so they directly interact with Cirrostratus.

These provide global information to other PCloud components and to user-created

applications and services. Two default current system services are: (i) the authen-

tication service and (ii) the user data aggregation service. They both interact with

social network services (SNS) to authenticate the users of resources joining a PCloud

platform, permit and deny requests for resources, and they also use the SNS as a

repository of user data for the applications running with a PCloud instance. As

stated earlier, authentication leverages SNS. Aggregation is a special storage service
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Figure 3: Sharing resources with a SNS-based friend via Pcloud

that assembles data about users from both their local disks and the remote clouds,

to create a virtual storage service for each cloud instance. The purpose is for the

services running on that cloud to have access to the data they need. Like others,

system services also use local proxies.

3.5.6 Cirrostratus

Cirrostratus is an extension of the Stratus infrastructure that discovers and monitors

both locally and globally network-reachable resources, in order to maintain a pool

of distributed resources accessible to each end user. It also serves as a mechanism

layer for the PCloud runtime to draw resources from this pool and combines them to

establish PCloud instances.

Cirrostratus extends the earlier work on Stratus and its device clouds [66].

First, device clouds in Stratus required all active cloud participants to be fully virtual-

ized platforms running the Xen hypervisor. Cirrostratus also permits non-virtualized
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devices like Android-based smartphones to be active participants. Second and more

important is the use of SNS to implement the access control mechanism needed for

sharing resources on devices across friends on SNS and for access to friends’ data, the

latter increasing the data scope available to individual participants. Third, Cirrostra-

tus is able to use remote cloud services (e.g., Amazon EC2) as PCloud resources, thus

substantially increasing PCloud functionality and capabilities. Fourth, for all such re-

sources, it is the responsibility of Cirrostratus to maintain status information of about

participants’ devices, via active device and network monitoring. The Coordination

module carries out these tasks. Finally, Cirrostratus transport layer, termed Data

Exchange in Figure 2, is a straightforward extension of the data exchange protocol

developed for Stratus. Figure 3 illustrates an example of PCloud use between two

users. It illustrates how the aforementioned components relate to others so that users

can leverage their own network-reachable resources as well as share others, in a secure

fashion, by interacting with a SNS.

3.6 Implementation Detail

This section presents the implementation detail needed for the performance evalua-

tions in Section 3.7.

3.6.1 Cirrostratus

The current implementation supports Linux and Android operating on native or vir-

tualized hardware. We next review interesting aspects of the Data Exchange, Co-

ordination, and Composition modules.

Coordination. Cirrostratus uses the master/slave model to manage the resource

pool available for use by PClouds. Its current implementation elects the one with

the largest performance index (defined later) as the master among nearby devices.

Battery-operated devices are precluded from that role, because of the master’s com-

putationally intensive workload and the need for high availability. Slaves contribute
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resources with certain capabilities.

Configuration. The configuration module runs on all participating Cirrostratus

devices. It uses static data as well as online monitoring to gather information about

the capabilities of available device resources, and it provides such information to the

master for storage in a central PCloud repository of device capabilities. There are

also knobs available to device owners permitting them to control their devices’ degrees

of participation, including preventing certain device resources from being used (e.g.,

a device’s display). Finally, there are resource quotas to control device usage. The

naming scheme used in configuration translates scr1.dt2.pcloud3.bob to the

fact that Bob has the screen1 connected to the desktop2 in the personal cloud

managed by PCloud3. A single user may have multiple names, according to his

location, say in the home or office. The configuration module also supports resource

discovery. That is, if a new device joins any PCloud, this module on the device

reports the device’s capabilities to the master of that PCloud upon discovery and

registration.

Data Exchange. Data is exchanged via an extension of the Stratus channel with

publish-subscribe transport [66, 80] built on top of the ZeroMQ library [25] and the

Xen event channel mechanism. This channel create a software layer for applications

to communicate with others transparent to underlying physical connections being

used. Figure 4 shows how it works with distributed resources as well as local ones.

3.6.2 Resource Allocation

Resources must be allocated to services reflecting their demand. The current imple-

mentation uses a simple allocation heuristic guided by summary data about resource

capabilities changed dynamically. The allocation in PClouds operates within stable

allocation epochs, assuming that (i) the status of resources and the network con-

nection are unlikely to change during the current epoch, and (ii) if changes occur,
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Figure 4: The data exchange implementation in PClouds

they will persist during the next allocation epoch. We have not yet considered multi-

epoch allocation planning and/or the evolution of allocations across multiple epochs

in place sophisticated allocation methods. We currently approximate the status of

each computational resource by computing its performance index (PI) and its network

connectivity. The PI is formulated as follows:

PI = MemorySize + w
N∑

n=1

{freqn(1− utiln)}

where

N : the number of cores in a device

w : a weight value assigned to its processor architecture

freqn : the current operating frequency of the n-th core

utiln : the average of last five-minute utilization of the n-th core

As the metric for resource allocation, we define the execution time of a service on

any resource consisting of computation time and elapsed time over the network as
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follows:

Tcomputation '
Workload size being processed by a service

Performance Index

Tnetwork ' Elapsed time to transmit data over the network

Therefore, the estimated execution time is as follows:

Testimated = Tcomputations + Tnetwork

PCloud composition for an application with some set of services, then, operates as

follows. When the application requires computation-related services, the composition

module interacts with Cirrostratus to obtain the performance index (PI) and network

connection status of each candidate computational resource. This results in an initial

allocation based only on the PI, i.e., the service is allocated the resources with the

largest PI. Runtime monitoring, then, uses the service proxy to obtain additional

detail about service execution, including the volume of data transmitted over the

network and the elapsed finish time for service requests. Allocations are changed

when service times substantially and consistently exceed previously observed values;

we have not yet investigated rigorously the dynamic methods needed for runtime

re-allocation. Our alternative focus has been on showing PClouds to be viable and

useful for realistic application.

3.6.3 System Services

This section describes the system services availabe in PClouds, wich is critical to the

ability of PClouds to span distributed resources.

Authentication Service. The authentication service is implemented as a Facebook

app, and like other services, its proxy resides within each PCloud instance. A user

must install this app on her Facebook account and create a Facebook group named

DeviceShare. By then listing appropriate Facebook friends, she indicates her willing-

ness to share the capabilities of devices in her own PCloud with others in this group.
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Figure 5: The SNS-inspired authentication in PClouds

Once the app is installed on her Facebook account, the server hosting the app gener-

ates and holds her certificate, based on the X. 509 standard. The real working app on

Facebook is shown in Figure 5. The following example illustrates the authentication

process. Alice and Bob are Facebook friends and install the application on their ac-

counts. One day, Alice visits Bob’s house and wants to use his large display to share

pictures on her phone with him. When Alice runs the Facebook app (the authentica-

tion system service), the app shows the list of people who are willing to share their

resources with Alice. Choosing Bob prompts the server to send out her request to

his PCloud along with Alice’s certificate. The access control module in the runtime

then verifies Bob’s resources that she is allowed to access. In terms of access rights,

the current implementation grants access to resources based on group membership,

either owner or guest. In this case, Alice belongs to the guest group, while Bob is in

the owner group. Alice’s phone also receives the IP address of Bob’s network, along

with Bob’s certificate. With this information, the data exchange module in Bob’s

Cirrostratus establishes a connection to Alice’s phone and then her phone becomes a

participant of Bob’s Cirrostratus as a guest.

User Data Aggregation Service. The service to aggregate user data consists of

the remote and the local aggregated storage. Its remote part extracts photos and
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Figure 6: The data aggregation service in PClouds

user-written tags among SNS accounts listed as friends, while the local part provides

storage to participants of Cirrostratus, e.g., so that it can aggregate all photos from

participating devices. The remote is comprised of a Facebook app, which is called the

Cloud module in Figure 6, and a remote storage service. If a user installs this app on

her account, it collects photos along with tags from friends’ accounts that open their

photos in albums for friends or the public to see. Since on Facebook, tags of photos

usually include information regarding who appears in photos, the app can send both

the photos and such meta-data to some remote storage site. For the local synced

storage implementation (the Client modules in Figure 6), we use SparkleShare [19].

3.6.4 Virtualized vs. Non-virtualized Devices

Both virtualized and non-virtualized devices in PCloud shares aforementioned imple-

mentation detail except the followings.

Virtualized Devices. The control domain of Xen hosts the PCloud runtime and

its other necessary components. For both Linux and Android on guest domains, M-

Channels link guest actions with PCloud components. We use an Intel Atom mobile

platform with the Xen 4.1 hypervisor, running Linux and Android virtual machines.
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Non-virtualized Devices. Cirrostratus uses agents to interact with non-virtualized

mobile devices, such as actual Android phones or tablets, using Google’s Android 4.0

Ice Cream Sandwich and 4.1 Jellybean. The agent is a service module on the Java

service layer that essentially emulates the functionality resident in the control domain

(Dom0) of virtualized systems.

3.7 Experimental Evaluation

This section evaluates the use cases described in Section 3.3 to demonstrate the utility

and performance of the Personal Cloud approach and implementation.

3.7.1 Neighborhood Watch with Face Recognition

Test-bed Configuration: We use a resource pool managed by Cirrostratus consist-

ing of two desktops (N1, N2, respectively), an m1.large EC2 instance (EC2) as well

as a mobile device. Further, the digital neighborhood watch application (DNW) on

a mobile device uses a camera connected via Android on our virtualized Intel Atom

platform. For non-virtualized devices, the same software uses a camera installed on

the Nexus 7 tablet. The face recognition service operates in three different configu-

rations: (i) on a standalone mobile device, (ii) on a PCloud instance with a set of

nearby devices, and (iii) simultaneously using a remote server running on the Ama-

zon EC2 instance as well as (ii). Each configuration performs tasks of the DNW,

which includes taking a photo, detecting and identifying faces on the photo, return-

ing results to a user, and starting all tasks over again every 3 seconds. In addition,

we introduce two different executing environments, exclusive and mixed, in terms of

network status and resource utilization. In the exclusive execution, the DNW is the

only application that gains access to all resources given by PCloud, while the mixed

execution allows other applications to simultaneously access such resources. We use

OpenCV 2.4.2 with the Eigen-face algorithm [72] to build this application.

Evaluation Scenario: When some user monitors a street closed to his house, he
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Table 1: The number of recognized faces per each participant in the DNW

Name Faces in Facebook Standalone phone

A 32 10
B 23 16
C 24 9
B 35 11
B 14 5

runs the DNW application (app) on his mobile device. The app captures people’s

image on the street periodically (every 3 seconds) and figures out who they are. These

results in a capacity query sent to each configuration of the face recognition service:

(i) located on the device, (ii) a set of user-owned devices, and (iii) remote cloud.

For this use case, our current heuristic for resource allocation is initially to choose

the nearby resources for services unless the remote one, i.e., the Amazon instance,

offers a performance index that is twice as high. If services on nearby resources is not

available, the heuristic is to attempt to work with remote cloud services. Compute

power on a mobile device is used only as a last resort.

Results of The Scope of Data: Five fellow students helped run the experiment

by installing the required Facebook app for the data aggregation service, resulting

in the remote store containing all photos and tags on their respective Facebook ac-

counts for identified friends, the idea being to emulate several parties living in the

same neighborhood. We assume that a user A, in Table 1, has a mobile phone par-

ticipating PCloud. The numbers of faces listed in Table 1 use photos from the user

data aggregation service attached to all participants (i.e., A, B, C, D, and E) since

all of them are in the DeviceShare group in Facebook. The numbers mentioned in

Table 1 refer only to those that are sufficiently clear to permit our face recognition

software to correctly identify faces. Note that the total number of distinct faces ac-

cumulated by the data aggregation service is 105 after removing duplicated results,

thereby demonstrating its ability to provide a wider scope with a broader set of data

set than that available on any compared to any specific device.
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Results of Performance: We first evaluate the elapsed time needed to iden-

tify a person’s face via the neighborhood watch app. As mentioned earlier, the

neighborhood-watch app sends a face recognition service request every 3 seconds

for 5 minutes in the mixed execution environment. Then the PCloud runtime and

Cirrostratus build a PCloud instance and allocate a resource for the service either

on one of nearby devices (N1 or N2) or on the cloud (EC2). Figure 7 is a snapshot

of the elapsed time to process one request. As seen in Figure 7, the service located

on the nearby resource, Config. (ii) (Nearby), shows the best response time when

each service can identify a given face. With Config (ii), transmitting states and user

data consumes 331ms out of the total elapsed time of 1335ms (about 24.7 % of time).

This includes time where the PCloud runtime constructs a PCloud instance to meet

the requirement of the Face recognition service before transmitting them. However,

most of which time is influenced by the network connection status. The time is less

for nearby devices, compared to using the remote cloud due to the network delay.

Figure 8 shows that power consumption is substantially higher when the DNW

runs on that single device. This is in stark contrast to results shown for the Nearby

and Cloud configurations: the energy consumption on the mobile device of Config.

(ii) and (iii) (Cloud) compared to (i) (Standalone) is reduced by 74 % and 77 %,

respectively. Even if we omit CPU usage on the mobile device for each configuration, it

still follows the power consumption plot in Figure 8: this means that power savings are

due to the fact that compute-intensive face recognition functions can be successfully

offloaded to a suitable computing resource.

