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ABSTRACT

The yeast Saccharomyces cerevisiae genome is descendant from a whole genome

duplication event approximately 150 million years ago. Following this duplication

many genes were lost however, a certain class of genes, termed ohnologs, persist in

duplicate. In this thesis we investigate network centrality as it relates to ohnolog re-

tention with the goal of determining why only certain genes were retained. With this

in mind, we compare physical and genetic interaction networks and genetic and pro-

tein sequence data in order to reveal how network characteristics and post-duplication

retention are related. We show that there are two subclasses of ohnologs, those that

interact with their duplication sister and those that do not and that these two classes

have distinct characteristics that provide insight into the evolutionary mechanisms

that affected their retention following whole genome duplication. Namely, a very low

ratio of non-synonymous mutations per non-synonymous site for ohnologs that retain

an interaction with their duplicate. The opposite observation is seen for ohnologs

that have lost their interaction with their duplicate. We interpret this in the fol-

lowing way: ohnologs that have retained their interaction with their duplicate are

functionally constrained to buffer for the other ohnolog. For this reason they are

retained; ohnologs that have lost their interaction with their duplicate are retained

because they are functionally divergent to the point of being individually essential.
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Additionally we investigate small scale duplications and show that, generally, the

mechanism of duplication (smale scale or whole genomes) does not affect the distri-

bution of network characteristics. Nor do these network characteristics correlate to

the selective pressure observed by retained paralogous genes, including both ohnologs

and small scale duplicates. In contrast, we show that the network characteristics of

individual genes, particularly the magnitude of their physical and genetic network

centralities, do influence their retention following whole genome duplication.
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Chapter 1

Introduction

Approximately 150 million years ago a whole genome duplication (WGD) event oc-

curred within an ancestor of Saccharomyces cerevisiae [32, 22, 5]. In 1970 Susumo

Ohno postulated that this type of duplication is a major contributing factor to the

generation of novel genetic material [44] and contributes to “genomic redundancy,

specialization, degeneration, innovation and speciation” [7]. This process has been

called a revolutionary event [13], where following duplication the genome goes through

a period of genetic upheaval as genes [56, 23] and entire chromosomes are lost [41, 3, 8].

While this process of genome duplication and gene loss results in most dupli-

cate genes losing one of both copies within a few million years after the duplication

event [39], there is a class of genes, termed ohnologs [58], that survive in duplicate.

What determines gene fate? Recently, large sets of interaction data for S. cere-

visiae have bene made available. These interactions, coupled with the evolutionary

history of duplicates may provide additional understanding of what determines gene

fate following duplication.

1.1 Motivation

Our motivation is to understand why, following whole genome duplication (WGD),

some genes are retained to the present day, whereas others are not. All ohnolog

duplicates have survived millions of years within the yeast genome and compose a

large fraction of all yeast genes today ( 18%) [5]. This also implies that a large

number of duplicate genes have been lost during this time. This leads to the inevitable

question: why have some ohnologs been retained while other genes no longer have a
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duplicate originating from the whole genome duplication event? Furthermore, there

also exists duplicates independent of WGD termed small scale duplicates (SSDs),

which are pairs or groups of genes that have been duplicated. Identifying and utilizing

these in addition to WGDs may provide insight to why differential retention exists.

Of particular assistance is that relatively recent literature has identified many

genes arising from the WGD of S. cerevisiae [32, 5]. Additionally, there is a well

annotated database of the S. cerevisiae genome [16] that contains both nucleotide

and amino acid sequences for genes and their protein products, respectively.

1.2 Research Questions and Contributions

Our novel approach is to utilize social network analysis techniques to investigate re-

tention. These techniques, specifically centrality measures, will be applied to maps of

interactions between genes in S. cerevisiae that have recently been published or up-

dated. Both physical interactions [53] and genetic interactions [9] will be considered.

In order to answer the overarching question why have some ohnologs been retained

while other genes no longer have a duplicate originating from the whole genome du-

plication event?, while using a network centrality specific methodology, we derived

the following four questions about S. cerevisiae paralog evolution:

1. Does the mechanism of duplication, whole genome or small scale duplication,

correlate to distribution of network centrality measures for duplicated genes?

2. Is there a correlation between the change in network centrality measures be-

tween paralogous pairs and the selective pressure experienced after duplication?

3. If there is a correlation, is this correlation different for small scale duplicates

compared to ohnologs?

4. Does the retention of ohnologs correlate with network centrality measures?

Our first contribution is a set of software tools, called “Network Centrality and

Paralog Divergence Integrator” (NeC-PaDI). Nec-PADI integrates network, sequence

and paralog data—for any organism, contingent on a standardized input format.

We utilized these tools to associate centrality measures, nucleotide and amino acid

sequence data, and duplication relationships to each gene in our yeast gene set. These

data were then queried to produce our further contributions. It can be downloaded

from http://webhome.csc.uvic.ca/~imrie/necpadi.

http://webhome.csc.uvic.ca/~imrie/necpadi
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Our main contribution shows that there are two classes of ohnologs and that each

have a different profile of retention following duplication. The first of these two classes

are those that genetically interact with their duplication sister. The second class are

those ohnologs that have do not. We show that ohnolog pairs that do have a genetic

interaction with their duplication sister have higher duplicate pair retention at higher

centrality values. We also show that they exhibit a lower ratio of non-synonymous

mutations per non-synonymous site which indicates their sequences have changed

relatively little. The fact that they share a genetic interaction with one another

shows that they have retained an ability to buffer one another as if there was no

buffering existed then no genetic interaction would be observed.

For ohnologs that have lost a genetic interaction with their duplication sister

we find higher retention at lower centrality values and that they exhibit a higher

ratio of non-synonymous mutations per non-synonymous site. With this loss of ge-

netic interaction we interpret their retention as being due to functional divergence

resulting in indispensability. This, based on previous literature, we interpret as

subfunctionalization[26, 12].

Secondary contributions show that evolutionary pressure does not correlate to cen-

trality measures nor does the distribution of centrality measures change significantly

based on the type of duplication. We also show that the type of interaction (genetic

or physical) has an effect on the distribution of centrality measures. This is due to

the physical and genetic interaction networks describing different characteristics of

the same genes.

Our central hypothesis is that ohnolog pairs will be retained at higher centrality

measures compared to lower centrality measures. We base this hypothesis on the fact

that centrality positively correlates with essentiality[46]. By extension if a gene is

essential it must be retained. Therefore, at higher centrality measures there should

be a higher fraction of retained duplicates.

1.3 Thesis Overview

The subsequent chapters of this thesis are structured as follows. In Chapter 2 we

provide an overview of the related topics required to fully understand our method-

ology, results and interpretations, including definitions from biology and computer

science. Here we introduce much of the terminology used through this thesis, but

provide expanded detail in the appendices. We present a review of related research in
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Chapter 3. We then move on to our methodology and first contribution in Chapter 4,

which describes the software tools and methods we developed to pursue our research

questions. Our second contribution of this thesis is presented in Chapter 5, where we

begin our analyses, presenting results to answer each of our four research questions.

We conclude in Chapter 6 with a summary of our findings and provide avenues for fu-

ture work. Throughout this thesis we use concepts from biology, statistics and social

network analysis that may be unfamiliar to the read. We provide detailed explana-

tions of the most fundamental in the appendices which follow Chapter 6: Appendix

A is devoted to an in depth overview of the biological concepts that we mention in

Chapter 2; Appendix B provides a review of the statistical methods we utilized in our

analyses; finally, Appendix C contains examples on calculating network centralities

as used in this thesis.
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Chapter 2

Related Topics

Our research covers two very different realms of science. On one hand we are con-

cerned with evolutionary biology, and on the other, with computer science, specifically

network analysis. In order to understand our reasoning, methodology, results and in-

terpretation we review the most necessary of topics in order to proceed.

We begin by discussing gene duplication and then whole genome duplication. Our

goal in this thesis is to investigate whether certain network traits of genes indicate

why both duplicates are retained. Since we chose to investigate this topic with a

hypothesis that the interactions between genes play a direct role in retention, we

discuss both physical and genetic interaction networks. We chose to investigate using

both network types as they show different aspects of the same genes. We explain

the differences between these two network types, and how their data are generated.

Finally, we introduce and explain the topics of graphs and the centrality measures we

will be using in our analyses.

2.1 Gene Duplication

Gene duplication is a major contributing factor in the development of novel genetic

material and genetic redundancy [44]. The basis of this concept is that a single ances-

tral gene duplicates and thus two related genes are created. These are called paralogs.

At the time immediately following duplication, each gene in a duplcate pair is identi-

cal in their nucleotide sequence. Over time, and depending on the evolutionary forces

to which each is subjected, these nucleotide sequences will change. This change is

known as sequence divergence. As sequences diverge, function also diverges such that
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over sufficient time two homologs by have very different functional roles. Eventually,

any signature of their relatedness may also disappear.

The term homolog is an all encompassing word for genes that are related. There

are two possible way in which genes may be related: speciation, and duplication,

termed paralogs. Paralogs can be further categorized by whether the duplication was

at a small scale, involving individual or groups of genes, or at a large scale, where an

entire genome is duplicated. These relationships each have visualized in Figure 2.1

Orthologs are genes that are related due to speciation. Individual genes in two

different species are orthologs if the ancestry of each gene can be traced to a single

gene in the most recent common ancestor of the two species.

Paralogs arose from a physical duplication event within a species: that is, some bi-

ological process that produced two identical copies of a gene within a species. Within

this thesis, paralogs arising from a single gene duplication are termed small scale

duplicates(SSDs). Paralogs that arose from a whole genome duplication are termed

ohnologs, in honour of Susumu Ohno[58]. Ohno was not the first to ponder the rel-

evance of gene duplication in general as the idea has existed since the early 20th

century [55]. However, he brought the idea of genome duplication being essential for

higher eukaryote evolution to the forefront.

Fate of Duplicate Genes

Broadly, there are four possible fates for duplicate genes. Each either subfunctional-

izes, in relation to their common ancestor, neofunctionalizes, or is lost [17]. We will

focus on explaining the terms subfunctionalization and neofunctionalization.

The term subfunctionalization [17] is a phenomenon that occurs when both du-

plicates partition the function of their common ancestor between themselves. Some

of these functions may be common, where as each may retain different functions.

Those functions that are retained by both are dosage sensitive in the opposite way

than those functions differentially retained to one or the other. When both duplicates

retain an ancestral function or interaction, a reduction in the relative amount of this

function in the cell is detrimental. Therefore, both duplicates retain the function.

Where there is a differential distribution of functions between duplicates, there is a

gene dosage that is too high and is therefore detrimental to the cell.

The process of neofunctionalization occurs when one of a pair of duplicates is

unrestrained by selection and able to mutate without detrimental effects to the or-
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Figure 2.1: Evolutionary history of related genes XA’, XA’, and YA. A common
ancestor gene A existed some million years in the past. A speciation event created
two different lineages for the descendants of A: the lineage of XA and the lineage
of YA. After some period of time the species harbouring gene XA had a duplication
event that duplicated XA into XA’ and XA”. Therefore, YA and either XA’ or XB”
are orthologs. XA’ and XA” are paralogs. If XA’ and XA” are the result of a
WGD they are ohnologs. Alternatively, if XA’ and XA” are the result of a single
duplication they are termed SSDs. In addition, both XA’ and XA” are co-orthologs
of YA whereas YA is a pro-orthlog of XA’ and XA”. All extant genes are homologs
to one another.

ganism. Using dosage for our explanation, this implies that the required dosage for

the ancestral function can be met by one of the duplicate pairs. This allows the other

of the pair to mutate and possibly acquire novel function, while the other of the pair

maintains its ancestral function. This is the original theory of gene fate proposed

by Susumo Ohno when discussing WGD. However, the prevalence of neofunctional-

ization has been questioned in recent literature [20] as neofunctionalization can be

explained using iterative rounds of subfunctionalization and loss. and subfunctional-

ization is simply because interactions arising from subfunctionalization are obfuscated

due to the age of duplicates and subsequent loss of interactions between individual
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genes–providing the signature of neofunctionalization not subfunctionalization.

