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Abstract

This work analysis the main macro-finance models of the term structure of
interest rates that determines the joint dynamics of the term structure and
the macroeconomic fundamentals under a no-arbitrage approach. There has
been a long search during the past decades of trying to study the relationship
between the term structure of interest rates and the economy, to the extent that
much of recent research has combined elements of finance, monetary economics,
and the macroeconomics to analyse the term structure.

The central interest of the thesis is based on two important notions. Firstly,
it is picking up from the important work of Ang and Piazzesi (2003) model
who suggested a joint macro-finance strategy in a discrete time affine setting,
by also imposing the classical Taylor (1993) rule to determine the association
between yields and macroeconomic variables through monetary policy. There
is a strong intuition from the Taylor rule literature that suggests that such
macroeconomic variables as inflation and real activity should matter for the
interest rate, which is the monetary policy instrument. Since from this impor-
tant framework, no-arbitrage macro-finance approach to the term structure of
interest rates has become an active field of cross-disciplinary research between
financial economics and macroeconomics.

Secondly, the importance of forecasting the yield curve using the variations
on the Nelson and Siegel (1987) exponential components framework to capture
the dynamics of the entire yield curve into three dimensional parameters evolv-
ing dynamically. Nelson-Siegel approach is a convenient and parsimonious
approximation method which has been trusted to work best for fitting and
forecasting the yield curve. The work that has caught quite much of interest
under this framework is the generalized arbitrage-free Nelson-Siegel macro-
finance term structure model with macroeconomic fundamentals, (Li et al.
(2012)), that characterises the joint dynamic interaction between yields and
the macroeconomy and the dynamic relationship between bond risk-premia
and the economy. According to Li et al. (2012), risk-premia is found to be
closely linked to macroeconomic activities and its variations can be analysed.
The approach improves the estimation and the challenges on identification of
risk parameters that has been faced in recent macro-finance literature.
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Opsomming

Hierdie werk ontleed die makro-finansiese modelle van die term struktuur van
rentekoers pryse wat die gesamentlike dinamika bepaal van die term struktuur
en die makroekonomiese fundamentele faktore in ’n geen arbitrage wêreld.
Daar was ’n lang gesoek in afgelope dekades gewees wat probeer om die
verhouding tussen die term struktuur van rentekoerse en die ekonomie te
bestudeer, tot die gevolg dat baie onlangse navorsing elemente van finansies,
monetêre ekonomie en die makroekonomie gekombineer het om die term struk-
tuur te analiseer.

Die sentrale belang van hierdie proefskrif is gebaseer op twee belangrike
begrippe. Eerstens, dit tel op by die belangrike werk van die Ang and Piazzesi
(2003) model wat ’n gesamentlike makro-finansiering strategie voorstel in ’n
diskrete tyd affiene ligging, deur ook die klassieke Taylor (1993) reël om as-
sosiasie te bepaal tussen opbrengste en makroekonomiese veranderlikes deur
middel van monetêre beleid te imposeer. Daar is ’n sterk aanvoeling van die
Taylor reël literatuur wat daarop dui dat sodanige makroekonomiese verander-
likes soos inflasie en die werklike aktiwiteit moet saak maak vir die rentekoers,
wat die monetêre beleid instrument is. Sedert hierdie belangrike raamwerk, het
geen-arbitrage makro-finansies benadering tot term struktuur van rentekoerse
’n aktiewe gebied van kruis-dissiplinêre navorsing tussen finansiële ekonomie
en makroekonomie geword.

Tweedens, die belangrikheid van voorspelling van opbrengskromme met
behulp van variasies op die Nelson and Siegel (1987) eksponensiële kompo-
nente raamwerk om dinamika van die hele opbrengskromme te vang in drie
dimensionele parameters wat dinamies ontwikkel. Die Nelson-Siegel benader-
ing is ’n gerieflike en spaarsamige benaderingsmetode wat reeds vertrou word
om die beste pas te bewerkstellig en voorspelling van die opbrengskromme.
Die werk wat nogal baie belangstelling ontvang het onder hierdie raamwerk
is die algemene arbitrage-vrye Nelson-Siegel makro-finansiele term struktuur
model met makroekonomiese grondbeginsels, (Li et al. (2012)), wat kenmerk-
end van die gesamentlike dinamiese interaksie tussen die opbrengs en die
makroekonomie en die dinamiese verhouding tussen band risiko-premies en
die ekonomie is. Volgens Li et al. (2012), word risiko-premies bevind om nou
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gekoppel te wees aan makroekonomiese aktiwiteite en wat se variasies ontleed
kan word. Die benadering verbeter die skatting en die uitdagings van identi-
fisering van risiko parameters wat teegekom is in die afgelope makro-finansiese
literatuur.

Sleutelwoorde: Opbrengskromme, termyn-struktuur van rentekoerse, makro-
ekonomiese grondbeginsels en finansiële faktore.
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Chapter 1

Introduction

The relation of the short-term to long-term interest rate yields has often been
an extremely significant area of interest that has been deeply analysed by
macroeconomists, financial economists and composes an issue of special rele-
vance for practitioners in financial markets, as it reflects expectations of market
participants about future changes in interest rate. This relationship usually
referred to as the term structure of interest rates, and plays a major role on the
analysis of different aspects of the economy. An understanding of the stochas-
tic behaviour of term structure of interest rates in the light of macroeconomic
evolution is important for understanding the transmission mechanism of mon-
etary policy. There has been a long-standing separation between macro and
finance literature in the modelling of the term structure of interest rates until
a joint macro-finance model introduced by Ang and Piazzesi (2003), which
examines the relationship between the term structure of interest rates and the
economy. The joint macro-finance approach has since then become an active
field of cross-disciplinary research between the two disciplines.

In the canonical finance models, the short-term interest rates is expressed
as a linear function of few latent factors of the yield curve, but with no fun-
damental economic interpretation of the underlying latent factors. The long-
term interest rates are attributable to these latent factors, and the movement
in long-term yields reflects the changes in risk premiums, which also depend
on these latent factors. Contrary to macro literature, the short-term interest
rates is controlled by the central banks through several mechanisms to realize
a powerful monetary policy. Long term interest rates are determined by the
expectations of future short rates. Since short rates are determined by expec-
tations of the macro variables and changes in risk premiums are often ignored
in this case, then the expectations hypothesis of the term structure holds.

The finance and macroeconomic literature have developed to a remarkable
extent of mutual interest that connects the two literatures through the short
term interest rates. From a finance perspective, the short-term interest rate
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CHAPTER 1. INTRODUCTION 2

is a fundamental building block for yields of other maturities, because long-
term yields are risk adjusted averages of expected future short rates. From
a macro perspective, the short-term interest rate is a key policy instrument
that is controlled by the central bank through several mechanisms to realize
a powerful monetary policy. Monetary authority decides how to conduct the
monetary policy by adjusting the rates to achieve the goals of economic stabi-
lization. Connecting the edges, a joint macro-finance strategy would suggest
that understanding the way central banks move the short rate in response to
fundamental macroeconomic shocks, will provide the most extensive under-
standing of the movements in the short end of the term structure of interest
rates with the help of macroeconomic variables. Moreover, the consistency
between short and long-term rates is enforced by no-arbitrage assumption.

Figure 1.1: Macro-finance representation

In modern finance, different methods and techniques have been developed
with the aim of determining a fair price of any tradable asset. As seen in the
groundbreaking work of Black and Scholes (1973), Merton (1973), that gives a
theoretical estimate of the price of option over time, which includes risk neutral
and martingale pricing, see Harrison and Pliska (1983), under arbitrage-free
assumptions. Not only did this specify the first successful options pricing for-
mula, but it also described a general framework for pricing other derivative
instruments such as interest rate derivatives. Constructing a model of the
term structure of interest rates which combines macroeconomics and finance
models will enable us to do bond pricing, which is viewed as a special case of
asset pricing. The main focus in this research is on the modelling of the term
structure of interest rates using recently developed no-arbitrage macro-finance
models and also, to compare the variety of joint models of the term structure
and the macroeconomy to study the impact of different macroeconomic vari-
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ables and how they drive expected future interest rates under discrete time
setting.

1.1 Macro-Finance Background Theory
The term structure of interest rates has long been of fundamental importance
to analyse different aspects of the economy. Modelling the yield curve has been
essential to researchers, that is to achieve goodness of fit, forecasting the econ-
omy and derivative pricing. Empirical studies reveal that more than 95% of
the movements of various treasury bond yields are captured by three factors, as
shown in the seminal paper of Litterman and Scheinkman (1991). Extracting
these factors rely on the yield curve information that can be classified in two
categories, the no-arbitrage approach based on financial theory and exploiting
the cross-equation restrictions of bond pricing. The other approach is through
statistical interpolation such as the Nelson and Siegel (1987) interpolation,
regarded as reduced-form model. Different methods and techniques have been
developed with the aim of modelling the dynamics of the yield curve.

Macroeconomics have developed term structure models to determine the
relationship between interest rates, monetary policy and macroeconomic fun-
damentals without any considerations about the absence of arbitrage and based
on expectation hypothesis. The aim was on the effect of macroeconomic shocks
on the short rate of the yield curve, where the set of yields are estimated using
unrestricted vector autoregressive (VAR) estimation, see Evans and Marshall
(2007), Amisano and Giannini (1997). This is done by combining macroeco-
nomic variables (inflation and economic activity indicator) and the bond yields
of different maturities in a standard VAR process to estimate the exogenous
impulses to monetary policy effect on bond yields of various maturities. The
results are based on the type of yields chosen.

Short-rate plays a core building block in most of the empirical studies found
in monetary policy. Amongst those we have Hamilton and Jordá (2002), where
in most related papers short rate process is estimated using data on short rates.
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Fed Fund and Interest Rates

Figure 1.2: Daily data on target (step function), federal funds rate (one-day),
LIBOR (six month), and swap yields (two and five years). 1994-1999

According to expectations theory, long term rates are related to short term
rates through market expectations of future short rates, see Rudebusch (1995),
which cannot match the long end of the yield curve, because the estimation
involves only short-end data. In addition, there is strong evidence against
the expectations hypothesis that “the expectations hypothesis that long yields
are the average of future expected short yields”, see Fama and Bliss (1987);
Campbell and Shiller (1991). To compute the expected federal fund target,
most literatures, for example Kuttner (2001) and others, make use of federal
funds futures data and again the expectations hypothesis, which has been
the most cited theory to explain the determinants of the shape of the term
structure of interest rates.

The disadvantages of the macro-models are that they require a large num-
ber of coefficients to be estimated when dealing with a broad range of yields
maturities and did not rule out theoretical inconsistencies due to the presence
of arbitrage opportunities along the yield curve. However, as pointed out by
Duffee (2002), term structure models that take on arbitrage opportunities do
not say much about dynamics of interest rates and they are mainly focused
on fitting the curve at one point in time and are not suitable for forecast-
ing. These macroeconomic models could not find the relation between term
structure dynamics and macroeconomy.

In the case of the empirical finance literature, the no-arbitrage approach is
a centre of interest for the analysis of yield curves and it provides tractability
and consistency in bond pricing. Financial economists have mainly focused on
forecasting the yield curves and pricing interest rate related securities using
the affine term structure models (ATSMs) which provides a good fit, based
on the assumptions of no-arbitrage framework. In this research, yields are
modeled as a linear function which is explained by few unobservable factors
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under no-arbitrage assumptions that enforces the consistency of evolution of
yields over time with cross-section of yields of different maturities, as discussed
in Duffie and Kan (1996) and Dai and Singleton (2000).

Popular affine no-arbitrage models provide useful statistical descriptions of
term structure dynamics. However, the underlying factors on bond yields have
no direct economic nature and do not provide any information on macroeco-
nomic forces behind the movement of the yield curve. The pioneers of this
literature are stemming from Vasicek (1977) and Cox et al. (1985), who intro-
duced an analytically tractable special class of term structure models derived
in continuous time under no-arbitrage approach. In this approach, dynamics
of short-term interest rates are taken as underlying state factors.

Affine models were then popularised by Duffie and Kan (1996), on deriva-
tion of an unobservable three factor ATSM, whose formalization encompasses
earlier ATSMs. Dai and Singleton (2000) made a thorough specification anal-
ysis of the unobservable three factor ATSM. Specifically, empirical studies re-
veal, by use of principal component analysis, that some of the movements
of bond yields are captured by three state factors, which are often called
level, slope and curvature as shown in the seminal paper by Litterman and
Scheinkman (1991), but typically left unspecified the relationship between the
term structure and the fundamental macroeconomic variables.

To bridge the gap between the two literatures, the seminal work by Ang
and Piazzesi (2003), suggests a discrete-time affine model, and impose a no-
arbitrage restrictions on a classical Taylor rule VAR model. Taylor rule speci-
fication implies that central banks aim at stabilising inflation around its target
level and output around its potential, by adjusting short-term interest rates in
response to movements in inflation and real activity. Ang and Piazzesi (2003)
work is attempting to find the connection between macroeconomic and the fi-
nancial description of the term structure of interest rates to improve the model
performance. The analysis, however, introduced a special case of the Gaussian
affine set-up corresponding to a discrete time multi-dimensional Vasicek model.
The use of the discrete-time framework has become an active field of cross-
disciplinary research between finance and macroeconomics in macro-finance
literature over the past decade.

For forecasting purpose affine models turn out to show a poor empirical
performance, as shown by Duffee (2002). This is further confirmed in the
work of Hamilton and Wu (2012), claiming that, because of the tremendous
numerical difficulties encountered in estimating the necessary parameters of
the affine term structure models in the literature, has led to the establishment
that, three popular parametrizations of ATSMs are unidentified and propose to
estimate the reduced form representation of the Gaussian affine term structure
models.
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Alternatively, the reduced-form statistical approach, is popular among mar-
kets and central bank practitioners, namely the three factor interpolation Nel-
son and Siegel (1987) model. It is an empirically motivated approach due
to the relative parsimony, its goodness of fit of their model which is usually
given in discrete-time settings. According to the dynamic extensions made by
Diebold and Li (2006), the main findings are that this dynamic Nelson-Siegel
extension (denoted DNS) exhibits good empirical performance and the model
factors are extracted from principal component analysis but lacks a solid the-
atrical foundation.

Recently, Christensen et al. (2011) introduced a merged, affine arbitrage-
free Nelson-Siegel (AFNS) model, in discrete time, by combining the affine
arbitrage-free assumption and Nelson-Siegel interpolation to address the em-
pirical problem of ATSMs. The no-arbitrage restriction on the reduced-form
DNS model impose additional constant term to the yield equations in the
AFNS model. However, even though the existence of the solutions for both
AFNS models and the more general ATSMs is successfully proven, the unique-
ness of the solution is left out. To derive both the existence and uniqueness of
solution, Linlin and Gengming (2012) developed a simple and fast procedure
for estimating the AFNS model with reduced dimension optimization and a
multi-step embedded regression.

1.2 Motivation on Macro-Finance Theory
The interaction between the science of macroeconomics and the science of
macro-finance in finance under the subject of the term structure of interest
rates is a relatively new branch of research that combines models of the term
structure of interest rates in financial literature with simple macroeconomic
variables or models thereof. Little attention has been paid on the relationship
between macro and finance literature, until since early 2000s where economists
tried to find the interaction between the dynamics of the term structure with
the help of macroeconomic variables. The important work of Ang and Piazzesi
(2003) showed some success, and macro-finance approach to model the term
structure of interest rates has under no-arbitrage setting become an active
field of cross-disciplinary research between financial economics and macroeco-
nomics.

The main motivation of studying such model-structure is to understand
both the influence of macroeconomic variables on yield curve and the infor-
mation value of yield curve with respect to the macroeconomy. Imposition of
no-arbitrage assumptions on macro-finance models add macroeconomic vari-
ables to the vector of unobservable yield factors. The term structure is then
fitted at a point in time to eliminate the arbitrage possibilities along yield
curve. Term structure modelling gives the most valuable information to fore-
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casters and policy makers. The information reflects expectations of market
participants about future changes in interest rate which in turn help deter-
mine what actually happens in the future.

1.3 Thesis Structure
Thesis is organized as follows: Chapter 2 first reviews the preliminaries of var-
ious interest rates related modelling approaches of the yield curve. Chapter 3
provides the most popular approaches for term structure modelling, reduced-
form models and no-arbitrage approach, where the types of these two ap-
proaches are presented to give thorough explanations about the yield curve.
A detailed description about the newly developed standard affine-Gaussian
setup of macro-finance models with other existing related frameworks and the
original macro-finance models of the term structure is provided in Chapter 4.
Chapter 5 proceeds to discuss a model by Li et al. (2012), which is divided
into two sub-classes: the unspanned versus spanned model, that describes
the interaction between yield factors and macroeconomic factors, depending
on whether the macro factors span the yield curve. The unspanned model
will also be favoured as it enjoys more parsimony of the Nelson-Siegel model.
Chapter 6 concludes.



Chapter 2

Yield Curve Preliminaries

Numerous statistical and financial economist literatures attempt to address the
important conceptual, descriptive and theoretical considerations regarding the
information conveyed on nominal government bond yield curves by elaborating
on particular approaches to yield curve modelling. Conceptually, this chapter
focuses on what is being measured and the simple way of understanding the be-
haviour of bond yields at different maturities over time. Descriptively, how do
yield curves tend to behave over time. Furthermore, can a simple yet accurate
dynamic characterizations and forecasting be obtained. Theoretically, what
governs and restricts the shape and the behaviour of the yield curve. More-
over, the relationship between the yield curve, macroeconomic fundamentals
and the central bank behaviour. The first section of this chapter traces back
the origin of the yield curve modelling framework and the rest of the chapter
touches upon the basic bond pricing terminology that will be later used when
valuing yield curves.

2.1 Specifications of Interest Rate Curves.
The yield curve is described as the representation of the relationship between
interest rates and different maturities, which is known to be the term structure
of interest rates. There are numerous representations of the term structure of
interest rates, but this section elaborates more on three key theoretical bond
market constructs and the relationships between them, notably, the pure dis-
count curve, forward rate curve, and the yield curve. The three representations
convey the same information, however, in practice, none of these representa-
tions are directly observable, instead, they are estimated from observed bond
prices.

Let the price of a pure discount bond with maturity τ , be denoted by Pt(τ)
for τ ∈ {τ0, τ1, τ2, ..., τN}, as a function of the current time t that pays 1 unit at
maturity τ . If yt(τ) is a continuously compounded rate of return anticipated

8



CHAPTER 2. YIELD CURVE PRELIMINARIES 9

on a bond up to maturity, then the price of a bond at time t is given in terms
of yield to maturity as

Pt(τ) = e−τyt(τ). (2.1.1)

Hence, the discount function shows a one-to-one correspondence between bond
price and its yield to maturity. If a bond’s price is known, or assuming we
are holding the term constant, the bond’s yield can easily be computed. The
yield curve is formally denoted as a function that presents the relationship
between the yields and their maturities at a fixed point in time. This relation
is determined by

yt(τ) = −1

τ
lnPt(τ). (2.1.2)

Likewise, knowledge of a bond’s yield (holding the term constant), enables one
to calculate its price.
The instantaneous (short-term) interest rate, rt, is the annualized risk-free rate
on a one period bond denoted by the limit of yield to maturity1. That is,

rt ≡ yt(0) = lim
τ→0

yt(τ).

The discount function is an exponential decay curve, whose rate of decay is
the instantaneous forward interest rate. That is, the future interest rate that
one would obtain today for over a specified period in the future. The forward
rate ft(τ, T ), is the future interest rate obtainable at time t for over a specified
period in the future. That is, the T−year future forward rate, beginning at
time [τ, T ] years, hence is expressed as

ft(τ, T ) =
1

T − τ
ln

[
Pt(τ)

Pt(T )

]
for 0 < t ≤ τ ≤ T . (2.1.3)

Taking the limit of (2.1.3) as T → τ , gives the instantaneous forward rate
ft(τ), of τ years ahead2, which represents the continuously compounded in-

1In reality, instantaneous short term rates does not exist, it is just a theoretical construct
used to model interest rates, as cited in most traditional stochastic interest rate models

2 The instantaneous forward rate curve is a very important theoretical construct. How-
ever, its value for a single maturity τ is of little practical concern, because it is prohibitively
expensive in terms of transactions cost to make a forward contract between two points in
the distant future if these points are only a small distance apart.
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stantaneous return for a future date that one would require at time t:

ft(τ) = lim
T→τ

ft(τ, T )

= − lim
T→τ

lnPt(T )− lnPt(τ)

T − τ

= − lim
ε→0

lnPt(τ + ε)− lnPt(τ)

ε
(2.1.4)

= −∂ lnPt(τ)

∂τ

= −P
′
t (τ)

Pt(τ)
“forward rate curve.” (2.1.5)

Equation (2.1.5)3 shows that forward rates are closely related to discount
function since they can be obtained in terms of bond prices. The discount
function is assumed to be continuously differentiable, this implies that bond
prices can be obtained in terms of forward rates as

Pt(τ) = exp[−
∫ τ

0

ft(x)dx].

Moreover, using Equation (2.1.2), the relationship between yield curve and the
forward curve, is given by

yt(τ) =
1

τ

∫ τ

0

ft(x)dx “yield curve”, (2.1.6)

which states that the yield curve may be interpreted as a weighted average
of forward rates over the interval [0, τ ]. Given the knowledge of the discount
function, enables one to calculate the bond yields, so as the valuation of the
forward rates. However one of the curves can be used to construct the term
structure, since they are effectively interchangeable. The core interest of both
academic and industry practice is based on the use of the yield curve y(τ),
which is the most common method amongst literatures.

2.2 Zero-Coupon Bond Yields
In practice, constructing yield curves, discount curves and forward curves is
challenging, since these yields are not directly observed, instead, they are es-
timated from observed bond prices. Throughout this thesis, following much
of the literature, yields that will be considered are estimated from observed
zero-coupon bond prices with various amounts of time to maturity. To achieve

3Only the average of ft(τ), the mean forward interest rate ft(τ, T ) over a considerable
interval in the future is of practical concern.
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a meaningful yield curve, the bond yields that are being compared must have
similar risk and payout characteristics. This is central to various term struc-
ture literatures to model asset prices specialized on zero-coupon bonds, because
they represent the fundamental discount rates embedded in fixed-income prod-
ucts that make payments through time.

The background of the yield curve construction results from the two his-
torically popular approaches that estimate a smooth discount curve to obser-
vations on bond prices with varying maturities and then converting to yields
at the relevant maturities by making use of the formulas denoted by Equation
(2.1.5) and Equation (2.1.6) above. Among the predecessors of yield curve es-
timation, the first discount curve approach is due to, McCulloch (1975), who
modeled the discount curve by proposing the use of polynomial splines. The
fitted discount curve, instead of converging to zero, it however, tends to di-
verge at long maturities due to the polynomial structure. This results to the
corresponding yield curve inheriting the same manner. The method turns out,
however, to poorly fit yields that flatten out with maturity, as noted by Shea
(1984).

