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 Magnetic refrigeration is an alternative cooling technology to vapour 

compression. Due to the large operating space of magnetic refrigeration devices, 

modelling is critical to predict results, optimize device parameters and regenerator 

design, and understand the physics of the system. Modeling requires accurate material 

data including specific heat, magnetization and adiabatic temperature change, adT . For 

a reversible material adT  can be attained directly from measurement or indirectly 

through calculation from specific heat and magnetization data. Data sets of nine MnFeP1-

xAsx alloys are used to compare calculated against measured adT . MnFeP1-xAsx is a 

promising first order material because of a tunable transition temperature, low material 

cost and large magnetocaloric properties. Because MnFeP1-xAsx alloys exhibit thermal 

hysteresis there are four possible calculation protocols for adiabatic temperature change; 

,ad HHT , 
,ad CCT , 

,ad HCT  and 
,ad CHT . 

,ad CHT  deviates the most from measured data 

and therefore it is assumed that this case is not representative of the material behavior. 

Results show 
,ad HHT  and 

,ad CCT align with measured data as well as 
,ad HCT . The three 

protocols that align best with measured data have two consistent errors including a colder 

peak adT  and a larger FWHM . With more data sets and analysis a preferred calculation 

protocol may be found. 
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rpN  Radial demagnetizing factor of cylinder of 

packed particles 

- 

i  Wave function (Eigen function) - 

z  Magnetic moment parallel component to B  
1J T    

  
 

 

 



 xxi 

Acknowledgments 

 

 Thank you for your guidance through this program Andrew. I have learned a lot 

of applicable skills during my time here from you, the hands on experience in the lab, and 

working with BASF. You gave me the opportunity to travel more than I have ever been 

able to; France, Japan, Montreal, The Netherlands, and Germany, and I am grateful for 

this. Who can say they’ve worked out with their supervisor? It has been a great time here 

for me, thank you! 

 

 

 



 xxii 

Dedication 

 

 I would like to dedicate this to my Mom and Dad. I have so many good memories 

thanks to you two. Thank you for all the family ski trips, sailing adventures and Kelowna 

summers. I couldn’t have asked for better parents. 

 



 

 

Chapter 1 – Introduction 

 Motivation for the field of room temperature magnetic refrigeration is presented. 

The basics of magnetic refrigeration including the magnetocaloric effect, magnetocaloric 

materials, and the active magnetic regenerative cycle are defined and explained. Material 

properties of magnetocaloric materials that include adiabatic temperature change and 

hysteresis are also discussed to introduce the topics of this thesis. 

1.1. Increasing demand for cooling technologies 

 The demand for cooling technologies is growing. Figure 1-1 and Figure 1-2 show 

this growth in the United States [1]. Not only is the total energy usage by electricity in the 

United States increasing, but the share consumed by cooling technologies is also 

forecasted to increase. Figure 1-3 displays the Cooling Degree Days (CDD) of each 

country. A CDD is defined as the difference between the daily mean environmental 

temperature and a human comfort temperature taken to be 18 ⁰C provided the 

environmental temperature is above the comfort temperature [2]. This daily value is 

summed up for an entire year to give the number of CDDs in a year for each country. The 

CDD gives an idea of the energy demands of different countries for cooling technologies. 

It can be seen in Figure 1-3 that both developing countries China and India have more 

CDD than the developed United States. This further emphasizes that the energy demand 

required by cooling technologies will continue to grow. Therefore improving the 

efficiency of cooling technologies will decrease environmental impact and reduce 

electricity costs greatly. Magnetic refrigeration is an alternative cooling technology to 

vapour compression that could possibly be more efficient [3]. 
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Figure 1-1 – The percentage of delivered 

residential energy consumption by electricity in 

2011 of cooling technologies. The total energy 

delivered by electricity in 2011 was 4.9 

quadrillion BTU [1]. 

 

Figure 1-2 – The projected percentage of 

delivered energy consumption by electricity in 

2040 of cooling technologies. The total energy 

delivered by electricity in 2040 is forecasted to 

be 6.0 quadrillion BTU [1]. 

 

 

Figure 1-3 – Cooling degree days of each country [4]. 
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1.2. Magnetic refrigeration 

 Magnetic refrigeration (MR) is an alternative cooling or heat pump technology to 

vapour compression (VC). It has been proposed that MR has the potential to be more 

efficient than VC [3], [5]. The magnetocaloric effect (MCE) is a thermomagnetic effect 

that is utilized by magnetic refrigeration to pump heat. The MCE is defined as an 

adiabatic temperature change or an isothermal entropy change with the application of a 

magnetic field to a magnetocaloric material (MCM) [6]. Because the MCE produces a 

small temperature change, approximately 3 Kelvin per Tesla, an active magnetic 

regenerative (AMR) cycle is employed to generate larger temperature spans [7]. Figure 

1-4 shows the similarities between MR and VC. The four steps of VC are compression, 

condensation, expansion, and evaporation. MR also has four steps which include 

magnetization, heat rejection, demagnetization, and heat absorption. The four steps of the 

MR process will be discussed in Section 1.4. 
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Figure 1-4 – The left process represents the steps of MR while the right process represents GCR. 

The colours represent the temperature of the MCM on the left and the refrigerant on the right, 

green indicating starting temperature, blue indicating colder temperature and red indicating hotter 

temperature. H  represents a magnetic field, Q  represents heat (negative indicates heat leaving 

the system), and adT  represents the adiabatic change in temperature due to the MCE.  

 

1.3. The Magnetocaloric Effect 

The MCE can be defined by an adiabatic temperature change  adT  or an 

isothermal entropy change  HS  (see Figure 1-5). Adiabatic temperature change is 

physical and can be measured while entropy cannot be directly measured therefore adT

will be focussed on here. To measure the MCE of a MCM in terms of adT   a sample is 

thermally isolated therefore 0dQ  . If reversible, the second law of thermodynamics 

states dQ TdS , therefore if 0dQ   then 0dS  . Total entropy of a material is the sum 

of magnetic, lattice, and electronic entropies. The sample is then exposed to a magnetic 
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field which aligns the magnetic dipoles of the material causing a decrease in magnetic 

entropy.  Since the total entropy is constant, 0dS  , the lattice entropy must increase to 

maintain the total entropy [6].  This increase in lattice entropy causes an increase in 

temperature. This temperature increase is the adiabatic temperature change. Figure 1-6 

shows the temperature change of commonly used MCMs caused by the MCE when the 

magnetic field varies from zero to 1.1 Tesla. Due to this small temperature change an 

active magnetic regenerative (AMR) cycle is implemented to increase the temperature 

span that can be developed by MCMs. 

 

Figure 1-5 – The entropy curves of Gadolinium at zero and two Tesla. By plotting the high and 

low field entropy curves, the adiabatic temperature change and isothermal entropy change can be 

determined. The reference temperature for both these derived properties is the temperature at low 

magnetic field. 
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Figure 1-6 – The adiabatic temperature change of Gadolinium and two MnFeP1-xAsx compounds 

are displayed here. The Gadolinium data is from AMES laboratory, and the MnFeP1-xAsx data is 

from BASF. Gadolinium is a second order MCM characterized by the broad adiabatic 

temperature change peak. MnFeP1-xAsx compounds are first order MCMs characterized by a 

narrow adiabatic temperature change peak. 

1.4. The active magnetic regenerative (AMR) cycle 

 The AMR cycle combines passive regenerator technology with the MCE by 

constructing a regenerator out of MCM.  Passive regenerators are made up of a variety of 

solid matrix structures including packed spheres, parallel plates and meshes. These 

matrices are made up of materials with high heat transfer properties. Fluid is then 

oscillated through these matrices. In one direction the fluid rejects heat to the regenerator 

and the exiting fluid is colder than the entering fluid. When the flow is reversed the 

colder entering fluid then absorbs the heat the regenerator just acquired and in doing so 
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the exiting fluid is hotter than the entering fluid. A passive regenerator helps maintain a 

temperature difference between two fluid reservoirs by operating in this fashion. To make 

the regenerator ‘active’ the solid matrix material is replaced with one or many MCM(s). 

By timing the application and removal of a magnetic field the MCE and passive 

regenerator effect work together. The AMR cycle can be broken down to four processes 

displayed in a T-s diagram in Figure 1-7; adiabatic magnetization  'b c , fluid flow 

from cold to hot side  'c d , adiabatic demagnetization  'd a , and fluid flow from 

hot to cold side  'a b . When blowing fluid from the cold to hot side of the device, the 

material is magnetized causing it to be hotter, the fluid absorbs heat and rejects it to the 

hot side.  The AMR is then cooled by demagnetization and fluid is blown from the hot to 

cold side rejecting its heat to the AMR. Exiting the cold side of the AMR the fluid is at its 

coldest point and can absorb some heat within the cold side of the device. The AMR 

cycle enables MR devices to attain larger temperature spans than the adT  of the MCM. 

 

Figure 1-7 – T-s diagram of the MCM in an AMR cycle. HH and HL are high and low fields, 

respectively.  a’ and c’ represent the temperature of the solid refrigerant after a field change while 

a and c represent the equilibrium temperature of the solid and fluid 
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1.5. Magnetocaloric materials 

 Magnetocaloric materials are materials that exhibit a thermal response to the 

application and removal of a magnetic field. As shown in Figure 1-6 there are two classes 

of ordinary MCMs; first and second order materials. Ordinary MCMs undergo a 

transition from ferromagnetic to paramagnetic at the Curie temperature and heat up with 

the application of a magnetic field. MCMs are in an ordered magnetic state (often 

ferromagnetic) at temperatures colder than the Curie temperature and paramagnetic at 

temperatures hotter than the Curie temperature. A material is ferromagnetic when the 

dipoles of the material are aligned in the absence of an applied field. Permanent magnets 

are ferromagnetic. The dipoles of a paramagnetic material are not aligned but are 

susceptible to a magnetic field. The phase transition causes a peak in the specific heat and 

adiabatic temperature change. The nature of the phase transition defines the material 

class. Second order MCMs are characterized by broad specific heat and adT  peaks 

while first order MCMs are characterized by narrow peaks as can be seen in Figure 1-6. 

The temperature of the phase transition is known as the Curie temperature. 

1.6. Curie Temperature 

 The Curie temperature of a material is the temperature at which the dipoles of the 

material have enough thermal energy to become disordered. Below the Curie temperature 

the material is ferromagnetic. Above the Curie temperature the material is paramagnetic. 

This transition occurs at a temperature that closely corresponds with the temperature of 

the peak in both specific heat and adT . In this thesis, the Curie temperature will be 

defined as the heating peak specific heat temperature at zero field. Figure 1-8 and Figure 

1-9 show that the peak specific heat temperature does not change with temperature for 2
nd
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order materials whereas the peak specific heat temperature shifts hotter with increasing 

magnetic field strength for 1
st
 order materials. Figure 1-10 and Figure 1-11 show the 

same trend with the peak adT  temperature with increasing field. Because of the shifting 

peaks, it is important to have a concise definition of Curie temperature when discussing 

first order materials. 
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Figure 1-8 – Gadolinium (2
nd

 order) specific heat data [8]. 

 

Figure 1-9 - MnFeP1-xAsx (1
st
 order) specific heat data [9]. 
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Figure 1-10 – Gadolinium ∆Tad data corrected for demagnetization [10]. 

 

Figure 1-11 - MnFeP1-xAsx calculated ∆Tad data corrected for demagnetization. 
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1.7. Investigated material:  MnFeP1-xAsx alloys 

Favourable materials in magnetic refrigeration have a large thermal response to 

the application of a magnetic field.  MnFeP1-xAsx is a promising first order material for 

magnetic refrigeration applications because of a tunable Curie temperature [11], low 

material cost [12] and large magnetocaloric properties [3]. MnFeP1-xAsx alloys can 

exhibit substantial thermal and magnetic hysteresis [13]. Hysteresis is the material’s 

property dependence on the history of processes. The magnitude of this hysteresis can be 

roughly tuned during material processing [13] therefore understanding the impact 

hysteresis has on the performance of this material is of value. Thermal hysteresis is 

studied because the data collection method exposes it. For the remainder of this document 

hysteresis will refer to thermal hysteresis. 

