
IN , SECONDDEGREE PROJECT ENGINEERING PHYSICS 300 CREDITS
CYCLE

, STOCKHOLM SWEDEN 2015

Detecting anomalies in robot time
series data using stochastic
recurrent networks

MAXIMILIAN SÖLCH

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF ENGINEERING SCIENCES

D E T E C T I N G A N O M A L I E S I N R O B O T T I M E S E R I E S D ATA
U S I N G S T O C H A S T I C R E C U R R E N T N E T W O R K S

maximilian sölch

master’s thesis

department of mathematics

technische universität münchen

division of optimization and systems theory

department of mathematics

school of engineering sciences

royal institute of technology kth stockholm

tum supervisor: kth examiner:
Prof. Dr. Daniel Cremers Prof. Dr. Xiaoming Hu

tum advisors: kth supervisor:
Prof. Dr. Patrick van der Smagt
Dipl.-Inf. Justin Bayer

Asst. Prof. Dr. Johan Karlsson

December 1, 2015

Maximilian Sölch: Detecting Anomalies in Robot Time Series Data using
Stochastic Recurrent Networks

tum supervisor: kth examiner:

Prof. Dr. Daniel Cremers Prof. Dr. Xiaoming Hu

tum advisors: kth supervisor:

Prof. Dr. Patrick van der Smagt Asst. Prof. Dr. Johan Karlsson

Dipl.-Inf. Justin Bayer

location:
München

time frame:
June 1, 2015 through December 1, 2015

D E C L A R AT I O N

I hereby declare that this thesis is my own work and that no other
sources have been used except those clearly indicated and referenced.

München, December 1, 2015

Maximilian Sölch

iv

D E T E C T I N G A N O M A L I E S I N R O B O T T I M E S E R I E S
D ATA U S I N G S T O C H A S T I C R E C U R R E N T

N E T W O R K S

maximilian sölch

m .soelch@tum .de

solch@kth .se

A B S T R A C T

This thesis proposes a novel anomaly detection algorithm for detect-
ing anomalies in high-dimensional, multimodal, real-valued time se-
ries data. The approach, requiring no domain knowledge, is based
on Stochastic Recurrent Networks (STORNs), a universal distribution
approximator for sequential data leveraging the power of Recurrent
Neural Networks (RNNs) and Variational Auto-Encoders (VAEs).

The detection algorithm is evaluated on real robot time series data
in order to prove that the method robustly detects anomalies off- and
on-line.

v

A N O M A L I E D E T E K T I O N I N R O B O T E R Z E I T R E I H E N
M I T T E L S S T O C H A S T I S C H E R R E K U R R E N T E R

N E T Z W E R K E

maximilian sölch

m .soelch@tum .de

solch@kth .se

Z U S A M M E N FA S S U N G

In dieser Arbeit wird ein neuartiger Algorithmus entwickelt, um in
hochdimensionalen, multimodalen, reellwertigen Zeitreihen Anoma-
lien zu detektieren. Der Ansatz benötigt keine domänenspezifisches
Fachwissen und basiert auf Stochastischen Rekurrenten Netzwerken
(STORN), einem universellen Wahrscheinlichkeitsverteilungsapproxi-
mator für sequenzielle Daten, der die Stärken von Rekurrenten Neu-
ronalen Netzwerken (RNN) und dem Variational Auto-Encoder (VAE)
vereinigt.

Der Detektionsalgorithmus wird auf realen Robotertrajektorien eva-
luiert. Es wird gezeigt, dass Anomalien robust online und offline ge-
funden werden können.

vi

A N O M A L I D E T E K T I O N I R O B O T- T I D S S E R I E R M E D
H J Ä L P AV S T O K A S T I S K A ÅT E R K O M M A N D E

N ÄT V E R K

maximilian sölch

m .soelch@tum .de

solch@kth .se

S A M M A N FAT T N I N G

Detta arbete förslår en ny detektionsalgoritm för anomalier i högdi-
mensionell multimodal reellvärd tidsseriedata. Metoden kräver in-
gen domänkunskap och baseras på Stochastic Recurrent Networks
(STORNs), en teknik för oövervakad och universell fördelningssapprox-
imation för sekventiell data som bygger på Recurrent Neural Net-
works (RNNs) och Variational Auto-Encoders (VAEs).

Algoritmen utvärderades på robotgenererade tidsserier och slutsat-
sen är att metoden på ett robust sätt upptäcker anomalier både offline
och online.

vii

C O N T E N T S

preface 1

1 introduction 3

1.1 What is Anomaly Detection? 3

1.2 Related Work 3

1.3 Problem Specification 6

1.4 A Novel Approach 7

2 background and theory 9

2.1 Variational Auto-Encoder 9

2.1.1 Sampling by the Inverse Transform Method 9

2.1.2 Graphical Model Perspective 10

2.1.3 Auto-Encoding 11

2.1.4 Merging the Ideas: Variational Auto-Encoder 12

2.1.5 Energy Function: Variational Lower Bound 13

2.1.6 Architecture and Computation 17

2.1.7 Conclusion 19

2.2 Stochastic Recurrent Networks 19

2.2.1 Modeling distributions with RNNs 19

2.2.2 STORN: RNNs and the VAE 21

2.2.3 The Variational Lower Bound for STORN 24

2.2.4 Alternative Model: STORN with RNN prior 25

2.2.5 Architecture and Computation 27

2.3 Applicability to Anomaly Detection 29

2.3.1 Categorization 29

2.3.2 Justification against Requirements 31

3 experiments & evaluation 33

3.1 Data 33

3.1.1 Baxter Robot 33

3.1.2 Anomaly Scenario and Data Set 33

3.2 Training 37

3.3 Anomaly Detection Evaluation 40

3.3.1 Off-line Detection 40

3.3.2 On-line Detection 43

3.4 Conclusion 46

a appendix 51

a.1 Neural Networks 51

a.1.1 Feed-Forward Neural Networks 51

a.1.2 Recurrent Neural Networks 53

a.2 Estimating the Marginal Data Likelihood 54

a.3 Experiments: Alternative Latent Distributions 56

bibliography 59

ix

A C R O N Y M S

NN Neural Network

RNN Recurrent Neural Network

VAE Variational Auto-Encoder

STORN Stochastic Recurrent Network

pdf probability density function

cdf cumulative density function

KL Kullback-Leibler divergence

LSTM Long Short-Term Memory

ROC Receiver Operating Characteristic

tpr true positive rate

fpr false positive rate

AUC Area under Curve

PPV Positive Predictive Value

N O TAT I O N

t time index, t ∈ {1, . . . , T }

d dimension index, d ∈ {1, . . . ,D}

n sample index, n ∈ {1, . . . ,N}

x scalar quantity
(normal font, lower case)

x vector-valued quantity, x = (x1, x2, . . . , xD)T ∈ Rdx

(bold font, lower case)

W matrix-valued quantity
(bold font upper case)

xa:b with b>a: xa:b = (xa, xa + 1, . . . , xb),
a sequence of b− a+ 1 steps

xa:b with b < a: short-hand notation for a random variable
taking one value with probability 1 (i. e., ‘impossible’
rather than reversed sequence); usually used when con-
ditioning on previous time steps in the initial state

x

P R E FA C E

Anomaly detection is a task that has attracted many researchers from
a plethora of different domains. It has been of great interest for both
practitioners and theoreticians as a challenging real-world task.

Still, with all progress that has been made, a convincing generic ap-
proach to anomaly detection still is to be found. Our intuitive notion
of normality turns out to be extremely difficult to define in mathe-
matical terms.

This thesis aims at presenting a framework with the potential for
generic anomaly detection for time series data. The framework is
based on recent advances in approximate variational inference with
the help of Neural Networks (NNs) and Recurrent Neural Networks
(RNNs).

Specifically, the goal of this thesis will be to evaluate the potential
of Stochastic Recurrent Networks (STORNs), [2], to detect anomalies in
robot time series data

To this end, the thesis has been split into three chapters. Chapter 1

will give an introduction to anomaly detection, inspect related work
and determine the task at hand. Chapter 2 will then introduce the
novel theoretical framework for detecting anomalies. Chapter 3 eval-
uates experiments conducted to verify and justify the approach.

1

1
I N T R O D U C T I O N

This first chapter focuses on the intricacies of anomalies in the domain
of robots, Section 1.1, examine related work, Section 1.2, in order to
then specify the task in more detail in Section 1.3.

1.1 what is anomaly detection?

Anomaly detection1 is a special instance of classification problems.
We would like to learn a model that is able to discriminate between
‘normal’ and ‘anomalous’ behavior of the robot system. The major
difference compared to common (and fairly well-understood) two-
class classification problems is an imbalanced data set.

While data of a regularly running system can be recorded with de-
cent effort, data of the second class are much harder and more costly
to record: Firstly, one would have to destroy (or at least risk destruc-
tion of) the robot system in order to achieve reasonable data. Secondly,
the nature of anomalies can be very diverse (or multimodal). While
the normal behavior follows distinct, albeit complicated patterns, it is
hard to generalize all types of anomalies that can occur.

A situation where the robot is hit accidentally will differ signifi-
cantly from an anomaly caused by broken or worn-out parts, which
again will differ from an anomaly where the robot fails to grasp an
item. Moreover, anomalies that were previously unknown may occur.
Thus, not only will it be hard to sample all possible classes of anoma-
lies, but collecting sufficiently many examples for learning will be
almost impossible.

1.2 related work

The problems of anomaly detection outlined above have been exam-
ined by many researchers over the past decades. To justify a novel
anomaly detection algorithm, we will have a closer look at previous
approaches.

A very thorough 2014 review paper [20] investigates the available
literature (with over 300 references) and, moreover, extracts five high-
level approaches to anomaly detection.

1 Anomaly detection is also often referred to as either novelty detection or outlier
detection (cf. [20]). While these can almost be used as synonyms, anomaly detection
is most suitable in the context of robots, as we want to detect mostly faulty behavior,
which is best coined as an anomaly.

3

4 introduction

probabilistic approaches : The probability density of the data
assumed to be normal is estimated. Regions of low probability
mass are assumed to be anomalies.

While this yields a compact representation of the normal data
set (which may be discarded after training), it requires a reason-
ably high amount of data, in particular when concerned with
multivariate data. In this case, the curse of dimensionality kicks
in: The amount of possible patterns grows exponentially in the
number of dimensions. A lot of approaches thus apply exten-
sive preprocessing or assume independence of the components.

Furthermore, a lot of the probabilistic approaches come with
a specific assumption on the nature of the data, like fitting a
Gaussian Mixture Model to the data.

Time series data is mostly covered by so-called state-space mod-
els such as Hidden Markov Models (HMM) or Kalman filters
(both being subclasses of Dynamic Bayesian Networks (DBNs)).
However, as it is put in [7], “DBNs have typically been limited
to either relatively simple state transition structures (e. g., linear
models in the case of the Kalman filter) or to relatively simple
internal state structure (e. g., the HMM state space consists of a
single set of mutually exclusive states).”

distance-based approaches : Methods in this class harvest ideas
similar to k-Nearest-Neighbors or other clustering methods, as-
suming that normal data clusters in space. This is convenient
because no knowledge about the underlying data distribution
is required.

However, a well-defined distance measure for two data points
is required, which is particularly tricky for time series of dif-
fering lengths. In essence, the distance measure captures a lot
of our understanding of what an anomaly is (and, through the
back door, assumptions on the underlying distribution enter the
game). This is not always suitable.

If, e. g., an approach assumes anomalies to be sparse in space,
it will have a hard time detecting consistent wrong behavior
caused by worn-out parts of the robot.

Moreover, distance-based approaches do not scale well with
large multivariate data sets, as a lot of comparisons (or good
heuristics) are necessary to determine the normality of a new
sample.

domain-based approaches : Domain-based solutions take a dif-
ferent approach than probabilistic and distance-based ones. In-
stead of trying to capture the structure of the data itself, they try
to determine the domain of the data, i. e., a boundary around
normal data. Anything beyond this boundary is marked an

1.2 related work 5

anomaly. Most prominent within these approaches are Support
Vector Machines. The rationale behind these approaches is to try
and solve a simpler problem than finding the structure of data,
namely discriminating between normal and anomalous data.

The authors of [20] conclude, however, that the domain-based
approaches struggle with high-dimensional data. Furthermore,
the choice of appropriate parameters (in particular the kernel
functions involved in Support Vector Machines) is very hard.

reconstruction-based approaches : This class of approaches
is closely related to nonlinear regression and Neural Networks
(NNs). By techniques such as auto-encoding (cf. Section 2.1.3),
the network learns the structure of the data autonomously and
uses the reconstruction of the data as a measure of normality.

While these auto-encoding networks autonomously extract a
lower-dimensional representation, other approaches explicitly
map data to subspaces, e. g., by variants of Principal Compo-
nent Analysis.

Major drawbacks of these approaches are, on the one hand, their
sensitivity to the particular choice of (hyper-)parameters, and
on the other hand, their inapplicability to time series data.

information theoretic approaches : Approaches based on In-
formation Theory introduce a different type of measure of nor-
mality. The basic assumption is that novel data significantly
changes the information content of the normal data. To this
end, entropies are calculated either globally or locally and their
changes are evaluated in order to find anomalous data.

This already points to the main drawback: The choice of the spe-
cific metric is arbitrary and, thus, will not capture all types of
anomalies, in particular short term anomalies. From an informa-
tion theory point of view it is hard to assign any kind of score
to single points.

None of the approaches outlined in the review paper seems to
tackle robot time series data appropriately.

Thus, we need to come up with a novel algorithm that suits our
requirements.

A notable approach is taken in [17]. The authors worked on the
same raw data set as this thesis. Their method is based on the as-
sumption that anomalies are sparse and the trajectories are piece-
wise polynomial. It combines Robust Principal Component Analysis
(RPCA) with Group Fused LASSO (Least Absolute Shrinkage and
Selection Operator). The idea is that an RPCA-like error term recon-
structs the trajectory while Group Fused LASSO inspired regulariza-
tion terms impose a (grouped) sparsity among the components used

6 introduction

to reconstruct, so that particular parts of a movement can only be
reconstructed by certain groups.

While their anomaly detection routine yields good results, the ap-
proach has a couple of drawbacks: First and foremost, it is bound to
work off-line, as it needs to reconstruct the whole time series to work
properly. Secondly, the assumptions on the type of anomaly (sparse)
and trajectory (polynomial) are reasonable, yet fairly restrictive.

Comparison of the two methods, though using the same data set,
will be hard, as the paper only states results such as true and false
positive rates for segmentation imposed by the algorithm itself.

Consequently, a novel approach seems justified.

1.3 problem specification

In the previous section, we have seen that all approaches to anomaly
detection suffer from at least one of the following drawbacks. The
approaches are either

• only suitable for and also dependent on specific models (e. g.,
Kalman filters or distribution assumptions like Gaussian Mix-
ture Models)

• tailored to very specific domain knowledge or anomalies,

• very specific as to how an anomaly manifests itself in the data
(e. g., in a sparse region or in a changed information content),

• not suitable for data with high temporal dependencies (as op-
posed to data streams of very little structure),

• not suitable for multivariate data,

• or computationally infeasible for large data-sets.

