
CRT Based Somewhat Homomorphic Encryption Over the Integers

by

Ali Saeed Alzahrani

B.Sc., Umm Alqura University, 2010

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Applied Science

in the Department of Electrical and Computer Engineering

c© Ali Saeed Alzahrani, 2015

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

CRT Based Somewhat Homomorphic Encryption Over the Integers

by

Ali Saeed Alzahrani

B.Sc., Umm Alqura University, 2010

Supervisory Committee

Dr. Fayez Gebali, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Haytham El Miligi , Member

(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Fayez Gebali, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Haytham El Miligi , Member

(Department of Electrical and Computer Engineering)

ABSTRACT

Over the last decade, the demand for privacy and data confidentiality in communi-

cation and storage processes have increased exponentially. Cryptography can be the

solution for this demand. However, the critical issue occurs when there is a need for

computing publicly on sensitive information or delegating computation to untrusted

machines. This must be done in such a way that preserves the information pri-

vacy and accessibility. For this reason, we need an encryption algorithm that allows

computation on information without revealing details about them. In 1978 Rivest,

Adleman and Dertouzos [RAD78] raised a crucial question: can we use a special pri-

vacy homomorphism to encrypt the data and do an unlimited computations on it

while it remains encrypted without the necessity of decrypting it? Researchers made

extensive efforts to achieve such encryption algorithm. In this paper, we introduce

the implementation of the CRT-based somewhat homomorphic encryption over the

integers scheme. The main goal is to provide a proof of concept of this new and

promising encryption algorithm.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements ix

Dedication x

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Thesis Organization . 4

2 Cryptography 5

2.1 Cryptography Foundation . 5

2.1.1 Terminology . 5

2.2 Encryption Algorithms . 6

2.2.1 Symmetric Algorithms . 7

2.2.2 Asymmetric (Public Key) Algorithms 8

2.2.3 One-way function . 9

2.2.4 Deterministic vs. probabilistic encryptions 11

v

3 Homomorphic Encryption 12

3.1 Introduction . 12

3.1.1 Need for Homomorphic Encryption 12

3.1.2 Definition . 14

3.2 Recent Developments . 15

3.2.1 Fully Homomorphic Encryption Based on Ideal Lattices 15

3.2.2 Fully Homomorphic based on integers 17

4 From RSA to Somewhat Homomorphic Encryption Algorithms 20

4.1 Essential Elementary Number Theory for Public Key Algorithm . . . 20

4.1.1 Notation . 20

4.1.2 Floors and Ceilings . 21

4.1.3 Greatest Common Divisor(GCD) 21

4.1.4 Euclidean Algorithm . 21

4.1.5 Euler’s Totient or Phi Function 21

4.1.6 Fermat’s Little Theorem and Euler’s Theorem 22

4.1.7 Chinese Reminder Theorem 23

4.2 RSA Encryption . 25

4.2.1 Introduction to RSA . 25

4.2.2 The Construction . 25

4.3 The Somewhat Homomorphic DGHV Scheme Over the Integers . . . 26

4.3.1 The Parameters . 27

4.3.2 The Construction . 27

4.3.3 Semantic Security . 30

4.4 The Approximate-GCD Problems . 30

4.4.1 Error-Free Variant of the Computational Approximate GCD

Problem . 31

4.4.2 Decisional Error-Free Variant of the Computational Approxi-

mate GCD Problem . 32

4.4.3 `-Decisional Approximate-GCDQ Problem 32

4.5 Batch Somewhat Homomorphic Encryption Over the Integers 33

4.5.1 The Parameters . 34

vi

4.5.2 The Construction . 35

4.5.3 Semantic Security . 36

5 Discussion, Platform and Results 38

5.1 Introduction . 38

5.2 Scheme Construction . 38

5.2.1 BDGHV.KeyGen . 39

5.2.2 CRT Function . 42

5.2.3 BDGHV.Encrypt . 44

5.2.4 BDGHV.Decrypt . 45

5.2.5 BDGHV.Evaluate . 46

5.3 Platform . 47

5.3.1 File Layout . 47

5.3.2 NTL . 47

5.3.3 Optimization . 48

5.4 Simulation Results . 49

5.4.1 Test Platform . 50

6 Contributions 53

Bibliography 55

A Additional Information 62

A.1 Test Results . 62

A.1.1 A. Small . 62

A.1.2 B. Medium . 63

A.1.3 C. Large . 64

vii

List of Tables

Table 5.1 The batch DGHV vs this work results for small security level

λ = 52 . 50

Table 5.2 The batch DGHV vs this work results for medium security level

λ = 62 . 51

Table 5.3 The batch DGHV vs this work results for large security level

λ = 72 . 51

viii

List of Figures

Figure 2.1 Encryption and Decryption . 5

Figure 2.2 Cryptology Fields . 6

Figure 2.3 Secret Key Model . 7

Figure 2.4 Public Key Model . 8

Figure 5.1 Secret Key Generation . 40

Figure 5.2 Encryption . 45

Figure 5.3 Decryption . 46

Figure 5.4 Evaluate . 46

Figure 5.5 Code Sample . 49

ix

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises belongs to Allah the merciful for his blessing and guidance.

He gave me the strength to reach what I desire. I would like to thank:

My parents, my family, for supporting me at all stages of my education and their

unconditional love.

My Supervisor, Dr. Fayez Gebali, for all the support, encouragement, and en-

couragement he provided to me during my work under his supervision. It would

not have been possible to finish my research without his invaluable help of con-

structive comments and suggestions.

My Committee, Dr. Haytham El Miligi, for his precious time and valuable sug-

gestions for the work done in this dissertation.

My colleague, Mr. Samer Moein, for introducing me to this field, and his in-

valuable help, reviewing and guidance on the way to finish my thesis.

My labmate, Mr. Nicholas Houghton, for his endless efforts and participant to

build the code.

WestGrid, Dr. Belaid Moa, for his invaluable comments, suggestion, and sup-

porting us with the latest hardware to test the code.

The Ministry of Higher Education in Saudi Arabia, for funding me with a Schol-

arship.

Ali Alzahrani

x

DEDICATION

To my parents, Saeed Alzahrani and Jumah Alzahrani for their love, prayers,

and encouragement.

To my lovely wife, Reem Alzahrani for always standing by me, and believing in

me.

To my beautiful daughter and son Aryam, and Muhammad.

Chapter 1

Introduction

1.1 Overview

The growth of information processing and telecommunication is continuing. The

capabilities of such technology have increased dramatically. People are interacting

and communicating by using a group of digital packets with each other. This type

of communication has a huge impact on our personal and economic lives. Gradually,

we rely on technology to do things we used to do face-to-face and on paper. There

are many issues associated with such technology. How do we preserve the privacy

of every syllable transmitted over a channel. How do we authenticate the identity

of an entity without any physical proof. How could we investigate the authenticity

of a piece of information. Over the last decade, the demand for privacy and data

confidentiality in communication and storage processes have increased exponentially.

Cryptography can be the solution for this demand. Cryptography provides several

methods for guaranteeing information privacy, for ensuring data has not been changed

and for verifying the source of information. Moreover, tamper-resistant hardware is

also used to store and process delicate information. This work is mainly focused on

cryptography methods to secure the data. Cryptography is an old and fascinating art.

David Kahn traces the development of the cryptography study [Kah74]. He reported

all majors advancements starting from the first discovered attempt of secret writing

by Egyptians nearly 4000 years ago, to the mid twentieth century. The revolution of

computers and communication brought the need to protect data in digital form.

2

1.2 Motivation

Cryptography is an old and fascinating art. David Kahn traces the development of

the cryptography study [Kah74]. He reported all majors advancements starting from

the first discovered attempt of secret writing by Egyptians nearly 4000 years ago, to

the mid twentieth century. The revolution of computers and communication brought

the need to protect data in digital form.

The demand of information security and privacy started the modern cryptography

era. Modern cryptography is mainly based on mathematical theory. Cryptographic

algorithms are built around the hardness of computation assumption, making them

almost impossible to break by an attacker. Theoretically it is possible to overcome

such algorithms but it is hard to do so in any practical mean. Modern field of

cryptography algorithms can be divided into two main areas: first one is Symmetric

(Private Key) Algorithms. Symmetric algorithms refers to encryption methods where

the same key is shared by the sender and the receiver.

The most important advancement of cryptography happened in 1976 when the

notion of public key algorithm was described by Whitfield Diffie and Martin Hellman

in their breakthrough paper new direction in cryptography [DH76]. This paper intro-

duced the second field of cryptography algorithms which is Asymmetric (Public Key)

Algorithms. In asymmetric algorithms, sender and receiver use different keys for en-

cryption and decryption. In 1978, the first and most popular asymmetric encryption

algorithm RSA was introduced by three cryptographers Rivest, Shamir, and Adleman

[RSA78]. The RSA algorithm has two keys, public key and private key. Sender will

use the public key to encrypt the massage and the receiver uses the private key to

retrieve the original massage. Therefore, without the private key the massage content

is unreadable, and we reach the goal of encryption algorithms.

However, the critical issue occurs when there is a need for computing publicly on

sensitive information or delegating computation to untrusted machines. This must

be done in such a way that preserves the information privacy and executability. For

this reason, we need an encryption algorithm that allows computation on informa-

tion without revealing details about them. In 1978 Rivest, Adleman and Dertouzos

[RAD78] raised a crucial question: can we use a special privacy homomorphism to

3

encrypt the data and do an unlimited computations on it while it remains encrypted

without the necessity of decrypting it?

After this question, researchers made an extensive efforts to achieve such en-

cryption algorithm. Unfortunately, there has been little progress in realizing if such

encryption algorithms exist. In 2009, Craig Gentry in his Phd thesis theoretically

introduced the first possible construction of such homomorphic encryption algorithm

[Gen09]. Gentry’s encryption scheme is based on ideal lattices. After Gentry’s break-

through, several homomorphic encryption algorithms have been proposed that are

based on different mathematical assumptions. Van Dijk, Craig Gentry, Shai Halevi

and Vinod Vaikuntanathan (DGHV) described the first fully homomorphic encryp-

tion over the integers scheme [VDGHV10].

Many efforts have been made toward the improvement of the scheme. The batch

fully homomorphic encryption over the integers scheme was introduced by Jung Hee

Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrede Lepoint, Mehdi

Tibouchi, and Aaram Yun [CCK+13]. This variant allows an encryption of a vector

of bits.

1.3 Contributions

The main goal of our work is to realize the existing of homomorphic encryption

schemes by implementing them. The contributions of our work can be summarized

as follow:

• Proof of concept of a new CRT-based somewhat homomorphic encryption over

the integers scheme. We presents our implementation and a full description of

the scheme. This implementation is based on a variant version of the (DGHV)

namely batch fully homomorphic encryption over the integers scheme.

• Comparison between our implementation results and the published works.

4

1.4 Thesis Organization

This section presents a map of the thesis and a short description of each chapter.

Chapter 2 reviews basic background of cryptography algorithms and several im-

portant function and concept related to cryptography. Chapter 3 gives an overview

of the research that been done in the area in order to achieve a fully homomorphic

encryption scheme. Also it presents a short description about a variant state of the

art fully homomorphic encryption schemes. Chapter 4 recalls essential elementary

number notations for fully homomorphic encryption over the integers schemes algo-

rithms. It also presents a full description of the somewhat homomorphic encryption

algorithms that been implemented in our works. Chapter 5 contains a description

of our platform, results of the thesis, that includes the evaluation of the reported

result and a comparisons with the work of others. Chapter 6 concludes our thesis and

restates the contributions of this work.