 Material data from nine MnFeP1-xAsx alloys are utilized in this study.  By 

changing the relative amounts of phosphorous and arsenic the Curie temperature of the 

material can be shifted hotter or colder (tuned) [11].  The exact compositions of the 

materials tested are unknown.  For each material the known data are specific heat, 

magnetization and adT  for a range of temperatures, at various applied magnetic fields 

and for heating and cooling processes. As described in Section 1.6 the samples are 

identified by the temperature of the heating peak specific heat temperature at zero field 

which is defined as the Curie temperature. The temperature where the peak adT  is found 

depends upon the change in applied field. Table 1-1 shows the Curie points and 

temperature of peak adT  for a 0 – 1.1T field change. 
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Table 1-1– The alloy labels and respective Curie temperatures are presented here. 

Sample No. 1 2 3 4 5 6 7 8 9 

Curie Temp. [K] 271 282.7 286.6 288.5 292.1 295.5 298.7 301.9 312 

Temp. of the peak

adT  [K] 

272.8 284.1 288.6 291.2 294.5 298.5 301.6 304.7 315.9 

 

1.8. Objectives 

Due to the large operating space of AMR devices, modelling is critical to predict 

results, optimize device parameters and regenerator design, and understand the physics of 

the system. Modeling requires accurate material data including specific heat, 

magnetization and adT . Adiabatic temperature change can be attained directly from 

measurement or indirectly through calculation from specific heat data from near zero 

Kelvin for a reversible material. If low temperature data is not attained, adT  can be 

calculated using specific heat and magnetization data. This study tries to answer the 

following question:   

 Can adT  be accurately calculated from specific heat and magnetization data 

for MnFeP1-xAsx alloys? 

To answer this question calculated values are compared against measured values to 

determine the accuracy of attaining adT  from the indirect method. The measured values 

are considered to be an indicator of the material’s behaviour in AMR devices because the 

conditions during adT  measurements closely resemble the conditions of an AMR device 

[13]. The calculation procedures are validated using Gadolinium data attained from mean 

field theory (MFT) and data from Ames Laboratory [8]. 
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 Specific heat and magnetization data are collected under heating and cooling 

processes. The data are presented in terms of applied field strength, 
aH , and internal 

field, 
inH . These values will be presented in units of Tesla in agreement with the 

convention of the field of magnetic refrigeration. Four indirect ∆Tad curves, presented in 

Table 1-2, can be calculated using combinations of specific heat data due to the thermal 

hysteresis of MnFeP1-xAsx alloys. Calculated adT curves for a sample MnFeP1-xAsx alloy 

are plotted in Figure 1-12. This study attempts to answer the following secondary 

questions: 

 Which adT calculation method agrees best with measured adT ? 

 Does hysteresis impact the adT of MnFeP1-xAsx alloys? 

As can be seen in Figure 1-12 combining heating low and high field data (HH) and 

cooling low and high field data (CC) give similar adT  peaks with respect to each other. 

Combining heating low field data with cooling high field data (HC) reduces the adT  

peak while combining cooling low field with heating high field data (CH) increases the 

adT  peak. Since high adT  is desirable in MR the HC curve is the worst case scenario 

while the CH curve is the best case scenario. Determining which indirect adT  curve 

coincides best with direct measurement could shed light on the effect of hysteresis on the 

behaviour of MnFeP1-xAsx alloys. 

Table 1-2 –The ∆Tad labeling convention is outlined here. 

Protocol Low field entropy curve High field entropy curve ∆Tad label 

1 Heating Heating HH 

2 Cooling Cooling CC 

3 Heating Cooling HC 

4 Cooling Heating CH 
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Figure 1-12 – Calculated ∆Tad curves of a MnFeP1-xAsx alloy, sample 2. 

 

1.9. Summary 

 BASF has provided specific heat, magnetization, and adT  data of nine    

MnFeP1-xAsx alloys that are utilized in this study to compare calculated adT  against 

measured adT . Because specific heat and magnetization data are collected under heating 

and cooling processes and MnFeP1-xAsx alloys exhibit thermal hysteresis, the impact of 

hysteresis on adT  is investigated. Chapter 2 describes the theory used to calculate adT  

from specific heat and magnetization data. Figure 1-13 gives a visual representation of 

calculation process. The calculation methods are validated by applying the same 

calculations to mean field theory (MFT) calculated Gadolinium data and comparing the 

results to measured Gadolinium data from AMES Laboratory. MFT, also described in 

Chapter 2, provides a method to calculate material properties including magnetization, 

specific heat, and entropy. 
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Figure 1-13 – A flow chart describing the calculation process of ∆Tad from specific heat and 

magnetization. The colour boxes represent data while the numbers in brackets correspond to 

equations described in the Chapter 2 – Theory.  

 

 Experimental methods and post processing of the data are presented in Chapter 3. 

The Data Collection section outlines the devices used and sample specifics of the three 

data types (specific heat, magnetization and adT ). Post processing includes smoothing, 

magnetic field interpolation, and correcting for demagnetization. 

 Chapter 4 presents MFT calculated and Ames measured Gadolinium properties 

including magnetization, specific heat and entropy. Calculated adT  of MnFeP1-xAsx 

alloys are also presented and compared against measured adT  in Chapter 4. Metrics 

including peak magnitude, peak temperature, and full width at half maximum are 

presented to compare calculated and measured adT . Chapter 5 discusses results 

presented in Chapter 4. Conclusions and recommendations for the future are covered in 

Chapter 6.  
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Chapter 2 – Theory 

 

The thermodynamics linking specific heat and magnetization to adT  are 

explained. The background and method of mean field theory (MFT) are presented. From 

the MFT method, magnetic specific heat and entropy can be calculated. The Debye 

approximation and Sommerfeld theory are also presented to calculate the lattice and 

electronic portions, respectively, of specific heat and entropy. Combining these three 

theories, the total specific heat and entropy can be calculated. From entropy curves adT  

can be determined. MFT data is used to validate calculation methods, outlined in Figure 

1-13, that are used to calculate adT  of MnFeP1-xAsx alloys from specific heat and 

magnetization data. Demagnetization effects are also discussed. 

 

2.1. Thermodynamics 

The calculation of adT  from specific heat and magnetization is discussed. The 

path outlined by the flow chart in Figure 1-13 will be described in detail here. Specific 

heat at a constant parameter x  is defined by [14] as 

 x

x

q
c

dT

 
  
 

  (2.1) 

where q  is the quantity of heat that changes the temperature of the system by dT . In 

this analysis the constant parameter x  is applied magnetic field 
aH . Combining this 

definition with a reversible process  /ds q T  yields 
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  
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  (2.2) 

Rearranging Equation (2.2) gives entropy as a function of specific heat and temperature 

at constant applied magnetic field 
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where 'T  is a dummy variable of integration. Often, specific heat measurements are 

taken in some finite interval of temperature,  1 2,T T . Figure 2-1 gives a visual 

representation of the reference entropy, 0s  and the change in entropy, s , relative to the 

reference. These two terms make up the total entropy 
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The first term in Equation (2.4) cannot be calculated because there is no data in that 

temperature range. However, change in entropy from 
1T  to T , where 1 2T T T  , can be 

calculated 
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Figure 2-1 – Gadolinium entropy data obtained from integrating MFT specific heat data are 

plotted to illustrate the different components to the entropy integration. The red line represents 

entropy contribution from the s  term that can be calculated. The blue dashed line represents the 

entropy contribution from the 0s  term that cannot be calculated because there is no data for this 

temperature range. 

 

 The above calculation is sufficient to determine the entropy difference between 

any two temperatures within 
1T  and 2T  at a constant field.  However, this analysis is 

concerned with the change in entropy at varying temperatures and fields.  As can be seen 

in Figure 2-2, Equation (2.5) will yield an entropy value of zero at the lower temperature 

bound regardless of field strength. The following Maxwell relation can be used to find 

the difference in entropy between field strengths at 
1T  
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Figure 2-2 – Gadolinium change in entropy data for two field strengths using T=250K as the 

reference temperature. Note that at T=250K, both field strengths have the same entropy which is 

not possible. 

 

 
Figure 2-3 – Representative entropy curves are plotted to show the effect of adding the magnetic 

entropy correction, 
Hs , to the entropy calculation shown in Equation (2.8). 
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expression for the change in entropy at a constant temperature due to a change in applied 

magnetic field 

  
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   (2.7) 

The result of adding this entropy change due to field can be seen in Figure 2-3. 

Combining Equations (2.5) and (2.7), and using  1, 0 0as T H    as the reference 

entropy, the following expressions for entropy at non zero magnetic fields is attained 
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    (2.8) 

The above equation results in an offset in non-zero field entropy curves. This offset is 

applied to the entire entropy curve and increases in magnitude with increasing field 

strength. Figure 2-4 and Figure 2-5 show the heating entropy curves of a MnFeP1-xAsx 

alloy with and without the magnetic entropy correction. 
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Figure 2-4 – Example MnFeP1-xAsx alloy entropy curves at 0T and 1.1T. The solid red line 

represents the corrected high field entropy curve calculated using Equation (2.8). The dashed red 

line represents high field entropy calculated using Equation (2.5). 

 

 

Figure 2-5 – Focussing on a smaller temperature range makes the magnetic entropy correction 

more visible. 
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 adT  is calculated from entropy curves by determining the temperature difference 

along isentropes.  This is done by sweeping through all entropy values and finding the 

temperature difference between high and low field for each isentrope   

        , , , ,, , ,ad i a i a f f f a f i i a iT T H H T s T H T s T H      (2.9) 

where    , ,, ,f a f i a is T H s T H .  A schematic of this can be seen in Figure 2-6. 

 

Figure 2-6 – A visual representation of the adT  calculation is given above. Note that the adT  

is defined as a function of the temperature at low magnetic field. 
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2.2. Mean field theory 

 Mean field theory (MFT) uses the quantum treatment of atoms to determine the 

magnetization M  of a sample of material containing N  atoms.  Provided with the 

quantum numbers and Curie temperature for a material, the magnetization at any given 

temperature and field can be determined. 

 For an electron orbiting around one proton under a uniform magnetic field where 

B  runs along the z  direction the Dirac Hamiltonian is [15] 

 
 

   

2 4 2
2 2 2

3 2

2

2 2 2 2

2
2 8 8

1 1

4 2

B
D

p p e
mc e S L B B r

m m c m

e e
S L

m c r r m c r r




 

       

 
  

  

  (2.10) 

which satisfies the equation 

 
D i i i     (2.11) 

where i  are the eigenvalues or energy levels of the electron described by the wave 

functions i . The fifth term in Equation (2.10) is the Zeeman interaction, the interaction 

between spin and orbital momenta with magnetic field. This is also known as the Zeeman 

Hamiltonian [15] 

  , 2B
S L S L B


     (2.12) 

where S  is the spin angular momentum, L  is the orbital angular momentum, B  is the 

magnetic field, B  is the Bohr magneton, and  is the reduced Planck constant or Dirac 

constant.  Figure 2-7 shows the angular momenta associated with the spin and orbit of an 

electron and the associated magnetic moments. The eigenvalues of the Zeeman 

Hamiltonian are [15] 
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jm z j BB gm B      (2.13) 

or 

 0 0jm z j BH gm H        (2.14) 

where 
z  is the magnetic moment component parallel to B  , g  is the Landé factor, 

jm  

is the z  component of J (see Figure 2-8) and can range in value from m j   to  

m j  , B  is the Bohr magneton, B  is the magnetic field  ˆB Bk  and H  is the 

magnetic field strength  0B H . These eigenvalues are the energy levels of one 

electron around one proton. The Landé factor is given by [14], [15] 

 

     
 

   

 

1 1 1
1

2 1

1 13

2 2 1

q q

q q

j j l l s s
g

j j

or

s s l l
g

j j

    
 



  
 



  (2.15) 

where j  is the total angular momentum quantum number, l  is the orbital angular 

momentum quantum number, and qs  is the spin angular momentum quantum number. 

