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ABSTRACT

The Strong Chromatic Index

of Halin Graphs

By

Ziyu Hu

A strong edge coloring of a graph G is an assignment of colors to the edges of

G such that two distinct edges are colored differently if they have adjacent endpoints.

The strong chromatic index of a graph G, denoted by χ′s(G), is the minimum number

of colors needed for a strong edge coloring of G. A Halin graph G is a planar graph

constructed by connecting all leaves of a characteristic tree T without vertices of

degree two through a cycle. If a Halin graph G is different from Ne2, Ne4, and any

wheel, then we prove χ′s(G) 6 2∆(G) + 1 , where ∆(G) is the maximum degree of G.

If, additionally, ∆(G) = 4, we prove χ′s(G) 6 χ′s(T ) + 2, where T is the characteristic

tree of G.
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CHAPTER 1

Introduction

In this thesis, a graph is a representation of a set of objects where some pairs

of objects are connected by links. The interconnected objects are represented by

mathematical abstractions called vertices, and the links that connect some pairs of

vertices are called edges. Typically, a graph is depicted in a diagrammatic form as a

set of dots for the vertices, joined by lines or curves for the edges. Graphs are one of

the objects of study in discrete mathematics.

The edges of a graph may be directed or undirected. In this thesis, only simple

graphs, i.e., undirected graphs without loops (edges connecting vertices to themselves)

and multiple edges (two or more edges connecting the same pair of vertices), are

considered.

In graph theory, graph coloring is a special case of graph labeling; it is an

assignment of labels traditionally called “colors” to elements of a graph (vertices or

edges) subject to certain constraints. Graph coloring enjoys many practical applica-

tions as well as theoretical challenges. Besides the classical types of problems, different

limitations can also be set on the graph, or on the way a color is assigned, or even on

the color itself. Graph coloring has been studied as an algorithmic problem since the

early 1970s: the chromatic number problem is one of Karp’s 21 NP-complete prob-

lems [8] from 1972, and at approximately the same time various exponential-time
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algorithms were developed based on backtracking and on the deletion-contraction

recurrence of Zykov (1949) [15]. One of the major applications of graph coloring,

register allocation in compilers [3], was introduced in 1981. It has even reached pop-

ularity with the general public in the form of the popular number puzzle Sudoku.

Graph coloring is still a very active field of research.

A strong edge coloring of a graph is a constrained assignment of colors to the

edges of the graph such that any three consecutive edges are colored differently. The

strong chromatic index of a graph is the minimum number of colors needed for a

strong edge coloring of the graph.

A Halin graph is a special type of planar graph (a graph that can be drawn in

the plane so that its edges intersect only at their endpoints). Halin graphs are named

after the German mathematician Rudolf Halin, who studied them in 1971 [6], but the

cubic Halin graphs (Halin graphs whose vertices have exactly three neighbors) had

already been studied over a century earlier by Kirkman [9].

In this thesis, we study the strong edge coloring of Halin graphs to obtain an

upper bound for the strong chromatic index under certain conditions.
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CHAPTER 2

Definitions and Auxiliary Results

In this chapter, we state some basic definitions of graph theory that are in-

volved in the thesis. Some of these definitions are illustrated with examples. All the

notations we use throughout the thesis are also introduced in this chapter. Further-

more, we quote several known results which will be used in later proofs.

2.1 Basic Terminology and Examples

Definition 2.1. A graph G = (V,E) consists of two sets: the vertex set and the edge

set, denoted by V (G) and E(G) (or V and E when no ambiguities arise), respectively.

The elements of V , which are 2-element subsets of V (G), are called vertices (or

nodes), and the elements of E are called edges (or links). Each edge has two vertices,

called endpoints, associated with it. An edge with endpoints u and v is denoted by

uv. The cardinality of the vertex set V is called the order of G, denoted by |V | (or

|G|); the cardinality of the edge set E is called the size of G, denoted by |E| (or ‖G‖).

The graph which has only one vertex and no edges is called the trivial graph. The

graph G is finite if and only if |V | is a finite number.

In this thesis, we only consider finite graphs.

Definition 2.2. An undirected graph is one in which edges have no orientation. A

loop is an edge connected at both ends to the same vertex. Multiple edges are two
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or more edges connecting the same pair of vertices. A simple graph is an undirected

graph that has no loops and no multiple edges.

In this thesis, we only consider simple graphs.

Definition 2.3. Two vertices u and v are said to be adjacent in G if uv ∈ E(G),

denoted by u ∼ v. Adjacent vertices are neighbors of each other. The set of all

neighbors of any vertex w is denoted by N(w).

Definition 2.4. If vertex v is an endpoint of edge e, then we say that v is incident

to e, and e is incident to v. The degree of a vertex v in a graph G is the number

of edges incident to v, denoted by degG(v), or deg(v) when no ambiguities arise. The

maximum degree of a graph G is the maximum deg(v) over all v ∈ V (G), denoted

by ∆(G), or ∆ when no ambiguities arise.

Definition 2.5. A regular graph is a graph where all vertices have the same degree.

A regular graph with vertices of degree k is called a k-regular graph. In particular,

a 3-regular graph is called a cubic graph.

Figure 2.1 shows examples of regular graphs. Specifically, Figure 2.1a is a

2-regular graph; Figure 2.1b is a 3-regular graph, i.e., a cubic graph; Figure 2.1c is a

4-regular graph.

(a) 2-regular graph (b) cubic graph (c) 4-regular graph

Figure 2.1: Regular graphs
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Definition 2.6. Let G be a graph. For any u, v ∈ V (G), a u-v walk of G is a finite

alternating sequence of vertices and edges of G which begins with vertex u and ends

with vertex v, such that each edge’s endpoints are the preceeding and following vertices

in the sequence. A walk is said to be closed if the sequence starts and ends at the same

vertex. A u-v path is a u-v walk with no repeated edges and vertices, denoted by Pu,v.

The length of the path, denoted by |Pu,v|, is defined to be the number of edges in the

sequence. A path is called an empty path if its length is zero, i.e., the sequence has

one vertex and no edges. A cycle is a closed walk with no repetitions of vertices and

edges allowed, other than the repetition of the starting and ending vertex. A cycle

with order n is denoted by Cn, n is a positive integer and n > 3 for any cycle.

Definition 2.7. In a graph G, two vertices u and v are called connected if G

contains a path from u to v. Otherwise, they are called disconnected. A graph is

said to be connected if every pair of vertices in the graph is connected.

Definition 2.8. The distance between vertices u and v in graph G, denoted by

dG(u, v), is the length of a shortest path between u and v. If the graph G is clear from

the context, we denote the distance between vertices u and v by d(u, v).

Since only simple graphs are considered in this thesis, we use a sequence of

vertices to represent a walk/path/cycle. In Figure 2.2, P1 = a, b, c, P2 = a, b, e, d, c,

P3 = a, f, e, d, c, and P4 = a, f, e, b, c are all possible a-c paths. Then d(a, c) =

min{|P1|, |P2|, |P3|, |P4|} = 2.

Definition 2.9. A complete graph Kn, where n is a positive integer, is a graph of

order n such that every pair of distinct vertices in Kn are connected by a unique edge.

The trivial graph is K1.
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a b c

def

Figure 2.2: An example for path and distance

The three graphs in Figure 2.1 are also complete graphs. Figure 2.1a, Fig-

ure 2.1b, and Figure 2.1c are K3, K4, and K5, respectively.

Definition 2.10. A tree T is a simple connected graph that has no cycles. Any

vertex in a tree with degree one is called a leaf.

Definition 2.11. A planar graph is a graph that can be embedded in the plane,

i.e., it can be drawn on the plane in such a way that its edges intersect only at their

endpoints. A plane graph is a drawing of a planar graph on the plane such that

no edges cross each other. A plane graph divides the plane into areas surrounded by

edges, called faces (or regions). The area outside the plane graph is the unbounded

face of the graph.

Definition 2.12. A Halin graph G = T∪C is a planar graph constructed as follows.

Fix a plane drawing of a tree T that has at least four vertices and none of which have

exactly two neighbors. Let C be a cycle obtained by connecting all the leaves of T in

such a way that C forms the boundary of the unbounded face. The plane drawing of

the tree T and the cycle C are called the characteristic tree and the adjoint cycle

of G, respectively.

An example of a Halin graph G = T ∪C is given in Figure 2.3. Figure 2.3a is

the Halin graph; Figure 2.3b is its characteristic tree; Figure 2.3c is its adjoint cycle.