Later, Vasicek and Fong (1982) provide an improvement of the discount
curve approach to yield curve construction, by modelling the discount curve
using exponential splines. The method introduces the use of a negative trans-
formation of maturity rather than maturity itself, to ensure that forward rates
and zero-coupon yields converge to a fixed limit as maturity increases. How-
ever, considering this clever technique, the Vasicek-Fong approach appears
much more accurate at fitting yield curves with flat long ends. Nevertheless,
the discount curve approach in Vasicek and Fong (1982) suffers from some
drawbacks, because the estimation requires iterative non-linear optimization
which make it almost impossible to restrict the implied forward rates to be
always positive.

An alternative and a very popular approach to yield curve construction
that seems to out-stand the various standard benchmark issues, is due to
Fama and Bliss (1987). Yields are constructed from estimated forward rates
at the observed maturities, which is contrary to the use of estimated discount
curve. The constructed forward rates are necessary to price long-maturity
bonds and are often called “unsmoothed Fama-Bliss” forward rates, see Diebold
and Li (2006). The unsmoothed Fama-Bliss forward rates are transformed
to unsmoothed Fama-Bliss yields4 by appropriate averaging, using Equation
(2.1.6) above.

At any time, different yields corresponding to different bond maturities
4The unsmoothed Fama-Bliss yields exactly price the included bonds. Numerous studies

make use of this estimation technique to fit empirical yield curves (i.e Nelson-Siegel family),
as this is to be discussed in details throughout this thesis.
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evolve dynamically by shifting among different shapes. This, however shows
that, for a given set of bonds, the slope of the yield curve reflects an expec-
tation about the movement of interest rates over time. Different shapes can
be interpreted as “Downward sloping”, where long-term borrowing costs are
lower than short-term borrowing costs. “Upward sloping”5, where short-term
borrowing costs are lower than long-term borrowing costs. Lastly, the “Flat
yield curve” where borrowing costs are relatively similar for short and long
term loans.

The construction of the term-structure conveys an important information
that can be useful for various aspects such as conducting monetary policy,
forecasting future interest rate path of the economy, the financing of public
debt, risk management of a portfolio of securities and the pricing of interest
rates derivatives. Last but not the least, the formation of expectations about
real economic activity and inflation.

2.3 Holding Period Return
Another important tool for the valuation of the term structure of interest rates
is the holding period return. Firstly, to forecast the holding period returns,
we determine the log forward rate at time t for loans between time t+ τ −m
and t+ τ as,

ft(τ) = pt(τ −m)− pt(τ).

The holding period return is the return on τ -year zero-coupon bond at time t,
and then selling it as an (τ −m)-year zero-coupon bond at time t+m, which
generates a log holding period return of

rt+m(τ) = pt+m(τ −m)− pt(τ).

The holding period is usually random because it depends on the resale value
of the bond Pt+m(τ −m), which is generally not known at time t. Since the
holding period m cannot exceed time to maturity τ , the resale value equals its
payoff when the bond matures so that holding a bond until maturity m = τ
generate a return which is known at time t. The per-period holding period
return in this case is the yield to maturity

yt(τ) =
rt+m(τ)

τ
= − lnPt(τ)

τ
,

where the short rate rt = limτ↓0 yt(τ). The difference between the log holding
period return and the m-year yield gives the log excess holding period return,

rxτt+m = rt+m(τ)− yt(τ),

5The upward-sloping yield curve has been the most prevalent historically.
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these are returns made in excess of riskless return over the holding period.
This is an important feature of the data that the term structure models have
to match.

2.4 Risk Neutral Pricing
Bonds are usually priced using “risk-neutral probability measure” Q, under
no-arbitrage assumptions. The principle of no arbitrage allows one to develop
a consistent pricing and hedging theory. Following from Ross (1976) and Har-
rison and Kreps (1979),6 the most important implication of the arbitrage-free
assumption is the existence of a positive stochastic process known as Pricing
Kernel, M(t), which enables one to compute prices of bonds of any maturity
under probability measure P. However, the price of any asset that promises a
payoff of S(T ) at time T results in asset prices being the expected values of
their discounted future payoffs. Pricing relations at time t, are therefore given
by,

S(t) = EP
t

[
M(T )

M(t)
S(T )

]
. (2.4.1)

Stock prices usually over perform money market under the actual measure,
however, when it comes to derivative pricing, the right measure to work with
is the risk-neutral measure. One key characteristic of risk-neutral measure is
that under this measure, every discounted price process is a martingale. This
is not true under the actual measure. Therefore, in order to price derivatives,
we need to change the measure from the actual to the risk-neutral.

The no-arbitrage assumption guarantees the existence of an equivalent mar-
tingale measure Q or risk-neutral measure. When investors are risk-neutral,
this pricing results applies under the data-generating measure P. In general,
the risk-neutral probability measure Q will be different from P. The change of
the two measures are connected through the Radon-Nikodým derivative Z,

Z =
dQ
dP

> 0.

In order to price derivatives at any time t ∈ [0, T ], we need conditional expec-
tation under Q, and we have the Radon-Nikodým process to handle it:

Zt = Et(Z) =
dQ
dP

∣∣∣
Ft
≡ exp

(
−1

2

∫ T

t

λ
′
(s)λ(s)ds−

∫ T

t

λ(s)dz(s)

)
, (2.4.2)

where λ(t) is the market price of risk and the shocks of the economy z(t)
following a standard Brownian motion at time t. This implies that, under

6Ross (1976) and Harrison and Kreps (1979) explore the principle of no-arbitrage in
frictionless markets to obtain a convenient representation of pricing operators.
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probability measure P, the pricing kernel M(t) is given by,

dM(t)

M(t)
= −r(t)dt− λ(t)′dz(t), (2.4.3)

where r(t) is the short rate. An application of Itô’s lemma gives

d lnM(t) = [−r(t)− 1

2
λ
′
(t)λ(t)]dt− λ(t)dz(t). (2.4.4)

Applying an integration on Equation (2.4.4),

M(T )

M(t)
= exp

(
−
∫ T

t

r(s)ds− 1

2

∫ T

t

λ
′
(s)λ(s)ds−

∫ T

t

λ(s)dz(s)

)
.

The pricing equation takes the form,

S(t) = EP
t

[
M(T )

M(t)
S(T )

]
= EQ

t [e−
∫ T
t r(s)dsS(T )].

Easy manipulations of the above equation can prove that under Q, the in-
stantaneous expected returns for all assets are equal to the risk-free rate. For
this reason the measure Q is also called risk-neutral measure. Specializing the
above equation for a zero-coupon bond that matures at time T and promises
a payoff of 1-unit gives,

Pt(T ) = EP
t

[
M(T )

M(t)

]
= EP

t [exp

(
−1

2

∫ T

t

λ
′
(s)λ(s)ds−

∫ T

t

λ(s)dz(s)

)
︸ ︷︷ ︸

dQ
dP

exp

(
−
∫ T

t

r(s)ds

)
].

This gives the specification of the Radon-Nikodým derivative, and leads to the
risk neutral Q−formula:

Pt(T ) = EP
t

[
dQ
dP

exp(−
∫ T

t

r(s)ds)

]
, (2.4.5)

then the price of a zero-coupon bond becomes,

Pt(T ) = EQ
t [e−

∫ T
t r(s)ds],

where EQ
t denotes the conditional expectation under measure Q. Standard

results found in Duffie and Lando (2001) show that if there exists a risk-neutral
probability measure Q, a system of asset prices is arbitrage-free. Moreover,
the uniqueness of probability measure Q is equivalent to market completeness.
From the above pricing equations we observe that the key variables that govern
the bond prices dynamics are the interest rate r(t), and the time varying price
of risk λ(t). Under risk-neutral measure, expected excess returns on bonds are
zero, the expected rate of return on a long bond equals the risk-free rate.
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2.5 Expectations Hypothesis
The Expectations Hypothesis (EH) is the benchmark term structure model that
provides a theoretical link between yields, returns on bonds and forward rates
of different maturities. Most related literatures on this framework are based on
market expectations hypothesis which are mainly developed for understanding
the returns and yields on long versus short term bonds, and the movement of
the term structure. The hypothesis suggests that long-term yields are equal
to the average of expected short-term interest rates until the maturity date,
and allows for a maturity specific constant term premium of the long yield
over the average expected short-term interest rates. Three implications are
then suggested by the hypothesis, that is, yield term premia and forward term
premia are constant, expected excess returns are constant over time. Another
illustration of the expectation hypothesis states that, investors price all bonds
as though they were risk-neutral. That is to say, investors are concerned
about the expected outcomes and they are indifferent between two investments
strategies. Consider the two following strategies: when buying R100 of a 1-
period bond, when it matures, every year re-invest the remains in another 1-
period bond for τ -periods or buy a R100 of τ -period bond and hold it. Hence
the expected returns on these bonds of different maturities are equal. This
shows the relationship between short-term yields with long-term yields,

yEHt (τ) =
1

τ

τ−1∑
i=0

EtyEHt+i (1), (2.5.1)

where yt(τ) is the τ -period yield of discounted bond that matures at time
t. The expression in Equation (2.5.1) postulates that the movements in long
yields are due to movements in expected future 1-period maturity yield or
short-term yields. The expectations hypothesis argue that the current term
structure gives information about investors expectations regarding future path
of interest rates. At any time, different yields corresponding to different bond
maturities evolve dynamically by shifting among different shapes. This, how-
ever shows that, for a given set of bonds, the slope of the curve reflects an
expectation about the movement of interest rates over time. Different shapes
on yield curves can be interpreted as “Downward sloping”, where expected fu-
ture short rates are falling, and this results to long-term borrowing costs being
lower than short-term borrowing costs. Secondly, “Upward sloping”, where ex-
pected future short rates are expected to rise and short-term borrowing costs
are lower than long-term borrowing costs in this scenario. Lastly, the “Flat
yield curve”, where borrowing costs are relatively similar for short-term and
long-term loans. The upward-sloping yield curve has been the most prevalent
historically.

Another alternative scenario regarding the upward sloping yield curve gives
uncertainty about future long term bond yields which makes them systemati-
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cally less attractive to lenders than the short term bonds. This concludes that
expectations hypothesis is exactly true in a certain world by the force of no-
arbitrage, but when interest rates are stochastic, uncertainty causes systematic
distortion of expectations hypothesis.

2.5.1 Expectations Hypothesis and Risk Premia

Yield curve relationships are captured in three ways, that is, the long-term
yield is an average of expected future short-term rates plus a risk premium,
expressed as

yt(τ) =
1

τ
Et(yt(1) + yt+1(1) + ...+ yt+τ−1(1)) + rpyt(τ). (2.5.2)

Secondly, the forward rate is the expected future short rate plus risk premia,
given by

ft(τ) = Et(yt+τ−1(1)) + rpft(τ). (2.5.3)

Lastly, the expected one period return on long-term bonds equals the expected
return on short-term bonds plus a risk premium. That is,

Et(rt+1(τ)) = yt(1) + rprt(τ). (2.5.4)

All the three equations can be taken as definitions of the risk premia, which
are equivalent such that if one equation holds with rp = 0 or constant, then
all other equations hold with rp = 0 or constant over time.

2.6 The Taylor Rule (1993) Specification
Taylor (1993) introduced a rule for guiding and assessing monetary policy
performance. Taylor rule is a simple monetary policy technique linking the
levels of the policy rate mechanically to deviations of inflation from its tar-
get and output from its potential (the output gap). According to the policy
rule recommended by Taylor (1993), movements in the short rate rt are traced
to movements in contemporaneous observable macro variables and a compo-
nent which is not explained by macro variables, an orthogonal shock ηt. The
Taylor’s rule original specification considers two macro variables as factors in
observable variables such as the annual inflation rate, and the output gap. The
Taylor rule also implies that central banks aim at stabilising inflation around
its target level and output around its potential, by adjusting short-term in-
terest rates in response to movements in inflation and real activity, (Svensson
(1997)). Now, the monetary authority is assumed to set the short term interest
rate according to this simple aspect of the Taylor rule given by:

it = πt + r∗t + aπ(πt − π∗t ) + ay(yt − ȳt) + ηt.
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The central bank reacts to high inflation and to deviations of output from its
trend. The parameter it describes the nominal policy rate, π∗t is the central
bank’s time-varying desired rate of inflation, while πt is the current period
inflation rate as measured by the gross domestic product (DGP) deflator. The
long run or assumed equilibrium real rate of interest is given by r∗t , yt is the
current period output gap, while ȳt gives the potential output. The constant
aπ measures the response of the central bank to inflation, while ay describes
its reaction to output gap fluctuations. Lastly, the monetary policy shock ηt.
This monetary policy rule specifies that the rate of the central bank should
change the nominal interest rate in relation to changes in inflation, output
gap, or other economic conditions. It emphasizes the importance of adjusting
policy rates more than one-for-one in response to these economic conditions. In
particular, the rule stipulates that for each one-percent increase in inflation,
the central bank should raise the nominal interest rate by more than one
percentage point.

The rule recommends a relatively high interest rate when inflation is more
than its target or when output is more than its full-employment level, in order
to reduce inflationary pressure. It recommends a relatively low interest rate
in the opposite situation, to stimulate output. During the period of rising
inflation and falling output, monetary policy goals may conflict, when infla-
tion is above its target while output is below full employment. In such a
situation, specifically the great inflation of American central bank during the
1970′s where policy rates were below the level implied by this benchmark, a
Taylor rule specifies the relative weights given to reducing inflation versus in-
creasing output. This is done to cool the economy when inflation increases.
The positive or negative deviations of inflation and output gap from their tar-
get or potential level is associated with a tightening or loosening of monetary
policy. The Taylor rule benchmarks for the global aggregate as well as the
aggregate of advanced and emerging markets over a period from first quarter
of 1995 to the first quarter of 2012 is computed in Figure 2.1 to obtain a range
of possible Taylor rule implied rates for all combinations of four measures of
inflation (headline, core, GDP deflator and consensus headline forecasts) and
measures of the output gap obtained from three different statistical ways to
compute potential output (HP filter, segmented linear trend and unobserved
components).
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The Taylor (1993) rule and Policy Rates

Figure 2.1: Taylor rates are computed for all combinations of four measures of
inflation and three measures of the output gap.
Sources: IMF, International Financial Statistics and World Economic Outlook; Bloomberg; CEIC;
Consensus Economics; Data stream; national data; authors’ calculations.

Figure 2.1, left-hand panel results reveal the systematic deviation of policy
rates7 from the Taylor rule since the early 2000s. This further shows that
policy rates were consistent with the levels implied by the Taylor rule up
until the early years of the new millennium, a systematic deviation emerged
thereafter. Since 2003, global policy rates have almost always been below the
levels indicated by Taylor rules. Only during the Great Recession of 2009 where
policy rates briefly inside the Taylor rule range, there after remained low while
the global economy recovered, the gap opened up again reflecting the recent
weakening of the global economy. However, the deviation narrowed somewhat
in the first quarter of 2012. In the advanced economies, policy rates have
been below the range of Taylor rule rates since around 2001 to 2009, but the
deviation is smaller as compared to Figure 2.1, left and right-hand panel. In
the Great Recession, the Taylor rule would on average have suggested negative
policy rates for a short period of time, but actual policy rates were still well
inside the range. In 2011, the spectrum of Taylor rates shifted back to positive
levels and policy rates have been at the lower bound of the range since then.

7“Global” comprises the economies listed here. Advanced economies: Australia, Canada,
Denmark, the euro area, Japan, New Zealand, Norway, Sweden, Switzerland, the United
Kingdom and the United States. Emerging market economies: Argentina, Brazil, China,
Chinese Taipei, the Czech Republic, Hong Kong SAR, Hungary, India, Indonesia, Korea,
Malaysia, Mexico, Peru, Poland, Singapore, South Africa and Thailand
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The Taylor (1999) rule and policy rates

Figure 2.2: Taylor rates are computed for all combinations of four measures of
inflation and three measures of the output gap.

Figure 2.2 uses an alternative calibration of the Taylor rule considered by
Taylor (1999) for the same aggregates. The only difference from the original
calibration Taylor (1993) is a larger output reaction coefficient. In addition to
this larger output weight, the range of the aggregate of advanced economies
shifts down for the period since the Great Recession, indicating negative policy
rates for a longer period and putting policy rates well inside the Taylor rule
range at the end of the sample period. This popular gauge for assessments of
the monetary policy stance has since been subject to considerable attention, as
seen in the work of Ang and Piazzesi (2003), for assessment of monetary stance
both in advance economies and emerging market economies as a prescription
for desirable policy. The instantaneous short rate equation that arise in the
affine term structure literature can be extended with macroeconomic variables
to a Taylor (1993) rule as shown in Ang and Piazzesi (2003) approach. The
basic insight of the approach is that a well known Taylor rule specification of
the short rate also has an affine form:

rt = ρππ
Y
t + ρggapt + constant,

where πYt is the annual inflation and gapt is the gross domestic product gap.
Therefore, using inflation and GDP gap variables as part of the state vector
in the affine Gaussian model set up, that is,

xt = [πYt , gapt, ...]
′,

provides a system in which bond yields are linked to macroeconomics variables.
A high order of VAR process can be written as a VAR(1) process with an
expanded state vector that includes lags of these variables, that is,

xt = [πYt , π
Y
t−1, ..., gapt, gapt−1, ...]

′.

This combination set up permits the expansion of affine term structure models
to explicitly include observable macroeconomic outcomes.



CHAPTER 2. YIELD CURVE PRELIMINARIES 20

2.7 Term Structure of Interest Rate Modelling
This section reviews the general structure and the importance of the term
structure of interest rate models. Term structure of interest rates is also known
as yield curve, plays a central role both theoretically and practically in the
economy. Firstly, understanding the stochastic behaviour of yields and what
moves bond yields is important for different motives. One of these reasons
would be for conducting monetary policy. Model of the yield curve at any given
state of the economy, helps to understand the relationship between movements
at the short end into longer-term yields. This involves adjustments of the short
rate by the central banks to conduct monetary policy and how the transmission
mechanism works. The expectations hypothesis (EH) is commonly cited to
model the term structure in most previous research in this area.

Interest rate forecasting is another crucial aspect of understanding the fu-
ture path of the economy. The literature on expectations hypothesis states
that yields on long-maturity bonds are expected values of average future short
yields, at least after an adjustment for risk. This implies that the current yield
curve contains information about the future path of the economy, as shown
in Hicks (1946). Yield spreads have been useful for forecasting not only fu-
ture short yields, but also inflation and real activity, (Ang et al. (2006)), even
though the forecasting may tend to give unstable results.

Public debt policy and the risk management of a portfolio of interest rate
sensitive securities, gives the third reason. When issuing new debt, govern-
ments need to decide about the maturity of the new bonds,8 this helps to
study how various strategies behave under different interest rate outcomes,
while minimizing the risk that short-term interest rates spike. Lastly, Deriva-
tive pricing and hedging provide a fourth reason. Governments need to take
good care of risk management and derivative pricing on bonds,9 and also to
compute hedging strategies10 in response to the price of derivative securities
which are depending on the changing state of the economy.

There are various early models attempted to model the term-structure
of interest rates. Amongst the most popular, is the adopted no-arbitrage
approach11 pioneered by Vasicek (1977) and Cox et al. (1985). This model is
known to be the one factor interest rate model that considers short rate as the

8The administration of John Kennedy persuaded the Federal Reserve to co-operate on
selling short maturity debts and buying long maturity notes, using the idea that came to be
known as “Operation Twist”.

9To manage the risk of paying short-term interest rates on deposits while receiving
long-term interest rates on loans

10Hedging strategies involve contracts that are contingent on future short rates, such as
swap contracts.

11The formal definition of no-arbitrage condition and its applications are given in Harrison
and Kreps (1979).
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basis for modelling the term-structure of interest rate, typically using affine
models. In the case of the empirical finance literature, no-arbitrage approach
is a centre of interest for the analysis of yield curves and it provides tractability
and consistency in bond pricing.

Term-structure models of this nature have essentially the same form such
that some useful key assumptions are involved in the modelling process. The
first assumption is that the interest rate system is the function of some set
of state variables, (i.e., unobservable variables), as demonstrated in the work
of Litterman and Scheinkman (1991) or observable factors, such as macroeco-
nomic variables. The second assumption involves the dynamics of the state
variable vector. In a discrete time setting, the dynamics of state variables
follow VAR process to describe evolution of the state variable vector. This is
the discrete-time analogue of the Ornstein-Uhlenbeck process. The third, and
final, assumption relates to the mapping between the state variables and the
term structure of interest rates. Most of the models in the finance literature
ensure that the mapping excludes arbitrage opportunities. This is commonly
applicable to the most popular affine-class of the term structure model, Duffie
and Kan (1996).

There are, however, other alternative mappings. This includes the work
introduced in Diebold and Li (2006), where a mapping between a set of dis-
crete time, continuous-value state variables that does not exclude arbitrage.
Even though the model does not consider arbitrage-free restrictions, empirical
results have shown that these models still lead to superior success and they
are parsimonious models as noted by Diebold and Li (2006).

2.8 Arbitrage-free Affine Term-Structure
Models

Since bonds usually trade in deep and well organised markets, the theoretical
restrictions that eliminate opportunities for riskless arbitrage across maturities
and over time hold powerful appeal, and they provide the foundation for a large
finance literature on arbitrage free models. The pioneers of the literature of
the arbitrage-free term structure models are from the popular work of Vasicek
(1977) and Cox et al. (1985), where a single-factor model is introduced as a
short rate, which determines the bond prices. Both models are discussed in
discrete time setting, to specify the risk neutral evolution of the underlying
yield curve factors as well as the dynamics of risk premia.

2.8.1 Vasicek Model

Vasicek (1977) presentation under risk neutral assumptions continues directly
from the work of Black and Scholes (1973) that introduced a breakthrough
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on the asset pricing theory. Vasicek model describes the evolution of interest
rates12 that incorporates mean reversion and a risk premium. The short-rate
is given by

rt = (1− φ)rt−1 + φτ + zt,

where zt ∼ N(0, σ2), with the three following parameters. The parameter τ is
the long-term steady-state rate to which the process is reverting. The coeffi-
cient φ is the strength of mean-reversion13, and σ is the volatility parameter
of the stochastic process. The short-term rate follows a normal distribution of
the form,

rt ∼ N(τ,
σ2

1− φ2
).