With these preconditions in mind, we can specify requirements for
our approach.

We will deal with robot data, for a full specification see Section 3.1.
Most importantly, the data is multivariate. We will have to deal withinherently

multivariate data inherent dependencies between the sensors. A simple example shows
the consequences: For detecting certain anomalies of a robotic arm,
one might simply come up with hard-coded thresholds on individual
joint torques. This approach, however, neglects the aforementioned
dependencies: While in a certain arm configuration, a joint torque
value can be perfectly normal, in a different configuration it might
be anomalous. In this case, the anomaly may only be detected by
considering the torque value in the context of all variates.

Moreover, we deal with (real-valued) time series data, as opposedreal-valued time
series data to streams of random sensor data. The major difference is that the

temporal structure is important for detecting anomalies. Suppose,

1.4 a novel approach 7

e. g., the robot is fulfilling a task in a sequence of steps. While a move-
ment may be suitable for one of the steps, it can be anomalous in
another step. Thus, the temporal structure has to be considered.

Furthermore, a sequence of tasks or steps implies that data points complex, multimodal
data distributionwill have different modes. Our approach is thus required to be able

to deal with multimodal distributions.
Such complex distributions are particularly difficult: We would like no explicit

movement or task
model

to find an approach that is able to deal with these distributions with-
out explicitly implementing an underlying model. In fact, we would
like to find a sufficiently generic approach that can solve robot time
series anomaly detection on a variety of tasks and movements, not
just tailored to each and every individual task.

As mentioned before, data will be imbalanced. In fact, our training little anomalous data

data will consist of normal behavior data only. That is to say, our
approach has to be unsupervised (or semi-supervised).

Lastly, in the setting of a robot fulfilling a task, any anomaly should on-line detection

be detected as soon as possible. To prevent hazards, we might even
require instantaneous detection of some anomalies. In particular, we
cannot wait for the whole trial to be finished before we can check our
data for anomalies. This means that we require a real-time and on-line
capable approach. This limits our methodology, since we can only
check data prior to the anomalies. It also limits us to fairly simple,
real-time capable calculations (the limitations are given by hardware).

1.4 a novel approach

All examined approaches fall short of at least one, usually even sev-
eral of the aforementioned essential requirements. Thus, a novel ap-
proach to anomaly detection is justified. We will introduce it in Chap-
ter 2 and try to classify it according to the classes in the review paper
by Pimentel et al. Chapter 3 will then evaluate our approach against
the requirements.

2
B A C K G R O U N D A N D T H E O RY

The present chapter is dedicated to introducing Stochastic Recurrent
Networks (STORNs). We will first develop the theory of Variational
Auto-Encoders (VAEs) in Section 2.1, which we will use as the basis for
STORNs in Section 2.2. Once we have developed theoretical properties,
a corresponding computational architecture and a suitable learning
algorithm, Section 2.3 will justify STORNs against the requirements
specified in Section 1.3.

For this chapter, we assume basic knowledge about properties of
Neural Networks (NNs) and Recurrent Neural Networks (RNNs). For
a short recap, the reader is referred to Appendix A.1.

2.1 variational auto-encoder

Our goal is to learn complex nonlinear distributions that capture the
structure of our data at hand and efficiently determine the likelihood
of new data points. Moreover, we would like to be able to efficiently
generate new samples according to the complex distribution. In a first
attempt to achieve this, we will neglect any temporal structure of the
data.

A recent approach named Variational Auto-Encoder (VAE), devel-
oped independently by [21, 14], aims at solving this problem by first
sampling from simpler distributions (e.g., Gaussian distributions) and
then applying a differentiable, parametrized and thus trainable non-
linear transform. After introducing the mathematical basis, we will
examine and explain this approach further.

2.1.1 Sampling by the Inverse Transform Method

In theory, sampling can easily be done by the so-called inverse trans-
form method. Assume that you can generate samples from a uniform
random variable u on the unit interval [0, 1]. Furthermore, assume
that you have a random variable z with associated cumulative den-
sity function (cdf) Fz. Then, the random variable F−1z (u) follows the
same distribution as z.1

In addition, we observe that for any continuous distribution of z,
the cdf and its inverse cancel and we can conclude that the random
variable Fz(z) = Fz(F

−1
z (u)) = u follows a uniform distribution on

1 Note that, depending on the type of the random variable z, e.g., in the case of a
discrete variable, the cdf Fz may not be invertible in closed form. In this case, we
define F−1z (u) := inf{y | Fz(y) > u}.

9

10 background and theory

z

x

Figure 1: Probabilistic graphical model of a Variational Auto-Encoder (VAE).
It expresses the conditional dependence between the observed or
desired variable x, and a latent variable z. The graphical model
shows how to factorize the joint distribution: p(x, z) = p(x | z)p(z).

the standard interval. Merging these two observations, we can gen-
erate samples of a random variable x with associated cdf Fx by first
drawing a sample from an arbitrary continuous random variable z and
then transforming x := F−1x (Fz(z)). Usually, z follows a simpler dis-
tribution than x in order to justify the computational overhead. All
these results can also be established for vector-valued variables x and
z.

However, in practice we run into a plethora of problems. The most
prominent problem is that for most complicated distributions the cdf

is not available in closed form. The same applies for its inverse. In
fact, even the inverse cdf of the Gaussian distribution can only be
approximated numerically.

2.1.2 Graphical Model Perspective

Sampling by the inversion method can also be viewed from a different
perspective: as a special case of graphical models.

Graphical models use graph theory in order to depict dependency
structures among random variables. The core assumption is that, given
a directed graph G where each node corresponds to a random variable
or vector xi, i = 1, . . . ,N, one can efficiently write the joint distribu-
tion as

p(x1, . . . , xN) =
N∏
i=1

p(xi | PAi). (1)

Here, PAi denotes the set of all variables that correspond to parent
nodes of the node xi in G. 2

The core idea is to represent the joint probability with the simplest
possible conditional distributions.

For a more thorough introduction to graphical models, cf. [18].
In the context of this thesis, we will explicitly model the dependen-
cies according to graphical models. In the spirit of the inverse trans-
form, some of our conditional distributions will be deterministic: We

2 Informally, one can think of the parent variables influencing their children, although,
in principle, the probabilistic dependency works both ways. In general, extracting
causal structures is a field of ongoing research, cf. [19].

2.1 variational auto-encoder 11

x

z

x̂

encoder

decoder

Figure 2: Example of a Deterministic Auto-Encoder with six input units and
consequently also six output units, as well as four latent units. One
can see the typical bottleneck to prevent the auto-encoder from
simply passing the input from top to bottom.

start of from a simple distribution p(z) and model p(x | z) explicitly
through an approximation of the inverse transform. Then, we can use
the fact that

p(x) =
∫

z
p(x, z)dz =

∫
z
p(x | z)p(z)dz. (2)

By integrating out z, the marginal density p(x) becomes stochastic,
even if our model p(x | z) was deterministic.

The admittedly simple graph corresponding to the inverse trans-
form is depicted in Fig. (1). The graphical model view will be partic-
ularly useful when introducing time to our model in Section 2.2.

2.1.3 Auto-Encoding

Besides the inverse transform view and the graphical model view,
one can interpret the relation between the simpler z and the complex
x in a third way: z encodes a latent structure found in the observed
variables x.

This has been studied in the deterministic case: So-called auto-
encoders (cf. [18, p.1000f]) learn to find reasonable representations
z by simultaneously learning two Neural Networks (NNs). The first
network encodes a specific x in a corresponding z, while the second
network takes this z as input and reconstructs (i. e., decodes) an ap-
proximation x̂, thus the name auto-encoder. The parameters of the
two networks can, e. g., be trained simultaneously by minimizing the
squared error between x and x̂.

The dimension of z is smaller than that of x in order to create a
bottleneck and to prevent the auto-encoder from learning the identity
transform as both encoder and decoder. If the reconstruction error is
minimized, one assumes to have found a reasonable code z.

Fig. (2) depicts an example of a deterministic auto-encoder with
the typical bottleneck in the latent space.

According to [18], linear auto-encoders, i. e., those using NNs with-
out nonlinear transfer functions, are provably equivalent to Principal

12 background and theory

Component Analysis (PCA), an orthogonal transformation onto the
most prominent eigenvectors. Nonlinear auto-encoders can find non-
linear structures in the data, but suffer from vanishing gradients and
poor local minima, cf. [6].

2.1.4 Merging the Ideas: Variational Auto-Encoder

The Variational Auto-Encoder aims at combining the deterministic
auto-encoder mechanism with the stochastic inversion method.

The deterministic bottleneck layer z of the auto-encoder is replaced
by stochastic units with. By doing so, we do not simply get a specific
code z per sample of x, but a probability distribution of codes. From
this distribution, we then compute a distribution of the complex data
x as a nonlinear transform (or decoding) of z. This nonlinear trans-
form is a differentiable approximation of the mapping F−1x ◦ Fz from
the inversion method. In the multivariate case, we can extend this ap-
proach: The inversion method requires vectors of the same dimension
all along. Here, we explicitly allow a different dimensionality—we ex-
pect that our high-dimensional data is tightly coupled and generated
by a latent structure of different dimension. We will refer to the de-
coding, approximate inverse transform part as the generative model.

The upper, encoding part will be denoted as the recognition model.
It is necessary for two reasons. Firstly, we have no ground truth about
latent states z, just observed data. Hence we need the trainable recog-
nition model to provide the generative model with input. Secondly,
the final model will not only be used for generating new samples (for
which the generative model would be sufficient), but also for evaluat-
ing the likelihood. In this case, we will get an observation x and need
the corresponding code distribution over z. This will be provided by
the recognition model.

The approximation of the nonlinear transforms involved can be
done via Neural Networks (NNs). They are particularly suited because
of their universal approximation capability (as proven by [15, 12, 9],
cf. Appendix A.1), which is of particular interest since the wanted
transform is usually not available in closed form (even the inverse
transform of Gaussian variables cannot be done in closed form). This
has a very interesting theoretical consequence: VAEs are universal dis-
tribution approximators. The inverse transform method is universal for
all distributions, and because the universal approximation capabil-
ity of NNs does not impose restrictions on the non-linear transform
applied, the particular distribution transform F−1x ◦ Fz can be approx-
imated arbitrarily well with a sufficiently large NN.

Nevertheless, it should be noted that the approach is not exclu-
sively bound to NNs. Any function approximation method, e. g., Gaus-
sian Processes, can replace them.

2.1 variational auto-encoder 13

It is worth noting that, other than the deterministic auto-encoder,
the Variational Auto-Encoder does not necessarily require a dimen-
sionality reduction in the latent layer: A given x is mapped to a dis-
tribution p(z | x); it does not suffice that these latent distributions dif-
fer numerically. In the decoding process of the auto-encoder, we will
draw a single sample z from p(z | x), which imposes noise on the la-
tent representations. This means that the latent distribution p(z | x1)
and p(z | x2) of two points x1 and x2 may differ, but still produce the
same sample z. For the two points to be distinguishable, their latent
distribution must share little or no probability mass.

This observation can be called a ‘soft’or ‘differential’discretization
of the latent space. The discretization is not hard-coded (by, e. g., only
allowing integers), but it limits the ability to encode information even
in high-dimensional latent spaces.

2.1.5 Energy Function: Variational Lower Bound

In order to apply Neural Networks (NNs), we will have to find an
energy function that captures how well the data is explained by the
distribution that the NN approximates. A good, interpretable energy
function circumvents negative properties of the deterministic auto-
encoder.

To this end, let now x represent the vector-valued input, e.g., our
data. We are interested in the posterior distribution p(z | x), an op-
timal code distribution given the input. However, it is not easily as-
sessable. Hence, we approximate it by a recognition model, which is
parametrized by the parameter set φ and represented by the distribu-
tion qφ(z | x) 3. Note that this means that we will not get a determin-
istic code z for a given x, but a probability distribution. Our goal will
be to find qφ such that it closely resembles the true posterior.

We can analyze the unknown data likelihood p(x). We are inter-
ested in finding a model that maximizes the likelihood of our:

lnp(x) = lnp(x)
∫
qφ(z | x)dz︸ ︷︷ ︸

=1

=

∫
qφ(z | x) lnp(x)dz (3)

=

∫
qφ(z | x) ln

p(x, z)
p(z | x)

dz (4)

=

∫
qφ(z | x) ln

p(x, z)qφ(z | x)
p(z | x)qφ(z | x)

dz (5)

=

∫
qφ(z | x) ln

p(x, z)
qφ(z | x)

dz︸ ︷︷ ︸
=:LVAE(q(z))

+

∫
qφ(z | x) ln

qφ(z | x)
p(z | x)

dz︸ ︷︷ ︸
=KL(qφ(z|x)||p(z|x))

(6)

3 If it is clear from the context, we will use φ or qφ to identify the whole recognition
model, not just the parameters or the distribution

14 background and theory

In the first and the third line we conveniently multiplied by 1, in the
second line we used that p(x, z) = p(z | x)p(x).

The term KL
(
qφ(z | x) || p(z | x)

)
denotes the Kullback-Leibler di-Kullback-Leibler

divergence vergence (KL) between our learned model qφ and the wanted but
unknown posterior distribution p(z | x) on the codes. For given den-
sities f and g with shared support, it is defined as

KL(f || g) =
∫
f(x) ln

f(x)
g(x)

dx. (7)

Though it fails to be symmetric, the KL is a measure of dissimilarity
between the densities f and g (or, more precisely, the difference in
information content of g from f). If they are very close to each other,
the argument of the logarithm is close to 1 and it evaluates to values
around 0. Conversely, if f has high mass where g has mass close to 0,
the logarithm’s argument evaluates to extremely high values, leading
to an increased KL.

The KL, also of great importance in information theory, is closely
related to concepts like Shannon entropy. Intuitively speaking, it mea-
sures the (expected) amount of extra bits needed to encode x sampled
from g with a code optimized for f.4

With this in mind, remember that our goal was approximating the
posterior with the recognition model distribution qφ. For example,
we might like to choose

q∗(z) = arg min
qφ

KL
(
qφ(z | x) || p(z | x)

)
. (8)

Yet again, we run into the problem that we have no explicit knowl-
edge about the posterior. Nevertheless, we can now exploit two facts.

On the one hand, the left-hand side of Eq. (6), the data log-likelihood,
is constant (though unknown) given φ.