2.1.1 Whole Genome Duplication

WGD is gene duplication on a massive scale: that of the entire genome. WGD physi-

cally doubles the number of chromosomes in an organism, with the effect of doubling

(or nearly doubling) the number of genes in the genome. As each gene interacts with

some other combination of genes, this doubling produces a intricate network of inter-

acting genes and regulatory components, with some interactions beneficial and some

detrimental. This results in an evolutionary state termed “genomic resolution” [38]

where the genome undergoes an extensive restructuring in order to regain stability

and return to a state where massive gene loss has ceased. From this point, and sub-

sequently over the eons, this new genomic landscape is shaped and sculpted by a

multitude of evolutionary, genetic, epigenetic and molecular forces.

Previous literature has explained that the most important non-random determi-

nant of individual gene survival is gene dosage [7, 11, 12, 23, 26, 39, 45, 49, 57].

Gene dosage is the concept that the relative amounts of individual genes are in a

specific balance with one another—too much or too little of one will have a cascading

effect, possibly detrimental, on the expression patterns of many other genes. Being

subjected to a WGD results in a massive change in the genome but little change in

gene dosage as the relative amounts of genes are unchanged. However, the act of du-

plication results in dramatic gene loss and rearrangement [13, 38] as well as epigenetic

silencing [37, 40] in order to return the genome to a reproductively and genomically

stable state.

WGD in S. cerevisiae

The theory that the S. cerevisiae genome is the result of a whole genome duplication

was initially proposed in 1997 [59]. This idea proved contentious until 2004 when

Kellis et al. provided definitive proof of a paleo-duplication event approximately 100-

150 million years ago [32]. This proof was found by using the genome of the related

organism Kluyveromyces waltii to search for regions of doubly conserved synteny with

S. cerevisiae. Conserved synteny is the physical feature between two chromosomal

regions that homologous genes between each region follow the same order [32]. When

the order of genes on one chromosome matches the order of homologous genes in two

separate chromosomal regions, we call this doubly conserved synteny (DCS).
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Using DCS to identify homologous regions, Kellis et al. found that the 16 S. cere-

visiae chromosomes mapped to eight K. waltii chromosomes. This mapping covered

82% of S. cerevisiae genes and 75% of K. waltii genes. These mappings are not

contiguous, not all of K. waltii chromosome 1 maps to the entirety of S. cerevisiae

chromosome 4 and 12. Rather, portions of each ancestral chromosome are scattered

through the 16 S. cerevisiae chromosomes. This is due to the divergence of the K.

waltii and S. cerevisaie genomes as they have been subjected to very different com-

binations of chromosomal reordering and rearrangement.

Figure 2.2: Double conserved synteny between K. waltii Chromosome 1 and S.
cerevisiae Chromosome 4 and 12. Image from [32]

Following the identification of regions with DCS, Kellis et al. identified paralogs

between them. These paralogs are genes retained in duplicate and derived from the

WGD event. As noted above, these paralogs are called ohnologs because of their WGD

origin. In total 457 ohnolog pairs were found by Kellis et al. However, differences

in similar studies [10, 60] have increased the total number of unique ohnologs to a

current total of 523 ohnologs [5].

Considering the state of a genome following WGD, the fact that 523 ohnologous

pairs persist in the S. cerevisiae genome is a very interesting phenomenon and the

vast majority of duplicates are lost very shortly after duplication [39]. Using gene

dosage as a basis, there are three reasons why these genes may persist following

duplication [12, 26]:

1. gene duplication provides a selective advantage, such as increased redundancy

(the fact that pre-duplication functionality now is covered by two genes instead

of one);

2. selection for an increased dosage; or,

3. duplicates subfunctionalize in order to remove dosage effects.

In this thesis we investigate whether network centrality measures are an addition

to this list.
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2.2 Physical and Genetic Interaction Networks

Figure 2.3: An example portion of an interaction network. Nodes are individual
genes. Edges are interactions between genes. Depending on the network type these
interactions can either be physical or genetic in nature.

In this thesis we utilize two different interaction network types for our analyses:

physical and genetic. Physical interaction data was obtained from The BioGrid [53]

(version 3.2.106) and genetic interaction data from Costanzo et al. [9].

Within S. cerevisiae there are approximately 6000 genes [16] and within this set

of genes there are those that physically interact and those that interact genetically.

It is these interactions, physical or genetic, that are collected into a global view that

describe either a physical or genetic interaction network, respectively.

Each interaction type is fundamentally different and each shows different charac-

teristics for the genes under study. Physical interactions occur when protein products

physically bind to one another. Genetic interactions occur when the deletion of two

genes causes an aggravated change in an observable phenotype when compared to

that phenotype for single deletion mutants. These two interaction types are obtained

in very different ways. Here we present a brief overview of how these are discovered,

first physical interactions and then genetic interactions.
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2.2.1 Physical Interactions

The physical interaction network is a collection of individual in vitro experiments

that report physical interactions between two gene products. Although there are

many different methods to identify physical interactions, three methods account for

over 80% of reported physical interactions collated by “The BioGrid” [53]: affinity

capture-MS, affinity capture-Western and Yeast Two Hybrid.

Although each method varies in how interactions are reported, they similarly rely

on a “bait” protein and a “prey” protein. The two most similar methods, affinity

capture-MS and affinity capture-Western, differ only in how their prey proteins are

identified. These methods use a known bait protein affixed to a permeable substrate

that is then washed with cellular extract. Those prey proteins within the cellular

extract that interact sufficiently with the bait protein will be affixed to the substrate

via the bait. Following this, the prey proteins are identified using mass-spectrometry

(MS) or Western blotting. Although prey proteins can be identified by the mass-

spectrography method using the protein’s molecular weight, Western blotting requires

antibodies specific to each prey protein [1]. This requires a great deal more time and

effort, which is reflected in the relative proportion of Western identified interactions:

12% of all physical interactions compared to 56% for mass-spectrometry methods [53].

The third of the most common methods for identifying physical interactions is

yeast two hybrid (YTH). Accounting for 15.5% of known physical interactions [53],

this method is markedly different from the previous two in that it relies on an in vivo

reporter fused to the query proteins [1]—this means that YTH isn’t affect by an in

vitro bias.

The fundamental YTH approach utilizes a protein, GAL4, which is responsible

for activating genes required for galactose utilization [15]. GAL4 is composed of two

parts, or domains, a DNA binding domain and an activation domain. In order for S.

cerevisiae to metabolise galactose the DNA binding domain must be in close proximity

to the activation domain. Typically, since both domains are on the same protein, this

is not an issue and galactose metabolism is activated as required. However, the

fundamental YTH method [15] creates S. cerevisiae mutants that lack GAL4. If

these mutants are grown on a substrate with galactose as the only source of food,

they will die–the ability to metabolise galactose has been removed and no other food

source exists. In order to return the ability of galactose metabolism the two domains

of GAL4, the DNA binding domain and the activation domain, are split apart. A
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“bait” protein is fused to the DNA binding domain and a “prey” protein fused to

the activation domain. These are then added to the S. cerevisiae mutants lacking

GAL4. If the “bait” and “prey” interact, they will bring the activation domain into

close proximity of the DNA binding domain. The close proximity of the two domains

will rescue galactose metabolism. Whether two proteins interact is directly based on

whether the S. cerevisiae mutants survive, or not.

2.2.2 Genetic Interactions

Genetic interactions are an unexpected phenotype that cannot be explained by the

multiplicative effect of individual genetic variants. Essentially, a genetic interaction

exists if the observed phenotype of a double mutant is significantly greater or less

than the multiplied fitness of single mutants. To explain in more detail, this method

relies on measuring the effect of individual genetic variants on a particular phenotype,

such as number of viable offspring or colony size. From this measurement a fitness

metric is constructed for each variant; one, a query, i; and the other, a subject, j.

Costanzo et al. used this concept as a basis for a multiplicative null model to predict

the fitness of double mutants,

fij = fifj + εij (2.1)

where εij is the deviation from the model, in this case fjfj, by the double mutant, fij.

Therefore, the fitness of a double mutant fij is a product of the fitness of fi multiplied

by the fitness of fj and unexpected results are described by εij.

Colony size was then represented as a function of fitness and additional variables

to compensate for time, noise and experimental effects,

Cij = fij · t · sij · e (2.2)

where t is time, sij is a correction factor to account for systematic experimental biases

that affect colony growth and e is an estimation of log-normally distributed random

noise. By substituting Equation 2.1 into Equation 2.2 and rearranging,

εij =
Cij

tsije
− fifj (2.3)

Therefore, εij is an measure of genetic interaction strength, which can be either neg-
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ative or positive. A negative εij indicates a decrease in fitness over the null model

whereas a positive εij indicates an increase in fitness over the null model. What de-

termines the “unexpectedness” of this phenotype is the threshold of an interaction’s

εij. This determines whether an interaction is included or excluded in the network.

Costanzo et al. provided four thresholds ranging from any interactions which a p-

value < 0.05 to a “stringent cutoff” of ε < −0.12 or ε > 0.16, p-value < 0.05. These

p-values were calculated based on four replicates per double mutant and an estimate

of the log-normal error distributions for the each of the query and subject (i.e single)

mutants (details within the supplemental material of [9]).

2.3 Graphs

Definition of a Graph

A graph (network), G = (V,E), consists of a set of vertices (nodes), V , and edges,

E ⊆ V × V , that connect pairs of vertices. For each (u, v) ∈ E an edge (u, v) is

said to be incident to its end points u and v. In the course of this thesis we use

the terms “network” and “graph”, as well as “node” and “vertex” interchangeably.

An undirected graph G = (V,E) is a graph where (u, v) ∈ E ⇔ (v, u) ∈ E. For

the sake of simplicity, the networks we are analyzing will be considered undirected

and unweighted. This means that all edges have an edge weight of 1, {w(u,v) = 1 :

∀(u, v) ∈ E}. Additionally we allow self-loops, that is edges (u, v) ∈ E with u = v.

Degree

The degree of a node, v, is defined as deg(v) and is simply the number of nodes

incident to it.

Shortest Path

A path from u to v in a network is a sequences of nodes u, u1, ...un, v such that each

node in the sequence is connected to the next node in the sequence by an edge.

Depending on the topology of the network there may be more than one path between

any u and v.

The shortest path, or a geodesic, between a node u and v is the number of edges

on a path, dG(u, v), between u and v such that dG(u, v) is minimized. There may

be more than one shortest path between vertices u and v, but the number of edges
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in each shortest path between u and v is identical. The total number of different

shortest paths from u to v is then σuv.

2.4 Network Analysis

Some of most powerful network analysis tools are measures of centrality as they

provide an unbiased characterization of all nodes in a network. When given a net-

work we can utilize one of many centrality measures to rank each node. We then

use this ranking to determine the nodes’ relative importance. There are a number

of these centrality measures however we chose to utilize those that are most com-

mon in biological network analysis. Those being degree, closeness and betweenness

centrality[34, 35, 25, 30, 29, 28, 46, 52]. Each of these where formalized by Freeman

in [18] and will be the focus of our attention in this thesis. These topics are expanded

on, with examples, in Appendix A.2.2.

Figure 2.4: An example graph with six nodes and seven edges.

2.4.1 Degree Centrality

Conceptually, the simplest centrality measure for a node v is degree centrality, CD(v).

This measure scores all nodes in a network by their degree. The degree, CD(v) of a

node v, is simply the number of edges incident to it. It is important to note that

Degree Centrality is a local metric, it is only a measure of the immediate neighbor-

hood: those nodes directly adjacent to v. This contrasts to the other two metrics,

betweenness and closeness, as they are global metrics, dependent on the topology of
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the entire graph.