5

Chapter 2

Cryptography

2.1 Cryptography Foundation

2.1.1 Terminology

The art of cryptography contains several important operations. Encryption which is

the process of transforming readable information into unreadable information. The

encryption process requires an encryption key. Plaintext is the readable data, the

output from the encryption process is known as ciphertext. The conversion of a

plaintext into a ciphertext is performed by the encryption algorithm. Decryption

is the process of converting encrypted data back to readable form. The decryption

procedure requires a decryption key in order to decipher or decrypt the message. The

decryption key can be the same as the encryption key or different.

Plaintext
Encryption

Ciphertext Decryption Plaintext

Figure 2.1: Encryption and Decryption

An entity or party is a person or a device (e.g. Computer) which transmits or

receives data. A sender is an entity that legitimately sends some information to

another party through a transmission channel. A receiver is the intended recipient

of information. An adversary is a malicious entity in communication system which

6

tries to prevent legitimate users from achieving their goal (e.g. information security

and privacy).

Cryptology is the study of secret writing, which splits into two opposites aspects.

Cryptography is the art and technique of preserving messages security, with the goal of

enabling a secure communication mechanism. Cryptographers are the practitioners of

cryptography. Cryptanalysis the art and process of deciphering coded messages with-

out possessing the key. Cryptanalysts are the practitioners of cryptanalysis. Crypt-

analysis is a very important aspect for modern cryptosystems. Because it is the only

way to make sure that an encryption algorithm is secure. Cryptography is not a new

technique. In fact, cryptography is an old art, with ancient schemes (e.g. Egyptian

codes) dating back to more than 2000 B.C.E. [PPP09]. Figure 2.2 shows an overview

of the field of cryptography and related fields.

Cryptology

Cryptography Cryptanalysis

SymmetricAlgorithms AsymmetricAlgorithms Cryptographic Protocols

Figure 2.2: Cryptology Fields

2.2 Encryption Algorithms

In this section we recall few important fundamentals of cryptography. Cryptography

can be divided into three branches: Symmetric (Private Kay) Algorithms, Asymmet-

ric (Public Key) Algorithms and Cryptographic Protocols. When we have two parties

performing an encryption and decryption methods using the same private key, we

have symmetric encryption. When they used different keys one for the encryption

7

and another for the decryption, we have asymmetric encryption. Cryptographic pro-

tocols, also called crypto protocols generally deal with algorithm applications and

how the algorithms should be used.

2.2.1 Symmetric Algorithms

Symmetric algorithms require that both encryption and decryption operations are

performed with the same key. Until 1976, all cryptography algorithms were based

on symmetric methods. Symmetric algorithms are still useful, and more efficient and

popular than asymmetric algorithms. In the symmetric algorithm the sender and

the receiver have to share the key (secret-key) in advance to be able to perform the

encryption and the decryption procedures. The key distribution is an issue associated

usually with symmetric schemes. The algorithm needs a secure channel to share the

key between two parties. Hence, every party has to store many secret-keys to com-

municate with different parties. Also, an important fact about symmetric algorithm

that is encryption and decryption algorithms are known publicly. Secrecy lies in the

chosen key. Two types are known under the symmetric algorithms: first one is the

block ciphers which encrypts a block of bits at the same time with on key, for exam-

ple Advanced Encryption Standard (AES)[DR00, DR02]. The second type is stream

ciphers which encrypts bits individually, for instance, One-time pad [Ver26, EJ03].

RecieverSender m

Plaintext

mc Dec = (sk , c)

Ciphertext

Enc = (sk , m)

Figure 2.3: Secret Key Model

8

2.2.2 Asymmetric (Public Key) Algorithms

In contrast to the symmetric family, the asymmetric algorithms introduce a different

encryption algorithm. In 1976 the notion of public key algorithm was described

by Whitfield Diffie and Martin Hellman in their breakthrough paper [DH76]. After

one year, in 1978 the first public key encryption implementation was constructed by

Rivest, Shamir and Adleman (RSA) [RSA78]. In public key algorithms, a participant

uses two different keys: public key for encryption and secret key for decryption. Each

participant has to publish his public key if he want to receive a message, the sender

will use the published key for encryption. Then, the receiver will use his secret key

to decrypt the message.

Those schemes are much practical than the symmetric ones because the key dis-

tribution is very easy. There is no need for key exchange procedure in advance like

symmetric algorithms. Even though, the public key and the secret key are different.

The keys are linked mathematically in such away that the public key in some point

could reveal some information about the secret key. Yet, an adversary who tries to

recover some information about the secret key should take years to do so. However,

due to the mathematical computations asymmetric encryption algorithms are less ef-

ficient than symmetric encryption algorithms. In order to understand the public key

scheme, Figure 2.4 illustrates the algorithm mechanism.

RecieverSender
pk

m

Plaintext

mc Dec = (sk , c)

Ciphertext

Enc = (pk , m)

Figure 2.4: Public Key Model

A public key algorithm has three main algorithms: Key generation (KeyGen) algo-

rithm, Encryption (Enc) algorithm, and Decryption (Dec) algorithm. To understand

9

them we recall some important cryptographic notations:

• A message space set is denoted by M, which is the message to be handled. An

element of M is called plaintext message or just a plaintext.

• A ciphertext space is denoted by C, an encryption of the plaintext message. A

component of C is called ciphertext.

• A key space is denoted by K, which is the range of all possible values of key.

Now we introduced the public key procedures:

• Key generation procedure(KeyGen): Randomized algorithm, given a security

parameter λ, outputs a key pair public and secret key (pk, sk) denoted by:

KeyGen = (pk, sk) ∈ K

The public key pk is known to the public, the secret key sk is kept private by

the owner.

• Encryption procedure (Enc): Randomized algorithm, that takes the plaintext

m ∈M and a public key pk and outputs the ciphertext c ∈ C denoted by:

Enc(pk,m) = c

• Decryption procedure (Dec): Deterministic algorithm, that takes the cipher-

text c ∈ C and a secret key sk and outputs the plaintext m ∈ M denoted

by:

Dec(sk, c) = m

2.2.3 One-way function

The encryption procedure (Enc) implements a trapdoor One-way function. The

concept of one-way function is crucial to the public key system. One-way functions

are not difficult to perform but it is very hard to reverse. For example, given x it

is possible to perform f(x), but are hard to recover x given f(x). A hard problem

10

is defined as a task that will take millions of years to conduct using state of the art

computing resources. In the public key cryptography one-way functions can not be

implemented directly. A plaintext m ∈ M encrypted by a one-way function is not

useful; because it is undecipherable.

For a public key algorithms we need a modified version of one-way functions. The

trapdoor one-way functions is another version of one-way functions, that contains

a secret trapdoor. Moreover, a trapdoor one-way function is simple to implement

and hard to reverse, unless one has access to the secret trapdoor. That is, given the

ciphertext c, where c ∈ C, it must be hard to recover the plaintext m, where m ∈M
by computations using the public key pk and the cipher c. However, there is a secret

trapdoor called secret key sk, such that given the ciphertext c and the secret key sk

it is simple to recover the plaintext m.

There are three families of trapdoor one-way functions. All three types are based

on mathematical problems. The first is integer factorization based, that relies on

difficulty to factor large integers. The most known public key algorithm under this

type is RSA [RSA78]. The second is discrete logarithm, several schemes are based

on this problem. The most outstanding public key algorithms include the Digital

Signature Algorithm (DSA) [FIP00], DiffieHellman(DH) key exchange [DH76], and

Elgamal encryption [ElG85]. The third is elliptic curve relationships, which is a

generalization of the discrete logarithm scheme. The most prominent schemes in this

family include Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01], and

the Elliptic Curve DiffieHellman key exchange (ECDH).

The first and second families were introduced to the public in the mid-seventies,

and the last family was introduced in the mid-eighties. These schemes are well stud-

ied and secure against any types of attack if the parameters are chosen carefully.

Moreover, there have been several proposed public key schemes based on variant

mathematical problems, but there are some security or practicality issues. In addi-

tion, public key schemes do not require a secure initial secret key exchange between

the sender and the receiver.

11

2.2.4 Deterministic vs. probabilistic encryptions

Most of the encryption schemes are deterministic, given a plaintext and an encryption

key, the output of the encryption algorithm is always the same ciphertext. An adver-

sary can then get some information about the plaintext after performing computation

on the ciphertext. Using a deterministic algorithm scheme without the addition of

some randomness makes it easy to realize if the same message is sent twice. As a

result, we need a probabilistic algorithm scheme is needed in practice.

The notion of probabilistic encryption was first described by Shafi Goldwasser

and Silvio Micali [GM84]. The Idea behind probabilistic encryption is to preserve

the information integrity after it has been encrypted by public key algorithms. This

is done by introducing randomness in the encryption algorithm. By doing so, the

encryption of the same information many times will generate variant ciphertexts. An

adversary who tries to get some information by performing some computation on the

ciphertext will not be able to learn anything about the message. The encryption

algorithm used a noise r usually as a randomness factor. As a result of probabilistic

encryption schemes we need to consider something called message expansion. In a

probabilistic scheme there exist a several possible ciphertexts for one plaintext. The

number of different ciphertexts are larger than the number of all possible plaintext.

Therefore, the size of the ciphertext must be absolutely longer than the size of the

plaintext. The ratio between the length of the plaintext and the ciphertext is known

as message expansion.

12

Chapter 3

Homomorphic Encryption

3.1 Introduction

This section will present a brief overview of the history of homomorphic encryption

and basic definition and concepts related to homomorphic encryption.

3.1.1 Need for Homomorphic Encryption

The main purpose of encryption is maintaining the confidentiality of sensitive infor-

mation. In the past, encryption was mainly implemented for military and commerce.

However, encryption has been used much more widely over time. Encryption al-

gorithms are used nowadays in various life aspects such as financial transactions,

exchanging email privately, and messaging. Modern technologies such as cloud com-

puting allow users and companies to connect, store, and share computing resources.

Cloud computing is a suitable way to store data and make use of some cloud

services to manipulate the data. Due to the nature of cloud technology, the security

and privacy of the data require a user trust on the cloud provider. Analyzing current

implementation of cloud computing, data can be encrypted during the transfer phase.

But, storing the data in an encrypted mode does not help. The cloud providers need

access to userś private plaintext data to be able to respond to their requests and

perform computations this might not be acceptable by many users. Moreover, the

cloud providers will not be able to carry on any computations on encrypted data.

Cryptography can solve many of the privacy and security issues which are related to

13

cloud computing.

Encryption seems to be the solution for the cloud computing issues, but there

are some limitations of this technique. Any system that operates on encrypted data

can, up to a certain point store, or recover the data for the user; any more advanced

operations would require the decryption of the data before being operated on.