The subscript is to avoid confusion between spin angular momentum and mass specific 

entropy. 
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Figure 2-7 – The total angular momentum J  is the sum of the orbital L  and spin S  angular 

momenta.  The momentum vectors have a magnitude of  1x x  where , ,qx s l j  .  The 

magnetic moments associated with these momenta are also displayed.  Note that   is the total 

angular momentum and has a component parallel and perpendicular to J ,  but only the parallel 

component contributes to the magnetic moment [15]. 
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 The above treatment is also used to find the energy level of atoms because the 

spin and orbital momentum of each electron contained in the incomplete shells of an 

atom couples to produce an effective spin and orbital momentum. Electrons contained in 

complete shells do not add to the effective momenta.  The effective spin and orbital 

momenta of an atom are 

 ,i

i

S S   (2.16) 

 .iL L   (2.17) 

where iS  and iL  are the spin and orbital momenta of individual electrons. Note that S  , 

L  and J   are vectors representing the spin, orbital, and total momenta while qs , l  and j   

are the spin, orbital, and total quantum numbers.  They are related by the following 

equations 

  1 ,q qS s s    (2.18) 

  1 ,L l l    (2.19) 

  1 .J j j    (2.20) 

 

The relation between L  and l  is displayed in Figure 2-8. 
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Figure 2-8 – Vector model of Gadolinium with an applied magnetic field in the z direction. The 

arrows represent the possible orbital momentum L  vectors while the values along the 
lm  axis 

represent the associated possible values of the orbital momentum quantum number l  [16]. 

 

The effective spin and orbital angular momentum quantum numbers of an atom can 

be determined using Hund’s rules [15]: 

1. Due to the Pauli Exclusion Principle two electrons can occupy the same spatial 

orbit with opposing spins.  Orbitals are filled such that each orbit will contain 

one electron before any orbital contains two electrons to minimize the electron 

repulsion.  In other words, energy is minimized when the effective spin S  is 

maximized. 

2. Electron repulsion due to orbital momentum will be lower with lower chances 

of electrons colliding with each other.  The chance of electrons coming in 

contact with each other is minimized if they precess about the nucleus in the 
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same sense. Therefore energy is minimized when the effective orbital 

momentum L  is maximized. 

3. Spin orbit coupling is given by SL S L    where   is the spin-orbit 

parameter. The spin-orbit parameter is positive when the shell is less than half 

full and negative when the shell is more than half full.  Therefore to minimize 

the spin-orbit coupling S  and L  are anti-parallel if the shell is less than half 

full, J L S  , and parallel if the shell is more than half full, J L S  . 

To illustrate Hund’s rules the quantum momentum numbers of a Gadolinium ion, 

Gd
3+

 are determined based on its incomplete electron shell, 4f
7
. The 4 indicates the 

principle quantum number n , the f  indicates the subshell, and the 7 indicates the 

number of electrons contained in the subshell. Electron shell theory states that the 4f 

subshell can hold up to 14 electrons. Table 2-1 shows the orbitals of the 4f subshell with 

the 7 electrons placed based on Hund’s first rule.  The value of the spin quantum number 

is   of an electron is +0.5 for spin up and -0.5 for spin down.  The effective spin quantum 

number of Gadolinium is then 
1 1 1 1 1 1 1 7

2 2 2 2 2 2 2 2
q i

i

s s          .  In this case all 

the spatial orbits are occupied by one electron so there is only one option for the value of 

3 2 1 0 1 2 3 0l           .  Since the orbital quantum number is zero, the third rule 

is irrelevant and 
7

2
qj s    . 

Table 2-1 – Orbital diagram of the 4f
7
 subshell of Gadolinium.  The numbers represent the orbital 

quantum number 
lm  and each arrow represents an electron and its spin. 

+3 +2 +1 0 -1 -2 -3 

↑ ↑ ↑ ↑ ↑ ↑ ↑ 
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 The energy of a paramagnetic atom can then be determined using Equation (2.13) 

with the z  component 
jm  of the effective total angular momentum J  of the atom.  The 

effective magnetic moment of an individual atom exposed to a uniform magnetic field is 

then 

 .z j Bgm    (2.21) 

The value of 
jm  depends on the temperature and field the atom is exposed to.  The 

temperature determines how much energy the atom has to occupy different energy levels 

while the field strength determines the separation energy between ground-state and 

excited levels. For N  atoms of a given paramagnetic material the populations of atoms 

occupying different energy levels at a given temperature and field can be determined by 

assuming a Boltzmann distribution. The probability iP  of an atom with energy i  is 

determined by [16] 

 
/

/

i B

i B

k T

i k T

i

e
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e











  (2.22) 

where Bk  is the Boltzmann constant.  The total magnetization TM of N atoms is 

determined by taking the statistical average of the magnetic moment 
z . Table 2-2 gives 

a summary of the different magnetization properties that can be calculated by using 

different parameters regarding the quantity of atoms. The statistical average is achieved 

by summing all magnetic states with each state weighted by the probability that it is 

occupied [16] 
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  (2.23) 
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After a derivation that can be seen on page 12 of [16] Equation (2.23) leads to a simple 

expression for total magnetization with units 1J T   or 2A m  ; 

  T B JM Ng jB x   (2.24) 

where  JB x  is the Brillouin function displayed in Figure 2-9 and given by 

  
 2 12 1 1

coth coth .
2 2 2 2

J

j xj x
B x

j j j j


    (2.25) 

The parameter x  is the ratio of magnetic to thermal energy given by 

 0 .B tot

B

gj H
x

k T

 
   (2.26) 

Table 2-2 – The labeling convention of different magnetization quantities is presented below. 

Label Magnetization type Units Related ‘N’ ‘N’ formula Units 

TM  Total 

magnetization 

2A m or 1J T    N  
A sampleN m

MW


 

unitless  

m  Mass specific 

magnetization 

2 1A m kg    sN  AN

MW
  

1atoms kg  

m  Molar specific 

magnetization 

2 1A m mol   N  
AN   1atoms mol
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Figure 2-9 – The Brillouin function plotted against the ratio x  for different j  values. 

 The treatment above is conducted for a paramagnetic material where it is assumed 

that the material only experiences the applied magnetic field totH H  .  In MFT 

modeling, it is assumed that ferromagnetic materials experience the following magnetic 

field 

 tot TH H M    (2.27) 

where TM  is the magnetization of the system with units of 2A m   and   is the mean 

field parameter with units of 3m  [15], the molecular field constant [17] or the Weiss 

constant [16]. The mean field parameter indicates the strength of the magnetization 

interaction and is given by 
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B c
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


  (2.28) 

where cT  is the Curie temperature of the material. Combining equations (2.24), (2.26),  

(2.27), and (2.28) the ratio of magnetic to thermal energy x  for a ferromagnetic material 

is given by 
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 

 0 3
.

1

B c
J

B

gj H jT
x B x

k T T j

 
 


  (2.29) 

The first term in the ferromagnetic x  is the result of the applied magnetic field while the 

second term comes from the magnetization of the material. 

 

2.3. Magnetic entropy and specific heat 

 Statistical mechanics is needed to attain an expression for the magnetic entropy of 

a collection of N  atoms. In statistical mechanics the Helmholtz free energy is given by 

[15] 

 lnBF k T Z    (2.30) 

where Z  is the partition function that describes the statistical properties of a system in 

thermodynamic equilibrium and is given by 

  
/

2 1
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2
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m j
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x

j
Z x e

x
j
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 
 
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 
 
 

   (2.31) 

where x  is the ratio of magnetic to thermal energy and is given in Equation (2.29) and j  

is the total angular momentum quantum number.  Entropy is related to Helmholtz free 

energy by the following equation 

 .
H

F
S

T

 
  

 
  (2.32) 

Using the product rule, the chain rule and the following derivative  

  ln ,jZ B x
x





  (2.33) 
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the magnetic component of entropy for N  atoms is 

       , ln .H B j jS T H Nk Z x xB x    (2.34) 

 Assuming that a material is simple magnetic (no other work modes) the specific 

heat at a constant magnetic field is given by  

 .H

H

S
C T

T

 
  

 
  (2.35) 

The relation between Helmholtz free energy and internal energy along with this definition 

of specific heat are used to determine the magnetic contribution to specific heat. 

Helmholtz free energy is related to internal energy by  

 .F U TS    (2.36) 

Taking the partial temperature derivative of both sides of the above equation and using 

Equations (2.32) and (2.35) results in  

 .H

H

U
C

T

 
  

 
  (2.37) 

The magnetic contribution to internal energy is given by [16] (pg. 91) 

 
0H totU H dM    (2.38) 

where totH  is defined in Equation (2.27).  Substituting Equation (2.27) into Equation 

(2.38) leads to  

 
2

0 0

1
.

2
H T TU HM M       (2.39) 

Combining Equations (2.37) and (2.39) an expression for the magnetic contribution of 

heat capacity is found to be  

  
2

0 0

1
,

2

T T
H

M M
C T H H

T T
  

 
  

 
  (2.40) 
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where   is the mean field parameter given by Equation (2.28). The first term in the 

above equation is the contribution to heat capacity due to the applied magnetic field while 

the second term is the contribution from spontaneous magnetization of the material. 

 

2.4.  Lattice entropy and specific heat 

 The lattice contribution to entropy can be determined by the Debye model [18]: 

    
3

3
/

/

0
3ln 1 12

1

D
D

T T
T T

Lat x

D

T x
S T NR e dx

T e


  
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   
   (2.41) 

where N  is the number of atoms, R  is the universal gas constant, 
DT  is the Debye 

temperature in Kelvin, and T  is the temperature in Kelvin. The Debye temperature is a 

material property and is the highest temperature achieved due to a single normal mode of 

vibration. The lattice contribution to specific heat based on the Debye approximation is 

given by [19] 

  
 

3
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/

20
9 .

1

D
x

T T

Lat B
x

D

T e x
C T Nk dx

T e

 
  

  
   (2.42) 

 

2.5.  Electronic entropy and specific heat 

 Electronic entropy and specific heat are both given by [20] 

     sample

Elec Elec E

m
S T C T T

MW
    (2.43) 

where 
E  is the Sommerfeld or electric constant and is a material property. 
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2.6. First order MFT 

 First order MCMs can be approximated using MFT and the Bean Rodbell model. 

The central assumption of the Bean-Rodbell model is 

 
0 1 o
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v v
T T

v


  
   

  
  (2.44) 

where cT  is the Curie temperature, 0T  is the Curie temperature in the absence of 

deformation, v  is the volume, ov  is the volume in the absence of exchange interactions, 

and   is coefficient that relates volume change to Curie temperature [21]. The free 

energy per unit volume including exchange interaction is given by [21] 
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 (2.45) 

By inserting Equation (2.44) into Equation (2.45) and minimizing the free energy with 

respect to volume an expression for the equilibrium volume is attained: 
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  (2.46) 

Recall from the previous MFT section the ratio of thermal to magnetic energy of a second 

order material 
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
  (2.47) 

By substituting Equations (2.44) and  (2.46) into Equation (2.47) an expression for the 

ratio of thermal to magnetic energy of first order materials is attained [22]: 
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  (2.48) 

where   is a parameter that controls the order of the transition and is defined as 
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  (2.49) 

where K  is the compressibility factor. The last term in Equation (2.48) is a result of 

elastic deformation. When 1    the magnetic transition is first order, when 1   the 

magnetic transition is second order, and when 0   the elastic deformation term 

becomes zero and the thermal to magnetic ratio reverts back to Equation (2.47). Values of 

the parameter   for MnFeP1-xAsx, are presented in [23], and a listed here in Table 2-3. 

 

Table 2-3 – Values of parameter   for various MnFeP1-xAsx  materials of Curie temperatures.  

x 0.35 0.45 0.55 0.65 

 cT K   213 240 300 332 

 0T K  200 229 293 322 

   1.87 1.80 1.75 1.46 

 

2.7. MFT Summary 

 A flow chart outlining the calculation method of MFT can be seen in Figure 2-10. 

The total entropy and specific heat of a material at a given temperature and applied 

magnetic field can be calculated by summing up the magnetic, lattice, and electronic 

components:  

        , , ,H Lat ElecS T B S T B S T S T     (2.50) 
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        , , .H Lat ElecC T B C T B C T C T     (2.51) 

The magnetic component is calculated by the mean field theory, the lattice component is 

calculated by the Debye approximation and the electronic component is determined using 

the Sommerfeld model. 

The Brillouin function and the magnetic to thermal energy ratio x  are calculated 

first based on the material properties using Equations (2.25) and (2.29) respectively. 

Magnetization, magnetic entropy, and magnetic specific heat are then calculated using 

Equations (2.24), (2.34), and (2.40) respectively. The lattice entropy and specific heat are 

calculated using Equations (2.41) and (2.42).  Using Equation (2.43) electronic entropy 

and specific heat are calculated.  Equation (2.50) and (2.51) calculate the total entropy 

and specific heat. To attain the mass specific entropy and specific heat, number of atoms 

N  is replaced with number of atoms per kilogram sN  in all specific heat and entropy 

formulas. 