The normal distribution of rates makes it impossible to avoid negative interest
rate scenarios, because of this fact, it is possible to develop a closed form
solution for the parameters that will exactly meet the key calibration points.14

The single state variable z, that follows a first-order autoregressive is given by,

zt+1 = (1− φ)µ+ φzt + σεt+1, (2.8.1)

where εt+1
i.i.d.∼ N(0, 1). The other parameters give the following interpretation;

µ is the mean of z, σ2 is the conditional variance, and the unconditional
variance is given by σ2

1−φ2 . The pricing kernel is given by

− lnMt+1 = δ + zt + λεt+1, (2.8.2)

where the market price of risk, λ, determines the covariance between shocks
to kernel M , and state variable z, risk characteristics and the corresponding
bonds. Following the property of log-normal random variable, from Equation
(2.8.2), the log-normal kernel, lnMt+1 has a conditional mean −(δ+ zt), and a
conditional variance of λ2. This gives the one period bond price that satisfies

lnP 1
t = −δ − zt +

λ2

2
= −zt. (2.8.3)

The short rate is therefore,

rt = − lnP 1
t = zt. (2.8.4)

Then, the price of an n−period bond can be assumed as,

− lnP n
t = An +Bnzt. (2.8.5)

12Hull and White (1994) adapt this specification to introduce a discrete-time continuous
state form of the Vasicek (1977) model to value the short-term interest rate.

13The parameter φ controls mean reversion and must be between 0 and 1. A zero value
would results in no mean-reversion while a one value would results in full reversion in the
next period.

14The 10th and the 97.5th percentiles. Other calibration points are not likely to be a
constraint for the Vasicek model form.
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Given the bond price coefficients for maturity n, to evaluate the bond price
of an (n + 1)−period ahead, and using the fact that bond prices satisfy the
following,

P n+1
t = Et(Mt+1P

n
t+1)

lnP n+1
t = Et[lnMt+1 + lnP n

t+1] +
1

2
Vart(lnMt+1 + lnP n

t+1)

= −[δ + An +Bn(1− φ)µ]− (1 +Bnφ)zt

+
1

2
(λ+Bnσ)2Vart(εt+1).

Equating the coefficients with Equation (2.8.5), gives the recursions

An+1 = An + δ +Bn(1− φ)µ− 1

2
(λ+Bnσ)2Vart(εt+1)], (2.8.6)

Bn+1 = 1 +Bnφ. (2.8.7)

Using the parameters, (µ, φ, σ, λ), the coefficients can be easily computed.
Forward rates in this model take a particularly simple form,

fnt = (1− φ)µ+
1

2

[
λ2 −

(
λ+

1− φn

1− φ
σ

)2
]

+ φnzt. (2.8.8)

The forward rate expression illustrates the impact of short rates on long for-
wards and the form of the risk premium, which give insight into the relation
between forward rates and expected future short rates. If λ = δ = 0, the
forward rate, fnt = Etrt+n, forms a version of expectations hypothesis. When
λ = 0 and σ 6= 0, the non-linearity of the prices relation results in a downward
sloping average forward rate curve. If λ ≥ 0, this effect is reversed and average
forward rates, such as yields, increase with maturity.

2.8.2 Cox, Ingersoll and Ross (CIR) Model

Cox et al. (1985) introduced an alternative approach to Vasicek model. In
this model, the stochastic process is scaled by the square root of interest rate.
This ensures that interest rate does not become negative, because the closer
the interest rate rt gets toward zero, the closer the formulation becomes to a
mean reversion process with no stochastic term. This model is represented by

rt = (1− φ)rt−1 + φτ +
√
rt−1zt,

where zt ∼ N(0, σ2). It is possible to determine the parameters for this model
using a set of historical data, with a constrained MLE approach. However, in
this case, the steady state rate does not follow a normal distribution. Simula-
tions can be used to calculate the needed percentiles. If such an approach is
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used, then it is necessary to fix a reasonable duration at which steady-state is
presumed.

In the case of the discrete time version, the CIR model has also a similar
structure as the Vasicek, but the difference lies in the behaviour of the state
variable z, which in this case obeys the “square root process”, and also takes
on the first order autoregression. More precisely, we have

zt+1 = (1− φ)µ+ φzt + σz
1/2
t εt+1, (2.8.9)

with 0 < φ < 1 and µ > 0. The conditional variance is,

Vart(zt+1) = ztσ
2, (2.8.10)

which has a mean of µσ2, and the unconditional variance is Var(z) = µσ2

1−φ2 .
Equation (2.8.9) ensures that the interest rate does not become negative. If
the time interval is small with the square-root process, the conditional variance
gets small as z approaches zero, this results on the limited chances of getting a
negative value. Since ε is distributed normally, there is still a positive proba-
bility that zt+1 is negative, but the probability falls to zero as the time interval
shrinks. The conditionally log-normal pricing kernel for a discrete time version
of CIR is

− lnMt+1 = (1 + λ2/2)zt + λz
1/2
t εt+1. (2.8.11)

Adding Equation (2.8.11) with the log-price, we get

lnMt+1 + lnP n
t+1 = −(1 + λ2/2)zt − λz1/2

t εt+1 − An −Bnzt+1

= −[An +Bn(1− φ)µ]− [(1 + λ2/2) +Bnφ]zt

−[λz
1/2
t +Bnσz

1/2
t ]εt+1.

The expected log-normal pricing becomes,

Et(lnMt+1 + lnP n
t+1) = −[An +Bn(1− φ)µ]− [(1 + λ2/2) +Bnφ]zt

and,
Vart(lnMt+1 + lnP n

t+1) = (λ+Bnσ)2zt.

The bond price becomes,

P n
t+1 = An +Bn(1− φ)µ+ [

(λ+Bnφ)2

2
+ (1 + λ2/2) +Bnφ]zt,

where the coefficients of the log-linear bond price formula satisfy the recursion

An+1 = An +Bn(1− φ)µ

Bn+1 = 1 + λ2/2 +Bnφ+ (λ+Bnσ)2/2,

starting with A0 = B0 = 0. Since A1 = 0 and B1 = 1, z is the short rate. Fi-
nancial economists have mainly focused on forecasting yield curves and pricing
interest rate related securities. They have therefore developed powerful models
(e.g. ATSM) based on the assumption of absence of arbitrage opportunities,
but typically left unspecified the relationship between the term structure and
other economic variables.



Chapter 3

Macro-Finance (Yields-Macro)
Approach

Macro-finance modelling framework focuses on the joint dynamics of term
structure variables and macroeconomic variables. The link between these two
literatures is a new branch of research that has been of perennial interest to re-
searchers, to understand the behaviour of the yield curve concerning economic
variables. As noted in Ang et al. (2006), that macroeconomics focuses on the
overall movement and trends in the economy and the economic approach typ-
ically works with vector autoregressive, which may give inconsistent results
such as arbitrage opportunity. The no-arbitrage vector autoregressive, mostly
used in macro-finance model is introduced to overcome these features. In this
approach, macroeconomic variables and latent factors are used in the term
structure estimation of interest rates.

3.1 Linking Macro and Yield Curve Variables
Both macroeconomic and finance are linked through the short-term interest
rate. In finance, long-term interest rates are risk adjusted averages of expected
future short rates, and for this reason, short rates serve as a fundamental build-
ing block for rates of other maturities. From a macro perspective, central bank
controls the short rates, by adjusting the rates in order to achieve the economic
stabilization goals of monetary policy. The two perspectives suggest that the
short-term interest rate is a critical point of intersection because understanding
the manner in which central banks move the short rate in response to funda-
mental macroeconomic shocks should explain movements in the short end of
the yield curve.

A joint macro-finance connects the macroeconomic variables with the yield
factors. Term structure models constructed in these two distinct branches have
different aims. Financial economists develop affine models based on the ab-

25
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sence of arbitrage and manly focused on forecasting and pricing. But models of
this nature could not specify the relationship between the term structure and
other economic variables. On the other hand, macroeconomists have developed
term structure models to determine the relation between interest rates mon-
etary policy and macroeconomic fundamentals. The macroeconomic models
are based on the expectation hypothesis and could not provide the interactions
between macroeconomy and the term structure dynamics.

Understanding the stochastic behaviour of the yield curve in response to
macroeconomic shocks is crucial for central banks since yield curves provide
a useful information about underlying expectations of inflation and output
over a number of different horizons. Number of researchers have tried different
frameworks to determined the joint macro-finance characterization of the term
structure of interest rates with the help of macroeconomic fundamentals, but
some could not provide an explicit relation between the determinants of the
yield curve shape and macroeconomic factors. The work by Ang and Piazzesi
(2003) is the break through to bridge the gap in macro-finance literature that
offers a vector autoregressive framework to capture the joint dynamics of macro
factors and yield factors under no-arbitrage restrictions where macroeconomic
factors are measures of inflation and real activity.

3.2 Advantages of Macro-Finance Modelling
Most macro-finance models in the literature are based on the “affine-Gaussian”

model, and the no-arbitrage key assumptions of their affine model under sim-
ple vector autoregressive process that captures bond yield movements over
time. However, Gaussian macro-dynamic term structure models are further
developed, in which bond yields follow a dimensional factor structure and the
historical distribution of bond yields. The joint macro-finance model offers a
number of advantages over both pure term structure finance models and pure
macroeconomic models to understand the behaviour of the yield curve.

The first advantage is that term structure models relate the yield curve to
current and past interest rates whereas the macro-finance studies the bidirec-
tional interactions betweens interest rates and macroeconomic variables, since
the joint approach recognizes that interest rates and macroeconomic variables
evolve jointly over time. A second advantage of macro-finance models is that
they allow the behaviour of risk premiums to depend explicitly on macroe-
conomic conditions but term structure models determine risk premium by
covariance of asset returns with the marginal utility consumption. Moreover,
there is a strong relationship between economic activity and excess return in
bond markets as stated in Cochrane and Piazzesi (2005). A third advantage of
macro-finance models is that a substantial component of observed bond yields
reacts with the evolution of time varying term of risk premiums. Furthermore,
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term premiums evolve according to the estimated dynamics of the model to
maintain consistency in arbitrage-free efficient markets. The remainder of the
chapter proceeds by describing the distinctive macro-finance modelling frame-
works offered by Ang and Piazzesi (2003) and Diebold et al. (2006) approach
and their estimation.

3.3 The Ang and Piazzesi (2003) Approach
The model represents the no-arbitrage term structure approach that deter-
mines the movements of the yields of all maturities in response to the move-
ments of the underlying state factors but could not identify the sources of those
movements in state factors. On the other hand, macroeconomic VAR model
could give a good interpretation of the economic sources of movements in the
state variables for a set of given yields, but could not say anything about the
response of the entire yield curve against those movements.

The formulation of Ang and Piazzesi (2003) combines the two frameworks
to derive the movements of the yield curve and present a no-arbitrage vec-
tor autoregressive model. This joint approach captures the joint dynamics of
macroeconomic and bond yield factors based on the absence of arbitrage op-
portunities. The three latent factors interpreted as level, slope and curvature
and the two measures of macroeconomic factors such as inflation and output
gap are included in the model as state variables. The macroeconomic factors
are derived from the principal component of a set of large collection of candi-
date macroeconomic series of inflation, real activity and latent factors ending
up measuring from yields.

The Ang and Piazzesi (2003) model focuses on the joint macro-finance
model in a discrete-time affine settings. An affine model is used in this setting
to find a connection between macroeconomics and financial descriptions of the
term structure of interest rates. The first assumption in this approach is the
combination of the classical Taylor (1993) rule and short rate equation used
in the affine term structure. The affine term structure model, is often used
in different ways. In this work, it will be used to describe any arbitrage-free
model, in which bond yields are affine (meaning they are constant and linear)
functions of some state vector Xt. The use of “affine” refers to the way yield
depend on the state variables. Affine models are thus a special class of term
structure models.

Ang and Piazzesi (2003) model demonstrates how the combination of macroe-
conomic factors into a term-structure model can actually improve model per-
formance. Affine term structure model has three components, namely a col-
lection of observable and/or unobservable state variables, a description of the
dynamics of these state variables and a mapping between these state variables
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and the term structure of interest rate. Two assumptions are maintained in
this framework, the independence of latent and macroeconomic factors and
in discrete time setting, both latent and macroeconomic factors follow VAR
process to describe the state variable vector.

3.3.1 State Dynamics

Based on macro dynamics and short rate discussed before, this section fo-
cuses on the unobservable and observable macroeconomic variable which are
involved in the collection of inflation πt and output gap gt. More specifically
on how macroeconomic variables can be linked to the zero coupon bonds price
dynamics, by using a simple discrete time Gaussian affine set-up based on the
work of Ang and Piazzesi (2003). There are basically three steps to consider
when setting up the joint model. The first step consist of specifying the sepa-
rate models for the macro-variable and for the bond prices or yields. We now
define Gaussian Vector Autoregressive (VAR) dynamics for the state variablesoutput gapinflation

short rate

 =

gtπt
rt

 ≡ Xt =
(
Xo′

t , X
u′

t

)′
.

Now, the dynamics of the entire state vector of N risk factors Xt, follows
a first-order Gaussian Vector Autoregressive under the historical measure P
given by

Xt = µP
X + ΦP

XXt−1 + ΣXε
P
t ,

where the errors εPt represent the vector of shocks to the observable and un-
observable factors respectively and are normally distributed with zero mean
and EP[εPt ε

P′
t ] = ΣXΣ′X . The parameters µP

X and ΦP
X contain the appropriate

conditional means and autocorrelation (block) matrices. This brings us to the
derivation of the term-structure model, which uses the state-variable vector to
construct a discrete time affine term structure model.

3.3.2 Short-rate Equation

Based on the policy rule recommended by Taylor (1993), the dynamics in
rt are described due to movements in observable macro variable f it and an
orthogonal monetary policy shock ut such that the short-term interest rate is
an affine function of the factors:

rt = a0 + a′1f
0
t + ut, (3.3.1)

where the coefficients of the short rate, a0 and a1 represents a scaler and a
K × 1 vector respectively. Another policy rule proposed by Clarida et al.
(2000), is a forward-looking version of the Taylor rule, according to this rule,
the central bank reacts to expected inflation and expected output gap. This
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simply means that any variable that forecasts inflation or output gap will enter
the right-hand side of the short rate equation. To capture all the information
of the underlying macro forecasts, we add lagged macro variable, which are
written as

Xo
t = (f ot , f

o
t−1, ..., f

o
t−p−1)′,

for some length p including the lags as arguments in the policy rule. The state
vector Xo

t = [gt πt]
′ represents the recommended observable macroeconomic

state variables, this gives,

rt = b0 + b′1X
o
t + ut. (3.3.2)

The purpose of this forward-looking rule is to include forecast errors f ot+1 −
Et(f ot+1) in the shock term ut. This allows for the use of future values of
macro variables f ot+1 as arguments on the short rate equation. Affine term
structure models are based on short rate Equation (3.3.1) and the assumption
on risk premia, see Duffie and Kan (1996). The short rate dynamics is an
affine function of latent factors Xu

t which are given by

rt = c0 + c′1X
u
t , (3.3.3)

where Xu
t is the set of unobservable yield-curve state variables which follow

the affine process. By combining Equation (3.3.2) and Equation (3.3.3), we
get

rt = δ0 + δ′1X
o
t︸ ︷︷ ︸

Taylor rule

+δ′2X
u
t . (3.3.4)

The latent factors Xu
t , are assumed to be independent of the macro factors Xo

t .
In this case, the combined short rate dynamics of the term structure model
can be interpreted as a version of the Taylor (1993) rule with the errors

ut = δ′2X
u
t ,

being unobserved factors. This is due to using the restrictions from no-
arbitrage to separately identify the individual latent factors. The one period
short rate rt is assumed to be an affine function of pricing factors, for all state
variables:

rt = δ0 + δ′1X
o
t + δ′2X

u
t ,

= δ0 +
[
δ′1 δ′2

] Xo
t

Xu
t

 ,
= δ0 + δ′1Xt, (3.3.5)

with δ0 a scalar and δ1 a K × 1 vector. By constraining the coefficient δ1 to
depend only on contemporaneous factor values, we obtain Taylor rule (3.3.1),
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which consists of macroeconomic variables. We also consider the case where
δ1 is unconstrained, which corresponds to the forward looking Taylor rule
incorporating lags. This can be referred to as “Macro Lag Model”, because it
uses lags of macro variables in the short rate equation. The second key term-
structure modelling assumption relates to the states variable dynamics. A
VAR(p) specification for Xo

t and VAR(1) approach for Xu
t . To implement this

model, we consider only the contemporaneous macroeconomic state variable,
VAR(1). The actual state variable dynamics has the form:Xo

t

Xu
t

 =

µoX
µuX

+

Φo
X 02×3

03×2 Φu
X

Xo
t−1

Xu
t−1

+

εot
εut

 ,
Xt = µP

X + ΦP
XXt−1 + εPt ,

where µuX ≡ 0 and,

εt =

εot
εut

 ∼ N
0,

 Ωo 02×3

03×2 I3×3

 = Ω

 . (3.3.6)

Equation (3.3.6) shows that the dynamics of the latent state variables are
determined independently of the macroeconomic variables. The current model
does not permit the macro economic variable to improve the description of the
latent yield curve state variables. This can lead to different expectations that
are associated with flat term-structure with low inflation and high output than
a flat term-structure with high inflation and low output. This shows that the
influence of the macroeconomic factors on the term structure arises elsewhere
in the model.

3.3.3 The Market Price of Risk

We consider the final third term structure modelling assumption. The market
price of risk, which is arising because of the uncertainty εPt . The link between
the risk-neutral distribution Q and the physical distribution P is given by
the time varying price of risk λt. The N−dimensional vector of risk prices is
parametrized as affine process in the pricing factors:

λt = λ0 + λ1Xt, (3.3.7)

with parameters in N−vector λ0 and N ×N matrix λ1 which corresponds to
lagged macro variables, are set to zero. If λ0 and λ1 takes any value other
than zero, we will then allow for constant or time varying risk premia. This
specification is introduced in Duffee (2002). The physical innovations εPt , is a
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vector martingale difference sequence (m.d.s.) under measure P, are related to
the innovations under measure Q by

εQt = εPt + λt−1.

The risk-neutral innovations, while being m.d.s. under measure Q, can have
non-zero mean and be predictable under measure P, depending on the risk
price specification.

3.3.4 The Pricing Kernel

To develop the term structure model under arbitrage-free considerations that
guarantees the existence of the equivalent martingale measure Q, the price of
an asset Vt that does not pay any dividends in future, satisfies

Vt = EQ
t [exp(−rt)Vt+1],

where expectation is taken under risk neutral measure Q. Ang and Piazzesi
(2003) further assumed that the existence of the pricing kernel is of the form:

Mt+1 = e−rt [
ϕt+1

ϕt
], (3.3.8)

where rt is the short rate, ϕt is a positive martingale under probability measure
Q. The Radon-Nikodým derivative, which converts the risk neutral measure
to the data generating measure, is denoted by ϕt+1. Thus, we have for any
random variable Zt+1 that

EQ
t (Zt+1) = EP

t {Zt+1[
ϕt+1

ϕt
]}.

According to Girsanov’s theorem, this derivative

EP
t

[
dQ
dP

]
=

n∏
j=1

exp(−1

2
λ′t+j−1λt+j−1 − λ′t+j−1ε

P
t+j),

where ϕt+1 follows the log-normal process and λt is the time varying price
of risk associated with the uncertainty of the errors εPt , which are normally
distributed with zero mean, E[εPt ] = 0 and E[εPt ε

P′
t ] = ΣXΣ′X . It follows that

ϕt+1

ϕt
= exp(−1

2
λ′tλt − λ′tεPt+1), (3.3.9)

substituting both the short rate (3.3.5) and Equation (3.3.9) to Equation
(3.3.8), we have

Mt+1 = exp(−1

2
λ′tλt − δ0 − δ′1Xt − λ′tεPt+1), (3.3.10)

where εPt+1 ∼ N(0, I).
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3.3.5 Bond Prices

The term structure modelling determines the price of zero-coupon bonds.
These bonds pay a terminal payoff, usually normalised to 1-unit, without risk
of default. The pricing kernel between bonds of different maturities links the
nth period bond price with that of a bond of maturity n−1 of the next period.
This is given as

P n
t = EP

t

[
Mt+1P

n−1
t+1

]
, (3.3.11)

which is the current price of the zero-coupon bond, expressed as the conditional
expectation of discounted future price of the bond. The factor Mt+1 is given
as the function of the short rate and the risk perceived by the market,

Mt+1 = exp(−rt −
1

2
λ′tλt − λ′tεPt+1). (3.3.12)

By iterating Equation (3.3.11) to the maturity n of the bond price, leads to

P n
t = EP

t

[
Mt+1Mt+2...Mt+nP

0
t+n

]
= EP

t [Mt+1Mt+2...Mt+n · 1︸︷︷︸
P 0
t+n=1

].

Here, P 0
t+n = 1 for all t, because the price of a zero coupon bond at ma-

turity is unity. We will make use of the randomness εt+1 that arises in the
dynamics of the Radon-Nikodým derivative and the state-variable system in
the derivation of the recursion relation used to represent the price of an ar-
bitrary pure-discount bond P n

t . The idea is that the pure-discount bond is
an exponential-affine function of the state variables. Using the pricing ker-
nel which fixes the Radon-Nikodým derivative and the market price of risk to
determine the pure-discount bond price. Thus, we have that,

P n
t = EP

t {exp[−
n−1∑
i=0

(rt+i +
1

2
λ′t+iλt+i + λ′t+iεt+1+i)]}. (3.3.13)

Since our attention is restricted to affine term structure, the no-arbitrage re-
cursive relations is derived such that the price of bonds are exponential affine
functions of state variables, denoted as

P n
t = exp(An +B′nXt). (3.3.14)
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The price of an (n+1)−period zero coupon bond can be computed recursively
by using the pricing kernel under physical measure P. This becomes,

P n+1
t = EP

t [P
n
t+1Mt+1]

= EP
t

[
exp{An +B′nXt+1} exp{−rt −

1

2
λ′tλt − λ′tεPt+1}

]
= EP

t

[
exp{An +B′n(µP

X + ΦP
XXt + ΣXε

P
t+1)} exp{−rt −

1

2
λ′tλt − λ′tεPt+1}

]
= exp

[
An − δ0 +B′nµ

P
X + (B′nΦP

X − δ′1)Xt −
1

2
λ′tλt

]
× EP

t

[
exp((B′nΣX − λ′t)εPt+1)

]
. (3.3.15)

We used the properties of a log-normal random variable εPt+1, to solve the
conditional expectation part of the pure discount price. Since the random
variable εPt+1 is independent of Ft, then the expectation term becomes

EP
t

{
exp[(B′nΣX − λ′t)εPt+1]

}
= EP

t

[
exp{〈BnΣ′X , ε

P
t+1〉 − 〈λt, εPt+1〉}

]
= EP

t

[
exp〈BnΣ′X − λt, εPt+1〉

]
= exp[

1

2
〈BnΣ′X − λt, BnΣ′X − λt〉]

= exp[
1

2
〈BnΣ′X , BnΣ′X〉+

1

2
〈λt, λt〉 − 〈BnΣ′X , λt〉]

= exp[
1

2
(B′nΣXΣ′XBn − 2B′nΣXλt + λ′tλt)].