During the experiment, resource allocation takes place 19 times, due to changes

in network condition and resource availability caused by other workloads being run.

Figure 9 shows the user-experienced total response time taken to obtain recognition

results. If the resource is located on the cloud, network delay is three times larger than

when using the nearby resource, as seen in Figure 10, but the increased computational
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Figure 7: User-experienced response times

Figure 8: Comparison of power consumption
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Figure 9: User-experienced total response times for face recognition requests

Figure 10: Cumulative distribution functions of network delay

capabilities of the cloud successfully offset that additional delay. Comprehensive

comparisons in Figure 11 show that for this application, user-experienced response

times are almost identical no matter what resource is given to the service.

3.7.2 Display Sharing

Test-bed Configuration: We evaluate the costs of projecting a small screen on a

smartphone to a large nearby display. We use a 23-inch monitor with full HD resolu-

tion (1900 x 1080) attached to a desktop PC, participating in PCloud interacted with

the master in Cirrostratus, all connected to the mobile device via 802.11n. The Atom

platform and Nexus 7 offer 1024 x 600 and 1280 x 800 resolution, respectively. The

authentication service runs on an Amazon t1.micro instance hosting a Facebook

app.

42



Figure 11: User-exprienced average delays

Figure 12: Evaluation scenario procedure
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Evaluation Scenario: Suppose that Alice shows video clips of her newborn baby

when she visits Bob’s house. With a PCloud instance, if a PCloud environment is

set up at his home, she can easily depict this clip, as long as both Alice and Bob are

friends on Facebook. In this case, Alice asks Bob to share the large TV with her,

and he places her into the Device Share group in his Facebook account. Assuming

she already installed the Facebook app for the authentication service, when she starts

the app, Facebook leads her to a server that hosts the app. Now the app shows a

list of people who are willing to share their device’s capabilities by putting her on

their Device Share group. She selects Bob on the list. If this is her first use of the

authentication app, the authentication service generates her certificate based on PKI

(X. 509 specification). The service also provides the IP address of Bob’s Cirrostratus

master along with her private/public key pair. Authentication is completed when the

PCloud software in Alice’s phone starts a connection with Bob’s Cirrostratus master,

with all subsequent communications transmitted via a secure M-Channel connection.

Using this connection, Cirrostratus is allowed to share with Alice’s device a list of all

permitted capabilities for guest users. Our current implementation only supports two

groups – the owner and guest group, where only a member of the owner group can

adjust the capabilities being shared. The Personal Cloud software (agent) in her

phone, then, chooses the desired display, lets the capability service know about its

selection, and finally, starts transmitting the mobile phone’s screen to an appropriate

PCloud instance. Before the transmission takes place, the PCloud runtime in Bob’s

house initiates a PCloud instance including the large TV and begin with the remote

display service on the instance. Then the desktop machine starts its VNC [12] receiver

as the remote display service to project Alice’s screen on its display. Figure 12 depicts

each step in PCloud for the display sharing use case.

Evaluation Results: Table 2 shows the elapsed time from when Alice sends a

request for display sharing for the first time to Bob’s Cirrostratus. In this case, Alice
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Table 2: Elapsed time in milliseconds for display sharing

Task (message) From To Elapsed Time Std. Dev.

Initiate a certificate MO S 88.2 27.6
Return the certificate and key pairs S MO 213 35.3
Authentication All All 405 41
Send a display sharing request MO SM 140 66.3
Return a list of available capabilities SM MO 293 117.3
Notify a selection of a display MO SM 179 55.8
Initiate a VNC connection SM MO 153.3 80

Total Elapsed Time 1471.5 ms

MO : a mobile device
S : the authentication service
M : a Cirrostratus master
All : all devices joining a device cloud

has to first create her certificate. As seen in Table 2, it takes 1471.5ms to be ready

to project the screen on her mobile phone to Bob’s display, likely superior to a case

in which Alice and Bob try to wire these devices manually. Further, with PKI and

SSL connections obtained by the authentication service, such sharing is done in ways

that respect access rights and provide end user security.

3.7.3 Discussion

Interesting to note about the neighborhood watch application is that while local

resources offer low latency response, the increased data scope of remote resources can

offer improved accuracy, and in addition, for this application, the substantially faster

remote resources can also hide some of the additional network delay seen for requests

to the remote cloud vs. local machines. Such trade-offs are a general attribute of the

PCloud approach, encouraging future work combining performance indices capturing

such trade-offs, with networking data, and with indications of what may be most

important to end users when services are run, i.e., user intent. In fact, it is because

of the flexibility offered by PClouds that such trade-offs become possible, permitting

mobile devices to opt for best-fit resources in their current environments. The PCloud
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approach supports such actions via continuous system monitoring to understand the

capabilities offered by currently reachable resources (the performance index in this

case) and network connectivity.

Display sharing via PClouds demonstrates seamless and secure ways to leverage

nearby resources, supported by SNS-based authentication and access control. Offline

certificates [34] can be used when remote SNS services cannot be reached. More

generally, efficient operation disconnected from remote clouds is an obvious advantage

provided by PClouds, for which we are currently considering additional Cirrostratus

enhancements that can distinguish important from less important services when a

user wishes to run multiple services on potentially scarce nearby resources.

Personal Clouds are shown capable of substantially augmenting the capabilities

of mobile devices, and they can alleviate their limitations, including lack of perfor-

mance, limited battery lives, and constrained form factors. They can also deal with

the restricted the scope of the data currently resident on each device. In contrast to

remote cloud services used by mobile devices, PClouds can also augment device capa-

bilities through the use of nearby devices. The outcome is not only increased storage

and computational capacities, but also the creation of entirely new functionalities not

available from remote services, such as the ability to present on large displays, the

potential to share content not resident in remote clouds, and others.

PClouds leverage Social Network Services (SNS), i.e., those provided by Facebook,

for authentication, access control, and for secure device interaction. Their hypervisor-

level realization includes fully virtualized devices like home desktops or server systems

as well as non-virtualized mobile devices like the Android tablet used in this paper.

Performance evaluations show PClouds capable of augmenting device capabilities to

improve their performance as well as enhance the functionality seen by end users.

In summary, PCloud realizes new design principles discussed in Chapter 2 to

extend the idea of VPs. In contrast to the Stratus infrastructure, PCloud can
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support non-virtualized client devices like Android smartphones as well as resources

from remote clouds and owned by different users. To enrich a resource pool for a

VP, resource participation in PCloud is guided by permissions and policies controlled

via social network services (SNS), thus making it possible to share resources owned

by different users in a secure and safe way. In addition to enriched sharing, PCloud

improves applications’ scope through its aggregation storage service that takes ad-

vantage of the SNS, which allows applications’ scope to go beyond the data currently

resident on a single device. Finally, PCloud directly accepts an application’s request

for resources via its Intent API rather than uses the policies that Stratus intro-

duces. In doing so, it enables VPs to more accurately understand and respond to

applications’ ever-changing resource requirements in a timely manner.

3.8 Related Work

ThinkAir [73] proposes dynamic resource allocation on the server side to maximize

parallelism for offloaded workloads. MAPCloud [97] models mobile application as

a location-time workflow (LTWs) and maps LTWs onto online resources with 2-

tier clouds. Our work also considers two layers of resources, nearby and remote

clouds, but PClouds can share fine-grain device capabilities among participants as

well as perform compute offloading. HomeOS [51] pursues goals similar to those

of PCloud. Like PCloud, it permits users to formulate and enforce desired policies

across all HomeOS devices, but it does not exploit SNS to enable the access control

and consequent rich methods for device sharing present in PCloud. SBone [109] uses

social networks to create an overlay over existing social network graphs for enabling

devices to share content, state, and computational resources. Cirrostratus shows the

utility of leveraging efficient local area networks, and it can compose a new abstract

at the finer granularity of individual device capabilities. We leverage well-known

authentication technology, with the innovative approach of using the Facebook SNS
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as an authentication service. Our approach implements a framework similar to [99],

which suggests using Google’s OpenSocial and Facebook’s Connect to provide APIs

for web-based social network applications, allowing users to carry their identities

across applications and devices. Using remote resources to augment the compute

performance of mobile devices has been studied since [55]. Recent research like

MAUI, CloneCloud, Mars [44], and Cuckoo [71] address the question of how to find

the compute intensive portions of an application and move those between battery-

operated devices and high-performance backend servers. The focus is on remote

cloud servers, however, so these systems do not have functionality that describes

and can exploit the varied capabilities present in the many and often heterogeneous

devices present in the nearby cyber-environments targeted by our work. Similar to

our own previous work, Cloudlets [64] use small servers as nearby computing resources

to augment mobile devices, via virtual machine migration, but the system does not

support non-virtualized devices. [117] suggests use cases similar to ours, arguing that

the use of smartphones heavily depends on context, in particular, on other devices

and places, and on the situations users are experiencing.
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CHAPTER IV

STENCIL: ACCESS CONTROL SERVICE FOR VIRTUAL

PLATFORMS

The more devices join a resource pool, the better virtual platform will be created

because of the pool’s increased set of resources. Consequently, edge cloud infras-

tructures like PCloud are able to construct better virtual platforms that match

application needs than in our earlier work on Stratus . Toward this end, PCloud

offers an SNS-based mechanism so that users can easily share their resources with

others. The SNS service assumes such users share a special group on Facebook, as

discussed in 3.6.3. Use of that service enhances PCloud ’s resource coverage, but

also imposes additional burden regarding access policies of each resource on end users.

This chapter proposes a novel approach, Stencil, to ease the difficulty and complexity

when users handle access policies for all their resources on edge cloud infrastructures.

4.1 Goal

With high diversity existing in today’s computing devices as well as the enormous

number of sensors with which users can interact, it becomes more challenging for users

to properly decide on the different access privileges granted to individual resources

when sharing them with others. Hence, the goal of Stencil is to help such resource

owners easily set up access privileges for their own resources, while ensuring safe and

secure operation.

4.2 Approach

In Stencil, fine-grained access control is realized by a reference monitor that enforces

access policies to any resource on a VP to be granted only to parties authorized to
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do so. It also provides resource owners with a runtime recommendation for access

privileges, determined from (i) social relationships between the invoker of a resource

and its owner and (ii) the current context in which a request is made.

4.2.1 Authorization and Recommendations

A call to a resource in a VP by user’s application (i.e., principal) must not succeed if

that principal does not have suitable access permissions to the physical resource in the

VP. For every call, therefore, a VP should check the caller’s access permissions and

provide the resource only if access is permitted. To do so, Stencil uses discretionary

access control (DAC) [96], implemented via cryptographically protected capabilities

for all resources for virtual platforms. The access rules, i.e., policies, realized in

this fashion are formulated by resource owners to control who (i.e., some principal)

is authorized to access certain operations associated with the resources in question.

There are explicit operations for creating policies, granting and revoking access rights,

and to restrict delegation.

While fine-grain protection is important, it is difficult to formulate and express

such protection policies in environments targeted by Stencil [101]. We address this

issue by providing to resource owners an online recommendation service for access

permissions, leveraging the wealth of information about potential principals available

on social networks [58] and data about the current context in which the application

is operating [27].

4.2.2 Secure Offloading for Applications

Applications may require a wide array of software services that process their tasks.

If they run on the battery-operated devices, some edge cloud infrastructures like

PCloud and Cloudlet allow such tasks to be offloaded to richer resources for the

sake of performance and battery life. Such tasks are run either on the device on

which the app is running or on any accessible ambient computing resources. Since
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they are preferred to run in an isolated environment for its safe execution [48], where

the resources allocated for those services and sandboxes are controlled by a mechanism

cooperating with the underlying edge clouds like PCloud and Stratus [67, 68].

4.3 Architectural Design

Stencil has two main components for its design to realize the aforementioned tech-

nical approaches, the reference monitor and recommendation service. The reference

monitor enforces an access policy for each invoked resource while the recommenda-

tion service, which is backed by information derived from the social network services

(SNS) and the current context, provides end users with an easy way to construct such

policies. It also performs mutual authentication.

4.3.1 Reference Monitor: Access to Resources on Edge Clouds

Internal runtime representation of the access controls mentioned above is a list of

access rights to services, resources and data, which is enforced by Stencil’s internal

reference monitor. If, for example, the user drives up to her house, the reference

monitor would provide full access to all in-house edge cloud resources, e.g., her home

PC, home sensors, etc. If the user drives up to her friend’s house, such access is limited

to only those resources to which her friend has granted her access, e.g., the friend’s

large screen display for jointly viewing vacation pictures. The FaceRecognition service

in 3.6.3 is another resource made available in this fashion, where within say, a home

edge cloud, the home owner has access to and can run a rich set of services (and the

resources on which they run), e.g., to determine whether a person visible on a home

security camera is someone known to the homeowner or an unwanted intruder.

4.3.1.1 Authentication

Access controls begin with mutual authentication activities between two principals,

i.e., a user running an app and the owner of resources that the app tries to access.
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In Stencil , those activities involve a Facebook-based app installed by the user on

her Facebook account and a server hosting this app on an Amazon EC2 instance for

a trusted key server.