CD(v) = deg(v) (2.4)

2.4.2 Betweenness Centrality

Betweenness centrality, CB(v), or more accurately shortest path betweenness central-

ity, for a node v, is a measure that scores the importance of v based on the number

of shortest paths between any two nodes u and w of which v is a member. This is

computed as a ratio of the number of shortest paths that pass through v and the

total number of shortest paths in the network. More formally,

CB(v) =
∑
s 6=v 6=t

σst(v)

σst
(2.5)

where s, t, v ∈ V and wehre σst(v) is the number of shortest paths from s to t of

which v is a member and where σst is the total number of shortest paths from s to t.

The above metric returns a value between 0 and (|V | − 2)(|V | − 1)/2. To see

this, note that the maximum number of paths that can contain v is the total number

of pairs of nodes, excluding v. This is precisely (|V | − 2)(|V | − 1)/2. We use this

information in order calculate the normalized betweenness, 0 ≤ C ′B(v) ≤ 1, as found

in Equation 2.6.

C ′B(v) =
CB(v)

(|V | − 2)(|V | − 1)/2
(2.6)

2.4.3 Closeness Centrality

Closeness centrality is a measure of how close any node v is to any other node t ∈ V .

It is the inverse of the related metric farness. Farness, F (v), for a node v is the sum

of geodesic distances to all other nodes t ∈ V ,

F (v) =
∑
t∈V

dG(v, t) (2.7)

Then, closeness centrality, CC(v), is defined as,
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CC(v) = F (v)−1 (2.8)

=
1∑

t∈V dG(v, t)
(2.9)

Unfortunately, the above metric only produces valid results when the (entire)

graph is connected. For non-connected graphs there exists a pair with dG(uv) = ∞.

To circumvent this limitation, where graphs are not connected, we modify this metric

and ignore all nodes, t, not reachable from some v by setting dG(v, t) = 0.

However, the resultant values of Equation 2.9 can become quite large so it is useful

to normalize them so that 0 ≤ C ′C(v) ≤ 1. To do this we must consider the maximum

closeness a node can have. Using Equation 2.9 we can see that the maximum closeness

is when a node is connected to every other node, |V | − 1.

Therefore, to normalize Equation 2.9,

C ′C(v) =
|V | − 1∑
t∈V dG(v, t)

(2.10)
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Chapter 3

Methodology and Software Tools

3.1 Introduction

In this chapter we describe the methodology used to generate the data that we used

to answer our research questions:

1. Does the mechanism of duplication, whole genome or small scale duplication,

correlate to distribution of network centrality measures for duplicated genes?

2. Is there a correlation between the change in network centrality measures be-

tween paralogous pairs and the selective pressure experienced after duplication?

3. If there is a correlation, is this correlation different for small scale duplicates

compared to ohnologs?

4. Does the retention of ohnologs correlate with network centrality measures?

To get the broadest understanding of how genes and their interaction change fol-

lowing duplication we chose to analyze both physical and genetic interaction networks.

The physical interaction network is a network of qualifiable physical interactions be-

tween pairs of gene products (proteins). This differs from the genetic interaction

network which is a network of quantifiable genetic effects. It is important to note

that just because a gene product interacts in the physical interaction network, it does

not mean that the two genes interact in the genetic interaction network, and vice

versa.

We used these two networks to assist us in answering our questions above. How-

ever, in order to make our results from these two networks relatable (i.e., an “apples-

to-apples” comparison), we processed the networks by removing all nodes that were
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not common to both (and by default, interactions with these deleted nodes). Sec-

ondly, within this common set of nodes, we identified pairs that are paralogous, and

sorted these pairs into both whole genome duplicates (ohnologs) and small scale du-

plicates (SSDs). Thirdly, we calcuated the network characteristics of ohnologs and

SSDs within each network type: degree, closeness and betweenness. Finally, we mea-

sured the selective constraints affecting SSDs and ohnologs in each type of network.

These steps are detailed below.

3.2 Constructing Comparison Networks

3.2.1 Network Data

We were interested in the differences, if any, in the physical and genetic interactions

of ohnologs and SSDs. As such, we utilized physical and genetic interaction network

data as detailed below.

Physical Interaction Network Data

Physical interaction network data was downloaded from The BioGrid [53]. We first

cleaned the data of all genetic interactions, labeled “genetic”, similar to [26] as well as

any interactions involving anything other than S. cerevisiae proteins including RNA

interactions arising from Affinity Capture-RNA and Protein-RNA. The remaining

interactions were solely between proteins or protein components, and we refer to this

cleaned data set as the Protein Interaction Network.

Genetic Interaction Network Data

We obtained our genetic interaction data from the supplementary material of Costanzo

et al. [9]. To minimize spurious interactions we chose to use the “stringent cutoff”

synthetic genetic array analysis data-set (ε < −0.12, p-value < 0.05 or ε > 0.16, p-

value < 0.05). This data set had an overall precision of 0.89 for negative interactions

and 1 for positive interactions. The total number of interactions were decreased due

to a reduction in sensitivity but the reduction in sensitivity was much less than the

gain in precision [9].

Genes represented by more than one allele (334 alleles), either “TSQ” (Thermo-

Sensitive Query, 214 alleles) or “DAmP” (decreased abundance by mRNA perturba-
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Figure 3.1: Work-flow to generate experiment data for subsequent analysis.
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tion, 120 alleles), had their interactions combined and “TSQ” and “DAmP” removed

from their name. These 334 alleles represented 300 unique genes. This produced a

network composed of 4273 unique genes with and a total of 73825 interactions.

3.2.2 Constructing and Processing Networks

To construct comparable networks composed of the same genes/nodes we utilized

the “systematic name” found in the data of Costanzo et al. and The BioGrid. This

resulted in a total of 3607 genes common to both networks. For each network we

retained only those interactions between these 3607 genes. For example, consider

that the gene YPR203W interacts with YDR039C and YGL200C. If YDR039C does

not exist in the set of 3607 common genes, then the interaction between YPR203W

and YDR039 is removed from the network. However, since YGL200C does exist in the

set of common genes, the interaction between YPR203W and YGL200C is retained.

This yielded 54833 interactions within the physical interaction network and 66193

interactions in the genetic interaction network.

3.3 Identifying Paralogs

We wished to identify protein-encoding nucleotide sequences as either ohnologs or

SSDs. As a quick reminder, those sequences that are identified as ohnologs are pairs

of paralogous sequences that can attribute their common ancestry to the S. cerevisiae

whole genome duplication event. SSDs, are pairs of paralogous sequences that share

a common ancestry independent of the S. cerevisiae whole genome duplication.

Identification of ohnologs was simple as the set of S. cerevisiae whole genome

duplicates has been pre-identified and this set is curated by the Yeast Genome Order

Browser (YGOB) [5]. YGOB utilizes a multiple alignment method between different

species’ chromosomal regions to identify homologous regions between the genomes

of seven yeast species, which cover both pre- and post-whole genome duplication

ancestry: S. cerevisiae, S. castelli, C. glabrata, K. lactis, A. gossypii, K. waltii and

S. kluyveri. The algorithm incorporates allowances for inversions and utilizes gaps

between contiguous genes on any particular region to maximize the multiple alignment

score. This resulted in 551 ohnolog pairs being identified, 28 more than the union

of previous studies (523 ohnolog pairs) by Deitric et al. [10], Kellis et al. [32] and

Wong et al. [60]. Of important note is that all ohnologs identified in each of the
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previous studies are also found in YGOB. We identified 326 of these ohnolog pairs in

our processed networks.

To identify our set of SSDs we obtained protein sequence data from ENSEMBL

(2012 database, 5635 protein encoding genes) [16] and performed an all-against-all

BLAST [2] query for all pairwise combinations of S. cerevisiae protein sequences

using the same criteria used by Hakes et al. [26]: an e-value ≤ 10−8, an alignment

length ≥ 100, a translation length ≥ 100 residues and a percent identity threshold

≥ 40. Our reasoning for a 40% identity cutoff comes from the results of Hakes et

al. They found that smaller percent identities introduced increasingly larger numbers

of highly divergent pairs, their interpretation being that paralogs were being falsely

identified. We removed any of the ohnolog pairs previously identified, which results

in an intermediate total of 326 SSDs. Since we are interested in unique pairs of genes,

if there was more than one duplicate per gene we selected a duplicate of a gene at

random. This paring resulted in a final set of 187 SSD pairs within our processed

networks.
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3.4 Measuring Centrality

To measure the centralities (degree, closeness, betweenness) for each gene in the two

network types we used the network analysis program Gephi 0.8.2 [4]. The centrality

measures for each network was exported to a single file for subsequent analysis. Each

of these files contained the same number of genes: 3607.

3.5 Measuring Selection

To measure the selective pressure experienced by paralogs following their duplication

we used the paralogs previously identified, both ohnologs and SSDs. Python was

used to link input and output of each of the following steps. We first aligned pairs

of homologous protein sequences that we obtained from ENSEMBL (v. 70) using

the Needleman-Wunsch global alignment algorithm as implemented by “needle” in

the EMBOSS analysis package [47]. The pairwise protein alignments were used in

conjunction with their corresponding nucleotide sequences, also obtained from EN-

SEMBL (v. 70), and the “pal2nal” program [54]. Utilizing our optimum matchings

of paralog sequences, “pal2nal” produced alignments of the corresponding nucleotide

sequences with on a codon by codon basis. The pairwise codon alignments were used

as input to the codeML program of the PAML package [61]. This process is summa-

rized in Figure 3.2 and produced values for number of non-synonymous mutations per

non-synonymous site (dN), synonymous mutations per synonymous (dS) and dN/dS.

The value of dN/dS, for each paralogous pair, is a measure and identifier of selection.

We use this value in our analyses where dN/dS less than one indicate negative, or

purifying, selection; values greater than one indicate positive selection; and, finally, a

value equal to one indicates neutral selection. For a detailed explanation of how dN,

dS and dN/dS are calculated see Appendix A.1.

3.6 Summary

This chapter has explained the methodology on how we generated our data. The

result of each of the steps outlined above is a collection of data for each gene common

to the two network types. In summary, for each gene we have calculated network

centrality values for both network types, whether the gene has a small scale or whole

genome duplicate, and, when a duplicate exists, dN and dS (Figure 3.3).
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Chapter 4

Network Characteristics and

Analysis of S. cerevisiae Paralogs

In this chapter, composed of two sections, we introduce our experimental observations

derived from the data that we integrated in our methods.

The first section introduces an overview of the network characteristics for the

processed genetic and physical interaction networks. We analyze these networks with

the goal of producing observations that will assist us in ascertaining whether the

network differences between paralogs are attributable to differences in the method of

duplication, or to fundamental characteristics of the networks. We first present an

overview of the general interaction profile for each of our processed networks, showing

the distribution of degree within each network. We then provide similar observations

for betweenness and closeness.

Our second section describes our experimental observations that directly relate

to answering our research questions. We start this second section similarly to the

previous by providing an overview of the interaction profile for each type of duplicate

within each network, beginning with degree and then followed by betweenness and

closeness. Following this, we show the correlations between these centrality measures

and describe the distribution of the relative differences in centrality measures between

pairs of paralogs. Next, using our calculated values of dN/dS for each duplicate pair

we map dN/dS values to centrality measures to show relationships between them.

Finally, we use sliding windows of ordered centrality values to demonstrate possible

correlations of these values to ohnolog retention.



25

4.1 Network Characteristics of S. cerevisiae Ge-

netic and Physical Interaction Networks

4.1.1 Distribution of Centrality Measures

We begin our analysis by introducing the general characteristics of each network.

Since the construction of our networks, detailed in Chapter 3, removed a number of

nodes that were not common to both the physical and genetic interaction network,

we first wanted to confirm that this did not dramatically change the distributions of

degree, closeness and betweenness.

For the genetic network we calculated the kernel density for degree, closeness and

betweenness both for the original, unmodified network (i.e. directly downloaded from

the source) and the processed common-node network (Figure 4.1). There was little

observable difference between each characteristic for both network data sets. By re-

moving nodes from the network the density of higher degree nodes decreased after

processing. This resulted in a small positive shift in closeness and near indistinguish-

able difference in betweenness—except at higher values. Each of these changes are

moderate and the distribution, although shifted, retains the same relative distribu-

tions as their related unprocessed characteristics.