On the other hand, the KL is nonnegative:

KL(f || g) =
∫
f(x) ln

f(x)
g(x)

dx = −Ef

[
ln
g(x)
f(x)

]
(9)

> − ln Ef

[
g(x)
f(x)

]
= − ln

∫
f(x)

g(x)
f(x)

dx (10)

= − ln
∫
g(x)dx = 0 (11)

From first to second line, we used Jensen’s inequality, which can be
applied from right to left because the negative logarithm is convex
and g/f is integrable on the support of f and g (which we assume to

4 Consider the Morse code for the English language. If words of a different language
are encoded in this code, they will be longer than they would be in a Morse code op-
timized for this particular language. The expected amount of extra bits (correspond-
ing to one signal in Morse) is measured by the KL between the letter frequencies in
the two languages.

2.1 variational auto-encoder 15

be equal) as a ratio of densities. In the last step, we used the fact that
g is a probability density and thus integrates to 1.

Given these two facts, let us reconsider Eq. (6). Because the left-
hand side is constant w.r.t. φ, we see that the two ultimate summands
are coupled and thus

arg max
qφ

LVAE
(
qφ(z | x)

)
= arg min

qφ
KL
(
qφ(z | x) || p(z | x)

)
.

(12)

On the right-hand side, we recognize our desired, yet intractable min-
imization task from Eq. (8). Fortunately, it can now be replaced with
a maximization task, which will turn out to be comparably simple.

Moreover, since the KL is nonnegative, it follows that

LVAE
(
qφ(z | x)

)
6 lnp(x). (13)

The term LVAE
(
qφ(z | x)

)
is thus called the variational lower bound.

Since we would like to have an optimal, yet intractable p(x), we
can instead maximize the lower bound and indirectly improve p(x).
Simultaneously, due to our finding in Eq. (12), we achieve a good
approximation of the posterior on the latent code p(z | x) on the fly. 5

Consequently, we should have a closer look at the lower bound. To
this end, we will need to introduce a prior p(z) on the codes, which
is independent of the input. Now:

LVAE
(
qφ
)
=

∫
qφ(z | x) ln

p(x, z)
qφ(z | x)

dz (14)

=

∫
qφ(z | x) ln

p(x | z)p(z)
qφ(z | x)

dz (15)

=

∫
qφ(z | x) lnp(x | z)dz −

∫
qφ(z | x) ln

qφ(z | x)
p(z)

dz

(16)

= Eqφ [lnp(x | z)] − KL
(
qφ(z | x) || p(z)

)
(17)

Again, we used the multiplication rule, as well as a rephrasing ac-
cording to logarithm rules.

This form turns out to be very useful. If we interpret p(x | z) from
the first term as a parametrized generative model pθ(x | z), we can
install and train any parametrized model. Given this, we can inter-
pret this expected value as a probabilistic analogue of the reconstruc-
tion error that would be used in the optimization of a normal auto-
encoder. Good reconstruction is reflected by a high expected likeli-
hood. Since z is distributed according to the recognition model distri-
bution qφ, we can use Monte Carlo and stochastic gradient methods
to determine this part of the loss.

5 In Appendix A.2, we will derive a Monte Carlo estimate for the true data likelihood
p(x), which is useful for evaluating the tightness of the lower bound.

16 background and theory

The second term is also tractable: The recognition model distribu-
tion qφ is now compared to the fixed prior p(z). This KL and its
derivative can be evaluated in closed form if the distributions are of
a simple form, such as Gaussian or Laplace distributions.6

The essential trick is that we can still calculate the derivative with
respect to the parameters φ. For Gaussian distributions, this is pos-
sible, because if qφ ∼ N(µ,σ2), then we can draw ε ∼ N(0, 1) and
reparametrize z = µ + σε. The white noise ε can be viewed as an
additional input to our model and we can take the derivative w.r.t. φ
without having to propagate through a stochastic variable. This key
trick to VAEs is thus called reparametrization trick.

It is also important to notice that the two summands of the lower
bound interact. The reconstruction term would like to optimize qφ
such that the data likelihood is maximized. This is most easily done
by fitting perfect code distributions with very little variance to the
data. This leads to very good reconstructions. However, all informa-
tion extracted from data during the learning process is encoded in
the recognition model and the generative model bears very little in-
formation. In particular, sampling results will be poor.

In contrast, the KL divergence regularizes qφ such that it does not
differ too much from our prior. In other words: The loss function
implicitly tries to find a trade-off between a good reconstruction and
a simple latent structure. The simplicity in the latent structure forces
the learning algorithm to encode information in the generative model,
since it cannot manipulate the latent code distributions arbitrarily.

Moreover, the recognition model φ and the generative model θ are
trained simultaneously through one stochastic gradient descent step.

Starting from an intractable data log-likelihood, we have gained at
least three desirable outcomes:

1. We have an approximate, implicit representation of p(x), which
has provable universal approximation capabilities. It will allow
for probabilistic anomaly detection on this distribution.

2. Not only can we access p(x) indirectly, but we can create new
and unknown samples following the approximate distribution.

3. We have found a differentiable and well interpretable compres-
sion technique.

Note that our derivation used no assumptions other than our abil-
ity to sample from either p(z) or qφ(z | x). The only restriction so
far is that we optimize a lower bound. Nevertheless, the theory al-
lows that a good model choice and good optimization techniques in
Eq. (12) can close the gap arbitrarily well.

6 Otherwise, if necessary, it can be sampled and estimated efficiently by Monte Carlo
methods: The KL is an expected value. We need to draw samples from qφ, which is
easily possible by construction, and evaluate both qφ and the prior p(z), which is
also easily possible because we can control both by our model choice.

2.1 variational auto-encoder 17

2.1.6 Architecture and Computation

To understand the model better, we will now have a look at the ex-
plicit architecture to implement the theory derived above.

In Fig. (3), we show one possible architecture of the VAE, as sug-
gested by [14, 21]. It consists of two main parts. On the left-hand
side, the teal colored nodes represent a fully-connected, top-down
Feed-Forward Neural Network (NN). This implements our recogni-
tion model φ. Its input is data, depicted by the green box and in-
putting to the blue input nodes, and the output produced are the
sufficient statistics of the distribution qφ, depicted by cyan nodes.
Note that in theory, we could choose any qφ. In practice, we need to
evaluate the KL with the prior, so that we will restrict ourselves to,
e. g., Gaussian distributions. In this case, the output would be, e. g., a
set of tuples, each of which holds mean and covariance for a scalar
component of z, which would mean that we assume a latent diagonal
Gaussian distribution structure. Similarly, one can imagine different
structures, such as correlated Gaussian variables or completely differ-
ent distributions. It is important to notice that decoupled latents z1:T
do not imply that the observed x1:T are decoupled as well.

Throughout this thesis, we will consider diagonal Gaussian distri-
butions only, with the exception of Appendix A.3, where we tested
uniform distributions, but found them to contribute no improvement.

During the training procedure, we aim at reconstructing our data.
To this end, we sample from the distribution fixed by the output of
the first neural network. The sample (yellow nodes; the rectangular
shape indicates stochasticity) is fed as input to the second neural net-
work, which is depicted on the right-hand side as a bottom-up, fully-
connected feed-forward neural network (orange nodes). The output
of this are sufficient statistics of the generative output distribution
pθ(x | z) (violet nodes). Note that the reconstruction sampled from
the output distribution is not deterministic. Instead, this probabil-
ity distribution leaves room for modeling of noise that cannot be ex-
plained by the nonlinear generative model, e.g., sensor noise.

The lower bound function defined in Eq. (17) will serve as our loss
function. Its two components are depicted as red diamonds.

Due to the simultaneous training of recognition and generative
model, after learning is completed, the generative model θ can be
used independently for sampling artificial data that follows the same
distribution as our ground-truth data. Instead of using samples from
the recognition model distribution qφ, we now use samples from the
prior p(z) (which is why both are depicted in cyan). Notice that the
error function punishes divergence between these two sampling dis-
tributions, so that in a well-trained model, this should ideally not
make much of a difference. This generative sampling process corre-

18 background and theory

z
1
z
2
z
3

x
1
x
2
x
3
x
4
x
5

D
= {x

(n
)
|
j
=
1,...,N }

R
EC

K
L

Prior
D

istribution
p
(z
)

Latent
Sam

ples
rec.:z

∼
q
φ
(z

|x
)

gen.:z
∼
p
(z
)

G
enerative

M
odel

θ

(e.g.,N
euralN

etw
ork)

O
utput

Layer
p
θ
(x

|z
)

N
egative

Log
Likelihood

−
E
q
φ
(z
|x
) [log

p
θ
(x

|z
)]

K
L

D
ivergence

K
L (q

φ
(z

|x
)
||
p
(z
))

Latent
D

istribution
q
φ
(z

|x
)

R
ecognition

M
odel

φ

(e.g.,N
euralN

etw
ork)

Input
Layer

D
ata

x
(n

)
∼
p
(x
)

(unknow
n)

Figure
3:C

om
putational

architecture
of

a
V

ariational
A

uto-Encoder
(VA

E).
The

left
part

show
s

the
recognition

m
odel

or
encoder.

It
is

param
etrized

by
φ

,
in

this
case

the
w

eights
of

a
fully

connected
Feed-Forw

ard
N

eural
N

etw
ork

(N
N

).
Its

output
fully

characterizes
the

distribution
q
φ

(e.g.,
m

ean
and

covariance
of

a
G

aussian
distribution).

The
right

part
show

s
the

generative
m

odel
θ,

im
plem

ented
by

a
fully-connected

Feed-Forw
ard

N
N

.Itis
fed

w
ith

sam
ples

(indicated
by

square
nodes

and
dashed

lines)from
q
φ

(in
case

oftraining/reconstruction)or
a

prior
p
(z
)

(in
case

ofsam
pling).T

he
red

diam
onds

correspond
to

the
tw

o
sum

m
ands

ofthe
energy

term
.C

om
putationalflow

is
in

direction
ofthe

arrow
s,backpropagation

of
the

gradient
against

the
direction

of
the

arrow
s.Input,output

or
latent

dim
ension

as
w

ell
as

the
N

N
structures

m
ay

deviate
from

this
figure

and
need

not
be

sym
m

etric.
T

he
figure

only
depicts

com
putationalflow

during
training

or
reconstruction.For

purely
generative

sam
pling,only

the
generative

m
odelon

the
right

side
is

necessary
and

fed
w

ith
sam

ples
from

the
prior.

2.2 stochastic recurrent networks 19

sponds to using only the full right-hand side in Fig. (3), including the
cyan-printed prior distribution.

The difference between qφ and p(z) can mostly be seen in regions
where the prior has significantly more mass than the recognition
model distribution. Samples from these regions correspond to latent
codes z that, after the generative transformation through θ, have po-
tentially no resemblance to any point in our data set. It remains to
evaluate whether this effect becomes negligible after sufficiently thor-
ough training.

2.1.7 Conclusion

In this first part of Chapter 2, we have introduced the so-called Varia-
tional Auto-Encoder (VAE). With its help, we have derived a tractable
and readily interpretable lower bound LVAE

(
qφ
)

of the data log-
likelihood. Upon maximizing, we get a probabilistic encoder and de-
coder that maximizes the likelihood of our data. We have thus found
a probabilistic compression algorithm that tries to find a trade-off
between simplicity of the latent structure and precise reconstruction,
which should be more robust to common phenomena such as over-
fitting.

Moreover, we have introduced the computational architecture to
exploit these theoretical results.

One drawback of the VAE so far is that it is bound to fixed-size
input. This can be overcome by replacing the Feed-Forward NNs by
RNNs, which yields so-called STORNs, as first introduced by [2]. The
details will be described in Section 2.2.

2.2 stochastic recurrent networks

In Section 2.1 we have introduced the Variational Auto-Encoder (VAE),
a powerful model for approximating nonstandard, high-dimensional
probability distributions. In order to apply this model to robot data,
we would like to generalize the concept of VAEs to time series data.

In [2], this is achieved by replacing the two NNs of the VAE, recogni-
tion and generative model respectively, by RNNs. This model is called
a Stochastic Recurrent Network (STORN).

This section is dedicated to formally introducing and justifying
STORNs, much like we previously did with the VAE. Section 2.3 will
be comparing STORN against the model requirements of our task as
lined out in Section 1.3

2.2.1 Modeling distributions with Recurrent Neural Networks

Previously, we have seen that NNs are a powerful tool: Due to the
universal approximation capability, we are able to model any trans-

20 background and theory

form of distributions via an approximation of the inverse transform
F−1x ◦ Fz (plus potential additional nonlinear transforms).

Recurrent Neural Networks (RNNs) can be seen as extensions of
Neural Networks (NNs). The approximation capability is inherited by
RNNs: They were shown to be Turing-complete, cf. [25], i. e., infor-
mally, any computation a computer can do can be expressed through
a RNN. Moreover, they are able to approximate any measurable map-
ping of time series onto one another under very mild conditions on
input and output, cf. [8].

Using RNNs for distribution representation is a common task. By
applying the multiplication rule, one may write7

p(x1:T) =
T∏
t=1

p(xt | x1:t−1), (18)

which fits the architecture of a common RNN: Time step t is processed
from the information extracted from all previous time steps 1 through
t − 1. The network now has to model the conditional distributions
p(xt | x1:t−1). This can be done in numerous ways.

In a simple setting, one may apply naïve Bayes, i. e., assuming in-
dependence of the components of the random vector xt given all pre-
vious time steps x1:t−1:

p(xt | x1:t−1) =
D∏
d=1

p(xt,d | x1:t−1) (19)

While this only implies conditional independence of the compo-
nents, it is still a strong assumption, in particular with our high-
dimensional robot data.

As an example, consider a moving robotic arm: Given the previous
trajectory x1:t−1, one can, e. g., extrapolate the next points linearly.
This would be fully captured by naïve Bayes: The d-th component
xt,d is an extrapolation of the d-th component of the previous time
steps.

Naïve Bayes is suboptimal, though, in the following scenario: Con-
sider a turning point in the trajectory with multiple options to con-
tinue. Rather than choosing one direction to continue and applying
it to all components, naïve Bayes would pick one direction for each
component, leading to samples that are actually implausible or im-
possible.

Coupling the components at time step t has been a field of research
for the past years. As described in [2], all of these approaches suffer
from one or several of the following drawbacks:

7 x1:0 = Ω, the underlying probability space, which is not of further interest for our
needs. This convention will be used throughout this thesis without further mention
to facilitate notation.

2.2 stochastic recurrent networks 21

• The model scales at least linearly, which is inconvenient for
high-dimensional data-sets.

• The restrictions on the distributions p(xt | x1:t−1) are strong.

• Costly computations such as Markov Chain Monte Carlo steps
are required.

VAEs suffer from none of these drawbacks. Thus, we seek to enhance
their power on static data to time series data.

2.2.2 STORN: Recurrent Nets and the Variational Auto-Encoder

The VAE introduced a latent structure z into our model p(x) of the
observable variables x. We will proceed analogously in the case of
time series data, though we need some additional arguments to end
up with a similar generative model as for the VAE.