4.3.2 Recommendation Service

To assist resource owners create access policies, Stencil’s recommendation service

provides them with a preset access policy based on information acquired from their

SNS and the current context in which a request is made. Stencil assumes that the

owners are willing to share their resources with those who are closed to them in the

real world. In Sociology, such people are referred to as having a strong social tie

with the owners. This tie, however, is hard to measure in the real world to construct

access policies. Hence, Stencil’s recommendation service uses recent studies proposing

certain models for predicting such social ties from the interactions observed in an

SNS like facebook. For the relationships that are unable to be captured by the SNS,

the recommendation service refers to the context in which a request is made. The

SNS information helps the service predict the real strength of social ties, and the

context information captures the situation that goes beyond social ties, which means

that their complementary nature can lead to a more accurate recommendation. The

owners can accept or customize this recommendation to make their own polices, or

they can simply ignore it.

4.3.2.1 Social Network Service

Recent studies [58, 59, 60] present models that predict actual social relationships,

social ties, from the interactions between participants observed in social network

services (SNS). Such models derive predictive variables from SNS and then use them

to estimate the strength of social ties in the real world. Stencil adopts this approach

by (i) periodically inspecting a resource owner’s SNS interactions and then (ii) using

these observations to predict the owner’s social ties to other individuals with which
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he/she interacts. This prediction, then, is the basis for constructing a set of recom-

mendations for access permissions to the owner’s resources. The owner can use these

recommendations for making final decisions about granting access permissions.

4.3.2.2 Context Information

An SNS can capture many, but not all social relationships relevant to access to re-

sources. Additional information of value for deciding on access permissions include

the context in which access requests are made and the intent behind making those re-

quests [36]. A resource owner may be visiting a gym, for instance, wishing a trainer to

have temporary access to her/his personal health sensor. In Stencil , such context

information [75] is captured with Stencil-specific data that can include access to the

owner’s online calender (e.g., gym appointments), SNS events, and physical sensors

like the owner’s GPS location via a smartphone [27, 35]. A simple example is one in

which SNS relations do not provide a visitor to your home with sufficient permanent

permissions to access some home device, like a large-screen display, but additional

context derived from an appointment noted in a shared calendar may temporarily

provide such permissions.

4.4 Implementation Detail

4.4.1 Access Control and Policies

Access controls enforced by Stencil’s reference monitor are inherent to how the re-

sources in a given VP are used. Such access controls begin with mutual authentication

activities between the mobile device user and any other users (e.g., the homeowner)

with whom she might want to interact. In our implementation, those activities in-

volve a Facebook-based app installed by the user on her Facebook account and a

server hosting this app on an Amazon EC2 instance acting as a Certificate Authority

(CA), implemented with an X.509-based public key infrastructure. This operates as

follows. The app, once installed, interacts with the CA running on the Amazon EC2
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instance, to verify an identity of a edge cloud and a person. The EC2-based CA,

then, holds the Facebook user’s certificates for future use. The EC2-based CA only

manages the certificate for those who install the app. Each individual edge cloud and

the guest device will consult this CA to mutually check if the edge cloud is really the

one that the guest device wants to join (and vice versa), and this mutual identification

should happen before the access control.

The reference monitor determines what access policies (if any) exist for the user,

i.e., the invoker of a specific resource. This determination is carried out by Stencil’s

recommendation service, which (i) looks up the social ties shown in Facebook

between the user (i.e., the invoker) and the other person involved (e.g., the home-

owner),and (ii) checks for additional context information available for that user. An

example of such context is an event, noted in the user’s event calendar, where the

user is a scheduled participant in a shared meeting with the owner.

The resulting access recommendation, i.e., the access policy to be applied, then,

is based on social tie (e.g., how well do I know the owner?) and on context (e.g., are

we both attending the same scheduled event?). The policy determined in this fashion

is enforced with every access by the invoker to the resources of an edge cloud. The

outcome is fine-grained access control in which different access policies are enforced

for every invoker. Policy enforcement is efficient, as the reference monitor issues an

access token to the invoker based on a given policy, and then, every resource request

uses that access token when interacting with access control (which checks the token).

An additional optimization implemented in the current system skips such explicit

checks for new requests made by a user for the same resource within 1 minute of

previous requests.

The current implementation of the recommendation service uses 10 of top 15

social tie prediction variables defined by [58], but we can easily append others to

the current service. To create reference policies from those variables, we cluster the
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owner’s friends on Facebook into different groups using the Jenks algorithm [69]. Each

group is mapped to a different reference policy, and these groupings (and reference

policies) are presented to the owner as recommendations. The owner can accept

them as is, or he/she can customize them as desired. Context is managed similarly:

the recommendation service again defines a suitable reference policy and makes it

available for inspection and possible modification by the owner. To capture where a

request is made, the current Stencil on mobile devices should report its location

from a GPS sensor on devices when it requests to connect an edge cloud belonging to

others. Beyond using location data, current applications with Stencil use context

determined by event pages on Facebook and the Google calendar service. An access

token resulting from this context information, which is called a guest policy, is required

to renew every 2 hours. Further, while such context can be checked rapidly, estimation

of social ties from prediction variables is slow, in part because it must walk through

and collect all social traces on the owner’s Facebook account (to understand the

owner’s ties to other users). As a result, the recommendation service only periodically

updates its social tie estimates, according to settings controlled by the owner, but

captures context information immediately and on demand.

4.4.2 How It Works

Suppose that three persons, (e.g., Alice, Bob, and Charlie) have an appointment at

Alice’s house (now Alice is the owner of an edge cloud) and Alice is a friend with Bob

on Facebook, but not with Charlie. Since the Stencil periodically evaluates the

social relationship between Alice and Bob on Facebook and gives Alice a recommen-

dation regarding to Bob’s access to her edge cloud based on such evaluations, Bob’s

application may now access Alice’s resources as long as both are so close on Face-

book. The current implementation clusters all friends on Facebook into four different

group, and provides recommendation based on the cluster that the each friend belongs
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to. However, Alice can still modify the policy for B manually. For any requests from

Charlie’s applications, Stencil first checks the cluster that the user, Charlie, belongs

to and ends up finding Charlie does not have any access right for Alice’s resources

unless she previously sets it manually. Since Stencil can recognize the location of

Charlie , it also looks at Alice’s calender and Facebook event pages to check if Alice

and Charlie have any appointment where Alice’s resources are located (i.e., her house

in this case). It will see her appointment with Charlie at her house, then recommend

her to allow Charlie’s applications to give a pre-defined guest policy. Then Charlie’s

app will be able to access the resources residing in Alice’s edge cloud. In addition,

Bob’s applications will also go through the same process with Charlie’s applications

if Bob will fall into the cluster than is allowed to access to certain resources.

4.5 Motivating Use Cases

A use case for Stencil is a digital neighborhood watch application (DNW) [42]. Such

applications must access sensors owned by many parties, thus requiring authorization

for such accesses, and they must implement potentially complex privacy-conserving

algorithms for the homes’ cameras [38], smoke detectors, and environmental sen-

sors being used. The DNW application with Stencil show dynamic authorization

and sensor as well as other resources protection functionality, and it uses edge cloud

resources to run the potentially complex services associated with such accesses, in-

cluding the resource-access mediation methods themselves.

4.6 Experimental Evaluations

We extend the DNW application 3.3.1 to work with Stencil for our evaluations as

follows. The application uses the same test as described in Section 3.3.1. The only

difference from the PCloud case is to add Stencil to authorize app’s access to

Alice’s camera. So we can identify Stencil’s overhead.
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4.6.1 Test Settings

A Facebook account used for the evaluation has 2675 postings with 3458 comments

and 2270 likes. The DNW app runs on a workstation with Intel i7 950 CPU, 8GB

memory, and AMD Radeon 270X GPU. Alice’s camera node is realized by using TI

OMAP5432 CPU and 1080P USB camera. Finally, for the authentication purpose,

our trust key server is deployed at an Amazon EC2 m3.medium instance.

4.6.2 Recommendation Service

Table 3 shows how quickly a recommendation is offered by the recommendation ser-

vice. The Facebook-based recommendation responds very quickly because Stencil

caches the estimation results from the model at a local PCloud , which means the

recommendation service in Stencil does not evaluate the model every time a re-

quest comes because its execution time is too long to use it in realtime. With the

test settings, it takes 453 minutes since evaluating every single social interactions

on Facebook to accurately generate these recommendations is a demanding task, its

weekly recomputed results are cached and reused, with the assumption that social

ties are unlikely to change over that time period.

4.6.3 Digital Neighborhood Watching

The digital neighborhood watch app requires controlled access to distributed sensors.

When deployed at the DNW server (Table 8) owned by Bob, for example, it attempts

to access web cameras belonging to Alice. Upon such an attempt, SOUL access

control managing Alice’s resources recommends to her whether the access should be

granted or not, based on the social ties between Bob and Alice. Figure 13 shows

the strengths of those ties and the clustering of the groups for recommending access

policies based on ties, using data is extracted from Alice’s and Bob’s active Facebook

accounts. In this case, Alice has 121 friends on Facebook, and the access control

service sorts them into three groups based on the the strength of the tie. If Bob falls
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Figure 13: Evaluation of social tie and the recommendation service.

Table 3: The elapsed time to create a recommendation

Recommendation Time in milliseconds Std.Dev

Facebook-based 6 0.3
Context-based
– Via Facebook Event pages 123 56
– Via Google Calendar 90 24

into a proper group, the recommendation service recommends to Alice that she allow

Bob’s access to her web cameras, which Alice may accept or reject.

Finally, once access to any participating camera is granted, the app tries to identify

any person seen in the picture from the cameras. Table 4 shows the entire process

to take 1.8 seconds, i.e., to identify faces after the camera captures a picture, which

shows 6.7% additional processing time for the authorization conducted by Stencil .

4.6.4 Discussion

The applications interacting with the edge clouds that provide transient resources

visible only in certain locations or environments must dynamically acquire the rights

to access them. Stencil intends to provide such applications with required runtime

permissions, including to resources extracted from nearby ambient resources and/or

the remote cloud. It also minimizes user’s manual input to create access policies for

individual resources via its recommendation service leveraging the SNS and capturing
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Table 4: Results for the digital neighborhood watch in milliseconds

Tasks Stencil Time PCloud Time

Mutual authentication 534.8 534.8
Camera-access invocation
– Open a camera 111.5 104.3
– Read a captured image 160.3 152.9
– Close the camera 19.7 15.8
Face identification
– Detection 673.8 673.8
– Recognition 300.1 300.1

Total elapsed time 1800.2 1781.7

the current context. Our DNW application shows that Stencil efficiently supports

resource sharing between different ownerships of the resources.
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CHAPTER V

SOUL: MOBILE APPLICATIONS IN A SENSOR-RICH

ENVIRONMENT

Interacting with sensors presents numerous challenges, particularly for applications

running on resource-constrained devices like smartphones or tablets. The Soul ab-

stractions in this chapter addresses the challenges faced by such applications through

virtual platforms. Toward this end, Soul expands the virtual platform realized by

PCloud for enabling novel sensor-related mobile applications. Soul creates a new

sensor abstraction on top of virtual platforms, which allows such applications to eas-

ily (i) access device built-in and environmental sensors with the level of convenience

needed for their ubiquitous, dynamic use, and only by parties authorized to do so,

and (ii) scale their sensor use, given today’s multitude of sensors.

5.1 Goal

Mobile devices are now the medium of choice for people to interact with each other and

their environments, whether carrying out business or personal tasks. Such interactions

can be enriched by the ever increasing availability of on-device and ambient sensors,

including to for customizing user interactions to current contexts and needs. Recent

high-end smartphones, for instance, have more than 10 embedded sensors, and there

are already 6 sensors on average in roughly 30 to 40% of today’s mobile phones [14, 24],

and a similar trend is seen for emergent wearable devices. Mirroring the growth in

device-level sensors, there is also an increasing presence of sensors in users’ external

environments, ranging from those in controlled settings like homes, cars, or hospitals,

to those in public settings like sports venues, entertainment, or parks [11]. Tesla’s
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Model S, for example, has 12 sensors, and Google’s driverless car is known to use at

least 6 sensors just for its obstacle detection unit. Smart homes can have 1000s of

sensors for providing home security, automation, and entertainment [11].

SOUL addresses the challenges faced by mobile applications (apps) that seek to

leverage and use the dynamic sets of sensors present on mobile devices and in the

environments where they operate. Three particular issues faced by such apps are

(i) the diverse nature of sensors, reflected in the need to use per-sensor protocols

for interacting with them; (ii) the computational and data management challenges in

interacting with sensors, particularly for applications running on resource-constrained

end devices like smartphones; and (iii) the dynamic nature of sensor presence, as users

move in and out of their proximity and run applications requiring their dynamic

access.