These trends are not the same for the physical interaction network (Figure 4.2)

where the differences are pronounced. Degree is the least affected by the removal of

nodes during our pre-processing. The trends between our experimental data and the

original pre-processed data are similar, although a large number of high degree values

have been removed by our data processing. This can be seen in Figure 4.2a: nodes

with a degree greater than 785 are removed by our processing. The effect of our data

processing on betweenness values is not obvious, but it appears that the removal of

some of the high degree nodes resulted in a net increase of higher betweenness values.

The most dramatic difference is observed between the closeness values of the

pre- and post-processed networks. The pre-processed network has a three-peaked

distribution, with the majority of values above closeness values of 0.4. Following

processing, the highest closeness values have been removed resulting in a clear bimodal

distribution.

To account for the dramatic change in the density distributions for closeness values

we must consider two things. The first, unlike the genetic interaction network, is that

the nodes in the physical interaction network and their interactions are inherently
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Figure 4.1: Kernel density distributions of genetic degree (a), betweenness (b) and
closeness (c) for all network nodes (blue) and nodes in common with the physical
network (red).
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biased—a single experiment is devised to confirm the physical interaction between

any two gene products. If no experiment is used to confirm the interaction between

two gene products no knowledge about it can exist. High degree nodes in the physical

interaction network are nodes that are of high interest as each interaction indicates a

single experiment. These nodes would be of low degree if there were only one or two

experiments investigating their interacting parters. Additionally, the lower closeness

values are likely due to poor experimental representation of some gene products.

There is a large density in both the pre- and post-processed data for low closeness.

This observation is likely due to the opposite of what we just described—a subset of

gene products that are not central to any experiments. Both of these are the opposite

of the genetic interaction network whose experimental design was entirely unbiased:

every query gene was given the ability to interact with every subject gene.

The second consideration is that physical interaction data does not consider the

promiscuity of gene products when outside their unique cellular context. It is entirely

possible that two nodes in the physical interaction network may share an interaction

that would never exist inside the cell. For example, an interaction is unlikely when

one gene is confined to the nuclear envelope and the other to the cellular membrane.

Unfortunately, the sheer number of nodes and interactions within the physical inter-

action network, as well as incomplete knowledge of gene product location, makes it

very difficult to compensate for this possibility.

With these two considerations in mind, we hypothesize that the shift in the close-

ness distribution is not an invalidation of our processed physical data. The common

node set between the genetic and physical interaction network removes some of the

bias inherent in the physical data by using an external determinant on what nodes are

included and excluded. The query genes within the genetic interaction network are

selected at random, which, when we determined the nodes common to both networks,

imparted this randomness to the physical interaction data. Furthermore, by removing

high degree nodes from the network we likely reduced the effect of overly promiscuous

physical interactions. Ultimately, it is important that we note how our pre-processing

has affected the network, and its possible reasons. However, it is beyond the scope of

this thesis to explain the exact biological reasoning for the discrepancy seen between

the pre- and post-processed physical interaction.
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4.2 Network Characteristics of S. cerevisiae Ohnologs

and SSDs

In this section we discuss the analysis of our experimental results, specifically to

answer our research questions. The sections below are organized by research questions

they address.

4.2.1 Distributions of Ohnolog and SSD Centrality Measures

We approach our first research question,

Does the mechanism of duplication correlate to the distribution of network

centrality measures for duplicated genes?

by determining the distribution of each centrality measure for both types of duplicates,

ohnologs and SSDs, and for each network interaction type (Figure 4.3).

For both degree and betweenness, the majority of paralogs for each network in-

teraction type follow the same trend. The large majority have low degree or low

betweenness with a few sporadic higher value centralities composing no discernable

pattern. Closeness values follow similar trends within each network type, but not

between networks reflecting the closeness differences of the networks seen in Figures

4.1 and 4.2 and described in Section 4.1.1. These plots show that, generally, there

are few differences in the distributions of network centrality measures, considering

both physical interaction and genetic interactions, for either paralog type. The only

differences appear to occur when closeness values are compared, but these differences

may be due to the topology of the physical interaction network as explained in Section

4.1.1.

4.2.2 Differences in the Centrality Measures of Ohnolog and

SSD Pairs

Considering there were very few differences in the distribution of centrality mea-

sures for each paralog type as whole, we wished to determine whether there were

any differences in centrality measure between each pair of ohnologs or pair of SSDs.

To accomplish this we computed the percent difference of each centrality measure
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between pairs of ohnologs and pairs of SSDs, covering both genetic and physical in-

teractions. We grouped these results by network centrality measure: Degree, Figure

4.4; Betweenness, Figure 4.5; and, Closeness, Figure 4.6.

The percent difference between degree values of paralogs is similar within each

network interaction type for both ohnologs and SSDs (Figure 4.4), but different be-

tween each type of network. We see that the distribution of percent differences in

physical degree values is a wide smooth curve for both ohnologs and SSDs. This con-

trasts with the left skewed distribution exhibited by the percent differences in genetic

degree. This left skew indicates that a large proportion of paralogous pairs, both

ohnologs and SSDs, have large differences in their genetic interaction degree.

Statistically, we find that the differences in degree data for both ohnologs and

SSDs in physical interaction network is not significant (Mann Whitney U = 35001,

p=0.642, α = 0.05). Similarly, the two distributions of genetic interaction degree are

not significantly different (Mann Whitney U = 41385.5, p = 0.075, α = 0.05).

Figure 4.4: Kernel density estimate of the percent difference in degree for all pairs of
ohnologs and SSDs for both the genetic interaction network and physical interaction
network.

When comparing the percent difference in betweenness values of paralogs in each

network (Figure 4.5) we see a left skew for each combination of pairs considered. Each

set of data shows a similar distribution: there is an increase in the relative number of

pairs as the percent difference between them increase—a large proportion of paralogs

have high percent differences in their betweenness. This trend is amplified for the

genetic betweenness differences of ohnologs, as an even larger proportion of these

paralogs have large differences in their betweenness.
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Figure 4.5: (Kernel density estimate of the percent difference in betweenness for all
pairs of ohnologs and SSDs for both the genetic interaction network and physical
interaction network.

Similar to degree values, there is no statistical difference between ohnolog and

SSD differences in the physical interaction data (Mann Whitney U = 25880, p=0.94,

α = 0.05). However, unlike our findings for ohnolog genetic degree difference, there is

statistically significant difference between the distributions of the differences in genetic

betweenness of ohnologs and differences between SSDs (Mann Whitney U = 35001, p

= 0.0056, α = 0.05). These findings show that a large proportion of paralogous pairs

have large percent differences in both their physical and genetic betweenness, with

high genetic betweenness differences being an even larger proportion of ohnologs.

Finally, we compare the physical and genetic closeness values for both types of

paralogs. Here we find that the distributions are different for the genetic and physical

interaction networks, but, as seen in each other example, similar within each network.

The difference in physical closeness have two distinct peaks: a large peak and small

peak. The large peaks having very little percent difference in physical closeness

between pairs (peak approximately 5% difference). The smaller peaks for each paralog

type have slightly higher percent differences in closeness (peak approximately 2%

difference). These two distributions are visually very similar, which reflect the fact

that any differences are not statistically significant (Mann Whitney U = 35259, p =

0.16, α = 0.05)

Our three observations show that, within each network, the mechanism of duplica-
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Figure 4.6: Kernel density estimate of the percent difference in closeness for all pairs of
ohnologs and SSDs for both the genetic interaction network and physical interaction
network.

tion is not an indicator for the percent differences between the centralities of pairs of

paralogous genes. However, the differences between centrality measures for paralogs

can be dramatic between networks: a larger proportion of paralogs have greater dif-

ferences in genetic degree than physical degree; a larger proportion of paralogs have

small differences in physical closeness than genetic closeness.

These findings are interesting since the genes in each network are identical but we

observe the characteristics of two different features, physical and genetic interactions.

Returning to an answer for our research question, these observations indicate that the

mechanism of duplication has little bearing on the centrality differences of duplicates

pairs. However, centralities are affected differently depending on the type of inter-

action, whether physical or genetic. To what amount is dependent on the centrality

measure and the type of interaction.

4.2.3 Correlations Between Differences in Centrality Mea-

sures and Selective Pressure for Ohnolog and SSD Pairs

In this section we provide our observations to answer two of our research questions:

Is there a correlation in the difference of network centrality measures be-

tween paralogous pairs and the selective pressure experienced after dupli-

cation? and,
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Is this correlation different for small scale duplicates compared to ohnologs?.

We combined the results of our dN/dS calculations (Measuring Selection in Chap-

ter 4) with the absolute percent change in each measured network centrality score

(Section 4.2.2, above) between each paralogous pair. Therefore, each pair has three

pairs of values: the dN/dS value matched with each of the percent difference in degree

(Figure 4.7), betweenness (Figure 4.8), and closeness (Figure 4.9).

In all of our dN/dS observations we found evidence of strong purifying selection

(dN/dS < 0.6) for both ohnologs and SSDs. We did not observe any pairs with dN/dS

values at or above unity, which shows that there were no duplicates that were subject

to neutral or positive selection. We did not investigate individual regions between

aligned sequences, only the gene alignment in their entirely.

In the first set of our observations, pairing dN/dS with absolute percent change

in degree between pairs (Figure 4.7), we see that, as the percent difference increases,

there is little change in the values of dN/dS. This trend is similar for the same anal-

ysis using betweenness (Figure 4.8) and closeness (Figure 4.9). Using Spearman’s

ρ confirms that no linear correlation can be assumed in any of these sets of data:

ohnolog genetic degree ρ = −0.010895; SSD genetic degree ρ = 0.001780887; ohnolog

physical degree ρ = −0.05474795; SSD physical degree ρ = 0.003078439. This find-

ing holds for dN/dS and differences in betweenness: ohnolog genetic betweenness

ρ = 0.05626678; SSD genetic betweenness ρ = −0.07640954; ohnolog physical be-

tweenness ρ = −0.1416087; SSD physical betweenness ρ = −0.1269569. And, for

correlations between dN/dS and differences in closeness (ohnolog genetic closeness

ρ = −0.03029416; SSD genetic closeness ρ = −0.08331598; ohnolog physical close-

ness ρ = −0.0326225; SSD physical closeness ρ = 0.01535).

These findings show that there is no statistically significant correlation between

the difference in network centrality measures of paralogous pair and the selective

pressure experienced by them since duplication: regardless of differences in centrality,

surviving duplicates have been subject to strong purifying selection.

4.2.4 Correlations Between Centrality Measures and Reten-

tion Following Whole Genome Duplication

Finally, we turn to our last research question,

Does the retention of ohnologs correlate with network centrality measures?
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Figure 4.7: Density heat maps of dN/dS and degree for ohnologs and SSDs in both
the genetic and physical interaction networks.
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Figure 4.8: Density heat maps of dN/dS and betweenness for ohnologs and SSDs in
both the genetic and physical interaction networks.
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Figure 4.9: Density heat maps of dN/dS and closeness for ohnologs and SSDs in both
the genetic and physical interaction networks.
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We approach this question on the assumption that following WGD every gene

existed in duplicate. Using this as a basis it is clear that extant ohnologs are those

genes that retained their whole genome duplicate partner. All other genes have lost

their duplicate. By observing those pairs of genes that are ohnologs, we can attempt

to determine what, if any, centrality measure correlate to their retention.

Our analysis began using each of the three centrality measures. We sorted all the

genes in our analysis using each of our three centrality measures, resulting in three

sets of data. Then, using a sliding window, we found the fraction of ohnologs per

1000 gene window. The results of these sliding windows for each centrality measure

are seen in Figure 4.10.

The reason for the sliding window of 1000 genes was to minimize variation between

consecutive windows. For example, a window size of one results in an ohnolog fraction

of zero for each gene that isn’t an ohnolog, and a value of one for each gene that is an

ohnolog. This would create noisy data—a change between zero and one continuously,

which provides no information on retention trends. By using a much larger window

size, such as 1000, large variations between windows are reduced and global trends can

be visualized. Therefore, since we assume that immediately following whole genome

duplication all genes exist in duplicate, the sliding window plot is a visualization of a

trend where increases or decreases in the ohnolog fraction indicate relative retention

or loss dependent on increasing centrality measure.