6



(a) G = T ∪C (b) T (c) C

Figure 2.3: A Halin graph G = T ∪ C and its parts

Definition 2.13. For any integer h > 1, a necklace [12], denoted Neh, is a cubic

Halin graph constructed as follows. Its characteristic tree Th consists of the path

v0, v1, . . . , vh, vh+1 and leaves v′1, v
′
2, . . . , v

′
h such that the unique neighbor of v′i in Th

is vi for 1 6 i 6 h and vertices v0, v
′
1, . . . , v

′
h, vh+1 are connected in order to form the

adjoint cycle Ch+2.

As shown in Figure 2.4, Figure 2.4a is Ne2 and Figure 2.4b is Ne4.

Definition 2.14. A star is a tree with exactly n− 1 leaves, where n is the order of

the tree. A doublestar is a tree with exactly n− 2 leaves, where n is the order of the

tree. If the degrees of the two non-leaf vertices of a double star are x and y, where

x 6 y, we denote such a double star by Dx,y.

D4,5, a double star with the degrees of the two non-leaf vertices equal to four

and five is shown in Figure 2.4c.

Definition 2.15. For any integer n > 3, the wheel Wn is a particular Halin graph

with order n + 1 and whose characteristic tree has exactly n leaves, i.e., the charac-

teristic tree is a star. The non-leaf vertex of its characteristic tree has degree n.

W8, a wheel whose characteristic tree has eight leaves, is shown in Figure 2.4d.
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v′1 v′2

v0 v3

v1 v2

(a) Ne2

v′1
v′2 v′3 v′4

v5v0

v1 v2 v3 v4

(b) Ne4

(c) D4,5 (d) W8

Figure 2.4: Necklaces, a double star, and a wheel

Definition 2.16. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) with

V ′ ⊆ V and E ′ ⊆ E, denoted by G′ 6 G. If G′ is a subgraph of G, then G is a

supergraph of G′. Furthermore, the subgraph G′ is called an induced subgraph of

G on V ′ if uv ∈ E implies uv ∈ E ′ for any u, v ∈ V ′.

Definition 2.17. A graph coloring (or coloring) is an assignment of labels tradi-

tionally called “colors” to elements of a graph (vertices or edges) subject to certain

constraints.

Definition 2.18. A proper vertex coloring (or vertex coloring) of a graph is a

coloring on the vertices such that no two adjacent vertices have the same color. The

minimum number of colors needed for a proper vertex coloring of a graph G is called

its chromatic number, denoted by χ(G).

As an example, χ(K5) = 5 because the vertices in K5 are adjacent to each
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other as depicted in Figure 2.1c.

Definition 2.19. A proper edge coloring (or edge coloring) of a graph is a

coloring on the edges such that no two edges sharing a common endpoint have the

same color. The minimum number of colors needed for a proper edge coloring of a

graph G is called its chromatic index, denoted by χ′(G).

Definition 2.20. A strong edge coloring of a graph G is a coloring on the edges of

G such that two distinct edges are colored differently if they have adjacent endpoints.

The minimum number of colors needed to color all the edges of graph G is called the

strong chromatic index of G, denoted by χ′s(G).

Definition 2.21. For each edge uv of a non-trivial graph G, we define σG(uv) =

degG(u) + degG(v)− 1 and it is abbreviated to σ(uv) if no ambiguities arise. σ(G) is

the maximum of σ(e) over all e ∈ E(G). σ(G) = 0 if G is the trivial graph.

σ(G) is an important parameter, especially for trees, regarding strong edge

coloring. (See Lemma 2.26.)

Definition 2.22. The line graph L(G) of G is the graph defined on the edge set

E(G) (each vertex in L(G) represents a unique edge in G) such that two vertices in

L(G) are defined to be adjacent if their corresponding edges in G share a common

endpoint. The distance between two edges in G is defined to be the distance between

their corresponding vertices in L(G).

Definition 2.23. For a graph G, the square of G, denoted by G2, is the graph

defined on the vertex set V (G) such that two distinct vertices u and v are defined to

be adjacent in G2 if dG(u, v) 6 2.

A cycle C6, its line graph L(C6), and L(C6)
2 (the square of L(C6)) are shown
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v1
e1

v2
e2

v3

e3
v4

e4

v5

e5
v6

e6

(a) C6

e1

v2e2v3

e3
v4

e4

v5 e5 v6

e6

v1

(b) L(C6) (c) L(C6)
2

Figure 2.5: A cycle, the line graph, and the square graph

in Figure 2.5. The labels on vertices and edges show how the mappings E(C6) →

V (L(C6)) and V (C6)→ E(L(C6)) work.
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2.2 Auxiliary Results and Proofs

Theorem 2.24 [2]. (Brook’s Theorem) If G is a graph and G is not a complete

graph nor an odd cycle, then χ(G) 6 ∆(G).

Theorem 2.25. If G is a simple graph, the followings are equivalent (cf. [14]):

(1) G is connected and has no cycles, i.e., G is a tree.

(2) Any two vertices in G can be connected by a unique path.

(3) G has no cycles, and a cycle is formed if any edge is added to G.

(4) G is connected, but is not connected if any single edge is removed from G.

If the order of G, n, is a finite number, the following conditions are also equivalent

to the above statements (cf. [14]):

(5) G is connected and has n− 1 edges.

(6) G has no cycles and has n− 1 edges.

Lemma 2.26 [5]. If T is a tree, then χ′s(T ) = σ(T ).

Proof. If T is trivial (it consists of a single vertex), we have χ′s(T ) = 0 = σ(T ).

Assume that T is not trivial.

A tree is called a rooted tree if a special vertex is singled out and this vertex

is called the “root”. Let T be a tree rooted at vertex v0 as indicated in Figure 2.6a.

Define the level function l : V (T )→ {0, 1, 2, . . . } such that l(v) = d(v, v0) for

any vertex v ∈ V (T ). Line up v0 and all the non-leaf vertices of T as v0, v1, v2, . . . , vk

such that l(vi) 6 l(vi+1) for i = 0, 1, 2, . . . , k. Denote all edges incident to a vertex

v ∈ V (T ) by E(v).

11



v0

(a) A tree rooted at v0

vt+1

vs

(b)

Figure 2.6: Figures for the proof of Lemma 2.26

We establish a strong edge coloring of T by using at most σ(T ) colors by the

following steps:

(1) We color E(v0) by deg(v0) 6 σ(T ) colors.

(2) Suppose that E(vi) have already been colored for all 0 6 i 6 t. Now we color

E(vt+1) as indicated in Figure 2.6b. Notice that exactly one edge, vsvt+1 ∈

E(vt+1), has already been colored, for some 0 6 s 6 t with l(vs) = l(vt+1) + 1.

We need to color the remaining deg(vt+1)− 1 edges.

Note that the only forbidden colors for E(vt+1) are the colors assigned to E(vs).

Hence, the number of available colors for E(vt+1) is σ(T )−deg(vs) > σ(vsvt+1)−

deg(vs) = deg(vt+1) − 1. Thus we can color the remaining edges in E(vt+1) by

legal colors.

Thus, T can be colored by using at most σ(T ) colors, i.e., χ′s(T ) 6 σ(T ).

For an edge uv ∈ E(T ) such that σ(uv) = σ(T ), we need deg(u) + deg(v)− 1

colors to color E(u) ∪ E(v). Thus χ′s(T ) > σ(T ). Therefore, χ′s(T ) = σ(T ).
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Lemma 2.27 [10]. For the cycle Cn,

χ′s(Cn) =



3 if n ≡ 0 (mod 3),

5 if n = 5,

4 otherwise.

(2.1)

Proof. By Definition 2.22 and Definition 2.23, it is obvious that, for a graph G,

χ′s(G) = χ(L(G)2). For any integer n > 3, L(Cn) = Cn. Thus χ′s(Cn) = χ(C2
n). Note

that C2
3 = C3 = K3, C

2
4 = K4, C

2
5 = K5. For any integer n > 6, C2

n is a 4-regular

graph and it is neither a complete graph nor an odd cycle, so, by Theorem 2.24,

χ(C2
n) 6 ∆(C2

n) = 4.

(i) For n ≡ 0 (mod 3), the vertices of C2
n can be colored in an alternating order of

1, 2, 3, 1, 2, 3, . . . with colors {1, 2, 3}. Thus χ′s(Cn) = χ(C2
n) = 3.

(ii) For n = 4, C2
4 is K4. As indicated in Figure 2.1b, the four vertices of K4 are

adjacent to each other, so they have to be colored differently. Thus χ′s(C4) =

χ(C2
4) = χ(K4) = 4.