Given the issues identified above and the resulting complexity in writing sensor-

driven apps, it is not surprising that most of today’s apps do not truly leverage the

rich, evolving on-device and remote ambient sensor ecosystem. In fact, less than 0.5%

of the apps available in the Google Play Store in 2012 actively used sensors [24], and

this situation continues to persist. An analysis presented in this paper shows that

sensors are used in less than 2% of those millions of apps!

The goal of the Soul abstractions is to make available to applications the sensors

present in their current surroundings, with application services running on systems

that range from individual end user devices, to nearby computing resources (e.g.,

a home PC), and/or the remote cloud as Figure 14. Another goal is that in such

settings, Soul not only protects dynamic sensor access and use, but also offers rec-

ommendations to sensor owners about suitable access permissions for the principals

involved, based on the owner’s social network interactions with those principals and

the contexts in which requests are made by improving Stencil for sensors and as-

sociated resources.
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5.2 Contribution

Addressing the paucity of sensor-rich applications, the Soul (Sensors of Ubiquitous

Life) and its abstractions make it easier for such apps running on resource-constrained

devices to interact with and manage the dynamic sets of currently accessible sensors.

SOUL

• externalizes sensor & actuator interactions and processing from the

resource-constrained device to nearby and remote cloud resources, to leverage their

computational and storage abilities for running the complex sensor processing func-

tionality;

• automates reconfiguration of these interactions

when better-matched sensors and actuators become physically available;

• supports existing sensor-based applications allowing them to use SOUL’s

capabilities without requiring modifications to their code; and

• authorizes sensor access at runtime to gain protected and dynamic access for

applications to sensors controlled by certain end users.

The functionalities listed above are obtained via the SOUL aggregate abstraction,

which for mobile applications, is their single point of access to sensors, actuators, and

associated software services. This abstraction is realized by middleware that leverages

edge cloud infrastructure – in our case, the representative PCloud [67] system –

to efficiently run SOUL aggregate functionality. The outcome is that with SOUL,

computationally or storage-intensive sensor-related data management and processing

tasks can be externalized from the smartphones that invoke SOUL, offloading these

tasks to run anywhere in the edge cloud, including on currently available edge cloud

machines and in the remote cloud. For such actions, sensor and resource accesses are

guided by dynamic access permissions.

Key to SOUL’s aggregate abstraction is the insight that sensor access can be virtu-

alized, where instead of directly communicating with some physical sensor, the sensor
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interacts with an online datastore, and apps interact with the virtualized sensors pre-

sented to them by that store. The store interacts with the diverse nature and dynamic

presence of current physical sensors and virtulizes them such that Android provides

apps with sensors so that SOUL can supports the existing applications without requir-

ing them to be reprogrammed. While SOUL transparently supports existing apps,

apps using the SOUL API can fully utilize SOUL’s features. For example, SOUL’s

automated reconfiguration actions can shield apps from the need to understand what

physical sensors are currently accessible. Further, the virtual sensors exposed by the

store need not map one-to-one to specific physical sensors, and the processing needed

to create useful virtual sensors need not be done by the apps running on resource-

and energy-constrained smartphones. Instead, edge cloud resources can be leveraged

to carry out these computationally costly processing tasks, and the datastore can

run the potentially costly protocols required for sensor interaction. Finally, since all

of this functionality is implemented in ways that maintain, for existing apps, the

programming model in the current Android Sensor Framework, the existing Android

applications using sensors continue to run without the need for modification.

With SOUL, a single smartphone app can interact with 100s of physical sensors,

actuators, and associated services, minimizing the impact on a device’s battery life

and performance. The evaluations in this paper show, for instance, that apps utilizing

SOUL see reductions of up to 95.4% in access latencies for on-device sensors, compared

with direct accesses to such sensors on the actual Android smartphone, and they

can scale up to using 100s sensors without notable increases in smartphone power

consumption.
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Figure 14: The goal of Soul

5.3 Sensor Use in Mobile Apps

With the advent of a world of a trillion sensors and mobile devices, a new class of

applications has been predicted to emerge, providing end users with personalized ser-

vices based on the precise capture of their current contexts and intents. Those apps,

however, must actively interact with the numerous sensors present on mobile devices

and in their current environments, e.g., to extract user’s personal contexts or envi-

ronmental conditions. Unfortunately, today’s reality is that most mobile applications

(apps) use only a few physical sensors, despite the fact that the devices hosting such

apps are themselves sensor-rich. Estimates [14, 24] are that apps using at least one

sensor in Android devices with typical devices equipped with six sensors on average

are just 0.5% of all available apps in 2012. It is a surprisingly low rate considering the

nature of such devices, which is capable of capturing current user context with their

multiple sensors and feeding such information to the apps. This section describes

more precisely the current status of how apps interact with sensors, enhanced with

our own comprehensive study of current apps’ sensor use.
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5.3.1 Background

Android provides apps with two sensor-related services: (1) the Android sensor frame-

work, and (2) a location service. The sensor framework contained in the android.hardware

package is a principal means for apps to access raw data from built-in sensors. The

framework distinguishes hardware- from software-based sensors, the former directly

mapped to specific physical sensors embedded in a device, and the latter emulating

desired sensors by synthesizing raw data from multiple hardware-based sensors. An

example of a software-based sensor is an orientation sensor combining the hardware-

based gravity and magnetic sensors to identify the angle of the device relative to

the ground and direction of movement. Sensor availability and access methods vary,

depending upon manufacturers (e.g., Samsung vs. HTC), device models from the

same manufactures (e.g., Samsung Galaxy S5 vs. S6), and even on Android versions

(Galaxy S3 with Android ICS vs. Kitkat) installed in the same device. Finally, the

sensor framework may expose multiple sensors for a single physical one, e.g., different

sensing rates or resolutions.

Android’s location service has evolved from the android.location platform

API to the Google Places API for Android. With the android.location API, ap-

plications must manually interact with GpsLocationProvider, NetworkLocation

Provider, and even SensorManager to decide on a user’s current location. For

example, if a user is walking into a shopping mall from an outdoor parking lot, an

app using GpsLocationProvider suddenly loses the user’s location because a

GPS signal is lost in the mall, so the app needs to change its location provider to

NetworkLocationProvider, with the hope that the WiFi or cellular connection

may be available. If not, the app considers sensors like accelerometers, orientation

sensors, etc. to estimate the user’s current location from the last GPS-provided loca-

tion. In other words, with this API, apps must explicitly deal with sensor availability,

thus creating levels of complexity in sensor go beyond their innate functionalities.
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Complexity like this is one of the motivations for developing SOUL and in fact, for

location sensing, Google has already taken a similar step, by developing the Google

Places API that removes from apps the need to interact with individual location

sensors, by presenting FusedLocationProvider as a high-level abstraction. The

outcome is that location sensors are the most commonly used sensors in Android

apps, far outpacing other sensor usage in the Google Play store. With SOUL, we

provide apps with levels of convenience of sensor use like that offered by the Google

Places API. We next delve more deeply into the mobile app ecosystem and its current

use of on-device and ambient sensors.

5.3.2 Mobile App Analysis

5.3.2.1 Methodology

Using a tool inspired by recent studies [4, 9, 120] that downloads and analyzes apps

from the Google Play Store, we analyze how such apps behave on the Android plat-

form, scrutinizing their bytecodes and manifest files. Our initial study used the top

100 apps in each category on the Google Play Store, resulting in a total of 5,000 apps

(on August 21, 2014). We then expanded it to almost all free apps in the Store (750K

out of the entire 1.2 million apps on November 20, 2014). Outcomes from the study

reported next include (i) the number of apps that use at least one sensor, (ii) the

count of sensors used per app, and (iii) the most commonly used sensors.

5.3.2.2 Sensor Usage in Current Apps

As shown in Table 5, for the top 100 apps (in each category of Google Playstore), 81

out of 5000 (1.62%) use at least one sensor. This constitutes only a small increase

over the previous estimate of 0.5% reported in 2012. Our more extensive survey of

750K apps in Table 5 do not show any notable differences from the top 100 apps,

with 1.92% of those apps using at least one sensor. Further, for apps using sensors,

most of them only use a single sensor despite the multiple on-device sensors available
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Table 5: The number of apps based on sensor use.

Sensor Count Apps(top 100, 5K) Apps(750K)

1 64 12233
2 13 1054
3 3 831
4 0 23
5 1 17
6 0 126
7 0 2
8 0 60

Total(%) 81 (1.62%) 14427 (1.92%)

Table 6: The most commonly used sensors.

Sensor Permission Counts(top100, 5K) Counts(750K)

accelerometer 66 13192
compass 15 2391
proximity 8 432
gyroscope 6 1211
light 6 353
barometer 1 331
stepdetector 1 70
stepcounter 1 71
magnetic field 0 20

to apps. In addition, for both cases (top100, 750K), the accelerometer is the most

commonly used sensor, followed by the compass refering to Table 6. All permissions

of sensors in Table 6 start with android.hardware.sensor. One exception is location

awareness, implemented by Android’s location services providing location data via

a well-defined abstraction to apps discussed in Section 5.3.1 without requiring them

to directly access sensors in the sensor framework. Their common use (in almost

30% of the top 100 apps) suggests positive outcomes, i.e., increased sensor use, from

developing methods like those realized by SOUL.
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5.3.2.3 Discussion of Study Outcomes

Evident from the statistics reported above is the fallacy of recent predictions that

mobile devices will naturally become hubs in a sensor-rich world. In theory, many

apps could benefit from leveraging all sensors on devices and in a user’s current

environment (e.g., sensors from wearable devices, homes, and cars). In practice, this

is not the case, and it remains unclear why today’s apps do not actively leverage even

the potential utility of the sensors on their own devices. SOUL addresses this issue by

seeking to improve mobile apps’ interactions with sensors, in ways that reflect recent

lessons from the location service. The following case study shows one potential cause

of the dearth of sensor usage, the fragmented nature of today’s sensor ecosystem in

Android.

5.3.3 Case Study: Temperature Sensors

As an example of temperature sensors, Listing 5.1 illustrates the current complexities

of sensor use experienced by Android apps. Since they are not one of eight sensors of-

ficially defined in the Android SDK, apps using them must manually retrieve a Sensor-

Manager object and its information via the getSystemService(SENSOR SERVICE),

first obtaining a list of existing sensors through getSensorList(TYPE ALL) and

then checking the types of sensors in the list, to find either TYPE TEMPERATURE

or TYPE AMBIENT TEMPERATURE depending on the Android API level. Additional

issues arise [1, 8, 14, 24] from the facts that (i) device manufacturers may define

different ways of accessing the same sensor, sometimes even for different generations

of the same products, and (ii) app developers seeking to use sensors have to handle

different sensor vendors and their diverse products.

Explicit discovery prior to sensor use, coupled with heterogeneity even in simple

cases like the temperature sensor outlined above, causes apps that seek backward

compatibility to forgo using such sensors. It may also explain why widely used apps
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Listing 5.1: An example code of how to check the existence of a temperature sensor

1 SensorManager smanager = (SensorManager) getSystemService(SENSOR_SERVICE);
2 Sensor temperatureSensor;
3 for (Sensor sensor : smanager.getSensorList(TYPE_ALL)) {
4 if (sensor.getType() == TYPE_TEMPERATURE ||
5 sensor.getType() == TYPE_AMBIENT_TEMPERATURE)
6 temperatureSensor = sensor;
7 }
8

like Facebook do not actively utilize sensors other than the location service to cus-

tomize content to users’ current contexts. SOUL reacts to this issue by improving

ease of use for on-device and nearby sensors as follows: (i) tackling fragmentation via

a common sensor API (see Section 5.6.1), with backward compatibility, (ii) provid-

ing dynamic, protected access to the sensors present in a device’s current external

environment (see Section 5.4.3.2).

5.4 SOUL Design

SOUL has two basic components: (1) the SOUL Engine residing in the Android

platform manages all sensor-related operations, and (2) the SOUL Core, which is

a set of modules and middleware interfacing otherwise standalone systems with the

cloud. Its current version built for the PCloud edge cloud infrastructure includes

SOUL’s sensor datastore, access control methods, and resource management.

Applications use SOUL functionality to access sensor data, control sensors, and

to run sensor services via the SOUL’s aggregate abstraction. Specifically, with the

aggregate abstraction, applications can create points of access and use for sensors

and associated sensor services and actuators, regardless of where these sensors are

physically located, i.e., on the app’s local platform or accessible remotely. Figure 15

overviews SOUL’s design, described in more detail next.
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Figure 15: SOUL Design

5.4.1 Design Principles

This section presents design principles for SOUL. The SOUL Engine and Core con-

tinue to guide more detailed architecture design and implementation on Android and

PCloud .

5.4.1.1 Logical Decoupling

SOUL virtualizes physical sensors, to create easily used sensor abstractions with uni-

form APIs that replace the custom APIs offered by specific physical sensors. Virtual-

ization also provides flexibility for exactly crafting the abstractions desired by apps.

For instance, for sensor processing requiring both current and past sensor data [39],
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with SOUL, sensor data can first be placed into a sensor storage service, the Sen-

sor Datastore, and SOUL aggregates obtain data from that storage service rather

than from physical sensors. Such intermediate sensor data storage permits data reg-

ularization and/or time series-based data use [26]. Additional interesting uses of

virtualization are to construct entirely new sensor types that fuse or combine [46]

several physical sensors into new ones.