We calculated Spearman’s ρ values for each centrality measure and network type

(Table 4.1). In each of our findings centrality is strongly positively correlated with

the percentage of ohnologs in each window for the physical interaction network. Con-

trastingly, we see a strong negative correlation in the genetic interaction network.

We thought it surprising that our findings were opposite between the physical

and genetic networks. Intuitively, we assumed that the genetic network would fol-

low similar trends as the physical network: higher centrality nodes indicate higher

essentiality [25] and would therefore indicate that there are more ohnologs at higher

centrality values. We proceeded to answer the question: why do the observations

between physical and genetic interaction networks appear to be contradictory?

To pursue an explanation to our question, we began by considering the state of the

genome immediately following whole genome duplication. In the generation following

the duplication event the stoichiometric balance of genes has not been disturbed—the

relative amounts of any one gene to any other remains the same. Our question now

becomes: how do the physical and genetic interactions differ following the duplication
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event?

Let us first consider the physical interaction network, which now has a second,

identical, copy of all nodes and interactions. Conceptually, we can consider these two

identical networks operating in parallel, with the caveat that interactions connect

these two parallel networks such that each gene can now interact with either of both

duplicates of its ancestral interacting partners. We can see this in our trivial example

of Figure 4.11.

 B’

 A’

 B

 A

 B

 A

Physical Interaction Network

 C  C  C’

WGD

 D  D  D’

Figure 4.11: A physical interaction network with four nodes pre-duplication and eight
nodes post-duplication.

This situation is very different for the genetic interaction network (Figure 4.12).

Now that every node has been duplicated, a genetic interaction can only be found if

both of these duplicates are removed. To understand why, consider what would hap-

pen if, following a WGD, we selected two genes from the ancestral network, selected

one duplicate for each in the duplicated network, and deleted each of our selected

pairs. Since their identical duplicate copies still exist, and have not diverged, little if

no phenotypic response would be observed (assuming their basal dosage requirements

were still met); therefore, genetic interactions initially existed either between dupli-

cate genes (if they were not dosage sensitive) or between any two genes (if either or

both were dosage sensitive) [57]. Only if duplicates are dosage sensitive will genetic

interactions outside the pair be observable.

With this in mind, we hypothesized that ohnolog pairs that have maintained their

genetic interaction to one another, yet interact with others, are a combination of the

two extremes following WGD: they are dosage sensitive to some interactions yet re-
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Figure 4.12: A genetic interaction network with four nodes pre-duplication and eight
nodes post-duplication. Following duplication each duplicate pair is disconnected
from every other duplicate pair, forming a disconnected network. The only genetic
interactions are those between duplicates.

Network Centrality Measure ρ p

Genetic
Degree -0.8270584

< 10−9Betweenness -0.9331068
Closeness -0.853526

Physical
Degree 0.9783577

< 10−9Betweenness 0.936841
Closeness 0.9724897

Table 4.1: Spearman’s ρ values and associated p-values for the fraction of ohnologs
per window rank for genetic and physical interactions.

tain an ability to buffer other interactions, explained by their retained intra-duplicate

interaction. The fact that they have retained this intra-duplicate interaction, yet di-

verged sufficiently to have genetic interactions with other genes, led us to hypothesize

that there is evolutionary constraint to this intra-duplicate interaction. We predicted

that this means that the subclass of ohnologs that interact with their duplicate are

subject to low rates of non-synonymous substitutions per non-synonymous site. Con-

versely, ohnologs that do not interact with their duplicate should observe relative

higher rates.

To find test our hypothesis, we first classified our two types of ohnologs: those

that interact with their duplicate, and those that do not interact with their dupli-

cate. Of the 714 ohnologs present in both networks, we found that, within the genetic

interaction network, 69 ohnolog pairs interacted (out of 357 ohnolog pairs) and 288
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ohnolog pairs did not interact. Within the physical interaction network we found that

110 ohnolog pairs interacted and 247 ohnolog pairs did not. Non-ohnologs comprised

the remaining 3029 genes within the network. We then calculated dN values for the

Figure 4.13: Density plot of non-synonymous mutations per non-synonymous site for
ohnologs that interact with their WGD duplicate and ohnologs that do not interact
with their WGD duplicate

pairs of ohnologs within each of the two classes found in our two networks. These

data were plotted as density estimate (Figure 4.13) to show their distribution. We

found ohnologs that interact with their duplicate observe low dN and ohnologs that

do not interact with their duplicate observe higher dN, for both genetic and physical

interactions. There is a strong right skew of distribution for the genetically interacting

ohnologs to where the highest density of non-genetically interacting ohnologs is at a

dN of 0.04. This is much lower than the dN at the highest density of non-genetically

interacting ohnologs (dN = 0.42). The median dN value for non-genetically interact-

ing ohnologs was 0.164 compared to a median dN value of 0.432.
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A similar trend of low dN interacting ohnologs and higher dN non-interacting

ohnologs is seen for the physical network data. In fact, the non-physically interacting

ohnologs have a median dN of 0.436 very similar to the dN of the non-genetically

interacting ohnologs (median dN=0.432). However, there is a marked difference in the

media dN value of 0.277 for physically interacting ohnologs compared to genetically

interacting ohnologs (dN = 0.164).

These observations led us to modify our theory above (that ohnolog pairs are

dosage sensitive to some interactions yet retain an ability to buffer other interactions).

Instead, it appears that these pairs have changed little when compared to one another

and the dosage sensitivity and retention of the intra-duplicate interaction reflects the

repertoire of interactions for this class of ohnologs is essential.

Figure 4.14: Fraction of ohnologs that do not interact with their duplicate and
ohnologs that do interact with their duplicate over a sliding window of 500 genes.
All genes in the network, including non-ohnologs, were sorted by physical between-
ness centrality value in ascending order. The trend is similar for degree and closeness.

Next we applied our sliding window methodology to our two classes of ohnologs:

ohnologs that interact (genetic network, n=69) with their duplicate; and, ohnologs

that do not interact (genetic network, n=288) with their duplicate (betweenness,

Figure 4.15, similar trend for degree and closeness). When considering genetic inter-
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Figure 4.15: Fraction of ohnologs that do not interact with their duplicate and
ohnologs that do interact with their duplicate over a sliding window of 500 genes.
All genes in the network, including non-ohnologs, were sorted by genetic betweenness
centrality value in ascending order. The trend is similar for degree and closeness.

actions, we find that those ohnologs that retain an intra-duplicate interaction also

exhibit low dN as well as an increasing duplicate retention fraction as centrality val-

ues increases. Since essentiality and centrality are positively correlated [25], we can

extrapolate that this class of genes is essential.

Conversely, those ohnologs that have lost the interaction to their duplicate have

higher duplicate retention fraction at low centrality. This is perplexing as centrality

and essentiality imply that these genes are non-essential, yet they are retained in

duplicate. We will investigate this further below.

We performed the same analysis on the pairs of physically interacting ohnolog

sisters (n=110) and non-interacting sisters (n=247) (Figure 4.14). Here we find that

the fractions of non-interacting ohnolog sisters and interacting ohnolog sisters increase

as centrality increases. The trend for the group of ohnolog sisters that do not interact

is clearly the opposite.

Although it is unclear why this is the case we hypothesize that the increase in

dN and higher retention at low centrality may indicate that the original set of genes
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that produced this class was dosage sensitive—but for a single copy. The relatively

higher rate of non-synonymous mutations implies that there was a higher incidence

of pseudogenization and gene loss for this class. We consider this as pointing towards

the fact that those genes persisting in duplicate (within this class) do so because they

have subfunctionalized sufficiently to offset dosage effects.

Conversely, as hypothesized by Vandersluis et al., the retention of an interaction

between ohnolog sisters does not need to be explained by selection on their dosage. In

other words it does not need to be explained by redundancy or subfunctionalization.

Instead, the retention can be explained by neofunctionalization of the less constrained

ohnolog requiring, or allowing, the ancestral role to be maintained. However, this does

not explain why a high density of low dN values was observed within this class of

genes; this contradicts the possibility of neofunctionalization in the classical functional

sense. Instead, the neofunctionalization may occur in transcription factor binding

sites, which are not measured by dN. The physical proteins may be very similar, but

due to regulatory difference, may be expressed under different conditions.

In summary, the evidence indicates that network centrality does correlate with

the retention of ohnologs. However, whether the correlation is positive or negative

depends on whether the ohnolog sisters interact in addition to the type of network

being considered. In physical interaction networks we see positive correlation between

centrality and retention. Similarly, in genetic interaction networks we see a positive

correlation between centrality and retention for sister ohnologs that retain their ge-

netic interaction. However, ohnolog sisters that have lost their genetic interaction

between one another have a negative correlation between centrality and retention. In

addition to this, ohnolog sisters that do not interact either physically or genetically,

have a higher proportion of non-synonymous mutations compared to those sisters

that do interact.

Therefore, we can conclude that ohnolog sisters that interact with one another, ei-

ther genetically or physically, are unable to acquire large numbers of non-synonymous

mutations. Our interpretation is that these interactions are functionally constrained

since the underlying sequences are constrained. We can conclude from this that the

retention of ohnologs within this class is due to dosage sensitivity of the pair. If

either of the pair is lost there is an imbalance in the dosage requirements and cell

fitness is affected. In the physical interaction network, we propose that each pair of

ohnologs are a component of a protein complex. These complexes were likely homod-

imers prior to duplication. After duplication these homodimers became heterodimers
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composed of two sister ohnologs. Since both duplicates show little non-synonymous

change, both have maintained their ancestral dimerization function and thus buffer

one another.

We find further support for this hypothesis by recognizing the fact that knocking

out both of a pair within this class of ohnologs produces an aggravated genetic in-

teraction, compared to a single knock out of either. This is interpreted as each gene

within the pair buffering the other to some degree, producing a homodime, when any

single gene of a pair is knocked out. Although, if these genes are dosage sensitive this

buffering may be insufficient to maintain organism health in the long term (reduction

in the total number of complexes by 50%). However, knocking out both produces an

even less fit organism (reduction in the total number of complexes by 100%).

On the other hand, ohnolog sisters that do not interact genetically with one an-

other have acquired large numbers of non-synonymous mutations, and are prefer-

entially retained at low centrality. Since centrality and essentiality are positively

correlated, centrality can not explain their essentiality. This implies that for both to

be retained each must acquire unique and novel function such that the fitness effect of

deleting one is more or less detrimental than deleting both. In other words, for there

to be no genetic interaction between ohnolog sisters the effect of both genes being

knocked out must be statistically insignificant compared to the multiplicative effect of

each being knocked out on its own. Therefore, ohnologs that do not interact with their

sister are retained in duplicate due to divergence in function: each has become indis-

pensable on its own in spite of their low centrality. We propose that this divergence

is best described as a partitioning of ancestral function (i.e. subfunctionalization) to

the point that each sister is incapable of buffering the other.

These observations expand on those previous that show WGDs tend towards sub-

functionalization [12, 26]. However, subfunctionalization does not tell the full story.

Our results indicate that the tendency towards subfunctionalization can be teased

apart based on genetic interaction centrality and interaction profile. The overall

trend towards subfunctionalization is unaffected as this partition of ancestral func-

tion is observed by the 80% of ohnologs that do not genetically interact with their

sister. The remaining 20% of ohnologs that do genetically interact with their sister

tend towards their ancestral function.
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Chapter 5

Summary and Future Work

5.1 Summary

This thesis has investigated why some whole genome duplicates are retained in du-

plicate while others are not. We approached this problem from a network analysis

perspective with the theory that network characteristics are important for determin-

ing retention.

Our first contribution is a set of software tools, called “Network Centrality and

Paralog Divergence Integrator” (NeC-PaDI). Nec-PADI integrates network, sequence

and paralog data—for any organism, contingent on a standardized input format.