(iii) For n = 5, C2
5 is K5. As indicated in Figure 2.1c, the five vertices of K5 are

adjacent to each other, so they have to be colored differently. Thus χ′s(C5) =

χ(C2
5) = χ(K5) = 5.

(iv) Otherwise. Since n 6≡ 0 (mod 3), C2
n can’t be colored in the same way as (i),

which is the only way of a 3-coloring of any C2
n since every three consecutive

vertices in C2
n on the outer cycle are adjacent to each other. Thus χ(C2

n) > 4.

Hence, χ′s(Cn) = χ(C2
n) = 4.

13



Putting these four cases together proves Lemma 2.27.

Lemma 2.28 [10]. For the wheel Wn,

χ′s(Wn) =



n+ 3 if n ≡ 0 (mod 3),

n+ 5 if n = 5,

n+ 4 otherwise.

(2.2)

Proof. Let Wn = T ∪ Cn be a wheel. Any edge in the characteristic tree and any

edge in the adjoint cycle are within distance 2. Hence, χ′s(Wn) = ‖T‖ + χ′s(Cn) =

n+ χ′s(Cn).

Lemma 2.29 [12]. Suppose h > 1. For the necklace Neh,

χ′s(Neh) =



6 if h is odd,

7 if h is even and h > 6,

8 if h = 4,

9 if h = 2.

(2.3)

Lemma 2.30 [10]. Let G = T ∪ C be a Halin graph. Then σ(G) = σ(T ) when G is

not a wheel and σ(G) > σ(T ) when G is a wheel.

Proof. Let G = T ∪ C be a Halin graph.

(i) G is a wheel. For the non-leaf vertex vertex u ∈ V (T ), we have degG > 3. All

the vertices on the adjoint cycle C has degree three, with respect to G. It’s

obvious that σ(G) = σG(e) = n+ 2 > n = σ(T ), where e ∈ E(G) ∩ E(T ).

(ii) G is not a wheel. Then there are at least two non-leaves in V (T ). By Defi-

nition 2.12, their degrees are at least three and ∆(G) = ∆(T ). Thus σ(T ) =

14



max{degT (u) + degT (v) − 1 | u, v are adjacent non-leaves} > 3 + ∆(T ) − 1 =

∆(T ) + 2 = ∆(G) + 2. For each e ∈ E(G) incident to w ∈ V (C), σG(e) 6

degG(w) + ∆(G)− 1 = ∆(G) + 2 6 σ(T ). Thus σ(G) = max{σ(T ), σG(e) | e ∈

E(G) is incident to w ∈ V (C)} = σ(T ).

Therefore, σ(G) = σ(T ) when G is not a wheel and σ(G) > σ(T ) when G is a

wheel.

Lemma 2.31 [10]. Let G = T ∪ C be a Halin graph and the characteristic tree T be

a double star Dx,y. Suppose that y > 4, then

χ′s(G) =


χ′s(T ) + 2 if x = 3,

χ′s(T ) + 1 if x > 4.

(2.4)
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CHAPTER 3

Known Results and Motivations

Let G be a graph with vertex set V (G) and edge set E(G). As we learned in

Chapter 2, χ′s(G) = χ(L(G)2), where L(G) is the line graph of G and L(G)2 is the

square of L(G).

An induced matching in a graph G is a set of edges such that no two edges in

this set are of distance (see Definition 2.22) at most two. A strong edge coloring can

be equivalently defined as a partition of E(G) into induced matchings.

The following is an outstanding conjecture concerning the strong chromatic

index proposed by Faudree et al. [5].

Conjecture 3.1. For any graph G with maximum degree ∆(G),

χ′s(G) 6


5

4
∆(G)2 if ∆(G) is even,

5

4
∆(G)2 − 1

2
∆(G) +

1

4
if ∆(G) is odd.

(3.1)

Conjecture 3.1 is a refined form of the question whether χ′s(G) 6
5

4
∆(G)2

asked by Erdős and Nešetřil [4]. And, as mentioned in [5], it is easy to see that

σ(G) 6 χ′s(G) 6 2∆(G)2 − 2∆(G) + 1. Hence, Conjecture 3.1 holds for ∆(G) 6 2.

Conjecture 3.1 was proved to be true for∆(G) = 3 by Andersen [1], and independently

by Horák et al. [7]. It remains open when ∆(G) > 4.

Recall that for any integer h > 1, Neh = Th ∪ Ch+2 is a cubic Halin graph

introduced in Definition 2.13. By Lemma 2.26, we have χ′s(T1) = 3 and χ′s(Th) = 5

16



for h > 1.

The following upper bound was first conjectured by Shiu et al. [12].

Conjecture 3.2. If G = T ∪ C 6= W5 is a Halin graph, then χ′s(G) 6 χ′s(T ) + 4.

Lih et al. [10] settled this conjecture by proving the following theorem as a

stronger result.

Theorem 3.3. If a Halin graph G = T ∪C is different from Ne2 and any wheel Wn,

n 6≡ 0 (mod 3), then χ′s(G) 6 χ′s(T ) + 3.

A Halin graph must be a cubic graph if its maximum degree is three. For a

cubic Halin graph G that is different from all necklaces, Shiu and Tam [13] conjectured

that χ′s(G) 6 7. This conjecture has been confirmed by Lih and Liu [11] in the

following theorem.

Theorem 3.4. If a cubic Halin graph G = T ∪ C is different from Ne2 and Ne4,

then χ′s(G) 6 7.

Theorem 3.4 lowered the upper bound suggested in Theorem 3.3 for such cubic

Halin graphs since χ′s(T ) = 5 for trees whose non-leaf vertices all have degree three

and thus

χ′s(G) 6 7 = χ′s(T ) + 2 < χ′s(T ) + 3. (3.2)

We want to know whether this upper bound also works for Halin graphs with higher

maximum degrees. We are interested in the following conjecture.

Conjecture 3.5. If a Halin graph G = T ∪ C is different from Ne2, Ne4, and any

wheel Wn, then χ′s(G) 6 χ′s(T ) + 2.

Recall that a Halin graph G consists two parts: the characteristic tree T and

17



the adjoint cycle C. By Lemma 2.26, the strong chromatic index of the tree T is

equal to the maximum of deg(u) + deg(v)− 1 over any uv ∈ E(T ). Since the degrees

of the vertices on C are always three and the degrees of the vertices in T , except the

leaves, are no less than three, then ∆(G) = ∆(T ). By Lemma 2.26, we have

χ′s(T )+2 = max{degT (u)+degT (v) | uv ∈ E(T )}+1 6 2∆(T )+1 = 2∆(G)+1. (3.3)

This is an upper bound weaker than Conjecture 3.5 but stronger than Conjecture 3.2

for some cases.

In the next chapter, we are going to prove this upper bound, 2∆(G) + 1, for

the strong chromatic index for all Halin graphs except for a few special graphs. In

addition, we extend the result of Theorem 3.4 to a maximum degree of four.
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CHAPTER 4

Main Results

In this chapter, we prove the following main result of the thesis.

Theorem 4.1. If a Halin graph G = T ∪ C is different from Ne2 and Ne4, then

χ′s(G) 6 2∆(G) + 1.

Proof. Let G = T ∪ C be a Halin graph other than Ne2 or Ne4. By Theorem 3.4

and equations (3.2) and (3.3), it is easy to see that χ′s(G) 6 2∆(G) + 1 is true if

∆(G) = 3. Thus we assume ∆(G) > 4.

We first consider two special families of Halin graphs.

(1) For any integer n > 3, consider Wn as defined in Definition 2.15 with ∆(Wn) =

n. Since ∆(G) > 4, might as well assume n > 4 and then, by Lemma 2.28,

χ′s(Wn) 6 n+ 5 6 2n+ 1 = 2∆(Wn) + 1 for all n > 4.

(2) Consider the Halin graph D = Dx,y ∪ C where its characteristic tree is a double

star Dx,y defined in Definition 2.14. Then, by Lemma 2.31 and (3.3), χ′s(D) 6

χ′s(Dx,y) + 2 6 2∆(D) + 1.

Thus, for these two special families of Halin graphs, Theorem 4.1 is true.

Let |E(C)| = m. Clearly, m > 3. The remainder of the proof of Theorem 4.1

proceeds by induction on m.

Base cases:

• m = 3. W3 is the only possible Halin graph. But ∆(Wn) = 3 and we are
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assuming ∆(G) > 4.

• m = 4. W4 and Ne2 are the only possible Halin graphs. By Lemma 2.29,

χ′s(Ne2) = 9 > 7 = 2∆(Ne2) + 1. Thus we exclude Ne2 in Theorem 4.1.

• m = 5. There are three Halin graphs.