(3.3.16)

If we substitute the above expectation Equation (3.3.16) to the discount bond
price Equation (3.3.15) to solve the recursive form of the pure discount bond
price,

P n+1
t = exp

[
An − δ0 +B′nµ

P
X + (B′nΦP

X − δ′1)Xt −
1

2
λ′tλt

]
× exp

[
1

2
(B′nΣXΣ′XBn − 2B′nΣXλt + λ′tλt)

]
= exp

[
An − δ0 +B′nµ

P
X +

1

2
B′nΣXΣ′XBn −B′nΣXλ0

]
× exp

[
(B′n(ΦP

X − ΣXλ1)− δ′1)Xt

]
. (3.3.17)

This expression allows us to use the current value of the state variables as
well as our model parameters to recursively construct the term structure of
interest rate. Equation (3.3.15) illustrates how the macroeconomics variables
influence the term structure of interest rates. The variables describe the cross
section of the term structure at a specific point in time. Their influence on the
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yield curve occurs through mapping. The no-arbitrage imposes the following
structure on the coefficients of the measurement equation, for n > 1 :

An+1 = An +B′n(µP
X − ΣXλ0) +

1

2
B′nΣXΣ′XBn + A1 (3.3.18)

B′n+1 = B′n(ΦP
X − ΣXλ1) +B′1 (3.3.19)

= B′1

n∑
i=0

(ΦP
X − ΣXλ1)i, (3.3.20)

with A1 = −δ0 and B1 = −δ1. These difference equations can be derived
by recursive form using Equation (3.3.11), as shown in Appendix (A.2). On
the basis of the affine term-structure assumptions, it can be shown that affine
functions of the state variables for the continuously compounded yields ynt , on
an n-period zero coupon bond is also dependent on the three factors, which
are the short rate, the risk price and the variance of the factors. That is, in
terms of bond yields, this relationship is equivalent to,

ynt = − lnP n
t

n

= − 1

n
lnEP

t {exp[−
n−1∑
i=0

rt+i]}

= − 1

n
lnEP

t {exp[−
n−1∑
i=0

(δ0 + δ′1Xt+i)]}

= Ān + B̄′nXt, (3.3.21)

where Ān = − 1
n
An(λ0, λ1, µ

Q,ΦQ,ΣX , n) and B̄n = − 1
n
Bn(λ0, λ1, µ

Q,ΦQ,ΣX , n)
solve recursive equations under the actual measure. The non-linear functions
of Ān and B̄n make the yield equations consistent with each other for differ-
ent values of t. The functions also make the yield equations consistent with
the state dynamics. Zero-coupon bond yields are therefore affine functions of
the state variable Xt, which are also taken to be the observation equation of
the state space system given by observable variables. Once the coefficients,
(A1 = −δ0, B1 = −δ1) on the short rate equation are fixed, all the other co-
efficients for longer maturity yields are determined by the parameters in the
state equation and the risk pricing equation:

Bn+1 = B1 + (ΦP
X − λ1ΣX)′Bn = [

n∑
i=0

(ΦP′
X − λ′1ΣX)i]B1.

An+1 = (n+ 1)A1 +
n∑
i=0

B(i), where B(i) = B′i(µ
P
X −ΣXλ0) +

1

2
B′iΣXΣ′XBi,

as proved in (A.2.1) and (A.2.2). It is worth pointing out that Equation
(3.3.21) is not the expectation of future interest rates because of a convexity
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term. The convexity term arises because yields are the expectations of a
nonlinear function of future interest rates, which are stochastic, and given by:

cnt = yPt,n − yEHt,n

= − 1

n
lnEP

t {exp[−
n−1∑
i=0

rt+i]} −
1

n
lnEP

t {
n−1∑
i=0

rt+i}

= AP
n − AEHn + (BP

n −BEH
n )Xt.

The “Expectation Hypothesis” (EH) yields are equivalent to treating interest
rates as non-stochastic, which can be done by simply imposing Σ = 0 in the
same recursions:

AEHn = − 1

n
An(λ0, λ1, µ

Q,ΦQ, 0, n) (3.3.22)

BEH
n = − 1

n
Bn(λ0, λ1, µ

Q,ΦQ, 0, n). (3.3.23)

From Equation (3.3.22) and Equation (3.3.23), spot term premia tPt, are easily
calculated as an affine function of the state as well,

tP n
t = yQt,n − yPt,n (3.3.24)

= (AQ
n − AP

n) + (BQ
n −BP

n)Xt. (3.3.25)

We can also easily calculate forward rates starting in n periods in the future
maturing in m > n periods,

ym−nt = (m− n)−1(mymt − nynt ),

which becomes,
ym−nt = AQ

m−n +BQ
m−nXt,

with

AQ
m−n = (m− n)−1[mAQ

m − nAQ
n ]

BQ
m−n = (m− n)−1[mBQ

m − nBQ
n ].

Forward term premia can be calculated by substituting the corresponding for-
ward yield in Equation (3.3.24). We define the excess return

xrnt+1 = lnP n−1
t+1 − lnP n

t − rt,

as the return on buying an n−period real bond at time t for P n
t and selling it

at time t+1 for P n−1
t+1 in excess of the short rate. Now, the log expected excess

returns for a bond of maturity n is given by

lnEP
t [xr

n
t+1] ≡ lnEP

t P
n−1
t+1 − lnEP

t P
n
t − lnEP

t rt

= An−1 +Bn−1

(
µP
X + ΦP

XXt

)
+ 1/2Bn−1ΣXΣ′XB

′
n−1︸ ︷︷ ︸

EP
t (Bn−1ΣXε

P
t+1)

−(An +BnXt)− rt.
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Substituting the pricing coefficients An and Bn in the expression, gives the
following,

lnEP
t [xr

n
t+1] = An−1 +Bn−1(µP

X + ΦP
XXt) +

1

2
Bn−1ΣXΣ′XB

′

n−1

−(−δ0 + An−1 +
1

2
Bn−1ΣXΣ′XB

′

n−1 +Bn−1µ
Q
X)

−(−δ0 +Bn−1ΦQ
X)Xt − rt

= Bn−1[(µP
X − µ

Q
X) + (ΦP

X − ΦQ
X)Xt]

= Bn−1ΣX(λ0 + λ1Xt)

= Bn−1ΣXλt.

The excess return measures the prices of risk λt with the quantity of risk
exposure on bonds. The loading Bn−1ΣX represents the amount of exposure
to each factor risk.

3.3.6 Cross-Equation Restrictions

When estimating a system of yield equations in a way that ensures no-arbitrage,
the cross-equation restrictions have to be derived from parameters that de-
scribe the state dynamics and risk premia. Although the model is affine in the
state vector Xt, but the parameter functions, An and Bn are non-linear func-
tions. Using ordinary least squares (OLS) or maximum likelihood to estimate
is not possible because the density of yields is not available in closed form. New
econometric methods have been developed to solve these estimation problems
as shown in Bekaert and Hodrick (2001).

3.3.7 Advantages of Cross-Equation Restrictions

Cross-equation restrictions ensure that the yield dynamics are consistent. The
parameters An and Bn make yield curve equations consistent with each other
in the cross section and the time series.

Term structure models allow us to separate risk premia from expectations
about future short-rates. These models are therefore, key to understanding to
what extent investors think of long bonds as safe investments. Sargent (1979)
is amongst the ones who explore the expectation hypothesis, under which
expected excess bond returns are zero. The extension of expectation hypothesis
have been developed under which expected excess returns are constant. The
comparison of the two tests about the ratio of the likelihood function with or
without restrictions implied by the expectation hypothesis shows that expected
returns on long bonds are on average higher than on short bonds and that
they are time varying equations, this leads to the necessity of cross-equations
to model these risk premia.
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Unrestricted regression imply that the number of variables needed to de-
scribe the yield curve, corresponds with the number of yields in the regression.
From the work of Litterman and Scheinkman (1991), based on factor decom-
positions of variance-covariance matrix of yield changes reveals that over 97%
of variance is attributable to just three principal components, namely, level,
slope and curvature according to how shocks to these factors affect the yield
curve.

The number of estimated parameters in unrestricted regressions is usually
large, imposing no-arbitrage restrictions improves the efficiency of these esti-
mates and out-of-sampling forecasting of yields, as shown in Ang and Piazzesi
(2003).

3.3.8 Change of Measure - Risk Neutral Dynamics

The results in this section show what kind of term structure factors follow
under risk neutral probability measure Q, which is assumed to be equivalent
to the physical measure P1. Following the assumptions of the term structure,
the risk neutral dynamics are given as follows:

Suppose the transition equation for an r×1 vector of risk factors Xt under
risk neutral measure Q follows a first-order homoskedastic Gaussian VAR(1):

Xt+1 = µQ
X + ΦQ

XXt + ΣXε
Q
t ,

where εQt
i.i.d∼ N(0, Ir), under the risk adjusted probabilities and EQ(εQmε

Q′
n ) = 0,

m 6= n. The lower triangular ΣX summarizes unpredictability of factors and
risk premia is a function of ΣX . For any current information set Ωt,

Xt+1|Ωt
Q∼ N(µQ

t ,ΣXΣ′X),

where the dynamics of the state vector of factors, Xt, are characterised by the
risk neutral vector of constant µQ

X and the autoregressive matrix ΦQ
X . VAR

parameters that are describing physical and risk neutral dynamics are linked
to each other through the relationship:

µQ
X = µP

X − ΣXλ0, (3.3.26)
ΦQ
X = ΦP

X − ΣXλ1. (3.3.27)

An asset that pays Xi,t+1 dollars in future, for each of i = 1, ..., r assets today,
the price of a risk neutral investor would be e−rtµP

t , and if risk averse the price
would be e−rtµQ

t . The mean parameters of both probability measures

µQ
t︸︷︷︸

(r×1)

= µP
t︸︷︷︸

(r×1)

− ΣXλt︸ ︷︷ ︸
(r×r)(r×1)

, and

µP
t = EP

t (Xt+1) = µP
X + ΦP

XXt,
1Two measures P and Q are said to be equivalent if they agree on sets of probability

zero.



CHAPTER 3. MACRO-FINANCE (YIELDS-MACRO) APPROACH 38

with the parameter λit, giving the market price of factor i risk. When imple-
menting the model under the actual measure and risk-neutral measure, the
stochastic discount factor Mt+1, defines the change of probability measure be-
tween the two measures, in which under risk-neutral measure this implies

e−rtµQ
t = Et(Mt+1Xt+1)

=

∫
Mt+1Xt+1ψ(Xt+1;µP

t ,ΣXΣ′X)dXt+1.

If Mt+1ψ(Xt+1;µP
t ,ΣXΣ′X) = e−rtψ(Xt+1;µQ

t ,ΣXΣ′X), then by using the mul-
tivariate normal distribution the expression becomes,

ψ(Xt+1;µQ
t ,ΣXΣ′X) =

|ΣX |−1

(2π)r/2
exp

[
−(Xt+1 − µQ

t )′(ΣXΣ′X)−1(Xt+1 − µQ
t )

2

]
,

where,

(Xt+1 − µQ
t )′(ΣXΣ′X)−1(Xt+1 − µQ

t ) = (Xt+1 − µP
t + ΣXλt)

′(ΣXΣ′X)−1

×(Xt+1 − µP
t + ΣXλt)

= (Xt+1 − µP
t )
′(ΣXΣ′X)−1(Xt+1 − µP

t )

+λ′tλt + 2λ′tΣ
−1
X (Xt+1 − µP

t ).

Since

Xt+1 = µP
X + ΦP

XXt + ΣXε
P
t+1, (3.3.28)

Σ−1
X (Xt+1 − µP

t ) = εPt+1 (3.3.29)

then, this concludes with the following:

ψ(Xt+1;µQ
t ,ΣXΣ′X) = ψ(Xt+1;µP

t ,ΣXΣ′X) exp[−1

2
λ′tλt − λ′tεPt+1].

The Radon-Nikodým derivative, connects the densities under the actual mea-
sure and risk-neutral measure, and takes the following form:

ψ(Xt+1;µP
t ,ΣXΣ′X)

ψ(Xt+1;µQ
t ,ΣXΣ′X)

=

[
dP
dQ

]
(Xt+1;λt) = exp(

1

2
λ′tλt + λ′tε

P
t+1),

where the change of measure gives the one period stochastic discount factor of
the form:

Mt+1 =
e−rtψ(Xt+1;µQ

t ,ΣXΣ′X)

ψ(Xt+1;µP
t ,ΣXΣ′X)

= exp[−rt −
1

2
λ′tλt − λ′tεPt+1]. (3.3.30)
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The risk-neutral conditional Laplace transform Xt+1, under measure Q is given
by

EQ
t {exp(u′Xt+1)} =

∫
exp(u′Xt+1)ψ(Xt+1;µQ

t ,ΣXΣ′X)dXt+1

=

∫
exp(u′Xt+1)

ψ(Xt+1;µQ
t ,ΣXΣ′X)dXt+1

ψ(Xt+1;µP
t ,ΣXΣ′X)dXt+1

× ψ(Xt+1;µP
t ,ΣXΣ′X)dXt+1

=

∫
exp(u′Xt+1) exp(−1

2
λ′tλt − λ′tεPt+1)

× ψ(Xt+1;µP
t ,ΣXΣ′X)dXt+1

= EP
t [exp(u′µP

X + u′ΦP
XXt + u′ΣXε

P
t+1 −

1

2
λ′tλt − λ′tεPt+1)]

= exp(u′µP
X + u′ΦP

XXt −
1

2
λ′tλt)EP

t

[
exp(u′ΣXε

P
t+1 − λ

′

tε
P
t+1)
]
.

Since εt+1 is independent of Ft
EP
t

{
exp(u′ΣXε

P
t+1 − λ′tεPt+1)

}
= EP

t

[
exp{〈Σ′Xu, εPt+1〉 − 〈λt, εPt+1〉}

]
= EP

t

[
exp〈Σ′Xu− λt, εPt+1〉

]
= exp

[
1

2
〈Σ′Xu− λt,Σ′Xu− λt〉

]
= exp

[
1

2
〈Σ′Xu,Σ′Xu〉+

1

2
〈λt, λt〉 − 〈Σ′Xu, λt〉

]
= exp[

1

2
u′ΣXΣ′Xu+

1

2
λ2
t − u′ΣXλt].

Therefore,

EQ
t {exp(u′Xt+1)} = exp[u′µP

X + u′ΦP
XXt] exp[

1

2
u′ΣXΣ′Xu− u′ΣXλt]

= exp[u′(µP
X − ΣXλt + ΦP

XXt) +
1

2
u′ΣXΣ′Xu],

which is said to have a conditional moment-generating function of a multivari-
ate normal distribution with the underlying mean and variance respectively,

µP
t = µP

X − ΣXλt + ΦP
XXt and σ2 = ΣXΣ′X .

Zero-coupon bonds are evaluated under no-arbitrage assumptions, this implies
the existence of a risk-neutral measure Q, equivalent to P. If risk neutrality
holds, this means that the price of risk λ0 = λ1 = 0, and equation (3.3.30)
would simply reduce to Mt = e−rt and the price of a bond would become,

P n
t = EQ

t

[
exp(−rt)P n−1

t+1

]
= EQ

t [exp(−
n−1∑
i=0

rt+i)].
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Investors act the same way a risk neutral investor would who thought the actors
follow the Q−measure distribution, that is, the no-arbitrage bond prices under
risk-neutral measure,

P n
t = EQ

t

[
exp(−rt)P n−1

t+1

]
= EP

t

[
Mt+1P

n−1
t+1

]
. (3.3.31)

Assume that the nominal bond prices are exponential affine functions of the
state variable,

P n
t = exp (An +B′nXt) . (3.3.32)

Recall that if,
z ∼ N(µ,Σ2

X)

then,
E(ez) = exp(µ+ Σ2

X/2).

Thus, we obtain the recursion:

lnP n
t = lnEQ

t

[
exp(rt + An−1 +B′n−1Xt+1)

]
= lnEQ

t

[
exp{−(δ0 + δ1Xt) + An−1 +B′n−1(µQ

X + ΦQ
XXt + ΣXε

Q
t+1)}

]
= −(δ0 + δ1Xt) + An−1 +B′n−1(µQ

X + ΦQ
XXt)

+ lnEQ
t [exp{B′n−1ΣXε

Q
t+1}]

An +B′nXt = −(δ0 + δ1Xt) + An−1 +B′n−1(µQ
X + ΦQ

XXt) +
1

2
B′n−1ΣXΣ′XBn−1

= −δ0 + An−1 +B′n−1µ
Q
X +

1

2
B′n−1ΣXΣ′XBn−1

+ (−δ1 +B′n−1ΦQ
X)Xt.

The pricing coefficients are given by the difference equations,

An = −δ + An−1 +B′n−1µ
Q
X +

1

2
B′n−1ΣXΣ′XBn−1

B′n = −δ1 +B′n−1ΦQ
X ,

with the initial conditions A0 = B0 = 0. Following the assumptions that zero-
coupon bonds are linear in the state variable, the nominal risk-free yield is
given by

ynt = AQ
n +BQ′

n Xt

= AQ
n + {BQ′

n }zzt + {BQ
n }xxt (3.3.33)

, AP
n +BP′

n Xt︸ ︷︷ ︸
Short rate expectations

+ATPn +BTP ′

n Xt︸ ︷︷ ︸
Term premium

, (3.3.34)

where the coefficients An and Bn solve the recursive equations with boundary
conditions A1 = −δ0 and B1 = −δ1, with the short rate equation given by
y1
t = rt. The behaviour of the yields and bond spreads is captured by the state
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vector Xt = (z′t, x
′
t). The vector of macroeconomic variables contains Gross

Domestic Product (GDP) growth and inflation, is given by zt = (gt, πt)
′. The

variable xt, contains the vector of latent factors in the model and can contain
lags of zt, any other macro variables not explicitly modeled, or of the unknown
variables. In this case, Xt, fully reflects the available information at time t.
The pricing iterations, following from Equation (3.3.18) and Equation (3.3.20)
can therefore be restated in a similar manner in terms of the risk neutral VAR
parameters as

An+1 = An +B′nµ
Q
X +

1

2
B′nΣXΣ′XBn + A1 (3.3.35)

B′n+1 = B′nΦQ
X +B′1

= B′1

n∑
i=0

(ΦQ
X)i. (3.3.36)

The market price of risk λt, can be written as a function of two sets of VAR
parameters:

λt = λ0 + λ1Xt = Σ−1
X [(µP

X − µ
Q
X) + (ΦP

X − ΦQ)Xt].

The model has a large number of potential parameters to estimate and calcu-
late the log price of any bond P n

t . The vector of parameters is given in terms
of

θ = {δ0, δ1,Φ
P
X ,Φ

Q
X , µ

Q
X , µ

P
X ,ΣX , λ0, λ1},

where ΦX and ΣX are sparse block matrices. If µQ
X = µP

X and ΦQ
X = ΦP

X

this would correspond to the expectations hypothesis of the term structure.
Suppose there is an r = (level, slope, curvature) × 1, vector Xt of possibly
unobservable factors that captures every effects for determining interest rates.
Assume that the price of risk is also affine function of the form:

λt︸︷︷︸
(r×1)

= λ0︸︷︷︸
(r×1)

+ λ1Xt︸ ︷︷ ︸
(r×r)(r×1)

,

then,

µQ
t = µP

t − ΣXλt

= µP
X + ΦP

XXt − ΣXλ0 − ΣXλ1Xt+1

= µQ
X + ΦQ

XXt

µQ
X = µP

X − ΣXλ0

ΦQ
X = ΦP

X − ΣXλ1.

The P−measure dynamics:

Xt+1 = µP
X + ΦP

XXt + ΣXε
P
t+1

εPt+1
P∼ N(0, Ir).
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The Q−measure dynamics:

Xt+1 = µQ
X + ΦQ

XXt + ΣXε
Q
t+1

εQt+1

Q∼ N(0, Ir).

3.3.9 Forward Rates

The forward rates can be used to price bonds in response to future outcome
of the short rate. Yields are derived by focusing on the expected future short
rate under measure Q. The rates fQ

t (n) = EQ
t (rt+n), is denoted as a forward

rate received at time t for over a loan beginning at time [t+1, t+n+1], which
is contrary to the well known bond pricing literature of Ang and Piazzesi
(2003). The risk adjusted expectations of the future short-term interest rate
are expressed as follows

fQ
t (n) = EQ

t (rt+n) = EQ
t (δ0 + δ′1Xt+n)

= δ0 + δ′1

[
n−1∑
i=0

(ΦQ
X)iµQ

X + (ΦQ
X)nXt

]
= AQ

n +BQ′
n Xt.

The corresponding loadings are given by,

AQ
n = δ0 + δ′1

[
n−1∑
i=0

(ΦQ
X)iµQ

X

]
, BQ′

n = δ′1(ΦQ
X)n,

which corresponds to the one-period forward rates in the bond pricing liter-
ature, as shown in Cochrane and Piazzesi (2008). The forward risk premium
is given by fP

t (n) − fQ
t (n), with the one period change fP

t+1(n) − fP
t (n + 1),

notably as an excess return, because its risk-neutral expected return equals to
zero. The one-period rate change can be written as

fP
t+1(n)− fP

t (n+ 1) = An +B′nXt+1 − An+1 −B′n+1Xt

= B′n(µQ
X + ΦQ

XXt + ΣXε
Q
t+1)− δ′1(ΦQ

X)nµQ
X −B

′
nΦQ

XXt

= B′nΣXε
Q
t+1

= B′nΣXε
P
t+1 +B′nΣXλt

= BQ′
n ΣXε

P
t+1 + (Bn −BQ

n )′ΣXε
P
t+1 +B′nΣX(λ0 + λ1Xt).

Three components that can be drawn from this interest rate change.

1. Revisions to short rate expectation - that results to the change in ex-
pected future short rate for time t+ n+ 1,

(Et+1 − Et)rt+n+1 = δ′1(Et+1Xt+n+1 − EtXt+n+1)

= δ′1Φn
XΣXε

P
t+1

= BQ′
n ΣXε

P
t+1,
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The change in short rate expectation corresponds to the change in risk
neutral rates fQ

t+1(n)− fQ
t (n + 1), that captures expectations of market

participants on future monetary policy between dates [t, t+ 1].