Starting from Eq. (18), the law of total probability allows us to
rewrite the likelihood p(x1:T) of our time series as

p(x1:T) =
T∏
t=1

p(xt | x1:t−1) (20)

=

∫
z1:T

p(z1:T)
T∏
t=1

p(xt | x1:t−1, z1:t, zt+1:T)dz1:T . (21)

Much like with the VAE, we have introduced a latent structure z1:T
that will allow us to leverage the power of RNNs. For now, we assume
that we can handle p(z1:T) and focus on the temporal transition terms
of type p(xt | x1:t−1, z1:t, zt+1:T). It is this term that has to be modeled transition term

(or, more precisely, variationally approximated) by an RNN.
This step, however, is not as straightforward as before: In the VAE

case, x was only conditioned on one z, so that we could model p(x | z)
through a NN that learns the random variable transformation from z
onto x. With the new temporal structure, not only is xt conditioned
on multiple latent variables z1:T , but furthermore also on x1:t−1.

At this point, further statistical analysis depends on the choice of
our model to approximate the transition terms (or vice versa, our
choice of model depends on statistical choices). RNNs exist in a plethora
of different architectures. For simplicity, we will stick to the follow-
ing recursive architecture with nonlinearities fh and fy and for t =

1, . . . , T :

h0 = binit (22)

ht = fh

(
xt−1W(g)

in + ztW̄
(g)
in + ht−1Wrecurr + bhidden

)
, (23)

yt = fy(htWout + bout) (24)

If we interpret the latent variable zt as an additional input to the
transfer function, these equations form a simple RNN with one hidden

22 background and theory

layer. The outputs yt represent sufficient statistics of the temporal
transition distribution:

p(xt | x1:t−1, z1:t, zt+1:T) = p(xt | yt) (25)

The weight matrices and the biases form the set of parameters8

θ =
{

W(g)
in , W̄(g)

in , Wrecurr, Wout, binit, bhidden, bout

}
. (26)

It should be noted, though, that the extension to richer RNN architec-
tures (e. g., Long Short-Term Memory (LSTM) RNN, cf. Appendix A.1.2)
can be done with reasonable effort as long as the probabilistic depen-
dency structure of the temporal transition in Eq. (21) is preserved.
This prohibits, e. g., bidirectional RNNs, which can go back and forth
in time.

Of course, we can also apply deeper architecture in terms of layers.
Since it would mostly lead to notational overhead rather than theo-
retical insight, it will be left out in this analysis (and applied in the
experiments).

Statistically, the model assumptions (23) and (24) imply two effects.
Firstly, we neglect any effect of future latent on present observable
variables due to the recursive structure of the equations. For our tran-
sition distribution, this means

p(xt | x1:t−1, z1:t,����zt+1:T) = p(xt | x1:t−1, z1:t). (27)

This seems a reasonable choice, in accordance with our common per-
ception of ‘no present effects from future causes’. Nevertheless, it is
only an assumption of statistical independence—in this case a very
subtle difference: Reconsider the robot trajectory with a turning point
and multiple potential trajectories to continue. Knowledge about the
future trajectory (or its latent cause) will affect our prediction for the
transition at the turning point.

(Right now, we are only considering the generative model. We will
later use the observation about useful knowledge of the future to in-
stall different recognition model architectures. Depending on the con-
crete application of STORN, e. g., bidirectional RNNs are allowed or
disallowed.)

Secondly, we assume some Markovian property: Given the hidden
state ht, xt (or rather its distribution, cf. Eq. (27)) is fully determined
and independent of x1:t−1, z1:t, and also h0:t−1. This assumption is
mostly justified by the simplicity of our model. If necessary, the as-
sumption can be weakened by using a richer model. A notable exam-
ple are LSTM networks.

8 The choice of θ as notation is motivated by the notation in Section 2.1.

2.2 stochastic recurrent networks 23

For further analysis, we will again switch back to the purely statis-
tical point of view. Starting from Eq. (27), we introduce the hidden
states h0:t by applying the (conditional) law of total probability:

p(xt | x1:t−1, z1:t) (28)

=

∫
h0:t
p(xt |(((((

(((x1:t−1, z1:t, h0:t︸ ︷︷ ︸
ht

)p(h0:t | x1:t−1, z1:t)dh0:t (29)

The introduction of h0:t allows us to use the Markov property intro-
duced by Eq. (23) and Eq. (24) at the cost of introducing a new dis-
tribution. Consider this new conditional distribution of the hidden
states h0:t given the latent variables z1:t and data x1:t−1:

p(h0:t | x1:t−1, z1:t) =
t∏
s=0

p(hs | x1:t−1, z1:t, h0:s−1) (30)

= p(h0)
t∏
s=1

p(hs | xs−1, zs, hs−1) (31)

The first line is once again the multiplication law. The second line
stems from the structural equation Eq. (23): hs solely depends on
xs−1, zs and hs−1, with the special case h0 as in Eq. (22). In fact, the
dependency is deterministic: given all three conditional variables, hs
is uniquely determined.

Putting the pieces together, we can rewrite the transition probabil-
ity as

p(xt | x1:t−1, z1:t) (32)

=

∫
h0:t
p(xt | x1:t−1, z1:t, h0:t)p(h0)

t∏
s=1

p(hs | xs−1, zs, hs−1)dh0:t.

(33)

Despite the cross-dependencies over time, we can solve integral (33)
starting from h0. Since p(h0) is, from Eq. (22), a Dirac measure, inte-
grating out h0 will turn every occurrence into a deterministic value,
which is inserted into p(h1 | z1, h0), the only remaining term depend-
ing on h0. This way, we entirely eliminated the integral w.r.t. h0. But
with the random variable h0 being replaced by a deterministic value,
we can now apply the same arguments to p(h1 | z1, h0), and subse-
quently to the whole product.

In the end, we are left with

p(xt | x1:t−1, z1:t) = p(xt | ht(xt−1, zt, ht−1)). (34)

Note that this is in fact a recursive notation. The term ht−1, e. g.,
is itself a function evaluation ht−1(xt−2, zt−1, ht−2) at the previous
time step. Furthermore, ht in Eq. (29) refers to a random variable, as
opposed to a deterministic value in Eq. (34).

24 background and theory

h0

z1

h1

x1

zt

ht

xt

zt+1

ht+1

xt+1

Figure 4: Probabilistic graphical model of a Stochastic Recurrent Network
(STORN).

In total, we end up with the following model:

p(x1:T) =
∫

z1:T
p(z1:T)

T∏
t=1

p(xt | x1:t−1, z1:T)dz1:T (35)

=

∫
z1:T

p(z1:T)
T∏
t=1

p(xt | ht(xt−1, zt, ht−1))dz1:T (36)

So far, we have ignored the prior distribution of the latent variables
z1:T introduced in Eq. (21).

The original paper [2] assumes that the prior factorizes, i. e., theindependent prior

latent variables are independent over time:

p(z1:T) =
T∏
t=1

p(zt) (37)

This assumption greatly simplifies sampling: All prior samples can be
drawn simultaneously because we can draw standard normal noise
and then reparametrize with the sufficient statistics from the recog-
nition model output, the reparametrization trick of [14, 21] that also
allows us to calculate the gradient w.r.t. the sufficient statistics with-
out having to propagate error through stochastic inputs.

Under this assumption, we get

p(x1:T) =
∫

z1:T

T∏
t=1

p(zt)p(xt | ht(xt−1, zt, ht−1))dz1:T , (38)

which is an implementation of the graphical model depicted in Fig. (4).

2.2.3 The Variational Lower Bound for STORN

In Section 2.2.2, we have derived a model that combines the VAE with
RNNs. Much like for the VAE in Section 2.1.5, we will find a suitable
energy function to train this model.

2.2 stochastic recurrent networks 25

Again, we seek to maximize the data log-likelihood (for which we
found a representation in Section 2.2.2). As it turns out, all arguments
of the derivation of the variational lower bound for the VAE still apply
in the case of STORN, so that we end up with a very similar variational
lower bound:

lnp(x1:T) (39)

=

∫
z1:T

qφ(z1:T | x1:T) · ln
p(x1:T , z1:T)
p(z1:T | x1:T)

qφ

qφ
dz1:T (40)

=

∫
qφ ln

p(x1:T , z1:T)
qφ

dz1:T +
((((

((((
(((

((
∫
qφ ln

qφ

p(z1:T | x1:T)
dz1:T︸ ︷︷ ︸

>0, as a KL

(41)

>
∫

z1:T
qφ(z1:T | x1:T) ln

p(x1:T , z1:T)
qφ(z1:T | x1:T)

dz1:T (42)

= Eqφ

[
T∑
t=1

lnp(xt | ht)

]
− KL

(
qφ(z1:T | x1:T) || p(z1:T)

)
︸ ︷︷ ︸

=:LSTORN(qφ)

(43)

Like before, qφ is a variational approximation of the useful, yet again
intractable p(z1:T | x1:T), which we will also call the recognition model
(since it recognizes latent z1:T in observable x1:T). This variational ap-
proximation will be performed by a second RNN (which is distinct
from the generative RNN encountered in Section 2.2.2).

2.2.4 Alternative Model: STORN with RNN prior

With the previous derivation, there is no chance to get an adaptive
prior in the sense that it can incorporate trends from the previous
samples. This is a criticism of STORN given in [7]. Their solution called
Variational Recurrent Neural Network (VRNN), however, takes a dif-
ferent approach, incorrectly classifying STORN as a special case: While
the probabilistic derivation is indeed identical, the computational ar-
chitecture is very different. VRNN uses one RNN only, while STORN

inherently uses two.
We will now derive a new approach which adds the idea of [7]

to STORN. The derivation is more driven by the graphical model,
which is depicted in Fig. (5). Previously, in Eq. (21), we used the most
straightforward factorization of the joint distribution p(x1:T , z1:T), which
was motivated by the derivation of the VAE.

26 background and theory

h(g)
0

.

h(p)
0

.h(p)
1

z1

h(g)
1

x1

h(p)
t

zt

h(g)
t

xt

h(p)
t+1

zt+1

h(g)
t+1

xt+1

Figure 5: Probabilistic graphical model of a Stochastic Recurrent Network
(STORN) with a Recurrent Neural Network (RNN) prior.

However, since we have a sequence of vectors rather than single
vectors, we can employ a more sophisticated factorization:

p(x1:T , z1:T) =
T∏
t=1

p(xt, z1:T | x1:t−1) (44)

=

T∏
t=1

p(xt | x1:t−1, z1:T)p(z1:T | x1:t−1) (45)

=

T∏
t=1

[
p(xt | x1:t−1, z1:T)

T∏
s=1

p(zs | x1:t−1, z1:s−1)

]
(46)

=

T∏
t=1

p(xt | x1:t−1, z1:t−1)p(zt | x1:t−1, z1:t−1)

(47)

=

T∏
t=1

p
(

xt | h(g)
t

)
p
(

zt | h(p)
t

)
(48)

The first three steps are the by now well-known manipulations. The
second last step is a restricting assumption that so that in the last
step, like applied previously, we can incorporates an RNN structure
as suggested by the graphical model in Fig. (5). In fact, we recognize
that (47) and (48) are variants of (35) and (36).

2.2.4.1 The Variational Lower Bound for STORN with RNN prior

Interestingly, the lower bound does not change much compared to
basic STORN. The reason for this is that up until Eq. (42), we do not

2.2 stochastic recurrent networks 27

use the particular factorization of the joint distribution of latents z1:T
and observables x1:T . Hence, only the last line changes:

LRNN prior
(
qφ
)
:=Eqφ

[
T∑
t=1

lnp
(

xt | h(g)
t

)]
− KL

(
qφ(z1:T | x1:T) || p

(
z1:T | h(p)

0:T

))
(49)

The prior is now also conditioned on the recurrent information h(p)
0:T

from previous time steps.

2.2.5 Architecture and Computation

In the previous sections, we have derived two variants of a probabilis-
tic model for STORN. This section will show how to implement such a
network with the help of RNNs.

The graph in Fig. (6) shows the generic computational flow architec-
ture of the original STORN from [2]. The color coding of the respective
VAE Fig. (3) is preserved to highlight the connections. At each time
step, the top-down computations can be unfolded according to the
scheme in Fig. (3), plus the recurrent inputs

In fact, the remarks from Section 2.1.6 still hold, which is why we
will mostly stress the differences here.

We see two RNNs. The first, bidirectional RNN consists of the blue,
teal and cyan nodes. It forms the recognition model φ. Notice that this
is a schematic depiction. One can add hidden layers, and each hidden
layer may be vector-valued with differing dimension; for the sake
of simplicity, this is reduced as much as possible. Moreover, rather
than a bidirectional, one could decide to apply a normal RNN. This
largely depends on the application. While the bidirectional version is
arguably more powerful, if we want to apply the network for on-line
detection we are bound to restrict ourselves.

The recognition model takes observed data (green) as input and
outputs sufficient statistics of qφ, the variational approximation of
the posterior distribution p(z1:T | x1:T).

The yellow, orange and violet nodes form the second RNN, the gen-
erative model with parameters θ. Due to the Markovian decompo-
sition in our derivation, it is bound to be unidirectional. The rect-
angular, yellow nodes are samples from the latent distribution. In
the case of reconstructive sampling (as during training or analysis
of data), the sample is drawn from the output distribution of the
recognition model—as depicted in this figure—, whereas in the case
of purely generative sampling, it is drawn from the prior, thus the
dashed edges.

The red nodes depict the two summands of the lower bound energy
function.

28 background and theory

x
1

h
(r

)
1

y
(r

)
1

y
(p

)

z
1

h
(g

)
1

y
(g

)
1

x
t
−
1

h
(r

)
t
−
1

y
(r

)
t
−
1

y
(p

)

z
t
−
1

h
(g

)
t
−
1

y
(g

)
t
−
1

x
t

h
(r

)
t

y
(r

)
t

y
(p

)

z
t

h
(g

)
t

y
(g

)
t

x
t
+
1

h
(r

)
t
+
1

y
(r

)
t
+
1

y
(p

)

z
t
+
1

h
(g

)
t
+
1

y
(g

)
t
+
1

x
T
+
1

h
(r

)
T
+
1

y
(r

)
T
+
1

y
(p

)

z
T
+
1

h
(g

)
T
+
1

y
(g

)
T
+
1

K
L

R
EC

⊕

...

...

...

...

h
r
e
c

0
h
r
e
c

T
+
1

h
g
e
n

0

D
= {

(x
1
:T
)
j
|
j
=
1,...,N }

D
D

D
D

D

Figure
6:C

om
putational

architecture
of

a
Stochastic

R
ecurrent

N
etw

ork
(STO

R
N

).
The

graph
schem

atically
show

s
the

generic
com

putational
flow

architecture.T
he

color
coding

of
Fig.(

3)
is

preserved.The
blue,tealand

cyan
form

a
bidirectional

R
N

N
im

plem
enting

the
recognition

m
odel

φ
.

T
he

horizontal
edges

depict
recurrent

connections.
The

recognition
m

odel
takes

observed
data

(green)
as

input
and

outputs
sufficient

statistics
of
q
φ

,the
variationalapproxim

ation
of

the
posterior

distribution
p
(z
1
:T

|x
1
:T
).