(i) G = W5. It belongs to one of the special families of Halin graphs which

are discussed above.

(ii) A Halin graph G = T ∪ C where T = D3,4, i.e., the characteristic tree of

G is a double star D3,4. Such a Halin graph is also discussed above.

(iii) G = Ne3. By Lemma 2.29, χ′s(G) = 6 6 2∆(G) + 1.

• m = 6. There are three cases.

(i) ∆(G) = 4. There are four Halin graphs as shown in Figure 4.1.

In Figure 4.1a, the characteristic tree of the Halin graph G is the double

star D4,4 and it is already done previously. If G is any of the other three

graphs, as shown by the labels on the graphs with the desired bounds,

χ′s(G) 6 8 < 2∆(G) + 1.

(ii) ∆(G) = 5. The only Halin graph G = T ∪ C has the characteristic tree

T = D3,5, a double star. It belongs to one of the special families of Halin

graphs we discussed previously.

(iii) ∆(G) = 6. The only Halin graph is W6 and it is done previously.

Induction steps: Assume m > 7.

Let P = u0, u1, . . . , ul be a longest path in T . Let l be the length of P and,

clearly, l = |P | > 2.

20



(a)

5 7

3

87

6

2
4

6
2

1

3 5 1

(b)

7 8

3

78

6

1

2

2

1

5

4
3

6

(c)

2

5
4

3

8

1

7

1
3 6

2

4 5

7

(d)

Figure 4.1: Halin graphs where m = 6 and ∆(G) = 4

(i) For l = 2, G is a wheel Wn and χ′s(Wn) 6 2∆(Wn) + 1 for any integer n > 3.

(ii) For l = 3, the characteristic tree of G is a double star, so it is done previously.

Thus we assume l > 4. Without loss of generality, we also assume that

degG(ul−1) > degG(u1).

Let u1 = v, u2 = u, u3 = w, and label the k > 2 neighbors of v (except u) as

v1, v2, . . . , vk. Since P is a longest path in T , it is easy to see that v1, v1, . . . , vk must

be on the adjoint cycle C. Let x1, x2, y1, y2 ∈ V (C), where x1 ∼ v1, x1 ∼ x2, y1 ∼ vk,

y1 ∼ y2, and x3, y3 6∈ V (C), where x1 ∼ x3, y1 ∼ y3.

Claim: There exists a path Q in T from u to x1 or from u to y1 with P ∩Q = {u}.

Proof. Suppose not, i.e., for any path Q in T from u to x1 or from u to y1, we have

w ∈ P ∩Q. Without loss of generality, assume that Q is from u to x1. P divides the

inner area of the adjoint cycle C into two parts, say top and bottom, as depicted in
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Q

Figure 4.2: The non-existence of the path Q

Figure 4.2. Since degG(u) > 3, there exists a neighbor of u other than v or w. Let

u′ ∈ N(u) \ {v, w} be that neighbor. Without loss of generality, assume that u′ is

on the same side of P as x1. Since the characteristic tree T is a plane drawing of a

tree, u′ must be on the unique path P ′ from u to a leaf on the top half of the cycle C

in between x1 and ul. As shown in Figure 4.2, P ′ divides the top half area into two

parts, say left and right. Since we assume that the path Q from u to x1 is through

w, Q must go across P ′, as indicated in Figure 4.2. Then, one of the following will

occur:

(i) P ′ and Q share a common vertex u∗ where they cross each other, i.e., P ′ ∩Q =

{u, u∗}. Then, a cycle u,w, . . . , u∗, . . . , u′, u is created.

(ii) An edge in Q crosses an edge in P ′ where the two paths intersects.

By Definition 2.10 and Definition 2.11, neither of the above is allowed. Thus,

such a path Q that goes through w does not exist. Then, for a path from u to x1 or

y1, P ∩Q = {u}.

Without loss of generality, we assume that Q is from u to y1. Since P is a
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longest path, it is obvious that |Q| 6 2. Hence u = y3 or u ∼ y3 (we will have similar

result if Q is from u to x1).

In the rest of the proof, we use notations defined as follows. For a strong edge

coloring ρ of graph G, we denote the set of colors already used by edges incident to a

vertex a by Cρ(a). We denote the set of forbidden colors for an edge e by Fρ(e) and

denote |e|ρ = |Fρ(e)|. Assuming that the total number of colors used in ρ is fixed, we

denote the set of available colors for an edge e by Aρ(e) and denote ‖e‖ρ = |Aρ(e)|.

In the following, G′ = T ′ ∪ C ′ will be a Halin graph obtained by adding some

new edges to an induced subgraph of G (delete some vertices from V (G)) such that

the length of the adjoint cycle C ′ is shorter than the length of the adjoint cycle C of

the original graph G, i.e., |E(C ′)| < |E(C)|. We call G′ a reduction of G. Depending

on various situations, different types of G′ will be used in the following proof.

Let ψ be a strong edge coloring of G′ using the minimum number of colors. In

general, a strong edge coloring φ of G is constructed as follows: we color all edges in

both G and G′ with the same colors used in ψ, i.e., for every e ∈ E(G) ∩ E(G′), let

φ(e) = ψ(e). For every e ∈ E(G) \ E(G′), we develop different coloring schemes for

different cases.

If G′ is neither Ne2 nor Ne4, by the induction hypothesis, we have χ′s(G
′) 6

2∆(G′) + 1. Otherwise, by Lemma 2.29, χ′s(Ne2) = 9 and χ′s(Ne4) = 8. Thus, we

only need ∆(G′) 6 ∆(G) to be true so that it is possible for us to find the strong

edge coloring φ using no more than 2∆(G) + 1 > 9 colors.

For each of the following cases, we complete the construction of the strong

edge coloring φ with no more than 2∆(G) + 1 colors.
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Figure 4.3: Case 1.1 in the proof of Theorem 4.1

Case 1.1. k = 2 (i.e., degG(v) = 3) and u = y3, where k is the number of neighbors

of v on the adjoint cycle C.

Obtain the reduction G′ of G by adding two new edges vx1 and vy1 to the

induced subgraph of G on the vertex set V (G) \ {v1, v2} as indicated in Figure 4.3.

Clearly, ∆(G′) = ∆(G).

Without loss of generality, assume that ψ(vx1) = 1 and ψ(vy1) = 2. Let

φ(v1x1) = ψ(vx1) and φ(v2y1) = ψ(vy1), i.e., φ(v1x1) = ψ(vx1) = 1 and φ(v1x1) =

ψ(vx1) = 2 (we will use such abbreviation in the remaining proof). We will color the

rest of edges of G, vv1, vv2, and v1v2, one after another.

(i) For φ(y1y2) = ψ(y1y2) 6∈ Cψ(x1), we let φ(vv1) = φ(y1y2) = 3.

Notice that Fφ(vv2) ⊆ Cφ(u) ∪ Cφ(v1) ∪ Cφ(y1) = Cφ(u) ∪ {1, 2, 3}.

Thus |vv2|φ 6 degG(u) + 3, and

‖vv2‖φ > 2∆(G) + 1− (degG(u) + 3) > (∆(G)− degG(u)) + (∆(G)− 2) > 2.

Thus, we color vv2 by one of the available colors.

Next, Fφ(v1v2) ⊆ Cφ(v) ∪ Cφ(x1) ∪ Cφ(y1)

24



⇒ Fφ(v1v2) ⊆ {1, 2, 3, φ(vv2), φ(vu), φ(uy1), φ(x1x2), φ(x1x3)}

⇒ |v1v2|φ 6 8

⇒ ‖v1v2‖φ > 2∆(G) + 1− 8 > 1.

Thus, we color v1v2 by a legal color.

(ii) For φ(y1y2) = ψ(y1y2) ∈ Cψ(x1), we cannot color vv1 by φ(y1y2) = 3.

Notice that Fφ(vv1) ⊆ Cφ(u) ∪ Cφ(v2) ∪ Cφ(x1) = Cφ(u) ∪ {1, 2, φ(x1x2), φ(x1x3)}.

Thus |vv1|φ 6 degG(u) + 4, and

‖vv1‖φ > 2∆(G) + 1− (degG(u) + 4) > 1.

Then we assign a legal color to vv1.

Next, Fφ(vv2) ⊆ Cφ(u) ∪ Cφ(v1) ∪ Cφ(y1) = Cφ(u) ∪ {1, 2, φ(vv1), φ(y1y2)}

⇒ |vv2|φ 6 degG(u) + 4

⇒ ‖vv2‖φ > 2∆(G) + 1− (degG(u) + 4) > 1.

Thus, we color vv2 by an available color.

