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ABSTRACT 

 

 

Acosta, Glen Howel. M.S., Purdue University, August, 2014.  Susceptibility of 
Parkinson’s Disease Following Mild Blast Traumatic Brain Injury.  Major Professor: Riyi 
Shi, M.D., Ph.D.   
 

Blast injury-induced neurotrauma (BINT) is steadily increasing in prevalence due 

to escalated terror activity and constitutes the signature injury associated with current 

military conflicts.  BINT produces significant neurological deficiencies and there is a 

growing concern that the injury may produce long-term consequences that affect the 

resilience and the performance of soldiers.  One of the potential consequences is an 

increased susceptibility to Parkinson’s disease (PD).  A vital goal aimed at curtailing the 

post-deployment long-term consequences of blast injury-induced neurotrauma is to 

further our knowledge of pathogenic mechanisms responsible for the escalation of post 

injury diseases. The purpose of this project is to investigate the molecular mechanism 

underlying the susceptibility of PD in post-blast rats. We have identified acrolein, a 

highly reactive aldehyde that persists days to weeks following brain-injury and 

perpetuates oxidative insult, as a potential therapeutic target to curtail chemically-

mediated damage, a common feature of BINT and PD. Our hypothesis is that acrolein 

is a key pathological factor linking BINT and the development of PD in our rat 

model.  
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CHAPTER 1 - INTRODUCTION 

 

 

1.1 Research Relevance 

 

Blast injury-induced neurotrauma (BINT) has been a frequent mode of injury 

associated with increasing efforts against the global war on terrorism and other war-

related conflicts [1-3].  Its prevalence has gradually increased in the past decade and has 

been deemed the “signature wound of the military” [1, 4-6].  Exposure to the primary 

pressure wave produced by explosive devices is responsible for many of the war-related 

pathologies during Operation Iraqi Freedom and the Global War on Terror [1]. Recent 

data have indicated that sixty-five percent of all combat injuries are from explosive blast 

events.  Sixty percent of warfare casualties sustained during current military endeavors in 

Iraq can be attributed to improvised explosive devices (IEDs) [1, 5-9].  Accordingly, the 

U.S. Department of Defense has invested a yearly budget of 3.5 billion dollars to improve 

prevention and treatment of blast injuries [10-13]. 

Epidemiological studies have shown that BINT is associated with subsequent 

neurological deficiencies including traumatic brain injury (TBI) and spinal cord injury, 

which can lead to dysregulation of neuronal processes resulting in decreased function [4, 

9, 14-17]. Particularly, 15% of troops serving in Iraq show some level of neurological 

impairment due to blast exposure, and their symptoms are highly correlated with mild 

TBI (mTBI) [18].   There is an increased prevalence of blast-induced mTBI (referred to 

here as mBINT to avoid confusion with conventional impact-acceleration TBI) [2, 19], 

fostering growing concern that blast-related injury may produce long term consequences 

and affect the resilience and performance of active duty groups [5].  These consequences 

include depression [20], memory loss [21], dementia [22, 23], and increased 
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susceptibility to Parkinson’s disease (PD) [24-26], among others.  The risk underlying 

this pathology is exacerbated by its subclinical nature that can delay treatment past a 

prime window for intervention.  A vital goal aimed at curtailing post-deployment long-

term consequences of mBINT is to further our knowledge of pathogenic mechanisms 

responsible for the escalation of post-mBINT consequences.  

 

 

1.2 Definition and Pathophysiology of Blast Injury 

 

‘Blast injury’ refers to the clinical syndrome describing the pathophysiological effects 

of an organism exposed to a high explosive detonation [27].  The Center for Disease 

Control and Prevention has divided blast injury into four distinct categories:  primary, 

secondary, tertiary, and quaternary blast injury.  Secondary, tertiary and quaternary blast 

injuries are similar to other forms of trauma and have been extensively studied.  

However, the etiology and mechanisms of the primary injury are not well characterized, 

and therefore, the main focus of this research.  Primary blast injury is the result of a blast-

wave impacting bodily tissue and is considered a unique injury modality separate from 

the other categories.  The exposure of bodily tissue, such as the brain, to a shock wave 

results in a complex series of events.  The impact force caused by the shock wave is 

particularly detrimental to the central nervous system (CNS). 

The pathology of blast injury can be through direct contact of the pressure wave to 

the cranium and/or indirectly to the thoracic region [28-31].  Tissue disruptions in the 

brain can damage the walls of blood vessels and glial end-feet, which can lead to the 

disruption of the blood brain barrier (BBB) resulting in increased vascular permeability 

and subsequent pro-inflammatory response [32, 33].  It is still unclear whether this 

inflammatory response is beneficial or deleterious, however the over stimulation of this 

bio-signaling cascade and pro-inflammatory responses following injury can induce 

neurodegeneration in the neighboring neurons and can result in scar formation [33, 34].  

From these events, it is apparent that BINT compromises the brain’s defense systems in 

the BBB in some manner.  Neurons require a stable environment to thrive and signal 
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properly and, as such, the post-BINT brain microenvironment can induce large amounts 

of stress on neuronal tissue.  

Additionally, direct damage to the neuronal membranes can lead to an ionic 

imbalance, and therefore can cause the influx of calcium in the extracellular space.  This 

can trigger an apoptotic-signaling cascade via calcium dependent kinase and protease 

activation.  Activated calcium-dependent proteases such as calpain have been shown to 

dismantle proteins that anchor myelin to the axonal membrane [35].  Furthermore, 

damaged neurons can generate reactive oxygen species (ROS), elevate oxidative stress, 

and lead to further cellular and mitochondrial membrane damage via lipid peroxidation.  

These damages can lead to the production of reactive aldehydes such as acrolein, which 

can generate more ROS.  This process of self-propagation can easily overcome the 

endogenous antioxidant defense system of the neurons and thus can lead to 

neurodegeneration. 

It is clear that the biochemical events (secondary injury) following BINT play a 

critical role in the pathological progression of the injury.  Of particular interest is the 

production of ROS after a blast injury, which can lead to the production of reactive 

aldehydes such as acrolein, and can perpetuate to generate more ROS.  Acrolein, a highly 

reactive product of lipid peroxidation that produces toxic intermediates, highly reacts 

with glutathione, the most abundant antioxidant found in cells [36, 37].  A self-

propagating cycle, local acrolein-induced depletion of glutathione may play a significant 

role in the pathogenesis of blast injury and perhaps its long-term consequences.  

Currently, there is no effective treatment to halt secondary injury processes partly due to 

the lack of understanding of the pathological pathways of these injuries following a 

traumatic brain injury [38], particularly, BINT.  This study proposes that oxidative stress, 

particularly that perpetuated by acrolein, plays a major role in the pathology of blast 

injuries and can contribute to long-term consequences such as Parkinson’s disease.   
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1.3 Oxidative Stress, Lipid Peroxidation, Acrolein Production and Scavengers 

 

Oxidative stress is a collective term used to describe free radical overproduction due 

to cellular processes. Accumulation of reactive oxidative species (ROS) leads to the 

activation of several pathways, and is thought to be a major cause of various diseases 

such as of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and 

Parkinson's disease (PD) [39].  The elevation of ROS induces lipid peroxidation, an 

oxidative degradation of lipids [40].  In the central nervous system, the majority of 

oxidative stress is manifested by lipid peroxidation, and this leads to the generation of 

reactive aldehydes such as acrolein and 4-hydroxy-2-nonenal (4HNE) [41-43].  These 

aldehydes have been shown to modify amino acids, proteins, and nucleic acids through 

covalent interactions to form irreversible adducts, thereby inhibiting their synthesis and 

interfering with their function [44-47].  Furthermore, these products have been shown to 

induce cell death in cultured neurons [45, 48].  

Acrolein is the most reactive of the α, β-unsaturated aldehydes produced 

endogenously during lipid peroxidation.  Acrolein interacts with the sulfhydryl group of 

cysteine, the amino group of lysine, and imidazole group of histidine forming covalent 

adducts [44, 49, 50].  Due to its high reactivity towards biomolecules, the excessive 

endogenous production of acrolein can inflict significant damage within the CNS.  

Specifically in spinal cord injury, acrolein can induce chemical or secondary damage 

following the mechanical trauma and has been shown to be highly elevated [51].  