T
he

yellow
,orange

and
violetnodes

form
the

second,generative
m

odel
R

N
N

param
etrized

φ
.The

rectangular
yellow

nodes
are

sam
ples

from
the

recognition
distribution

or
the

prior
distribution.The

red
nodes

depict
the

tw
o

sum
m

ands
of

the
low

er
bound

loss
function.

2.3 applicability to anomaly detection 29

The three outmost nodes, two on the left, one on the right, depict
the RNN initializations. These initial states are also adjustable param-
eters to be learnt during the training procedure.

Fig. (7) extends Fig. (6). For simplicity, initializations were left out.
Previously present edges are shown lightly, while the new RNN that
introduces the timely dependence for the prior is depicted by bold
edges and newly introduced time indices for the prior nodes.

2.3 applicability to anomaly detection

In the previous sections, we introduced Stochastic Recurrent Net-
works (STORNs) as a means to modeling time series data. With the
deepened understanding of STORN in mind, we will now try to charac-
terize the model in the context of anomaly detection. On the one hand,
we will compare it to previous approaches as outlined in Section 1.2
and in [20]. On the other hand, we will justify a novel approach to
anomaly detection by juxtaposition of our new model against the re-
quirement specification in Section 1.3.

2.3.1 Categorization

At first sight, STORN is a generative probabilistic model, i. e., it does
not simply discriminate between normal and anomalous time series
data, but instead aims at learning the underlying latent structure that
generates the data. The network explicitly encodes a probability dis-
tribution over time series. In fact, STORN allows us to distinguish be-
tween learning the complex data distribution and separates this task
from actually detecting anomalies. The detection algorithm can then
be based on multiple outputs of STORN, e. g., the likelihood or the
distribution of the latent statistics etc.

At second sight, the new approach is not exclusively a probabilis-
tic model. While it is not explicitly reconstructive, the derivation of
the variational lower bound in Section 2.2.3 showed that our energy
function automatically rewards good reconstruction of our data.

Choosing STORN for detecting anomalies tries to combine the strengths
of both approaches to overcome each other’s weaknesses. For exam-
ple, we found that reconstruction-based approaches suffer from sen-
sitivity to hyperparameters. While this is not entirely overcome by
shifting to STORN, the loss function derived in Section 2.2.3 as well
as the stochasticity of the approach make it more robust to this defi-
ciency. Moreover, we found that probabilistic approaches have been
limited to a restricted class of models. In contrast to this, the RNN

structure is, in principle, capable of modeling any measurable state
transition.

30 background and theory

x
t
−
1

h
(r

)
t
−
1

y
(r

)
t
−
1

h
(p

)
t
−
1

y
(p

)
t
−
1

z
t
−
1

h
(g

)
t
−
1

y
(g

)
t
−
1

x
t

h
(r

)
t

y
(r

)
t

h
(p

)
t

y
(p

)
t

z
t

h
(g

)
t

y
(g

)
t

x
t
+
1

h
(r

)
t
+
1

y
(r

)
t
+
1

h
(p

)
t
+
1

y
(p

)
t
+
1

z
t
+
1

h
(g

)
t
+
1

y
(g

)
t
+
1

K
L

R
EC

⊕

...

...

...

...

...

...

...

D
= {

(x
1
:T
)
j
|
j
=
1,...,N }

D
D

D

Figure
7:C

om
putationalA

rchitecture
ofa

Stochastic
R

ecurrentN
etw

ork
(STO

R
N

)w
ith

an
R

N
N

prior.The
lightedges

are
identicalto

the
com

putational
A

rchitecture
of

the
regular

STO
R

N
,cf.Fig.(

6).The
bold

edges
represent

the
new

ly
introduced

R
N

N
that

introduces
a

M
arkovian

dependence
structure

on
the

prior
variables,notice

the
added

tim
e

indices.H
idden

statesof
the

R
N

N
are

left
out

for
the

sake
of

clarity.

2.3 applicability to anomaly detection 31

2.3.2 Justification against Requirements

However, this alone does not justify a novel approach. We identified
several criteria such an approach needs to fulfill. These were

• handling of multivariate data,

• real-valued time series data,

• multimodality in the underlying distribution,

• no imposed domain knowledge,

• little anomalous data available for training,

• and on-line detection.

As it turns out, STORN can handle all of these requirements.
The auto-encoding mechanism learns a latent structure in the data

distribution. If there exists a dependency between two variables (con-
sider the robotic arm examples given in Section 2.2.1), the learning
algorithm is designed to learn this structure (e. g., a common cause).

RNNs are very naturally applied to real-valued time series data. Uni-
versal approximation capabilities are guaranteed when working on
such domains.

The supreme idea behind the VAE is that it is much easier to sample
from comparably simple distributions and then map them to more
complicated spaces based on the inverse sampling method. RNNs then
allow us to have rich distributions that are not limited such as Gaus-
sian Mixture Models. The latter would allow for multimodality but
only in a restricted fashion that relies on handcrafted hyperparame-
ters, such as the number of mixture components.

Furthermore, the auto-encoding mechanism allows us to train our
model in an unsupervised fashion. This helps us in two ways: First
of all, STORN will model normal data only and we will, in an inde-
pendent step, define means to use it to discriminate anomalous data.
Thus, in order to train STORN, not only can we leave out anomalous
data for training, we are even encouraged to abandon it for training
in order to get a precise model of normality.

Secondly, the learning algorithm is theoretically designed such that
we do not have to impose prior knowledge. We could do so by choos-
ing an appropriate prior distribution—which might yield better re-
sults in practice—but we are not required to do so by the derivation.

One core assumption with all the previous arguments is that our
training data covers the observable space sufficiently. If it does not,
our model will learn reasonably well on the training data, but it will
not generalize well to previously unobserved new data. While record-
ing normal data is much less costly than anomalous data, resources
for recording are still limited. It will, thus, be of interest whether a

32 background and theory

limited amount of data suffices to leverage all theoretical advantages
outlined in this section.

The last remaining item on the list of requirements was on-line
detection. Since all error terms are decomposed into individual sum-
mands due to the usage of the log-space as well as Markovian and in-
dependence properties in the derivation, the likelihood (or the lower
bound, our energy function) can easily be calculated on-line. STORN

is capable of detecting unusual, i. e., anomalous, developments of the
log-likelihood or any derived normality criterion on-line without the
need to look at the whole time series. Moreover, the computations
are comparably cheap, a very important component of real-time ca-
pability. The hard effort is to be made during the training phase long
before application.

Summary

We can conclude that STORN theoretically fulfills all our requirements
for a novel approach in anomaly detection for robot time series data.
While experiments will need to prove whether the given amount of
data is sufficient to leverage the theoretical advantages, to the best of
our knowledge, there has been no such attempt of anomaly detection.
This justifies further consideration of STORN for the problem at hand.

3
E X P E R I M E N T S & E VA L U AT I O N

This third and last chapter reports the experiments conducted to ver-
ify the applicability of STORNs to anomaly detection. To this end, Sec-
tion 3.1 will analyze the data set. Section 3.2 will then describe the
training procedure. In Section 3.3, the experiments are evaluated thor-
oughly. Lastly, Section 3.4 summarizes the findings of this thesis.

3.1 data

The crucial difficulty with anomalies is that they cannot be described
in closed form. If they could, anomaly detection would be easy, since
we could fit a model to this description. Hence, it is hard to simulate
anomalies, and consequently our goal is to evaluate our method using
real-world data. To the best of our knowledge, there exists no labeled
data set of high-dimensional, interdependent anomalies. Hence, we
recorded our own anomaly data set with the application on robots in
mind.

3.1.1 Baxter Robot

We recorded data on the research robot Baxter1. Baxter has, among
other features, two arms with seven degrees of freedom, namely two
joints in its shoulder, two more in its elbow and three in its wrist. One
such arm is shown in Fig. (8)

The seven degrees of freedom include a shoulder roll and pitch, an
elbow roll and pitch, and two wrist rolls and one wrist pitch.

For the experiments in this thesis, we restricted ourselves to one
arm of Baxter.

Baxter can record commanded and measured joint torques for each
joint, its commanded and measured configuration in configuration
space, i. e., relative angles of the joints rather than Cartesian coordi-
nates, as well as the measured acceleration of the wrist and camera
image data from the hand.

3.1.2 Anomaly Scenario and Data Set

As an anomaly scenario, we designed an experiment where the robot
fulfills a task and bumps into an obstacle (like a human co-worker or
any other dynamic entity within the robot’s environment).

1 http://www.rethinkrobotics.com/baxter-research-robot/

33

34 experiments & evaluation

Figure 8: One seven-degree-of-freedom arm of a Baxter research robot with
respective joint labeling for shoulder (S0: shoulder roll, S1: shoul-
der pitch), elbow (E0: Elbow Roll, E1: Elbow Pitch) and wrist (W0:
First Wrist Roll, W1: Wrist Pitch, W2: Second Wrist Roll).

Figure 9: Human operator hitting the arm on command to create anomalies
in the data sets.

To simulate a task, Baxter starts from a predefined configuration
and then moves between ten selected waypoints in Cartesian space.
This imitates a working process where Baxter has to fulfill a certain
grab-and-drop or sorting task.

To make the trajectories more diverse (and harder to learn), the
sequence of waypoints is sampled randomly from the ten given way-
points with each trial. Baxter moves for at least 30 seconds and is
afterwards commanded to return to its original position.

The anomaly is simulated as follows: For each segment between
two waypoints, Baxter internally makes a random Bernoulli decision
whether an anomaly occurs or not. If an anomaly is supposed to
occur, Baxter displays a ‘hit’ command to a (human) operator, which
then hits a randomly selected part of the arm. The process is depicted
in Fig. (9).

Time stamps for the commands are available. Due to reaction time
of the operator, there is a delay between the time stamp and the actual
occurrence of the anomaly.

Given this anomaly scenario, we recorded 1308 trials of varying
length around 35–40 seconds. Out of these, 1008 trials are guaranteed
to be normal. 640 of these will serve as training samples, 160 as vali-
dation sample and the remaining 208 as parts of the test samples. The

3.1 data 35

Figure 10: All normal trajectories superimposed on top of each other. The
red lines show the maximum value of the ten given waypoints
for each joint. Baxter not obeying these is due to tolerances. The
plot roughly shows the marginal data distributions to learn by
our model.

other 300 are potentially anomalous trials (that is, some may have no
anomaly since the Bernoulli experiments for commanding a hit all
failed). These will also be used for testing only, so that we end up
with 508 test samples.

Finding a hit is easy if one can use either joint torques (since they
get unusually high) or any commanded information (since a sim-
ple comparison with the actual trajectory easily shows the anomaly).
Thus, in our data sets, we restrict ourselves to the seven-dimensional
data of measured configuration angles. In these seven dimensions, hit
anomalies are much more subtle to discover. Still, the data is seven-
dimensional and highly dependent (in particular over time).

The measured configuration can be sampled at up to 800 Hz. Since
Baxter is no real-time system in the sense that it can guarantee equidis-
tant time steps, we have created a data set interpolated with linear
splines to get equidistant time stamps at 15Hz.

The superposition of the entire 1008 normal samples is depicted
in Fig. (10). This shows the seven marginal distributions of the joint
distribution p(x) our model is supposed to learn.

Fig. (11) shows three exemplary samples from the data set, one
normal and two anomalous ones. The first anomalous sample shows
some anomalies that are easy to detect visually and some that are
hard to distinguish from some noise and tolerance based artifacts
in the normal sample. Depicted with blue vertical lines, one can see

36 experiments & evaluation

0 5 10 15 20 25 30 35 40

Time in s

4

3

2

1

0

1

2

3

4

Jo
in

t
A

n
g
le

 i
n
 r

a
d

Exemplary normal sample at 15Hz

S0

S1

E0

E1

W0

W1

W2

(a) Normal sample. Each line corresponds to the configurations of one joint
over time. It can be seen that due to imprecisions of Baxter, some of the
linear parts are nonlinear.

0 5 10 15 20 25 30 35 40

Time in s

4

3

2

1

0

1

2

3

4

Jo
in

t
A

n
g
le

 i
n
 r

a
d

Exemplary anomalous sample at 15Hz

S0

S1

E0

E1

W0

W1

W2

command

torque labels

(b) Anomalous sample. The blue vertical lines show where an anomaly was
commanded. The red areas depict areas time steps where the derivative of
the torque was above a threshold so that we deemed it an anomaly.

0 5 10 15 20 25 30 35 40 45

Time in s

3

2

1

0

1

2

3

4

Jo
in

t
A

n
g
le

 i
n
 r

a
d

Exemplary anomalous sample at 15Hz

S0

S1

E0

E1

W0

W1

W2

command

torque labels

(c) As in (11b). One can see that the manual labeling of anomalies sometimes
fails.

Figure 11: Exemplary samples.

3.2 training 37

Hyperparameter Range of Choices

Batch Size 5, 10, 20

Recognition Model

No. Layers 1, 2, 3

No. Hidden Units per Hidden Layer 8, 16, . . . , 128

Generative Model

No. Layers 1, 2, 3

No. Hidden Units per Hidden Layer 8, 16, . . . , 128

No. Stochastic Units 8, 16, . . . , 128

Output Standard Deviation 0.00001, . . . , 0.1, 1

Fast-Dropout Rates

Input-to-Hidden, Hidden-to-Hidden,

Hidden-to-Output, Shortcut Interval (0, 1)

Weight Initialization (Standard Deviations)

Input Layer 0.000001

Hidden Layer 1/64, 1/32, . . . , 2

Transfer Functions sigmoid, tanh, LSTM

Table 1: Hyperparameter grid on which random search was performed.

the commands to the operator to cause anomaly. The red areas show
where the absolute derivative of the torque showed unusually high
values. This will serve as a ground truth labeling for on-line detec-
tion. The second anomalous sample, however, shows that these labels
should be handled with care. On some occasions, the joint torque la-
beling fails to detect obvious anomalies and takes artifacts as anoma-
lies.

3.2 training

In Section 2.2, we derived two variants of STORN. For the original
variant without RNN prior, we ran experiments with a unidirectional
and a bidirectional RNN in the recognition model. For each of the
three models, 100 experiments were conducted to find good hyperpa-
rameters, with early stopping based on the validation performance.
Hyperparameters of the models were optimized by random search
on the grid depicted in Table (1). We used fast dropout, [27, 3], and
potentially LSTM transfer functions.

The models were optimized by stochastic gradient descent with
mini-batches, i. e., each step was not based on the gradient w.r.t. the

38 experiments & evaluation

Training Validation

unidirectional 23.0405 23.0368

bidirectional 22.7066 22.6996

RNN prior 24.3020 24.2908

Table 2: Training results for the best model in each of the three categories.
The best lower bound value is shown.

full data set, but on a significantly smaller subset. We applied adadelta
for the learning rate (step size), cf. [29].