Similar to the previous condition, |v1v2|φ 6 8 ⇒ ‖v1v2‖φ > 1. Thus, we color v1v2

by a legal color.

Hence, we have colored all the edges of G with no more than 2∆(G)+1 colors.

Case 1.2. k = 2 (i.e., degG(v) = 3) and u ∼ y3.

Subcase 1.2.1. degG(y3) = 3.

Let z1 ∼ y2, z2 ∼ z1, and z3 ∼ z1, where z1, z2 ∈ V (C) and z3 6∈ V (C). Obtain

the reduction G′ of G by adding three new edges vx1, vy3, and y3z1 to the induced

subgraph of G on the vertex set V (G) \ {v1, v2, y1, y2}, as depicted in Figure 4.4.

Clearly, ∆(G′) = ∆(G).
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Figure 4.4: Subcase 1.2.1 in the proof of Theorem 4.1

Without loss of generality, let φ(v1x1) = φ(y1y3) = ψ(vx1) = 1, φ(vv1) =

φ(y2y3) = ψ(vy3) = 2, and φ(vv2) = φ(y2z1) = ψ(y3z1) = 3 as indicated in Figure 4.4.

We will color the remaining edges of G, v1v2, y1y2, and v2y1, one by one.

Note, Fφ(v1v2) ⊆ Cφ(v) ∪ Cφ(x1) ∪ Cφ(y1) = {1, 2, 3, φ(vu), φ(x1x2), φ(x1x3)}

⇒ |v1v2|φ 6 6

⇒ ‖v1v2‖φ > 2∆(G) + 1− 6 > 3.

Thus, we color v1v2 by one of the legal colors.

Next, Fφ(y1y2) ⊆ Cφ(v2) ∪ Cφ(y3) ∪ Cφ(z1)

⇒ Fφ(y1y2) ⊆ {1, 2, 3, φ(v1v2), φ(uy3), φ(z1z2), φ(z1z3)}

⇒ |y1y2|φ 6 7

⇒ ‖y1y2‖φ > 2∆(G) + 1− 7 > 2.

Thus we color y1y2 by one of the legal colors.

Finally, Fφ(v2y1) ⊆ Cφ(v) ∪ Cφ(v1) ∪ Cφ(y2) ∪ Cφ(y3)

⇒ Fφ(v2y1) ⊆ {1, 2, 3, φ(v1v2), φ(vu), φ(uy3), φ(y1y2)}

⇒ |v2y1|φ 6 7
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⇒ ‖v2y1‖φ > 2∆(G) + 1− 7 > 2.

Thus we color v2y1 by one of the available colors.

Hence, we have colored all the edges of G with no more than 2∆(G)+1 colors.

Subcase 1.2.2. degG(y3) > 4 and ∆(G) = 4. So degG(y3) = 4.

Let z be the fourth neighbor of y3 and since P is a longest path, z must be

on the adjoint cycle C. Let z1 ∼ z, z2 ∼ z1, and z3 ∼ z1, where z1, z2 ∈ V (C) and

z3 6∈ V (C). Obtain the reduction G′ of G by adding three new edges vx1, vy3, and

y3z1 to the induced subgraph of G on the vertex set V (G)\{v1, v2, y1, y2, z}, as shown

in Figure 4.5. Clearly, ∆(G′) 6 ∆(G).

v 4 u w

z2z13zy2
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1
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1 2 z3
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2

3

Figure 4.5: Subcase 1.2.2 in the proof of Theorem 4.1

Without loss of generality, let φ(v1x1) = φ(y2y3) = ψ(vx1) = 1, φ(vv1) =

φ(y3z) = ψ(vy3) = 2, φ(vv2) = φ(zz1) = ψ(y3z1) = 3, and φ(y1y2) = φ(vu) = 4 as

indicated in Figure 4.5. We will color the remaining edges of G, v1v2, v2y1, y1y3, and

y2z, one after another.

First, Fφ(y1y3) ⊆ Cφ(u) ∪ Cφ(v2) ∪ Cφ(y2) ∪ Cφ(z)

⇒ |y1y3|φ 6 degG(u) + 3
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⇒ ‖y1y3‖φ > 2∆(G) + 1− (degG(u) + 3) > 2.

Thus we color y1y3 by one of the available colors.

Next, Fφ(v1v2) ⊆ Cφ(v) ∪ Cφ(x1) ∪ Cφ(y1)

⇒ |v1v2|φ 6 7

⇒ ‖v1v2‖φ > 2∆(G) + 1− 7 = 2.

Thus we color v1v2 with one of the legal colors.

Observe that Fφ(y2z) ⊆ Cφ(y1) ∪ Cφ(y3) ∪ Cφ(z1)

⇒ |y2z|φ 6 8

⇒ ‖y2z‖φ > 2∆(G) + 1− 8 > 1.

Thus we color y2z by an available color.

Finally, Fφ(v2y1) ⊆ Cφ(v) ∪ Cφ(v1) ∪ Cφ(y2) ∪ Cφ(y3)

⇒ |v2y1|φ 6 8

⇒ ‖v2y1‖φ > 2∆(G) + 1− 8 > 1.

Thus we color v2y1 by an available color.

Hence, we have colored all the edges of G with no more than 2∆(G)+1 colors.

Subcase 1.2.3. degG(y3) > 4 and ∆(G) > 5.

Take P = y1, y3, u, w, u4, . . . , ul as a longest path. Then this subcase is covered

in Case 2.2.

Case 2.1. k > 3 and ∆(G) = 4. Then degG(v) = 4 and k = 3.

Subcase 2.1.1. degG(u) = 3.

Obtain the reduction G′ of G by adding two new edges vx1 and vy1 to the

induced subgraph of G on the vertex set V (G) \ {v1, v2, v3} as depicted in Figure 4.6.
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Figure 4.6: Subcase 2.1.1 in the proof of Theorem 4.1

Since we assumed earlier that degG(ul−1) > degG(u1) = degG(v) = 4, we have

∆(G′) = ∆(G) = 4.

Without loss of generality, let φ(v1x1) = ψ(vx1) = 1, φ(v3y1) = ψ(vy1) = 2,

and additionally:

(i) If u = y3, we define φ(vv2) = φ(y1y2) = 3 as indicated in Figure 4.6a;

(ii) If u ∼ y3, we define φ(vv2) = φ(y1y3) = 3 as indicated in Figure 4.6b.

We are going to color the remaining edges, vv1, vv3, v1v2, and v2v3, one by one.

First, Fφ(vv1) ⊆ Cφ(u) ∪ Cφ(x1) ∪ Cφ(v2) ∪ Cφ(v3)

⇒ |vv1|φ 6 degG(u) + 5 = 8

⇒ ‖vv1‖φ > 2∆(G) + 1− 8 = 1.

Thus we color vv1 by a legal color.

Next, Fφ(vv3) ⊆ Cφ(u) ∪ Cφ(v1) ∪ Cφ(v2) ∪ Cφ(y1)

⇒ |vv3|φ 6 degG(u) + 4 = 7

⇒ ‖vv3‖φ > 2∆(G) + 1− 7 = 2.
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Thus we assign an available color to vv3.

Next, Fφ(v1v2) ⊆ Cφ(v) ∪ Cφ(x1) ∪ Cφ(v3)

⇒ Fφ(v1v2) ⊆ {1, 2, 3, φ(uv), φ(vv1), φ(vv3), φ(x1x2), φ(x1x3)}

⇒ |v1v2|φ 6 8

⇒ ‖v1v2‖φ > 2∆(G) + 1− 8 = 1.

Thus we color v1v2 by an available color.

Finally, Fφ(v2v3) ⊆ Cφ(v) ∪ Cφ(v1) ∪ Cφ(y1)

⇒ Fφ(v1v2) ⊆ {1, 2, 3, φ(uv), φ(uy1), φ(vv1), φ(vv3), φ(v1v2)}

⇒ |v2v3|φ 6 8

⇒ ‖v2v3‖φ > 2∆(G) + 1− 8 = 1.

Thus we color v2v3 by a legal color.

Hence, we have colored all the edges of G with no more than 2∆(G)+1 colors.

Subcase 2.1.2. degG(u) = 4.

For conditions (1), (2), and (3) listed below, we obtain the reduction G′ of G

by adding two new edges vx1 and vy1 to the induced subgraph of G on the vertex set

V (G) \ {v1, v2, v3}, as shown in Figure 4.7. Clearly, ∆(G′) = ∆(G). Without loss of

generality, let φ(v1x1) = ψ(vx1) = 1, φ(v3y1) = ψ(vy1) = 2. We color the remaining

edges, vv1, vv2, vv3, v1v2, and v2v3, as follows.