5.4.1.2 Flexible Service Execution

Ample previous work demonstrating the need for flexibility in sensor data processing

ranges from early results on runtime adaptation for sensor processing [104, 114] to

recent work on novel edge cloud functionality [39] and on cloud offloading [85]. Lever-

aging such results and akin to first storing sensor data in a storage service before

delivering it to applications, SOUL offers flexibility in where an aggregate performs

its sensor processing: on the sensor itself, on the platform running the app using the

sensor, or on cloud processing resources. SOUL middleware obtains such functional-

ity by interacting with edge cloud infrastructures [51, 64, 67], via its translation layer

shown in Figure 15. We currently use the PCloud [67] representative edge cloud

infrastructure, but translation layers for other infrastructures are straightforward to

implement.

5.4.1.3 Compatibility with Existing Android Apps

Apps currently using device-level sensors should be able to continue to run, interacting

with SOUL without the need to modify their codes. SOUL addresses this issue by

exporting to such apps illusions of the physical sensors with which they interact.

Such illusions are virtual sensors identical to those in the Android Sensor Framework.

At the same time, via aggregates, SOUL provides more advanced functionality to

SOUL-aware apps. This differentiates SOUL from previous work supporting only

new applications written for their new APIs, like GSN [26] and RTDroid [123].
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5.4.2 SOUL Engine

SOUL’s realization in Android, the SOUL Engine, interacts with apps via SOUL

APIs. Invocations of Engine APIs trigger additional important functionality in co-

operation with the SOUL Core on PCloud as follows: (i) Access control – the

Engine determines each app’s degrees of access to desired sensors. (ii) Orchestrated

data movement – at the granularity of a group of virtual sensors, it creates Sen-

sor Streams that ultimately link sensors to apps. (iii) Externalization – it runs the

middleware functions needed to interact with edge clouds, when present. If no edge

cloud is available, the Engine runs the app’s SOUL aggregates on available local and

externally pre-exposed resources on the device hosting the app. Conversely, with

edge clouds, SOUL’s middleware methods interact with the SOUL residing on nearby

edge cloud resources. (iv) Runtime mapping – SOUL permits automated methods to

map physical to virtual sensors, with runtime remappings based on changes in user

context.

5.4.3 SOUL Core

The SOUL Core is comprised of three modules interfaced with the underlying edge

cloud infrastructure, i.e., in our case, the PCloud infrastructure. The first is the

Sensor Datastore, which interacts with physical sensors to collect their data and

store it into an underlying time-series database. Second, the reference monitor in the

SOUL Core enables dynamic permissions to sensor data based on fine-grained access

control policies. Lastly, the Core’s Resource Manager makes decisions concerning

the offloading of sensor management and processing from resource-poor end devices

to the cloud. The Core’s implementation on PCloud has sandboxing methods, so

that it can better control the execution of app-provided, potentially complex and

time-consuming sensor processing codes on local or remote resources. Figure 16 also

shows the translation layer used to interface SOUL with edge cloud infrastructures
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Figure 16: The SOUL Core Design

like PCloud (an alternative implementation for Cloudlets [64] is in progress).

5.4.3.1 Sensor Datastore

As stated earlier, the Sensor Datastore virtualizes sensors, in that sensor data is

first placed into the store, then pre-processed to provide apps with different ways to

access and use that data. Specifically, upon an app’s access to some virtual sensor

on a device, the Sensor Datastore constructs a sensor stream to move sensor data

between the SOUL Core and the SOUL Engine that ultimately, provides sensor data

to apps (in the form of virtual sensors). For example, if an application desires a time-

series sensor, the store manager reads the corresponding sensor data and bundles time

stamps with that data. It can then make available to the app an appropriate virtual

sensor (e.g., sensor data along with time stamps). To respond to requests from the

apps, the Datastore defines the following operations.

GroupBy. The SOUL Engine API allows apps to combine multiple sensors into a

higher level abstraction, to make it easy for apps to scale in terms of the numbers

of sensors with which they interact and in terms of the degrees of required sensor

processing. Data acquired from such sensor groups is processed by appropriate sensor
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service(s) run on the device and/or on edge cloud resources, then placed into the

Datastore. Typical properties used in groupBy are those based on sensor location,

type, etc. The outcome is that apps interact with a single point of control, the sensor

group, for any such set of sensors, thus making it easy for an app to see and control

them. An example is ‘all’ light sensors in a single home.

Filter. If apps do not need sensor data to be as precise as that delivered by a

physical sensor, they can receive only the data that meets their criteria, expressed

e.g., as time windows or sampling rates. The Datastore’s filter operation implements

such functionality.

Bundle. The bundle operation can provide additional metadata like time stamps

and sensor locations, to enable apps to utilize the sensor data without additional,

extraneous sensor or datastore interactions.

Reconfigure. If an initial configuration of a SOUL aggregate must be changed

because, say, a user moves to a new location, newly available sensors may be added

to the aggregate and others may be removed. The reconfigure operation shields apps

from such dynamics in the environments in which they operate, resulting in seamless

SOUL use across changes in time, location, or even with physical sensor failure.

5.4.3.2 Access Permissions to Operations

With Stencil , Soul enforces access permissions to ambient or nearby sensors.

SOUL enhances Stencil to implement dynamic methods for access control for sen-

sors, thus enabling such apps to address the security and privacy issues arising for

shared sensing (and sensor processing). Stencil is now integrated with the Soul

Core. As already discussed in Section 4, such controls should simply be envisioned

as access matrices accessible and checked by the SOUL Engine. How matrix entries

are determined, i.e., how it is determined whether or not a certain app should have

access to a certain sensor, is a matter of policy. The access control policies realized
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for SOUL and the automation actions taken to deal with dynamic sensor arrivals

and departures will be described in a future publication, but briefly: (i) virtualized

sensors in SOUL aggregates can be designed to export only and precisely the data

needed by an app [84, 86, 116]; (ii) sensor owners can define fine-grain permissions

for apps to use certain virtualized or physical sensors [101]; and (iii) SOUL assists

owners in creating access policies, with automation support that leverages their social

network services; and finally, (iv) a sandboxing mechanism is used to safely execute

app-provided codes on remote resources that process sensor data [48].

The glance operation: With the emergence of the Internet-of-things(IoT) environ-

ment, it is growing that edge cloud infrastructures collect and manage data [63, 65]

generated in that environment. Stencil has a new operation, the glance operation,

to preserve privacy when apps access sensors. Access controls can be used to permit

or disable sensor access, but by controlling which app can use which operations on

resources managed by SOUL, it becomes possible to make finer grain decisions that

can mitigate the risks to privacy inherent in permitting others to view data from per-

sonal sensors. with Stencil , Soul handles this via the two distinct operations, read

vs. glance, which export different granularity of data to different invokers. That is, if

an app without proper privileges invokes a read on a sensor, that access will not be

granted, but the app may succeed with its glance requests. Specifically, for privacy-

sensitive sensor data requiring controls on its exposition to external entities [86], the

glance operation offered by SOUL aggregates will export only summary data. For

example, apps with glance see only overall trends rather than detailed sensor data,

e.g., private sensor data.

5.4.3.3 Sensor Management and Processing

The other extension of Stencil is its support for safe execution of sensor-data pro-

cessing. The descriptions above make clear that SOUL aggregates may require a wide
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array of services that implement the rich sensor data processing methods needed by

applications. There are two ways to implement such services: (i) by utilizing ser-

vices already present in the edge cloud [67], or (ii) by dynamically extending a SOUL

aggregate’s services via app-defined methods for processing the data from sensors in

the aggregate (e.g., using JavaScript), described in more detail in Section 5.7.2.1. To

enrich whatever sensor processing methods may already be present in an edge cloud,

SOUL permits dynamic extension, to allow apps to run their own post processing

algorithms on top of PCloud resources, termed Processing on Demand, and when

doing so, it sandboxes such codes for safe execution [48], where the resources allocated

for those services and sandboxes are controlled by PCloud’s underlying mechanism.

5.4.4 Sensor Streams

Apps use virtual sensors much like current Android apps use physical ones, thus pre-

serving the Android sensor programming model. Below that layer implementing the

Android sensor programming model, sensor streams bridge between the SOUL En-

gine on a device and the SOUL Core running on underlying cloud resources. Upon

a request from an app, stated for some SOUL aggregate, the Datastore creates a

Sensor Stream connecting between the Core and the Engine. It attempts to meet

Android-defined constraints on desired sensor data rates and delays, and within those

constraints, it also seeks to obtain improved performance by optimizing this stream

using sensor data batching. The outcome is that battery-operated mobile devices are

shielded from some of the potential overheads of using physical sensors (e.g., battery

drain discussed in Section 5.8.2) ; instead, these overheads are shifted to PCloud

resources running the Datastore. These optimizations shield apps from potential over-

heads they might otherwise experience for sensor access, but they do not prevent the

datastore from exporting sensor data with the actual precision offered by a physical

sensor. This is because all sensor nodes are required to send their raw sensor data to
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Figure 17: The SOUL Engine and Core connected via Sensor Stream

the sensor datastore at their native sampling rates, via the writeData call defined by

the PCloud egde cloud. For sensors resident on the Android devices, upon an app’s

request, the SOUL Engine first transmits on-device sensor data to the Datastore, and

then obtains sensor data for apps as for all other sensors. Figure 17 shows how each

sensor stream connects the SOUL Core on a device with the corresponding Engine

on an edge cloud.

5.5 The SOUL Engine

For sensor-based apps, SOUL aggregates are the single points of use regarding sensor

access, actuation, and processing services. Apps access their SOUL aggregates via the

Engine API. This API provides convenient access to both on-device and remote sen-

sors through the sensor datastore (see Section 5.4). The SOUL source code available

is available at https://github.com/gtpcloud/SOUL.git.
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5.5.1 Programming Model – SOUL Activities.

The SOUL Activity class is a Java abstract class for apps to interact with SOUL aggre-

gates, to define its SOUL aggregates – via its compose method, and to finalize SOUL

aggregate processing – via its trigger method. Trigger is important in part because

sensor data processing can be specific to the applications using sensor data, an exam-

ple being an application simply displaying e.g., current temperature data, vs. another

that plots changes in temperature over time. The app can provide methods that plot

temperature change over time, invoked by the Trigger method whenever sensor data

changes. More importantly, the SOUL activity class is compatible with the Android

sensor APIs because it runs as a wrapper of Android’s SensorEventListener.

The pseudocode in Listing 5.2 shows a SOUL activity that detects intruders and

turns on sirens in a home if they are not authorized to enter. The application de-

fines its compose() method (line 4) to connect both the face recognition service and

friendlist service associated with Facebook (line 5 – 6). It then recognizes faces in

current frames of given cameras, followed by checking whether the users with those

faces are authorized to enter (line 7 – 8), which results in setting a flag for the trig-

ger() method (line 9). When the trigger method is invoked by the SOUL Engine, the

app performs an action determined by the intrusion variable (line 14 - 16). It turns

on all of the sirens located in the user’s home. The getService and getActuator calls

are explained in the next section.

5.5.2 SOUL Engine APIs

5.5.2.1 Access to Soul Aggregates

SOUL aggregates permit apps to uniformly access sensors, actuators, and associated

services. If an app send a request via Android SDK to read a nearby temperature

sensor, the app makes Engine API calls, for instance, the app retrieving a nearby

temperature sensor makes a call in Listing 5.3.
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Listing 5.2: The SOUL activity class in Android

1 public class IntruDetection extends SoulActivity {
2 private boolean intrusion = false;
3 @Override
4 public void compose() {
5 Soul fr = Engine.getService("FaceRecognition");
6 Soul fb = Engine.getService("Facebook");
7 if (fr.recognition(Engine.getSensors(Engine.TYPE_SENSOR_CAMERA))
8 if (!fb.getFriends.contains(fr.getRecog))
9 intrusion = true; }

10 @Override
11 public void trigger() {
12 notifiyResult(intrusion);
13 if (intrusion) {
14 Soul siren = Engine.getActuator("siren:all", Engine.

TYPE_LOCATION_HOME);
15 siren.turnOn();
16 }
17 }
18 }
19

Listing 5.3: Temperature sensor example

1 Engine.getSensor(Engine.TYPE_SENSOR_TEMPERATURE | Engine.
TYPE_LOCATION_NEARBY)

The SOUL Engine will turn it into the JSON request shown in Listing 5.4 and

send the request to the SOUL Core for access to the virtual sensor in app’s aggregate.

The sensor stream for delivering sensor data to the app also use the JSON format.

To find such nearby sensors, SOUL utilizes PCloud managed information.

Upon success, the Engine calls mountSensor and if Engine.TYPE ACCESS PRIVATE

is not set by the app, exports the sensor to global level via exportSensor. The mecha-

nism used to notify the app about the updated sensor value is detailed in Section 5.6.1.

By default, the Engine preserves the sensor’s original sampling rate when raw sensor

data are transmitted to the Datastore.