Therefore, shortly after Whitfield and Martin Hellman introduced the idea of pub-

lic key cryptosystem in 1976. Cryptographers started searching for a practical public

key cryptosystem implementation. In 1978 three famous cryptographers introduced

the most known public key scheme, RSA, which was named after their names Ron

Rivest, Adi Shamir, and Leonard Adleman [RSA78]. The scheme consists of two

keys, public key and private key. The security of the scheme is based on the integer

factorization problem, which is the trapdoor one-way function for the system. Multi-

plying two large primes is not difficult, but recovering the correct factorization from

the product is very hard. However, the RSA public key algorithm is slower than the

symmetric algorithm, since RSA and other asymmetric schemes require more compu-

tations to implement. In addition, the RSA scheme requires an access to the private

key in order to enable the message decryption. As a result, the ciphertext is com-

pletely useless without the private key. In that case, there was a need for a scheme

that can manipulates the data without decrypting it.

In 1978 Rivest, Adleman and Dertouzos [RAD78] raised an important question:

can we utilize a special privacy homomorphism to encrypt the data and do an unlim-

ited computations on it while it remains encrypted without the necessity of decrypt-

ing it? In their paper, they proposed a homomorphic encryption scheme under the

name “privacy homomorphism” to solve this issue. Unfortunately, few years later

Brickell and Yacobi in [BY88] identified some security issues related to the proposal

of Rivest et al.

After the realization of the privacy homomorphism notion in [RAD78], numerous

efforts have been made to obtain a homomorphic scheme. Cryptographers initially

developed several schemes that can perform addition or multiplication on ciphertexts

bot not both. The first semanticlly secure homomorphic encryption scheme is Gold-

wasser and Micali [GM84]. A various encryption schemes that either additively or

multiplicatively homomorphic were proposed later. For example, in [ElG85] Taher

14

Elgamal proposed an encryption system that support homomorphic multiplication op-

erations. Later, an encryption scheme that allows homomorphic addition operations

was invented by Paillier [Pai99]. In addition, many others homomorphic encryption

schemes were introduced [DJN10, AD97, Reg04, Reg09, CF85, NS98, OU98]. Other

encryption systems were developed, that enabled both additions and multiplications

operations, but for limited number of operations [BGN05, GHV10, MGH10, SYY99].

A lot of such homomorphic schemes are already quite useful in different applications.

3.1.2 Definition

Homomorphic encryption allows arbitrary number of operations on information with-

out the requirement of decryption functions. A homomorphic encryption scheme is a

quadruple of four algorithms: KeyGen, Enc, Dec, plus an additional algorithm called

Evaluation Eval.

Let (M, C, K, Enc, Dec, Eval) be an encryption scheme where M is the plaintext

space, C is the ciphertext space, K is the key space, Enc is the encryption algorithm,

Dec is the decryption algorithm and Eval is the evaluation algorithm.

M is the plaintext space has two operations. Addition is the first operation

denoted by +. The second operation is multiplication denoted by ×.

C is the ciphertext space has two operations. The first one is addition denoted

by ⊕. The second operation is multiplication denoted by ⊗.

Enc is the encryption algorithm, which is a map from M to C, i.e., Ek : M → C,

where k ∈ K.

Dec is the decryption algorithm, which is a map from C back to M. i.e., Dk :

C →M , where k ∈ K.

Eval is the evaluation algorithm which takes a key k ∈ K, a function f , and a

set of ciphertexts c1, · · · , c`, apply both addition and multiplication operations of f

on the ciphertexts and outputs cf .

Eval(k, f, c1, · · · , c`)→ cf

For all a, b ∈ M , ciphertexts cf ∈ c and k ∈ K, an encryption scheme is said to

15

be homomorphic under addition and multiplication, if

Dec(ca ⊕ cb) = a+ b

and

Dec(ca ⊗ cb) = a× b

The semantic security of homomorphic encryption defines by two properties circuit-

privacy and compactness. Circuit-privacy is when an adversary can not obtains any

information about the evaluation operations from the ciphertext generated by eval-

uate algorithm. Compactness that is the ciphertext size generated by evaluate does

not depend on the complexity of circuit C.

3.2 Recent Developments

In this section we will review the latest fully homomorphic encryption schemes. Also

a general idea about the research directions on the homomorphic encryption will be

covered.

3.2.1 Fully Homomorphic Encryption Based on Ideal Lat-

tices

In 2009 Craig Gentry introduced the first fully homomorphic encryption scheme on

his Stanford PhD thesis [Gen09]. Gentry’s FHE construction supports both addition

and multiplication without any limitations on the numbers of operations that can

be performed. The security of Gentry’s scheme is based on two assumed hardness

problems: certain worst-case problems over ideal lattices and (average case) sparse

subset-sum problem. In his thesis Gentry described a blueprint for constructing the

fully homomorphic encryption scheme. This blueprint consists of three steps. First,

Gentry outlines a somewhat homomorphic scheme that supports limited numbers of

operations and does not support high-polynomial degree functions. This limitation

is due to the noise associated with each bit ciphertext. Each homomorphic function

performed on a ciphertext increases the noise component of the ciphertext. If the

16

noise exceeds a certain limit the outcome ciphertext does not decrypt correctly.

Second, Gentry describes the decryption circuit squash procedure that relies on the

hardness assumption of the (average case) sparse subset-sum problem. This problem

is used to reduce the degree of the decryption polynomial. The sparse subset-sum

problem was considered to be the main limitation of Gentry scheme. This is because

it is not a well-studied cryptographic problem.

Lastly, Gentry main idea, “bootstrapping” algorithm to achieve a fully homomor-

phic scheme. The goal of this step is to reduce the noise on the ciphertext, so it

can be used in more additions and multiplications operations. Therefore, it is called

“ciphertext refresh” procedure. For more details ones can refers to the original work

[Gen09].

Since Gentry’s breakthrough result, three main families of fully homomorphic

encryption schemes were proposed:

1. The first category follows Gentry’s original scheme [Gen09], which is based on

ideal lattices. Smart and Vercauteren presented the first attempt to implement

Gentry’s scheme [SV10]. However, they could not achieve a bootstrappable

scheme. In 2011 Craig Gentry and Shai Halevi announced the first implemen-

tation of Gentry’s FHE scheme [GH11b]. The implementation contains many

optimizations and some ideas from Smart and Vercauteren first attempt. They

reported for their highest secure level, where λ = 72 bit, the public key size

is 2.3 GB and the ciphertext refresh technique required 30 minutes. Moreover,

Gentry and Halevi described a new approach for constructing fully homomor-

phic schemes [GH11a]. The scheme eliminates the squashing procedure and

replaces it with the Decision Diffie-Hellman from Elgamal scheme.

2. Second classification is based on the Learning with Errors (LWE) and Ring

Learning with Errors (RLWE) problems. Brakerski and Vaikuntanathans pro-

posed the first two schemes in this area [BV11a][BV11b]. Several contributions

and modifications have been made to improve the scheme include the scale-free

variant of Brakerski [Bra12] and the NTRU encryption [LATV12]. Moreover,

a fully homomorphic encryption scheme with better bootstrapping was intro-

duced by Gentry, Halevi, and Smart [GHS12a]. A fully homomorphic encryp-

17

tion without Gentry’s bootstrapping procedure and supports an encryption of

vector of bits was proposed in [BGV12]. Many schemes with batch capabil-

ity are introduced in [GHS12b, BGH13]. An implementation is described in

[GHS12c] based on [BGV12, GHS12b] schemes. More effort on optimizing the

Ring-learning with error scheme is presented [BGH13]

3. Last branch is based on fully homomorphic encryption over the integers scheme.

The first scheme was proposed by van Dijk, Craig Gentry, Shai Halevi and Vinod

Vaikuntanathan (DGHV) [VDGHV10]. Several improvements have been made,

describing new optimizations in order to increase the efficiency and reduce the

public key size of the scheme [CMNT11] [CNT12]. A batching technique was

proposed recently to enhance the performance level of integer based encryption

schemes [CLT13, CCK+13, KLYC13]. Furthermore, Coron, Lepoint, and Ti-

bouchi, introduced a scale-free fully homomorphic encryption over the integers

scheme [CLT14] following Brakerski work in [Bra12].

This thesis mainly focus on the somewhat homomorphic encryption over the in-

tegers schemes (DGHV).

3.2.2 Fully Homomorphic based on integers

This section will review the recent numerous works on the fully homomorphic encryp-

tion over the integers schemes.

Fully Homomorphic Encryption over the integers (DGHV)

At Eurocrypto 2010 van Dijk, Craig Gentry, Shai Halevi and Vinod Vaikuntanathan

introduced the first Fully Homomorphic scheme over the integers [VDGHV10]. DGHV

is the simplest possible FHE scheme, using only elementary modular arithmetic. The

scheme follows Gentry’s blueprint to achieve a fully homomorphic encryption scheme.

They started with the first step in Gentry Scheme which is the somewhat homomor-

phic encryption scheme supporting a limited number of arithmetic operations namely

addition and multiplication over encrypted bits. DGHV demonstrates that FHE

can be attained without the need for the complexity of ideal lattices. The scheme’s

18

security is based on the approximate integer greatest common divisors (Approximate-

GCD)(AGCD) problem which is constructed by Howgrave-Graham [HG01].

The AGCD problem gives many approximation of multiples of an integer, compute

the greatest common deviser. Therefore to secure the scheme against AGCD known

attacks, the DGHV parameters selection results in a public-key size of Õ(λ10) ≈
25 GB, where λ is the security parameter, which is very large to be practical. In order

to reduce the public-key size, Coron, Mandal, Naccache and Tibouchi [CMNT11] have

described a FHE over the Integers with Shorter Public Keys.

Fully Homomorphic Encryption over the Integers with Shorter Public

Keys

Coron, Mandal, Naccache and Tibouchi [CMNT11] introduced the first attempts to-

ward making the DGHV scheme practical. The idea of reducing the public key size

is implemented in two steps. First, storing only a small portion of the public key.

Second, generating the full public key on the fly. However, determining a secure set

of concrete parameters was challenging. The implementation obtains similar perfor-

mances as of Gentry and Halevi [GH11b]. The security of the scheme is under the

(stronger) error-free approximate GCD problem. In their modified version of the

somewhat homomorphic encryption they were able to reduce the public-key size from

Õ(λ10)down to Õ(λ7) ≈ 1 GB.

Public Key Compression and Modulus Switching for Fully Homomorphic

Encryption over the Integers

Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi described an optimiza-

tion method to reduce the public key size of Van Dijk et al. (DGHV) schem [CNT12].

Their technique consists of three main steps. First generate a prime integer p (the

secret key). Then, using a pseudo-random number generator f and a public random

seed to generate a set of integers. Finally, apply variant computations on the integer

set to get smaller public key elements. The scheme reduces the public key size to

Õ(λ5) rather than Õ(λ7) as in [CMNT11]. The scheme obtains a public key size of

10.1MB. The paper also described a new module switching technique for DGHV

19

scheme. This method produced a fully homomorphic scheme without Gentry’s boot-

strapping procedure.

Batch Fully Homomorphic Encryption over the Integers

Another step towards a fully homomorphic encryption scheme was introduced by

Jean-Sébastien Coron, Tancréde Lepoint, and Mehdi Tibouchi[CLT13]. This paper

proposed an extension of the fully homomorphic encryption over the integers scheme

proposed by Van Dijk et al. [VDGHV10] to batch fully homomorphic encryption.

They presented a scheme that encrypts a vector of plaintext bits as a single ciphertext.