Consider the following conditions.

(1) u = y3 and u ∼ x1. Let φ(v1v2) = φ(uy1) = 3, φ(v2v3) = φ(uw) = 4, and

φ(vv2) = φ(y1y2) = 5 as indicated in Figure 4.7a. We color the remaining edges,

vv1 and vv3, one by one.
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Figure 4.7: Subcase 2.1.2 in the proof of Theorem 4.1
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Note, Fφ(vv1) ⊆ Cφ(u) ∪ Cφ(x1) ∪ Cφ(v2) ∪ Cφ(v3)

⇒ |vv1|φ 6 8

⇒ ‖vv1‖φ > 2∆(G) + 1− 8 = 1.

Thus we color vv1 with an available color.

Next, Fφ(vv3) ⊆ Cφ(u) ∪ Cφ(y1) ∪ Cφ(v1) ∪ Cφ(v2)

⇒ |vv3|φ 6 8

⇒ ‖vv3‖φ > 2∆(G) + 1− 8 = 1.

Thus we assign a legal color to vv3.

(2) u = y3, u 6∼ x1 and |{φ(uw), φ(uz)} ∩ {φ(x1x2), φ(x1x3)}| 6 1, where z is

the fourth neighbor of u. Without loss of generality, assume that φ(uz) 6∈

{φ(x1x2), φ(x1x3)}. Let φ(v1v2) = φ(uz) = 3 and φ(v2v3) = φ(uw) = 4 as

indicated in Figure 4.7b. We color the remaining edges, vv1, vv3, and vv2, one

after another.

Note, Fφ(vv1) ⊆ Cφ(u) ∪ Cφ(x1) ∪ Cφ(v2) ∪ Cφ(v3)

⇒ |vv1|φ 6 8

⇒ ‖vv1‖φ > 2∆(G) + 1− 8 = 1.

Thus we color vv1 with an available color.

Next, Fφ(vv3) ⊆ Cφ(u) ∪ Cφ(y1) ∪ Cφ(v1) ∪ Cφ(v2)

⇒ |vv3|φ 6 8

⇒ ‖vv3‖φ > 2∆(G) + 1− 8 = 1.

Thus we color vv3 by a legal color.

Finally, Fφ(vv2) ⊆ Cφ(u) ∪ Cφ(v1) ∪ Cφ(v3)
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⇒ |vv2|φ 6 8

⇒ ‖vv2‖φ > 2∆(G) + 1− 8 = 1.

Thus we assign an available color to vv2.

(3) u = y3, u 6∼ x1, and {φ(uw), φ(uz)} = {φ(x1x2), φ(x1x3)} where z is the fourth

neighbor of u. Without loss of generality, we assume that φ(x1x2) = φ(uw) = 5

and φ(x1x3) = φ(uz) = 7. Let φ(uv) = 3, φ(v1v2) = φ(uy1) = 4, φ(v2v3) = 5,

and φ(vv2) = φ(y1y2) = 6 as indicated in Figure 4.7c. Clearly, vv1 and vv3 can

be colored by any two colors other than {1, 2, . . . , 7}.

(4) u ∼ y3 and degG(y3) = 3. Take P = y1, y3, u, w, u4, . . . , ul as a longest path and

such a graph is already covered in Subcase 1.2.2.

(5) u ∼ y3, degG(y3) = 4, and u = x3. Let z be the fourth neighbor of y3, z1 ∼ z,

z2 ∼ z1, and z3 ∼ z1, where z1, z2 ∈ V (C) and z3 6∈ V (C). Obtain the reduction

of G by adding three new edges vx1, vy3, and y3z1 to the induced subgraph

of G on the vertex set V (G) \ {v1, v2, v3, y1, y2, z}, as depicted in Figure 4.7d.

Since degG(ul−1) > degG(v) = 4, obviously ∆(G′) = ∆(G). Without loss of

generality, let φ(v1x1) = φ(y2y3) = ψ(vx1) = 1, φ(vv1) = φ(y3z) = ψ(vy3) = 2,

φ(vv3) = φ(zz1) = ψ(y3z1) = 3, φ(y1y2) = φ(vu) = 4, φ(v1v2) = φ(uy3) = 5,

and φ(v2v3) = φ(ux1) = 6 as indicated in Figure 4.7d. We color the remaining

vertices, y2z, y1y3, v3y1, and vv2, one by one.

First, Fφ(y2z) ⊆ Cφ(y1) ∪ Cφ(y3) ∪ Cφ(z1)

⇒ |y2z|φ 6 7

⇒ ‖y2z‖φ > 2∆(G) + 1− 7 = 2.
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Thus we assign one of the available colors to y2z.

Next, Fφ(y1y3) ⊆ Cφ(u) ∪ Cφ(v3) ∪ Cφ(y2) ∪ Cφ(z)

⇒ |y1y3|φ 6 8

⇒ ‖y1y3‖φ > 2∆(G) + 1− 8 = 1.

Thus we color y1y3 using a legal color.

Next, Fφ(v3y1) ⊆ Cφ(v) ∪ Cφ(v2) ∪ Cφ(y2) ∪ Cφ(y3)

⇒ |v3y1|φ 6 8

⇒ ‖v3y1‖φ > 2∆(G) + 1− 8 = 1.

Thus we color v3y1 by an available color.

Finally, Fφ(vv2) ⊆ Cφ(u) ∪ Cφ(v1) ∪ Cφ(v3)

⇒ |vv2|φ 6 8

⇒ ‖vv2‖φ > 2∆(G) + 1− 8 = 1.

Thus we color vv2 with an available color.

(6) If u ∼ y3, degG(y3) = 4, u ∼ x3, and degG(x3) = 3. Take P = x1, x3, u, w, u4, . . . , ul

as a longest path and such a graph is already covered in Subcase 1.2.2.

(7) u ∼ y3, degG(y3) = 4, u ∼ x3, and degG(x3) = 4. Let w2 ∼ w1 ∼ z1 ∼ y2 and z2 ∼

x2 be vertices in V (C), and let w3 6∈ V (C) where w3 ∼ w1, see Figure 4.7e. Obtain

the reduction of G by adding three new edges vx1, vy3, and y3w1 to the induced

subgraph on the vertex set V (G)\{v1, v2, v3, y1, y2, z1}, as depicted in Figure 4.7e.

Since degG(ul−1) > degG(v) = 4, we have ∆(G′) = ∆(G). Without loss of

generality, let φ(v1x1) = φ(y1y3) = ψ(vx1) = 1, φ(vv1) = φ(y3z1) = ψ(vy3) = 2,

φ(vv3) = φ(z1w1) = ψ(y3w1) = 3, φ(v2v3) = φ(uy3) = 5, φ(v3y1) = φ(uw) = 6,
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and φ(v1v2) = φ(y1y2) = φ(ux3) = 7 as indicated in Figure 4.7e. We color the

remaining edges, y2z1, y2y3, and vv2, one after another.

First, Fφ(y2z1) ⊆ Cφ(y1) ∪ Cφ(y3) ∪ Cφ(w1)

⇒ |y2z1|φ 6 8

⇒ ‖y2z1‖φ > 2∆(G) + 1− 8 = 1.

Thus we color y2z1 with an available color.

Next, Fφ(y2y3) ⊆ Cφ(u) ∪ Cφ(y1) ∪ Cφ(z1)

⇒ |y2y3|φ 6 8

⇒ ‖y2y3‖φ > 2∆(G) + 1− 8 = 1.

Thus we color y2y3 with a legal color.

Finally, we color vv2 with φ(y2y3).

Hence, we have colored all the edges of G with no more than 2∆(G)+1 colors.

Case 2.2. k > 3 and ∆(G) > 5.

Obtain the reduction of G by adding two new edges vx1 and vy1 to the in-

duced subgraph of G on the vertex set V (G) \ {v1, v2, . . . , vk}, see Figure 4.8. Since

degG(ul−1) > degG(v), we have ∆(G) = ∆(G′). Without loss of generality, let

φ(v1x1) = ψ(vx1) = 1 and φ(vky1) = ψ(vy1) = 2. For u = y3 or u ∼ y3, let

φ(vv2) = φ(y1y2) = 3 or φ(vv2) = φ(y1y3) = 3, as indicated in Figure 4.8a or Fig-

ure 4.8b, respectively.