5.5.2.2 Group Operations

The group object for sensors is accessible via the getSensors function. For instance, if

an app calls Android sensor APIs to use cameras that have a light-sensing capability

and are available at the current location, the SOUL Engine translates such calls to
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Listing 5.4: Access request to SOUL aggregate in JSON

{ "Soul" {
"ops" : VS_GET,
"sid" : 487635463,
"sensor_name" : "_TEMPERATURE",
"source" : "Joseph’s bedroom",
"period" : "120000", /*Sampling rate in millisec.*/
"window" : 360 /*Time windows in sec.*/
}

}

Listing 5.5: Group operations in JSON by the name of sensors

{ "Soul" : {
"ops" : VS_GET,

"flag" : VS_FLAG_SG
"sid" : 487635464,
"sensors" : {

"sensor_name" : "camera",
"sensor_name" : "light",
. . .
}

}
}

activate an internal groupBy operation to sort the associated sensors with given flags

to form a suitable sensor group. The group, then, provides a single point of access

to multiple sensors that share a common property to trigger an internal groupBy

operation. Internally, the SOUL Engine sends JSON request to the Core and upon

response, sorts the associated sensors with given flags (e.g., source) to form a suitable

sensor group, as depicted in Listing 5.5 and 5.6. The group, then, provides a single

point of access to multiple sensors that share a common characteristic. That is,

ensuring that the camera and light sensor are from same physical source, camera

is visible from current location, etc to ensure SensorGroup contains proper Soul

aggregate.

5.5.2.3 Dynamic Reconfiguration

When a user’s context changes, e.g., a location change, this can place a burden on

apps required to explicitly deal with such changes in real time: (i) to continually

check for or sense such changes, and then, (ii) discover and (iii) connect to available
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Listing 5.6: Group operations in JSON with all matching sensors

{ "Soul" : {
"ops" : VS_RET,

"flag" : VS_FLAG_SG,
"sid" : 487635464,
"sensors" : {

"sensor" : {
"name" : "camera",
"source" : "home garage cam2" },

"sensor" : {
"name" : "light",
"source" : "living room cam9" },

"sensor" : {
"name" : "light",
"source" : "home garage cam2"},

. . .
}

}
}

sensors in the new context. The mapping method in the SOUL Engine can be used

to prevent apps from having to implement such actions and experience their resulting

overheads. Specifically, based on defined triggers, like a change in a user’s location, a

SOUL aggregate can be dynamically reconfigured to remap its sensors and actuators

to newly available physical ones, without additional app intervention. To detect such

context changes, SOUL utilizes the Bluetooth/GPS/WiFi along with information

from PCloud .

Mapping in the Engine collects and maintains a desired characteristics of set of

resources (e.g., nearby) and the Engine itself dynamically reconfigures as new sen-

sors are discovered and old ones are no longer accessible. Addressing both sensors

and actuators, mapping in the SOUL Engine defines a runtime method for binding

a physical sensor to the virtual sensors in the SOUL aggregates defined by appli-

cations. Mapping also serves to bind some specific sensor processing service. The

following example shows an actuator with a desired property mapped at runtime to

an appropriate physical device:

Listing 5.7 shows the need to access a speaker actuator ‘nearby’ the device run-

ning the app, where the mapping method dynamically selects the device in question
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Listing 5.7: Mapping example

1 Soul speaker = Engine.getActuator(‘‘speaker");
2 speaker.mapping(Engine.TYPE_LOCATION_NEARBY);

at runtime among nearby available speakers. The outcome is that the app plays

a sound stream via a virtual speaker actuator that is guaranteed to be re-mapped

to speakers located nearby the device. In this way, both SOUL-aware and legacy

apps using AudioFlinger, the Android sound system service can transparently

use sensors and actuators without any overhead as the Engine continuously monitors

designated sensors and actuators. The experimental evaluation in Section 5.8.6 will

assess representative mapping methods and the overheads associated with using such

dynamic sensors or actuators.

5.5.3 Discovering Edge Clouds

For access to edge cloud resources, SOUL seeks to discover an edge cloud whenever

the user unlocks the screen on her Android device1. Unlocking the screen triggers

an interaction with a directory service located on a remote cloud (an Amazon EC2)

that returns to the device a set of edge clouds available to the user in her current

environment. Which resources are returned depends on user context and her social

relationships or more generally, on the access controls associated with the user re-

questing the resources. The reference monitor shown in Figure 15 implements these

access controls. Their internal runtime representation is a list of access rights to

services and SOUL aggregates (and the sensors they represent), with access controls

enforced by SOUL’s internal reference monitor. If, for example, the user drives up to

her house, the reference monitor would provide full access to all in-house edge cloud

resources, e.g., her home PC, home sensors, etc. If the user drives up to her friend’s

1To reduce overheads, our current implementation limits the frequency of such discovery actions
to once every five minutes.
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house, such access is limited to only those resources to which her friend has granted

her access, e.g., the friend’s large screen display for jointly viewing vacation pictures.

The FaceRecognition service used in the example above (see getService call) is an-

other resource made available in this fashion, where within say, a home edge cloud,

the home owner has access to and can run a rich set of services (and the resources

on which they run), e.g., to determine whether a person visible on a home security

camera is someone known to the homeowner or an unwanted intruder.

5.6 Select Implementation Detail

This section presents the implementation detail needed for understanding the evalu-

ations in Section 5.8.

5.6.1 Android Realization

Our Android implementation must be (i) backwards compatible – allowing existing

apps to continue to interact with their sensors as well as virtual sensors in SOUL;

(ii) transparent – permitting the use of sensors regardless of their physical location,

e.g., whether exist at the device or remotely; (iii) portable – allowing SOUL aggregates

to run on any of the variety of edge cloud infrastructures; and (iv) controlled –

enforcing well-defined access controls for the invokers of SOUL aggregates.

We obtain these properties as follows. First, SOUL aggregates wrapping existing

sensors provide legacy apps with the aforementioned sensor illusions. Such apps can

still benefit from being able to use both on-device and ambient – nearby – sensors,

but cannot take advantage of more advanced SOUL functionality such as an uniform

access to SOUL aggregates, nor can they bypass SOUL’s access controls. Second,

with sensor virtualization, i.e., the ability to construct entirely new types of sensors

from both physical sensors and events (e.g., calendar events), transparency becomes

a pervasive property of SOUL’s Android implementation. Third, we demonstrate

portability by realizing SOUL on diverse devices that include the Galaxy Prevail,
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Table 7: Tested Android Devices

Device OS Device OS

Nexus 7 (2013) KitKat Nexus 4 Kitkat
Galaxy S4 KitKat Galaxy S3 KitKat
Galaxy Prevail Gingerbread Galaxy Tab 3 Jellybean

S3, S4, Tab 3, and Nexus 4, 7–2013 (see Table 7 for the detail), and by providing

a translation layer with which SOUL services can run on the PCloud or elsewhere.

Fourth, controlling sensor use is ensured by an access control service operated in

SOUL.

The sensor framework in Android can be divided into three layers: (i) Java layer,

(ii) system layer, and (iii) HAL. The Java layer interacts with apps, the system layer

controls built-in sensors via HAL, and finally, HAL talks to the kernel-space device

drivers. To transparently support existing apps, SOUL’s implementation operates at

all three layers, and for remote ambient sensors, SOUL does not make any assumption

regarding how they connects to a device. (e.g., Zigbee, WiFi, bluetooth or physically

connected with USB)

5.6.2 SOUL Engine

This section describes the rationale for SOUL’s current Android implementation.

5.6.2.1 Hardware Abstraction Layer (HAL)

Android’s HAL mandates that when Android introduces a new sensor type that can

replace an OEM-define sensor type, the OEM must use the official sensor type and

stringType on versions of the HAL [16]. HAL, therefore, is a seemingly attractive layer

for implementing SOUL-like solutions. Unfortunately, there are several drawbacks.

First, HAL itself has become blackbox in most Android devices, except for a handful

of Google reference devices. This is because device manufacturers do not publish

their HAL source codes. Second, HAL no longer operates as originally intended, e.g.,
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consider the temperature sensors described in Section 5.3. As a result, apps must

manually interact with such sensors, resulting in lack of portability and unnecessary

overhead.

5.6.2.2 SensorManager in the Java layer

Recent work [37, 124] uses the Java application layer in Android to export physically

attached (e.g., via USB connections) or Bluetooth-connected external sensors. This

is done by providing apps with their own SDKs defined by Intent classes, using the

AIDL (Android Interface Definition Language). This may help apps access on- and

off-device sensors, but they must use such new SDKs, without support for the existing

apps.

5.6.2.3 SensorManager in the System Layer (JNI)

Lessons from the above approaches lead us to a multi-layer approach that spans An-

droid’s system service and application framework, shown in Figure 20. (The blue

boxes indicate SOUL’s modules added to Android.) This multi-layer approach sup-

ports legacy apps and permits new apps written in our API to fully leverage SOUL.

Android’s SensorManager maintains (i) a sensor list, (ii) sensor events, and (iii) data

about receivers.

getSensorList. Each Android device creates a list of its native sensors at boot

time. With this list, we load both native and dummy sensors into SensorDevice at

boot time, later and on demand replacing the dummies with virtual sensors. Upon

request receipt, SensorManager returns the list of sensors available through nativeGet-

NextSensor, which simply returns the list previously loaded at boot time. In the list,

Sensor objects contain unique Device Handler Numbers (DHNs), and to avoid overlap

with the DHNs of the sensors on a device, we assign DHNs larger than 64 to virtual

sensors.
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SensorEvent. Apps implement SensorEventListener to create SensorEventConnec-

tion and enable hardware sensors via addSensor calls in SensorEventQueue. The

queue contains a series of SensorEvents. Each event contains a blocking call to re-

trieve data from HAL using read(buffer, 16) in the handleEvent function. Since HAL

is an opaque ‘blackbox’, we require a mechanism for generating an event to trigger

SensorEventConnection, for which our implementation uses a light sensor as an event

‘generator’ for the rate at which the fastest sensor is updated. This allows us to avoid

modifying the HAL, yet still substitute the data in each event with the virtual sensor

data.

Receiver. Upon receiving sensor data from the sensor storage service, SOUL on

the device substitutes the data in events generated by the light sensor with incoming

data, in the handleEvent method. In order to secure fairness for both physical and

virtual sensors, we introduce a HotQueue variable that stores the DHNs of the next

sensors to be batched. The HotQueue relies on Android native property get and prop-

erty set operations, to avoid additional read/write overheads. Registered receivers in

SensorManager wait for the blocking calls to be resolved. Since we rely on the light

sensor, we not only dequeue SensorEvent from SensorEventQueue, but also dequeue

DHN from HotQueue to compare with the DHN of the batched event, and if it has the

virtual sensor’s DHN, we then request an update via updateSensor(DHN) or update-

SensorGroup. The result is a low latency SensorGroup granularity update (shown in

Section 5.8.2).

5.6.3 SOUL Core

The current SOUL Core uses PCloud as the underlying edge cloud infrastructure,

and PCloud offers a clean and high-level abstraction of distributed resources incldu-

ing computing capabilities, sensors, and actuators. On top of PCloud , the SOUL

Core implements its Sensor Datastore, access control mechanism backed by Facebook,
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and resource manager to take sensor management followed by sensor-data processing

from mobile devices.

5.6.3.1 Sensor Datastore

The SOUL Datastore uses OpenTSDB [13] as its underlying database. More impor-

tant, however, are its actions manipulating sensor data. First, to match application-

stated requirements concerning sensor data rates and at the same time, obtain high

communication performance, the sensor streams it constructs ‘batch’ sensor data

records (explained below). Second, it implements runtime reconfiguration for the

mappings from physical to virtual sensors.

Batching. To efficiently transport sensor data across the network, rather than send-

ing individual sensor records, data is batched based on two criteria: (i) the app-

defined delay value (the sampling rate defined by the Android sensor framework)

constitutes a constraint applied to SOUL’s batching method, and (ii) networking

MTU determines batch size under that constraint, where batch size simply represents

the number of records packed into a single batch. In this fashion, SOUL adheres to

common Android practice, yet obtains improved performance compared to per record

network transfers. Figure 18 explains how the Datastore constructs a sensor stream

with the batch optimization.

Reconfiguration. The reconfiguration service implemented by the SOUL engine

(i) detects changes in the user’s context, whereupon (ii) it triggers remapping be-

tween sensor streams and corresponding virtual sensors. Specifically, the current im-

plementation detects a location change, whereupon the reconfiguration service sends a

reconfiguration request to the SOUL Core along with the IDs of the sensors currently

used by the application. This gives rise to a new sensor stream and ultimately, to

different virtual sensor data exposed to the app. The outcome is a complete elimina-

tion of app involvement when user context is changed. The current implementation
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Figure 18: Batch optimization in the Datastore

does not yet consider other issues that arise when physical sensors are changed at

runtime, such as potential changes in sensor resolution that may not be acceptable

to an app [48].