The implementation remains secure under the error free approximate-GCD problem.

The scheme used the Chines Reminder Theorem (CRT) to encrypt a multiple bits

mi into a single ciphertext c. Also in the scheme, instead of using a single prime

number p the scheme employed a tuple of coprime integers p0, . . . , p`−1. Applying

the compression technique from [CNT12] yield a public key of size Õ(λ7) instead of

Õ(λ5).

20

Chapter 4

From RSA to Somewhat

Homomorphic Encryption

Algorithms

Before we introduce the encryption algorithms, this section provides an overview of

some basic mathematical concepts that will be used later in the encryption schemes.

4.1 Essential Elementary Number Theory for Pub-

lic Key Algorithm

Below we recall several number theory techniques which are important for public key

algorithms. All theories are briefly described, for more details readers may refer to

[PPP09, Sch07].

4.1.1 Notation

We denote the set of integers by Z. The notation a ← S indicates the action of

choosing randomly an element a independently and uniformly from a set S. When

D is a distribution, a← D denote the action of returning an element a according to

the distribution D.

Theorem 4.1 (Division with remainder property). Let a and b be positive integers.

21

Then we say a divided by b, where a > b, has a unique q (the quotient) and r (the

remainder) such that

a = bq + r, and 0 ≤ r < b (4.1)

4.1.2 Floors and Ceilings

Let a be a real number. Then we define three operations:

• Floor function denoted m = bac to be the greatest integer such that

m ≤ a < m+ 1.

• Ceiling function denoted m = dae to be the smallest integer such that

m− 1 < a ≤ m.

• Round function denoted m = bae to be the closest integer to a.

4.1.3 Greatest Common Divisor(GCD)

For all a, b ∈ Z, there exists a unique greatest common divisor d, denoted d =

gcd(a, b), which is the largest positive integer that divide both a and b. The greatest

common divisor exists if both integers a and b 6= 0.

For a, b ∈ Z, if the gcd(a, b) = 1, then a and b are relatively coprime. In that case,

the only common divisor of a and b is 1.

4.1.4 Euclidean Algorithm

Euclidean algorithm is a method to compute the greatest common divisor of two

number efficiently such that

gcd(a0, b1) = gcd(a0 − b1, b1), where a0 > b1 (4.2)

4.1.5 Euler’s Totient or Phi Function

For a positive integer n ≥ 1, define a function that finds the number of positive

integers less than n and relatively prime to n.

22

Definition 4.1 (Euler’s Totient or Phi Function). Given a positive integer n, the

number of primes less than n is denoted by φ(n).

Fact 4.1 (Euler’s Totient function properties).

(i) φ(p) = p− 1, if p is a prime.

(ii) Euler’s Totient function is multiplicative, that is if gcd(a, b) = 1, then φ(ab) =

φ(a)× φ(b).

Now we define some theorems related to the φ function and are useful for public

key cryptography. The Euler’s Totient or Phi Function is not efficient and extremly

slow if the integers are huge. For public key algorithms we need a faster method to

compute the huge number. Therefore, we can use the following theorem to do so if

we know the factorization of n.

Theorem 4.2. Assume n be a positive integer

n = pe11 , p
e2
2 , . . . , p

em
m pi < n (4.3)

where p1, p2, · · · , pi are the prime factorization of n, and ei are positive integers.

Then

φ(n) =
m∏
i=1

(peii − p
ei−1

i) (4.4)

4.1.6 Fermat’s Little Theorem and Euler’s Theorem

Now we describes two important theorems for public key algorithms. The first one is

Fermat’s Little Theorem, which is useful for primality testing and other features of

public key algorithms.

Theorem 4.3 (Fermat’s Little Theorem). Let a be a positive integer and p a prime

with gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p) (4.5)

A generalization of Fermat’s Little Theorem is Euler’s Theorem, where it can be

a mod to any integer.

23

Theorem 4.4 (Euler’s Theorem). Let a and n be positive integers with gcd(a, n) = 1,

then

aφ(n) ≡ 1 (mod n) (4.6)

4.1.7 Chinese Reminder Theorem

The Chinese reminder theorem was published by the famous Chinese mathematician

Sun Tzu in the fourth century [BEAS09]. The Chinese reminder theorem is used to

solve systems of linear congruences. If we have a system of k congruences in which

the moduli are pairwise relatively prime, there is a solution and the solution is unique

modulo the product of the pairwise relatively prime[Ros93].

Theorem 4.5. The basic idea is the Chinese remainder theorem will determine a

value x that when divided by given pairwise coprime divisors leaves given remain-

ders. The problem can be stated as follows. Let m1,m2, . . . ,mk be pairwise coprime

integers with gcd(mi,mj) = 1 whenever i 6= j. Let M be the product of primes M =

m1m2 · · ·mk. Let a1, a2, . . . , ak be any integers, where k = 1, 2, 3, . . . , N . There is an

integer x solving the following system of simultaneous congruences [KS92].

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ak (mod mk)

Then there exists exactly one unique integer x satisfying this system.

Algorithm [Ros93] The solution to the system of equations may be obtained

by the following algorithm.

24

Algorithm 4.1 Chinese Remainder Theorem x

Require: Input: Relatively coprime integers m1,m2, . . . ,mk and the reminder inte-

gers a1, a2, . . . , ak {we can solve the system of equations as follows}
1: let M =

∏n
k=1mk

2: for i = 1 to k do

3: zi = M/mi = m1 ×m2 · · ·mi−1 ×mi+1 · · ·mk

4: end for

5: for i = 1 to k do

6: determine the multiplicative inverse yi which is given by ziyi ≡ 1 (mod mi)

7: end for

8: x = a1y1z1 + · · ·+ akykzk (mod M)

9: RETURN (x)

Example:

Solve the following system of simultaneous congruences:

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

Solution:

Step 1: Establish the basic notation. We have k = 3, a1 = 1, a2 = 2, a3 = 3,m1 =

3,m2 = 5,m3 = 7, and M = 3× 5× 7 = 105.

Step 2: z1 = M/m1 =
/3×5×7

/3
= 35, z2 = M/m2 =

3×/5×7
/5

= 21, z3 = M/m3 =
3×5×/7

/7
=

15.

Step 3: Solve ziyi ≡ 1 (mod mi), i = 1, 2, 3.

35y1 ≡ 1 (mod 3)

21y2 ≡ 1 (mod 5)

15y3 ≡ 1 (mod 7)

By trail and error we have y1 = 2, y2 = 1 and y3 = 1.

Step 4: Substituting these numbers into:

x = a1y1z1 + · · · + akykzk (mod M).

25

x = (1× 2× 35) + (2× 1× 21) + (3× 1× 15) (mod M) = 157 (mod 105)

x = 52.

4.2 RSA Encryption

4.2.1 Introduction to RSA

RSA encryption is based on the integer factorization problem. The RSA algorithm

actually consists of three algorithms: key generation, encryption algorithm, and de-

cryption algorithm. RSA algorithm has a public key and a secret key. The public key

is known by everyone and is used to perform the encryption algorithm. The secret

key is used to recover the message by using the decryption algorithm and it is only

known by its legitimate owner.

4.2.2 The Construction

RSA.KeyGen: generate the two keys as follows:

1. Choose two random large primes p and q. For high security level, the integers

p and q must be chosen of equal bit-length.

2. Compute the product:

n = p · q. (4.7)

3. Compute

φ(n) = φ(p)φ(q) = (p− 1)(q − 1). (4.8)

Where φ is Euler’s totient function.

4. Randomly choose an integer e, such that e ∈ {1, 2, · · · , φ(n)− 1} and

gcd(e, φ(n)) = 1. (4.9)

In other words, e and φ(n) are pairwise relatively prime. This condition also

ensures the existence of the multiplicative inverse of e.

26

5. use the extended Euclidean algorithm to compute the secret key d such that

e · d ≡ 1 (mod φ(n)) (4.10)

in other words,

d = e−1 (mod φ(n)) (4.11)

Note that d and n are also relatively prime. d is the multiplicative inverse of e.

Remark 4.1. The resulting numbers n and e are the public key components, the

integer e is sometimes called encryption(or public) exponent.

Remark 4.2. The resulted value d is the private key, and sometimes called encryp-

tion(or private) exponent.

Remark 4.3. The first two primes p and q must be kept secret.

RSA.Encrypt: To encrypt a message m, first divide m into blocks such that 0 <

m < n. After that using the public key (n, e) as follows:

c = me (mod n) (4.12)

RSA.Decrypt: Using the private key d to recover the message m from c.

m = cd (mod n) (4.13)

4.3 The Somewhat Homomorphic DGHV Scheme

Over the Integers

The simple concept of somewhat homomorphic encryption was described by van Dijk,

Gentry, Halevi and Vaikuntanathans [VDGHV10]. Numerous efforts have been made

to improve the efficiency of the scheme [CMNT11]. In this section, we recall the Dijk’s

somewhat homomorphic encryption algorithms as constructed in [VDGHV10].

27

4.3.1 The Parameters

The scheme has many parameters, ensuring the number of integers in the public key

does not exceed a certain threshold and the bit-length of different integers. The pa-

rameters are:

λ the security parameter.

τ the number of integers in the public key x16i6τ .

γ the sum of bit-length of integers in the public key x16i6τ .

η the bit-length of the secret key p.

ρ the bit-length of the noise in the public key ri.

ρ
′

the secondary noise used for encryption.

The concrete parameters of the DGHV scheme must satisfy some constraints:

1. ρ = ω(log λ), to be secure against brute-force attacks on the noise,

2. η ≥ ρΘ(λ log2 λ), to permit High-order polynomial multiplication,

3. γ = ω(η2 log λ), to be secure against various lattice-based attacks,

4. τ ≥ γ + ω(log λ), in order to use left-over hash lemma [VDGHV10] in the

security proof.

The scheme chooses a convenient parameter set which is:

τ = γ + λ γ = Õ(λ5) η = Õ(λ2) ρ = λ ρ
′
= 2λ (4.14)

The scheme’s complexity is Õ(λ10).

For a specific η-bit odd integer p, we use the following distribution over γ-bit

integers:

Dγ,ρ(p) = {Chooseq ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)Outputx = q · p+ r}. (4.15)

4.3.2 The Construction

DGHV.KeyGen(λ): Generate a random odd integer p of η-bit size:

28

p ← (2Z + 1) ∩ [2η−1, 2η) (4.16)

For the public-key, sample

xi ← Dγ,ρ(p) for 0 6 i 6 τ (4.17)

Relabel so x0 is the largest among all samples xi‘s. Restart unless x0 is odd and the

reminder of x0 (mod p) is even. The public key and the secret key are as follow: The

public key is the collection of xi‘s as obtained from equation 4.17.

pk = (x0, x1, . . . , xτ) (4.18)

The secret key is an odd integer as obtained from equation 4.16

sk = p (4.19)

DGHV.Encrypt(pk,m ∈ {0, 1}): Choose a random subset S ⊆ {1, 2, . . . , τ} and a

random integer r in (−2ρ
′
, 2ρ

′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

(4.20)

DGHV.Decrypt(sk,c): Output

m = [c (mod p)] (mod 2) (4.21)

DGHV.Evaluate(pk, C, c1, . . . , ct): Takes as input public key, given the circuit C

with t ciphertexts ci, apply both addition and multiplication gates of C to the ci-

phertexts, by performing all the additions and multiplications over the integers, and

return the resulting ciphertexts.