Similarly, microinjection or in vitro exposure of acrolein to the spinal cord promotes 

tissue damages including demyelination and cell death.  These damages were associated 

with the motor and sensory behavioral deficits of spinal cord injury [37, 52-55].  With 

acrolein’s relatively long half-life and its proven neurotoxicity, eliciting damages 

observed in neuronal trauma and degenerative diseases [56, 57], we speculate similar 

biochemical changes and damages in the brain neurons as a result of the mechanical 

stress induced by BINT.  Therefore, mechanical trauma resulting from BINT can provide 

an initial source of acrolein in a lipid-rich environment of the brain, which is highly 

susceptible to lipid peroxidation due to its high lipid content attributed to abundance of 
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myelin and axonal membrane.  Additionally, it has been reported that overproduction of 

acrolein significantly elevated oxidative stress through depletion of glutathione [54].  

This leads to a self-regeneration concept, where oxidative stress via lipid peroxidation 

leads to the production of acrolein, and acrolein in itself can perpetuate oxidative stress 

(Figure 1).  Therefore, the removal of acrolein stunts this cycle proving beneficial for 

therapeutic intervention and ideally prevention of disease pathology. 

Due to the highly reactive properties of acrolein and its ability to modify cell 

macromolecules underlying its toxicity, a trapping agent would be ideal to prevent such 

damage.  The antihypertensive drug, hydralazine is to date the most studied and well 

characterized of the acrolein scavengers.  It has been demonstrated to bind and neutralize 

acrolein [58-60] and acrolein-protein adducts [61-63].  Additionally, it has also prevented 

acrolein-mediated cell death and injuries in vitro [64, 65].  The hydrazine group of 

hydralazine has been identified to react with acrolein, at a 1:1 ratio [60, 63] (Figure 2).   

However, hydralazine’s vasodilatory effect is one of the limitations for therapeutic 

purposes, mainly because it would be undesirable for a patient that suffered from spinal 

cord injury or blast, as they may be likely suffering from a neurogenic shock.  In 

addition, the half-life of hydralazine does not exceed one hour, which potentially limits 

its therapeutic efficacy in suppressing acrolein generation and related chronic oxidative 

stress processes [66]. 

Phenelzine (PLZ), an irreversible non-selective monoamine oxidase inhibitor 

(MAOI), has been primarily utilized for the treatment of depression [67-69], but also in 

other psychiatric disorders such as panic disorders [70, 71], social anxiety disorders and 

post-traumatic disorders [72-74].  Phenelzine, like hydralazine has a hydrazine group 

rendering it a potential acrolein scavenger (Figure 2). PLZ has also been shown to be 

neuroprotective in a gerbil model of forebrain ischemia by reacting with 3-aminopropanal 

(3-AP) to form hydrozone, and provides neuroprotection from acrolein induced LDH 

release in vitro [75]. Additionally, PLZ alleviates oxidative stress through acrolein 

scavenging in a traumatic spinal cord injury rat model [37]. PLZ is not a vasodilator and 

can be administered safely at higher doses compared to hyrdralazine.  A 15 mg/kg dosage 

was given subcutaneously to gerbils after ischemia-reperfusion brain injury and 
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effectively neutralized reactive aldehydes such as acrolein, providing neuroprotection 

[75].  In this study, we used PLZ as an acrolein scavenger following blast injury in efforts 

to prevent PD-like symptoms in our rat model. 

 

  

1.4 Parkinson’s Disease (PD)  

 

Parkinson’s disease (PD) is an age-related neurodegenerative disease affecting about 

1-3% of the population over 50 years of age [76, 77].  PD is characterized by relatively 

selective, progressive degeneration of the dopaminergic (DA) neurons in the substantia 

nigra and the presence of LB inclusions in the affected brain regions.  The lack of 

dopamine supply to the striatum is the major contributing factor to motor dysfunction 

phenotypes of PD, including shaking tremors, rigidity and gait disturbances. The current 

therapeutic interventions include drugs such as dopamine agonists and MAO-B inhibitors 

to increase dopamine levels and at time deep brain stimulation are currently available.  

However, these treatments only provide relief rather than a cure or preventive measure 

for combating disease symptoms and the risk-benefit profiles of current treatment options 

are still inadequate. 

This shortage of effective treatments for PD is partially due to our limited 

understanding of the mechanisms of dopaminergic neuronal death.  Therefore, the current 

treatments only provide symptomatic relief rather than addressing the major cause of the 

disease.  α-Synuclein, the major component of LB inclusions is thought to play an 

essential role in the pathogenesis of PD [78].  Modified α-synuclein is found within LB 

inclusions in a PD brain, and mutations in the α-synuclein gene are associated with 

familial PD [79, 80].  The formation of LBs has been linked with oxidative stress, which 

is also consequently elevated in PD patients [81-83].  α-Synuclein also has abundant 

lysine-rich repeats, making it more vulnerable to oxidative stress and the reaction with 

acrolein [84].  Therefore, we can speculate that α-synuclein aggregation is a major player 

in DA cell death seen in PD.   
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It is well established that oxidative stress and lipid peroxidation play important 

roles in mediating the death of DA neurons [85, 86].  The challenge in the field of PD is 

to further understand mechanisms of oxidative stress and to identify novel and more 

effective targets to prevent DA cell death.  As mentioned previously, acrolein, produced 

by lipid peroxidation, can directly damage nerve cells and generate free radicals.  Our lab 

has also shown that in a cell-free system and in vitro studies, acrolein can induce α-

synuclein aggregation and leads to neuronal death (data not shown).  These findings have 

led us to postulate that acrolein plays a critical role in neurodegeneration associated with 

PD.  Consequently, it is also important to consider other contributing factors that lead to 

PD, such as traumatic brain injury (TBI).  Epidemiological studies have demonstrated 

that TBI is a risk factor for PD [87], however the link between the two remains unclear.  

Previously, our lab has shown the role of acrolein in a PD rat model and in a blunt-force 

impact TBI model, but not in a BINT model.  We further speculate that the acrolein post-

blast injury can contribute to the development of a PD-like pathology.  This study 

investigates the susceptibility to PD following a blast injury and we speculate acrolein 

plays a major role in linking blast injury and PD.  
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Figure 1.  Acrolein regeneration cycle after neural trauma.  A diagram showing the cascade of 
cellular responses after a neural trauma.  The tissue disruption and structural damages from a neural 
trauma leads to a cascade of biochemical changes in the brain.  In particular, ROS (such as H2O2) 
from oxidative stress can readily generate hydroxyl radicals (OH*).  These radicals induce lipid 
peroxidation and produce reactive aldehydes such as acrolein, which can directly and indirectly 
generate more ROS, perpetuate this cycle and generate further insult. 
 

OH* 
Acrolein Lipid  

peroxidation 

  ROS 
 

Neural Trauma 

Tissue Disruption 

Structural and 
Biochemical Changes 
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Figure 2.  Inactivation of acrolein by acrolein scavengers: hydralazine and phenelzine 
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CHAPTER 2 – RESEARCH PROPOSAL AND AIMS 

 

 

2.1 Research Rationale 

 

 BINT injuries are usually accompanied by affective disorders and have been 

linked to an increased risk of developing PD [4, 9, 14-17].  The primary physical trauma 

sustained from an injury, such as blast injury, is exacerbated by altered physiological 

conditions including cerebral blood flow, intracranial pressure, inflammatory response 

activation and phospholipid metabolism, which lead to a delayed phase of chemically-

mediated damage termed “secondary injury” [88-93].  Particularly, in human post-

mortem brain tissue analysis and animal studies, TBI can induce abnormal α-synuclein 

accumulations in the axonal swellings, dystrophic neurite formation [94-96], and 

inflammatory response [97]; similar to what is observed in PD pathology.  However, due 

to inadequate knowledge of underlying mechanisms of both TBI and PD, common 

pathogenic features remain elusive and therapeutic options are limited. Recently, 

oxidative stress, the underlying mechanism of secondary injury, has emerged as an 

important feature of both neural trauma [28, 98] and neurodegenerative diseases, 

particularly PD [99-102]. However pharmacologically eliminating free radicals offers 

marginal neuroprotection and has had limited success in attenuating further progression 

of damage. Our lab has identified acrolein, a highly reactive aldehyde that persists days 

to weeks following injury and perpetuates oxidative insult, as a potential therapeutic 

target to curtail chemically-mediated damage, a common feature of TBI and PD.   