For k = 3, the coloring scheme is the same as Subcase 2.1.1. Thus we assume

k > 4 in the following. We proceed to color the remaining edges, vv1, vv3, . . . , vvk

and vjvj+1, for j = 1, 2, . . . , k − 1.
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Figure 4.8: Case 2.2 in the proof of Theorem 4.1

First, Fφ(vv1) ⊆ Cφ(u) ∪ Cφ(x1)
k
∪
i=2

Cφ(vi) = Cφ(u) ∪ {1, 2, 3, φ(x1x2), φ(x1x3)}

⇒ |vv1|φ 6 degG(u) + 5

⇒ ‖vv1‖φ > 2∆(G) + 1− (degG(u) + 5) > ∆(G)− 4 > 1.

Color vv1 by a legal color.

Secondly, Fφ(vvk) ⊆ Cφ(u) ∪ Cφ(y1) ∪ {1, 3, φ(vv1)}

=


Cφ(u) ∪ {1, 2, 3, φ(vv1)}, for u = y3

Cφ(u) ∪ {1, 2, 3, φ(vv1), φ(y1y2)}, for u ∼ y3

⇒ |vvk|φ 6 degG(u) + 5

⇒ ‖vvk‖φ > 2∆(G) + 1− (degG(u) + 5) > 1.

Color vvk by an available color.

Thirdly, for i = 3, 4, . . . , k − 1, we have

Fφ(vvi) ⊆ Cφ(u) ∪ {1, 2, φ(vv1), φ(vv2), . . . , φ(vvi−1), φ(vvk)}

⇒ |vvi|φ 6 degG(u) + i+ 2 6 degG(u) + k + 1 = degG(u) + degG(v)
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⇒ ‖vvi‖φ > 2∆(G) + 1− (degG(u) + degG(v)) > 1.

We color vvi with available colors one after another.

Next, Fφ(v1v2) ⊆ Cφ(v) ∪ Cφ(x1) ∪ Cφ(v3) = Cφ(v) ∪ {1, φ(x1x2), φ(x1x3)}

⇒ |v1v2|φ 6 degG(v) + 3

⇒ ‖v1v2‖φ > 2∆(G) + 1− (degG(v) + 3) > 3.

Thus we color v1v2 with one of the legal colors.

Next, for j = 2, 3, . . . , k − 2, we have

Fφ(vjvj+1) ⊆ Cφ(v) ∪ Cφ(vj−1) ∪ Cφ(vj+2)

= Cφ(v) ∪ {φ(vj−2vj−1), φ(vj−1vj), φ(vj+1vj+2), φ(vj+2vj+3)}

⇒ |vjvj+1|φ 6 degG(v) + 4

⇒ ‖vjvj+1‖φ > 2∆(G) + 1− (degG(v) + 4) > 2.

Thus we color vjvj+1 with available colors one by one.

Finally, Fφ(vk−1vk) ⊆ Cφ(v) ∪ Cφ(vk−2) ∪ Cφ(y1)

=


Cφ(v) ∪ {2, φ(vk−3vk−2), φ(vk−2vk−1), φ(uy1)}, for u = y3

Cφ(v) ∪ {2, φ(vk−3vk−2), φ(vk−2vk−1), φ(y1y2)}, for u ∼ y3

⇒ |vk−1vk|φ 6 deg(v) + 4

⇒ ‖vk−1vk‖φ > 2.

Color vk−1vk with one of the legal colors.

Hence, we have colored all the edges of G with no more than 2∆(G)+1 colors.

Then, all possible cases are discussed and the proof is done.

Together with Theorem A.1 (see Appendix), we obtain the following result:

Corollary 4.2. If a Halin graph G = T ∪ C is different from Ne2, Ne4, and any
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wheel Wn, and ∆(G) = 4, then χ′s(G) 6 χ′s(T ) + 2.

Proof. Let G = T ∪C be a Halin graph other than Ne2, Ne4, or any wheel Wn, and

∆(G) = 4.

Note that for every v ∈ V (T ), degG(v) is either three or four. Thus, σ(G) =

max{degG(u) + degG(v)− 1 | uv ∈ E(G)} is either six or seven.

1) σ(G) = 6. By Theorem A.1, Lemma 2.26, and Lemma 2.30, χ′s(G) 6 8 = σ(G) +

2 = σ(T ) + 2 = χ′s(T ) + 2.

2) σ(G) = 7. By Theorem 4.1, Lemma 2.26, and Lemma 2.30, χ′s(G) 6 2∆(G) + 1 =

9 = σ(G) + 2 = σ(T ) + 2 = χ′s(T ) + 2.

Hence, χ′s(G) 6 χ′s(T ) + 2 is true for all Halin graphs satisfying the requirements.

Corollary 4.2 settled Conjecture 3.5 for ∆(G) = 4, however, Conjecture 3.5 is

still open for ∆(G) > 5.
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[4] P. Erdős, J. Nešetřil, Problem, in: G. Halász, V. T. Sós (Eds.), Irregularities of

Partitions, Springer-Berlin (1989) 162-163.
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APPENDIX A

The Strong Chromatic Index of a Halin Graph G when σ(G) = 6

The following is an unpublished result of Dr. Liu. We include a sketch of the

proof here.

Theorem A.1. If a Halin graph G = T ∪ C with σ(G) = 6 is different from Ne2,

Ne4, and W4, then χ′s(G) 6 8.

Proof. Let G = T ∪ C be a Halin graph other than Ne2, Ne4, and any wheel Wn,

and σ(G) = 6. Here, T and C are the characteristic tree and adjoint cycle of G,

respectively. By Definition 2.21, σ(G) = max{σ(uv) | uv ∈ E(G)} = max{degG(u) +

degG(v) − 1 | uv ∈ E(G)}. Since G is a Halin graph, the minimum degree over all

vertices in G is three. Thus, ∆(G) = 4 and, for any v ∈ V (G) with degG(v) = 4, the

neighbors of v must have degree equal to three.

Let |E(C)| = m. By Definition 2.6, m > 3. The remainder of the proof

proceeds by induction on m.

Base cases:

• m = 3. There is no Halin graph G that satisfies our assumption.

• m = 4. There is no Halin graph G that satisfies our assumption as G is not W4.

• m = 5. There exists a Halin graph G whose characteristic tree is a double star

D3,4. By Lemma 2.26 and Lemma 2.31, χ′s(G) = χ′s(D3,4)+2 = σ(D3,4)+2 = 8.

• m = 6. There are three possible Halin graphs as depicted in Figure 4.1b,
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Figure 4.1c, and Figure 4.1d. By the labels in the figures, eight is the upper

bound for the strong chromatic index of each of the three graphs.

Induction steps: Assume m > 7.

Let P = u0, u1, . . . , ul be a longest path in T where l is the length of P . It is

clear that l = |P | > 2.

(i) For l = 2, G is W4 and has been excluded.

(ii) For l = 3, the characteristic tree of G is a double star. Since ∆(G) = 4 and

degG(v) = 3 for any v ∈ E(C), one of the non-leaves in the double star must have

degree four. As we have argued previously, for any v ∈ V (G) with degG(v) = 4,

the neighbors of v must have degree equal to three. Thus, the double star must

be D3,4, and so χ′s(G) = 8.

Thus we assume l > 4. Without loss of generality, we also assume that

degG(u1) 6 degG(ul−1).

In the following, we obtain a reduction G′ of G depending on various situations.

Assuming that ψ is a strong edge coloring of G′ using at most eight colors, we try to

expand ψ of G′ to the original graph G by constructing a strong edge coloring φ of

G. Similar to the proof of Theorem 4.1, for every e ∈ E(G)∩E(G′), let φ(e) = ψ(e);

for every e ∈ E(G) \E(G′), we develop different coloring schemes for different cases.

If G′ is different from Ne2, Ne4, and any wheel (W4, to be more specific), by

the induction hypothesis, we have χ′s(G
′) 6 8. If G′ is W4 or Ne4, we have χ′s(G

′) = 8

by Lemma 2.15 and Lemma 2.29. If G′ is Ne2, we discuss all possible original Halin

graphs and their strong chromatic indices at the end of our proof.
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For each of the following cases, we complete the construction of the strong

edge coloring φ of G with at most eight colors.

Case 1. degG(u1) = 3 and degG(u2) = 3.

Subcase 1.1. In T , u2 has exactly one neighbor that is a leaf.

Let the graph of G around the neighborhood of u1 be as depicted in Figure A.1

and the vertices be labeled as indicated. Delete vertices u0, u1, v1, and v2 (vertices

in black) from V (G) and add two new edges u2x1 and u2y1 (edges in dashed lines) to

the induced subgraph of G to obtain the reduction G′. Without loss of generality, let

ψ(u2y1) = 1, ψ(u2x1) = 2, ψ(u2u3) = 3, ψ(y1y2) = 4, and ψ(y1y3) = 5. Complete the

construction of the strong edge coloring φ of G by coloring edges in E(G) \E(G′) as

shown in Figure A.1. Edges u1u2, v1v2 and u1v1 are not yet colored.