We utilized these tools to associate centrality measures, nucleotide and amino acid

sequence data, and duplication relationships to each gene in our yeast gene set. These

data were then queried to produce our further contributions. It can be downloaded

from http://webhome.csc.uvic.ca/~imrie/necpadi.

Our main contribution shows that there are two classes of ohnologs and that each

have a different profile of retention following duplication. The first of these two classes

are those that genetically interact with their duplication sister. The second class are

those ohnologs that have do not. We show that ohnolog pairs that do have a genetic

interaction with their duplication sister have higher duplicate pair retention at higher

centrality values. We also show that they exhibit a lower ratio of non-synonymous

mutations per non-synonymous site which indicates their sequences have changed

relatively little. The fact that they share a genetic interaction with one another

shows that they have retained an ability to buffer one another as if there was no

buffering existed then no genetic interaction would be observed.

http://webhome.csc.uvic.ca/~imrie/necpadi
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For ohnologs that have lost a genetic interaction with their duplication sister

we find higher retention at lower centrality values and that they exhibit a higher

ratio of non-synonymous mutations per non-synonymous site. With this loss of ge-

netic interaction we interpret their retention as being due to functional divergence

resulting in indispensability. This, based on previous literature, we interpret as

subfunctionalization[26, 12].

Secondary contributions show that evolutionary pressure does not correlate to cen-

trality measures nor does the distribution of centrality measures change significantly

based on the type of duplication. We also show that the type of interaction (genetic

or physical) has an effect on the distribution of centrality measures. This is due to

the physical and genetic interaction networks describing different characteristics of

the same genes.

The tools we constructed also allow us to ask similar questions of organisms other

than S. cerevisiae. The requirements are that network data, ohnolog data and se-

quence data are available for the species of interest. With comprehensive network

data we can investigate other species whose ancestry contained whole genome dupli-

cation such as Xenopus species, Arabidopsis thaliana, Zae mays species, and some

fish species [51, 55].

To summarize our results, we found that there was no correlation between the

type of duplication and any single centrality measure for each gene we studied. We

found that the mechanism of duplication does affect each centrality differently. We

found that paralogs had a higher percent difference between genetic centralities, on

average, than physical centralities. Assuming that each pair of paralogs had identical

centralities immediately following duplication, our findings show that there is more

variation in the genetic interactions than physical interactions of duplicate pairs.

This may imply relaxed evolutionary constraint on genetic interactions over physical

interactions.

However, our investigation found no significant correlation between the network

centralities of paralogous pairs and selective pressure as currently observable. Due to

the age of the whole genome duplicates and likely many of the small scale duplicates,

this is not unexpected as dS may likely outnumber dN since the former is only subject

to neutral evolution.

Our final question produced the most interesting findings of this thesis: retention

of both duplicates is positively correlated with physical centralities but negatively cor-

related with genetic centralities. Due to the unique feature of genetic networks, that
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ohnologs exclusively interact with one another following duplication, we partitioned

ohnologs into those that interact with their sister gene and those that do not. With

this partitioning we found that physically interacting and genetic interacting ohnolog

pairs had a very low rate of non-synonymous mutations per non-synonymous site.

Ohnologs that did not retain a physical or genetic interaction had a much higher

fraction of non-synonymous mutations per non-synonymous site. We then showed

that the ohnolog pairs that did not interact with one another are the reason for

the apparent trend of decreasing retention as centrality increases. This finding was

interpreted in the following way: genes that have lost their genetic interaction are

dosage sensitive and as centrality increases, dosage effects are amplified - retaining a

duplicate would alter the dosage in a detrimental way.

To conclude, we found that genetic centralities had a greater percent differences

for both SSDs and ohnologs compared to physical centralities; that there is no corre-

lation between dN/dS and differences in centrality due to evolutionary age; and, that

as physical centrality values increase, an increasing fraction of ohnologs are retained.

However, as genetic centrality increases there is a positive correlation with the reten-

tion of ohnolog pairs that interact, but a negative correlation for ohnolog pairs that

do not.

5.2 Future Work

The observations and discussion of this thesis provide many avenues for further in-

vestigation.

5.2.1 Investigating Post-Processed Physical Network Cen-

trality

In our methodology we generated physical and genetic interaction networks using

a common set of nodes. By doing this to the original physical interaction network

we downloaded from The BioGrid, we produced an artefact where closeness had a

two peaked distribution: a population of low centrality and a population of high

centrality. Since the kernel density plot is a continuous function, the distribution

of centrality measure implies that the physical interaction network was partitioned

into two disconnected graphs by our processing. Therefore, the two subcomponents

of the physical interaction network are held together by one or more genes that are
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not in the genetic interaction network. What are these genes and why are they so

fundamental in connecting the network?

5.2.2 Correlating Expression Patterns with Ohnolog Types

One of our statements in our results and discussion indicated that neofunctionalization

may occur in genetic interacting ohnolog sisters with low dN, but not in the classical

sense of differential protein function. Instead, we proposed that neofunctionalization

may be observed in regulatory sites resulting in differential expression. The function

of the protein has changed, not from a physical perspective, but from a temporal

or environmental one. There are plenty of data showing expression levels, both for

developmental phases and environmental states. Combining these data with each

ohnolog type would provide further insight into how the two ohnolog types differ.

5.2.3 Functional Divergence Between Ohnologs Types

It has been shown that ohnologs functionally diverge less than SSDs [12, 26]. However,

do ohnologs that do interact diverge, functionally, more or less than those sisters

that do not interact? Our observations show that there is less sequence divergence

between ohnolog sisters that interact but what effect does this have on the interaction

partners of each duplicate? A more thorough analysis into the similarity of interaction

partners, considering each group of ohnologs separately, would provide insight to this.

5.2.4 Centrality and Chromosomal Location

An interesting avenue for inquiry is whether centrality can be correlated to chromoso-

mal position. It has been shown previously that retention of genes is chromosome and

chromosome region specific [56]. Particularly, one region of a chromosome may be

lost entirely. What determines which of the pair is lost? What is more important, the

location of a gene within the genome or its centrality? We have shown how network

centrality correlates with ohnolog retention, how does this fit with the retention of

genes being chromosome specific?

5.2.5 Evolutionary Analysis of Ohnnolog Types

For much of our analysis we considered ohnologs to be a single set of genes. However,

it would be interesting to observe the selective pressure faced by each group of ohnolog
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types, those that interact with their sister and those that do not. In addition, network

characteristics within each group may be very different. We showed that there is a

tendency for ohnologs that interact with their sister to be more prevalent at higher

centrality than lower. The opposite holds for ohnologs that did not interact with their

sister. It would be interesting to repeat many of our analyses and use this information

to compare these two types of ohnologs.

5.2.6 Confirm that Ohnologs with Genetic Interactions with

their Sister are in Complexes

We made the hypothesis, based on both physical and genetic interaction data, that

ohnologs that interacted with their sister are likely part of complexes and buffer their

sister’s functionality. It would interesting to see if this is actually the case, and how

large these complexes. Are they simply dimers or are they large complexes composed

of many different genes? Additionally, does the size of the complex affect centrality?
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Appendix A

Additional Concepts and Examples

A.1 Observing Selective Pressure

Evolutionary analysis of the S. cerevisiae network would be incomplete without an

analysis of the evolutionary forces affecting each sequence that compose a network

element. We know that any two homologous nucleotide sequences have some similar-

ities and some differences. These differences, where one nucleotide in one sequence

does not match the aligned nucleotide in the aligned sequence, are classified as either

synonymous or non-synonymous.

To understand what synonymous and non-synonymous mean, we fall back to basic

molecular biology and defining a codon: a unique sequences of three nucleotides that

encodes a single amino acid or a stop signal for transcription. The total number of

possible codons is therefore dependant on the number of nucleotides of which there

are four, Guanine (G), Cytosine (C), Adenine (A) and Thymine (T). Therefore, the

total number of codons are 43, or 64. If we remove the three stop transcription codons

we are left with 61 codons to encode 20 amino acids. This implies that one or more

amino acids must be encoded by more than one codon. We can clearly see that this

is the case in Table A.1 and is termed the degeneracy of the genetic code.

Now, considering the fact that the genetic code is degenerate, a change in only

one nucleotide may not necessarily change the encoded amino acid. For example, if

we consider TAC (Tyr) ⇐ TAT (Tyr) the third position mutated from a C to a T,

however TAC encodes tyrosine and TAT still encodes tyrosine. This change, which

does not affect the encoded amino acid, is termed synonymous.

The majority (7̃2%) of third position mutations are synonymous [43]. This is not
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the case with first and second position mutations. Of first position mutations nearly

all (9̃5%) result in non-synonymous mutations [43]. A non-synonymous mutation be-

ing one that resulted in a different amino acid being encoded. The notable exclusions

to this rule are arginine and leucine, which can partially tolerate a mutation in their

first codon. We can see this in Table A.1 if we consider the four major rows, T C, A

and G (which themselves contain rows of T, C, A, G) we can see there are only two

examples that span two rows. The two rows indicating a change in the first position.

Mutations in the second position of a codon will always result in a different amino

acid being encoded. We can see this in Table A.1 as a horizontal change between

columns: there are no amino acids that span two columns. Therefore we can assume

that mutations in the second position are always non-synonymous.

Knowing these terms, we wish to find what extent pairs of nucleotide sequences

are subject to synonymous substitutions and non-synonymous substitutions. More

accurately, we wish to estimate the rate of non-synonymous, dN, and synonymous, dS,

substitutions for each pair of sequences. By estimating the substitution rate we can

start to unravel the evolutionary forces that shaped the two sequences. Synonymous

substitutions are generally thought to follow a neutral model of evolution. Very

simply, under the neutral model synonymous mutations are “not seen” by natural

selection. Therefore, their promulgation to sustenance within a species (fixation) is

entirely by random genetic drift [6]. This is in contrast to non-synonymous mutations,

which, due to the fact they alter the amino acid being encoded, are “seen” by natural

selection since they alter the resultant protein. Ideally, this means that deleterious

mutations will be subject to purifying (negative) selection, removing the mutation

from the gene pool and beneficial mutations will be subject to positive selection,

promulgating the gene in the gene pool to fixation. However, as with all things in

biology, the opposite scenarios may occur, deleterious mutations may be promulgated

and beneficial mutations may be lost. Fortunately, we are only concerned with what

we can observe, and therefore we can categorize genes as being either subject to

positive, negative or neutral selection.

This brings us back to asking what sort of selective forces have pairs of sequences

been subjected to, positive or negative? In order to answer these questions we need

to understand how dN and dS are calculated. To accomplish this we will use a small

example based on the approximation method of Nei and Gojobori [43]. More recent

approximation methods have been introduced [62] but they do not lend themselves

as easily to example.
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There are three basic steps, common to all the various methods, for estimating

synonymous and non-synonymous substitution rates for two aligned sequences. First,

count the number of synonymous and non-synonymous sites in each of the two se-

quences. Second, count the number of synonymous and non-synonymous differences

between the two sequences. Finally and third, account for multiple substitutions at

the same site to determine the rates, dN and dS [62].

We now present an example that covers each step outlined above and describes

difficulties arising in each.

2nd Position

1st Position T C A G 3rd Position

T

Phe Ser Tyr Cys T

Phe Ser Tyr Cys C

Leu Ser STOP STOP A

Leu Ser STOP Trp G

C

Leu Pro His Arg T

Leu Pro His Arg C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

A

Ile Thr Asn Ser T

Ile Thr Asn Ser C

Ile Thr Lys Arg A

Met Thr Lys Arg G

G

Val Ala Asp Gly T

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G

Table A.1: The universal genetic code. Adapted from [1].

Counting Synonymous and non-Synonymous Sites

We begin our estimation of dN and dS by calculating the number of synonymous

and non-synonymous sites. Throughout this thesis we have used the nomenclature

of dN and dS to symbolize non-synonymous mutations per non-synonymous site and

synonymous mutations per synonymous site, respectively. In the discussion that
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follows we use dn interchangeably with dN and for ds likewise with dS.