Training was unsupervised on normal samples. No preprocessing,
except for random shuffling of the samples per experiment and nor-
malization to zero mean and unit standard deviation for the whole
data set, was performed.

Training and validation was based on the lower bound performance
only. Anomaly detection and learning on labels was introduced only
after completion of training.

The models were implemented in theano, [4, 1], a python-based soft-
ware package that supports automatic differentiation, which greatly
simplifies training of neural networks, and climin, [13], a python-
based optimization toolbox.

The optimal training results are shown in Table (2). Interestingly,
there is no over-fitting effect on the training data visible.

We observed that the usage of LSTM transfer functions lead to no
improvement, particularly when contrasted to the increased model
size.

More surprisingly, unidirectional model needed fewer epochs (i. e.,
runs through the whole training set) to yield a lower training and
validation error.

Fig. (12) shows reconstruction errors and one-step prediction er-
rors (the difference is that the latter has no information about the cur-
rent time stamp while the former tries to reconstruct it from data).2

Ground truth and reconstruction/prediction are almost indistinguish-
able. Notice the small scale of the squared residuals.

For normal samples, the highest errors for both reconstruction and
prediction occur at change points in the trajectory. This was to be
expected. On the one hand, the most plausible prediction is linear
continuation, not a change of direction. On the other hand, even if
the system notices that it has reached one of the ten waypoints, the
change points suffer most from Baxter’s tolerance as to when it thinks
it has reached a goal. Moreover, the change in direction causes slight
repercussions.

2 Predictions are missing for RNN priors due to an incomplete implementation of the
purely generative sampling—the generative model is still fed with the unconditioned
prior.

3.2 training 39

Reconstruction Error Normal Sample Reconstruction Error Anomalous Sample

0 0.004

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

Reconstruction Error Normal Sample

true

reconstruction

squared residual

0 0.037

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.037

0.000

0.037

0.000

0.037

0.000

0.037

0.000

0.037

0.000

0.037

0.000

0.037

Reconstruction Error Anomalous Sample

true

reconstruction

squared residual

0 0.004

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

Reconstruction Error Normal Sample

true

reconstruction

squared residual

0 0.03

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.00

0.03

0.00

0.03

0.00

0.03

0.00

0.03

0.00

0.03

0.00

0.03

0.00

0.03

Reconstruction Error Anomalous Sample

true

reconstruction

squared residual

0 0.001

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.001

0.000

0.001

0.000

0.001

0.000

0.001

0.000

0.001

0.000

0.001

0.000

0.001

Reconstruction Error Normal Sample

true

reconstruction

squared residual

0 0.025

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.025

0.000

0.025

0.000

0.025

0.000

0.025

0.000

0.025

0.000

0.025

0.000

0.025

Reconstruction Error Anomalous Sample

true

reconstruction

squared residual

One-Step Prediction Error Normal Sample One-Step Prediction Error Anomalous Sample

0 0.004

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

One-Step Prediction Error Normal Sample

true

prediction

squared residual

0 0.032

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.032

0.000

0.032

0.000

0.032

0.000

0.032

0.000

0.032

0.000

0.032

0.000

0.032

One-Step Prediction Error Anomalous Sample

true

prediction

squared residual

0 0.004

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

0.000

0.004

One-Step Prediction Error Normal Sample

true

prediction

squared residual

0 0.024

3

0

3
S0

3

0

3
S1

3

0

3
E0

3

0

3
E1

3

0

3
W0

3

0

3
W1

3

0

3
W2

0.000

0.024

0.000

0.024

0.000

0.024

0.000

0.024

0.000

0.024

0.000

0.024

0.000

0.024

One-Step Prediction Error Anomalous Sample

true

prediction

squared residual

Figure 12: Reconstruction Error (top) and One-Step Prediction (bottom) for
normal (left) and one anomalous (right) sample for unidirectional,
bidirectional and RNN prior recognition model, respectively (no
prediction for RNN prior). Notice the different scale of the error
axis and color coding.

40 experiments & evaluation

We see that the residuals for anomalous samples are at least one
order of magnitude higher than for normal samples. We will exploit
this later for anomaly detection.

3.3 anomaly detection evaluation

Based on the optimal models from the training process, we would like
to build an anomaly detector. We will tackle two kinds of detection
mechanisms.

Firstly, we will classify entire sequences into whether they hold an
anomaly or not. We will denote this as off-line detection.

Secondly, we will classify individual time steps into whether an
anomaly is occurring in this specific time-step, which we will denote
as on-line detection. Here, on-line refers both to the fact that we are
trying to detect anomalies without knowledge about future time steps
as well as the fact that we classify individual time steps.

The boundaries between these two classes are not strict. It is clear
that a good on-line algorithm can also be used for off-line detection.

3.3.1 Off-line Detection

The labels for off-line detection are extracted from the commands.
An entire sequence is considered anomalous if there was at least one
hit command throughout the sequence. On average, an anomalous
sequence has roughly three hit commands. Thus, an anomaly label is
weak in the sense that the detector only needs to detect one in three
anomalies.

We could try to detect the number of anomalies off-line. However,
not every hit command corresponds to a true anomaly, cf. Section 3.1.

Our off-line detection algorithms all employ the following princi-
ple: A test sample is mapped to a scalar called the anomaly score. The
anomaly label in combination with the label can then be used to es-
tablish a threshold for anomalies.

We tested the following four criteria:

lower bound After the derivations of Chapter 2, the lower bound
as the output of STORN is the most natural quantity to choose.
Given the fully trained model, it is easy and fast to calculate
and is very close to the data likelihood.

log-likelihood estimate As shown in Appendix A.2, we can
get an estimate of the true data likelihood. In practice, this
method is not favorable because it is computationally much
more costly than, e. g., the lower bound. However, for compari-
son with the lower bound criterion, it is interesting to check the
estimate as well.

3.3 anomaly detection evaluation 41

global one-step prediction error threshold As indicated
in Section 3.2, the discrepancy in scale between prediction error
for normal and anomalous samples strongly suggests using it as
a measure of anomaly. In order to map the entire sequence to an
anomaly score, we could take the maximum of the values, but
this is error-prone due to outliers and boundary effects. Thus,
we choose a .995 percentile of the residuals.

global stepwise lower bound threshold The lower bound
calculated by STORN is actually a mean of stepwise lower bounds.
In an attempt to combine the idea of the lower bound with
the detection mechanism of the prediction error threshold, we
define the following anomaly score: the .005 percentile of all
stepwise lower bounds for the entire sequence. A low stepwise
bound corresponds to an unexpected data point, which we as-
sume to be anomalous.

For analyzing the binary classification of a continuous scalar quantity,
the so called Receiver Operating Characteristic (ROC) is a useful tool.
The ROC plots the true positive rate (tpr) (i. e., the fraction of correctly
classified anomalies among the samples labeled anomalous) against
the false positive rate (fpr) (i. e., the fraction of normal samples incor-
rectly classified as anomalies) for an increasing classification thresh-
old. A perfect classifier has a tpr of 100% and an fpr of 0%.

Usually, there is a trade-off between tpr and fpr and the optimal
trade-off depends largely on the application, e. g., a trade-off between
the cost of false alarms like system shutdowns and the costs of anoma-
lies not detected soon enough.

A general measure for the quality of an anomaly measure is the
so-called Area under Curve (AUC). Intuitively speaking, it ‘integrates
out’ the trade-off considerations by considering the area under the
ROC curve, i. e., integrating up the quality of all possible thresholds.

Fig. (13) shows the ROCs and respective AUCs for the three best
models3.

The results are remarkably good. With a bidirectional recognition
model, we achieve an AUC as high as 99.92%. The Stepwise Lower
Bound Percentile Criterion turns out to consistently outperform the
other approaches. Just as notable are the high entry points on the left,
i. e., very high tprs with an fpr of 0%.

Keeping in mind that the label is very weak, we can still conclude
that off-line detection works extremely well.

3 Again, the bad result for prediction and the missing log-likelihood estimate go back
to the erroneous implementation of the generative sampling.

42 experiments & evaluation

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Off-line Receiver Operating Characteristic (ROC)

Lower Bound, AUC: 99.65%
Log-Likelihood Estimate, AUC: 99.69%
One-Step Prediction Error Threshold, AUC: 96.38%
Stepwise Lower Bound Threshold, AUC: 99.73%
random guessing

(a) unidirectional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Off-line Receiver Operating Characteristic (ROC)

Lower Bound, AUC: 99.22%
Log-Likelihood Estimate, AUC: 99.28%
One-Step Prediction Error Threshold, AUC: 96.67%
Stepwise Lower Bound Threshold, AUC: 99.92%
random guessing

(b) bidirectional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Off-line Receiver Operating Characteristic (ROC)

Lower Bound, AUC: 98.29%
One-Step Prediction Error Threshold, AUC: 53.19%
Stepwise Lower Bound Threshold, AUC: 99.79%
random guessing

(c) RNN prior

Figure 13: ROC for the four criteria with respective AUC. The top left cor-
ner corresponds to a perfect classifier. High AUC indicates a good
generalization of the anomaly score.

3.3 anomaly detection evaluation 43

3.3.2 On-line Detection

With off-line detection solved, we can turn towards on-line detection.
As before, we will derive anomaly scores. The difference is that the
score will be assigned to individual time steps rather than the entire
sequence as with off-line detection.

For on-line detection, we have developed several different scoring
methods:

on-line lower bound Like before, this is a natural choice given
the output of STORN. Rather than the total lower bound, we
consider it per time step.

smoothed on-line lower bound Since the lower bound is a sam-
ple from a stochastic quantity, it suffers from certain fluctua-
tions. By convolving with a small 1D Gaussian Kernel, i. e., a
moving weighted average, we can smooth the empirical lower
bound and reduce unwanted artifacts.

on-line lower bound forward differences The two previous
methods assume that a change in the lower bound corresponds
to an anomaly. A natural extension of this approach is to con-
sider the rate of change in the lower bound, i. e., the first deriva-
tive. The first derivative is approximated by forward differences,
since we have no closed form solution for the lower bound.

input gradient magnitude The fourth approach has a very dif-
ferent view of anomalies. This method calculates the gradient
of the lower bound w.r.t. the input. In other words, because
the gradient indicates the local direction of steepest ascent, we
calculate where to change the current input most effectively to
improve the lower bound. By calculating the magnitude of the
gradient time series per time step, we get an indicator as to
which time step profits most from a change. This can be used
as an anomaly score.

Remember that, as discussed before, we are limited to the models
where the recognition model is unidirectional. Technically, we could
also apply bidirectional recognition models, but then we would have
to evaluate the entire sequence up until time step t to get the anomaly
score for the respective time step.

After having discussed on-line anomaly scores, we have to focus
on second weak spot of on-line anomaly detection: Other than with
off-line detection, we want to avoid missing any anomaly.

Moreover, it is much harder to find meaningful labels. Even if one
had perfect labels of when the anomaly was triggered, its effects can
still be detectable long after the cause has been dissolved. It depends
very much on the system at hand whether a detection algorithm that

44 experiments & evaluation

cannot detect the triggering moment, but only the aftermath of an
anomaly, is still valid.

This difficulty can be pushed even further: Suppose that we were
bound to detect the anomaly in a very short period after it was trig-
gered and suppose the cause was present for ten time steps (i. e., such
that these time steps could be labeled anomalous while all others are
deemed normal). Do we consider the anomaly as detected if one of
the anomalous time steps is correctly classified? From an engineering
point of view, we will in many cases agree. This, however, implies
that we are not interested in good classification performance in terms
of labels.

In the latter case, the so-called Positive Predictive Value (PPV), i. e.,
the ratio of truly anomalous time steps among all anomalously la-
beled time steps, might be a better criterion. The PPV again has dis-
advantages of its own: It rewards being overly cautious. In fact, the
PPV is optimal if we detect one and only one anomalous time step
correctly.

With all these considerations in mind, we conclude that the evalu-
ation of an on-line anomaly detection approach depends much more
on the system to which it is applied. The choice of good thresholds is
more of an engineering task than a statistics task.

While this may at first sound like reintroducing domain knowl-
edge through the back door, the contrary is true: The major advan-
tage over a domain-specific anomaly detection approach is that the
‘engineering’ takes place in the space of sensitivity, specificity, tprs

and fprs—STORN transfers any domain to a common ground where
generic methods can be applied and combined out of the box.

In the case of the data set described in Section 3.1, we have two
different labels for each time step.

The first label is torque-based: If the derivative (in terms of forward
differences) of the torque is above a manually set threshold, we con-
sider the time step to be anomalous. As discussed before, this misses
some of the subtle anomalies while it detects anomalies where there
are only artifacts in the data.

The second label is based on the hit commands: In a certain ∆t after
a hit command, we expect there to be an anomaly, hence we label the
whole span as anomalous. This obviously has drawbacks of its own:
Not all hit commands correspond to an anomaly and some anomalies
may have a higher latency than ∆tw.r.t. their hit command. Moreover,
the labeling is very broad. While we chose ∆t = 4, none of the anoma-
lies in the data set is visible for longer than a second. This labeling is
inspired by the above consideration that we are actually more satis-
fied if we can, during a real anomaly, spot only one anomalous time
step.

In the light of these observations, we will apply three different
methods for extracting a threshold on the on-line anomaly scores.

3.3 anomaly detection evaluation 45

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

On-line Receiver Operating Characteristic (ROC)

Lower Bound, AUC: 97.85%
Smoothed Lower Bound, AUC: 99.31%
Lower Bound Forward Differences, AUC: 97.07%
Input Gradient Norm, AUC: 97.54%
random guessing

(a) unidirectional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

On-line Receiver Operating Characteristic (ROC)

Lower Bound, AUC: 97.60%
Smoothed Lower Bound, AUC: 99.28%
Lower Bound Forward Differences, AUC: 96.03%
Input Gradient Norm, AUC: 96.83%
random guessing

(b) RNN prior

Figure 14: On-line ROC based on labels derived from torque with respective
AUCs.

The first two only consider tprs and fprs w.r.t. the torque-based la-
bels. To this end, we calculate the ROC. It can be seen in Fig. (14).
While at first glance, these ROCs look just as promising as in the off-
line case, they should be considered with care. The labels are imbal-
anced towards normal labels, because even for anomalous trajectories,
most time steps are perfectly normal. Due to this fact, even a small
fpr leads to many misclassifications—remember the standard statis-
tics text book example on sensitivity and specificity of disease tests.

Nevertheless, for evaluation purposes the first of the three thresh-
olds will be the one corresponding to the point on the ROC closest
to the ‘perfect’ spot in the top-left corner. Let κ denote an arbitrary
threshold, then this first evaluation threshold κ1 can be computed as:

κ1 = arg min
κ

(
fpr(κ)2 + (1− tpr(κ))2

)
(50)

The second threshold incorporates the notion of ‘being more cau-
tious’ with anomaly labels. It regularizes the cost function in Eq. (50)
with the PPV:

κ2 = arg min
κ

(
fpr(κ)2 + (1− tpr(κ))2 −

tpr(κ)
tpr(κ) + fpr(κ)︸ ︷︷ ︸

=:PPV

)
(51)

The third threshold is more complicated. It uses both types of la-
bels, torque-based and command-based.