Despite strong interest, the cellular mechanisms of blast-induced brain injury are 

essentially unknown due to limitations of human studies and insufficient investigation in 

animal models.  We have recently established a novel rat blast-induced brain injury 

model that displays significant biochemical and behavioral deficits in the absence of 
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conspicuous acute motor deficits, shown in Figure 1, [103] a phenotype that closely 

resembles the mild BINT human condition [104].  The development of such model will 

allow us to quantify the injury sequelae as well as investigate potential treatments to 

alleviate potential neurodegeneration.  In order to provide a holistic model of injury, as it 

would progress in clinical cases, we must use an approach that allows us to monitor the 

injury in vivo.  

Using the blast-model, we have found that acrolein, a well-known key neural toxin and 

marker of oxidative stress [44, 91], is significantly elevated in brain tissues (using dot 

blot) and in urine through the measurements of 3-HPMA, an acrolein metabolite, in days 

post-injury (data not shown).  On the other hand, our lab also investigated that in a 6-

OHDA-induced PD animal model, acrolein is elevated.  Furthermore, lowering of 

acrolein using a well-known acrolein scavenger, hydralazine, could lead to alleviation of 

motor deficits implicating a pathological role of acrolein in PD.  Consistent with role of 

acrolein in PD pathology, our lab in collaboration with Dr. Rochet, has shown that 

acrolein can promote α-synuclein aggregation, one of the hallmarks of PD in vitro and in 

vivo.  In addition, acrolein is a known pro-inflammatory aldehyde [105, 106] further 

suggesting its putative role in inflammation, both in blast injury and PD.  In summary, 

our data strongly suggests that acrolein plays a critical role in the pathogenesis of PD by 

directly promoting α-synuclein aggregation, and instigating neuroinflammation, which 

further exacerbates α-synuclein aggregation.  

 

 

2.2 Research Proposal and Aims 

 

In light of these findings, we propose that acrolein may be the underlying culprit 

rendering blast victims vulnerable to PD development.  Specifically, we postulate that 

elevated acrolein levels instigated by blast injury may synergistically work with some 

other possible factors to trigger or exacerbate PD pathology.  With relevance to our 

animal models, we predict that the known event of post-blast injury acrolein elevation in 

combination with sub-threshold 6-OHDA (sub clinical dose causing no behavioral 
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deficits) may produce more severe PD like symptoms than either injury alone.  We also 

predict that lowering acrolein post blast would eliminate or reduce the vulnerability to 

PD.  This would strongly suggest acrolein to be the key mechanistic link between blast-

brain injury and PD.  The purpose of this project is to investigate the molecular 

mechanism underlying the susceptibility of PD in post-blast rats.  Our hypothesis is 

that acrolein is the key, linking blast injury and the development of PD in our rat model.  

AIM 1.  Characterize behavioral deficits and evaluate oxidative stress-related 
biochemical changes after mild blast-induced traumatic brain injury, and its possible 
causal effects to enhance susceptibility to PD. 
 
AIM2. Investigate the behavioral deficits following mild blast-induced traumatic brain 
injury and sub-threshold 6-OHDA nigral injection. 
 
AIM3.  Investigate the neuroprotective role of acrolein scavengers such as phenelzine, to 
mitigate PD-like behavioral deficits following blast-induced traumatic brain injury. 
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CHAPTER 3 – MATERIALS AND METHODS 

 

 

3.1 Animal Models 

 

Mild Blast-traumatic Brain Injury Model 

Rats were anesthetized with 80 mg/kg ketamine and 20 mg/kg xylazine and a 

body shield was placed over the animals for protection during injury allowing for the 

study of mild BINT (mBINT) without systemic confounders. mBINT was produced by a 

blast wave generator, which delivered a global blast pressure wave in a laboratory setting. 

Blast generation was achieved when pressure built up in a reservoir until it exceeded the 

burst strength of the diaphragm. The blast wave was directed downward at a distance of 

50 mm from the nozzle of the blast generator to the head of the animal, with a peak 

pressure of 150 kPa. Sham animals were anesthetized accordingly and place in the same 

room of the blast set-up but outside the blast wave range. Our injury model resembles the 

human condition by successfully correlating blast pressure intensity wave and motor 

function after mBINT (Figure 3). 

 

The 6-Hydroxydopamine (6-OHDA) Rat Model 

The 6-OHDA is one of the well-known PD animal models and it has been 

established in our lab.  In brief, the 6-OHDA at 8μg diluted in sterile saline was 

administered using a Hamilton syringe with a stainless steel cannula gauge injector to 

obtain a unilateral nigrostriatal lesion.  The rats were anesthetized with 100 mg/kg of 

ketamine and 10 mg/kg xylazine using intraperitoneal (i.p.) injections.  A burr hole was 

made in the skull using a dermal drill, and after careful piercing of the dura mater; the 

needle was inserted vertically according to the stereotaxic coordinates using Paxinos as 

reference.  Two microliters of the 6-OHDA solution was infused at a rate of 1 μL/min for 
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2 minutes.  Sham-operated 6-OHDA rats (Group 6) rats received 2 microliters of saline 

delivered at the same rate.  Sub-threshold 6-OHDA injection is induced laterally into the 

substantia nigra at this following coordinates: -5.4AP, +3.0ML, -8.2DV with a 6-OHDA 

concentration of 4μg/2μL and a full 6-OHDA with a higher concentration of at 8μg/2μL.  

The concentration of 6-OHDA has been previously used in our lab, and the brain 

coordinates are suggested by Bergstrom et al., 2001 [107].  For Group 3, sub-threshold 6-

OHDA was induced 3 days after blast. Since symptoms of PD do not present until 

dopamine loss in the putamen exceeds approximately 80%, the denervation produced by 

partial lesions as suggested is more suitable for investigating the compensatory adaption 

in the pre-symptomatic or preclinical phase of the disease [107]. 

 

3.2 Behavioral Assessments 

 

Rotarod Test 

The rotarod is a performance test and was first developed in 1957 by Dunham and 

Miya [108], and is commonly used as a screening test for evaluating the neurological 

effects of drugs [109].  The device consists of a metal frame with a motorized, rotating 

assembly of rods. The device in the Hamm et al. paper consisted of 18 rungs (1 mm 

stainless steel rods). Jones & Roberts (1968) showed that gradually increasing the speed 

of rotation led to greater sensitivity of the test [110]. Animals are allowed first to remain 

stationary for 10s. The speed then gradually increased by 3 rpm per 10s until 30 rpm is 

reached (rotational speed at which naïve, uninjured rat will not fall of during 2 min test 

interval). The animal must remain on the apparatus for the remainder of the 2 min test 

interval at this 30 rpm speed. The trial will end if the rat completely falls off the rungs, or 

grips the device and spins around twice without actually walking on the rungs.  The 

purpose of the rotarod test is to assess the rat’s sensory motor coordination. The test is 

sensitive to damage in the basal ganglia and cerebellum and to drugs that affect motor 

function.  The speed of rotation is gradually increased and the rat’s ability to remain on 

the rotating rod is recorded.  Baseline behavior for each animal is recorded before 

surgery.   



 15 

Open Field Activity Detector  

Animals were placed in a Plexiglas activity box (100 cm×100 cm×20 cm) in a 

darkened room. A red light and a camera are placed on top of the box to record the 

activity of the animal.  Each rat is placed on the box and activity is recorded for 5-15 

minutes.  The area covered and distance travelled per animals will be evaluated using an 

automated video tracking system (ANY-maze) to evaluate these behavioral parameters. 

 

 

3.3 Statistical Analysis 

 

Unless otherwise specified, a one-way analysis of variance (ANOVA) comparing 

group means for control and experimental groups for each of the experiments was 

performed to determine the differences of protein expression in the biochemical studies 

and motor deficits on the behavioral tests.  The null hypothesis was rejected if P<0.05.  

The Tukey’s Test was used for post-hoc comparisons to control, and the null hypothesis 

was rejected if P<0.05. SEM was used for the standard error bars. 