As can be seen in Figure 2-10 there are two calculation paths to calculated adT . 

MFT can directly calculate specific heat and entropy from magnetization data. The two 

paths are taken in this study for two reasons. Determining entropy through two 

calculation paths gives confidence to both methods if both methods yield the same result. 

This is of value because Equation (2.8) is used to calculate entropy of MnFeP1-xAsx 

alloys from specific heat data. Calculating specific heat directly from magnetization data 

also gives confidence to the MFT execution since the calculated specific heat data can be 

compared to measured data from Ames Laboratory. 
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Figure 2-10 – A flow chart describing the progression of calculating material properties using 

MFT. This chart progression flows top to bottom. The numbers in brackets between the coloured 

boxes correspond to equation numbers. The equations are applied to the data in the box above to 

yield the resultant data in the box below. Note that all data on this flow chart is mass specific 

rather than total as can be seen by the lower case letters. 
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(T) – lattice entropy [J∙kg
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(T) – electronic specific heat [J∙kg
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s
E
(T) – electronic entropy [J∙kg
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c
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∙K
-1

] 

s
tot

(T,H) – total entropy [J∙kg
-1

∙K
-1

] 

∆T
ad

 – adiabatic temperature change [K] 



 

 

40 

2.8. Demagnetization 

 MFT calculates material properties based on the internal field. Measured material 

properties are often presented in terms of applied field when the properties are 

functionally dependent on the internal field. To ensure all measured and calculated data is 

presented in terms of internal field, a correction for demagnetization must be carried out. 

 A material within an applied magnetic field experiences a lower internal field due 

to a demagnetizing field 
dH  . The internal field 

inH  is given by [14] 

 .in a dH H H    (2.52) 

Mean field theory calculates material properties based on internal field, not applied field. 

The demagnetizing field can be related to magnetization by 

 
dH M N   (2.53) 

where N is the demagnetizing factor.  The demagnetizing factor is unitless. 

 The strength of the demagnetizing field is related to the shape of the sample and 

its orientation relative to the magnetic field. A solid cylindrical sample with an applied 

magnetic field in the axial direction has a demagnetization factor of [24] 

         
1/2

2 2 24
1 1 1 1

3
l p p K k p E k

p
       
 

N   (2.54) 

where  K k  and  E k  are complete elliptic integrals of the first and second kind, and 

/ 2p L r  is the length to diameter ratio of the cylinder. The first and second kind of 

complete elliptic integrals are given by [25] 
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  (2.55) 

where the second equations are derived by substituting sint   and k  is the elliptic 

modulus and is given by [24] 

 

1

2 21
1 .

4
k p



 
  
 

  (2.56) 

 

Elliptic integrals are used to calculate the arc length of an ellipse, or in the case of an 

ellipsoid, arc lengths. The sum of the demagnetizing factors along the three principle axes 

must equal one  [14] therefore 

 1.x y z  N N N   (2.57) 

Converting to cylindrical coordinates and due to symmetry the following relation 

between demagnetizing factors is obtained [14] (page 36) 

 2 1.r l N N   (2.58) 

By combining Equations (2.54) and (2.58) the demagnetizing factor rN is determined 

for an applied magnetic field in the radial direction relative to a solid cylindrical sample. 

 A correction must be made to the demagnetizing factor if a sample is made of up 

particulate.  According to [14] a sample of particles packed isotropically with a packing 

fraction f   in a sample holder with a demagnetizing factor N will have a 

demagnetizing factor of 

 
1 1

- .
3 3

p f
 

  
 

N N   (2.59) 
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The packing fraction of a sample of particles within a volume is the fraction of that 

volume occupied by material. The specific corrections executed on the specific heat and 

magnetization data of the MnFeP1-xAsx alloys are explained in Section 3.4, Section 3.5, 

and Section 3.6. 

2.9. Summary 

The calculation of adT from specific heat and magnetization assuming a 

reversible process is outlined in this chapter. MFT combined with the Debye and 

Sommerfeld models provide a way to simulate material data including magnetization, 

specific heat, and entropy. 

MFT is used to calculate Gadolinium material properties. The implementation of 

MFT is validated by comparing the MFT results to measured specific heat and adT  data. 

These results are presented in Section 4.1. The same methods used calculate adT  from 

MFT calculated Gadolinium specific heat and magnetization data are also used on 

MnFeP1-xAsx alloy data.  The confidence in the implementation of three calculations 

required to calculate adT  from specific heat and magnetization data is therefore 

improved. These calculations are described in Equation(2.7), Equation (2.8) and Equation 

(2.9). 

The next chapter presents the experimental methods used to collect the raw 

specific heat, magnetization and adT  data of MnFeP1-xAsx alloys. Post processing 

methods including smoothing, interpolation, and demagnetization correction are 

presented in the next chapter.  
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Chapter 3 – Methods 

Measured specific heat, magnetization, and adT  data are provided by BASF for 

nine alloys in the MnFeP1-xAsx family. Experimental methods including measurement 

devices, sample geometries, and uncertainties are presented. Sample geometries are 

required to determine the internal field experienced by the sample. Measurement 

uncertainties are necessary as they form the basis on which the calculated adT  

uncertainties are determined. 

Post processing methods are described which include smoothing, interpolation, 

and correcting for demagnetization. Smoothing outlined in this chapter is necessary to 

reduce the noise in magnetization and adT  data. To ensure all data sets cover the same 

internal field range interpolation and demagnetization corrections are applied. 

Hysteresis is defined and presented in this chapter. The hysteresis paths of low 

and high field entropy data that yield four different calculated adT curves are described. 

The calculated adT  curves will be compared to measured data in Chapter 4. 

The propagation of uncertainties through the adT  calculation process is 

presented. It is important to track this to ensure the errors from the original measurement 

do not translate to uncertainties larger than the differences between the different 

calculated adT  curves or the differences between measured and calculated curves. 

Four flow charts outlining the processes imparted on each data type involved in 

this study are presented. The processes presented in these flow charts are described in 

detail in this chapter. The coloured boxes represent data and the numbers in brackets 

between the boxes correspond to Chapter Sections that describe the process executed on 
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the data.  Figure 3-1 displays a blue flow chart outlining the processes executed on 

specific heat data. Figure 3-2 displays a similar green flow chart outlining the processes 

executed on magnetization data. The processes executed on entropy data, calculated from 

specific heat data, are displayed in the red flow chart in Figure 3-3. Finally, the processes 

conducted on calculated adT  data are displayed in an orange flow chart in Figure 3-4. 

These flow charts provide more detail than the master flow chart presented in Figure 

1-13. The flow charts are colour coded to relate to Figure 1-13.  

 

   

 

Figure 3-1 – A flow chart describing the processing of the specific heat data is presented. The 

numbers in brackets are related to sections of this document that explain the processes. 

 

Original specific heat data 

Ha=0T, 0.5T, 1.0T, 1.5T 

Smoothed specific heat data 

Ha=0T, 0.5T, 1.0T, 1.5T 

Smoothed specific heat data 

Ha=0T-1.5T in 0.1T increments 

   3.1.1

 3.2

 3.3.1
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Figure 3-2 – A flow chart describing the processing of the magnetization data is presented. The 

numbers in brackets are related to sections of this document that explain the processes. The 

differentiation and integration of magnetization data with respect to temperature do not have a 

sections devoted them. 

Original magnetization data 

Ha=0.1T, 0.2T, 0.3T, 0.4T, 0.5T 0.6T, 0.8T, 1.0T, 
1.2T, 1.4T,  1.6T, 1.8T, 2.0T 

Smoothed magnetization data 

Ha=0.1T, 0.2T, 0.3T, 0.4T, 0.5T 0.6T, 0.8T, 1.0T, 
1.2T, 1.4T,  1.6T, 1.8T, 2.0T 

dm/dT data 

Ha=0.1T, 0.2T, 0.3T, 0.4T, 0.5T 0.6T, 0.8T, 1.0T, 
1.2T, 1.4T,  1.6T, 1.8T, 2.0T 

dm/dT data 

Ha=0T-2.0T in 0.1T increments 

Magnetization data 

Ha=0T-2.0T in 0.1T increments 

Magnetization data 

Hin=0T-1.5T in 0.1T increments 

   3.1.2

 3.2

 3.3.2

differentiate

integrate

 3.5
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Figure 3-3 – A flow chart describing the processing of the entropy data is presented. The numbers 

in brackets are related to sections of this document that explain the processes. 

 

 

Figure 3-4 – A flow chart describing the processing of the adT  data is presented. The numbers 

in brackets are related to sections of this document that explain the processes. 

 

 

 

Entropy data 

Ha=0T-1.5T in 0.1T increments 

Entropy data 

Hin =0T-1.2T in 0.1T increments 

Entropy data with ∆sH offset 

Hin =0T-1.2T in 0.1T increments 

 3.6

 2.1

4 calculated ∆Tad data sets 

Hlow=0T, Hhigh=1.1T 

∆Tad data with uncertainties 

Hlow=0T, Hhigh=1.1T 

 3.8

  3.7
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3.1. Data Collection 

 Material data consisting of specific heat, magnetization and adT  for nine 

different MnFeP1-XAsX alloys are analysed. Because this material exhibits thermal 

hysteresis, material properties are measured for both heating and cooling processes.  A 

cooling process is one where the ambient temperature is initially set higher than the Curie 

temperature of the material and slowly cooled to a temperature lower than the Curie 

temperature while measurements are taken.  A heating process is the opposite.  Specific 

heat measurements are taken by a custom BASF magnetic differential spanning 

calorimeter device (mDSC), magnetization is measured by a commercial vibrating 

sample magnetometer (VSM) and adT  is measured by a custom BASF adT  device. The 

various devices, samples and measurement techniques are described in the following 

sections. 

3.1.1. Specific heat 

A differential scanning calorimeter (DSC) measures specific heat. A simplified 

schematic of a DSC is displayed in Figure 3-5. In this application it is used to measure 

the specific heat at fixed applied fields under heating and cooling processes.  A sample is 

placed in a test pan, while the other test pan is left empty as a reference.  Each pan has a 

computer controlled heater and a thermocouple to monitor the temperature.   The 

computer uses these heaters to control the rate of change of temperature of both pans. The 

rate of change of temperature is kept constant for both pans and for the entire process (for 

example 10 degree Celsius per minute).  The DSC measures the difference in heat flow 

required to keep the temperature change rate the same for both the sample and the 
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reference at each temperature.  Specific heat is determined by dividing the difference in 

heat flow by the rate of change in temperature [26]. 

 

 

 

Figure 3-5 – A schematic of a DSC. The computer uses the data from the thermocouples to ensure 

that both the sample and reference are changing temperature at the same rate by adjusting the 

power delivered to each heater. 

 

 

Figure 3-6 – Sample-field orientation of in-field specific heat and magnetization measurements. 

 

Specific heat measurements are taken with a mDSC developed by INRIM for 

BASF.  A sample can experience zero to 1.5 Tesla in this device. Typically the measured 

field strengths are 0.5 T, 1.0 T, and 1.5 T. Figure 3-6 shows the orientation of the 
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magnetic field lines relative to the cylindrical samples. The field is kept constant while 

the temperature is swept in a heating or cooling process at 3 Kelvin per minute. Each 

sample is initially thermally cycled up and down twice from -80 ⁰C degrees Celsius to 

120 ⁰C at a rate of ±10 ⁰C/min to avoid the virgin effect. The virgin effect is a name given 

to describe the different behaviour this material exhibits during the first cycle. The first 

cooling process for example can yield a specific heat peak location up to 30-40 Kelvin 

lower and a broader transition than subsequent cooling measurements. Cylindrical 

aluminum crucibles, see Figure 3-7, of internal length 1.2 mm and internal radius 2.3 mm 

house the samples. The magnetic field lines run in the radial direction relative to the 

cylindrical sample holder as can be seen in Figure 3-9. Samples are composed of 50±2 

mg of crushed particles less than 150 microns in size. The reported relative uncertainty in 

the specific heat measurements is four percent [9]. 

 

Figure 3-7 – From left to right the above image shows a dime, the mDSC sample holder, and the 

mDSC sample lid. The lid sits on top of the crucible in the orientation shown such that it reduces 

the volume of the crucible by a small amount. 