Let’s consider Table A.2 that contains two nucleotide sequences, NTa and NTb, as

well as their associated translated amino acid sequences, AAa and AAb, respectively.

NTa ⇒ ATG TAC AAA GTA CCC TTA ACT AGC

--- *-- -** --* *-- *-- --* --*

NTb ⇒ ATG CAC ATA GTC ACC ATA ACG AGG

AAa ⇒ M Y K V P L T S

- * * - - * - *

AAb ⇒ M H I V T I T R

Table A.2: Two aligned nucleotide sequences and their associated aminoacid se-
quences

The number of synonymous sites can be calculated independent of non-synonymous

sites, the sum of both must equal the number of nucleotides in the sequence. If we

define the number of codons as Lc, as in [62], the number of synonymous (S) and

non-synonymous (N) sites is therefore N = (3Lc − S). However, in practice, the two

values are calculated in the same step.

Let Cij represent the nucleotide pair aligned at position j, 0 ≤ j ≤ 2 in codon

i, 0 ≤ i ≤ Lc − 1. We determine the which proportion each site, j, of codon pair,

i, is synonymous, Sij, and non-synonymous, Nij. To simplify matters somewhat,

Ci2 : 0 ≤ i ≤ Lc − 1 is always a non-synonymous site as we described above.

Returning to the sequences in Table A.2 we will first calculate the number of

synonymous, S, and non-synonymous sites, N , by using the Universal Genetic Code

in Table A.1. We begin by testing the first nucleotide of the first codon in each of

the two sequences, Ca00 and Cb00 . Since the first codon in both sequences is the same

we have only one set of changes to consider:

ATG: M ⇒ CTG: L

⇒ TTG: L

⇒ GTG: V

Table A.3: Effects of mutations on the first base of the first codon from Table A.2

We can see that changing the first nucleotide from adenosine to any of the other

three nucleotides results in a non-synonymous mutation of methionine to either
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leucine or valine. This means that the first position of the first codon is a non-

synonymous site in both sequences.

For the sake of completeness, we must then consider the number of sequences

being compared and calculate how the probability of effects the values of Sij and Nij.

Even though both have ATG as their first codon and that the set of changes are the

same this may not always be the case and in other comparisons the two codons may

not be the same. To weight the result for each sequence we use equation (A.5):

1 = Sij +Nij (A.1)

Sij = PaSaij + PbSbij (A.2)

Nij = PaNaij + PbNbij (A.3)

(A.4)

Here Pa is the probably for sequence a, Saij is the synonymous value in sequence a,

codon i, nucleotide j. Na is the fraction of non-synonymous sites in sequence a, codon

i, nucleotide j. Pb, Sbij and Nbij all follow similarly for sequence b.

Substituting A.2 and A.3 into A.1 and rearranging the terms gives us:

= Pa(Saij +Naij) + Pb(Sbij +Nbij) (A.5)

Therefore, if we use Saij = 0, Sbij = 0, Naij = 1 and Nbij = 1 for the current step

in our example the question then becomes what is Pa and Pb?

Since we are using only two sequences, the average number of synonymous and

non-synonymous sites are used. This means that Pa and Pb are, Pa = 1
2

and Pb = 1
2
.

This means that for i = 0, j = 0:

1 = S00 +N00 =
1

2
(0 + 1) +

1

2
(0 + 1)

=
1

2
+

1

2

S00 = 0 (A.6)

N00 = 1

The result in (A.6) gives us 0 synonymous sites and 1 non-synonymous site for
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the first position. Calculating the weight for each sequence is an important step

to perform. However, in situations where all the compared codons are the same a

weighted calculation is not necessary: the final values of Sij and Nij are simply the

values for any Skij and Nkij .

A ATG TAC AAA GTA CCC TTA ACT AGC

B ATG CAC ATA GTC ACC ATA ACG AGG

synonymous 000

non-synonymous 111

Table A.4: Known values following calculation of synonymous and non-synonymous
sites for the first aligned codon pair

Moving to the second nucleotide of the first codon we recall that the second

position is always a non-synonymous site. We do not need to calculate the weighted

values, they are simply S01 = 0 and N01 = 1.

Next, we consider the third position. We can see that the Sa = 0 and Na = 1 and

therefore, as described above, Sa+b = 0 and Na+b = 1.

ATG: M ⇒ ATA: I

⇒ ATC: I

⇒ ATT: I

Table A.5: Effects of mutations on the third base of the first codon from Table A.2

Moving to the second codon our calculations become slightly more interesting.

Here, the two sequences have two different codons so our calculations will not be as

simple as taking arbitrary Skij and Nkij . Instead we must use (A.5). Let’s look at

mutations that can occur:

TAC: Y ⇒ AAC: I CAC: H ⇒ AAC: N

⇒ CAC: I ⇒ TAC: Y

⇒ GAC: M ⇒ GAC: D

Table A.6: Effects of mutations on the first base of the second codons of NTa and
NTb from Table A.2

Here, Sa10 = 0, Na10 = 1, Sb10 = 0 and Nb10 = 1. Although there many differences

here the final result is still S10 = 0 and N10 = 1.
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Moving two the second nucleotide of the second codon we once again set the

second position to be a non-synonymous site. Therefore, S11 = 0 and N11 = 1.

The third positions of the second aligned codons in this case will not be simple one

and zero-values. This is because we are now looking at changes in two-fold degenerate

sites. That is, of the four possible nucleotides that can be in the third base position,

two code for the same amino acid. Assuming, of course, that the first two nucleotides

are the same. Mutations in the codon at two-fold degenerate sites have a one-in-three

chance of coding for the same amino acid. This is similar for four-fold degenerate

sites except any change in the third base position has no effect on the amino acid, it

is a purely synonymous change.

TAC: Y ⇒ TAA: Stop CAC: H ⇒ CAA: Q

⇒ TAT: Y ⇒ CAT: H

⇒ TAG: Stop ⇒ CAG: Q

Table A.7: Effects of mutations on the third base of the second codons of NTa and
NTb from Table A.2

It is clear from the above mutations that Sa12 = 1/3 (Y→Y) Na12 = 2/3 (Y→Stop

x 2), Sb12 = 1/3 (H→H) and Nb12 = 2/3 (H→Q x 2). We now use Equation (A.5):

1 = S12 +N12 = Pa(Sa12 +Na12) + Pb(Sb12 +Nb12)

=
1

2
(
1

3
+

2

3
) +

1

2
(
1

3
+

2

3
)

=
1

6
+

2

6
+

1

6
+

2

6

S12 =
1

3

N12 =
2

3
(A.7)

The end result is that S12 = 1
3

and N12 = 2
3
. Our progress thus far can be seen

below in Table A.8
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NTa ATG TAC AAA GTA CCC TTA ACT AGC

NTb ATG CAC ATA GTC ACC ATA ACG AGG

synonymous 000 001
3

non-synonymous 111 112
3

Table A.8: Known values following calculation of synonymous and non-synonymous
sites for the first and seconds aligned codon pair

We continue in this manner, for the remaining pairs of codons in our two sequences

until we determine the values for each synonymous and non-synonymous site. Our

final result is tabulated in Table A.9.

ATG TAC AAA GTA CCC TTA ACT AGC

ATG CAC ATA GTC ACC ATA ACG AGG

synonymous 000 001
3

001
2
001 001 1

6
01
2
001 001

3

non-synonymous 111 112
3
111

2
110 110 5

6
11
2
110 112

3

Table A.9: Final synonymous and non-synonymous sites and their values for all base
pairs in NTa and NTb from Table A.2

Each value for the synonymous sites are summed as in equation (A.8), and sim-

ilarly for the non-synonymous sites as in equation (A.11). The result is the total

number of synonymous and non-synonymous sites for our example, S = 4.8333 and

N = 19.1667.
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S =
Lc−1∑
i=0

2∑
j=0

Sij

= 3 +
1

3
+

1

2
+

1

6
+

1

2
+

1

3
(A.8)

= 4
5

6
(A.9)

= 4.8333 (A.10)

N =
Lc−1∑
i=0

2∑
j=0

Nij

= 16 +
2

3
+

1

2
+

5

6
+

1

2
+

2

3
(A.11)

= 19
1

6
(A.12)

= 19.1667 (A.13)

Counting Synonymous and non-Synonymous Differences

After calculating the number of synonymous and non-synonymous sites (S and N)

we need to classify each difference between NTa and NTb as a synonymous difference,

Sd, or a non-synonymous difference, Nd. This is trivial when only one nucleotide is

different between two aligned codons: it is a synonymous difference if the two codons

encode the same amino acid; and, it is a non-synonymous difference if the two codons

encode different amino acids.

AAa M Y K V P L T S

AAb M H I V T I T R

Differences (*) - * * - - * - *

Table A.10: Amino acid differences between the nucleotide sequences in A.2

For example, AAA (Lys) ⇔ AAG (Lys) differ by one nucleotide in the third

position but both codons code for lysine. This means that the number of synonymous

differences is one, Sd = 1. A non-synonymous difference can be explained by AAA

(Lys) ⇔ AAT (Asn). The two codons differ in the third position, like the previous

example, but in this case one codon codes for lysine and the other for asparagine.

Therefore, the number of non-synonymous differences is one, Nd. This is the case with
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our example. There are four non-synonymous differences, leaving four synonymous

differences.

Generally, however, things are not so simple. When determining Sd and Nd be-

tween codons we must account for three possible types of differences between the ith

codon of sequence a, Cai , and the ith codon of sequence b, Cbi :

1. One nucleotide difference between Cai and Cbi

2. Two nucleotide differences between Cai and Cbi

3. Three nucleotide differences between Cai and Cbi

The first case was covered in the example presented above. For the second case,

where there are two nucleotide differences between Cai and Cbi , we must consider that

there are always two possible pathways that change Cai into Cbi (or vice-a-versa). For

example, consider AAA (Lys) ⇔ ATC (Ile)

Pathway I AAA (Lys) ⇔ ATA (Ile) ⇔ ATC(Ile)

Pathway II AAA (Lys) ⇔ AAC (Asn) ⇔ ATC (Ile)

In this example Pathway I has a non-synonymous substitution followed by a syn-

onymous substitution. In Pathway II there are two sequential non-synonymous sub-

stitutions. Which pathway is the most likely pathway? Are they both equally likely?

We must somehow incorporate the answer to these questions into our calculation of

the number of synonymous and non-synonymous sites.

There are two general approaches to dealing with this situation, weighted and un-

weighted. The un-weighted method was introduced in 1986 by Nei and Gojobri [43].

It is so named as it assumes that both pathways are equally likely. It is calculated

in the following way, for the codon pair at position i in sequence a and sequence b,

Cai , Cbi , we sum the number of synonymous substitutions at codon position i, Dsi ,

and divide by 2. We do the same for the non-synonymous substitutions, Dni
. We do

this for all codon pairs and sum all Dsi and Dni
to find Ds and Dn.
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Ds =
Lc−1∑
i=0

Dsi

2
(A.14)

=
1

2

= 0.5

Dn =
Lc−1∑
i=0

Dni

2
(A.15)

=
3

2

= 1.5

Substituting the number of synonymous substitutions from both of our exam-

ple pathways, Ds0 = 1, into Equation A.14 we find that the weighted number of

synonymous substitutions for our single codon alignment is Ds = 0.5. Similarity,

substituting Dn0 = 3 into Equation (A.15) results in the number of non-synonymous

substitutions, Dn = 1.5.

Figure A.1: Parsimonious pathways between TTA and CTC. Example from [62].

In reality, synonymous mutations are more likely to occur than non-synonymous

mutations (Graur and Li, Chapter 4) [24]. This means that the pathway containing

more synonymous mutations should be weighted more heavily to reflect this. The

precise probability varies from sequence to sequence but empirically derived average

values are typically used [36, 42]. The probability of each pathway is calculated and

then used to determine the weight for each.