 

 

3.4 Experimental Approach For Each Aims 

Aim 1 

Our blast injury model has been recently modified to provide consistent pressure 

wave and mimic a blast-injury observed in human blast injuries (Figure 3). Male Sprague 

Dawley rats (weight 350-450 grams) were used in this study. The experiments were 

performed in strict accordance with PACUC guidelines. Upon arrival to animal facility, 

animals were housed individually in a temperature- controlled room at 25oC and on a 12 

h light/12 h darkness cycle with free access to food and water for at least a week before 

testing. Animals were handled daily 3 days prior any procedure.  Rats were in the 

following groups: mBINT (n=4) and sham (n=4).  We characterize short-term motor and 

behavioral deficits using rotarod and open-box activity seven days post-mBINT. 
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Aim 2   

Male Sprague Dawley rats (weight 350-450 grams) were used in this study.  The rats 

were kept on a 12 h light/12 h darkness cycle and free access to water and food, and at 

controlled temperature of 25 oC.  The experiments were performed under the strict 

accordance with PACUC guidelines.  mBINT was performed as described in Figure 3.  

Our time line for the mBINT and sub-6-OHDA injection is shown in Figure 4.  The 

groups for this study: 

Group 1:  Sham-Blast (n=4) 

Group 2:  Blast only/mBINT (n=5) 

Group 3:  Blast/mBINT + Sub-threshold 6-OHDA (n=5) 

Group 4:  Sub-threshold 6-OHDA only (n=5) 

Group 5:  6-OHDA (n=5) 

Group 6:  Sham- 6-OHDA (n=4) 

 

Aim 3 

Male Sprague Dawley rats (weight 350-450 grams) were used in this study.  The rats 

were kept on a 12 h light/12 h darkness cycle and free access to water and food, and at 

controlled temperature of 25 oC.  The experiments were performed under the strict 

accordance with PACUC guidelines.  Blast injury was performed as described in Aim 1 

and sub-threshold 6-OHDA in Aim 2.  A dose of 15 mg/kg of phenelzine was 

administered to each animal post-mBINT.  Figure 5 shows a time line of the experiment 

for this aim. 

 
3.5 Biochemical Assessments 

 

Detection of Acrolein 

The quantification of acrolein and its metabolites in urine has recently been 

established using liquid chromatography-mass spectroscopy (LC/MS) providing a non-

invasive detection to monitor acrolein and investigate its pathological role in brain 

injuries and other diseases [45, 58, 111-115].  Specifically, measurement of acrolein 

metabolites known as mercapturic acids in blood, urine and feces using LC/MS have 
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shown promise as reliable biomarkers to detect acrolein [116, 117].  N-acetyl-S- (3-

hydroxypropyl) cysteine (3-HPMA), the most common mercapturic acid derived from 

reduction of acrolein by aldehyde reductase, is a stable and non-toxic compound with 

feasibility of detection [118, 119].  Our lab has optimized a consistent method of 

detecting 3-HPMA through LC/MS/MS providing a systemic measurements on acrolein 

dynamics as described in Lingxing et al., 2013 [120]. 

  
Western blotting of post-mortem brain tissue  

We evaluated protein markers that are relevant to oxidative stress (acrolein Lys-

adducts) and PD following blast-injury in rats.  In brief, rats were induced with blast as 

described above and sacrificed after two days and seven days post-mBINT. Whole brain 

tissues were frozen and pulverized.  Total protein lysates were isolated from each group: 

Control (uninjured rats, n=4), two-days after injury (n=4), and seven-days after injury 

(n=3).  Protein concentrations were measured using the Bicinochoninic Acid protein 

assay kit (Pierce, Rockford, IL, USA) and SPECTRAmax (Molecular Devices, 

Sunnyvale, CA).  Fifty micrograms of protein with 20% SDS, β-mercaptoethanol, and 2x 

Laemmli buffer were loaded to a 12% Tris-HCL gels and electrophoresed at 100 volts for 

1.5 hours at 4 oC.  Proteins were then transferred to a nitrocellulose membrane by electro 

blotting in 50 volts for 2 hours at 4 oC in a 1x transfer buffer (Tris-Glycine buffer from 

BioRad, Hercules, CA and methanol).  Membranes were blocked in 5% milk and washed 

with Tris-Buffered Saline with 0.1% Tween-20 accordingly.  The blots were subjected to 

the primary antibody of interests:  (Anti-Acrolein (Abacm #ab37110, Anti-TH (Cell 

Signaling #2792S), Anti-pTHSer40 (Novus Biologicals #NB300-173), Anti-α-Synuclein 

(BD Transduction Labs #610786), Anti-CRF (Abcam #ab8901), and Anti-Actin 

(Imgenex #IMG-5142A).  An HRP-tagged secondary antibody was used and an enhanced 

chemiluminescence (ECL) system was used for detection. Protein bands were visualized 

and quantified using the AlphaView software system (Protein Simple, San Jose, CA).  

Data are normalized with actin and expressed as percent control.  
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Figure 3. Rat blast-induced brain injury model.  (A) Illustration of rat blast 
experimental set-up. (B) Enlarged area view of the surface of the rat brain where the blast 
was aimed. (C) Average blast pressure waveforms. Total pressure represents pressure 
generated by blast while static pressure represents control situations–no blast.      
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Figure 4.  Aim 2 Experimental Design and Timeline.  Rats were trained on the rotarod 
and acclimated within the open box before collecting baseline.  A blast injury was 
performed on the experimental group and three days after blast a sub-threshold dose of 6-
OHDA (4 μg/2 μl) was stereotaxically injected into the substantia nigra.  Behavioral tests 
were performed for a certain period of time and animals were sacrificed according to 
PACUC guidelines after the study. 
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Figure 5.  Aim 3 Experimental Design and Timeline.  Rats were trained on the rotarod 
and acclimated within the open box before collecting baseline.  A blast injury was 
performed on the experimental group and 5 minutes after blast an injection of phenelzine 
(PLZ) at 15 mg/kg was administered intraperotineally (i.p.).  Phenelzine was administered 
again 24 and 48 hours post-blast.  On Day 3, a sub-threshold dose of 6-OHDA (4 µg/2 µL 
6-OHDA) was stereotaxically injected into the substantia nigra.  Behavioral tests were 
performed for a certain period of time and animals were sacrificed according to PACUC 
guidelines after the study.  
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CHAPTER 4 – RESULTS AND DISCUSSION 

 

 

4.1 Characterization of behavioral deficits and evaluation of oxidative stress-related 

biochemical changes following a mild-blast induced traumatic brain injury, and 

the possible causal effects for enhancing susceptibility to PD 

 

mBINT Injury and Behavioral Test   

Despite the aforementioned short and long term consequences of mild blast 

injuries, the underlying mechanisms governing the associated functional loss are poorly 

investigated.  This lack of understanding is due in part to limitations of human studies 

and insufficient investigation in animal models.  As such, we have successfully 

established a rodent model of mild Blast Induced Neurotrauma (mBINT), which 

resembles the human condition.  By developing this model of mBINT, we can elucidate 

underlying pathophysiological cellular responses and better identify targets for 

therapeutic intervention.  Our model utilizes a consistent pressure intensity wave to 

induce mBINT (data not shown).  Assessment of motor function, using a rotarod task, 

showed no statistically significant difference between the sham and mBINT animals 

suggesting that our mBINT model does not elicit motor deficits (Figure 6). 

 

Biochemical assessment of post-mortem tissue following mBINT 

 

Acrolein:  Role in Oxidative Stress and Inflammation 

Oxidative stress markers have been shown to substantially increase in disease 

states such as PD and TBI.  Acrolein, a byproduct of oxidative stress, is a highly reactive 

aldehyde product of lipid peroxidation that has been shown to react with DNA, lipids, 

and proteins.  Acrolein also stimulates the production of free radicals and therefore 
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perpetuates oxidative stress.  Our immunoblot results show a (19.2 ± 7.2 %) increase of 

acrolein-modified protein levels two days post-mBINT which continues to increase until 

seven days post-mBINT (31.5 ± 2.1 %) (Figure 7A).  Each lane was quantified by 

summing the density of all bands, and was subsequently normalized to beta-actin protein 

expression (see Methods for software parameters).  Data are expressed as mean (±SEM) 

of the percent control values for normalized relative quantities.  Statistical tests showed a 

significant increase in acrolein-lysine adduct proteins levels two days (19.2 ± 7.2 %, 

P<0.05) and seven days (31.5 ± 2.5 %, P<0.001) post-mBINT compared to the control 

group.  These results further support previous data from our lab, which demonstrates that 

acrolein levels are increased following blast injury (data not shown). Here, we further 

validate that our blast model mBINT induces extensive biochemical changes.  This also 

supports the notion that oxidative stress is elevated in blast injuries [121-123].  We 

speculate that the biochemical changes post-mBINT can trigger and perpetuate additional 

long-term damage (Figure 1).  Additionally, acrolein possesses pro-inflammatory 

capabilities and can partially contribute to the inflammatory response following mBINT 

thereby exacerbating the secondary injury biochemical cascades post-blast injury [105, 

106].  We suspect that the elevated acrolein levels we observed post-mBINT are 

responsible in part for increasing susceptibility to PD.  