2. Surprise changes in the forward risk premium - this equals to the unex-
pected change in the forward risk premium given by

fP
t+1(n)− EtfP

t+1(n) = (Bn −BQ
n )′(Xt+1 − EQ

t Xt+1)

= (Bn −BQ
n )′ΣXεt+1.

3. Expected returns - this component equals the expected change in the
forward risk premium:

EtfP
t+1(n)− fP

t (n+ 1) = An +B′nEtXt+1 − An+1 −B′n+1Xt

= B′nEtε
Q
t+1 = B′nΣXλt

= B′nΣX(λ0 + λ1Xt),

that captures the predictable part of the return and corresponds to the
return risk premium. According to Bauer et al. (2011), decomposing rate
changes shows that both short rate expectations and term premia can
contribute to unpredictable changes in interest rates.

3.3.10 An Observed-Affine Model

Observed affine is the special case of the model. One of the assumptions men-
tioned before was the independence between the macroeconomic and latent
yield-curve state variables. By relaxing the assumption of their independence
allow macroeconomic variables to provide some information on yield curve dy-
namics, for example, following Collin-Dufresne et al. (2005). Their motivation
was to find an invariant transformation of the latent variables in an affine
model.

The idea is to use the first three principal components from an eigenvalue
decomposition of zero-coupon interest rates. This will allow us to treat the
yield curve related variables, and all state variables such as observable. We
now adjust the latent state variables to lightly fit the term structure of interest
rates. The state variable vector has the form,

Xt = [gt πt rt lt st ct],

where lt, st, and ct are the level, slope and curvature factors respectively, from
the eigenvalue decomposition which can be written as Xe

t . The variables gt, πt
and rt are the macroeconomic factors representing the output gap, consumer
price inflation and the short rate. These variables will be denoted by Xo

t . The
instantaneous short rate is given by

rt = [0 0 1 0 0 0]Xt = IrXt.
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For the second yield curve key assumption, we consider an unrestricted VAR(2)
specification for the state variable dynamics, which are described asXo

t

Xe
t

 =

µoX
µeX

+
2∑

k=1

Θo
k Θeo

k

Θoe
k Θe

k

Xo
t−k

Xe
t−k

+ εt,

Xt = µP
X +

2∑
k=1

ΘP
kXt−1 + εPt ,

where µe 6= 0 and εt ∼ N (0,Ω). In this case, the interaction is permitted
between the yield curve and macroeconomic state variables. It implies that
the future zero-coupon term structure dynamics can now also vary depending
on the state of the macroeconomy, which gives us the corresponding price of
an (n+1)-period zero-coupon bond or the mapping between the state variable
and the zero-coupon curve. That is,

P n+1
t = exp[An+B′n(µP

X−ΣXλ0)+
1

2
B′nΣXΣ′XBn+

(
B′n(µP

X − ΣXλ1)− Ir
)
Xt],

where

An+1 = An +B′n(µP
X − ΣXλ0) +

1

2
B′nΣXΣ′XBn,

B′n+1 = B′n(ΘP
X − ΣXλ1)− Ir,

by recursive relations we get the following results, A1 = 0 and B′1 = −Ir.
According to the Ang and Piazzesi (2003) model, the zero-coupon bond is a
linear combination of yield curve and macroeconomic state variables. Thus,
with this approach, the macroeconomic variables can influence both dynamics
of yield curve state variables and the mapping between the state variable vector
and pure-discount bond prices.

3.4 Main Findings of Ang Piazzesi Model
Ang and Piazzesi (2003) have inaugurated a prolific literature which presents
a Gaussian VAR model of yields and macro variables by imposing modern no-
arbitrage pricing models to study the joint dynamics of macro variables and
bond prices in a factor model of the term structure. The incorporation of both
macroeconomic variable and traditional yield variables play a significant role
such that macro variables are found to explain mostly the short and middle
parts of the yield curve as compared to the variations at the long end of the
yield curve. The long term rates are described by the latent factors. Significant
portion of level and slope factors are attributed to macro factors, particularly
to inflation. Using only Treasury yields, Ang et al. (2006) demonstrate that a
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macro-finance term structure model leads to more efficient and accurate fore-
casts compared to those obtained by the standard approach using unrestricted
OLS regressions. The term structure forecasts also outperform a number of
alternative predictors. Moreover, Cochrane and Piazzesi (2005) show that,
relative to standard latent-factor models, using macroeconomic information
can substantially lower pricing errors. Ang and Piazzesi (2003) prove that the
volatilities of short-term and medium-term yields are driven by macroeconomic
factors. Their inflation and economic activity factors explain up to 85% of the
long-horizon variance of shorter-term yields, but have a much smaller effect on
long-term yields.

Earlier studies investigating the relation between the yield curve and macroe-
conomic variables, like Fama (1990), Mishkin and Jorion (1991), Estrella and
Mishkin (1996) and Evans and Marshall (2007), did not consider no-arbitrage
relations among yields and did not model bond pricing. As a consequence,
they were able to make predictions only about the yields explicitly analysed
(typically no more than three), they did not rule out theoretical inconsistencies
due to the presence of arbitrage opportunities along the yield curve and, more
importantly, they made no predictions about risk premia and their dynamics.
Risk premia in Ang and Piazzesi (2003) model are time varying and depend
on both macroeconomic and latent factors.

3.4.1 Limitations of Ang and Piazzesi (2003) model

As the size of state vector increase, the curse of dimensionality imposes severe
estimation challenge and results in some undesirable restrictions in the struc-
ture, such that as unidirectional macro to yield linkage, have to be made. The
identification of risk price is also problematic. Although Gaussian ATSMs have
provided important insights, they can not capture conditional heteroskedas-
ticity. The following remark presents recursive bond prices adapted to the
VAR(2) model.

Remark 3.1. The use of VAR model is found to be of importance when valuing
the impact of individual house price risk model on pricing of equity release
products. The method is employed to explain price variations by heterogeneous
characteristics, with the adaptation of VAR model that incorporate exogenous
variables to project the overall house price index and risk adjusted discount
factors.

In the work of Ang and Piazzesi (2003), the zero-coupon bond prices are
assumed to be exponential linear functions of state variable. Following the
same assumption to project state variables using VAR(2) model, zero-coupon
bond prices are expressed as exponential linear functions of contemporaneous
and 1-quarter lagged state variable given by

pnt = exp{An +B′nXt + C ′nXt−1}. (3.4.1)
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The difference equations of the parameters An, Bn and Cn are recursively de-
rived from bond prices. The price of a 1-quarter zero coupon bond is:

p1
t = exp{−y1

t } = exp{A1 +B′1Xt + C ′1Xt−1}, (3.4.2)

where the initial coefficients are given by A1 = 0, B1 = e1 and C1 = 0. The
price of an n-quarter zero-coupon bond is:

pnt = Et[Mt+1p
n−1
t+1 ]

= Et[exp{−y1
t −

1

2
λ′tλt − λ′tξt+1 + An−1 +B′n−1Xt+1 + C ′n−1Xt}]

= exp{−y1
t −

1

2
λ′tλt + An−1 + C ′n−1Xt}Et[exp{−λ′tξt+1 +B′n−1Xt+1}]

= exp{−δ0 − δ′1Xt −
1

2
λ′tλt + An−1 + C ′n−1Xt}

× Et
[
exp{−λ′tξt+1 +B′n−1(k + φ1Xt + φ2Xt−1 + ΣXξt+1)}

]
= exp{−δ0 − δ′1Xt −

1

2
λ′tλt + An−1 + C ′n−1Xt +B′n−1(k + φ1Xt + φ2Xt−1)}

× Et
[
exp{(B′n−1ΣX − λ′t)ξt+1}

]
= exp{−1

2
λ′tλt +B′n−1k + An−1 − δ0 + (C ′n−1 +B′n−1φ1 − δ′1)Xt}

× exp{B′n−1φ2Xt−1} exp{1

2
(B′n−1ΣX − λ′t)(B′n−1ΣX − λ′t)′}

= exp{−1

2
λ′tλt +B′n−1k + An−1 − δ0 + (C ′n−1 +B′n−1φ1 − δ′1)Xt}

× exp{B′n−1φ2Xt−1} exp{1

2
(B′n−1Σ′XΣXBn−1 − 2B′n−1ΣXλt + λ′tλt)}

= exp{B′n−1k + An−1 − δ0 + (C ′n−1 +B′n−1φ1 − δ′1)Xt +B′n−1φ2Xt−1}
× exp{B′n−1Σ′XΣXBn−1 −B′n−1ΣX(λ0 + λ1Xt)}

= exp{B′n−1(k − ΣXλ0) +
1

2
B′n−1Σ′XΣXBn−1 + An−1 − δ0}

× exp{(C ′n−1 +B′n−1(φ1 − ΣXλ1)− δ′1)Xt +B′n−1φ2Xt−1}.

The difference equations are then derived by equating the above obtained results
to

pnt = exp{An +B′nXt + C ′nXt−1},

where the parameters are given by the equations:

An = B′n−1(k − ΣXλ0) +
1

2
B′n−1Σ′XΣXBn−1 + An−1 − δ0,

B′n = C ′n−1 +B′n−1(φ1 − ΣXλ1)− δ′1,
C ′n = B′n−1φ2.
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3.5 Non-Gaussian Affine Term-Structure
Models

This chapter introduces a new estimation procedure for non-Gaussian affine
term structure models that uses linear regression to construct a concentrated
log-likelihood function, see Creal and Wu (2013). The origin of the model ap-
proach encompasses from the work of Duffie and Kan (1996) to Aït-Sahalia and
Kimmel (2010) to name few, where much of the literature has been conducted
in continuous time. The discrete time version of multivariate non-Gaussian
model was then extended by Dai et al. (2010), continuing from the work of
Gouriéroux and Jasiak (2006).

The main focus is on the development of the family of discrete time, non-
Gaussian affine term structure models. Although from recently introduced lit-
eratures of Ang and Piazzesi (2003) and the recent Christensen et al. (2011),
Gaussian affine term structure models have become the basic workhorse in
macroeconomics and finance for purpose of incorporating the theoretical foun-
dation framework to understanding the relationship between yields of different
maturities. The approach provides some useful insights, but cannot capture
conditional heteroskedasticity, that is, the level of non-constant volatility into
bond prices that cannot be predicted over any period of time.

3.5.1 Dynamics of the State Vector

The vector of non-Gaussian state variables ht+1, that captures the volatility,
its stochastic process under physical measure P is obtained by taking on affine
functions under discrete-time settings. This is an equivalence of a multivariate
Cox et al. (1985) process, given by

ht+1 = µh + Σhωt+1 (3.5.1)
ωt+1 ∼ Γ(νh,i + zi,t+1), i=1,...,H (3.5.2)
zi,t+1 ∼ Poisson(e′iΣ

−1
h ΦhΣhωt), i=1,...,H . (3.5.3)

The conditional mean of ht+1 in matrix form,

E(ht+1|ht) = (IH − ΦH)µh + Σhνh + Φhht.

The conditional variance ht+1 is also an affine function of ht

V(ht+1|ht) = Σh,tΣ
′
h,t = Σhdiag(νh − 2Σ−1

h Φhµh)Σ
′
h + Σhdiag(2Σ−1

h Φhht)Σ
′
h,

where ht gives the current information set at time t and the parameter ht+1 =
H×1 is a vector of non-Gaussian state variable. The parameter νh = (νh,1, ..., νh,H)
gives the shape, Φh is the matrix that controls the autocorrelation of ht+1, Σh

is a scale matrix, and µh is a vector determining the lower bound of ht+1.
Lastly, ei denotes the i−th column of Ih.
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Gouriéroux and Jasiak (2006) built the univariate version of this model
and Dai et al. (2010) extended it from Equation (3.5.1) to Equation (3.5.3)
with µ = 0 and Σ diagonal. In this model for ht+1, shocks are allowed to be
correlated through the off-diagonal elements of Σh and the process may have a
negatively correlated drift through the off-diagonal elements of Φh. The vector
of conditionally Gaussian state variables gt+1 follows vector autoregressive with
conditional heteroskedasticity,

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + εg,t+1, (3.5.4)

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit

εh,t+1 = ht+1 − E(ht+1|ht),

where εg,t+1 ∼ N(0,Σg,tΣ
′
g,t) and Σi,g are lower triangles for i = 0, ..., H. The

Gaussian factors are functions of the non-Gaussian state variables through
both the autoregressive term Φghht and the covariance term Σghεh,t+1. The
conditional variance gt+1 is also a function of non-Gaussian factors, which in-
troduces conditional heteroskedasticity into bond prices. A useful property
of the model stated from Equation (3.5.1) to Equation (3.5.4) for the vector
xt+1 = (h′t+1, g

′
t+1)′ for pricing bonds is that any admissible affine transforma-

tion remains within the same family of distributions. Now the state vector has
the dynamics.

Proposition 3.2. Suppose that the state vector xt = (h′t, g
′
t)
′ follows the pro-

cess of Equations (3.5.1), (3.5.3), (3.5.4) and (3.5.2) with parameter θ. Con-
sider an admissible affine transformation of the form:(

hQt
gQt

)
=

(
ch
cg

)
+

(
chh chg
cgh cgg

)(
ht
gt

)
.

The process xQt+1 = (hQ
′

t+1, g
Q′
t+1)′ remains in the same family of distributions

under updated parameter θQ. The parameters νh and Σ−1
h ΦhΣh are invariant

to rotation. The admissibility restrictions and the relationship between the new
and old parameterizations are proved below.

3.5.2 Proof of Proposition 3.2

Proof. The necessary admissibility restrictions to keep the non-Gaussian fac-
tors positive are

1. Chg = 0,

2. Chh is restricted such that all elements ChhΣh are non-negative,
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3. ch is restricted such that all elements ch + Chhµh are non-negative,

4. Chh and Cgg are full rank.

For some values of θ, these restrictions may allow ch and Chh to be nega-
tive. Under these restrictions, the new process xQt+1 = (hQ

′

t+1, g
Q′
t+1)′ remains in

the same family of distributions under updated parameters θQ. The proof of
Proposition (3.2) is immediate by comparing the Laplace transform of xQt+1 to
the Laplace transform of xt+1. The mapping between the new parameters θQ
and the original parameters θ is given by

µQ
h = ch + Chhµh

ΦQ
h = ChhΦhC

−1
hh

ΣQ
h = ChhΣh

µQ
g = cg + Cggµg − CggΦgC

−1
gg + Cgh([IH − Φh]µh + Σhνh)

− (CghΦh − CggΦgC
−1
gg Cgh + CggΦgh)C

−1
hh ch

ΦQ
g = CggΦgC

−1
gg

ΦQ
gh = (CghΦh − CggΦgC

−1
gg Cgh + CggΦgh)C

−1
hh

ΣQ
gh = (Cgh + CggΣgh)C

−1
hh

ΣQ
0,gΣ

Q′
0,g = CggΣ0,gΣ

′

0,gC
′

gg −
H∑
i=1

CggΣi,gΣ
′

i,gC
′

gge
′

iC
−1
hh ch

ΣQ
i,gΣ

Q′
i,g =

H∑
j=1

CggΣj,gΣ
′

j,gC
′

gge
′

jC
−1
hh ei.

Proposition (3.2) helps to understand the identification of the model. The
admissibility constraints ensure that the non-Gaussian state variables always
remain positive after applying a transformation from xt to xQt and that there
exists another admissible rotation from xQt back to xt. Analogous to the pop-
ular class of Gaussian ATSMs, we specify xt = (g′t+1, h

′
t+1)′ to have the same

dynamics under both P and Q measure. This is done by allowing the parame-
ters controlling the conditional mean to be different under the two probability
measures and set the scale parameter Σgh, Σh and Σi,g for i = 0, ..., H to be the
same. The location parameter µ must also be the same under both measures
to ensure no-arbitrage.

3.5.3 Stochastic Discount Factor

The stochastic discount factor demonstrates the compensated risk exposure
of an investor holding a zero-coupon bond under stochastic volatility. The
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log stochastic discount factor is expressed into the risk free rate and three
components describing risk compensation,

mt+1 = −rt −
1

2
λ′gtλgt − λ′gtεg,t+1 − λ′wtεw,t+1 − λ′ztεz,t+1,

where εi,t+1 are standardized shocks with mean zero and identity covariance
matrix. Moreover, in addition to the risk-free rate rt, an agent gets compen-
sated for being exposed to the Gaussian shock εg,t+1, the gamma shock εw,t+1

and a Poisson shock εz,t+1. The parameter λit is the price of risk i for each of
the three types of shocks in the model, which are defined as

λgt = V(gt+1|ht, ht+1, zt+1)−
1
2 [E(gt+1|ht, ht+1, zt+1)− EQ(gt+1|ht, ht+1, zt+1)],

λwt = V(wt+1|ht, zt+1)−
1
2 [E(wt+1|ht, zt+1)− EQ(wt+1|ht, zt+1)],

λzt = V(zt+1|ht)−
1
2 [E(zt+1|ht)− EQ(zt|ht)].

The market price of risk has an intuitive form as the sharp-ratio measuring
per unit risk compensation. Specially, price of risks are the difference in the
conditional means of each shock under measure P and measure Q, standardized
by a conditional standard deviation. These time varying quantities of risk are
a feature of non-Gaussian models that are not available in Gaussian models.

3.5.4 Bond Prices

The nth period price of a zero-coupon bond at time t is the expected (t + 1)-
price, discounted by the short rate rt under risk neutral measure, is given
by,

P n
t = EQ

t [exp(−rt)P n−1
t+1 ].

The short rate as a linear function of the state variables

rt = δ0 + δ′hht + δ′ggt.

The exponentially affine function of bond prices leads to the following expres-
sion

P n
t = exp[An +B′n,hht +B′n,ggt]. (3.5.5)
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The bond loadings An, Bn,h, Bn,g can be recursively derived to form a matrix
form

An = −δ0 + An−1 + µQ′
g Bn−1,g + [µh − ΦQ

hµh + Σhν
Q
h ]′Bn−1,h

+
1

2
B′n−1,gΣ0,gΣ

′
0,gBn−1,g + µ′hΦ

Q′
h Σ−1′

h IHΣ′hBn−1,gh

−µ′hΦ
Q′
h Σ−1′

h [diag(ıH − Σ′hBn−1,gh)]
−1Σ′hBn−1,gh

−νQ
′

h [ln(ıH − Σ′hBn−1,gh) + Σ′hBn−1,gh],

Bn,h = −δh + ΦQ′
ghBn−1,g + ΦQ′

h Bn−1,h +
1

2
(IH ⊗B′n−1,g)ΣgΣ

′
g(ıH ⊗Bn−1,g)

−ΦQ′
h Σ−1′

h (IH − [diag(ıH − Σ′hBn−1,gh)]
−1)Σ′hBn−1,gh,

Bn,g = −∆g + ΦQ′
g Bn−1,g

where ΣgΣ
′
g is a GH × GH block diagonal matrix with diagonal elements

Σi,gΣ
′
i,g for i =, ..., H and Bn−1,gh = Σ′ghBn−1,g + Bn−1,h. The initial loadings

at maturity are A1 = −δ0, B1,g = −δ1,g and B1,h = −δ1,h. The bond yields in
linear form are given by

ynt ≡ − 1

n
ln(P n

t )

= Ān + B̄′n,hht + B̄′n,ggt,

with Ān = − 1
n
An, B̄n,h = − 1

n
Bn,h and B̄n,g = − 1

n
Bn,g. Stacking ynt in order

for N different maturities n1, n2, ..., nN gives,

Yt = A+BXt,

where A = (Ān1, ..., ĀnN)′, B = (B̄n1, ..., B̄nN)′. If more yields are observed
than the number of factors, i.e. (N > G + H), not all yields can be priced
exactly. Standard assumptions are made in Creal and Wu (2013), concerning
the ATSM literature that N1 = G + H linear combinations of the yields Y 1

t ,
which are priced without error. The remainingN2 = N−N1 linear combination
Y 2
t are observed with Gaussian measurement errors. The observation equations

are:

Y 1
t = A1 +B1Xt, and Y 2

t = A2 +B2Xt + ξt ξt ∼ N(0,Σ
′
Σ), (3.5.6)

where A1 ≡ ΘY1A, A2 ≡ ΘY2A and B1 ≡ ΘY1B, B2 ≡ ΘY2B. The model de-
velops a new estimation procedure for the class of discrete-time non-Gaussian
affine term structure models that allows for any admissible rotation of the non-
Gaussian state variables that can also be estimated. The estimation challenge
that are problematic in some Gaussian macro-finance models are improved in
this approach by reducing the number of parameter needed to be maximized
numerically. Both Gaussian and non-Gaussian models give the best fit on the
cross-section of yields. Any affine macro-finance model that allows for restric-
tions on key parameters of interest rate can also benefit from this non-Gaussian
method.
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3.6 Diebold, Rudebusch and Aruoba (2006)
Approach

The Diebold et al. (2006) (DRA) approach introduces a simple way of sum-
marising the dynamic interactions between macroeconomic fundamentals and
the yield curve by incorporating the yield curve factors shown to be popu-
lar in factor models in the finance literature with observable macroeconomic
variables. The characterization of the three factor term structure model in-
troduced in this framework is based on the classical Nelson and Siegel (1987)
representation which is parsimonious and suitable for estimating and forecast-
ing the entire yield curve, period by period. This model is quite flexible to
capture the yield curve dynamics into a three dimensional parameter that
evolves dynamically, as in Diebold and Li (2006), which made it to be crucial
for relating yield curve evolution over time to movements in macroeconomic
variables. The state variable vector in the DRA model is given by

Xt = (lt, st, ct, gt, πt, rt)
′,

which consists of three Nelson-Siegel factors and macroeconomic variables,
namely, real activity, inflation, federal funds rate that represents the monetary
policy instrument. The joint dynamics of macroeconomic factors to the Nelson
and Siegel representation can be extended to give the measurement equation
of the form:

yt(τ1)
yt(τ2)
yt(τ3)
yt(τ4)

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1 φ14 φ15 φ16

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2 φ24 φ25 φ26

1 1−e−λτ3
λτ3

1−e−λτ3
λτ3

− e−λτ3 φ34 φ35 φ36

1 1−e−λτ4
λτ4

1−e−λτ4
λτ4

− e−λτ4 φ44 φ45 φ46



×


lt
st
ct
gt
πt
rt

+


εt(τ1)
εt(τ2)
εt(τ3)
εt(τ4)

 , (3.6.1)

with the measurement equation taking the affine form,

yt(t+ n) = − 1

n
(An +BnXt) + εt, εt ∼ N(0, σ2

n)

where the corresponding coefficients for An and Bn are given by,

An = 0, (3.6.2)

Bn = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
, 0, 0, 0]′. (3.6.3)
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The system of the model follows a non-structural VAR representation of the
macroeconomy and the factor dynamics are assumed to follow a VAR(1) pro-
cess, which has a transition equations of the form:

lt
st
ct
gt
πt
rt

 =


ω11 ω12 ω13 ω14 ω15 ω16

ω21 ω22 ω23 ω24 ω25 ω26

ω31 ω32 ω33 ω34 ω35 ω36

ω41 ω42 ω43 ω44 ω45 ω46

ω51 ω52 ω53 ω54 ω55 ω56

ω61 ω62 ω63 ω64 ω65 ω66




lt−1

st−1

ct−1

gt−1

πt−1

rt−1

+


ε1,t

ε2,t

ε3,t

ε4,t

ε5,t

ε6,t

 . (3.6.4)

The compact form for transition equations is

ft = Ωft−1 + εt. (3.6.5)

The model offers a bidirectional causality of effects between both the macroe-
conomy and the yield curve, unlike in the Ang and Piazzesi (2003) approach.
It is also observed that the expectation hypothesis in relation to the yield curve
modelling approach, seem to hold reasonably well in some certain periods un-
der macroeconomic perspective. On the other hand, even though the model
benefits from parsimony of Nelson-Siegel and the flexibility of jointly capturing
both the dynamics of the yield curve and macroeconomic variables, however,
it does not consider no-arbitrage restrictions, which are taken as being crucial
in finance perspective.