Hence the DGHV scheme is somewhat homomorphic encryption that permitted

limited number of homomorphic operations to be performed. Given two ciphertext:

29

c1 = p · q1 + 2r1 +m1 (4.22)

and

c2 = p · q2 + 2r2 +m2 (4.23)

Where p was obtained from 4.16, ri and qi was obtained from 4.15.

The addition operation is defined as:

c1 + c2 = (q1 + q2)× p+ 2(r1 + r2) + (m1 +m2) (4.24)

The following from equations 4.24, the noise pound after addition is given by:

r1 + r2 < p/2 (4.25)

The multiplication operation is defined as:

c1 × c2 = p(pq1q2 + q1r1 + q1m2 + q2r1 + q2m1)

+2(2r1r2 + r1m2 + r2m1) +m1m2 (4.26)

The following from equations 4.26, the noise pound after multiplication is given

by:

2r1r2 + r1m2 + r2m1 < p/2 (4.27)

The resulting ciphertext c1 + c2 is an encryption of m1 + m2 with noise of size

= (ρ
′
+1)-bit integers, and the ciphertext c1 · c2 is an encryption of m1 ·m2 with noise

of size ' 2ρ′-bits. We have

m1 +m2 = (c1 + c2 (mod p)) (mod 2) (4.28)

30

m1 ×m2 = (c1 × c2 (mod p)) (mod 2) (4.29)

As a result, the DGHV is somewhat homomorphic scheme. The noise size on

the ciphertext must remains under the size of the bit number of sk = p for correct

decryption. The scheme permits η/ρ′ of homomorphic operations on ciphertexts.

4.3.3 Semantic Security

In DGHV somewhat homomorphic scheme is secure based on the approximate-GCD

problem [VDGHV10]. Given a set of randomly chosen integers (x0, x1, . . . , xτ), all are

near multiple of p, find this “common near divisor” p. The definition of the scheme

security will be defines in 4.2 on 31.

The public key encryption is done by masking the message mi with a subset sum

randomly chosen form the public key elements xi = qi · p+ ri. The scheme semantic

security is proved by applying the leftover Hash lemma [VDGHV10] on the subset

sum modulo x0, after that using the 2r for more randomization on the ciphertext

modulo p.

4.4 The Approximate-GCD Problems

The security of the somewhat homomorphic encryption over the integers and its vari-

ants is based on the approximate greatest common divisor problem. The approximate-

GCD problem was defined in 2001 by Howgrave-Graham [HG01]. Generally speaking,

the problem gives only approximations x′ and y′, compute the greatest common de-

viser (GCD) of two integers x and y. There are two kinds of approximate-GCD

problem. The first one is the general approximate-GCD problem and the second one

is the partially approximate-GCD problem.

The general approximate-GCD problem was used first in [VDGHV10], given many

approximations more than two. This problem becomes the hardness assumption of

the simple somewhat homomorphic encryption scheme introduced in 4.3.

Several works following the DGHV scheme used the approximate-GCD problem

and different versions include [CMNT11, CNT12, CLT13, CCK+13, KLYC13, CLT14]

31

Now we provides a formal definitions of the general approximate-GCD problem

and the partial approximate-GCD problem.

Definition 4.2 (General Approximate GCD). The (ρ, η, γ)-Computationally approximate-

GCD problem: for a randomly chosen η-bit odd integer p, given polynomially many

samples from Dγ,ρ(p), output p.

Definition 4.3 (Partially Approximate GCD). The (ρ, η, γ)-Computationally approximate-

GCD problem: for a randomly chosen η-bit odd integer p, given polynomially many

samples from Dγ,ρ(p) and a γ-bit integer x0 = pq0, output p.

Howgrave-Graham [HG01] introduces two types of attacks to examines the hard-

ness of the approximate-GCD problem. First attack is continued fraction approach,

and the other is a lattice based approach.

4.4.1 Error-Free Variant of the Computational Approximate

GCD Problem

The first variant of the Approximate-GCD problem is the error-free Approximate-

GCD problem. The problem consists of working with one multiple of p, which is

an error-free element. In other words, the element is without noise and known

publicly namely x0 = q0 · p. Although this extra information makes the error-free

Approximate-GCD problem easy to compute than the AGCD-problem. The com-

plexity of the error-free AGCD problem remains exponential in the size of ρ, where

ρ is the noise. There are several known methods to factor xo, General Number Field

Sieve [LLJMP90] and the Elliptic Curve Method [LJ87]. Note that, for the following

somewhat homomorphic encryption schemes, parameter selection must be sufficient

so that the factorization of x0 is untraceable.

Below we defines the Error-Free Approximate-GCD problem.

Definition 4.4 (Error-Free Approximate GCD problem). The (ρ, η, γ)-Computational

Error-Free Approximate-GCD (EF-AGCD) problem is, for a randomly chosen η-bit

odd integer p, and a uniformly chosen q0 ∈ [0, 2γ/p), given polynomially many samples

from Dρ(p, q0) and a γ-bit integers x0 = p · q0, output p.

32

4.4.2 Decisional Error-Free Variant of the Computational

Approximate GCD Problem

The decisional Error-Free Approximate-GCD problem is the base of the security of the

batch somewhat homomorphic encryption over the integers. The modified problem

says that, given a distribution D = Dρ(p, q0) and some integer z, it is a hard problem

to find out whether z is chosen from D or not. The problem remains secure against

known attacks and the parameters selection must satisfied that.

Definition 4.5 (Decisional Error-Free Approximate GCD problem). The (ρ, η, γ)-

decisional Error-Free Approximate-GCD (DEF-AGCD) problem:

• For a randomly chosen η-bit odd integer p and a uniformly chosen q0 ∈ [0, 2γ/p).

• Given polynomially many samples from D := Dρ(p, q0), and a γ-bit integers

x0 = p · q0.

Determine b ∈ {0, 1} from z = [x+ r · b]x0 where x← D and r ← Z ∩ [0, x0).

4.4.3 `-Decisional Approximate-GCDQ Problem

Now we extend the Error-Free Approximate-GCD problem. The extension provides

an DEF-AGCD problem for several primes rather than one as of the previous versions.

The new assumption called `-DEF-AGCDQ. This new approach will be useful to prove

the security of the batch somewhat homomorphic encryption over the integers scheme

in section 4.5. Moreover, if the parameters were chosen properly the scheme remains

secure. Below we define the new assumption.

Definition 4.6 (`-Decisional Error-Free Approximate GCDQ Problem: `-DEF-AGCDQ).

The (ρ, η, γ, `Q)-`-decisional Error-Free Approximate-GCDQ (`-DEF-AGCDQ) prob-

lem:

• For a randomly chosen η-bit ` coprime integers p0, . . . , p`−1, a `Q-bit inte-

gers Q0, . . . , Q`−1, and a uniformly chosen coprime q0 ∈ [0, 2γ/
∏`−1

i=0 pi), where∏`−1
i=0 pi = p0 × · · · × p`−1.

33

• Given polynomially many samples from D := Dρ((pi)`; (Qi)
`; q0) , a set of X

consisting of ` integers x′i, and a γ-bit integers x0 = q0 ·
∏`−1

i=0 pi.

Determine b ∈ {0, 1} from z = [x+ r · b]x0 where x← D and r ← Z ∩ [0, x0).

4.5 Batch Somewhat Homomorphic Encryption Over

the Integers

Below we described the scheme that has been implemented in our simulation [CCK+13].

The scheme described an extended version of the fully homomorphic encryption

DGHV scheme [VDGHV10]. Using the Chinese Reminder Theorem, the extended

scheme can encrypt a vector of plaintexts of size `, m0, . . . ,m`−1 into one cipher-

text. For the somewhat homomorphic encryption the setting allows an encryption

of a vector elements not only bit. The message space, given a public key element

Q0, . . . , Q`−1 = 2, We can encrypt m0, . . . ,m`−1 ∈ {0, 1} into a single ciphertext as

follow:

c = CRTq0,p0,...,p`−1
(q,Q0r0 +m0, . . . , Q`−1r`−1 +m`−1) (4.30)

Where q is uniformly and randomly modulo q0 and ri‘s is a small noises. The

decryption function can be performed such that

mi = [c (mod pi)] (mod Qi) (4.31)

Then homomorphic computations can be done on the resulting ciphertexts in-

cluding addition and multiplication. The scheme is a generalized version of DGHV

scheme, but with larger plaintext. In order to allow a homomorphic encryption as of

the original scheme, this can only be done when Q0 = · · · = Q`−1 = 2.

The scheme introduced extra elements to the public key, in order to allow public

key encryption. The public key elements includes integers such xi and x′i.

The first public key element is defined as:

xi(modpj) = Qjri,j (4.32)

34

The second public key element is defined as:

x′i(modpj) = Qjr
′
i,j + δi,j (4.33)

for all i, j and δi,j is Kronecker delta.

Therefore, to encrypt a vector of plaintexts m, the encryption equation becomes

as follows:

c =

[`−1∑
i=0

mi · x′i +
∑
i∈S

xi

]
x0

(4.34)

In order to simplify the scheme construction, the extra noise 2r in equation (4.20),

of the DGHV scheme is not used. This has been done to facilitate the security proof.

Since adding the same random term 2r will break the security proof, the scheme used

another subset-sum elements to prove the security of the scheme.

4.5.1 The Parameters

Below we recall some description about the parameters.

λ the security Parameter.

τ the number of elements in the public key.

γ the bit-length of Integers in the public key.

η the bit-length of the secret key.

ρ the bit-length of the noise in the public key.

` The number of distinct secret primes.

`Q the bit-length of the Q0, . . . , Q`−1

Also ` specifies the message space size. The scheme concrete parameters should be

as follows:

1. ρ = Õ(λ), to be secure against Chen and Nguyen’s attack [CN12], and Howgrave-

Graham’s attack [HG01],

2. η = Ω̃(λ2 + ρ · λ), to resist the factoring attack using the elliptic curve method

[LJ87], and to permit high-order polynomial multiplication,

35

3. γ = η2ω(log λ), to resist Cohn and Heninger’s attack [CH11], and the attack

using Lagarias algorithm [Lag85] on the approximate GCD problem,

4. τ = γ + ω(log λ), in order to use left-over hash lemma in the security proof.

The scheme chooses a similar convenient parameter as of the DGHV scheme

[VDGHV10] that is

γ = Õ(λ5) η = Õ(λ2) ρ = 2λ τ = γ + λ (4.35)

4.5.2 The Construction

BDGHV.KeyGen(λ, ρ, η, γ, τ, `, `Q): Generate the key pair as follow:

1. Choose η-bit pairwise coprimes integers p0, . . . , p`−1, and denote their product∏`−1
i=0 pi.

2. Choose q0 ← Z ∩ [0, 2γ∏`−1
i=0 pi

) and define the error-free public key element x0 =

q0 ·
∏`−1

i=0 pi.

3. Choose `Q-bit integers Q0, . . . , Q`−1.

4. Test Qj and x0, so that the gcd(Qj, x0) = 1 and abort otherwise.

5. Choose the public key elements xi and x′i, uniformly and independently dis-

tributed in Z ∩ [0, q0).