 

Tyrosine Hydroxylase (TH)  

TH catalyzes the amino acid tyrosine to Levodopa (L-dopa), which is the first 

rate-limiting step in synthesizing the catecholamine dopamine [124, 125].  In PD patients, 

TH activity is decreased in the nigro-striatal area, which results in the reduction of 

dopamine levels [126].  TH is essential in the synthesis of dopamine and it is an essential 

biomarker implicated in the neurodegeneration process of PD. Our data show an overall 

decreased of TH activity by measuring the protein expression of TH phosphorylation at 

serine 40 (pSer40) two (49.4 ± 6.4 %) and seven days (55 ± 12.6 %) post-mBINT relative 

to the control group (Figure 8).  The bar graph shows the average means for each group 

(± SEM) of the percent control values normalized relative quantities to unphosphorylated 

TH (Figure 8B).  Statistical analysis showed a significant decrease of pSer40 TH activity 
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two days (49.4 ± 6.4 %, P<0.01) and seven days (55 ± 12.6 %, P<0.01) post-mBINT.  

This suggests that the “secondary injuries,” particularly acrolein, post-mBINT injury can 

contribute to the biochemical pathology observed in PD.  As evident by the elevated 

acrolein levels we observed post-mBINT (Figure 7), BINT increases ROS such as 

superoxide radicals [121, 123], which thereby enhances lipid peroxidation.  We believe 

that acrolein plays a significant role in TH regulation post-mBINT.  

Due to the myelin content of brain tissue, lipid peroxidation (LPO) is a major 

process of neurodegeneration-related oxidative stress.  Among the end products of LPO 

is acrolein, a far more reactive molecule than other aldehydes products (Figure 1).  

Although acrolein has been shown to modify proteins in vitro [47, 112] and acrolein-

modified proteins have been observed in PD brains [127], the mechanisms by which it 

interacts with TH remain unclear.  It is possible that acrolein can modulate the function of 

TH through direct or indirect signaling that is thereby affecting dopamine synthesis.   TH 

is an enzyme in which its activity is regulated by kinases and phosphatases, activators 

and deactivators respectively.   The main kinases that regulate TH phosphorylation at 

Ser40 are the cAMP-dependent protein kinase A (PKA) and the mitogen-activated 

protein kinase-activated protein kinase 2 (MAPKAP-K2) [128-130].  In addition, the 

adapter protein, 14-3-3 enhances both kinases phosphorylation of TH at Ser40 and TH 

function [131]. On the other hand, protein kinase Cδ (PKCδ) has been shown to decrease 

TH activity and DA synthesis.  PKCδ is also highly expressed in the nigral dopaminergic 

neurons and co-localizes with TH [128, 132].  The potential of oxidative stress, 

specifically acrolein, to modulate any one of these proteins may be critical for PD 

progression. 

Possibly the most important regulatory protein of TH is α-synuclein since it is 

directly implicated in PD pathology.  The function of α-synuclein, the major protein 

found in the in Lewy body inclusions of PD, is not fully understood.  However, the 

abnormal expression of α-synuclein has been demonstrated to inhibit TH gene expression 

and its activity in both in vitro and in vivo studies [128].  TH function is hindered in both 

transgenic mice overexpressing α-synuclein and in dopaminergic cells transfected with 

α-synuclein [133, 134].  Additionally, transfection of α-synuclein in MES 23.5 
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dopaminergic cell line induces cell injury and decreases TH gene expression and protein 

levels [135].  Furthermore, α-synuclein has similar protein homology as 14-3-3 and is 

thought to function as a chaperone protein [136-140].  The 14-3-3 chaperone protein 

enhances the kinase’s function to activate TH at pSer40 thereby increasing DA synthesis 

[141-143].  Interestingly, α-synuclein is found to activate phosphatases, particularly 

phosphatase 2A (PP2A), leading to the inhibition of TH activity [144] and could explain 

the decrease in TH activity and gene expression in the aforementioned in vitro and in vivo 

studies.  Furthermore, phosphorylation of α-synuclein at Ser129 attenuates PP2A activity 

and increases TH activity.  This suggests that overexpression of α-synuclein can 

independently trigger PP2A activation and TH inhibition leading to the interaction of 

both enzymes or possibly TH inhibition is an additional consequence and it can activate 

PP2A [144]. Further investigation of the exact mechanism underlying α-synuclein effects 

on TH and PP2A, particularly delineating its soluble forms, is need not only for PD 

targeted therapeutics but also to potentially regress or prevent the onset of PD following 

blast injury.   

The mechanisms by which acrolein affects biological systems are not yet fully 

understood; however, many of its effects are attributed to activation of such kinases 

mentioned above, particularly (MAPKs) and c-Jun N-terminal kinase (JNK) [145, 146], 

as well as chemokine production and the induction of apoptosis [146, 147].  The reactive 

properties of acrolein allow it to readily target these proteins by Michael addition to the 

cysteine, lysine and histidine residues, and thereby can dysregulate their function and 

affect downstream signaling pathways, particulary the dopaminergic synthesis and 

neurotransmission.  In relation to the interplay between the kinases and phosphatases 

mentioned above, TH and α-synuclein in the presences of acrolein needs to be further 

validated to fully understand the pathology of blast injury and how it can potentiate PD 

pathology.   

Additionally PD pathology is marked by increased inflammation and levels of 

pro-inflammatory cytokines, such as TNF-α [148].  This event can trigger proteosomal 

degradation of TH and contribute to reduced TH levels [149]. This implicates the role of 

inflammation in the regulation of TH, and with acrolein’s pro-inflammatory role, 
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increased acrolein levels post-mBINT may directly affect TH activity as observed in our 

blots.  Our results present further investigation on the role of acrolein post-mBINT and 

on the mechanisms and pathways of TH activation and deactivation to further elucidate 

its contribution to PD pathology.  Also, investigation of the multi-site phosphorylation of 

TH is warranted. 

 

α-Synuclein  

α-Synuclein is the main protein present in the Lewy Bodies (LB) found in the 

surviving dopaminergic neurons of PD patients.  It is a small soluble protein (14 kDa) 

that is highly localized in the presynaptic terminals [128, 150], and can be essential in 

normal brain function. However, the exact function and neurotoxic level of α-synuclein 

remains unclear.  α-Synuclein is very sensitive to environmental factors and genetic 

modifications which trigger its misfolding and an eventual loss of normal function. Point 

mutations in the α-synuclein gene can enhance its aggregation and thus contributes to the 

development of the familial and rare forms of PD.  Currently, little is known about the 

mechanism leading to the aggregation of α-synuclein, however one study suggests that 

the dimerization of the protein can be a rate-limiting step in its aggregation leading to the 

formation of LBs [151].  The ubiquitin proteasome system (UPS) and oxidative stress are 

two mechanisms, which can promote α-synuclein aggregation.  UPS is the main 

biochemical pathway for degrading both normal and abnormal (mutated, misfolded) 

intracellular proteins [152, 153], such as α-synuclein.  Malfunction of this system leads 

to protein accumulation and cell death [154, 155].  Several studies have shown that in PD 

this ubiquitin-dependent protein degradation is impaired [153].  In vivo post-translational 

modifications such as phosphorylation and ubiquitination can interfere with the function 

and degradation of α-synuclein and alter its native state in a way that enables 

aggregation.  Tofaris et al. (2003) used a two-dimensional gel electrophoresis approach to 

characterize the pathogenic species of α-synuclein in LBs isolated from the post-mortem 

brain tissue of PD individuals [142].  They found a highly modified species of α-

synuclein at 22-24 kDa that was ubiquitinated.  This species was conjugated with at least 

1-3 ubiquitins.  Furthermore, this 22-24 kDa α-synuclein species was 
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hyperphosphorylated on its serine residues.  The phosphorylation of α-synuclein at Ser-

129 has been highly associated with LB α-synucleins and accelerates neurodegeration in 

a rat model of PD [156].  In addition, as mentioned previously, this Ser129 site can also 

regulate TH activity and further implicates these post-translational modifications of α-

synuclein in the pathogenesis of PD. 