Chapter 4

Dynamic Nelson-Siegel Models

This chapter discusses a second approach of modelling the term structure of
interest rates, by considering first the original formulation of the extremely
popular, Nelson and Siegel (1987) interpolation and several Nelson-Siegel type
models that imposes theoretical restrictions that considers no-arbitrage as-
sumption. A reformulation and extension version is proposed by Diebold and
Li (2006), which is the dynamic Nelson-Siegel model. Furthermore, we touch
upon a derived discrete time arbitrage-free Nelson-Siegel class that establishes
the uniqueness and exact solution of the arbitrage-free Nelson-Siegel model,
(see Linlin and Gengming (2012)).

4.1 Classical Nelson-Siegel Curve Fitting
Nelson and Siegel (1987) formulation steps aside from the solid theoretical
foundation to rule out riskless arbitrage opportunities. The model aims to
introduce “A simple parsimonious model that is quite flexible enough to rep-
resent the range of shapes associated with yield curves”. Following from the
extensions made by Siegel and Nelson (1988), to fit a smooth yield curve to
unsmooth yields, Nelson and Siegel (1987) begin to give a forward rate of the
form,

f(τ) = b1 + b2e
−λτ + b3λτe

−λτ . (4.1.1)

The Nelson-Siegel forward rate curve can be viewed as a constant plus a La-
guerre function, which is a polynomial times an exponential decay term and
is a popular mathematical approximating function. The corresponding yield

54
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curve as a function of maturity can be easily derived from Equation (2.1.6)

y(τ) =
1

τ

∫ τ

0

(b1 + b2e
−λs + b3λse

−λs)ds

= b1 + b2
1− e−λτ

λτ
+ b3

1

τ

∫ τ

0

λse−λsds

= b1 + b2
1− e−λτ

λτ
+ b3(−e−λτ +

1− e−λτ

λτ
)

= b1 + b2[
1− e−λτ

λτ
] + b3[

1− e−λτ

λτ
− e−λτ ]. (4.1.2)

This is the cross-sectional linear projection of y(τ) for fixed t on variables
(1, [1−e−λτ

λτ
], [1−e−λτ

λτ
− e−λτ ]) with the parameters b1, b2, b3 and a decay rate

λ. The Nelson-Siegel yield curve also corresponds to a discount curve that
begins at one at zero maturity and approaches zero at infinite maturity, as
appropriate. Even though there are some historically developed models used
that showed some success, (see Fisher et al. (1995)), but the Nelson-Siegel
model turns out to have some very appealing features. Firstly, Nelson-Siegel
form enforces some basic constraints from financial economic theory, that is,
the corresponding discount curve satisfies that P (0) = 1, and limτ→∞ P (τ) = 0
as appropriate. In addition, the Nelson-Siegel zero-coupon curve satisfies that

lim
τ→0

y(τ) = f(0) = r,

the instantaneous short rate. Secondly, the Nelson-Siegel form provides a par-
simonious approximation. Parsimony is essential as it promotes smoothness i.e
yields tend to be very smooth functions of maturity. Moreover, the model also
protects against in-sample over fitting, for producing good forecast and also
promotes empirically tractable and trustworthy estimation. Thirdly, Nelson-
Siegel form not only provides parsimonious approximation but also a flexible
one as the yield curve assumes a variety of shapes at different times, depending
on the values of four parameters. Fourthly, from mathematical approximation-
theoretic viewpoint, Nelson-Siegel form is far from arbitrary. The forward rate
curve Equation (4.1.1), as noted by Nelson-Siegel, corresponds to the yield
curve Equation (4.1.2), is viewed as a constant plus a Laguerre function on
the domain [0,∞), which matches the domain for the term structure. More-
over, the desirable approximation-theoretic properties of Nelson-Siegel go well
beyond their Laguerre structure. For all of the four reasons, Nelson-Siegel has
become very popular for static curve fitting in practice, particularly among fi-
nancial market practitioners, (see Gürkaynak et al. (2007)), and central banks,
use the Nelson-Siegel model, or an extension thereof, to model the term struc-
ture of interest rates (Pooter (2007)). To estimate the model, suppose we have
N yield rates y(τ) for different maturities τ1, ..., τN . Using the model in Equa-
tion (4.1.2), we seek the optimal parameters b1, b2, b3 and λ in terms of best
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fitting the given yield rates y(τ). That is,
y(τ1)
y(τ2)
...

y(τN)

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1
1 1−e−λτ2

λτ2
1−e−λτ2
λτ2

− e−λτ2
...

...
...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN


b1

b2

b3

 .

The system can be written into matrix form:

y(τ) = Xλb.

where y(τ) is an N dimensional vector, Xλ is the M × 3 matrix and b is the
3−dimensional vector. This model has the appealing feature that the yields
follow the functional form of Nelson and Siegel (1987) that fits yield curves
quite well on the observed term structure. The noted drawbacks regarding the
Nelson-Siegel model is that the model admits arbitrage because it has a de-
terministic foundation and therefore fails to account for the convexity arising
from Jensen’s inequality effects when yield factors are stochastic. Moreover,
Nelson-Siegel model cannot enforce no-arbitrage because the parameters that
determine the dynamic evolution of yield curve factors are not linked to the
parameters that determine the shape and location of the yield curve. The ele-
ments of the state vector are just Nelson and Siegel’s level, slope, and curvature
measures. However, this model showed to forecast poorly in an out of sample
forecast because in practice b1, b2, b3 and λ tend to vary over time. Diebold
and Li (2006) suggest to overcome this caveat by dynamically extending the
model.

4.2 Introducing Dynamics
Diebold and Li (2006) extended the classical Nelson and Siegel (1987) frame-
work, by interpreting and extracting latent dynamic factors as level, slope and
curvature. Moreover, Diebold and Li (2006) suggest a rearrangement on factors
of the model to give the factors a clear and distinct economic interpretation.
Allowing for time dependency on parameters, Diebold and Li (2006) suggest to
match the original Nelson and Siegel (1987) b1t = β1t, b2t = β2t+β3t, b3t = β3t,
such that parameters, which are now variables from a time-series perspective,
change at each time t. In so doing, this produces a dynamic Nelson-Siegel
(DNS) model. The measurement equation for fixed τ becomes

yt(τ) = β1t + (β2t + β3t)
1− e−λτ

λτ
− β3te

−λτ

= β1t + β2t[
1− e−λτ

λτ
] + β3t[

1− e−λτ

λτ
− e−λτ ]. (4.2.1)
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Then, this is a time-series linear projection of yt(τ) on variables β1t, β2t and β3t

which are interpreted as level, slope and curvature factor, respectively, with
parameters (1, [1−e−λτ

λτ
], [1−e−λτ

λτ
−e−λτ ]). The dynamic latent factors in the DNS

model determine entirely the dynamics of yt for any τ , and the factor loadings
are functions of maturity τ and a shape parameter λ, determine entirely the
cross section of y(τ) for any t. The DNS model forms part of the popular
dynamic factor models1 where many yields across maturities are driven by
just three latent factors. Figure 4.1 shows how a given term structure can be
broken down into these three latent factors.

Figure 4.1: Term structure representation broken down into three factors

The interpretation of the latent factors in respect to their respective load-
ings in the Dynamic Nelson-Siegel model are as follows: the parameter λ
governs the exponential decay rate. The linear combination of these variables,
[β1t, β2t, β3t] have the associated loadings

[
1, [1−e−λτ

λτ
], [1−e−λτ

λτ
− e−λτ ]

]
where

β1t has a constant one that does not approach zero for all yields, as the yield
maturity varies. That is,

lim
τ→∞

yt(τ) = β1t.

Hence β1t may be viewed as a long-term factor that governs the level of the yield
curve. The loading on β2t is closely related to the slope, and the corresponding
loading is a monotone function, 1−e−λτ

λτ
, that starts at one when maturity τ

turns to zero and quickly to zero as τ approaches infinity; hence β2t, which
often called a short term factor, mostly affecting short-term yields. The loading
on β3t has a humped-shaped, 1−e−λτ

λτ
− e−λτ , which starts at zero (and is thus

1Dynamic factor structure is very popular to the theory and practice of financial asset
pricing and very convenient statistically for it provides tractability in governing dimensional
situations.
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not short-term), increases and then decays to zero (and thus is not long-term),
with the speed of decay and location of maximal hump determined by the
parameter λ; hence β3t indicates the contribution of the medium-term factor.

An important insight is that the three factors, which following the literature
can thus far be called long-term, short-term and medium-term, in reference to
the yield maturities at which they have maximal respective relative impact.
Moreover, factors may also be interpreted in terms of their effect on the overall
yield curve as level, slope and curvature. That is, an increase in β1t increases all
yields equally, as the loading is identical at all maturities, thereby changing the
level of the yield curve. Furthermore, an increase in β2t increases short yields
more than long yields, because the short rates load on β2t more heavily, thereby
changing the slope of the yield curve. It is interesting to note, moreover, that
the instantaneous yield depends on both the level and slope factors, because
the second limit can be calculated as:

lim
τ→0+

yt(τ) = lim
τ→0+

β1t + (β2t + β3t)
1− e−λτ

λτ
− β3te

−λτ

= β1t − β3t + (β2t + β3t) lim
τ→0+

1− e−λτ

λτ

= β1t − β3t + (β2t + β3t) lim
τ→0+

λe−λτ

λ
= β1t − β3t + (β2t + β3t)

= β1t + β2t.

That is, the instantaneous rate is determined by β1t + β2t. Finally, an
increase in β3t will have little effect on very short or very long yields, which
load minimally on it, but will increase medium-term yields, which load more
heavily on it, thereby increasing yield curve curvature. Figure 4.2 shows the
loading on the three latent factors as a function of maturity.
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Figure 4.2: Dynamic Nelson-Siegel Factor Loadings, for λ = 0.0609

The parameter λ governs the exponential decay rate. Small values of λ
produce slow decay, resulting in a better fit of the yield curve at long maturities,
while large values of λ produce fast decay and can better fit the yield curve at
short maturities. Moreover, the parameter λ also governs where the loading
on β3t achieves its maximum. As stated in Diebold and Li (2006), λ might
be taken as a fixed constant at a perspective value. The time series estimates
of β1t, β2t and β3t are simplified because the measurement Equation (4.2.1)
becomes a linear regression.

4.3 State Space Representation

In the original Nelson and Siegel (1987) factorization, the loadings b2t = 1−e−λτ
λτ

and b3t = e−λτ give similar monotonically decreasing shape, which gives similar
interpretation to the underlying factors. In Diebold and Li (2006), the three
factors are given distinctly different interpretations denoted as Lt, St, and
Ct, such that, Xt = [Lt, St, Ct]

′
, is modeled as an unrestricted VAR(1). The

measurement equation is then specified as

yt(τ) = Lt + St[
1− e−λτ

λτ
] + Ct[

1− e−λτ

λτ
− e−λτ ]. (4.3.1)

Adding stochastic error term εt(τ) to the deterministic DNS curve, stochasti-
cally relates any set of N yields of various maturities, that matures at time
τN , to the three latent yield factors. The measurement equation of yields, is
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expressed as
yt(τ1)
yt(τ2)

...
yt(τN)

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1
1 1−e−λτ2

λτ2
1−e−λτ2
λτ2

− e−λτ2
...

...
...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN


LtSt
Ct

+


εt(τ1)
εt(τ2)

...
εt(τN)

 . (4.3.2)

The state space system of the model, given in matrix notation as,

yt = Θft + εt. (4.3.3)

for t = 1, ..., T , where yt representing the N × 1 vector of yields, N × 3 factor
loading matrix Θ, 3×1 latent factor vector ft and N×1 measurement errors of
the yields . The stochastic errors εt(τ), are interpreted as maturity specific fac-
tors, where each yield yt(τ) is driven in part by three latent factors and in part
by its stochastic error εt(τ). The common factor dynamics of the three latent
factors under VAR(1) give the state space system with the following transition
equation which governs the time series dynamics of the latent factors,LtSt

Ct

 =

µLµS
µC

+

α11 α12 α13

α21 α22 α23

α31 α32 α33

Lt − µLSt − µS
Ct − µC

+

νt(L)
νt(S)
νt(C)

 . (4.3.4)

The state space equation is then given by,

ft = µ+ F (ft−1 − µ) + νt, (4.3.5)

where µ is the 3 × 1 factor mean, and the 3 × 3 coefficient matrix F governs
the factor dynamics. To specify the covariance structure of the measurement
and transition disturbances, it is assumed that the white noise transition and
measurement disturbances εt and νt are orthogonal to each other and to the
initial state vector: (

εt
νt

)
∼ WN

[(
0
0

)
,

(
Q 0
0 H

)]
, (4.3.6)

E(F0ν
′
t) = 0 (4.3.7)

E(F0ε
′
t) = 0.

Throughout this work, it is assumed that H and Q matrices are diagonal and
non-diagonal, respectively. Assumptions of diagonal matrix H, imply that
yields are uncorrelated for different maturities. Assumptions regarding the
non-diagonal matrix Q allow shocks to the three term structure factors to
be correlated. Continuing from the interpretation of factors given in Section
(4.1), the empirical counterpart of the factors is that the level of loading on
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Lt is the long term yield of the yield curve. The factor loading St correlates
negatively with the spread between long and short yields, i.e. the slope of
the yield curve. Loading on Ct is close to the empirical measure of curvature
of the yield curve. DNS model introduced by Diebold and Li (2006) seem to
be theoretically satisfactory as it enjoys the advantage of parsimony, goodness
of fit, and superior forecast performance. Theoretically, DNS imposes certain
economically desirable properties, such as requiring the discount function to
approach zero with maturity. That is,

lim
τ→0

P (τ) = 0.

However, despite its good empirical performance and a certain amount of the-
oretical appeal, DNS fails on an important theoretical restrictions necessary
to rule out opportunities for risk free arbitrage.

4.4 Compatibility of DNS Models and ATSMs
The type of affine term structure models with closed form, in discrete time,
with no-arbitrage restrictions, have gained much popularity in macro-finance,
following Ang and Piazzesi (2003). The model considers the combination of
observable and unobservable variables to explain the entire yield curve. How-
ever, even though it considers theoretical restrictions for consistency, estima-
tion and identification of price of risk is quite difficult, which leads to poor
forecasting performance of future yields. This has been pointed out by Duffee
(2002) that the canonical arbitrage free models exhibits poor empirical time
series performance, especially when forecasting the future yields. On the other
hand, the DNS model is shown to be extremely popular among practitioners
and central bankers, due to its simplicity and effectiveness. However, the DNS
does consider arbitrage opportunities, in that way, it lacks the traditional fi-
nancial theory when applied to an efficient market. In this section, we make
a comparison to identify how to adapt the DNS model to the no-arbitrage
restrictions in discrete time. Both models are featuring a constant stochastic
volatility to capture the bulk of variations in the yield curve. Recalling the
solutions of the essentially affine arbitrage-free term structure model, following
the set-up in Ang and Piazzesi (2003), the DNS model is shown to be incom-
patible with the arbitrage-free conditions, because the measurement Equation
(4.3.1) corresponds to the representation of the affine function (3.3.21), with
the coefficients taking the following form:

An = 0; (4.4.1)

Bn = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
]′, (4.4.2)

for all n, which does not satisfy the pricing Equation (3.3.18). In order for DNS
model to be compatible with arbitrage-free assumptions, it must be proved that
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for any parameter An that follow the difference equation under measure Q or
P, finding the parameter Bn in the difference equation

B′n+1 = B′n(ΦP
X − ΣXΛ) +B′1,

such that the Nelson-Siegel factor loadings shown in Equation (4.4.2) for Bn

holds.

4.5 Arbitrage-Free Dynamic Nelson-Siegel
Model

The arbitrage-free Nelson-Siegel (AFNS) class model imposes a merged Nelson-
Siegel functional coefficient structure on the canonical representation of arbi-
trage free affine dynamics derived in continuous time framework by Christensen
et al. (2011). This combination of AFNS model addresses the theoretical
weakness of the most popular Nelson-Siegel model and to overcome the empir-
ical implementation problem concerning the canonical arbitrage-free ATSMs,
by incorporating DNS elements which retains its empirical tractability. The
model is derived under risk neutral dynamics to establish the sufficient condi-
tions that guarantees the existence of a solution. Since it has been noted that
the loadings in Duffie and Kan (1996) are exactly equal to those of DNS, Chris-
tensen et al. (2011) work tries to make DNS arbitrage free by finding the best
approximation to DNS within the Duffie-Kan arbitrage free class, with factor
loadings closest to the DNS. Christensen et al. (2011) considers the full three
factor DNS model and also explicitly characterized the yield adjustment term,
showing how DNS can be adjusted to fall within the Duffie-Kan workhorse
model. The yield adjustment term is the key wedge between AFNS and DNS
under P-measure, and the constant depends only on maturity, not on time.
Furthermore, AFNS supplies the missing piece through the yield adjustment
term which links the transition and measurement equation in a way that en-
sures that discounted bond prices are semi-martingales and therefore arbitrage
free.

Looking at the relationship between AFNS and DNS, the Christensen et al.
(2011) AFNS model blends two important and successful approaches to yield
curve modelling: the DNS empirically based one and the no-arbitrage theoret-
ically based one. Models in the DNS tradition fit and forecast well, but they
lack theoretical rigor as they may admit arbitrage possibilities, while models in
the arbitrage free tradition are theoretically rigorous as they enforce absence
of arbitrage, but they may fit and forecast poorly. AFNS bridges with a DNS
model that enforces absence of arbitrage. Approach from the arbitrage free
side, AFNS maintains the arbitrage free theoretical restrictions of the canonical
affine models but can be easily estimated, because the dynamic Nelson-Siegel
structure helps identify the latent yield curve factors and delivers analytical
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solution for the zero-coupon bond prices. Approach from the DNS side, AFNS
maintains the simplicity and empirical tractability of the popular DNS model,
while simultaneously enforcing the theoretically desired property of absence of
riskless arbitrage. Another insightful information is that AFNS as compared
to DNS, is very poweful in separating risk premia and expectations on future
short rates.

4.5.1 Discrete-time AFNS (Yield Only) Model

Linlin and Gengming (2012) and Li et al. (2012) depict the model in discrete-
time settings to establish a necessary condition and a uniqueness of a solution
for a yield curve with dynamic Nelson-Siegel factor loadings to be arbitrage
free. The main important assumption in AFNS model is that the mean-
reversion coefficient matrix of the state dynamics, under risk-neutral measure,
takes a specific form

ΦQ
X =

1 0 0
0 e−λ λe−λ

0 0 e−λ

 .
The suitable ΦQ

X , equates the factor loadings of the three yield factors to the
dynamic Nelson-Siegel model, such that,

B′n = B′1

n−1∑
i=0

(ΦQ
X)i = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
]. (4.5.1)

That is, the parameters should be a function of λ in the Nelson-Siegel factor
loadings. Equation (4.5.1) is key in understanding the solution and the proof
to the arbitrage-free Nelson-Siegel class of models. Furthermore, in order to
exclude arbitrage opportunities, the measurement equations of yields have to
be adjusted by a constant term, which differs from the original Nelson-Siegel
model, where An = 0. Hence, An gives the following equation under measure
Q, for n > 1. That is,

An = An−1 +B′n−1µ
Q
X +

1

2
B′n−1ΣXΣ

′

XBn−1 + A1. (4.5.2)

In order to prove the arbitrage-free Nelson-Siegel class of models and find the
exact solution in discrete-time, the solution must be derived in discrete-time
setting. The merged affine arbitrage free assumption and the Nelson-Siegel
interpolation, under discrete time setting is shown to prove the existence and
euniqueness of the solution for the AFNS model.

Proposition 4.1. The sufficient condition for the DNS model to be arbitrage-
free implies the existence of the solution for the AFNS model.
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Assumption 1. Assume that the one-period risk-free rate is an affine function
on a vector of all state variables Xt, which comprises of three latent Nelson-
Siegel factors. The one-period risk-free rate is then defined by

rt = δ0 + δ′1Xt,

where

δ1 = [1,
1− e−λ

λ
,
1− e−λ

λ
− e−λ]′.