First, we compute the ROC for any on-line score w.r.t. the torque-
based labels, i. e., we get a set of thresholds with associated fpr and
tpr. For every such threshold (there are only finitely many because we
have finitely many data points and thus finitely many gaps to place
thresholds), we then compute the fpr and tpr, but this time w.r.t. the
command-based labels.

46 experiments & evaluation

The third threshold is finally computed as:

κ3 = arg min
κ

(
ft(κ)

2 + (1− tt(κ))
2

−
tt(κ)

tt(κ) + ft(κ)
− λ

tc(κ)

tc(κ) + fc(κ)

)
(52)

For brevity, we have shortened the torque- and command-based fpr

and tpr to ft, tt, fc and tc, respectively.
The factor λ is a regularization weight that balances the trade-off

between the two different labels. The higher λ, the more important
the command-based label and vice versa.

By combining the four anomaly scores with the three thresholds,
we yield twelve different thresholds4.

Exemplary on-line detection is depicted in Fig. (15) and Fig. (16).
We can observe multiple things.

Firstly, κ3 is a cautious, but not overly cautious threshold. It de-
tects nothing on normal samples and robustly detects torque-labeled
anomalies. Secondly, it is not restricted to any of the labels. It also de-
tects spurious, anomalous artifacts in the data far outside any region
around a hit command. We can conclude that the trade-off between
the two labels boosts the robustness of the threshold significantly.

As stated previously, the evaluation of an on-line algorithm is hard
to do without a context like reduced costs. However, we find a proxy
to measure the quality of our newly gained thresholds: We use our
on-line detectors for off-line detection. If this improves the off-line
performance, we have a hint that the new threshold extracted more
information from the model.

The respective ROCs can be seen in Fig. (17). The committee men-
tioned in the figures is an average score out of the other four on-line
anomaly scores after normalization. Applying weights to the mem-
bers of the committee also showed no effect.

We see almost perfect classification. A less optimal model w.r.t. val-
idation loss even scored perfectly, finding a threshold that discrimi-
nates the off-line anomaly labels perfectly.

We can conclude that clever statistical engineering boosts the per-
formance of on-line anomaly detection. A quantitative analysis would
require additional metrics, such has expected running and repair
costs.

3.4 conclusion

This thesis has successfully introduced Stochastic Recurrent Networks
(STORNs), a combination of Recurrent Neural Networks (RNNs) with

4 We also tried smoothed forward differences and smoothed input gradients, none of
which had any effect on the results. Thus, these scores are discarded in this analysis.

3.4 conclusion 47

0 5 10 15 20 25 30 35

Time [s]

3

0

3

Jo
in

t
A

n
g
le

 [
ra

d
]

S0 S1 E0 E1 W0 W1 W2

Online Stepwise
Lower Bound

Smoothed
OSWLB

SWLB Forward
Differences

Input Gradient
Magnitude

On-line Anomaly Detection Normal Sample

0 5 10 15 20 25 30 35

Time [s]

3

0

3

Jo
in

t
A

n
g
le

 [
ra

d
]

S0 S1 E0 E1 W0 W1 W2

Online Stepwise
Lower Bound

Smoothed
OSWLB

SWLB Forward
Differences

Input Gradient
Magnitude

On-line Anomaly Detection Anomalous Sample

0 5 10 15 20 25 30 35

Time [s]

3

0

3

Jo
in

t
A

n
g
le

 [
ra

d
]

S0 S1 E0 E1 W0 W1 W2

Online Stepwise
Lower Bound

Smoothed
OSWLB

SWLB Forward
Differences

Input Gradient
Magnitude

On-line Anomaly Detection Anomalous Sample

Figure 15: On-line detection for the unidirectional recognition model. The
trajectories show one normal and two anomalous samples of joint
configurations over time. The twelve bars on top show the four
anomaly scores combined with the three thresholds κ1, κ2 and
κ3. Green means that no anomaly is detected, red the opposite.
Yellow colors indicate an anomaly score around the threshold.

48 experiments & evaluation

0 5 10 15 20 25 30 35

Time [s]

3

0

3

Jo
in

t
A

n
g
le

 [
ra

d
]

S0 S1 E0 E1 W0 W1 W2

Online Stepwise
Lower Bound

Smoothed
OSWLB

SWLB Forward
Differences

Input Gradient
Magnitude

On-line Anomaly Detection Normal Sample

0 5 10 15 20 25 30 35

Time [s]

3

0

3

Jo
in

t
A

n
g
le

 [
ra

d
]

S0 S1 E0 E1 W0 W1 W2

Online Stepwise
Lower Bound

Smoothed
OSWLB

SWLB Forward
Differences

Input Gradient
Magnitude

On-line Anomaly Detection Anomalous Sample

0 5 10 15 20 25 30 35

Time [s]

3

0

3

Jo
in

t
A

n
g
le

 [
ra

d
]

S0 S1 E0 E1 W0 W1 W2

Online Stepwise
Lower Bound

Smoothed
OSWLB

SWLB Forward
Differences

Input Gradient
Magnitude

On-line Anomaly Detection Anomalous Sample

Figure 16: On-line detection for the RNN prior recognition model. The tra-
jectories show one normal and two anomalous samples of joint
configurations over time. The twelve bars on top show the four
anomaly scores combined with the three thresholds κ1, κ2 and
κ3. Green means that no anomaly is detected, red the opposite.
Yellow colors indicate an anomaly score around the threshold.

3.4 conclusion 49

0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

On-line Motivated Off-Line Receiver Operating Characteristic (ROC)

Stepwise Lower Bound, AUC: 99.55%
Smooth Stepwise Lower Bound, AUC: 99.83%
Stepwise Lower Bound Forward Differences, AUC: 99.17%
Input Gradients Magnitude, AUC: 99.72%
Committee, AUC: 99.98%
Stepwise Lower Bound Percentile (Off-line), AUC: 99.73%

(a) unidirectional

0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

On-line Motivated Off-Line Receiver Operating Characteristic (ROC)

Stepwise Lower Bound, AUC: 99.72%
Smooth Stepwise Lower Bound, AUC: 99.88%
Stepwise Lower Bound Forward Differences, AUC: 99.17%
Input Gradients Magnitude, AUC: 97.99%
Committee, AUC: 99.87%
Stepwise Lower Bound Percentile (Off-line), AUC: 99.79%

(b) RNN prior

Figure 17: Off-line detection ROC based on on-line thresholds with respec-
tive AUCs. Only the top-left corner of the ROC is shown. For com-
parison, the previously best off-line method is shown as well.

Variational Auto-Encoders (VAEs) as a framework for detecting anoma-
lies in time series data. Real-world robot data served as a proof of con-
cept with remarkably robust results both on- and off-line, with per-
fect classification off-line. The detection algorithm was solely based
on metrics derived from the outputs of STORN, which makes it easy
to transfer the approach to different data sets. No domain knowledge
was required.

Future investigations will include different data sets from different
robots and/or different tasks and anomalies. Furthermore, it is worth
examining whether the latent dynamics of the learned model in any
way resemble the true dynamics. Long-term sampling from STORN in-
dicates room for improvement, though, with [26] in mind, this might
be a rash conclusion. One possibility is the explicit integration of con-
trol inputs, which should stabilize the internal dynamics of STORN.

A
A P P E N D I X

a.1 neural networks

We will recall the theory and techniques for applying Neural Net-
works (NNs) in the context. For a more detailed review, the reader is
referred to [5, Ch.5] as an introduction, or to [23] for a more research-
driven, historical outline.

Of the many ways NNs can be interpreted (e. g., as the name sug-
gests, the biological), it is recommended to view them as black boxes
for universal function approximation throughout this thesis—a pow-
erful means to an end.

We will revise two of the most common architectures: Feed-Forward
Neural Networks (NNs) and Recurrent Neural Networks (RNNs).

a.1.1 Feed-Forward Neural Networks

Feed-Forward Neural Networks (NNs) aim at approximating a func-
tion g : X → Y, X ⊂ Rdx ,Y ⊂ Rdy . To this end, we apply a fixed se-
quence of parametrized functions, each of which consists of an affine
mapping followed by a non-linear transform. This can be cast into the
following recursive definition for l = 1, . . . ,L:

h(l) = f(l)
(

h(l−1)W(l) + b(l)
)
= f(l)

(
(h(l−1), 1)W̃(l)

)
(53)

h(0) = x ∈ X (54)

The entire calculation is called forward-propagation. Each of the L map- forward-propagation

pings (53) is usually referred to as a layer, with the intermediate lay- layers
ers called hidden, hence the notation. The transfer functions f(l) are transfer functions
fixed non-linear functions. Common examples are sigmoidal func-
tions like the tangens hyperbolicus tanh or the logistic function (1+

exp(−x))−1, which are applied component-wise if the output of the
affine mapping is vector valued.

The parameters W̃(l) = (W(l), b(l))T are adjustable through train-
ing and are called weights (hence the notation). Often, the weights of weights

a NN are gathered in a parameter set

θ =
{

W̃(l) | l ∈ {1, . . . ,L}
}

.

The output of the last layer is assumed to be an approximation of the
true function value: h(L) ≈ g(x). It is not obvious that NNs are a rea-
sonable tool for approximating the function g. However, it has been

51

52 appendix

proven [15, 12, 9] that feed-forward NNs are universal function ap-
proximation tools. This and the state-of-the-art performance in many
machine learning and pattern recognition tasks and competitions ren-
der the popularity of NNs.

A state-of-the art technique to prevent over-fitting of the NN is
dropout, cf. [10]. During the learning procedure, in every applicationdropout and fast

dropout of a weight, it is randomly set to 0 (i. e., a Bernoulli experiment for
switching it off is conducted). This prevents over-fitting because infor-
mation has to be extracted from data by the NN under the assumption
that parts of the network are not present. In essence, all 2W architec-
tures, with W being the total number of weights of the network, are
trained simultaneously. The final network is a weighted average with
the weights according to the probability of the particular architecture.

In the spirit of the Central Limit Theorem, a computationally more
feasible generalization of dropout, called fast dropout, has been devel-
oped. Here, each weight is associated with a variance of a Gaussian
distribution (the limit of multiple Bernoulli experiments). For details,
cf. [27].

a.1.1.1 Learning and Back-Propagation

The proofs of the universal approximation capability are non-constructive.
Thus, the central task in applying NNs is finding ‘appropriate’ weights.
This task consists of two parts.

Firstly, the appropriateness of a set of weights is defined through an
energy function L(θ, x), which implicitly uses the NN, and we would
like to maximize Ep(x)[L(θ, x)].1

Usually, it is impossible to evaluate the quality of the function ap-
proximation for the entire (and mostly inherently unknown) data dis-
tribution p(x). Thus, the loss function is evaluated on some training
data set D. In the setting where we want to approximate a function,
this could be a (finite) number of tuples (xn,g(xn)) and we aim at
maximizing

1

N

N∑
n=1

L(θ, xn) ≈ Ep(x)[L(θ, x)] (55)

w.r.t. θ. We seek to find θ∗ such that

θ∗ = arg max
θ

1

N

N∑
n=1

L(θ, xn) (56)

This is done via non-linear optimization techniques and usually in-
volves first-order gradient descent methods (assuming, of course, dif-
ferentiability of the energy function). The optimization is the second

1 The derivation of new algorithms often involves finding an energy function that cap-
tures the structure of the problem to solve, as is done in this thesis in Section 2.1.5
and Section 2.2.3. The details of these procedures are beyond the scope of this ap-
pendix.

A.1 neural networks 53

important part of finding appropriate weights. The efficient computa-
tion of the derivative is crucial for training neural networks.

The state-of-the-art algorithm for doing so is called back-propagation
(it propagates errors against the direction of forward-propagation).
The term was coined by [22], but the techniques involved have been
discovered and applied much earlier, as [23, Ch.5.5] discusses.

By applying the chain rule to the gradient w.r.t. some W̃(l), we get

∂L

∂W̃(l)
=

∂L

∂h(L)

∂h(L)

∂W̃(l)
. (57)

While the first factor is merely the derivative of the energy func-
tion w.r.t. the network’s output, which is problem-specific, the second
term, the gradient w.r.t. our model, is completely independent of the
energy function.

But now we can apply the chain rule multiple times:

∂h(L)

∂W̃(l)
=

∂h(L)

∂h(L−1)

∂h(L−1)

∂W̃(l)
(58)

= . . . (59)

=

(
L−1∏
k=l

∂h(k+1)

∂h(k)

)
∂h(l)

∂W̃(l)
(60)

It becomes apparent that, when taking the derivate w.r.t. W̃(l−1), we
can reuse many of the components from Eq. (60). In general, we apply
the Dynamic Programming principle and start from l = L to save a
lot of redundant computations.

a.1.2 Recurrent Neural Networks

As we have seen in the previous section, Feed-Forward Neural Net-
works (NNs) are a powerful tool for function approximation on some
fixed input space. When concerned with robot trajectories, we usually
find time series of differing length on some fixed space. We need a
model that can (i) deal with input of differing length, and (ii) exploit
temporal dependencies, preferably with similar provable properties
as NNs. Recurrent Neural Networks (RNNs) turn out to be such a tool.
To understand them, we will revisit Eq. (53) and Eq. (54). We add a
temporal component:

h(l)
t = f(l)

(
h(l−1)
t W(l) + h(l)

t−1W(l)
rec + b(l)

)
(61)

h(0)
t = xt (62)

h(l)
0 = b(l)

init (63)

h(L)
t = f(l)

(
h(L−1)
t W(L) + b(L)

)
(64)

With the exception of the last layer, the output of layer l at time t
depends not only on the output of the previous layer l− 1 as with

54 appendix

non-recurrent NNs, but also on the output of the previous time step
t− 1 at that layer. Each RNN time step is a normal NN with ‘sideways’
temporal input.

The universal approximation capability is, thus, leveraged to se-
quences. Indeed, RNNs are Turing-complete [25] and, under mild con-
ditions, universally approximate measurable mappings of sequences
to sequences [8].

The Back-Propagation principle encountered in the previous sec-
tion can also be applied to RNNs, it is then called Back-Propagation
Through Time, [28].