 

3.1.2. Magnetization 

The VersaLab VSM measures magnetization.  The VSM was invented by Simon 

Foner in 1955 [27].  In this application it is used to measure the magnetization at constant 
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fields while the temperature is swept from cold to hot and then reversed at one Kelvin per 

minute. Magnetization samples are composed of 15 mg of crushed particles less than 150 

microns in size. The samples are placed in a cylindrical sample holder which is placed in 

the magnetic field volume. The cylindrical sample has a length of 1 mm and a radius of 

1.25 mm. The magnetic field lines are oriented in the radial direction relative to the 

cylindrical sample, see Figure 3-6. A picture of the sample holder can be seen in Figure 

3-8. Pick-up coils surround the sample and are also within the magnetic field volume.  As 

the sample is vibrated (moved up and down) the stray magnetic field from the induced 

magnetization changes and is measured by the pick-up coils in terms of induced 

voltage/current due to Faraday’s Law of Induction.  This current is proportional to the 

magnetization of the sample.  The accuracy of the instrument is listed at better than 1 

percent [28]. 
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Figure 3-8 – The above image shows (from left to right) a connected VSM sample holder, a 

disconnected VSM sample holder, and a dime. The pink material in the connected sample holder 

illustrates how the sample would be contained in the VersaLab VSM. 

 

3.1.3. Adiabatic temperature change 

 A BASF adT  device measures adiabatic temperature change.  Two sample 

plates, approximately 10 mm by 5 mm by 1 mm, are required to take a sample 

measurement ( Figure 3-9). A centre groove is cut into both plates along the 10 mm side 

to make room for a type E thermocouple that is sandwiched between the two plates to 

measure the temperature change of the sample. The thermocouple is glued in place with a 

minimal amount of thermo-conductive epoxy glue. Four layers of packing tape insulate 

the assembly. The sample orientation relative to the magnetic field lines can be seen in 
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Figure 3-9. The sample is oriented in this position to minimize demagnetization effects. 

Sample assemblies are moved in and out of a 1.1T field at a cycle frequency of 0.1 Hz.  

At the same time the temperature is swept from 
CT T  to CT T  (heating) and then 

CT T  to 
CT T  (cooling) a rate of 0.5 Kelvin per minute using a temperature controlled 

chamber. The adT   peak location and magnitude attained from the BASF device has 

standard deviations of 0.5 K and 0.2 K respectively. 

 

Figure 3-9 – Schematic of sample size and orientation in BASF adT device to measure adiabatic 

temperature change.  The magnetic field lines are parallel to the 5 mm side of the sample. (A) 

represents the low field position and (B) represents the high field position. 

 

3.2. Smoothing 

To reduce noise a smoothing spline is applied to magnetization and measured 

adT  data sets. Specific heat data are not smoothed because it is integrated to attain 

entropy and the effects of noise are reduced. Magnetization data is differentiated which is 
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more sensitive to noise; therefore it is smoothed. Adiabatic temperature change data is 

smoothed to improve the ease in determining data metrics which include the magnitude 

of the peak, the temperature of the peak, and the full width half maximum. 

The smoothing spline is constructed in MATLAB by minimizing  

     
2

2
2

2
1i i i

i

d s
p w y s x p dx

dx

 
    

 
    (3.1) 

where p  is the smoothing parameter, w  is the weighting factor, iy  is the original 

dependent variable, ix  is the independent variable, and s  is the smoothed data.  The 

smoothing parameter is defined between 0 and 1. A smoothing parameter of 0p   

produces a least squares straight line fit to the data while a value of 1p   produces a 

cubic spline that runs through each original data point. No weighting is used so 1iw   for 

all points. 

 A smoothing parameter of 0.95 is used for magnetization data. This number is 

determined by trial and error. A smoothing parameter greater than 0.95 is not sufficient to 

reduce the noise while a smoothing parameter less than 0.95 reduces the slope of the 

magnetization curves yielding lower peaks in the magnetization temperature derivative 

data. The percent difference between smoothed and raw data for a sample material that is 

representative of all nine materials is displayed in Figure 3-10. The percent difference is 

calculated using the following relationship 

 _ 100 .smoothed raw

raw

m m
percent diff

m


    (3.2) 

As can be seen in Figure 3-10 two data points have a percent difference greater than 1% 

which is considered acceptable since each field strength has over 500 data points and 
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there are 13 field strengths per sample. The smoothing therefore has a small effect on the 

magnetization data as shown in Figure 3-10, but as can be seen in Figure 3-11 and Figure 

3-12 the difference in the temperature derivative of raw and smoothed magnetization data 

is significant. 

 

Figure 3-10 – The percent difference between smoothing and raw heating magnetization data for 

a sample material is presented here. 
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Figure 3-11 – The temperature derivative of raw magnetization data. 

 

 

Figure 3-12 – The temperature derivative of smoothed magnetization data. 
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 The measured adT  data is smoothed to enable the calculation of magnitude and 

location of the temperature change peak as well as the full width half maximum value 

(FWHM). A smoothing parameter of 0.99 is used. A higher smoothing parameter is used 

for adiabatic temperature data to avoid reducing the peak of the curves. Figure 3-13 and 

Figure 3-14 show the raw and smoothed adT  data and the percent difference between 

the two. As can be seen in Figure 3-13, the percent differences between raw and 

smoothed data here are larger than with the magnetization data. This is due to noisier data 

and the smaller magnitude of adT  values. 

 

 

Figure 3-13 – Raw and smoothed heating adiabatic temperature change data are plotted. The 

percent difference between the raw and smoothed data are also plotted. 
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Figure 3-14 – A closer look at the peak adiabatic temperature change data shows the necessity of 

smoothing. Without smoothing, determining the temperature and magnitude of the peak would be 

difficult. 

 

3.3. Interpolation 

Specific heat, magnetization and adT  data do not cover the same applied 

magnetic fields. Specific heat data are collected at applied fields of zero, 0.5, 1.0 and 1.5 

Tesla. Magnetization data are collected at applied field strengths of 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 Tesla. The adT measurement is conducted with an 

applied magnetic field that varies between zero Tesla and 1.1 Tesla. Calculating adT  

requires both specific heat and magnetization data sets and therefore they both are 

required to cover the same applied magnetic fields. Once the data are initially smoothed 

linear interpolation is used to fill the gaps in the data sets so that they cover the same 

applied magnetic fields. Data set specifics can be seen in Table 3-1. 
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Table 3-1 – Applied magnetic field strengths 

 Specific heat Magnetization Adiabatic temperature 

change 

Applied field 

strengths [T] 

0 aH   

0, 0.5, 1.0, 1.5 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.8, 1.0, 1.2, 1.4, 

1.6, 1.8, 2.0 

0 – 1.1 

Interpolated applied 

field strengths [T] 

0 aH  

0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 

1.0, 1.1, 1.2, 

1.3, 1.4, 1.5 

0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 

1.0, 1.1, 1.2, 1.3, 1.4, 

1.5, 1.6, 1.7, 1.8, 1.9, 

2.0 

0 – 1.1 

 

3.3.1. Specific heat interpolation 

Specific heat data are interpolated to get a 0.1 Tesla resolution on applied 

magnetic fields from zero to 1.5 Tesla. The data are interpolated using a temperature 

offset defined by the difference in peak specific heat temperatures of the two applied field 

specific heat curves. Figure 3-15 gives a visual of the temperature offset interpolation. 

This offset is necessary due to the shifting of the peak with increasing magnetic field. 

Sample specific heat data at the four original applied field strengths are displayed in 

Figure 3-16. In accordance with other results [7], there is a linear variation of peak 

temperature with applied field. 
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Figure 3-15 – The blue and red line represent measured specific heat data while the orange dotted 

line represents specific heat data at an interpolated field strength using the temperature offset 

interpolation method. 
peakT  is the temperature offset and is defined as the difference in 

temperature of the high and low field specific heat peaks. 

 

 
Figure 3-16 – Sample heating specific heat data. 
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 A linear peak shift with field is assumed for all alloys. Linear interpolation 

between two magnetic fields using a temperature offset yields expected results [7]. The 

temperature offset, 
peakT , is defined as the difference the specific heat peaks at high and 

low field. 
peakT  is used as a reference for the offset interpolation. Specific heat data can 

be interpolated to attain data at any applied field within the range of original applied field 

strengths. The interpolated magnetic field strength can be given by 

  Low High LowH H f H H       (3.3) 

where 
LowH  is the low field, 

HighH  is the high field, and f  is the chosen fraction and can 

range between zero and one. The difference between the low field and the interpolated 

field is defined here as  

  .High LowH f H H      (3.4) 

The specific heat can then be calculated for the new field strength using this following 

relation 

    
   , ,

, ,
H peak High H Low

H H Low

High Low

c T T H c T H
c T H c T H H

H H


 

  
  
 
 

  (3.5) 

where T   is the temperature associated with the interpolated data. The interpolated 

temperature, T  , is determined using the following relationship 

 Low peakT T f T      (3.6) 

where LowT  is the temperature of the low field specific heat data and f  is the same 

fraction mentioned earlier and is given by 

 .Low

High Low

H H
f

H H

 



  (3.7) 
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The above interpolation is completed four times between each applied field data 

set to attain specific heat data with applied field resolution of 0.1 Tesla. Focussing on the 

interpolations between zero and 0.5 Tesla the result is a matrix of specific heat data that 

has columns of constant magnetic field (0, 0.1, 0.2, 0.3, 0.4, and 0.5) but no longer 

isothermal rows, see Figure 3-17.  This problem is solved using the MATLAB function 

interp1 which requires an x and y array and an X value and outputs the resultant Y based 

on the xy relationship.  In this case the x-array is the new temperature array, the y-array is 

the new specific heat array and the X values were the original temperature array. Figure 

3-17 gives a visual representation of the complete offset interpolation procedure. The 

result can be seen in Figure 3-18. 
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Figure 3-17 – The dark blue columns represent specific heat data at different field strengths, the 

tan columns represent interpolated specific heat data, and the red bars indicate the peak specific 

heat value for each field strength. 

(i) The original specific heat data is displayed and the data involved in the sample interpolation 

are highlighted . 

(ii) The red bars on the columns represent the location of the maximum specific heat at the given 

magnetic field and displays the difference, 
peakT , in temperature between the two maximums.  

(iii)
peakT is used to conduct a linear interpolation between high field and temperature offset and 

low field with no temperature offset.  The vertical location of the columns represents the 

temperature values of the specific heat at different fields.  It can be seen that after this 

interpolation the rows of the array are not isothermal. 

(iv) All the columns are then interpolated with the same temperature vector to attain a specific 

heat matrix with isothermal rows. 
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Figure 3-18 – Temperature offset interpolation results of a sample MnFeP1-XAsX material between 

zero and 0.5 Tesla. 

3.3.2. Magnetization interpolation 

 The same method of offset interpolation is used to fill in the magnetization data 

gaps in applied magnetic field strengths with the exception of zero Tesla. MnFeP1-xAsx 

alloys are soft magnetic materials which have a net magnetization of zero at zero field 

strength. Because of this it is assumed that the magnetization is zero for all temperatures 

at zero field strength. Since the temperature derivative of magnetization is used in the 

calculations and not magnetization alone, the original magnetization curves are smoothed 

then differentiated with respect to temperature before being interpolated.  The negative of 

the temperature derivative of the magnetization data has a similar shape to the specific 

heat data. Due to this similar shape, the magnetization derivative with respect to 

temperature can by interpolated by the same temperature offset interpolation outlined in 

Section 3.3.1. 
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3.3.3. Entropy interpolation 

 The shape of entropy curves calculated from specific heat data are simpler in the 

sense that they do not have a peak and are monotonically increasing. This simplified 

shape makes interpolation of entropy curves much less complicated than interpolating 

specific heat data. Entropy is calculated from specific heat using the method outlined in 

Section 2.1. The entropy is then linearly interpolated isothermally using the following 

relation 

         High Low Highs T s T f s T s T       (3.8) 

where  s T
 is the entropy at the interpolated magnetic field H   ,  Highs T  is the 

entropy at high magnetic field,  Lows T  is the entropy at low magnetic field, and f  is the 

magnetic field fraction defined by 

 .Low

High Low

H H
f

H H

 



  (3.9) 

A sample result is displayed in Figure 3-19. 
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Figure 3-19 – The blue and red lines represent entropy curves calculated from specific heat data. 

The green dashed line represents an entropy curve calculated by isothermal linear interpolation. 