Assumption 2. The vector of state variables Xt follows a first-order Gaussian
VAR process under the risk-neutral measure Q,

Xt = µQ
X + ΦQ

XXt−1 + ΣXε
Q
t ,

with the transition matrix taking the specific form

ΦQ
X =

1 0 0
0 e−λ λe−λ

0 0 e−λ

 .
Using Assumption (1) and Assumption (2), the following implications can be
deduced. That is, the zero-coupon bond prices, are exponentially affine on
vector Xt, given by,

P n
t = exp(An +B′nXt),

where Bn is the Nelson-Siegel factor loading,

Bn = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
]′

and An satisfies the following difference equation for n > 1:

An = An−1 +B′n−1µ
Q
X +

1

2
B′n−1ΣXΣ′XBn−1 + A1. (4.5.3)

4.5.2 Proof of Proposition 4.1

Proof. If n = 1, we have the following

B1 = −δ1 = −[1,
1− e−λ

λ
,
1− e−λ

λ
− e−λ]′ and (4.5.4)

A1 6= 0. (4.5.5)

The parameter Bn in the difference equation (3.3.36) under the risk-neutral
measure in discrete-time ATSM, gives the following expression:

B′n+1 = B′nΦQ
X +B′1.
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Iteratively, this can be written as

B′n = −δ1

n−1∑
i=0

(ΦQ
X)i ∀n > 1,

where the ith transition matrix

(
ΦQ
X

)i
=

1 0 0
0 e−λ λe−λ

0 0 e−λ

i = e−iλ

eλ 0 0
0 1 λ
0 0 1

i

= e−iλ

eiλ 0 0
0 1 iλ
0 0 1

 =

1 0 0
0 e−iλ iλe−iλ

0 0 e−iλ

 , (4.5.6)

n−1∑
i=0

(ΦQ
X)i =

n 0 0

0
∑n−1

i=0 e
−iλ ∑n−1

i=0 iλe
−iλ

0 0
∑n−1

i=0 e
−iλ


=

n 0 0

0 1−e−nλ
1−e−λ λ

[
e−λ−e−nλ
(1−e−λ)2

− (n−1)e−nλ

1−e−λ

]
0 0 1−e−nλ

1−e−λ

 .
It follows that

Bn = −

[
n−1∑
i=0

(ΦQ
X)i

]′
δ1

= −

n 0 0

0 1−e−nλ
1−e−λ 0

0 λ
[
e−λ−e−nλ
(1−e−λ)2

− (n−1)e−nλ

1−e−λ

]
1−e−nλ
1−e−λ


 1

1−e−λ
λ

1−e−λ
λ
− e−λ



= −

 n
1−e−nλ

λ
e−λ−e−nλ

1−e−λ − (n− 1)e−nλ + 1−e−nλ
λ
− e−λ−e−(n+1)λ

1−e−λ


=

[
−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ

]′
.

Hence, the constant adjustment term which can be derived recursively, be-
comes

An+1 = An +B′nµ
Q
X +

1

2
B′nΣXΣ′XBn + A1. (4.5.7)

Therefore, existence of the solution is satisfied.

Proposition 4.2. The necessary conditions for the DNS model implies a
uniqueness of the solution for the AFNS model.
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To show that AFNS has a unique solution;

Assumption 3. We assume that the DNS model with a constant adjustment
term on measurement equation of yields, an, fits the yield curve completely.
This gives,

yt(n) = an + Lt +

(
1− e−λn

λn

)
St +

(
1− e−λn

λn
− e−λn

)
Ct. (4.5.8)

Assumption 4. The estimated Nelson-Siegel yield curve factors follow a VAR(1)
process under the risk-neutral measure Q,

Xt = µQ
X + ΦQ

XXt−1 + ΣXε
Q
t . (4.5.9)

The underlying Assumption (3), Assumption (4) of yield curve yt(t+n), implies
that the instantaneous risk-free rate needs to follow the affine process

rt = δ0 + δ′1Xt, (4.5.10)

where

δ1 = [1,
1− e−λ

λ
,
1− e−λ

λ
− e−λ]′ and δ0 = a1;

Furthermore, the risk-neutral dynamic coefficient matrix ΦQ
X of the Nelson-

Siegel three latent factors needs to satisfy

ΦQ
X =

1 0 0
0 e−λ λe−λ

0 0 e−λ

 .
When n = 1, the one period short-rate in (4.5.10) is easily satisfied by the
measurement equation in Assumption (3). Since the state dynamics, Xt and
the short rate rt are assumed to be affine functions of the term structure model,
this implies that the function of yields is affine

yt+nt = − 1

n
(An +B′nXt) , (4.5.11)

where the difference equations

An+1 = An +B′nµ
Q
X +

1

2
B′nΣXΣ′XBn + A1. (4.5.12)

B′n+1 = B′nΦQ
X +B′1. (4.5.13)
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4.5.3 Proof of Proposition 4.2

Proof. By comparing the yield curve Equation (4.5.11) with Equation (4.5.8),
we have the following coefficients

Bn = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
]′. (4.5.14)

An = −nan.

Solving the three latent factor matrix, let

ΘQ
X =

φ11 φ21 φ31

φ12 φ22 φ32

φ13 φ23 φ33

 .
We then insert Equation (4.5.14) in both sides of Equation (4.5.13) and take
the transpose, giving n+ 1

1−e−λ(n+1)

λ
1−e−λ(n+1)

λ
− (n+ 1)e−λ(n+1)

 = ΘQ
X

 n
1−e−λn

λ
1−e−λn

λ
− ne−λn

+

 1
1−e−λ
λ

1−e−λ
λ
− e−λ

 .
We can rearrange it such that n

e−λ−e−λ(n+1)

λ
e−λ−e−λ(n+1)

λ
− (n+ 1)e−λ(n+1) + e−λ

 = ΘQ
X

 n
1−e−λn

λ
1−e−λn

λ
− ne−λn

 .
Solving the elements of ΘQ

X , coefficients need to be compared, equation by
equation. The first equation implies that

φ11 = 1, φ21 = 0 and φ31 = 0.

The second equation implies that

φ12 = 0;

e−λ

λ
− e−λe−λn

λ
= φ22

1

λ
+ φ32

1

λ
− (φ22 + φ32)

e−λn

λ
− φ32ne

λn,

where the second line requires the following to hold:

φ32 = 0 and φ22 = e−λ.

The third equation implies that

φ13 = 0;
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and

e−λ

λ
+ e−λ − e−λ(1 + λ)

e−λn

λ
− e−λne−λn = φ23

1

λ
+ φ33

1

λ
− (φ23 + φ33)

e−λn

λ
− φ33ne

−λn,

where the second line requires

φ33 = e−λ and φ23 = λe−λ.

To summarise, we have

ΦQ
X =

1 0 0
0 e−λ λe−λ

0 0 e−λ

 .
The risk-neutral dynamic coefficient matrix ΦQ

X of the three latent factors is
satisfied, and AFNS has a unique solution.

4.5.4 Discrete-Time AFGNS Model

To estimate the yield curve central banks use different models. The table 4.1
provides a review of the use of certain types of models in some countries. It
can be seen that in the most foreign countries dominate Svensson (1995) and
Nelson and Siegel (1987) models.

Table 4.1: Central Banks and Yield Curve Models

Central Bank Model
Belgium Nelson-Siegel, Svensson
Canada Svensson
USA Fisher-Nychka-Zervos (Spline)
Finland Nelson-Siegel
France Nelson-Siegel, Svensson
Germany Svensson
Italy Nelson-Siegel
Japan Fisher-Nychka-Zervos (Spline)
Norway Svensson
Spain Svensson
UK Anderson and Sleath (Spline) (Until 2001 Svensson)
Sweden Fisher-Nychka-Zervos (Spline), before Svensson
Switzerland Svensson
EU Svensson
Source: Pereda, J. (2009), “Estimación de la Curva de Rendimiento Cupón Cero para el

Perú”, Banco Central de reserva del Perú, Revista Estudios Económicos N◦ 17
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Nelson-Siegel model is extremely popular in the practice; both individual
investors and the central banks use this model. Svensson model is an extension
of the Nelson-Siegel model, which adds a second curvature term to the DNS
model and provides sufficient precision adjustment and smooth curve shape
of periodic rents. It has become very popular in the mid 90’s. Since then,
it has been used by substantial number of central banks worldwide to assess
the bond structure with a single coupon and future interest rates (forward
rates). Amongst some of the recent work in the literature, Christensen et al.
(2009) make use of both these popular models, by proposing an arbitrage-free
generalized Nelson-Siegel term structure model. The AFGNS model adds an
additional slope factor to the dynamic Nelson-Siegel-Svensson (DNSS) model
to see whether risk-neutral restrictions can be found that make the five-factor
model arbitrage free, and also to allow for a better fit along maturities.

Figure 4.3: Factor loadings of DNSS and DGNS Models. The figure on the left
shows the factor loading of the four state variables in the function of DNSS model
with λ1 = 0.0609 and λ2 = 0.0295. The figure on the Right shows the factor loading
of the five state variables in the function of DGNS model with λ1 = 0.0609 and
λ2 = 0.0295.

The Nelson-Siegel in-sample problem, regarding fitting the long maturities
is that, the slope and the curvature factor loadings decay rapidly and approach
zero with maturity. Thus, only the level factor available to fit the yields with
long maturities. Empirically, the problem results into a lack of fit of the
long term maturities as noted by Christensen et al. (2009). The Svensson
model seems to overcome this caveat of fitting the cross section of yields. The
dynamic factor of the Nelson-Siegel-Svensson curve (DNSS) is represented by
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the measurement equation of the form

yt(n) = Lt +

(
1− e−λ1n

λ1n

)
St +

(
1− e−λ1n

λ1n
− e−λ1n

)
C1,t

+

(
1− e−λ2n

λ2n
− e−λ2n

)
C2,t,

where the four factor loadings are functions of maturity as shown in Figure
4.3. The four factor DNSS has similar critiques on riskless arbitrage noted
in DNS model. To derive an arbitrage-free Gaussian version of DNSS that
satisfies the mechanics of Proposition AFNS, Christensen et al. (2009), give a
generalization of factor loadings to match the second curvature factor in DNSS.
The five factor arbitrage-free generalised Nelson-Siegel model (AFGNS) yield
function, gives the form

yt(n) = an + Lt +

(
1− e−λ1n

λ1n

)
S1,t +

(
1− e−λ2n

λ2n

)
S2,t

+

(
1− e−λ1n

λ1n
− e−λ1n

)
C1,t +

(
1− e−λ2n

λ2n
− e−λ2n

)
C2,t.

The following proof derives the existence and uniqueness of the solution for
the AFGNS measurement equation of the yield curve in discrete time.

Proposition 4.3. The sufficient condition for the DNS model implies the
existence of a solution for the AFGNS.

Assumption 5. Assume that the instantaneous risk-free rate is defined by

rt = δ0 + δ′1Xt,

where δ0 =
[
1, 1−e−λ1

λ1
, 1−e−λ2

λ2
, 1−e−λ1

λ1
− e−λ1 , 1−e−λ2

λ1
− e−λ2

]′
.

Assumption 6. The state variables in Xt = (X1
t , X

2
t , X

3
t , X

4
t , X

5
t ) follow a

VAR process under the risk-neutral measure Q, such that

Xt = µQ
X + ΦQ

XXt−1 + ΣXε
Q
t .

Moreover, the crucial element of the solution is that the dynamic coefficient
matrix, ΦQ

X , takes the following form

ΦQ
X =


1 0 0 0 0
0 e−λ1 0 λ1e

−λ1 0
0 0 e−λ2 0 λ2e

−λ2

0 0 0 e−λ1 0
0 0 0 0 e−λ2

 .
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From the above state dynamics Assumption (5) and Assumption (6), imply
that the zero-coupon bond prices, are exponentially affine on vector Xt,

P n
t = exp(An +B′nXt).

The parameter Bn are Nelson-Siegel factor loadings with a second set of slope
and curvature loadings determined by a different shape parameter. That is,
the unique solution for the system of ODE (4.5.13) is

Bn =
[
−n,−1−e−λ1n

λ1
,−1−e−λ2n

λ2
, ne−λ1n − 1−e−λ1n

λ1
, ne−λ2n − 1−e−λ2n

λ2

]′
,

and An satisfies the difference equation of the form

An = An−1 +B′n−1µ
Q
X +

1

2
B′n−1ΣXΣ′XBn−1, for n > 1.

4.5.5 Proof of Proposition 4.3

Proof. Recall that the ordinary difference equation for Bn under the risk-
neutral measure in discrete-time ATSM, is given by

Bn+1 = ΦQ′
XBn − δ1. (4.5.15)

Simplifying Equation (4.5.15), gives
B1
n+1

B2
n+1

B3
n+1

B4
n+1

B5
n+1

 =


1 0 0 0 0
0 e−λ2 0 0 0
0 0 e−λ2 0 0
0 λ1e

−λ1 0 e−λ1 0
0 0 λ2e

−λ2 0 e−λ2



B1
n

B2
n

B3
n

B4
n

B5
n

−


1
1−e−λ1
λ1

1−e−λ2
λ2

1−e−λ1
λ1
− e−λ1

1−e−λ2
λ2
− e−λ2

 ,

which can be divided into two sets of independent difference equations:

B1
n+1

B2
n+1

B4
n+1

 =

1 0 0
0 e−λ1 0
0 λ1e

−λ1 e−λ1

B1
n

B2
n

B4
n

−
 1

1−e−λ1
λ1

1−e−λ1
λ1
− e−λ1

 ,
and B1

n+1

B3
n+1

B5
n+1

 =

1 0 0
0 e−λ2 0
0 λ2e

−λ2 e−λ2

B1
n

B3
n

B5
n

−
 1

1−e−λ2
λ2

1−e−λ2
λ2
− e−λ2

 .
Then, following the similar manner as shown in proof of Proposition (4.1) for
the AFNS model, this simply gives,
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(
ΦQ
X

)i
=

1 0 0
0 e−iλ1 0
0 iλ1e

−iλ1 e−iλ1

 ,
n−1∑
i=0

(ΦQ
X)i =

n 0 0

0 1−e−nλ1
1−e−λ1 0

0 λ1

[
e−λ1−e−nλ1
(1−e−λ1 )2

− (n−1)e−nλ1

1−e−λ1

]
1−e−nλ1
1−e−λ1

 .
It follows that

Bn = −

[
n−1∑
i=0

(ΦQ
X)i

]′
∆

=

[
−n,−1− e−λ1n

λ1

, ne−λ1n − 1− e−λ1n

λ1

]′
.

Following the same pattern for the second set, we get that

Bn =
[
−n,−1−e−λ1n

λ1
,−1−e−λ2n

λ2
, ne−λ1n − 1−e−λ1n

λ1
, ne−λ2n − 1−e−λ2n

λ2

]
.

Moreover, it can be shown that the constant adjustment term

An = An−1 +B′n−1µ
Q
X +

1

2
B′n−1ΣXΣ′XBn−1,

can be computed recursively from the measurement equation.

Proposition 4.4. The necessary condition for the DNS model implies the
uniqueness of the solution for the AFGNS model.

Assumption 7. Assume that the following dynamic generalized Nelson-Siegel
model with constant term can fit the yield curve completely, where λ1 6= λ2.
That is,

yt(n) = an + Lt +

(
1− e−λ1n

λ1n

)
S1,t +

(
1− e−λ2n

λ2n

)
S2,t (4.5.16)

+

(
1− e−λ1n

λ1n
− e−λ1n

)
C1,t +

(
1− e−λ2n

λ2n
− e−λ2n

)
C2,t.

Assumption 8. The general Nelson-Siegel latent factors follow a VAR(1)
process under the risk-neutral measure Q, such that

Xt = µQ
X + ΦQ

XXt−1 + ΣXε
Q
t .
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According to the yield curve Assumption (7) and state dynamics Assumption
(8), this implies that the risk-free rate follows the affine process,

rt = δ0 + δ′1Xt,

where

δ1 = [1,
1− e−λ1

λ1

,
1− e−λ2

λ2

,
1− e−λ1

λ1

− e−λ1 , 1− e−λ2
λ1

− e−λ2 ]′, and δ = a1.

Furthermore, risk neutral dynamics for the latent factors satisfy

ΦQ
X =


1 0 0 0 0
0 e−λ1 0 λ1e

−λ1 0
0 0 e−λ2 0 λ2e

−λ2

0 0 0 e−λ1 0
0 0 0 0 e−λ2

 .
When n = 1 the one period short rate rt, is guaranteed by the measurement
Equation (4.5.16), which is affine. Following Assumption (8) and the implica-
tion that the short rate takes on the affine form, shows that the model is also
affine, such that the yields are affine functions of Xt, given by

yt(t+ n) = − 1

n
(An +B′nXt),

where

An+1 = An +B′nµ
Q
X +

1

2
B′nΣXΣ′XBn + A1. (4.5.17)

B′n+1 = B′nΦQ
X +B′1. (4.5.18)

4.5.6 Proof of Proposition 4.4

Proof. By comparing the difference Equation (4.5.18) and the measurement
Equation (4.5.16), we have

Bn =

[
−n,−1− e−λ1n

λ1

,−1− e−λ2n

λ2

, ne−λ1n − 1− e−λ1n

λ1

, ne−λ2n − 1− e−λ2n

λ2

]
.

Substitute the factor loading Bn into both sides of Equation (4.5.18) and take the
transpose, we then have

B1
n+1

B2
n+1

B3
n+1

B4
n+1

B5
n+1

 =


φ11 φ21 φ31 φ41 φ51

φ12 φ22 φ32 φ42 φ52

φ13 φ23 φ33 φ43 φ53

φ14 φ24 φ34 φ44 φ54

φ15 φ25 φ35 φ45 φ55



B1
n

B2
n

B3
n

B4
n

B5
n

−


1
1−e−λ1
λ1

1−e−λ2
λ2

1−e−λ1
λ1
− λ1e

−λ1

1−e−λ2
λ2
− λ2e

−λ2

 .
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After we rearrange, let

ΠQ
X =


φ11 φ21 φ31 φ41 φ51

φ12 φ22 φ32 φ42 φ52

φ13 φ23 φ33 φ43 φ53

φ14 φ24 φ34 φ44 φ54

φ15 φ25 φ35 φ45 φ55

 ,
then,

n
e−λ1−e−λ1(n+1)

λ1
e−λ2−e−λ2(n+1)

λ2
e−λ1−e−λ1(n+1)

λ1
− (n+ 1)e−λ1(n+1) + e−λ1

e−λ2−e−λ2(n+1)

λ2
− (n+ 1)e−λ2(n+1) + e−λ2

 = ΠQ
X


n

1−e−λ1n
λ1

1−e−λ2n
λ2

1−e−λ1n
λ1

− ne−λ1n
1−e−λ2n

λ2
− ne−λ2n

 .

Next, we solve for the elements of ΦQ
X by comparing the coefficients in ΠQ

X ,
equation by equation. The first equation implies that

φ11 = 1,

and φ21 = φ31 = φ41 = φ51 = 0.

The second and third equations imply that

φ12 = φ32 = φ42 = φ52 = 0,

φ22 = e−λ1 ,

φ13 = φ33 = φ43 = φ53 = 0,

and φ33 = e−λ2 .

The fourth equation implies that

φ14 = φ34 = φ54 = 0,

and

e−λ1

λ1

+ e−λ1 − e−λ1(1 + λ1)
e−λ1n

λ1

− e−λ1ne−λ1n = φ24
1

λ1

+ φ44
1

λ1

− (φ24 + φ44)

× e−λ1n

λ1

− φ44ne
−λ1n,

where the second line requires

φ44 = e−λ1 ,

and φ24 = λ1e
−λ1 .
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Similarly, for the fifth equation, we have

φ15 = φ25 = φ45 = 0,

φ55 = e−λ2 ,

and φ35 = λ2e
−λ2 .

In summary, we have

ΦQ
X =


1 0 0 0 0
0 e−λ1 0 λ1e

−λ1 0
0 0 e−λ2 0 λ2e

−λ2

0 0 0 e−λ1 0
0 0 0 0 e−λ2

 .
The risk-neutral dynamic coefficient matrix 1 of four latent factors is satisfied,
and AFGNS has a unique solution.

The arbitrage-free Nelson-Siegel (AFNS) model incorporates the parsimony
of the traditional Nelson-Siegel model and the theoretical rigor of affine no-
arbitrage term structure model. However, it is found to be significantly re-
strictive, (see Li et al. (2012)), since its consistency is within the presence of
exactly three state variables and does not consider the inclusion of observ-
able macro variables. Some of the recent work that uses four2 to five factor
model, obtained some improvement in fitting and estimating the curve, such
that the models, as noted by Almeida et al. (2009), outperforms the three fac-
tor Diebold and Li (2006) model in forecasting. Nevertheless, the important
point is that, restricting state variables to a three dimensional factor structure
is typically sufficient.

4.6 Specification Analysis
As discussed in Dai and Singleton (2000), there often exists an over-identification
problem in affine term structure models. For example, some parallel transfor-
mation to the drift, µQ

X , in the state dynamics and intercept, δ, in the short
rate equation may results in the same distribution of the yields. Hence, we
need to perform specification analysis to define the canonical representation
for identification.

In the AFNS model, we let µQ
X = [µQ

L, 0, 0]′ and δ = 0. Equivalently, we can
restrict µQ

X = 0 but free up δ. In our analysis we choose the former, with which
2Cochrane and Piazzesi (2005) use a fourth factor which they argue has strong predictive

content.
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the difference equations of coefficients in the measurement equation becomes

An+1 = An + nµQ
L +

1

2
B′nΣXΣ′XBn, with A1 = 0. (4.6.1)

Bn = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
]′. (4.6.2)

Likewise, for the AFGNS model, similar restrictions on specification can be
imposed. From the specification analysis, it is clear that the AFNS model only
has one additional parameter, µQ

L, compared to the DNS model. This guar-
antees the maximal parsimony of the AFNS model. Christensen et al. (2011)
considered the full three factor DNS model and also explicitly characterized
the yield adjustment term, showing how DNS can be adjusted to fall within
the Duffie and Kan (1996) affine class of arbitrage models. According to Chris-
tensen et al. (2011), DNS requires only a time invariant yield adjustment term,
which accounts for Jensen’s inequality effects, to make it completely arbitrage
free.

4.7 Analysis of Yield only Representation
ATSM, DNS and AFNS, all rely on yield curve information to extract factors
that determine the dynamics and span the space of the yield curve. How-
ever, we know that yields at different maturities do not stand alone from the
macroeconomy and its dynamics. Fisher equation (Fisher (1930)) states that
in equilibrium nominal interest rate and inflation should have one-to-one rela-
tionship.

In modern economies, central banks influence the short term interest rate
through open market operations by reacting to economic conditions such as
unemployment rate and inflation, (Taylor (1993)), and even to a large amount
of macroeconomic indicators, see (Bernanke and Boivin (2003), Bernanke et al.
(2005)). Since long-term interest rates are weighted expected short term in-
terest rates adjusted for risks, the state and dynamics of the economy and the
monetary policy transmission mechanism are useful in understanding the yield
curve movements at proper frequencies.

On the other hand, due to the limited information available for macroeco-
nomic data, in order to investigate the dynamics and structure of the macroe-
conomy, it would be very helpful to study the joint dynamics of the yield
curve and the macroeconomy in an integrated framework, because rich data
existing in the bond market can provide valuable information about market
expectations of the underlying macroeconomy.
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4.8 Main Findings for Discrete time AFNS
The discrete time version of Christensen et al. (2011) derives the A FNS class
of ATSMs with an exact solution and proof of uniqueness. In this model by
Li et al. (2012) both sufficient and necessary conditions for NS factor loadings
to be arbitrage-free are important. The sufficient conditions guarantee the
existence of a solution. The necessary conditions are crucial firstly for provid-
ing the uniqueness of the solution that is characterised by a specific form of
transition matrix in risk neutral state dynamics. Empirically, necessary con-
ditions are also important for estimation and identification, as this rules out
alternative solutions which might lead to observationally equivalent yields. To
further improve the application of the model, Li et al. (2012) designed a simple,
fast and reliable estimation procedure to embedded multi-step regression. The
empirical results for their estimated discrete time AFNS model with US yield
curve data for the past three decades and the recent financial crisis showed
some interesting implications as compared to DNS. That is, the model per-
forms better with in-sample forecast. In addition, AFNS credits the US bond
yield conundrum to unusually low risk premia and notifications with sharply
rising risk premia before the financial crisis.