Using the notations introduced in the proof of Theorem 4.1, we have |u1u2|φ =

|Cφ(u0) ∪ Cφ(u3) ∪ Cφ(v1) ∪ Cφ(v2)| 6 degG(u3) + 2 6 6. Thus, ‖u1u2‖φ > 2 and we

color u1u2 with one of the legal colors.

Notice that Fφ(v1v2) = {1, 2, 3, 4, 5, φ(u1u2)}, then ‖v1v2‖φ > 2 and we color

v1v2 by one of the available colors.

At last, Fφ(u1v1) = {1, 2, 3, φ(u1u2), φ(v1v2)}, then ‖u1v1‖φ > 3 and we color

u1v1 by one of the three available colors.

Subcase 1.2. In T , none of the neighbors of u2 is a leaf. Consider the two possibilities

in Figure A.2.

For the first possibility, the graph of the neighborhood of u1 is shown in Fig-

ure A.2a. We obtain the reduction G′ by adding two new edges u2x1 and u2y1 to the

subgraph of G induced on the vertex set V (G) \ {u0, u1, v1, v2, v3, v4}. Without loss
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Figure A.1: Subcase 1.1 in the proof of Theorem A.1

of generality, let ψ(u2y1) = 1, ψ(u2x1) = 2, ψ(u2u3) = 3, ψ(y1y2) = 4, ψ(y1y3) = 5,

ψ(x1x3) = a, and ψ(x1x2) = b. Color the edges in E(G)\E(G′) by the colors indicated

in Figure A.2a. Edges u0u1, v2v3, v2v4, v3v4, v1v2, and u1v1 are not yet colored.

Notice that Fφ(u0u1) = {1, 2, 3, t1, t2}, then ‖u0u1‖φ > 3 and we color u0u1 by

one of the legal colors.

Next, observe that Fφ(v2v3) ∪ Fφ(v2v4) ∪ Fφ(v3v4) = {1, 2, 3, 4, 5}. Thus we

color the three edges with the three available colors.

Next, note Fφ(v1v2) = {1, 2, 3, φ(u0u1), φ(v2v3), φ(v2v4), φ(v3v4)}. Thus we

color v1v2 by a legal color.

Finally, since Fφ(u1v1) = {1, 2, 3, φ(u0u1), φ(v2v3), φ(v2v4), φ(v1v2)}. We color

u1v1 by an available color.

For the second possibility, the reduction G′ is depicted and the vertices are la-

beled in Figure A.2b. Without loss of generality, we assume that Cφ(u3) ⊆ {3, 4, 5, 6}.

Then we color the remaining edges in E(G) \E(G′) with eight colors as indicated in

Figure A.2b.
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Figure A.2: Two possibilities of Subcase 1.2 in the proof of Theorem A.1

Case 2. degG(u1) = 3 and degG(u2) = 4. Then degG(u3) = 3.

Subcase 2.1. In T , u2 has exactly two neighbors that are leaves. Consider the five

possible situations depicted in Figure A.3.

In Figure A.3a, the reduction G′, the labels for vertices and the coloring for

some edges are shown. We need to color the remaining edges v2v3, u2v2, and u2u1.

Note, Fφ(v2v3) = {1, 2, 3, 4, 5, s1, s2}, total seven forbidden colors at most.

Thus we color v2v3 by an available color.

Next, observe that Fφ(u2v2) ∪ Fφ(u2u1) = {1, 2, 3, 4, 5, φ(v2v3)}, total six for-

bidden colors at most. Thus there are at least two available colors for u2v2 and u2u1

and we color both edges by two legal colors.

In Figure A.3b, the reduction G′, the labels for vertices and a coloring for

some edges are shown. Now we try to color edges u2v4, u2v2, and u1u2 in orders so

that the total number of colors used in φ does not exceed eight.

Note, Fφ(u2v4) = {1, 2, 3, 4, 5, s1, s2} and there are at most seven forbidden
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Figure A.3: Five possibilities of Subcase 2.1 in the proof of Theorem A.1
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colors. Thus we color u2v4 with a legal color.

Next, observe that Fφ(u2v2) = {1, 2, 3, 4, 5, 6, φ(u2v4)} and there are at most

seven forbidden colors. Thus we color u2v2 with a legal color.

Finally, observe that Fφ(u1u2) = {1, 2, 3, 4, 5, φ(u2v4), φ(u2v2)} and there are

at most seven forbidden colors. Thus we color u1u2 with a legal color.

In Figure A.3c to Figure A.3e, the reduction G′ and the completion of φ using

eight colors are depicted.

Subcase 2.2. In T , u2 has exactly one neighbor that is a leaf. Consider the two possible

situations as shown in Figure A.4.
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Figure A.4: Two possibilities of Subcase 2.2 in the proof of Theorem A.1

For the first situation, the reduction G′, the labels for vertices and the coloring

with at most eight colors are depicted in Figure A.4a.

For the second situation, the reduction G′, the labels for vertices and a pro-

posed coloring are depicted in Figure A.4b. Notice that the colors a, b, c, d, and e

we assign to the edges need to be checked to make sure that they can be found one
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after another amongst the eight colors of φ.

Note, a only has to avoid all colors in {1, 2, 3, t1, t2}, at most five forbidden

colors. Thus we can find a legal color for a from φ.

Next, observe that b only needs to avoid colors in {1, 2, 3, s1, s2, a}, at most

six forbidden colors. Thus we can find an available color for b in φ.

Next, notice that c only has to avoid all colors in {1, 2, 3, 4, 5, a, b}, at most

seven forbidden colors. Thus we can find a legal color for c in φ.

Finally, note that d and e only have to avoid colors in {1, 2, 3, a, b, c}, at most

six forbidden colors. Thus, there are at least two available colors in φ for d and e.

Subcase 2.3. In T , none of the neighbors of u2 is a leaf.

The reduction G′ and the completion of φ using eight colors is shown in Fig-

ure A.5.
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Figure A.5: Subcase 2.3 in the proof of Theorem A.1

Case 3. degG(u1) = 4. Then degG(u2) = 3.

Subcase 3.1. In T , u2 has exactly one neighbor that is a leaf.

The reduction G′, the labels for vertices, and a proposed coloring for some
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edges is depicted in Figure A.6. We need to check whether the colors a, b, c, d, and

e can be found one by one in φ using at most eight colors.

Notice that a = φ(u1u2) and Fφ(u1u2) = Cφ(u3) ∪ {1, 2, 3}. Thus ‖u1u2‖φ >

6− degG(u3) > 2, hence, we can find a legal color for a in φ.

Next, observe that b only has to avoid colors in {1, 2, 3, 4, 5, a}. Therefore, we

can find a legal color for b in φ.

Finally, observe that c, d, and e only need to avoid colors in {1, 2, 3, a, b}.

Hence, we can find legal colors for c, d, and e in φ.
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Figure A.6: Subcase 3.1 in the proof of Theorem A.1

Subcase 3.2. In T , none of the neighbors of u2 is a leaf.

Consider the two possible situations depicted in Figure A.7.

For the first situation shown in Figure A.7a, we take P = v3, v4, u2, u3, . . . , ul as

the longest path instead and this situation is already covered in the second situation

discussed in Subcase 1.2.

For the second possibility, the reduction G′ is depicted in Figure A.7b. With-

out loss of generality, we assume that Cφ(u3) ⊆ {3, 4, 5, 6}. Then we complete the
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Figure A.7: Two possibilities of Subcase 3.2 in the proof of Theorem A.1

construction of φ by using only eight colors as indicated in Figure A.7b.

At last, as we mentioned previously, we need to check the following special

graphs which will end up with a Ne2 if we follow the chosen way of reduction. Notice

that we do not need to check the reduction used in Case 3 because, by the assumption,

degG(ul−1) > degG(u1) = 4.

For Subcase 1.1, if G′ = Ne2, by the reduction we did in Figure A.1, G must

be cubic. This violate the overall assumption that σ(G) = 6 which implies ∆(G) = 4.

Similarly, for the first situation in Subcase 1.2, G must be cubic if G′ = Ne2

and it is against the assumption.

For the second situation in Subcase 1.2, all situations in Subcase 2.1, all situ-

ations in Subcase 2.2, and Subcase 2.3, fourteen special graphs for G such that the

designated reduction G′ is Ne2 are depicted in Figure A.8 and a strong edge coloring

using no more than eight colors is constructed for each graph.
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Figure A.8: Fourteen special graphs for the proof of Theorem A.1
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