6. For 0 6 j < `− 1, compute xi as follow:

{xi = CRTq0,p0,...,p`−1
(qi0, Qi,jri,j, . . . , Qi,`−1ri,`−1)}τi=1

7. For 0 6 j < `− 1, compute x′i as follow:

{x′i = CRTq0,p0,...,p`−1
(q′i0, Qi,jr

′
i,j + δi,j, . . . , Qi,`−1r

′
i,`−1 + δi,`−1)}`−1i=0

where qi0, q
′
i0 ← Z ∩ [0, q0), ri,j, r

′
i,j ← Z ∩ [−2ρ, 2ρ) and δi,j is Kronecker delta.

36

8. Finally, let pk =

{
x0, (Qi)06i6`−1, (xi)16i6τ , (x

′
i)06i6`−1

}
9. Output the secret key sk = (p0, . . . , p`−1).

BDGHV.Encrypt(pk, m ∈ {0, 1}): For any m = (m0, . . . ,m`−1) with mi ∈ ZQi ,
output the ciphertext:

c =

[`−1∑
i=0

mi · x′i +
τ∑
i=1

bi · xi
]
x0

(4.36)

where b is a random integer vector b = (bi)16i6τ ∈ {0, 1}τ .

BDGHV.Decrypt(sk,c): Output m = (m0, . . . ,m`−1) as follow:

mi = ((c mod p0) mod Q0, · · · , (c mod p`−1) mod Q`−1). (4.37)

BDGHV.Evaluate(pk,C, c1, . . . , ct): Takes a public key pk as an input, the circuit

C, and t-tuple ciphertexts ci. Outputs Cf (c1, . . . , ct) using Add and Mul equations

as given below:

Eval.Add (pk, c1, c2):

c1 + c2 mod x0. (4.38)

Eval.Mul (pk, c1, c2):

c1 × c2 mod x0. (4.39)

4.5.3 Semantic Security

The security of the batch homomorphic encryption over the integers scheme is based

on the the variant `-decisional Error-Free Approximate-GCDQ problem `-DEF-AGCDQ.

This variant was derived from the simpler variant approach the decisional Error-Free

Approximate-GCD problem. So the security of the scheme is based on the DEF-

AGCD.

Definition 4.7 (`-Decisional Approximate-GCDQ Problem: `-DEF−AGCDQ).

The (ρ, η, γ, `Q)-`-decisional Error-Free Approximate-GCDQ problem:

37

• For η-bit distinct primes p0, . . . , p`−1, a `Q-bit integers Q0, . . . , Q`−1, and a uni-

formly chosen coprime q0 ∈ [0, 2γ/
∏`−1

i=0 pi).

• Given a γ-bit integer x0 := q0p0 · · · p`−1, with gcd(x0, Qi) = 1 for i = 0, . . . , `−1.

• Given polynomially many samples from D := Dρ((pi)`; (Qi)
`; q0), a set of X

consisting of ` integers x′i = CRTq0,p0,...,p`−1
(q′i0, Qi,jr

′
i,j + δi,j, . . . , Qi,`−1r

′
i,`−1 +

δi,`−1)}, where q′i0 ← Z ∩ [0, q0), r
′
i,j ← Z ∩ [−2ρ, 2ρ).

Determine b ∈ {0, 1} from z = x+ r · b mod x0 where x← D and r ← Z ∩ [0, x0).

38

Chapter 5

Discussion, Platform and Results

5.1 Introduction

In this chapter we present a full description of our implementation of the batch some-

what homomorphic encryption over the integers scheme. We also demonstrate our

interpretation of the algorithm and how we managed to convert it from a theoreti-

cal form into a software implementation. Also, we used a flowchart which provides

comprehensive details of some variables of the algorithm. Then, we gives a complete

description of our platform and setup that has been used to implement the algorithm

code. Also, we present a an overview of software that was used to built our imple-

mentation. Moreover, we draw a close comparison between the overall performance

of this work and the previous batch somewhat homomorphic encryption scheme im-

plementation [CCK+13]. The scheme implementation has three security complexity

levels. Based on these levels we were able to make the comparison with other scheme.

5.2 Scheme Construction

This section provides a detailed road maps of our implementation of the batch some-

what homomorphic encryption over the integers scheme. Following the steps will

enables anyone to replicate the scheme without any difficulties.

The scheme implementation consists of many steps, fall under four main algo-

rithms. The first algorithm is the KeyGen, the second algorithm is encrypt, the third

39

algorithm is decrypt, and the last algorithm is evaluate. Below we recall each one of

the four algorithms in details as we implement them.

5.2.1 BDGHV.KeyGen

The steps required to generate the public key are:

1. The notation 1λ is a unary representation of the security parameter, which

indicate the complexity of the cipher construction. The implementation begins

by creating a base-10 integer.

2. λ10 is an integer comprised of λ-number of 1‘s; as an example if λ = 3, λ10 = 111.

3. Then, we used a function to convert λ10 from a decimal representation to a

binary.

4. We also use another function to find the number of binary bits used to represent

λ10.

5. The number of bits is squared and the result is used as the upper limit for the

total number of bits which can represent a group of coprime numbers.

6. The group of coprime numbers is randomly selected and is comprised of ` base-

10 prime integers, each of which are less than 2NumBits(λ10) and are referred to

as pi.

7. Given 2NumBits(λ10), randomly choose a sets of `-relative coprime (p0, . . . , p`−1)

as shown in Figure 5.1.

8. Count the required bits length to represent `-relative coprime given (p0, . . . , p`−1).

9. If the number of bits that needed to represent `-relative coprime is ≤ η = Õ(λ2)

then:

(a) Set the secret key of the scheme to be (p0, . . . , p`−1)

(b) The bit length of the secret key = η.

(c) Search all relative coprime and determine the largest prime.

40

10. If the number of bits > η abort and start again from step number 7.

λ()

Choose Primes

Primes

Find thebit length
of theprimes

of bits λ2

η
sk

-1

yes

no

Figure 5.1: Secret Key Generation

.

41

11. Given (p0, . . . , p`−1), compute
∏`−1

i=0 pi.

12. Choose q0 where q0 ← Z[0, 2λ
5
/
∏`−1

i=0 pi), q0 must be > largest prime and rela-

tively prime with p0, . . . , p`−1.

13. Generate `-integers Q0, . . . , Q`−1, the number of bit size is denoted by `Q. In

this scheme, Qi is the second element of the public key. For this scheme values

of Qi are Q0 = · · · = Q`−1 = 2.

14. Compute the error-free integer x0 = q0.
∏`−1

i=0 pi, make sure that the gcd(Qj, x0) =

1 and abort otherwise. In our implementation, x0 is the first element in the pub-

lic key.

15. Using the Chinese Reminder Theorem compute xi as follow:

{xi = CRTq0,p0,...,p`−1
(qi0, Qi,jri,j, . . . , Qi,`−1ri,`−1)}τi=1

For all 0 6 j < `− 1, where qi0,← Z ∩ [0, q0), ri,j,← Z ∩ [−2ρ, 2ρ).

16. The computation will generate a matrix of size τ × ` as follow:

qi0, ri,j =


q1,0 Q1,j × r1,1 · · · Q1,`−1 × r1,`−1
q2,0 Q2,j × r2,1 · · · Q2,`−1 × r2,`−1

...
...

. . .
...

qτ,0 Qτ,1 × rτ,1 · · · Qτ,`−1 × rτ,`−1


17. After computation we will have a huge matrix of xi. The size of the public

element xi is τ . In our implementation, x′is is the third elements in the public

key.

xi =


x1

x2
...

xτ



42

18. Moreover, using the CRT determine x′i as below:

{x′i = CRTq0,p0,...,p`−1
(q′i0, Qi,jr

′
i,j + δi,j, . . . , Qi,`−1r

′
i,`−1 + δi,`−1)}`−1i=0

For all 0 6 j < ` − 1, where q′i0 ← Z ∩ [0, q0), r
′
i,j ← Z ∩ [−2ρ, 2ρ) and δi,j is

Kronecker delta.

Remark 5.1. The scheme has a Kronecker delta denoted by δi,j. The δi,j = 1

if i = j, otherwise it is = 0.

19. The computation will generate a matrix of size `× ` as follow:

q′i0, r
′
i,j =


q′1,0 Q1,1 × r′1,1 + δ1,1 · · · Q1,`−1 × r′1,`−1
q′2,0 Q2,2 × r′2,1 · · · Q2,`−1 × r′2,`−1

...
...

. . .
...

q′`−1,0 Q`−1,1 × r′`−1,1 · · · Q`−1,`−1 × r′`−1,`−1 + δ`−1,`−1


20. We have a matrix of size `. In our work the last public key element is the values

of x′i.

x′i =


x′1

x′2
...

x′`−1


21. Finally, we have the public key and the secret key in the following form:

pk =

{
x0, Qi, (x1, x2, · · · , xτ), (x′1, x′2, · · · , x′`−1)

}
(5.1)

sk = (p0, . . . , p`−1) (5.2)

5.2.2 CRT Function

Before we talk about the encryption procedure, we will provide more details about

the Chinese Remainder Theorem (CRT). The CRT function plays a major role in

43

generating the public key elements. The CRT function is used to compute two element

of public key xi and x′i. The first element xi is consist of table of integers. Each row

of the table is used by the NTL libraries [Sho15] incremental Chinese Remainder

Theorem (CRT) function to generate a value xi. To save memory in the system the

table is generated a single row per iteration and then discarded; there are τ rows in

the table requiring τ iterations.

The NTL CRT function is used incrementally across the row to generate a final

value; the function is called repeatedly in a loop to solve simultaneous congruences

between the values in the row and the prime numbers previously selected. CRT takes

four parameters, CRT(a,p,A,P). For the initial iteration the parameters are:

a = qi0 p = q0 A = ri1 P = p0 (5.3)

Where:

• qi0 the first entry in row i

• q0 is the first chosen prime

• ri1 is the first rij of row 0

• p0 is the second chosen prime

To ensure that A is within the range of P:

A = A (mod P) (5.4)

CRT (a, p, A, P) (5.5)

The first iteration simultaneously solves for the congruency between a (mod p) and

A (mod P). The result is an integer that is congruent for both relations. The CRT

function is what is called an implicit function; explicit functions return values in a

mode common to natural human thought (i.e. y = foo(x)) where implicit functions

such as NTL’s CRT return the value in one of the parameters given. In the case of the

two simultaneous congruences above the resulting base-10 integer solution is placed

back into the parameter a.

44

For the following iterations the parameters are assigned sequentially while the

result of each iteration is maintained in the parameter a and used for the subsequent

computation. To clarify, for the second iteration the parameters become:

a2 = a1, p = p0, A = ri2, P = p1 (5.6)

CRT (a2, p, A, P) (5.7)

This iterative pattern is continued until the congruence between each prime number

and respective rij value is accumulated into the parameter a. Upon completion of the

entire row the final xi value is calculated and stored.

xi = a (mod x0) (5.8)

Upon completion of the entire table an array of xi values of τ -length has been created.

These values are used as removable noise to mask each bit of the message.

5.2.3 BDGHV.Encrypt

The encryption operation used the following steps:

1. Given the public key, encrypt `-bit victor massagem0, . . . ,m`−1. The encryption

algorithm consist of three steps.