Figure A.1 gives an example where the total weight of the top pathway w0 and
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the bottom pathway, w1, from the probability for each, p0 and p1 is:

p0 = (0.00541× 0.04974)

= 0.00025

p1 = (0.29219× 0.08679)

= 0.02536

w0 =
p0
p1

=
0.00025

0.02536
(A.16)

= 0.011

w1 = 1− w0

= 1− 0.011

= 0.989

(A.17)

The above examples only consider codons with one or two nucleotide differences.

The third, and final, case is when all three nucleotides between two codons are not

the same. In this situation there are a total of 18 possible parsimonious pathways,

such as in AAA ⇔ TTT , when changing one nucleotide at a time. The pathways

themselves will be excluded for the sake of brevity, but the weighting (or lack-there-of)

is analogous to the weighting for codons with two nucleotides.

Accounting for Multiple Substitutions at the Same Site

Returning to our example in Table A.2 we could naively calculate the rate of syn-

onymous and non-synonymous mutations, ds and dn. We know that the number of

synonymous sites, S = 4.833, and the number of non-synonymous sites N = 19.167.

We also know from the second step the number of synonymous differences, Sd = 4,

and non-synonymous difference Nd = 4. The values of ds and dn are calculated by:

ds =
Sd

S
(A.18)

dn =
Nd

N
(A.19)
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Substituting our required values into Equation A.19 and Equations A.18 we find

that dn = 0.209 and ds = 0.828. However, this would be underestimating both dn

and ds. To understand why we would be underestimating these values it is important

to understand that when we compare two sequences of nucleotides we are comparing

the result of many thousands or millions of years of evolution: many mutations may

have occurred that are not obvious by comparing the sequences. To accommodate

this fact we must consider an additional parameter, the nucleotide substitution rate.

There are many other nucleotide substitution models [31, 33, 14, 27, 63, 48] that

all have differing substitution rates and base frequencies. The earliest and simplest

nucleotide substitution model was introduced by Jukes and Cantor in 1969 [31]. This

model assumes that the substitution rates are equal and the base frequencies are equal.

These assumptions result in the Jukes and Cantor formula (Equation A.20) which

estimates the evolutionary distance, d, between two sequences based the number of

nucleotide differences, p.

d = −3

4
ln

(
1− 4

3
p

)
(A.20)

In our case p is either Sd

S
or Nd

N
which results in d representing ds or dn, respectively.

Unfortunately, even using this model, we are under-estimating dS and over-estimating

dS [62]. The only way to mitigate the over- or under-estimating of substitution rates,

as much as possible, is to use a maximum-likelihood method [62]. This method

incorporates the statistical likelihood of individual pathways, which we mentioned

above. Thus, the generally preferred method for estimating these rates are maximum-

likelihood, such as Goldman and Yang [21]. Goldman and Yang is implemented in

the PaML[61] package which we utilized for our dN and dS calculations.

A.2 Statistical Methods

When applying any statistical method in our analyses we assume that our data is

non-parametric univariate or non-parametric bivariate. Since some of the statistic

methods we use herein may be foreign, or their interpretation non-intuitive, we pro-

vide brief description of the non-parametric statistical methods used in our analyses.

These include Spearman’s rank order correlation and kernel density estimation.
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A.2.1 Spearman’s Rank Order Correlations

Spearman’s rank order correlation coefficient [19], ρ, is a non-parametric statistic

that allows us to find monotonic trends within bivariate data. This differs from

the related Pearson product-moment correlation coefficient in that it is a measure of

linear correlation which is affected by non-linearity, non-normality and the presence

of outliers: precisely those things that can arise in biological data sets.

The first step in calculating ρ for a particular sample S = {X = {X1, X2, ..., Xn}, Y =

{Y1, Y2, ..., Yn}} is to rank X and Y independently. This ranking is equivalent to the

index of the value if the set were ordered such that xi < xj and 1 < i < j ≤ |X|.
If the case arises where the same value appears more than once, it is not possible to

rank each duplicate value individually. In this situation, the average rank among all

the duplicates is assigned to each duplicate value.

Consider a bivariate population S that is composed of two paired data sets X and

Y where |X| = |Y | = n,

S = {X, Y }

X = {3, 1, 5, 5, 5, 7, 6, 6}

Y = {5, 6, 7, 8, 9, 10, 11, 12}

(A.21)

The rank set, r of the values in each data set is then,

rX = {2, 1, 4, 4, 4, 8, 6.5, 6.5}

rY = {1, 2, 3, 4, 5, 6, 7, 8}

(A.22)

We then define a difference metric, di, between each pair (rXi
, ryi) from {rX , rY },

di = xi − yi, 1 < i ≤ n (A.23)

which is used to compute ρ,

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(A.24)

There are three broad possible values for ρ, in each case the magnitude dictates
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the strength of the correlation:

• 0 < ρ ≤ 1, positive correlation between X and Y .

• 0, no correlation between X and Y .

• −1 ≤ ρ < 0, negative correlation between X and Y .

Although we will not discuss the specifics of calculating an associated p-value for a

correlation, we can then use it to provide a confidence interval for the correlation

between X and Y .

A.2.2 Kernel Density Estimate

To introduce the idea of density estimation we refer to Silverman’s overview Density

Estimation for Statistics and Data Analysis [50]. Quite often, when trying to visualize

the distribution of univariate data, a histogram is used. However, there are two

major issues with this approach: the distribution of data in the histogram is entirely

dependent on bin-sizing (Figures A.2a and A.2b); and the density distribution can

be discontinuous if bin-sizes are too small. The second point may not always be

important, but in a single population it is sometimes helpful that the data distribution

is continuous as possible. This allows the inference of values outside the population

being sampled. Regardless, a statistical method that provides a solution to both of

these problems is the kernel density estimate (Figure A.2c).

In parametric statistics, the well known univariate normal distribution, repre-

sented by a Gaussian bell curve, has a probability density function,

f(x|µ, σ) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

(A.25)

Using the mean, µ and standard deviation σ for some population X we can estimate

the density value of x ∈ X. We can then use our definition of f to find the probabilities

associated with X within the interval (a, b),

P (a < X < b) =

∫ b

a

f(x)dx, ∀a < b (A.26)

The question now becomes: how do we compute the density function if we know

nothing about the distribution of the data, i.e. it is non-parametric? In this situation
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(a) Binsize = 3.5 (b) Binsize = 0.6

(c) Kernel Density Estimate

Figure A.2: Visualization of the distribution of the union of two normal data sets.
Dataset 1: µ = 5, σ = 2. Dataset 2: µ = 10,σ = 1. (a), histogram with a bin-size
of 3.5, the bimodal distribution of the data is not evident due to over-smoothing.
(b), histogram with a bin-size of 0.6, the bimodal distribution of the data is clearly
visualized. (c), kernel density estimate of the data clearly indicating a bimodal dis-
tribution.
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we cannot use a parametric statistical function to calculate the probability density so

we must estimate the density function.

(a) Bandwidth = 1 (b) Bandwidth = 5

(c) Kernel density estimate showing in-
dividual kernels (Gaussian, bandwidth =
3.989, n = 11)

Figure A.3: Kernel density plot of the values {−5,−4,−4,−2, 5, 7, 7, 9, 12, 12, 14}
using a bandwidth (smoothing) of 1 (a) and 5 (b). The near optimal bandwidth of
3.989, using “Sivermans’s rule of thumb”, is seen in (c). Kernels are coloured red.
Kernel density estimate in black. Individual values in the population blue ticks on
x-axis.

A univariate kernel density estimate is, unsurprisingly, a probability density esti-

mate using a kernel. A univariate kernel is a function that describes the probability

density about a single value Xi for all Xi in a non-parametric univariate population
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X = {X1, X2, ..., Xn}. For our purposes we assume that X ⊂ R. We use a kernel

centered on each element Xi ∈ X and then compute the probability of a value x

within the kernel about this point. There are many different kernel shapes that can

be used, however we will use the Gaussian kernel in both our explanation and our

experimental analyses due to its simplicity. An example is visualized in Figure A.3c.

The Gaussian kernel is defined in [50] as,

K(u) =
1

h
√

2π
exp

(
−1

2
u2
)

(A.27)∫ +∞

−∞
K(u) = 1 (A.28)

We use the K(u) to compute the probability density of a value x ∈ R [50],

f(x) =
1

|X|h

|X|∑
i=1

K (u) (A.29)

(A.30)

where,

u =
x−Xi

h
(A.31)

The fractional scalar in Equation A.30 ensures that
∫ +∞
−∞

∑
x f(x) = 1. The bandwidth,

h, is a smoothing factor analogous to σ and determines the width of the kernel. We

can see the effects of bandwidth choice in Figure A.3.

The correct choice of bandwidth is key to the estimating the correct density func-

tion. There are multiple methods to choose from when calculating the optimal, or

near optimal, bandwidth [50]: subjective choice, reference to a standard deviation,

least-squares cross-validation, likelihood cross-validation, test graph method and in-

tegral estimation of density roughness. Without going into the details of each, we

will simply state that our analyses use a method within the “reference to a standard

deviation” category termed “Silverman’s rule of thumb” (Equations 3.30 and 3.31 in

[50]),

A = min{σ, (interquartile range/1.34)} (A.32)

h = 0.9A|X|−1/5 (A.33)
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The major benefits of this method is that it “will do very well for a wide range of

densities and is trivial to evaluate”[50]. This contrasts with the other methods, which

are much more computationally intensive and, depending on the method and data,

may provide no better accuracy in bandwidth.

Of final note we refer to Equation A.28. Since density estimates, f(x), must

integrate to one, f(x) from populations {X : 0 < X < 1}, must have values f(x) > 1.

When 1 ≤ X < +∞, f(x) ≤ 1. Although it may be initially surprising to see a

density estimate with a value much greater than one, it is important to note that

the values of x may be much less than 1. The important factor in this that the area

under the curve integrates to unity.

A.3 Network Centrality Examples

Here we present examples on how to calculate betweenness centrality and closeness

centrality for the graph in Figure A.4.

Figure A.4: A graph with six nodes and seven edges.

A.3.1 Calculating Betweenness Centrality

To calculate the normalized betweenness for Figure A.4 we first refer to Table A.11

which displays the combination of nodes that compose each unique shortest path for

all pairs (u, v) ∈ V × V .
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v0 v1 v2 v3 v4 v5

v0 - v0v1 v0v2 v0v1v3, v0v4v3 v0v4 v0v5

v0 - - v1v0v2 v1v3 v1v4 v1v0v5

v1 - - - v2v0v1v3, v2v0v4v3 v2v0v4 v2v0v5

v2 - - - - v3v4 v3v1v0v5, v3v4v0v5

v3 - - - - - v4v0v5

v4 - - - - - -

Table A.11: Unique shortest paths between vertices in the graph of A.4. Pairs of
vertices with more than one shortest path (both paths have equal length) have each
path separated by a comma. In total there are 18 unique shortest paths.

We then use this information to calculate the weighted value of each path for

which a node belongs in Table A.12. The values for each node are summed and their

normalized values calculated in Table A.11.
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A.3.2 Calculating Closeness Centrality

We show the process of calculating closeness for Figure A.4. We first determine the

geodesic between u and v, dG(v, t) for all pairs (u, v) ∈ V × V as shown in Table

A.13. As a reminder, the shortest path, or a geodesic, between a node u and v in an

undirected unweighed graph is the number of edges, dG(u, v), between u and v such

that dG(u, v) is minimized (introduced in 2.3).

v v0 v1 v2 v3 v4 v5
∑

t∈V dG(v, t)

v0 - 1 1 2 1 1 6

v1 1 - 2 1 1 2 7

v2 1 2 - 3 2 2 10

v3 2 1 3 - 2 3 11

v4 1 1 2 2 - 2 8

v5 1 2 2 3 2 - 10

Table A.13: Geodesic distances between nodes of the graph in A.4.

Using the summed values in Table

v
∑

t∈V dG(v, t) C ′C(v)

v0 6 5/6

v1 7 5/7

v2 10 5/10

v3 11 5/11

v4 8 5/8

v5 10 5/10

Table A.14: Sum of geodesic distances for all nodes and the resultant normalized
closeness centrality for the graph in A.4.
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