Our Western blot shows two distinct bands of α-synuclein, 17 kDa and 25 kDa 

(Figure 9A).  We performed a control experiment to confirm these bands by blocking the 

α-synuclein antibody with purified α-synuclein proteins before incubating the blot.  Our 

results show convincing evidence that these two bands observed are α-synuclein (Figure 

16).  We speculate that the band observed at 17 kDa is the monomeric form of α-

synuclein which is the “normal” unmodified form, and the 25 kDa is the modified form 

of α-synuclein, possibly by post-translational modifications.  We expressed our data as 

means (±SEM) of the percent control values for normalized relative quantities and all 

bands of interests were first normalized with beta-actin.  Our analysis of the unmodified 

17 kDa α-synuclein bands show a significant decrease two days (51.5 ± 4.0%, P<0.05) 

and seven days (82.8 ± 3.5%, P<0.05) post-mBINT (Figure 9B).  On the other hand, our 

analysis of the modified 25 kDa α-synuclein band shows an opposite trend, where a 

statistically significant increase was observed two days (43.6 ± 5.5% P<0.05) and seven 

days (65 ± 10.2%, P<0.01) post-mBINT (Figure 9C).  Our data suggests both two and 

seven days post-mBINT can induce post-translational modifications of α-synuclein.    

It is essential to conduct further experiments to validate the 25 kDa α-synuclein 

bands on our results and the specific α-synuclein post-translational modification 

mechanism. We suspect that perhaps, acrolein can contribute to modification of α-

synuclein since we also show that in an in vitro study of acrolein can promote α-

synuclein aggregation in dopaminergic neuronal cell lines (Data not shown).  We 

speculate that  increased levels of modified of α-synuclein suggests a disruption of the 

physiological integrity of the cells and thus may be contributing to the decrease in TH 

activity observed in Figure 8.  Similarly in vitro studies have demonstrated that 

overexpression of α-synuclein reduces the levels of TH mRNA and protein [157, 158] 
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and thereby can regulates TH expression and affects dopamine synthesis in the brain, 

further exacerbating PD pathology.  

 

 

4.2 The susceptibility of PD-like motor deficits following a blast injury and the role 

of acrolein 

 

Loss of motor function is the predominant symptom of PD which is observed in 

the most common 6-hydroxydopamine (6OHDA) rat model of the disease.  Our lab has 

established the 6-OHDA rat model by stereotaxically injecting 8 μg/2 μl of 6-OHDA into 

the substantia nigra (SN) to induce PD-like motor deficits.  6-OHDA promotes 

neurodegeneration of dopaminergic neurons in the substantia nigra further mimicking the 

pathology of PD.  For our sub-threshold 6-OHDA model we injected at the same site (see 

methods for coordinates) but at a lower dosage of 6-OHDA (4 μg/2 μl).  This is the first 

time we employed this sub-threshold dosage and expect to not show motor deficits.  

Sham-6OHDA, injection of saline into the SN, is our negative control for this model.  As 

seen in Figure 3, our mBINT rat model was assessed using sham-mBINT as the control, 

as well as the combination of mBINT and sub-threshold 6OHDA (see Figure 4).  We 

trained each animal on the rotarod prior to collecting baseline measurements, which 

included three testing times per day and 210 seconds on the rotarod was considered a 

perfect performance test.  We averaged the motor performance for each animal and 

within groups which was used to plot our data.  We followed these animal groups’ motor 

performance for approximately two months and collected data at different time points. 

 The overall trend of motor performance on the rotarod for each of the six groups 

of animals is shown in Figure 10.  Our motor performance test on the rotarod indicates 

that the combination of mBINT and sub-threshold 6-OHDA (172.2 ± 10.4 s) resulted in 

motor deficits similar to a full 6-OHDA PD model (180.1 ± 3.8 s) and is consistent 

throughout the study.  However, the mBINT only (204 ± 2.3 s) and sub-threshold 6-

OHDA (206 ± 1.8 s) groups did not show motor deficits similar to the control groups:  

sham-mBINT (209.2 ± 0.32 s) and sham-6-OHDA (208.5 ± 1.37 s).  At the end of the 
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study the motor performance test for each group was averaged and plotted on a bar graph 

(Figure 11).  ANOVA shows a significant group effect [F(5,22), p<0.001].  Post-hoc 

comparison between mBINT and mBINT+sub-6-OHDA (P<0.05), sub-6-OHDA and 

mBINT+sub-6-OHDA (P<0.05), and sub-6-OHDA and 6-OHDA (P<0.01) all show 

statistically significant differences.  The error bars represent SEM values.  These results 

show that mBINT can heighten the susceptibility to PD-like motor deficits. Motor 

deficits are absent in our mBINT only and sub-6-OHDA only groups, but the 

combination of these produce a PD-like motor deficits further supporting our hypothesis 

that mBINT can promote PD onset (Figures10 and 11). These data further validates our 

mBINT model, mimicking phenotypes typically observed in human mild-blast injury 

cases, and we have established an effective sub-threshold dosage of 6-OHDA. 

Urine levels of the acrolein metabolite, 3-HMPA, were measured from these 

animal samples.  In Figure 12 we show that 3-HPMA is elevated in the 6-OHDA group 

compared to the sub-6-OHDA and the control, sham-6-OHDA groups.  The data are 

expressed as mean (±SEM) of the percent control values for normalized relative 

quantities.  We demonstrate that at five days post surgery there is no statistically 

significant group effect.  However fifteen days post-surgery there is a statistically 

significant group effect, ANOVA [F(2,10)=7.01, P<0.01]: sub-6-OHDA group (17 ± 

14%) decrease and 6-OHDA (72 %± 37%) increase from the sham-6-OHDA control 

group (100 ± 8.5%. Post-hoc comparison between sham-6OHDA vs 6-OHDA (P<0.05) 

and sub-6-OHDA vs 6-OHDA (P<0.01) show significant increased levels of 3-HPMA in 

the 6OHDA group.  This supports previous studies that oxidative stress, particularly 

acrolein, is increased in PD and perhaps is a major contributor of ROS production and 

thereby contributes to neurodegeneration.  Additionally, these 3-HMPA measurements 

can be correlated to the motor deficits behavior tests (Figure 11), thus demonstrating that 

the increased levels of 3-HPMA induces motor deficits in the 6-OHDA PD rat model. 

Furthermore, we also measured the 3-HMPA levels in the mBINT and 

mBINT+sub-6-OHDA group.  Our data are expressed as mean (±SEM) of the percent 

control valueis for normalized relative quantities (Figure 13).  We show that two days 

post-mBINT injury there is an increased levels of 3-HPMA in the mBINT group (12.6 ± 
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16.1 %) and in mBINT+sub6OHDA (7 ± 31.5 %) relative to control, but not statistically 

significant. Subsequently, fifteen days after mBINT injury and twelve days after sub-

threshold 6OHDA injection, the levels of 3-HPMA continued to increase in the mBINT 

group (75.47 ± 30.1%) and mBINT+sub-6-OHDA (168 ± 92 %) relative to the control, 

sham-blast; however this increase is not statistically significant.  Here, we show that the 

combination of mBINT and sub-threshold 6-OHDA can potentiate the increase of 3-

HPMA levels in the urine as compared to the mBINT only and relatively to the sub-6-

OHDA group, indicating that the combination of these two injuries increases oxidative 

stress similar to the 6-OHDA PD model.  These levels of 3-HMPA can also be correlated 

to the motor performance test in Figure 11. 

 

 

4.3 The investigation of the neuroprotective role of phenelzine, an acrolein 

scavenger, to mitigate PD-like behavioral deficits post-blast-induced TBI 

 

Previous experiments from our lab demonstrate that acrolein scavengers, such as 

phenelzine, can mitigate motor deficits in our PD model, and we also show that the 

injection of acrolein to the brain show PD-like motor deficits.  We hypothesized that 

elevated acrolein following mBINT can exacerbate the biochemical insults post injury 

and can potentiate further damage which eventually contributes to the pathology of PD.  