5.6.3.2 Access Control to Mitigate Privacy Risks

To mitigate privacy and security concerns when users share sensors, we port Stencil’s

reference monitor to the SOUL Core. This enforces access control policies, which are

inherent to how SOUL aggregates are used. As already discussed in Section 4.2, it

uses the discretionary access control model for authorization and builds a Facebook-

based server and app for authentication. To provide SOUL with sensor-related access

control, a new operation is added as follows:

Access Control via glanceSensor. When a mobile app invokes the openSensor

call to access shared sensors, the reference monitor returns a capability token to

the app, which indicates ‘no access’, ‘glance’, or ‘read’. ‘No access’ simply rejects

such an access. The read capability allows the app to use the getSensor operation

to fully customize requests (e.g., the time windows, filters, and resolution for data).

glanceSensor with the glace capability is a very limited version of the getSensor call,
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Figure 19: SOUL Processing-on-Demand

which can see only the sensor data that meets the conditions imposed by the owner-

defined policy. We demonstrate this feature by implementing microaggregation [54]

to the datastore, where the app with the glance capability can read only some trend

of data rather than the actual raw sensor value.

5.6.3.3 Sensor Management and Processing

To permit sensor post processing methods to run anywhere, on the mobile device

and/or on external resources, the resource manager can draw on PCloud resources to

offload such processing ‘on demand’. Toward this end, an app defines a Processing-on-

Demand (PoD) instance, consisting of algorithm source code written in JavaScript

and metadata defining PoD inputs and outputs. To run PoD code, the resource

manager uses sandboxes on PCloud resources to better isolate and control their

activities. The sandbox’s runtime executes PoD code on Node.js and communicates

with the Datastore to get and put appropriate sensor data. Processing results are

again delivered to the app in form of a virtual sensor. Figure 19 depicts how an app

uses external resources through its PoD instance.
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Figure 20: SOUL’s implementation in Android.

5.6.3.4 Edge Cloud Translation Layer

As stated earlier, SOUL relies on an edge cloud for its use of ambient resources and the

remote clouds. In SOUL, edge cloud usage is via a translation layer that acts in ways

similar to say, a virtual file system in Unix. Our current implementation leverages

the PCloud infrastructure described in [67], assuming the presence of a PCloud

agent on any device that uses SOUL. This agent provides the single point of contact

needed for initiating and finalizing SOUL execution, on the device or elsewhere, and

the PCloud infrastructure with its agents provides the sandboxed environments – on

ambient devices and/or the remote cloud – for running SOUL codes. We are currently

investigating ports of SOUL to other edge cloud infrastructures. For instance, the

Datastore would easily interact with BOLT [63], and the SOUL Core can run on top

of Cloudlets with its cognitive services [65] via the translation layer.
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5.7 SOUL Sensor Applications

This section describes (1) how SOUL supports and augments existing apps as well as

Android internal services in their sensor use, and (2) how it presents opportunities

for new kinds of apps that easily interact with sensors and use nearby and cloud

resources to process their data.

5.7.1 Existing Apps & Android Services

5.7.1.1 Supporting Existing Apps using Sensors

A Google Play app, Sensor Readout [15], demonstrates SOUL’s base support for

apps to transparently and seamlessly scale in terms of numbers of sensors and their

associated data processing activities. New and additional sensors can be used without

modifying existing app, whether those sensors are embedded in the Android device

or are accessible remotely. With SOUL, this application should not be able to tell

the difference between the embedded sensors on a device and remote virtual sensors.

5.7.1.2 Augmenting Existing Apps & Services

SOUL assists apps by automatic reconfiguration of the mapping between new physical

sensors and actuators to the virtual ones used by these apps. In fact, this function-

ality is available even to Android system services like its notification service. We

demonstrate the utility of this functionality with a the novel SOUL service termed

‘Everything Follows Me.’, which hooks up all interactions between Android and apps

& system services to create the physical-virtual sensors and actuators mapping. Along

with SOUL’s reconfiguration feature, this service can offer a continuous media app

experience even in the case that a user’s context (i.e., location) is changed without

the app having to be modified.The actuators of the media app consists of an adja-

cent loudspeaker and screen like those present in a home media system and an LED

indicator on an Intel Galileo board to forward all notifications emitted by the An-

droid notification service. This service conducts such remapping whenever SOUL’s
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reconfiguration senses a user location change. The idea is to move the sound across

a home’s different rooms’ media systems as the user walks through her home. Once

the reconfiguration notifies the change of user’s location to this service, it does the

dynamic mapping of physical sensors and actuators to the virtual ones exposed to the

application and Android system services. Using the Spotify [20] music app, with the

‘Everything Follows Me’ service, Spotify interacts with end users via whatever display

screen and speakers are close to the user’s current location. In addition, the user need

not be concerned about missing out on other important Android notifications, since

the ‘Everything Follow me’ service serves for Android internal notification service,

e.g., to notify the user about an incoming text messages via the LED also present in

each room.

5.7.2 Prototype SOUL Applications

An important property of the SOUL middleware is its ability to use nearby and cloud

resources for potentially expensive sensor processing activities.

5.7.2.1 PoD: Processing on Demand

Raw sensor data must typically be processed for meaningful use by apps, but such

processing can be expensive, quickly draining a device’s battery or exceeding its

processing abilities. To address this, the SOUL API permits apps to encapsulate

their sensor processing codes into Javascript run by SOUL aggregates. Since it is the

SOUL aggregate running these scripts, they can be run anywhere. We demonstrate

this functionality with an app deploying a Kalman filter [70] to produce a statistically

best estimate of sensor data: the app creates its SOUL aggregate with the filter code

and executes the aggregate on edge cloud-based resources.
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5.7.2.2 Composing SOUL Aggregates

A common app need is to combine and make use of multiple sensors/actuators in

a uniform way to realize some desired app-level functionality. This motivates the

‘sensor/actuator groups’ in SOUL aggregates, where each aggregate can group and

operate on multiple such groups. We demonstrate this functionality with an app that

permits end users to check the current time on their smartphone, but without turning

on the smartphone’s battery-consuming screen. This ‘Don’t turn on the screen’ app

uses a SOUL aggregate with access to a home and smartphone camera , and a phone’s

speaker, along with a finger-gesture recognition software service running on the edge

cloud: if the home camera sees the user approaching the smartphone, the camera

triggers a camera on the smartphone to check if the user does with two fingers.

Two-finger gesture is interpreted as a desire to check time vs. the user grasping

the entire phone, and the response is the phone’s speaker stating the current time,

without unlocking and activating the screen, thus conserving phone power. Once the

app defines this SOUL aggregate via the SOUL Activity class, SOUL operates the

aggregate without app’s interventions.

5.7.2.3 Comprehensive Health Aggregate

An additional SOUL application currently under development realizes the aforemen-

tioned ‘health aggregate’. This application will allow mobile devices to become hubs

for health-related information about the device owner [10, 105]. The application pe-

riodically measures data like blood sugar levels, data acquired from wearable devices

(e.g., health bracelets), and even data acquired from say, an exercise bike used by the

owner in a gym. Analytic services part of the SOUL aggregate immediately raise

alarms if unusual readings are detected from the SOUL aggregate’s virtual sensors,

and in addition, they interact with a cloud-resident service to compute long term

health statistics, implement a dashboard, etc. We offer this application as another

93



Table 8: SOUL Testbed Setting

Name Hardware/Role

Sensor/Actuator Nodes Intel Galileo 1st Gen
Camera Nodes Exynos 5420 and AMD E450

Speaker, Monitor A/B at room A/B respectively
EC2 m3.large (Cloud resource)

PCloud Resources Intel i5, i7 & Core Duo
User’s Device Galaxy S4 with Kitkat(CM11)

example of one utilizing the capabilities of multiple SOUL aggregates and exercising

SOUL’s dynamic authorization service (e.g., when accessing the health club bicycle

sensors), all driven by the SOUL engine.

5.7.2.4 Activities of Daily Living Aggregate

Another future SOUL aggregate measures the ‘activities of daily home living’ [82,

115], to identify changes in a subject’s routine. This SOUL aggregate uses non-

contact sensors to monitor subjects at home, performs computations on those sensor

readings using inference algorithms, to detect erratic or abnormal behavior, and uses

actuators to respond to detected abnormalities. The SOUL aggregate can be used

for different applications, e.g., to diagnose dementia and diabetes by monitoring a

subject’s activities or to provide early warnings about seniors living at home. We

offer this aggregate as an example of sensor processing requiring variably sized time

series of sensor data, from multiple sensors, to determine sensor readings that are

consistently abnormal. One method for processing such data uses entropy-based

processing [121].

5.8 Experimental Evaluation

5.8.1 Evaluation Setup

SOUL is evaluated with micro benchmarks and with the prototype applications (apps)

in Section 5.7.1. Table 8 describes our testbed, with Intel Galileo boards serving
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as remote sensor and actuator nodes. Remote sensor nodes measure humidity and

temperature at their locations; actuators send notifications to users via board-resident

LEDs. The camera nodes track users’ finger gestures for one use case and monitor

surroundings. Two different physical spaces, named Room A and Room B, are each

equipped with sensors, actuators, and a monitor and speaker.

5.8.2 Micro Benchmarks

5.8.2.1 Overhead

The overheads of reading SOUL’s virtual vs. physical sensors are evaluated with

the temperature sensor in a Samsung Galaxy S4 (GS4). In unmodified Android,

such an access begins with the SensorManager, followed by using HAL and OEM

device drivers called SSP in the GS4’s Linux Kernel. SOUL bypasses the HAL/SSP

layer, so that the SensorManager directly communicates with the SOUL Android

implementation, as described in Section 5.6.2. Figure 21 depicts the entry and exit

points of each layer for measurement. In the Figure, SM J and SM S denote the

SensorManager in the Java (JNI) and the system layer, respectively. In Figure 22, an

interesting result is that even when first storing sensor data in the Datastore and then

retrieving it via the network, the app-experienced delay in SOUL is much less than

that of the unmodified HAL. Even the case that SOUL core is on the remote EC2

and the device is on the relative slow 3G connection (labeled as EC2-HSPA+), SOUL

shows better response time than the HAL. Figure 22 clearly shows that the time taken

in the HAL is dominant in unmodified Android (99.8% of total time). With SOUL,

most time is spent in the network, consequently, with nearby resources (PCloud)

accessed via the 802.11g wireless LAN (WLAN) showing better performance than

when using a remote cloud (EC2) accessed via T-Mobile’s 3G connection(HSPA+).

This result suggests that the current Android sensor HAL potentially raises huge

overheads when apps access sensors. However, the limited access to the sensor HAL

source code makes it very hard for us to investigate this overhead further.
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Figure 21: Measuring elapsed time per layer.

5.8.2.2 Scalability

Scalability is evaluated in terms of power consumption seen by an app, measured on a

GS4 with an increasing number of sensors in one SOUL aggregate (up to 100). Power

consumption is measured with a Smart Power meter [7]. To see the performance

overhead when an app accesses sensors, we build a test app just reading physical sen-

sors embedded in the device without doing any post processing. As in Figure 23, just

reading five physical sensors is consuming a significant amount of CPU performance –

from 20%(baseline) to 64%(Android, 5 Sensors) – resulting in dramatic increasing of

CPU frequency – from 600MHz to 1.6GHz. These changes generated by the Android

sensor framework can hardly be justified when an app interacts with multiple sensors
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Figure 22: Elapsed time per layer.

in term of battery life. In addition to Figure 23, Figure 24(a) indicates almost con-

stant power consumption in the SOUL case, even with increasing numbers of sensors

up to 100, with the SOUL aggregate consuming less power than when a single sensor

is accessed in unmodified Android (Ref in the figure). Latency improvements are due

in part because of the ‘batch’ optimization (see Section 5.4.3.1) replacing many small

calls with fewer larger calls when one SOUL aggregate has many virtual sensors. Fig-

ure 24(b) shows ‘batch’ing gains of up to 88% in terms of latency, which results from

the optimized batch size when the Datastore constructs a sensor stream. Note

that batch size are constrained by both end user app requirements, a delay value,

and the network MTU. The ‘Ref’ in the Figure shows the result from one sensor in

unmodified Android.

5.8.3 Unmodified Apps using Sensors

Backward compatibility is evaluated by comparing sensor accesses by unmodified

apps with those using SOUL. (recall that even unmodified apps can benefit from

SOUL’s ability to provide access to both on-device and remote sensors). We verify

the backward compatibility of the SOUL by checking whether the existing apps in

the Google Play Store can transparently access the physical sensors they already use

via SOUL-based virtualized, an implicit bonus of such compatibility being that such

sensors can be local or remote. Figure 25 is a screenshot of the Sensor Readout

app able to transparently interact with on-device – the first three – and remote
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Figure 23: The CPU overhead in Android vs. SOUL

Figure 24: (a) Power consumption, and (b) Average latency.

sensors – SOUL virtual sensors. First three sensors in Figure 25 are those on our test

device, GS4, while the rest are virtual sensors that are local illusions of remote sensors

created by the SOUL abstraction. We also compare latency of SOUL with the native

Android sensor framework when the SensorReadout app accesses a on-device sensor

in Figure 26, which is very consistent with results shown in Figure 22 in Section 5.8.2.

That is, avoiding the HAL layer in the Android stack is very likely to offer the better

performance.