 

3.4. Demagnetization factors 

 Now that all data have the same range of applied field, 
aH . Demagnetization 

must be corrected for to present the data in the same internal field, 
inH  , range. The size, 

shape and composition of the tested samples determine the demagnetizing factors. Both 

the in-field specific heat and magnetization samples are composed of crushed particulate 

smaller than 150 microns. The sample holders of the two measurements are both 

cylinders but with different dimensions. The dimensions and corresponding 

demagnetizing factors can be seen in Table 3-2. The adiabatic temperature change 
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samples are two plates sandwiched together with the long axis parallel to the applied 

magnetic field, see Figure 3-9. A plate can be approximated as a thin film and a thin film 

running parallel to the applied field has a demagnetizing factor of zero [14]. 

Table 3-2 – Sample dimensions and demagnetizing factors for specific heat and magnetization 

data. 

Measurement Cylinder 

Length, L 

[mm] 

Cylinder 

Radius, r 

[mm] 

Axial 

demagnetizing 

factor 
lN  

Radial 

demagnetizing 

factor rN  

rpN  

particulate 

correction 

Specific heat 1.2 2.3 0.6255 0.1873 0.2603 

Magnetization 1 1.25 0.5281 0.2359 0.2846 

 

3.5. Correcting magnetization data for demagnetizing field 

 When a field-dependent property is measured the applied magnetic field may be 

different than the local internal field due to sample geometry. To remove the effects of 

shape, properties should be functions of internal field. For example the magnetization 

data is based on applied field,  , am T H , while the functional dependence is on internal 

field,  , inm T H . A diagram of the magnetization data is shown in Figure 3-20. For each 

data point the applied field and the magnetization as a function of internal field are both 

known. The applied field is given in Tesla while the magnetization is measured in 

Ampere meter squared per kilogram, A∙m
2
∙kg

-1
. Combining the Equations (2.52) and 

(2.53), and correcting for the units of the applied field and magnetization yields the 

following relationship for internal field 

  , ,rin p ma inm HH H T  N   (3.10) 
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where   is the bulk density of the material estimated to be 6 ± 0.1 grams per cubic 

centimeter [9] and 
,rp mN  is the porosity corrected demagnetizing factor for 

magnetization measurement. The r  subscript denotes that this demagnetization factor is 

for the case when applied field is in the radial direction. 

  [      1aH    
2aH   3aH  

4aH      ] 

1T    1 ,11, inm T H     1 ,41, inm T H  

       

      

      

jT    ,1,j in jm T H     1 ,4, in jm T H  

 

Figure 3-20 – Magnetization data diagram.  Each column of data is exposed to the same field, and 

each row of data is exposed to the same ambient temperature.  This diagram highlights that the 

magnetization values are dependent on internal field 
inH  rather than the applied field 

aH  . 

 

 Before the demagnetization correction is applied the magnetization data is 

smoothed, differentiated, interpolated to fill gaps in applied field data, and finally 

integrated back resulting in a magnetization matrix with data for applied fields from zero 

to two Tesla in 0.1 Tesla increments. The percent difference between the original 

smoothed magnetization data and the resultant magnetization data is less than 0.5%.  

Applying Equation (3.10) results in a matrix of internal field values that align 

with the magnetization data matrix. Using the relationship between internal field and 

magnetization a linear interpolation of the magnetization data is conducted to attain 

magnetization values at internal field values equal to the original applied field values. By 

interpolating each row of magnetization data a new matrix is made with columns of 
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constant internal field and isothermal rows. Figure 3-21 shows the result of this 

correction.  It can be seen from Figure 3-21 that the impact of demagnetization reduces 

with increasing applied field. 

 

 

Figure 3-21 –Heating magnetization data of an example MnFeP1-xAsx material. The dashed lines 

are magnetization data at constant 
aH  while the solid lines are magnetization data at constant 

inH . 

 

3.6. Correcting specific heat data for demagnetization 

 The demagnetization correction is conducted on entropy curves. For an in depth 

description of the entropy calculation see Section 2.1 on thermodynamics. To correct the 

entropy data for demagnetization the method described in the previous section is slightly 
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adjusted. The corrected magnetized data  , inm T H  is known for [0 : 0.1:1.5]inH   Tesla. 

Instead of calculating the internal field, it is assumed that the internal field ranges from 0-

1.5 Tesla in 0.1 Tesla increments and the applied field that gives this internal field range 

is calculated. Equation (3.10) is rewritten to solve for 
aH  

  , ,
Brp ca n ni iH H m T H  N   (3.11) 

where 
, Brp cN is the porosity corrected demagnetizing factor for the specific heat 

measurement.  Using the relation between the applied field strength and entropy from the 

entropy matrix, linear interpolation is used to find the values of entropy at the newly 

calculated applied field strengths that yield internal field strengths in the desired range.  

The result is a matrix of entropies with columns of constant internal field and isothermal 

rows. Figure 3-22 shows the result of this correction. 
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Figure 3-22 –Heating entropy data of an example MnFeP1-xAsx material. The dashed lines are m-

data at constant 
aH  while the solid lines are m-data at constant

inH . 

 

3.7. Hysteresis 

 Hysteresis may effect adiabatic temperature change. MnFeP1-xAsx exhibits 

thermal and magnetic hysteresis [13]. Thermal hysteresis is investigated due to the data 

collection method. Two thermal paths are followed; heating and cooling. Heating is 

defined by collecting data while the ambient temperature inside the test chamber is 

heated through a temperature range that contains the materials Curie temperature. 

Cooling is defined by collecting data while the ambient temperature is cooled through the 

same temperature range. The Curie temperature of the material is hotter in heating data 

and colder in cooling data. Specific heat and magnetization data for select applied field 
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strengths are plotted in Figure 3-23 and Figure 3-24 for sample 2. All materials exhibit 

the same trend for heating and cooling data. In order to quantify thermal hysteresis, it 

must be defined. For this study, the thermal hysteresis is defined as the difference in 

temperature of the peak specific heat at zero field between heating and cooling. 

 

Figure 3-23 – Heating and cooling specific heat data at two applied field strengths of sample 2. 

 

Figure 3-24 – Heating and cooling magnetization data at three applied fields of a sample 2. 
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 Adiabatic temperature change caused by a change in magnetic field is determined 

by the temperature difference between the high and low magnetic field entropy curves. 

There are four possible entropy curve combinations to calculate adiabatic temperature 

change because there are heating and cooling curves of both high and low magnetic field 

entropy curves. Figure 3-25 gives a visual representation of the four protocols. The four 

adT  protocol definitions are presented in Table 3-3. 

 

Figure 3-25 – Schematic of the four adT  calculation protocols. 

 

Table 3-3 – Protocols are defined by the low and high field entropy curve used to determine the 

isentropic temperature change. 

Protocol Low field entropy curve High field entropy curve ∆Tad label 

1 Heating Heating ∆Tad,hh 

2 Cooling Cooling ∆Tad,cc 

3 Heating Cooling ∆Tad,hc 

4 Cooling Heating ∆Tad,ch 
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3.8. Uncertainties 

 The propagation of uncertainty in the calculation of adT  from specific heat and 

magnetization is described here. Specific heat data collected by BASF have a relative 

uncertainty of 4 percent. Magnetization data have a relative uncertainty of 0.5 percent. 

 Entropy calculated from specific heat using the Equation (2.3) has an absolute 

associated uncertainty when integrated using the trapezoidal numerical approximation of 

[29] 

    
   

 
1

1

1 1

1 1

0.5
n

H i H i
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
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 

    
         

     
   (3.12) 

where  H ic T  is the absolute error in the specific heat measurement at temperature 
iT  . 

However in this study the entropy is not calculated from 0T   therefore the entropy is 

calculated using Equation (2.5) which has a corresponding absolute uncertainty of 

  
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   (3.13) 

when integrated using the trapezoidal approximation. 

 The high field entropy data is then shifted by the magnetic entropy change offset 

calculated with the magnetization data using Equation (2.7). The absolute uncertainty 

related to ms , assuming trapezoidal integration again, is given by 
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  (3.14) 

where 
 i

i H

m T

T


 
 

 
is the absolute uncertainty in the temperature derivative of 

magnetization and is given by 
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  (3.15) 

where 0.1T   is the temperature interval between measurements. Once all entropy 

uncertainties are determined, the uncertainty in the calculated adiabatic temperature 

change can be determined. 

 Adiabatic temperature change uncertainty is dependent on three uncertainties; low 

field entropy, high field entropy, and magnetic entropy change. The absolute uncertainty 

of the calculated adiabatic temperature change can be calculated using [29] 
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  (3.16) 

 This uncertainty method adds every error resulting in an ‘unusably’ large 

uncertainty but gives the maximum error one would see using this method in the worst 

case scenario.  It is not probable that the error terms will be either all positive or all 

negative.  It is more probable that some will cancel each other out. Applying the root sum 

of squares (RSS) to uncertainty calculations is presented by [30] as a method that gives a 

more reasonable error estimate. 

 Consider a function G  to be a function of n  measured variables [30] 

  1 2, , nG f x x x   (3.17) 

where each measured variable x  has an associated uncertainty ix  . The uncertainty in 

G  can then be determined as follows 
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The maximum uncertainty in G  can be found by forcing all terms to be positive: 

 max
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G
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



   (3.19) 

As mentioned earlier this is not a probable uncertainty, a more reasonable estimate for the 

uncertainty in G  is found by calculating the root of the sum of the squares (RSS) 
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RSS is applied to all uncertainty calculations that involve the addition of errors. Equation 

(3.13) becomes 
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Equation (3.14) becomes 
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Equation (3.15) becomes 
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  (3.23) 

Equation (3.16) becomes 



 

 

76 

  

 
 

 
 

 

1/2
2

2

2

1

,
,

, , .
,

,

Low

H Low

ad Low High High

H High

m High

S

T
s T H

c T H

T
T T H H s T H

c T H

s T H



 



  
     
 
  

        
     

 
  
 
  

  (3.24) 

The error in adiabatic temperature change for a sample material before and after RSS is 

applied is displayed in Figure 3-26. 

 

Figure 3-26 – The maximum and RSS absolute uncertainties in calculated adiabatic temperature 

change are plotted with the calculated adiabatic temperature change. 

 

 The RSS uncertainty is used for this analysis since the max uncertainty produces 

uncertainties larger than the calculated and measured values in at some temperatures. 
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3.9. Summary 

The processes outlined in this chapter along with the calculations from Chapter 2 

are combined to calculate adT from specific heat and magnetization data of         

MnFeP1-xAsx alloys obtained from [9]. The calculated adT  results are presented in 

Chapter 4. MFT results are also presented to give confidence to the  calculation methods 

used in the adT  calculation. 
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Chapter 4 – Results 

 The adT  results of MnFeP1-xAsx alloys from the equations and processes 

described in Chapter 2 and Chapter 3 are presented in this chapter. Material properties of 

Gadolinium calculated from MFT, described in Chapter 2, and measured by AMES are 

also presented. 

 MFT calculated Gadolinium data are presented first. Measured specific heat and 

adT  Gadolinium data are presented to show the effectiveness of MFT in calculating 

properties. MFT Gadolinium data are used to validate three calculations; the integration 

of specific heat to attain entropy, the isothermal field induced change in entropy from 

magnetization, and the adT   calculation from high and low field entropy curves. 

  Calculated adT of MnFeP1-xAsx alloys are presented and compared against 

measured values. Peak location, peak magnitude, full width at half maximum (FWHM), 

and total error are metrics used to compare calculated and measured values. 

4.1. MFT Gadolinium results 

 Material properties of Gadolinium are calculated using MFT which include 

magnetization, specific heat, entropy, and adT . Specific heat and adT  are compared 

against AMES laboratory data that has been corrected for demagnetization by researchers 

from the Department of Energy Conversion and Storage at the Technical University of 

Denmark. The material properties of Gadolinium required for MFT are listed in the 

nomenclature section at the beginning of the document. 
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4.1.1. Magnetization 

Magnetization is the first property calculated in MFT. With magnetization, 

specific heat and entropy can be calculated. Figure 4-1 plots the magnetization calculated 

using mean field theory for three field strengths. 

 

 

 

Figure 4-1 – Magnetization of Gadolinium at three field strengths. 
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4.1.2. Specific heat 

The magnetic contribution to specific heat data is calculated from magnetization 

data. Lattice and electronic contributions to specific heat are independent of magnetic 

field. The three components and total of specific heat for Gadolinium are displayed in 

Figure 4-2. Note that only the magnetic contribution of specific heat changes with 

magnetic field strength. 