In Figure 14A we shows that the treatment of phenelzine post-mBINT, before induction 

of sub-6-OHDA  (Blast/PLZ/Sub6OH group; 208 ± 4.8 s) shows an improvement of 

motor performance compared to the non-phenelzine treated group (Blast+sub-6-OHDA; 

172 ± 10.4 s).  The average motor performance was calculated at the end of the study and 

represented on each bar (Figure 14B).  ANOVA analysis shows significant group effects 

[F(2,9)=5.88, P<0.05] and a post-hoc comparison between blast/PLZ/sub-6-OHDA (203 

± 4.8 s) and Blast+sub-6-OHDA (172  ± 10.4 s) shows a statistically significant 

improvement in motor performance in the PLZ treated group (P<0.05).  Therefore, we 

show that phenelzine treatment post-blast can be effective for alleviating these deficits. 
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These data further implicate the role of acrolein post-mBINT and perhaps with other 

factors can contribute to the susceptibility to PD-like motor deficits.   

Furthermore, we measured acrolein indirectly through urine 3-HPMA detection 

from each sample group.  Figure 15A shows the time line of our treatment and 

experimental testing. Figure 15B shows bar graphs of the normalized levels of 3-HPMA 

in the urine two days post mBINT: mBINT+sub-6-OHDA group (3.3 ± 1.3 a.u.) versus 

mBINT/PLZ/sub-6-OHDA (0.83 ± 0.34 a.u.); one day post-sub-6-OHDA injection: 

mBINT+sub-6-OHDA group (4.3 ± 1.0 a.u.) versus mBINT/PLZ/sub-6-OHDA (1.6 a.u. 

±0.54) and fifteen days post-mBINT. mBINT+sub-6-OHDA group (3.9 ± 1.3a.u.) versus 

mBINT/PLZ/sub-6-OHDA (0.95 ± 0.12 a.u.).  Using at one-tailed t-test to compare 

between groups on each time point, we show a significant decrease of 3-HPMA levels in 

the phenelzine treated group compared to the non-phenelzine treated group one day post 

sub-6-OHDA injection (P<0.05) which continually decreases even at fifteen days post 

surgery (P<0.05).  Error bars represent SEM.  3-HPMA urine measurement results 

demonstrate that phenelzine can mitigate acrolein levels.  Given that these data can be 

correlated with the behavior motor tests in Figure 14, and the reduction of acrolein 

through phenelzine can mitigate these deficits, it suggests that acrolein post-mBINT may 

have a key role in promoting the susceptibility of PD-like motor deficits. 
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Figure 6.  Motor Performance on the rotarod for each animal group after injury.  
Length of time on rotarod test does not differ between mbTBI and sham rats (unpaired 
t-test, n=9). 
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Figure 7.  Levels of acrolein modified proteins increase post-mBINT.  (A) Western Blot image of 
acrolein modified proteins (FDP-Lys) and β-actin for each group.  (B) Data are expressed as mean 
(±SEM. of the percent control values for normalized relative quantities. ANOVA shows a significant 
group effect [F(2,8)=13.19, P<0.01].  A post-hoc comparison using Tukey’s Test was used to compare 
control vs. 2 days (P<0.05) and control vs. 7 days (P<0.001) groups and show significant differences 
between groups.  Error bars represent SEM. 
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Figure 8.  Tyrosine hydroxylase (TH) activity is decreased post-mBINT.  (A) Western 
Blot image of tyrosine hydroxylase phosphorylated at Serine 40 (pTH-Ser40) and 
unphosphorylated TH (B) Data are expressed as mean (±SEM) of the percent control values 
for normalized relative quantities. ANOVA shows a significant group effect [F(2,8)=11.19, 
P<0.005].  A post-hoc comparison using Tukey’s Test was used to compare control vs. 2 days 
(P<0.01) and control vs. 7 days (P<0.01) groups and shows significant differences between 
groups.  Error bars represent SEM.
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Figure 9. The levels of 25 kDa modified α-Synuclein (**) is increased post-mBINT.  (A) Western 
Blot image of modified α-syn at 25kDA, unmodified α-syn at 17kDA and β-actin.  (B) Data are 
expressed as mean (±SEM) of the percent control values for normalized relative quantities. ANOVA 
shows a significant group effect [F(2,8)=12.86, P<0.005].  A post-hoc comparison using Tukey’s Test 
was used to compare control vs. 2 days (P<0.05) and control vs. 7 days (P<0.05) groups and show 
significant differences between groups for the unmodified (*) α-syn observed at 14 kDa. (C) ANOVA 
shows a significant group effect [F(2,8)=14.39, P<0.005].  A post-hoc comparison using Tukey’s Test 
was used to compare control vs. 2 days (P<0.05) and control vs. 7 days (P<0.01) groups and show 
significant differences between groups for the modified (**) α-syn observed at 25 kDa.  Error bars 
represent SEM. 
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Figure 10.  The combination of mBINT and sub-threshold 6-OHDA nigral injection 
induces a PD-like motor deficits.  The Sub-6OH group and Blast only group show no 
motor deficits similar to the control groups (Sham-Blast and Sham-6OH).  However, when 
blast injury is combined with a sub-6OH injection to the substantia nigra (Blast+sub6OH) it 
produces motor deficits similar to the 6-OH group.  A comparison between Blast+Sub6OH 
vs. Blast-only and Blast+Sub6OH vs. Sub6OH only show significant differences as 
indicated by the symbols.  Error bars represent SEM. 
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Figure 11.  The combination of mBINT and sub-threshold 6-OHDA nigral injection induces 
a PD-like motor deficits.  At the end of the study, the average motor activity test for each rat 
within each group was calculated. ANOVA shows a significant group effect [F(5,22)=6.8, 
P<0.001].  A post-hoc comparison using Tukey’s Test was used to compare Blast and 
Blast+sub6OH and shows a statistically significant difference (P<0.05).  The comparison between 
Sub-6OH and Blast+sub6OH show a statistically significant difference (P<0.05).  In addition, the 
comparison between Sub-6OH and 6-OH (PD rat model) shows statistically significant difference 
(P<0.01).  Error bars represent SEM. 
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Figure 12.  3-HMPA, an acrolein metabolite, is increased in urine of the Parkinson’s 
Disease rat model (6-OHDA).  Data are expressed as mean (±SEM) of the percent 
control values for normalized relative quantities.  Group treatment summary: Sham-6OH 
is the control group (injection of saline in the SN), Sub-6OH (4 μg/2 μl) injection of 6-
OHDA into the SN, and 6OH (8 μg/2 μl) injection of 6OHDA into SN.  At 5 days post 
surgery, ANOVA shows no significant group effect.  The ANOVA test 15 days post-
surgery show a significant group effect [F=(2,10)7.01, P<0.05].  A post-hoc comparison 
using Tukey’s Test was used to compare Sham-6OH vs. 6OH (P<0.05) and Sub-6OH vs. 
6OH (P<0.01) groups and showing significant differences between groups.  Error bars 
represent SEM. 
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Figure 13.  The combination of mBINT and sub-threshold 6OHDA nigral injection 
heightens the 3-HMPA, an acrolein metabolite, compared to only mBINT animals.  Data 
are expressed as mean (±SEM) of the percent control values for normalized relative 
quantities.  Group treatment summary: Sham-Blast is the control group (anesthetized and 
placed in the room where the blast occurs), Blast (as described on the Methods section), 
Blast/SubOH  (Blast and 3 days after a 4 μg/2 μl 6OHDA was injected into the SN).  2 days 
post-mBINT, the animals show an increase of 3-HPMA, but not significant.  Fifteen days 
later, and the injection of sub-6OH 3 days after blast injury (Blast/SubOH group), the 
3HPMA levels are heightened compared to the blast only group, however ANOVA show no 
significant differences amongst groups.  Error bars represent SEM. 
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Figure 14.  The treatment of phenelzine post-blast improves motor performance on 
the rotarod.  (A) Shows that phenelzine treatment (15 mg/kg, i.p.) post-mBINT shows 
improvement of motor performance (Blast/PLZ/Sub-6OH group) compared to the non-
phenelzine treated group (Blast+Sub-6OH).  (B) The average motor performance of each 
group were calculated and represented on by bar.  ANOVA shows significant group 
effects [F(2,9)=5.88, P<0.05). A post-hoc comparison using Tukey’s Test was used to 
compare Blast/PLZ/Sub-6OH vs. Blast+Sub6OH (P<0.05) show significant differences in 
motor activity.  Error bars represent SEM. 
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Figure 15.  Treatment of phenelzine post-mBINT injury reduces the levels of 3-HPMA, an 
acrolein metabolite, in the urine. (A) Timeline of the injury and treatment.  (B) Bar graphs are 
normalized levels of 3-HPMA in the urine 2 days post-mBINT, 1 day post sub-6OH nigral 
injection and 15 days post-mBINT comparison between the phenelzine treated group 
(Blast/PLZ/6OH) and the non-treated group.  A comparison between the Blast/Sub6OH and 
Blast/PLZ/Sub6OH using a two-sample t-test assuming equal variance show significant 
differences 1 day post-SubOH (P<0.05) and 15 days post-mBINT (P<0.05).  Error bars 
represent SEM. 
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Figure 16. Western Blot Confirming the α-Synuclein bands observed in Figure 9. Each 
group is represented on each blot: Ctrl (Control), 2 days and 7 days post-mBINTgroups.  (A) 
Western blot image of blocked α-syn antibody at 25 and 17 kDA. For this experiment, α-syn 
antibody was pre-incubated with a purified α-syn protein before adding to the blot.  (B) 
Western blot image of non-blocked α-syn where α-syn antibody was not pre-incubated before 
addition to the blot.  This was run simultaneously with blot (A). (C) Western blot image of 
non-blocked α-syn, same conditions as (B); but electrophoresis was run at slower rate and 
shorter time span.  This blot was used for analysis as shown in Figure 9. 
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CHAPTER 5 – CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