2. First, given the CRT result x′i, compute the massage vector as shown in Figure

5.2.

3. Second, given the CRT result xi, generate a random subset sum of 1, · · · , τ .

4. Lastly, add the results from 2 and 3, then (mod x0), output the ciphertext c.

45

Σ
-1

0
mi x'i

mi x'i

xi Σ
-1

0
mi x'i +[Σ

1
bi xi

τ [

C

x0

Figure 5.2: Encryption

.

5. A random number of the xi values are chosen from the resulting array and are

summed; the values chosen are randomly selected and pertain to no-order. The

resultant sum is summed with the base-10 integer value of each message bit (i.e.

0 or 1). To create the cipher the result of the summation of the xi values, added

with the message bit is modulated by X0.

Cipheri = (sumi +mi) mod X0 (5.9)

5.2.4 BDGHV.Decrypt

The decryption operation uses the following steps:

1. Given the secret key p0, . . . , p`−1, decrypt the ciphertext c.

2. Given the ciphertext, ((modpi) mod 2) will generate the corresponding origi-

nal encrypted massage m0, . . . ,m`−1 as shown in Figure 5.3.

46

[c mod pi]2

mi

pic

Figure 5.3: Decryption

.

5.2.5 BDGHV.Evaluate

The evaluation operation uses the following steps:

1. Given the public key, the circuit C with t-tuple of ciphertexts c.

2. Perform all the additions and multiplications operations over ciphertexts as

shown in Figure 5.4.

c1 X c2

pk c

or
c1 + c2

ct

Figure 5.4: Evaluate

.

47

5.3 Platform

The proof of concept for a new CRT-based fully homomorphic encryption scheme,

intended for development in a hardware environment is being performed through

software. The implementation was built using C++11. The algorithm developed calls

for the use of integer numbers which are too large for ordinary computer operations to

handle. Computer systems create data structures for numerical values that have fixed

limits based on hardware restrictions of the system. These pre-defined data structures

limit the capability of cryptographic integrity. Numerical values which exceed the

predefined limitations of a system are referred to as Big Nums for short. To handle

such constructs, specialized memory management techniques must be employed; to

accommodate this we need to use Victor Shoup’s NTL [Sho15]library. NTL is a high-

performance, portable C++ library which provides developers data structures and

algorithms that dynamically manage memory to allow for Big Nums computation.

5.3.1 File Layout

The implementation folder layout contains five files. First, CryptCode.cpp is the

central file for the implementation which contains the main function. The main file

must be compiled with a link to the NTL static library and inclusion of NTL’s header

files. For optimal performance it should be run with the openMP parallelization

API. Second, Encryption.h file contains functions for multiple methods of encryption

and their support functionality. Third, the Decryption.h contains two methods that

belong to the decryption methodology. Fourth, the Evaluation.h file comprises of two

main methods: SumEval and MulEval. Lastly, the CryptUtilities.h file is comprised

support functions which are used by the other files.

5.3.2 NTL

The NTL library provides data structures that allow for arbitrary length integers

by creating structures that list pointers to locations in memory. A standard data

format, such as in ’integer’ is allocated a defined amount of space in memory. The

rigid definition only allows for certain number of bits per entity; in the case of ’integer’

the defined number of bits is 32 resulting in a maximum representable value of 232−1.

48

NTL provides multiple data structures that overcome the obstacle of finite size

data entities. The implementation employs the structure known as “ZZ” type. The

ZZ data type is a structure that holds pointers to multiple places in memory. When

an integer of type ZZ is created that requires more bits than the operating system

pre-defines the ZZ construct requests additional places in memory from the operating

system and keeps track of them via a list of pointers. When the total value is required

for display or processing the construct aligns all memory locations pointed to in the

list to create the total value.

Due to the complex nature of the ZZ data type the library includes procedures

that define how the system is to operate on data that is partitioned over multiple

locations in memory. Basic algebraic operations to complex algorithms are provided

for the computation of Big Num mathematics and are used in this implementation.

5.3.3 Optimization

To improve performance an application-program interface (API) called openMP was

used to automatically parallelize portions of the implementation. The manual creation

of threading is fraught with difficulty resulting from synchronization issues, shared

data concerns and effective workload distribution. OpenMp uses ’pragmas’, simple

one line compiler directives recognizes as commands for use of the API. The most

common and effective use is the parallelization mutually exclusive iterations of a loop

such as that which uses NTL’s CRT function to generate the xi values. For a loop

a ’pragma’ can be used to instruct the compiler to refer to the openMP API for the

development and management of threads.

49

Figure 5.5: Code Sample

.

The above Figure 5.5 shows the implementation for the FillQ0 function used to

generate the qi0 values used in encryption. The directive #pragma omp parallel

notifies the compiler that the enclosed section is intended for parallelization and that

it is to refer to the openMP API. The directive pragma omp for signals to the

compiler that the subsequent line is the start of a loop that is to be parallelized.

The compiler refers to the API to determine the ideal number of threads to generate

for the system being used. The number of iterations to execute are divided evenly

among the generated threads and applicable data is kept private between them while

the target array, qi0 is shared. The execution of the loop is improved by a factor

equal to the number of threads created. Upon completion the threads are terminated

and the serial execution continues. The use of compiler directives allows the code to

maintain portability. When execute on a compiler that does not have the API the

instructions are viewed as comments and ignored.

5.4 Simulation Results

In this section, we will provides previous implementation results of the somewhat

homomorphic encryption scheme [CCK+13]. Then, we draw our implementation

50

results of the scheme. Also, we demonstrate a full comparison between our work

results and others.

The previous implementation by Cheon et al. [CCK+13] was built using C++.

They used the GMB library to accommodate their code. The batch DGHV scheme

test platform was implemented on an Intel Core i7 machine, with 3.4Ghz processor

and 32GB of memory.

5.4.1 Test Platform

Our platform, tests of the implementation were executed on either the Hermes or

Nestor cluster of the WestGrid research computing network. The Nestor cluster is

preferred when the use of the openMP API is employed. Each node in the Nestor or

Hermes clusters is an IBM iDataplex server with eight 2.67-GHz Xeon x3330 cores,

each with 24GB of RAM.

Our implementation consists of two parts. The first one is based on the work of

Cheon et al.. To provide a basis for fair comparison with the previous work, we assign

the exact values to all different variables that has been used in the implementation.

In the Batch DGHV, they have three test settings.

First test setting is the small setting λ = 52, where λ determines the security of

the construction. In this test we enforce the same parameter values to make sure

that we can make a fair comparison. For the small setting our public key generating

timing is longer than the previous work as shown in Table 5.1. This occurs due to

our threading techniques. On the other hand we were able to compress the public

key size.

Table 5.1: The batch DGHV vs this work results for small security level λ = 52
Instance λ ` ρ η γ/106 τ pk size KeyGen(s) Encrypt(s) Decrypt(s) ADD Eval(s) MUL Eval(s)

Pervious Work [CCK+13] 52 37 41 1558 0.90 661 13 MB 1.74s 0.23s 0.02s - -

This Work 52 37 41 1558 0.038 661 5.02 MB 2.71s 0.00047s 0.0024s 0.0037s 0.041s

In term of security, we maintain the same security level of the original scheme.

In term of efficiency, for encryption and decryption processes experimental results

demonstrate that our implementation runs an order of magnitude faster than previous

work. In our work, we also report the addition and multiplication processes timing

51

over ciphertexts.

Second test setting is for λ = 62. In our implementation we established a threading

procedure to increase the efficiency of the scheme. As shown in Table 5.2, the size

of the public key have been reduced by more than two thirds of the previous work.

Moreover, for the medium setting the key generation timing of our implementation

is faster than the other work. As we increase the security complexity level of the

scheme, we obtained a better timing results. Also, the encryption and decryption

timing results of our work is faster than the previous work by order of magnitude.

Table 5.2: The batch DGHV vs this work results for medium security level λ = 62
Instance λ ` ρ η γ/106 τ pk size KeyGen(s) Encrypt(s) Decrypt(s) ADD Eval(s) MUL Eval(s)

Pervious Work [CCK+13] 62 138 56 2128 4.6 2410 304 MB 73s 3.67s 0.45s - -

This Work 62 138 56 2128 0.703 2410 90.38 MB 30s 0.014s 0.088s 0.097s 1.94s

Last one is the large setting where λ = 72. Furthermore, the public key size of the

scheme have been minimized in our implementation by more than two third as shown

in Table 5.3. Also, as of the medium setting, the effect of the threading approach on

key generation time is obvious. The Batch DGHV requires almost an hour to generate

the public key, but in our work we were able to do that in half an hour. In addition,

the encryption and decryption timing is also faster than the previous work. In the

large setting, our implementation can encrypt a vector of massage of size 531-bit in

parallel.

Table 5.3: The batch DGHV vs this work results for large security level λ = 72
Instance λ ` ρ η γ/106 τ pk size KeyGen(s) Encrypt(s) Decrypt(s) ADD Eval(s) MUL Eval(s)

Pervious Work [CCK+13] 72 531 71 2698 21 8713 5.6 GB 3493s 61s 9.8s - -

This Work 72 531 71 2698 12.23 8713 1.58 GB 1129s 0.22s 1.12s 1.23s 23.8s

In our implementation, after each evaluation operation the noise element increase

by doubles on addition and squares on multiplication, for all three security settings

small, medium and large. To investigate the durability of the ciphers under repeated

operations of a single nature, either multiplication or addition a binary tree structured

test is implemented for each operation. The evaluation begins by encrypting each

message a total of eight times to generate sixteen individual ciphers. The eight cipher

pairs are operated together (dependant on the tree) to create a new cipher. These new

52

ciphers belong to the second level of their respective trees. At each level a decryption

of the resultant cipher occurs to verify the original message is still attainable. This

has been done for all three security setting to determine how many operations we can

perform.

53

Chapter 6

Contributions

In this thesis, we introduced the implementation of the CRT-based somewhat homo-

morphic encryption over the integers scheme. The main contributions of the thesis

can be summarized as follows:

1. Provide a proof of concept of the CRT-based somewhat homomorphic encryp-

tion over the integers algorithm.

2. Constructed a detailed road map of the implemented scheme. All previous

published works were unclear, vague, ambiguous and hard to replicate.

3. Implemented the algorithm on three security complexity settings. The three

settings are small, medium, and large, where λ = 52, 62, and 72, respectively.

The choices of λ facilitates meaningful comparisons with previously published

results.

4. Succeeded in reducing the scheme public key size significantly. For the small

security level we reduced the size of the public key around ≈ 60%. For the

medium setting, the public key size is reduced about ≈ 70%. Moreover, for the

large setting a reduction in term of public key size some ≈ 70%.

5. Parallelized the implementation using C++11 augmented with openMP pragma

directions to automatically parallelize portions of the implementation. By using

this technique, we have increased the efficiency of the encryption algorithm.

We achieve an enhancement in terms of public key generation computation

54

time with respect to previous works. For the large setting we have reduced the

requir time by ≈ 65%. Also, for the medium setting, a reduction in term of

computation time ≈ 55% is attained.

6. Reduced the computation time of encryption and decryption processes com-

pared to previous results. For both encryption and decryption, our implemen-

tation have reduced the computation time of them by orders of magnitude.