MFT calculated specific heat data are compared to measured data provided by 

AMES Lab. Because MFT calculates material properties based on internal field, the 

measured data from AMES is corrected for demagnetization. The measured specific heat 

data are plotted against calculated MFT data in Figure 4-4 and Figure 4-3. 

 

 

Figure 4-2 – Specific heat has three components that are plotted above: lattice, electronic and 

magnetic. Total specific heat data produced by MFT of Gadolinium for three internal field 

strengths are also plotted.  
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Figure 4-3 – Gadolinium MFT results compared to the original AMES specific heat data [8]. 

 

Figure 4-4 – Gadolinium MFT results compared to the corrected AMES specific heat data [10]. 
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4.1.3. Entropy 

 Entropy is calculated using two different methods in MFT to increase confidence 

in the calculations. One method integrates the specific heat data displayed in Section 

4.1.2 using Equation (2.3). The other method calculates entropy using Equation (2.50). 

Both methods yield the same result to within less than 0.1 J∙kg
-1∙K-1

 for each data point as 

can be seen in Figure 4-5. This gives confidence to the implementation of Equation (2.3). 

The resultant entropy curves are plotted in Figure 4-6. A more detailed look about the 

Curie temperature of the entropy data is displayed in Figure 4-7. 

 

Figure 4-5 – The difference in entropy calculated from method 1 and 2 are plotted. The difference 

is calculated by subtracting method 1 results from method 2 results. 
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Figure 4-6 – Calculated entropy data at three internal field strengths. 

 

Figure 4-7 – A closer look at the entropy curves near the Curie temperature. 
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4.1.4. Adiabatic temperature change 

 Adiabatic temperature change is calculated using equation (2.9) and the entropy 

data displayed in Section 4.1.3. The raw and corrected measured adT data is presented in 

Figure 4-8. Calculated adT  is plotted against the raw measured data in Figure 4-9 and 

the corrected data in Figure 4-10. MFT data agrees better with corrected data. The visual 

agreement between calculated and measured adT  in Figure 4-10 gives confidence in the 

implementation of MFT and of Equation (2.9). 

 

Figure 4-8 – The data series with hollow markers are the original adiabatic temperature change 

data that has not been corrected for demagnetization. The original data series are labeled with 

H_a which stands for applied field. The data series with solid markers are the corrected data. The 

corrected data series are labeled with H_in which stands for internal field. 
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Figure 4-9 - MFT adiabatic temperature change compared to original adiabatic temperature 

change data from AMES laboratory. 

 

Figure 4-10 – MFT adiabatic temperature change compared to demagnetization corrected 

adiabatic temperature change data from AMES laboratory. 
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4.1.5. Isothermal field induced change in entropy 

 The calculation of entropy of MnFeP1-xAsx alloys involves an isothermal field 

induced change in entropy that can be determined with magnetization data as presented in 

Equation (2.8). To improve the confidence in this calculation, MFT entropy data is 

calculated two ways that should yield the same result. Entropy is calculated from zero to 

350 Kelvin using Equation (2.3) with specific heat data with the same temperature range. 

Entropy is also calculated from 
1 250T K   to   2 350T K  using equation (2.8) with 

specific heat data with the same temperature range  250 350K K  and magnetization 

data with a temperature range the spans 
1T . The results from both methods are compared 

over the 250- 350 Kelvin temperature change. Figure 4-11 shows the percent difference 

between the two calculation methods. 

 

Figure 4-11 – The percent difference between adiabatic temperature change data 

calculated using two different methods is plotted here for three magnetic field changes. 
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 MFT Gadolinium data gives confidence to three calculation methods that are used 

in the adT  calculations of MnFeP1-xAsx alloys. These calculations include calculating 

entropy from specific heat using Equation (2.8), calculating the isothermal field induced 

entropy change using Equation (2.7), and calculating adT  from high and low field 

entropy curves using Equation (2.9). The following sections are concerned with the 

results of the MnFeP1-xAsx alloy analysis that includes the equations discussed above. 

The effects of including the isothermal field induced entropy change in the entropy 

calculation of MnFeP1-xAsx alloys are presented in the next section. 

 

4.2. Isothermal field induced change in entropy of MnFeP1-xAsx 

 The impact of isothermal field induced entropy change  Hs  on the adT  

calculation of MnFeP1-xAsx alloys is presented. Figure 2-3 provides a representation of 

Hs and how it is implemented into the entropy calculation. The magnitude of 
Hs  is 

presented for all alloys. The isothermal field induced change in entropy can be calculated 

using magnetization data, see Section 2.1. The change in magnetic entropy, 
Hs , can be 

calculated at the lowest temperature specific heat data point because the magnetization 

temperature range extends colder and hotter than the specific heat temperature range for 

all material data sets. This change in entropy is applied as an offset to the entire high field 

entropy curve and results in a slightly larger adiabatic temperature change peak. The 

entropy offset for heating and cooling data of all nine materials is displayed in Figure 

4-12. Figure 4-13  shows the increase in adiabatic temperature change for a MnFeP1-xAsx 

sample alloy. The magnetic entropy change for this sample alloy for zero field to three 
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applied field strengths are plotted in Figure 4-14. As described in Section 2.1 the ‘offset’ 

label in Figure 4-14 is 
Hs  that is subtracted from the entire high field entropy data set. 

 

Figure 4-12 – The magnetic entropy change offset of each material for a field change from 0-

1.1T. 

 

Figure 4-13 – The increase in adiabatic temperature change due to the addition of the magnetic 

entropy change is illustrated here. 
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Figure 4-14 – The ‘offset’ is the magnetic entropy change value that is subtracted from the entire 

high field entropy curve. 
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4.3. Demagnetization results 

The final correction applied to MnFeP1-xAsx data is for demagnetization. The 

correction is applied using the theory outlined in Section 2.8 and the processes outlined in 

Section 3.4, Section 3.5, and Section 3.6. By correcting for demagnetization the 

difference between high and low field effectively increases leading to an increase in 

adiabatic temperature change. The effect of the demagnetization correction on calculated 

adT  results for sample 2 can be seen in Figure 4-15.   

 

Figure 4-15 – Adiabatic temperature change results from including and ignoring demagnetization 

are compared for sample 2. 
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4.4. Measured versus calculated ∆Tad 

 The results of calculated adT  of MnFeP1-xAsx alloys are presented in this 

section. Measured and calculated adT  data are compared using peak magnitude 

 peakT , peak temperature  peakT  , full width at half maximum  FWHM  , and total 

error as metrics, see Figure 4-16. The total error between measured and calculated values 

is determined by 

 
 

2

1

2

, ,

2 1

.

T

ad calc ad meas
T

T T dT
Error

T T

 





  (4.1) 

Each material has two measured adT  curves, 
,ad measT  and four calculated adT  curves, 

,ad calcT  due to hysteresis. Hysteresis is explained in Section 3.7. Measured heating adT  

is compared against calculated heating-heating, heating-cooling, and cooling-heating 

adT . Measured heating adT  is not compared to cooling-cooling adT  to reduce the 

number of curves compared. Measured cooling adT  is compared against calculated 

cooling-cooling, heating-cooling, and cooling-heating adT . Measured cooling adT  is 

not compared against calculated heating-heating adT  to reduce the number of curves 

compared. 

 All metrics, except total error, are presented in terms of percent difference of the 

calculated curve and the measured curve using the following percent difference 

 100%diff

calc meas
Percent

meas


    (4.2) 

where calc  is any calculated curve metric and meas  is the corresponding measured 

curve metric. Figure 4-17 to Figure 4-22 show measured and calculated adT  curves for 
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three sample alloys. Figure 4-31 to Figure 4-36 show the same measured and calculated 

curves with uncertainty bands curves due to measurement error and error progression 

through calculations. Table 4-1 presents the metric values of the measured and calculated 

adT  for all nine alloys. Figure 4-23 to Figure 4-28 plot the percent difference of metric 

values between measured and calculated values. 

 

Figure 4-16 -  The metrics use to compare the measured against the calculated adT including 

peak magnitude  peakT  , peak temperature  peakT  , and full width at half maximum 

 FWHM are presented here. 
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Figure 4-17 – Material 1 measured heating adiabatic temperature change data compared against 

three calculated adiabatic temperature change data sets. 

 

Figure 4-18 – Material 1 measured cooling adiabatic temperature change data compared against 

three calculated adiabatic temperature change data sets. 
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Figure 4-19 – Material 2 measured heating adiabatic temperature change data compared against 

three calculated adiabatic temperature change data sets. 

 

Figure 4-20 – Material 2 measured cooling adiabatic temperature change data compared against 

three calculated adiabatic temperature change data sets. 
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Figure 4-21 – Material 7 measured heating adiabatic temperature change data compared against 

three calculated adiabatic temperature change data sets. 

 

Figure 4-22 – Material 7 measured cooling adiabatic temperature change data compared against 

three calculated adiabatic temperature change data sets. 
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Table 4-1 – The three metrics that define the measured and calculated adT curves for all nine 

alloys are presented in this table. Two other properties are presented here, hysteresis, and 

/dT dH . Hysteresis (Hyst.) is defined here as the difference in temperature between the heating 

and cooling zero field specific heat peaks. /dT dH  is defined here as the shift in the temperature 

of the peak specific heat with increasing field strength. 

 

 
Measured data Calculated data 

M
a
t 

Curie 
Temp. 

[K] 

Hyst 
[K] 

Hyst 
path 

dT/dH 
[K/T] 

∆T-
peak 
[K] 

T-
peak 
[K] 

FWHM 
[K] 

Hyst 
path 

∆T-
peak 
[K] 

T-
peak 
[K] 

FWH
M [K] 

1 271 1.2 heating 4.3 2.6 272.8 5.1 HH 3.2 272.1 7.8 

    
 

cooling 4.1 2.5 272.2 4.7 CC 3.0 270.6 8.0 

                HC 2.3 271.6 8.6 

2 282.7 0.8 heating 4.4 3.3 284.1 4.1 HH 3.2 283.8 7.3 

    
 

cooling 4.4 3.2 283.6 4.0 CC 3.1 282.7 7.3 

                HC 2.7 283.3 7.6 

3 286.6 0.7 heating 4.5 2.7 288.6 5.8 HH 2.8 288.2 7.7 

    
 

cooling 4.6 2.7 288.4 5.8 CC 2.8 287.2 8.0 

                HC 2.4 287.8 7.1 

4 288.5 0.4 heating 4.6 3.1 291.2 5.3 HH 2.8 290.5 8.1 

    
 

cooling 4.6 3.0 290.8 5.0 CC 2.8 289.7 8.1 

                HC 2.6 290.1 8.1 

5 292.1 0.2 heating 4.5 3.3 294.5 4.4 HH 3.2 293.6 6.9 

    
 

cooling 4.4 3.3 293.9 4.1 CC 3.0 292.9 6.9 

                HC 2.8 293.2 6.7 

6 295.5 0.2 heating 4.8 2.9 298.5 5.4 HH 2.7 297.1 7.4 

    
 

cooling 4.8 2.9 298.0 5.0 CC 2.7 296.6 7.4 

                HC 2.5 296.9 7.3 

7 298.7 0.1 heating 4.8 3.0 301.6 5.7 HH 2.9 300.2 7.6 

    
 

cooling 4.7 2.9 301.3 5.5 CC 2.9 299.8 7.5 

                HC 2.7 300.0 7.5 

8 301.9 0.6 heating 4.5 2.6 304.7 7.0 HH 2.7 303.2 8.1 

    
 

cooling 4.7 2.5 304.1 6.7 CC 2.8 302.6 8.2 

                HC 2.5 303.0 8.1 

9 312 0.3 heating 4.7 2.6 315.9 7.2 HH 2.9 313.4 8.4 

    
 

cooling 4.8 2.6 315.5 7.2 CC 3.0 312.9 8.4 

                HC 2.7 313.3 8.3 
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Figure 4-23 – Calculated adT  peak magnitudes relative to the measured heating adT  peak. A 

positive value indicates calculated values are higher than measured. A negative value indicates 

calculated values are lower than measured. The Curie temperature increases with material 

number. 

 

 

Figure 4-24 – Calculated adT  peak magnitudes relative to the measured cooling adT  peak. 
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Figure 4-25 – Calculated adT  peak temperatures relative to the measured heating adT  peak. 

 

 

Figure 4-26 – Calculated adT  peak temperatures relative to the measured cooling adT  peak. 
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Figure 4-27 – Calculated adT  FWHM relative to the measured heating adT  FWHM. 