 The lack of understanding of mBINT pathophysiological mechanisms as well as 

the limited number of effective PD therapies motivates us to find alternative avenues for 

therapeutic targets, particularly to treat in the window of time between post-BINT and 

pre-PD symptoms. We hypothesize that oxidative stress, specifically acrolein, plays a 

critical role in linking mBINT and PD.  Our results from this study demonstrate that 

acrolein scavenging may provide a more effective method for neuroprotection from such 

neuronal insults.  We demonstrate that our mBINT rat model does not show motor 

deficits similar to those observed clinically.  Because we are limited with the variability 

of these injuries in human studies and lack of animal models, a consistent and reliable 

model is essential to further understand the pathology of mBINT.  Our mBINT model 

shows no motor deficits on our rotarod performance test, while post-mortem tissue 

analysis shows extensive biochemical changes (Figure 6, 7, 8, 9).  From these results, we 

can speculate that secondary injuries such as acrolein are elevated post-mBINT and can 

be a critical factor in regulating PD biomarkers such as TH and α-synuclein.   

PD is a complex disease and the mechanisms of dopaminergic neuronal death are 

still largely uncharacterized.  Senescence and genetic mutations are the most common 

factors for increased susceptibility, but other factors such as traumatic brain injury have 

been gaining attention [87].  As one of the most frequent injuries suffered from increased 

military conflicts, the main focus of this research is mBINT.  Individuals that are 

deployed to war conflicts have a higher exposure to blast injuries and most of them suffer 

from long term consequences such as post-traumatic stress disorder, depression, and PD, 

our main research focus. Our biochemical results show that mBINT can modulate PD 

markers such as increased levels of modified α-synuclein alpha (Figure 9) and decreased 

TH activity (Figure 8), hence supporting that mBINT increases susceptibility to PD.   
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Since acrolein has been identified as an essential mediator of secondary injury in 

spinal cord injury and its high reactivity to biomolecules [36, 44, 47, 147, 159], points 

toward the idea that the elevated acrolein levels post-mBINT (Figure 7) are contributing 

in part to the dysregulation of PD biomarkers, particularly tyrosine hydroxylase and  α-

synuclein (Figures 8, 9). Due to acrolein’s longer half-life, on the order of hours to days 

[36], it provides a longer time period compared to the transient free radicals (ROS), 

which can further impose injury to the CNS.  Therefore, acrolein scavenging may provide 

a more effective method for neuroprotection from such neuronal insults. 

However, further investigation is warranted to understand precisely how these PD 

markers are affected by acrolein.  Specifically, future studies need to focus on how 

acrolein induces post- translational modifications of α-synuclein, particulary 

ubiquitination, since we observed a species of suspected to be ubiquitinated α-synuclein 

(25 kDa, Figure 9C) post post-mBINT.  Future in vitro experiments are needed to test if 

acrolein directly induces ubiquitination.  Measuring ubiquitinated α-synuclein in post-

mortem tissue of blast-injured animals would potentially validate those results.  In 

addition, we can further investigate on how ubiquitinated α-synuclein species can 

regulate the activity of TH at pSer 40 and also further investigate the other TH 

phosphorylation sites.  Future experiments are warranted to investigate both the 

regulation of TH through PKA and PKCδ and how acrolein affects these kinases to 

further understand the observed post-mBINT decrease in TH activity.  Thorough 

investigation of acrolein effects the molecules such as kinases and phosphatases which 

regulate the key players in PD pathology, specifically TH and α-synuclein, will help us 

understand the pathogenesis of mBINT and how it can potentiate the development of PD.  

This will further our knowledge on how to treat and find avenues for therapeutic 

intervention and/or potentially prevent the long-term consequences of mBINT, 

particularly PD. 

To further resolve the relationship between mBINT and PD, we established a sub-

threshold 6OHDA model, a lower dosage of 6-OHDA from the full 6OHDA PD model, 

which shows no motor deficits, and combine it with mBINT.  Our results show that a 

combination of mBINT and a sub-threshold injection of 6-OHDA produce PD-like motor 
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deficits, similar to the full 6-OHDA PD model (Figure 10, 11).  These motor deficits can 

be correlated with acrolein measurements obtained by utilizing 3-HPMA detection in the 

urine (Figure 13), and provide further evidence on the role of acrolein post-mBINT.  We 

also show that treatment with phenelzine, an effective acrolein scavenger, can mitigate 

these motor deficits and that it also correlated with our acrolein measurements (Figure 

15).  These results support that acrolein’s role post-mBINT in potentiating may 

susceptibility to PD. 

 In summary, these studies support the hypothesis that acrolein post-mBINT 

contributes significantly to the secondary injury mechanisms similar to what is observed 

in SCI, and can promote development of PD pathology.  Our results further demonstrate 

that acrolein plays a key role in both mBINT and PD, providing additional evidence 

regarding cellular and biochemical mechanism of acrolein-mediated insults for both 

pathologies.  These studies can serve to expand our knowledge of the role of acrolein in 

both mBINT and PD; in order to further investigate mechanisms to effectively attenuate 

oxidative stress and improve recovery after the injury, and collectively promote 

neuroprotection.  Thus, acrolein scavenging may be a novel therapeutic avenue to 

attenuate oxidative stress following neuronal trauma and can prevent further long- term 

consequences such as PD. 

 Our future studies will further assess the ability of acrolein scavenging to mitigate 

the risk of PD in post-mBINT rats and also the effect of comorbidities such as smoking 

and alcohol to intensify the susceptibility of PD in post-mBINT. Another desirable future 

study would be the investigation of multiple mBINTs and how it can potentiate in the 

development of PD.  Nonetheless, the results from our project will advance our 

understanding of the long-term consequences of mBINT and development of PD.  Our 

findings show potential for therapeutic application to improve the lifestyle of our military 

personnel and patients with PD as well as to alleviate the emotional and financial costs 

associated with these diseases.  Once established, acrolein-targeting therapeutics could be 

extended to diseases such as multiple sclerosis, Alzheimer’s disease and even cancer.  In 

summary, future studies include: 
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• Conforimation of our biochemical results on the modified alpha-synuclein 

observed post-blast injury and the relationship between acrolein and tyrosine 

hydroxylase regulation. 

• Investigation of the molecular mechanisms of acrolein-mediated α-synuclein 

aggregation in both our mBINT and PD rat models. 

• Further analysis of the behavioral data from the open activity box to provide a 

more quantitative and qualitative test of motor behavior. 

• Investigation of the correlation of the level of acrolein and the degree of 

susceptibility of PD post-mBINT. 

• Evaluation of the window of treatment to administer anti-acrolein therapy to 

mitigate the susceptibility of PD post-mBINT. 
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