To sum up, the main purpose of developing the DGHV somewhat homomorphic

encryption over the integers scheme is to reduce the complexity of Gentry’s scheme.

The significance of the development of such scheme is that proved out the existent of

different mathematical theories that can be applied to construct similar homomorphic

encryption schemes.

Our implementation have enhanced and increased the efficiency of the batch some-

what homomorphic encryption over the integers scheme. This work is an effort to-

wards more practical homomorphic encryption scheme. The fully homomorphic en-

cryption schemes have influenced many researchers to seek for more mathematical

methods and procedures to enhance the capabilities and efficiency. Currently, the

existing homomorphic encryption schemes still have lots of room for further enhance-

ment before they can be used in the real world.

55

Bibliography

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with

worst-case/average-case equivalence. In Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing, pages 284–293. ACM,

1997.

[BEAS09] Elizabeth A. Burroughs, Tyler J. Evans, Thomasenia Lott Adams, and

Joanne Snow. mathematical roots: The chinese remainder theorem.

Mathematics Teaching in the Middle School, 14(7):pp. 436–443, 2009.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in

lwe-based homomorphic encryption. In Public-Key Cryptography–PKC

2013, pages 1–13. Springer, 2013.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas

on ciphertexts. In Theory of cryptography, pages 325–341. Springer,

2005.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)

fully homomorphic encryption without bootstrapping. In Proceedings of

the 3rd Innovations in Theoretical Computer Science Conference, pages

309–325. ACM, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus

switching from classical gapsvp. In Advances in Cryptology–CRYPTO

2012, pages 868–886. Springer, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-

phic encryption from (standard) lwe. In Proceedings of the 2011 IEEE

56

52Nd Annual Symposium on Foundations of Computer Science, FOCS

’11, pages 97–106, Washington, DC, USA, 2011. IEEE Computer Soci-

ety.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-

cryption from ring-lwe and security for key dependent messages. In

Advances in Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

[BY88] Ernest F Brickell and Yacov Yacobi. On privacy homomorphisms. In

Advances in CryptologyEUROCRYPT87, pages 117–125. Springer, 1988.

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee,

Tancrede Lepoint, Mehdi Tibouchi, Aaram Yun, et al. Batch fully homo-

morphic encryption over the integers. In EUROCRYPT, volume 7881,

pages 315–335. Springer, 2013.

[CF85] Josh D Cohen and Michael J Fischer. A robust and verifiable crypto-

graphically secure election scheme. In FOCS, volume 85, pages 372–382,

1985.

[CH11] Henry Cohn and Nadia Heninger. Approximate common divisors via

lattices. arXiv preprint arXiv:1108.2714, 2011.

[CLT13] Jean-Sbastien Coron, Tancrde Lepoint, and Mehdi Tibouchi. Batch fully

homomorphic encryption over the integers. Cryptology ePrint Archive,

Report 2013/036, 2013.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-

invariant fully homomorphic encryption over the integers. In Public-Key

Cryptography–PKC 2014, pages 311–328. Springer, 2014.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi

Tibouchi. Fully homomorphic encryption over the integers with shorter

public keys. In Advances in Cryptology–CRYPTO 2011, pages 487–504.

Springer, 2011.

57

[CN12] Yuanmi Chen and Phong Q Nguyen. Faster algorithms for approx-

imate common divisors: Breaking fully-homomorphic-encryption chal-

lenges over the integers. In Advances in Cryptology–EUROCRYPT 2012,

pages 502–519. Springer, 2012.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key

compression and modulus switching for fully homomorphic encryption

over the integers. In Advances in Cryptology–EUROCRYPT 2012, pages

446–464. Springer, 2012.

[DH76] Whitfield Diffie and Martin E Hellman. New directions in cryptography.

Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

[DJN10] Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. A generalization

of pailliers public-key system with applications to electronic voting. In-

ternational Journal of Information Security, 9(6):371–385, 2010.

[DR00] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In Smart

Card Research and Applications, pages 277–284. Springer, 2000.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the

advanced encryption standard. Springer Science & Business Media, 2002.

[EJ03] Patrik Ekdahl and Thomas Johansson. A new version of the stream

cipher snow. In Selected Areas in Cryptography, pages 47–61. Springer,

2003.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. In Advances in Cryptology, pages 10–18.

Springer, 1985.

[FIP00] PUB FIPS. 186-2. digital signature standard (dss). National Institute

of Standards and Technology (NIST), 2000.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

STOC, volume 9, pages 169–178, 2009.

58

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without

squashing using depth-3 arithmetic circuits. In Foundations of Com-

puter Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages

107–109. IEEE, 2011.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentrys fully-homomorphic

encryption scheme. In Advances in Cryptology–EUROCRYPT 2011,

pages 129–148. Springer, 2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P Smart. Better bootstrapping in

fully homomorphic encryption. In Public Key Cryptography–PKC 2012,

pages 1–16. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully homomor-

phic encryption with polylog overhead. In Advances in Cryptology–

EUROCRYPT 2012, pages 465–482. Springer, 2012.

[GHS12c] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation

of the aes circuit. In Advances in Cryptology–CRYPTO 2012, pages

850–867. Springer, 2012.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-

type cryptosystem from lwe. In Advances in Cryptology–EUROCRYPT

2010, pages 506–522. Springer, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal

of computer and system sciences, 28(2):270–299, 1984.

[HG01] Nick Howgrave-Graham. Approximate integer common divisors. In

Cryptography and Lattices, pages 51–66. Springer, 2001.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve

digital signature algorithm (ecdsa). International Journal of Informa-

tion Security, 1(1):36–63, 2001.

[Kah74] David Kahn. The codebreakers. Weidenfeld and Nicolson, 1974.

59

[KLYC13] Jinsu Kim, Moon Sung Lee, Aaram Yun, and Jung Hee Cheon. Crt-

based fully homomorphic encryption over the integers. IACR Cryptology

ePrint Archive, 2013:57, 2013.

[KS92] Y.H. Ku and Xiaoguang Sun. The chinese remainder theorem. Journal

of the Franklin Institute, 329(1):93 – 97, 1992.

[Lag85] Jeffrey C Lagarias. The computational complexity of simultaneous

diophantine approximation problems. SIAM Journal on Computing,

14(1):196–209, 1985.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-

fly multiparty computation on the cloud via multikey fully homomorphic

encryption. In Proceedings of the forty-fourth annual ACM symposium

on Theory of computing, pages 1219–1234. ACM, 2012.

[LJ87] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals

of mathematics, pages 649–673, 1987.

[LLJMP90] Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse, and John M

Pollard. The number field sieve. In Proceedings of the twenty-second

annual ACM symposium on Theory of computing, pages 564–572. ACM,

1990.

[MGH10] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Addi-

tively homomorphic encryption with d-operand multiplications. In Ad-

vances in Cryptology–CRYPTO 2010, pages 138–154. Springer, 2010.

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem

based on higher residues. In Proceedings of the 5th ACM conference on

Computer and communications security, pages 59–66. ACM, 1998.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryp-

tosystem as secure as factoring. In Advances in CryptologyEURO-

CRYPT’98, pages 308–318. Springer, 1998.

60

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In Advances in cryptologyEUROCRYPT99, pages

223–238. Springer, 1999.

[PPP09] Bart Preneel, Christof Paar, and Jan Pelzl. Understanding cryptography:

a textbook for students and practitioners. Springer, 2009.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data

banks and privacy homomorphisms. Foundations of secure computation,

4(11):169–180, 1978.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. Journal

of the ACM (JACM), 51(6):899–942, 2004.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

[Ros93] Kenneth H. Rosen. Elementary number theory and its applications (3.

ed.). Addison-Wesley, 1993.

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtain-

ing digital signatures and public-key cryptosystems. Communications

of the ACM, 21(2):120–126, 1978.

[Sch07] Bruce Schneier. Applied cryptography: protocols, algorithms, and source

code in C. john wiley & sons, 2007.

[Sho15] Victor Shoup. NTL 8.1.2 : A library for doing number theory, 2015.

www.shoup.net/ntl.

[SV10] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryp-

tion with relatively small key and ciphertext sizes. In Public Key

Cryptography–PKC 2010, pages 420–443. Springer, 2010.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive crypto-

computing for nc 1. In Foundations of Computer Science, 1999. 40th

Annual Symposium on, pages 554–566. IEEE, 1999.

61

[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-

tanathan. Fully homomorphic encryption over the integers. In Advances

in Cryptology–EUROCRYPT 2010, pages 24–43. Springer, 2010.

[Ver26] Gilbert S Vernam. Cipher printing telegraph systems: For secret wire

and radio telegraphic communications. AIEE, Journal of the, 45(2):109–

115, 1926.

62

Appendix A

Additional Information

A.1 Test Results

A.1.1 A. Small

We used a 37-bit messages

M1 = 1010110101101011010110101101011010110

M2 = 1100111001110011100111001110011100111

• λ = 52

• τ = 661

• ρ = 41

• η = 1558

• ` = 37

• Public key generation time = 2.71s

• CRT Array NumBits = 38.0332Mb

• Public Key length = 40.2197Mb

• Encryption time = 0.47ms

• Decryption time = 2.38ms

63

• Summation Eval time = 3.74ms

• Multiplication Eval time = 40.99ms

A.1.2 B. Medium

We used a 62-bit messages

M1 = 1010110101101011010110101101011010110101011010110101101011010110

10110101101010110101101011010110101101011010110101011010110101101011010110

M2 = 1100111001110011100111001110011100111110011100111001110011100111

00111001111100111001110011100111001110011100111110011100111001110011100111

• λ = 62

• τ = 2410

• ρ = 56

• η = 2128

• ` = 138

• Public key generation time = 30s

• CRT Array NumBits = 683.633Mb

• Public Key length = 723.063Mb

• Encryption time = 13.9ms

• Decryption time = 87.97ms

• Summation Eval time = 96.9ms

• Multiplication Eval time = 1.94s

64

A.1.3 C. Large

We used a 72-bit messages

M1 = 1010110101101011010110101101011010110101011010110101101011010110

10110101101010110101101011010110101101011010110101011010110101101011010110

10101101011010110101101011010110101101010110101101011010110101101011010110

10101101011010110101101011010110101101010110101101011010110101101010110101

10101101011010110101101011010101101011010110101101011010110101101010110101

10101101011010110101101011010101101011010110101101011010101101011010110101

10101101011010110101011010110101101011010110101101011010101101011010110101

10101101011010110101010

M2 = 1100111001110011100111001110011100111110011100111001110011100111

00111001111100111001110011100111001110011100111110011100111001110011100111

11001110011100111001110011100111001111100111001110011100111001110011100111

11001110011100111001110011100111001111100111001110011100111001111100111001

11001110011100111001110011111001110011100111001110011100111001111100111001

11001110011100111001110011111001110011100111001110011111001110011100111001

11001110011100111110011100111001110011100111001110011111001110011100111001

11001110011100111110011

• λ = 72

• τ = 8713

• ρ = 71

• η = 2698

• ` = 531

• Public key generation time = 1129s

• CRT Array NumBits = 11945.4Mb

• Public Key length = 12674.8Mb

• Encryption time = 0.22s

65

• Decryption time = 1.12s

• Summation Eval time = 1.23s

• Multiplication Eval time = 23.8s