 

 

 

Figure 4-28 – Calculated adT  FWHM relative to the measured cooling adT  FWHM. 
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Figure 4-29 – Error relative to measured heating adT . 

 

 
Figure 4-30 - Error relative to measured cooling adT . 

 

Table 4-2 – The 9 material average errors between calculated and measured adT  are presented. 
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Figure 4-31 – Material 1 measured heating adiabatic temperature change data compared against 

two calculated adiabatic temperature change data sets. The shaded areas represent the 

uncertainties of each data set. 

 

Figure 4-32 – Material 1 measured cooling adT data compared to two calculated adT data sets. 
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Figure 4-33 – Material 2 measured heating adiabatic temperature change data compared against 

two calculated adiabatic temperature change data sets. 

 
Figure 4-34 – Material 2 measured cooling adT data compared to two calculated adT data sets. 
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Figure 4-35 – Material 7 measured heating adiabatic temperature change data compared against 

two calculated adiabatic temperature change data sets. 

 

Figure 4-36 – Material 7 measured cooling adT data compared to two calculated adT data sets. 
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Chapter 5  – Discussion 

 MnFeP1-xAsx alloy results presented in Chapter 4 are discussed. Demagnetization 

corrections on specific heat and magnetization data and their impact on calculated adT  

are explained. The differences between calculated and measured adT  are explored.  

5.1. Demagnetization 

 Three data sets are involved in this study; specific heat, magnetization and 

adiabatic temperature change. The sample shapes used for specific heat and 

magnetization measurements cause demagnetizing effects while the sample shape used 

for adT  measurements minimize demagnetizing effects (see Sections 3.1, 3.4, 3.5 and 

3.6). Since demagnetization effects are minimized in the adT  samples it is assumed that 

the applied field is equal to the internal field. Due to demagnetization, the applied and 

internal fields are not assumed to be equal in the specific heat and magnetization data. 

Because specific heat and magnetization data are used to calculated adT  which is then 

compared against the measured adT , correcting for demagnetization is essential so that 

all the data is presented in terms of internal field. The magnitude of adT  is dependent on 

the low and high field the material experience, the larger the field change the larger the 

magnitude of adT . In this study the field strength oscillates between zero and 1.1T. At 

zero field there are no demagnetizing effects, only the high field data must be corrected. 

Correcting high field for demagnetization essentially increases the field change between 

low and high field since a higher applied field is required to attain an internal field of 

1.1T. The larger field change leads to a larger adT  as can be seen in Figure 4-15. As a 
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result, the demagnetization correction increases the peak magnitude of calculated adT by 

approximately 0.3 Kelvin on average. 

5.2. Measured versus calculated ∆Tad of MnFeP1-xAsx alloys 

 Calculated adT  results are compared to measured values of nine MnFeP1-xAsx 

alloys. Figure 4-17 to Figure 4-22 display the calculated and measured adT  data for 

three sample alloys. There are two figures for each sample; one plots calculated 
,ad HHT , 

,ad CHT  and 
,ad HCT  against the measured heating adT  while the other plots calculated 

,ad CCT , 
,ad CHT  and 

,ad HCT  curves and measured cooling adT . The two calculated 

curves involving heating and cooling data, 
,ad CHT  and 

,ad HCT , are plotted against both 

heating and cooling measured data because they are a combination of both.  
,ad CHT  over 

predicts in all six figures. In Figure 4-17 and Figure 4-18 it appears that 
,ad HCT gives the 

best agreement with the measured adT  while in Figure 4-19 and Figure 4-20 it appears 

that 
,ad HHT  and 

,ad CCT  give the best agreement with measure adT . These results show 

there is no obvious best method for calculating adT . 

 Figure 4-23 to Figure 4-30 plot the percent differences between the calculated and 

measured adT  data metrics which include peak magnitude  peakT  , peak temperature 

 peakT  , full width at half maximum  FWHM  , and total error. Figure 4-16 provides a 

diagram of the metrics on a sample adT  curve. The percent difference between the 

calculated and measured peak adT  are plotted in Figure 4-23 and Figure 4-24. It can be 

seen that for all materials but material 9 the magnitude of 
,ad HCT peak is smaller than the 
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calculated adT . The 
,ad HHT , 

,ad CCT  and 
,ad CHT  data do not show a trend in Figure 

4-23 and Figure 4-24. Figure 4-25 and Figure 4-26 plot the percent difference between 

the calculated and measured 
peakT . It can be seen in the two figures that all calculated 

peakT are colder than the measured 
peakT . The difference between measured and calculated 

also appears to increase with Curie temperature. The percent different between the 

calculated and measured FWHM  are plotted in Figure 4-27 and Figure 4-28. It can be 

seen that for all materials the FWHM of the calculated curves are larger than the 

measured curves and that this difference appears to decrease with Curie temperature. An 

error metric introduced in Section 4.4 is presented to show the error between the 

calculated and measured adT  curves. Figure 4-29 and Figure 4-30 plot the error metric. 

These figures and Table 4-2, which gives a nine material average, show that the 
,ad CHT

calculation method gives the largest error of the four methods. 

 Two consistent differences between the calculated and measured adT  curves are 

the peak location and FWHM . The peak locations of the calculated curves are 

consistently colder than the measured curves. The FWHM of the calculated curves are 

consistently larger than the measured curves. The source of these errors is unclear but it 

could be in part due to the reversible assumption made in the entropy calculation (see 

Section 2.1). The errors could also be attributed to the source data used from BASF. 

 Figure 4-31 to Figure 4-36 are the same as Figure 4-17 to Figure 4-22 with 

uncertainty bands added and 
,ad CHT  data removed. These graphs are plotted to show the 

uncertainties in both measured and calculated data. Figure 4-31 to Figure 4-34 show 

results from material 1 and 2 where the calculated data differs more than the uncertainty 
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bands. Figure 4-35 and Figure 4-36 show results from material 7 where the calculated 

data differs less than the uncertainty bands. As can be seen in Table _ the hysteresis of 

material 7 is 0.1 Kelvin. These figures should that when dealing with materials with small 

hysteresis, the uncertainty in the calculated adT  curves is greater than the differences 

between them. This makes it difficult to make distinctions between the different 

calculated curves.  

 The general shape of a adT  can be defined by 
peakT  , and FWHM . 

peakT  and 

FWHM  of the measured and calculated adT  curves are plotted against the hysteresis of 

each material in Figure 5-1 to Figure 5-4 to explore the effect of thermal hysteresis on the 

shape of adT  curves. The expected result [13] is that 
peakT  and the FWHM  decrease 

with increasing hysteresis but as can be seen in Figure 5-1 to Figure 5-4 there is no 

visible trend in the data. The largest hysteresis of the nine alloys in 1.2 Kelvin. A trend 

may be visible in materials with larger thermal hysteresis. These results are in agreement 

with [31] which states that thermal hysteresis of less than 4 Kelvin will not impact adT . 
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Figure 5-1 – Measured peak adT is plotted against hysteresis for all nine alloys. 

 

Figure 5-2 – Calculated peak adT  is plotted against hysteresis for all nine alloys. Heating 

represents calculated 
,ad HHT  and cooling represents calculated 

,ad CCT . 
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Figure 5-3 – Measured FWHM is plotted against hysteresis for all nine alloys. 

 

Figure 5-4 – Calculated FWHM is plotted against hysteresis for all nine alloys. Heating 

represents calculated 
,ad HHT  and cooling represents calculated 

,ad CCT . 
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 Current data and analysis does not yield a clear calculation method that best 

aligns with measured data. With respect to heating adT  data, 
,ad HHT  and 

,ad HCT  align 

closest. 
,ad CCT  and 

,ad HCT align closest to measured cooling adT data. In both 

comparisons 
,ad CHT  over predicts. 

,ad CHT is the best case scenario yielding the largest

adT . 
,ad HCT  is the worst case scenario yielding the smallest adT . It has been said [13] 

that this material follows 
,ad HCT , the worst case scenario. The current results show that 

,ad HHT  and 
,ad CCT align with measured data as well as 

,ad HCT  as can be seen in Figure 

4-29, Figure 4-30, and Table 4-2. 

5.3. Summary 

 The main points presented in this chapter on the analysis of calculated MnFeP1-

xAsx alloy adT  are listed below. 

1. 
peakT of calculated adT  is colder than measured adT for all nine materials. 

2. FWHM of calculated adT is larger than measure adT for all nine materials. 

3. Points 1 and 2 could be in part due to the reversible assumption made during the 

entropy calculation or the accuracy of the source data. 

4. 
,ad CHT deviates the most from measured data and therefore it is assumed that this 

case is not representative of the material behavior. 

5. 
,ad peakT  and FWHM do not appear to be a strong function of the hysteresis for 

the nine materials studied. This agrees with [31]. 

6. Results show 
,ad HHT  and 

,ad CCT align with measured data as well as 
,ad HCT . 

This goes against the results of [13]. 
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Chapter 6  – Conclusion and Recommendations 

Adiabatic temperature change is calculated from specific heat and magnetization 

data of nine MnFeP1-xAsx alloys supplied by BASF. Confidence in the calculation 

process is improved with MFT calculated Gadolinium data and measured Gadolinium 

data from AMES laboratory. The calculated adT  of MnFeP1-xAsx alloys are compared 

against measured adT  data. 

Calculated adT  data agree roughly with measured data for the nine data sets with 

two consistent errors; the 
peakT of the calculated data are colder than the measured data 

and the FWHM of the calculated data are larger than the measured data. The source of 

these errors could be due to the reversible assumption in the entropy calculation. The 

assumption may be invalid due to irreversibilities introduced by hysteresis. The data 

acquired from BASF could also be the source of the errors observed between calculated 

and measured adT .  

Results from nine MnFeP1-xAsx materials do not show that 
,ad HCT  aligns best 

with measured adT  data as has been suggested [13]. This analysis shows 
,ad HHT , 

,ad CCT  and 
,ad HCT   align equally with measured data. 

,ad peakT  and FWHM do not 

appear to be a function of thermal hysteresis for the nine materials studied which agrees 

with [31] since the maximum thermal hysteresis of the nine materials is 1.2 Kelvin which 

is lower than the field induced peak specific heat change. These results suggest that 

hysteresis of less than 1.2 Kelvin does not have an impact on adT . 
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Conducting the same analysis on more data sets of MnFeP1-xAsx alloys could help 

determine whether or not the source data caused the discrepancy between calculated and 

measured adT . Analysing data sets of MnFeP1-xAsx alloys with larger thermal hysteresis 

should be conducted. In doing so, the 4 Kelvin thermal hysteresis limit suggested by [31] 

as the threshold above which the adT  begins to decrease could be investigated. This 

would also help in determining the validity of the results from [13]. According to [13] the 

higher thermal hysteresis materials should have a decreased adT . 
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Appendix A – Isothermal field induced entropy change 
derivation 

Tishin 2003 states that the internal energy of a system is a function of entropy, volume 

and magnetic field or magnetization 

  , , au u s V B   (1.1) 

 ( , , ).u u s V m   (1.2) 

The total differential of internal energy is then given by 

 
adu Tds pdV mdB     (1.3) 

or 

 
adu Tds pdV B dm     (1.4) 

where the latter two terms are work terms.  The magnetic work term 
aB dm  is positive in 

the above equation because the internal energy of the system increases with 

magnetization.  The Gibbs free energy is defined by Tishin as 

 .ag u Ts pV mB      (1.5) 

Taking the total differential of Gibbs free energy yields 

 .a adg du Tds sdT pdV Vdp mdB B dm         (1.6) 

By substituting equation (1.4) into equation (1.6), the above differential is simplified to 

 .adg sdT Vdp mdB      (1.7) 

Taking the temperature derivative and the magnetic derivative of equation (1.7) gives the 

entropy and magnetization respectively. 

  ,

a

a

B

g
s T B

dT

 
  

 
  (1.8) 

  , a

a T

g
m T B

B

 
  
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  (1.9) 

Since Gibbs free energy is a thermodynamic potential, its second order mixed derivatives 

are equal, therefore 

 .

a aB Ba a aT T

s g g m

B B T T B T

           
          

           
  (1.10) 

The result is one of Maxwell’s relations 
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 .

aBa T

s m

B T

   
   

   
  (1.11) 

Finally, taking the integral with respect to the applied magnetic field strength to both 

sides of equation (1.11) yields an expression for the change in entropy due to change in 

applied magnetic field strength 
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