5.8.4 Processing on Demand

We use the Kalman filter to evaluate SOUL’s PoD feature. Our test app creates

a PoD instance with this Kalman filter source code written in JavaScript and then

SOUL runs the PoD instance on a sandbox on the SOUL Core. We also run the same

code on the device itself to make a comparison. Figure 27 (a) shows that it takes 1.69

seconds when such injected filter code runs in a SOUL sandbox, including all network
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Figure 25: A Screenshot of the Sensor Readout App

Figure 26: the Sensor Readout App-experienced delay

times, while it takes 17.64 seconds for the same filter processing to run on the device.

There are associated gains in energy efficiency on the GS4, shown in Figure 27 (b).

We counts machine cycles for each case. the filter runs 26,158,422,002 cycles on the

device whereas 39,541,615 cycles on the SOUL sandbox. Reductions in elapsed time

and improved energy efficiency are explained by the number of CPU-core frequency

changes in Figure 27 (a), which indicates that on-device processing operates all CPU

cores up to their maximum frequency (1.6GHz) for almost half of the processing time,

which is very high compared to the SOUL case. Table 9 breaks the execution time

into each task when its PoD instance runs on a sandbox on PCloud .
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5.8.5 Composing SOUL aggregates

The app defines its gesture aggregate consisting of an ambient and smartphone’s

camera, and phone’s proximity sensor as virtual sensors. The aggregate also includes

phone’s speaker as an actuator, and the gesture recognition service from PCloud for

its post processing. The recognition service runs on nearby resources, or on the remote

EC2, based on a decision made by the underlying PCloud . The end user’s request

– a report on the current time – is satisfied via the phone’s speaker. Results are

obtained by checking the current time every second for ten seconds, by either turning

on the screen or via this app. Figure 29 (a) shows the elapsed time from when the

finger detection service is run to when the current time is reported, with variations

when the recognition service is run on local edge cloud devices vs. the remote cloud.

We measure the elapsed time from the moment that the finger detection service is

run to the moment that the current time is reported, when the recognition service is

run on local edge cloud devices or the remote cloud. Using local resources on PCloud

results in a latency of about 97.4ms (95% confidence interval: 4.8), while latency

with the EC2 remote cloud is 294.5ms (30.6). We also compare the power and energy

consumption of the device running this app vs. simply activating the screen and

permitting the user to see the time. Figure 29 clearly shows that this app’s avoidance

of the screen dramatically reduces the device’s energy consumption, by up to 46%.

The speaking and screen consume 22.14 and 40.94 mWH, respectively. Each circle

shows the moment that a user acknowledges the current time.

5.8.6 Dynamic Reconfiguration

The ‘Everything Follows Me’ service described in Section 5.7.1.2 provides a seamless

media experience when running the Spotify app. In this evaluation, Android notifi-

cations also work with the ‘Everything Follow Me’ service to deliver notifications to
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(a) The elapsed time and CPU frequency changes

(b) Comparison of power consumption

Figure 27: Results of the app with a Kalman filter

the nearest user-visible LED. The ‘blackout’ time is 1918.3 milliseconds (95% con-

fidence interval:265.2) for the Spotify app and 10.9 milliseconds (0.21) for Android

notifications. This time is the elapsed time between the moment that the SOUL’s

reconfiguration notifies the user’s context change to the service after detecting the

change of the user’s location, and the moment that the services automatically remaps

to available resources in the new location. This remapping happens without user or

app’s intervention and for an unmodified Spotify app and the Android notification

service. Figure 28 (a) shows blackout time for the Android notification service and

(b) for the Spotify app during reconfiguration of the SOUL object.
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Table 9: PoD–Elapsed Time per task with 95% interval

Task microsec. 95%

PoD on PCloud 946385
– (a) Access to Datastore 18780 6708
– (b) Access Control 1530 539
– (c) Execution in Sandbox 925065 6320
Android Stack 44013 1462
Sensor stream over Network 28824 791

Figure 28: The CDF of ‘Blackout’ time.

5.8.7 Discussion

In addition to demonstrating SOUL’s utility and the versatile nature of virtual sensors

along with SOUL aggregates and their use, there are several interesting observations

about the experimental evaluations presented above. First, offloading sensor data

processing from the mobile device has advantages not only in performance and/or

power consumption (e.g., consider the Kalman filter example), but also in the delays

seen by end users, particularly when such offloading can use nearby computing re-

sources vs. the remote cloud. It also presents opportunities for creating advanced

functionality, like the timeseries data store used by SOUL. Second, with SOUL, even

unmodified Android applications can use ambient sensors, at low cost. Third, SOUL

helps create new opportunities for innovative sensing, including via sensor composi-

tion and the ability to run potentially complex processing methods on resources other

than those available on a single device.
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5.9 Related Work

Sensor Management Frameworks in Android. The Android sensor frame-

work [17] allows apps to access only device-resident sensors. Recent work [37, 123, 124]

has suggested extensions for access to off-device sensors. ODK [37] proposes a mecha-

nism using Kernel-level device drivers to access external sensors physically connected

via USB or Bluetooth. BraceForce [124] and RTdroid [123] also do so, but because

they introduce custom SDKs for interacting with external sensors, they do not sup-

port legacy apps written with the standard Android SDK. In addition, access control

in RTDroid [123] is similar to what is provided by SOUL, but without SOUL’s policy

level support. Rio [28] virtualizes a device file interface and uses shared memory

to access remote devices, potentially including sensors, but only works within sin-

gle Android platforms. Finally, in contrast to sharing sparse smartphone resources

across multiple entities seen in Cells [29], SOUL seeks additional flexibility in sensor

processing through offloading such activities to other resources when possible.

Middleware and Programming Models The nesC [57] is a dialect of the C

language for building applications for TinyOS running on sensor nodes with extremely

limited hardware resources. SOUL apps run on relatively resource-rich devices that

can host regular Android platforms, and SOUL can also take advantage of nearby

and remote cloud resources. MiLAN [88] allows applications to define QoS properties

for their sensing requirements, based on which it decides on suitable network and

sensors configurations. Such techniques may be useful to further extend SOUL’s

policies that allocate appropriate edge, remote, and device-level resources to SOUL

aggregates. MiLAN’s approach may seem to be similar with the idea of virtual sensor

groups in SOUL, but the purpose is completely different. While MiLAN provides

different QoS levels for a specific variable of interest from physical sensors, virtual

sensor groups in SOUL encapsulates multiple sensors into one virtual sensor to offer

a high-level abstraction for applications via single point of access along with common
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operations. SOUL allows applications to use software services offered by an edge

cloud infrastructure. Also of interest may be the dynamic agent migration explored

in systems like Agilla [56], which is a set of one or multiple software agents that can

migrate across sensor nodes. With SOUL, however, applications are ables to provide

their sensor-processing code and then SOUL allocates a best-fit resources for such code

to deliver performance and energy efficiency to such applications. TeenyLIME [45]

proposes a high level abstraction for data sharing among one-hop neighboring devices,

but unlike SOUL aggregates, it does not fully leverage all available ambient and cloud

resources. SOUL and GSN [26] share the motivation of virtual sensors, but while GSN

focuses on an infrastructure for sensor network deployment and distributed query

processing, SOUL provides to mobile apps new functionality that permits them to

transparently and uniformly access sensors, actuators, and services, without breaking

the Android programming model. Hourglass [110] introduces a circuit as its data

model for Internet-scale sensor network and service composition. This can potentially

be used for SOUL as an underlying communication layer.

Access Control and Privacy in Sensing. For SNS in a sensor-rich environment,

while SOUL leverages them to enable fine-grained resource access control of sensors

and associated resources, SenSocial [87] combines user activities on such services with

sensing the physical context, using the user’s mobile devices in a privacy-conserving

manner. Hence, applications can easily capture both user context and sensed data.

SOUL adopts elements of this approach. Techniques like the anonymity mechanisms

in [61, 116] could be used to implement enriched SOUL’s ‘glance’ calls, or one could

use the access control-based privacy mechanism in [75]. Liu [86] suggests a new

abstraction for trusted sensors with virtualization and hardware support. Obscuring

data as done in statistical databases could be used to improve the Datastore. Evans et

al. [53] use a Information Flow Control to manage privacy concerns in large distributed

system.
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Edge Cloud Infrastructures. SOUL can be mapped to edge cloud infrastructures

that include [18, 51, 64, 67], with our current work demonstrating this capability

using Cloudlets. In fact, the SOUL approach is somewhat similar to recent work like

BOLT [63] and Gabriel [65], both of which extend underlying cloud infrastructures

with new functionalities.
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(a) Response time to state the current time

(b) CDF

(c) Power consumption

Figure 29: Results of the ‘Don’t turn on the screen’ app.
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CHAPTER VI

CONCLUSION

Virtual platforms (VPs) provide applications on client devices with a high-level ab-

straction and an execution environment consisting of all user-accessible local and

remote resources along with services and data. With virtual platforms, applications

transparently use local and remote resources in a uniform way, thus benefiting from

augmented capabilities beyond the limitations of a single and isolated device in-

cluding lack of performance, short battery life, constrained form factors, and more

importantly, the restricted scope of the data available to applications. Virtual plat-

forms rely on a device cloud, which is a pool of network-enabled resources derived

from devices at the point of use (and remote clouds), all connected via well-connected

communication channels. In device clouds, one physical device exports a set of virtual

resources, enabling fine-grained resource control. To realize virtual platforms as well

as device clouds, three different software infrastructures were built, as follows.

Stratus is a proof-of-concept prototype to provide applications with a best-

fit set of resources in device clouds to enhance user experience without requiring

applications to be changed. To this end, Stratus constructs a VP for each user

application enriched with per user policies to describe end user needs. Since the

current implementation leverages system virtualization technology for device clouds

and VPs, Stratus assumes placement of a specific application along with its OS,

dependent libraries, and user preferences into a single virtual machine (VM). That

is, one VM corresponds to one application. This also makes it easier for Stratus to

avoid vendor-specific hardware or software and to preserve a user’s work environment

across a single machine boundary via live migration.
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PCloud extends the idea of virtual platforms, mirroring lessons learned from the

Stratus infrastructure. PCloud can augment device capabilities for applications to

improve their performance as well as enhance the functionality seen by end users. In

contrast to Stratus , PCloud can interact with non-virtualized client devices like

Android smartphones. In addition to supporting non-virtualized resources, it expands

its use of distributed resources that are not only from both local and personal but

also from remote clouds and owned by different end users. Resource participation

in PCloud is guided by permissions and policies controlled through social network

services (SNS), thus making it possible to share resources owned by different end users.

In addition to enriched sharing, PCloud also takes advantage of the SNS to operate

its aggregation storage service, to increase the scope over which applications can

operate: for common mobile applications, that scope is restricted to the data currently

resident on a single device. It is interesting to note about the PCloud approach

that while local resources offer low latency response, the increased data scope from

remote resources can offer improved accuracy, and in addition, the substantially faster

remote resources can also hide some of the additional network delay seen for requests

to the remote cloud vs. local/nearby resources. Finally, replacing the policies used

in Stratus , PCloud directly accepts an application’s request for resources via

its Intent API, which along with the integration of resources from clouds and other

users enables VPs to more accurately understand and respond to applications’ ever-

changing resource requirements in a timely manner, including by scaling to the cloud

resources beyond resources from a single user at the point of use.

Jointly, Soul and Stencil propose a new abstraction built on top of virtual

platforms to address several issues with sensors and sensor processing ecosystem.

First, Soul shields applications from today’s diverse sensors and vendor-specific in-

terfaces, thus making it easier for applications on client devices to leverage sensor

data. Second, while it is highly desirable for a smartphone to act as an hub in order
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to interact with the plethora of on-device and nearby sensors, the consequent sensor

access and processing overheads would place undue strain on device capabilities and

power consumption. Soul aggregates, coupled with the ability to perform group-

and app-specific sensor processing on resources external to the mobile device, make

possible complex sensor processing and integration activities not limited by an indi-

vidual smartphone’s resources. Last, such applications using transient sensors visible

only in certain locations or environments must dynamically acquire the rights to ac-

cess and interact with them. Stencil in Soul provides them with required runtime

permissions, including to process sensor data on nearby ambient resources and/or the

remote cloud. Results evaluated in Stratus , PCloud , Stencil and Soul indi-

cate that virtual platforms are capable of (i) creating an abstraction of a single device

comprised of distributed resources to satisfy applications’ demand, (ii) providing the

applications with a consistent and transparent way to access such resources available

, and (iii) defining authentication, access controls via automation methods without

the need for direct and repeated user interaction or consultation when the virtual

platforms interact with resources, services, and data owned by different users.

Our ongoing and future work is exploring several additional dimensions of service

sharing and offloading. First, we are exploring how to preserve user experience with

a VP across multiple edge cloud infrastructures to support user’s mobility. Second,

we are experimenting with useful device-to-device interactions mediated by VPs with

useful inference logic in actual home environments with less mature Internet or WiFi

connectivity. In addition to the ongoing work, future work will continue to experiment

with and devise new and innovative applications, and use both to further refine VP

abstractions and their functionalities.
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