The same applies for fast dropout, which has been generalized to
RNNs in [3].

a.1.2.1 Variants: Bidirectional and Long Short-Term Memory Networks

The research on Recurrent Neural Networks (RNNs) has given rise to a
multitude of variants. We will briefly discuss two important variants
that we will use throughout this thesis.

bidirectional rnns As seen in Eq. (61), standard RNNs only
look at the past input samples. However, in some settings (one of
which is mentioned in Section 2.2.1) it can make sense to look at
future samples as well. Here, bidirectional RNNs come into play. Pro-
posed by [24], they consist of two individual RNNs of identical size,
one of which is working on the reversed input. The output of a hid-
den layer of the bidirectional RNN is then a combination (usually the
sum) of the outputs of the two individual networks at that time step
and layer.

long short-term memory One flaw discovered by the research
community is that RNNs struggle to model long-time dependencies.
This has to do with the multiplicative error propagation. One success-
ful attempt to overcome this deficiency are so called Long Short-Term
Memory (LSTM) networks, [11]. LSTM is a transfer function which is
parametrized with a data-dependent state. Depending on the input, it
can ‘decide’ whether to apply or change the state. The decision mech-
anism is a differentiable version of a boolean decision, implemented
by a sigmoid function that saturates at 0 and 1, corresponding to True

and False. Since LSTM can be viewed as a specific, powerful transfer
function rather than a stand-alone network architecture, it can easily
be combined with, e. g., bidirectional NNs.

a.2 estimating the marginal data likelihood

In Section 2.1.5, we have found a method to approximate the true, yet
unknown data likelihood through a variational approximation that
yields a lower bound.

A.2 estimating the marginal data likelihood 55

As both papers [14, 21] show, one can derive a Monte Carlo estima-
tor of the true data likelihood. Though this is not sufficiently efficient
from a computational point of view, it helps evaluating the goodness
of fit of the variational approximation.

The derivation goes as follows:

p(x) =
∫
p(x | z)p(z)dz

[
= Ep(z)[p(x | z)]

]
(65)

=

∫
p(x | z)p(z)
qφ(z | x)

qφ(z | x)dz (66)

= Eqφ(z|x)

[
p(x | z)p(z)
qφ(z | x)

]
(67)

≈ 1

S

S∑
s=1

p(x | zs)p(zs)
qφ(zs | x)

, zs ∼ qφ(z | x) (68)

The notation is as previously, i. e., p(z) is the latent prior, p(x | z) is
the output distribution and qφ(zs | x) denotes the recognition model,
the variational approximation of the posterior distribution p(z | x).

As indicated in the first line, drawing from the prior would yield a
valid Monte Carlo estimate. However, drawing from the recognition
model in the spirit of importance sampling gives a lower variance
fit—the samples drawn fit the data better.

This result can easily be extended to time series and was omitted
for simplicity of notation.

From a computational point of view, we are actually interested in
estimating the log-likelihood

lnp(x) ≈ ln

(
1

S

S∑
s=1

p(x | zs)p(zs)
qφ(zs | x)

)
(69)

= ln

(
S∑
s=1

p(x | zs)p(zs)
qφ(zs | x)

)
− lnS (70)

With the logarithm outside the sum in Eq. (70), we recognize the
setting of the so-called LogSumExp trick:

ln
S∑
s=1

exp(ξs) = a+ ln
S∑
s=1

exp(ξs − a), a := max
s
ξs (71)

The latter is numerically favorable because 0 6 exp(ξs − a) 6 1,
which prevents overflow because the exponentiation does not explode,
and underflow with negative effects of the logarithm, because at least
one of the exponentiations (the one corresponding to the maximum)
yields 1, which leads to higher precision in the calculation of the log-
arithm.

The LogSumExp is straightforwardly applicable by identifying

ξs = lnp(x | zs) + lnp(zs) − lnqφ(zs | x), (72)

where all summands are core quantities of VAEs and STORNs.

56 appendix

a.3 experiments : alternative latent distributions

The inverse transform method is fed by uniform random variables.
VAEs, however, start with Gaussian variables. We would like to skip
implicitly transforming the Gaussian variables into uniform variables,
i. e., choose a family of parametrized distributions that generalize the
uniform distribution.

The Beta distribution with parameters a and b does so—in the case
of a,b = 1 it coincides with the standard uniform distribution. Fur-
thermore, for any pair of parameters, it is defined on the standard
unit interval. In addition to these features, for parameters a,b < 1, the
probability density function (pdf) of the corresponding Beta distribu-
tion is U-shaped and could thus serve to approximate binarized/dis-
cretized latent variables.

In order to learn distributions through NNs, we need to derive gra-
dients of all parameters involved. In particular, we need derivatives
of the generation of the random latent variables w.r.t. the parameters
of the distribution.

We will now derive the backpropagation equations for beta dis-
tributions, closely following the suggestions of [21] in notation and
procedure. We are interested in the gradient

∇θEp(x|θ)[f(x)], (73)

which can be rewritten as

−Ep(x|θ)[∇x[B(x)f(x)]] (74)

with a suitable function B(x). In the paper, a general formula for de-
riving B for an exponential family distribution of the form

p(x | θ) = h(x) exp
(
η(θ)Tφ(x) −A(θ)

)
(75)

is given by

B(x) =
∇θη(θ)φ(x) −∇θA(θ)

∇x logh(x) + η(θ)T∇xφ(x)
. (76)

This formula stems from the observation that

∇θp(x | θ) = p(x | θ) [∇θη(θ)φ(x) −∇θA(θ)]︸ ︷︷ ︸
=:C(x)

, (77)

∇xp(x | θ) = p(x | θ)
[
∇x logh(x) + η(θ)T∇xφ(x)

]︸ ︷︷ ︸
=:D(x)

, (78)

so that

∇θp(x | θ) = p(x | θ)C(x)
= p(x | θ)D(x)B(x) = ∇x[p(x | θ)]B(x).

A.3 experiments : alternative latent distributions 57

This is the reparametrization trick: instead of taking the derivative
w.r.t. the random variable x, we have reparametrized such that we
can take the derivative w.r.t. the parameters θ.

The beta distribution with parameters a,b > 0 belongs to the expo-
nential family and has the pdf

p(x | a,b) =
1

B(a,b)
xa−1(1− x)b−1, (79)

where x ∈ [0, 1] and B(a,b) is the Beta function.
In order to derive the suitable B for gradients w.r.t. to the first pa-

rameter a, we can match patterns between Eq. (75) and Eq. (79) and
arrive at

h(x) = (1− x)b−1, (80)

η(θ) = a− 1, (81)

φ(x) = log(x), (82)

A(θ) = logB(a,b). (83)

Inserting into Eq. (76), we arrive at

Ba,b(x) =
log(x) −Ψ(a) +Ψ(a+ b)

a−1
x − b−1

1−x

(84)

=
x(1− x)(log(x) −Ψ(a) +Ψ(a+ b))

(a− 1)(1− x) − (b− 1)x
. (85)

Here, Ψ is the digamma function, the first derivative of the Γ -function.
The denominator is a linear function in x. Unless a+ b = 2, its root

is x = (a− 1)/(a+ b− 2) (this corresponds to the mode or, in case
of U-shaped pdfs, the anti-mode of the Beta distribution). For most
combinations of positive parameters a and b, this root lies within the
unit interval, the domain of the Beta distribution. Since we need to
evaluate Ba,b for Beta samples in order to calculate the (stochastic)
gradient, we yield a singularity in the domain of our latent variables.

Numerical experiments show that the evaluation of Ba,b suffers
from an intolerably high variance. The empirical mean, even for large
samples, varies on a scale as large as 100.

The previous result is a provable, theoretical drawback of the Beta
distribution in the framework of VAEs. Moreover, in practice, Beta dis-
tributions turn out to be hard to sample from. Since there is no closed-
form expression for the cdf of Beta distributions, one cannot apply
the inverse transform method, which is efficiently implementable. In-
stead, one has to use rejection sampling methods, which are hard to
transfer into a parallel computing framework or GPUs.

While the idea of using a Beta distribution seemed promising in
the first place, the two drawbacks outlined above render the applica-
tion impractical. Initially, our goal was to find a suitable extension of
the uniform distribution. While the Beta distribution as a member of

58 appendix

the exponential family seemed a somewhat natural choice, there are
reasonable alternatives, such as the Kumaraswamy distribution.

The Kumaraswamy (KW) distribution is a distribution on the stan-
dard unit interval with two parameters a,b > 0. Though not exactly
related, it resembles the Beta distribution, while it has some advan-
tages such as efficient sampling and simpler, closed-form expressions
for pdf and cdf.

In order to use the KW distribution, we need a couple of quantities
associated with this distribution. For x ∈ [0, 1] and a,b > 0, the pdf of
a KW(a,b) distribution is

p(x | a,b) = abxa−1(1− x)b−1. (86)

For x ∈ [0, 1] and a,b > 0, the pdf of a KW(a,b) distribution is

F(x|a,b) = 1− (1− xa)b. (87)

In order to optimize the shape of the posterior distribution in the
variational learning process, we need to optimize the log-likelihood
of the KW distribution. Taking the negative log of the pdf above, we
yield

LL(x | a,b) = lna+ lnb+ (a− 1) ln x+ (b− 1) ln(1− x) (88)

In the learning process of VAEs, we use the KL between the posterior
(which is to be approximated by a KW distribution) and some prior
distribution on the latent variables. A suitable, simple prior for the
KW distribution is the uniform prior. In this case, we get that the KL
boils down to the (negative) entropy of the respective KW distribu-
tion. Hence2:

KL(KW(x | a,b) || U(0, 1))

= ln(ab) +
(
a− 1

a

)(
γ−Ψ(b) +

1

b

)
−
b− 1

b

Here, γ is the Euler-Mascheroni constant and Ψ is the digamma func-
tion, the derivative of the Γ -Function.

An important aspect of using the KW distribution in the variational
framework is sampling. Since the cdf is invertible with

F−1(x|a,b) =
(
1− (1− x)1/b

)1/a
,

we can produce samples KW(a,b) by taking a uniform sample u and
applying the inverse. F−1(u | a,b) then has the desired distribution.

In early experiments with static data, we found that the KW distri-
bution trains more slowly (both in terms of computation time due to
less optimized functions involved than with the very common Gaus-
sian distributions and in terms of iterations until convergence) and
yields worse results in terms of the lower bound. We henceforth dis-
carded it and sticked to Gaussian latent distributions.

2 For details on the derivation, cf. [16, 4.11]

B I B L I O G R A P H Y

[1] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James
Bergstra, Ian J. Goodfellow, Arnaud Bergeron, Nicolas Bouchard,
and Yoshua Bengio. Theano: new features and speed improve-
ments. Deep Learning and Unsupervised Feature Learning NIPS
2012 Workshop, 2012. (Cited on page 38.)

[2] Justin Bayer and Christian Osendorfer. Learning stochastic re-
current networks. arXiv preprint arXiv:1411.7610, 2014. (Cited on
pages 1, 19, 20, 24, and 27.)

[3] Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nu-
tan Chen, Sebastian Urban, and Patrick van der Smagt. On
fast dropout and its applicability to recurrent networks. arXiv
preprint arXiv:1311.0701, 2013. (Cited on pages 37 and 54.)

[4] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lam-
blin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian,
David Warde-Farley, and Yoshua Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy), June 2010. Oral Presenta-
tion. (Cited on page 38.)

[5] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006. (Cited on page 51.)

[6] Hervé Bourlard and Yves Kamp. Auto-association by multilayer
perceptrons and singular value decomposition. Biological cyber-
netics, 59(4-5):291–294, 1988. (Cited on page 12.)

[7] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel,
Aaron C. Courville, and Yoshua Bengio. A recurrent latent vari-
able model for sequential data. CoRR, abs/1506.02216, 2015.
URL http://arxiv.org/abs/1506.02216. (Cited on pages 4

and 25.)

[8] Barbara Hammer. On the approximation capability of recurrent
neural networks. Neurocomputing, 31(1):107–123, 2000. (Cited on
pages 20 and 54.)

[9] Robert Hecht-Nielsen. Theory of the backpropagation neural
network. In Neural Networks, 1989. IJCNN., International Joint Con-
ference on Neural Networks, pages 593–605. IEEE, 1989. (Cited on
pages 12 and 52.)

59

60 bibliography

[10] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012. (Cited on page 52.)

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. (Cited on
page 54.)

[12] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multi-
layer feedforward networks are universal approximators. Neural
networks, 2(5):359–366, 1989. (Cited on pages 12 and 52.)

[13] J.Bayer, C.Osendorfer, S. Diot-Girard, T. RÃŒckstiess, and Sebas-
tian Urban. climin - a pythonic framework for gradient-based
function optimization. https://github.com/BRML/climin, 2015.
(Cited on page 38.)

[14] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013. (Cited on pages 9, 17,
24, and 55.)

[15] Andrei Nikolaevich Kolmogorov. On the representation of con-
tinuous functions of many variables by superposition of contin-
uous functions of one variable and addition. Amer. Math. Soc.
Transl, 28:55–59, 1963. (Cited on pages 12 and 52.)

[16] J.V. Michalowicz, J.M. Nichols, and F. Bucholtz. Handbook of Dif-
ferential Entropy. CRC Press, 2013. ISBN 9781466583177. URL
https://books.google.de/books?id=k2fOBQAAQBAJ. (Cited on
page 58.)

[17] Zoltán Á Milacski, Marvin Ludersdorfer, András Lorincz, and
Patrick van der Smagt. Robust detection of anomalies via sparse
methods. In Proc. 22nd Int. Conf. on Neural Information Processing
(ICONIP 2015), 2015. (Cited on page 5.)

[18] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective.
The MIT Press, 2012. ISBN 0262018020, 9780262018029. (Cited
on pages 10 and 11.)

[19] Judea Pearl. Causality. Cambridge university press, 2009. (Cited
on page 10.)

[20] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel
Tarassenko. A review of novelty detection. Signal Processing, 99:
215–249, 2014. (Cited on pages 3, 5, 7, and 29.)

[21] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra.
Stochastic backpropagation and approximate inference in deep

bibliography 61

generative models. In Tony Jebara and Eric P. Xing, editors, Pro-
ceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1278–1286. JMLR Workshop and Conference
Proceedings, 2014. URL http://jmlr.org/proceedings/papers/

v32/rezende14.pdf. (Cited on pages 9, 17, 24, 55, and 56.)

[22] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. Cognitive
modeling, 5:3, 1988. (Cited on page 53.)

[23] Jürgen Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, 2015. (Cited on pages 51

and 53.)

[24] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent
neural networks. Signal Processing, IEEE Transactions on, 45(11):
2673–2681, 1997. (Cited on page 54.)

[25] Hava T Siegelmann and Eduardo D Sontag. Turing computabil-
ity with neural nets. Applied Mathematics Letters, 4(6):77–80, 1991.
(Cited on pages 20 and 54.)

[26] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A
note on the evaluation of generative models. arXiv preprint
arXiv:1511.01844, 2015. (Cited on page 49.)

[27] Sida Wang and Christopher Manning. Fast dropout training. In
Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 118–126, 2013. (Cited on pages 37 and 52.)

[28] Paul J Werbos. Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.
(Cited on page 54.)

[29] Matthew D Zeiler. Adadelta: An adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012. (Cited on page 38.)

TRITA -MAT-E 2015:90

ISRN -KTH/MAT/E--15/90--SE

www.kth.se

	omslag Sölch
	Maximilian Sölch - Master Thesis - Detecting Anomalies
	omslag Sölch
	Blank Page
	Blank Page
	Blank Page
	Blank Page