Chapter 5

Generalised AFNS with
Macro-factors

This chapter introduces a generalised arbitrage-free macro-finance term struc-
ture model with both Nelson-Siegel latent factors and observable macro fac-
tors, to be noted as arbitrage-free Nelson-Siegel macro-finance (AFNSMA).
The model is an enlarged framework of the affine arbitrage class of Nelson-
Siegel term structure models as shown in Christensen et al. (2009) derived
under discrete time by Linlin and Gengming (2012). Two sub-classes for the
model derivation are introduced: spanned versus unspanned model, depend-
ing on whether the macro factors span the yield curve. The unspanned class
is where the macro variables do not span the yield curve, such that yields
are still determined only by the three Nelson-Siegel yield factors and a con-
stant adjustment term, under no-arbitrage assumptions. The spanned class, is
where macro factors have non-zero factor loadings on the yield curve. In both
model-classes, the yield factors and macro factors interact with each other
in the dynamic state equation under the physical measure P. To overcome
the shortcomings of the macro-finance affine term structure model and the
reduced-form Nelson-Siegel model with macro factors, Li et al. (2012) propose
a unified modelling framework to integrate the Nelson-Siegel yield factors and
macro factors under the premise of absence of arbitrage.

5.1 Unspanned Model
This part of the unspanned model class derives the existence of the solution for
AFNSMA under the notion that macro variables do not span the cross-section
of yields.

Proposition 5.1. The sufficient condition for the DNS model to be arbitrage-
free implies the existence of the solution for the AFNSMA model.

78
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Assumption 9. Assume that the instantaneous risk-free rate is affine on a
vector of variables Xt, which contains three latent Nelson-Siegel factors Xu

t

and observable variables Xo
t ,

rt = δ0 + δu
′

1 Xt + δo
′

1 Xt,

where

δu1 = [1,
1− e−λ

λ
,
1− e−λ

λ
− λe−λ]′

and Xu
t = (X1

t , X
2
t , X

3
t )′. Define A1 = δ0 and B1 = δ1. The state variables are

described by the following VAR under the risk-neutral Q,(
Xu
t

Xo
t

)
= µQ

X +

(
ΦQ
u 0

ΦQ
uo ΦQ

o

)(
Xu
t−1

Xo
t−1

)
+ εQt ,

where,

ΦQ
u =

1 0 0
0 e−λ λe−λ

0 0 e−λ

 .
Then the zero-coupon bond price is given by,

P n
t = exp(An +Bu′

n X
u
t ),

with Bu
n the Nelson-Siegel factor loading

Bu
n = −δ1 = [n,

1− e−λn

λ
,
1− e−λn

λ
− ne−λn]′

Bo
n = 0,

and An satisfies the difference equations for n > 1:

An+1 = An +B′nµ
Q
X +

1

2
Bu′

n Ωu
XB

u
n + A1, (5.1.1)

where ΩX = ΣXΣ′X gives the upper left block of the variance-covariance ma-
trix1 corresponding to innovations to Nelson-Siegel factors in the state dynam-
ics.

1From Ang and Piazzesi (2003), notice that ΣXΣ′X = Ω and ΣX is identified as theK×K
matrix. But in AFNSMA model only Ω that has been considered, which result in risk price
parameters λ0 and λ1 to have different meaning and scale compared to Ang-Piazzesi model.
Moreover, the pricing kernel is defined asMt+1 = exp(− 1

2λ
′
tΩλt−δ0−δ′1Xt−λ′tνPt+1), where

νt+1 ∼ N(0,Ω). In Ang and Piazzesi (2003) νt+1 = Σ′Xεt+1, with εt+1 ∼ N(0, I).
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5.1.1 Proof of Proposition 5.1

Proof. Recall the ordinary difference equation of Bn as shown in Equation
(3.3.36), we have

Bn+1 = B′nΦQ
X − δ1,

that is [
Bu
n+1

Bo
n+1

]
=

[
ΦQ′
u ΦQ′

uo

0 ΦQ′
o

] [
Bu
n

Bo
n

]
−
[
δu1
δo1

]
.

Since Bo
1 = −δo1 = 0, this gives,

Bo
n+1 = Bo

nΦQ′
o = 0, for all n > 0,

Bu
n+1 = Bu

nΦQ′
u − δu1 = 0, for all n > 0.

Iteratively, it can be shown that,

Bu′

n = B′1

n−1∑
i=0

(ΦQ
u )i for all n > 1,

where (ΦQ
u )i = (ΦQ

X)i as shown in Equation (4.5.6). It follows that

Bu
n = −

[
n−1∑
i=0

(ΦQu
X )i

]′
δ1

=

[
−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ

]′
.

Since Bo
n = 0, we have

B′nΩBn = Bu′

n ΩuBu
n,

where Ωu is the upper-left 3×3 block of the variance-covariance matrix Ω of the
state innovation in the VAR. Hence, the constant adjustment term becomes

An+1 = An +Bu′

n µ
Q
u +

1

2
Bu′

n ΩuBu
n + A1.

5.2 Spanned Model
The spanned model class proves the existence of the solution for the AFNSMA
where macro variables have non-zero factor loadings on the yield curve.

Proposition 5.2. The sufficient condition for the DNS model to be arbitrage-
free implies the existence of the solution for the AFNSMA model.
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Assumption 10. Assume that the one period risk-free rate is affine on a
vector of variables Xt, which contains three latent Nelson-Siegel factors Xu

t

and observable variables Xo
t ,

rt = δ0 + δu
′

1 Xt + δo
′

1 Xt,

where

δu1 = [1,
1− e−λ

λ
,
1− e−λ

λ
− λe−λ]′

and Xu
t = (X1

t , X
2
t , X

3
t )′. The state variables are described by the following

VAR under the risk-neutral Q(
Xu
t

Xo
t

)
= µ̃X +

(
ΦQ
u ΦQ

uo

0 ΦQ
o

)(
Xu
t−1

Xo
t−1

)
+ εQt ,

where,

ΦQ
u =

1 0 0
0 e−λ λe−λ

0 0 e−λ

 .
Then the zero-coupon bond price is given by,

P n
t = exp(An +Bu′

n X
u
t +Bo′

nX
0
t ),

with Bu
n the Nelson-Siegel factor loading

Bu
n = [−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ
]′

and An satisfies the difference equations for n > 1:

An+1 = An +B′nµ
Q
X +

1

2
B′nΩXBn + A1, for n > 0

with A1 = −δ.

5.2.1 Proof of Proposition 5.2

Proof. Recall the ordinary difference equation of Bn as shown in Equation
(3.3.36), we have

Bn+1 = B′nΦQ
X − δ1,

that is [
Bu
n+1

Bo
n+1

]
=

[
ΦQ′
u 0

ΦQ′
uo ΦQ′

o

] [
Bu
n

Bo
n

]
− δ.
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Then,
Bu
n+1 = ΦQ′

u B
u
n − δu1 .

Hence, by Proposition (5.2), we have that

Bn =

[
−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ

]′
,

Bo
n+1 = ΦQ′

uoB
u
n + ΦQ′

o B
o
n − δo1,

and
An+1 = An +B′nµ

Q
X +

1

2
B′nΩXBn + A1, for n > 0.

The constant adjustment term An+1 on both sub-classes, which takes on no-
arbitrage assumptions for consistency, satisfies the difference Equation (5.1.1).

5.3 Risk Premia
There is limited focus based on risk price on both AFNS and AFDNS models
that imposes explicit assumptions on the form of risk price. However, this is
claimed not to affect the identification of other parameters such that inference
on risk premia and excess returns can be easily made. If the component for
risk compensation is defined by risk premium of bond prices, then this can be
derived as the difference between theoretical yield and the expected yield with
zero risk compensation when assuming the risk parameters λ0 = 0 and λ1 = 0.
The risk parameters can be identified from this relationship

µQ
X = µP

X − ΩXλ0,

ΦQ
X = ΦP

X − ΩXλ1.

such that

λ0 = Ω−1
X (µP

X − µ
Q
X),

λ1 = Ω−1
X (ΦP

X − ΦQ
X).

The risk premium is then defined as

RP n
t = ynt − ỹnt .

The expected yield with zero risk premium is defined by

ỹnt = − 1

n
(Ãn + B̃′n),
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where

B̃′n+1 = B̃′nΦP
X − δ′1

Ãn+1 = Ãn + B̃′nµ+
1

2
B̃′nΩB̃n − δ0.

The risk premium can be calculated as

RP n
t = ynt − ỹnt

= − 1

n
(An +B′nXt) +

1

n
(Ãn + B̃′nXt)

=
1

n

[
(Ãn − An) + (B̃′n −B′n)Xt

]
.

Since there are no imposed restrictions in the dynamic coefficient ΦP
X so that

in general the dynamics of the vector B̃o
n 6= 0 and then the macro variables in

a non-zero vector Xo
t that do not span the yield curve will affect the variation

of risk premia.

5.3.1 Excess Return

The excess return of holding a bond of maturity n for k periods is given by

xrn,kt+k = −(n− k)yn−kt+k + nynt − krt+k
= ln(P n−h

t+k )− ln(P n
t ) + ln(P 1

t+n)

= (An−k − An + kA1) + (Bn−k + kB1)′Xt+k − (Bn)′Xt.

This shows that both the current and future macro state variables under un-
spanned model, do affect the excess return. As for the unspanned model for
Bo
n = 0, the excess return becomes

xrn,kt+k = (An−k − An + kA1) + (Bu
n−k + kBu

1 )′Xu
t+k − (Bu

n)′Xu
t .

Although the macro variables at time t do not have direct impact from the
last term (Bu

n)′Xu
t , it affects excess return through its impact on future Xu

t+k

as

Xu
t+k =

k−1∑
i=0

Φiµ+ ΦkXt.

Since ΦP
X is not restricted under the physical measure, Xo

t has impact on Xu
t+k

if the upper right block of Φk
X is non-zero. Similarly, the macro variables will

influence the expected excess returns through its expectated impact on Xu
t+k,

Et(xrn,kt+k) = (An−k − An + kA1) + (Bu
n−k + kBu

1 )′Xu
t+k − (Bu

n)′Xu
t .
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5.4 Main Findings of AFGNS
The work of Li et al. (2012) introduce an arbitrage-free macro finance mod-
elling framework where the state vector contains the popular Nelson-Siegel
yield factors and observable macro factors, which is regarded as an extension
of Christensen et al. (2009). The two subclasses that the model presents, the
unspanned specification is the no-arbitrage counterpart of the macro-finance
model of Diebold et al. (2006), where the three Nelson-Siegel yield factors are
combined with three macroeconomic variables in a reduced form state-space
framework. Unspanned model is more parsimonious compared to spanned
model and forecasts better with less problems in identification of risk-neutral
dynamic coefficients. Moreover, the model provides more rigor and structure
without increasing the dimension of parameters, a problem often suffered by
affine term structure models with macro factors which involve significant num-
ber of risk price parameters to estimate and identify. Li et al. (2012) analysis
risk premia of yields and excess returns within popular interpolation of level
slope and curvature.

5.5 No-arbitrage Taylor Rule Model
Taylor (1993) introduced a rule for guiding and assessing monetary policy
performance. This section introduces an estimate of Taylor (1993) rule and
identify monetary policy shocks using no-arbitrage pricing techniques. The
no-arbitrage framework also accommodates backward-looking and forward-
looking Taylor rules.

5.5.1 Specifications of No-arbitrage Taylor Rule

No-arbitrage Taylor rule model continues from the growing literature on linking
the dynamics of the term structure with macro factors, (see Ang and Piazzesi
(2003)), by estimating backward Taylor rules and forward Taylor rules in an
affine term structure model with time varying risk-premia. This model struc-
ture describes expectations of future short rates and a vector autoregressive
for macroeconomic variable under the imposition of arbitrage-free restrictions.
The system uses four legs of macroeconomic factors, and the general set-up of
the model gives the following state variable, the output gap gt, at quarter t;
the continuously compounded inflation rate πt, from quarter t − 4 to t and a
latent term structure variable. The dynamics of the states variable takes the
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form:

f ot = µ1 +
(
Φ11 Φ12

)(f ot−1

fut−1

)
+
(
Φ13 Φ14 Φ15

)f ot−2

f ot−3

f ot−4

+ νot ,

fut = µ2 +
(
Φ21 Φ22

)(f ot−1

fut−1

)
+ νut , (5.5.1)

where f ot = [gt πt]
′, is the vector of observable macro variables, fut is the

latent factor. Lastly, an i.i.d vector

νt =

(
νot
νut

)
∼ N(0,ΣνΣ

′
ν). (5.5.2)

The state vector comprises of four lags of all the state variables in a vector of
K = 12 elements, given by

Xt = [gt πt fut ... gt−3 πt−3 fut−3]′,

which gives the state equation in a compact form as,

Xt = µ+ ΦXt−1 + Σεt, (5.5.3)

where
εt =

(
νt

09×1

)
and Σ =

(
Σν 03×9

09×3 09×9

)
.

The main focus of the model is to show that the latent factor fut , is related to
monetary policy and how no-arbitrage conditions can identify various policy
rules. Following from the work of Ang and Piazzesi (2003), the state dynamics,
such as the short rate, the stochastic discount factor, the price of risk, and
zero-coupon bond prices, are quite the same equations for this model. The
one period excess holding period return, by using the equivalence relationship
in Equations (3.3.21), is given by:

rxnt+1 = ln

(
P n−1
t+1

P n
t

)
− rt

= nynt − (n− 1)yn−1
t+1 − rt. (5.5.4)

The conditional expected excess holding period return can be computed using:

Et[rxnt+1] = −1

2
B′n−1ΣXΣ′XBn−1 +B′n−1ΣXλ0 +B′n−1ΣXλ1Xt

= Axn +Bx′

n , (5.5.5)

which also takes an affine form.
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5.5.2 The Benchmark Taylor Rule

This section shows how Taylor rules can be identified with no-arbitrage con-
ditions by jointly estimate standard backward-looking and forward-looking
Taylor rules, in a single consistent framework. Following Taylor’s original
specification, we define the benchmark Taylor rule to be:

rt = γ0 + γ1,ggt + γ1,ππt + εMP,T
t , (5.5.6)

where the short rate, rt is set by the Federal Reserve in response to current
output, gt and inflation, πt. The basic Taylor rule in Equation (5.5.6) can be
interpreted as the short rate Equation (3.3.4), (see Ang and Piazzesi (2003)), in
a standard affine term structure model, where the unobserved monetary policy
shock εMP,T

t corresponds to a latent term structure factor, εMP,T
t = γ1,uf

u
t .

This corresponds to the short rate Equation (3.3.4) in the term structure model
with

δ1 ≡


δ1,g

δ1,π

δ1,u

09×1

 =


γ1,g

γ1,π

γ1,u

09×1

 ,

which has zeros for all coefficients on lagged g and π. The benchmark Taylor
rule in Equation (5.5.6) is estimated consistently using ordinary least squares
(OLS), under the assumption that the policy shock, εMP,T

t or fut , is contempo-
raneously not correlated with the output gap and inflation. This assumption
is satisfied if macro indication only react slowly to policy shocks. However,
it is more advantageous estimating the policy coefficients, γ1,g and γ1,π , and
extracting the monetary policy shock, εMP,T

t , using no-arbitrage restrictions in
several ways. Firstly, no-arbitrage restrictions can free up the contemporane-
ous correlation between the macro and latent factors. Secondly, no-arbitrage
assumptions produce more consistent and efficient estimates. Thirdly, the term
structure model provides estimates of the effect of a policy or macro shock on
any stage of the yield curve. Finally, the model allows one to trace the pre-
dictability of risk premia in bond yields to macroeconomic or monetary policy.
The Taylor rule in Equation (5.5.6) is independent of the past level of the
short rate and its movements are not well explained by the expression on the
right-hand side variables in Equation (5.5.6), which statistically proves to be
highly persistent and this leads to the implied shock to inherit the dynamics
of the highly persistent short rate.

5.5.3 Backward-Looking Taylor Rules

The backward-looking Taylor rule pioneered by Clarida et al. (2000), considers
a modified Taylor rule that consists of current as well as multiple lagged values
of macro variables and the previous short rate, to influence the actions of the
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Federal funds rate. This is given by,

rt = γ0 + γ1,ggt + γ1,ππt + γ2,ggt−1 + γ2,ππt−1 + γ2,rrt−1 + εMP,B
t , (5.5.7)

where εMP,B
t is the implied monetary policy shock from the backward-looking

Taylor rule. Such type of a rule is advantageous to the central bank as its
objective is to smooth interest rates. The short rate Equation (3.3.5) can be
modified to take the same form as Equation (5.5.7). Using the notation f ot
and fut to refer to the observable macro and latent factors, respectively, the
short rate dynamics takes the form

rt = δ0 + δ′1,of
o
t + δ1,uf

u
t , (5.5.8)

where,

δ1 ≡

 δ1,o

δ1,u

09×1

 .

Using Equation (5.5.1), we can substitute for the dynamics of fut in Equation
(5.5.8) to obtain

rt = δ0 + δ′1,of
o
t + δ1,uµ2 + δ1,uΦ21f

o
t−1 + Φ22(rt−1 − δ0 − δ′1,of ot−1) + δ1,uν

u
t

= (1− Φ22)δ0 + δ1,uµ2 + δ′1,of
o
t + (δ1,uΦ

′
21 − δ1,oΦ

′
22)′f ot−1

+ Φ22rt−1 + εMP,B
t , (5.5.9)

where the backward-looking monetary policy shock is defined to be εMP,B
t ≡

δ1,uν
u
t . The short rate in the expression is a function of current and lagged

macro factors, f ot and fut−1, the lagged short rate, rt−1, and a monetary policy
shock, εMP,B

t . Equating the coefficients with Equation (5.5.7) to identify the
structural coefficients as:

γ0 = (1− Φ22)δ0 + δ1,uµ2(
γ1,g

γ1,π

)
= δ1,o(

γ2,g

γ2,π

)
= (δ1,uΦ

′
21 − δ1,oΦ

′

22)

γ2,r = Φ22. (5.5.10)

The backward Taylor rules in Equation (5.5.9) and Equation (5.5.6), seem to
give observational equivalence reduced-form dynamics for interest rates and
macro variables, since f ot is identical to the benchmark Taylor rule.

5.5.4 Forward-Looking Taylor Rules

Another type of policy rule that has been proposed by Clarida et al. (2000), a
forward-looking Taylor rule, which is another version of Taylor rule. According
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to this rule, the central banks reacts to expected inflation and expected output-
gap. A forward-looking Taylor rule using expected inflation and expected
output-gap over the next period takes the form:

rt = γ0 + γ1,gEt(gt+1) + γ1,πEt(πt+1) + εMP,F
t , (5.5.11)

where εMP,F
t is defined to be the forward-looking Taylor rule monetary policy

shock. The mapping of the forward-looking Taylor rule in Equation (5.5.11)
into the framework of an affine term structure models gives the conditional
expectations of future output gap and inflation to be functions of the current
state variable:

Et(Xt+1) = µ+ ΦXt.

Denoting ei as a vector of zeroes with a one in the ith position, we can write
Equation (5.5.11) as:

rt = γ0 + (γ1,ge1 + γ1,πe2)′µ+ (γ1,ge1 + γ1,πe2)′ΦXt + εMP,F
t , (5.5.12)

as gπ and πt are ordered as the first and second elements in Xt. Equation
(5.5.12) is an affine short rate equation, where the short rate coefficients are a
function of parameters of the dynamics of Xt :

rt = δ̄0 + δ̄1
′
Xt, (5.5.13)

where

δ̄0 = γ0 + (γ1,ge1 + γ1,πe2)′µ

δ̄1
′

= Φ′(γ1,ge1 + γ1,πe2) + γ1,ue
′
3,

and εMP,F
t ≡ γ1,uf

u
t with γ1,u = δ1,u. A forward Taylor rule is defined by

making use of δ̄0 and δ̄1 coefficients instead of the normal bond price recursions
in Equation (3.3.18) and (3.3.20). This gives a complete set-up of the term
structure model, except the use of the basic short rate Equation (3.3.5). The
relation in Equation (5.5.9), explicitly show that the forward-looking Taylor
rule structural coefficients (γ0, γ1,g, γ1,π), impose restrictions on the parameters
of an affine term structure model.

The new no-arbitrage bond restriction using the restricted coefficients δ̄0

and δ̄1, reflect conditional expectations of output gap and inflation that enter
in the short rate Equation (5.5.9). Furthermore, the conditional expectations,
Et(gt+1) and Et(πt+1) are those implied by the underlying dynamics of gt and
πt in the VAR(2) process. A more general forward-looking Taylor rule based
on expected output gap and inflation over the next k−period ahead:

rt = γ0 + γ1,gEt(gt+k,k) + γ1,πEt(πt+k,k) + εMP,F
t , (5.5.14)
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where gt+k,k and πt+k,k represents output gap and inflation over the next k
periods:

gt+k,k +
1

k

k∑
i=1

gt+i and πt+k,k +
1

k

k∑
i=1

πt+i.

As noted in Clarida et al. (2000), the general case in Equation (5.5.14) also
nests the benchmark Taylor rule Equation (5.5.6) as a special case, by letting
k = 0.

Alternatively, to fix infinite future forecasting for the next period k, Fed
can be viewed as discounting both expected future output gap and expected
future inflation at the same discount rate, β. Under this stated assumption,
the forward-looking Taylor rule takes the form:

rt = γ0 + γ1,ĝĝt + γ1,π̂π̂t + εMP,F
t , (5.5.15)

where ĝt and π̂t are infinite sums of expected future output gap and infla-
tion, respectively, and both discounted at rate β per period. We can estimate
the discount rate β as part of a standard term structure model by using the
dynamics of Xt in Equation (5.5.3) to write ĝt as:

ĝt =
∞∑
i=0

βie′1Et(Xt+i)

= e′1(Xt + βµ+ βΦXt + β2(I + Φ)µ+ β2Φ2Xt + ...)

= e′1(µβ + (I + Φ)µβ2 + ...) + e
′

1(I + Φβ + Φ2β2 + ...)Xt

=
β

(1− β)
e′1(I − Φβ)−1µ+ e′1(I − Φβ)−1Xt.

Similarly, we can also write discounted future inflation πt in a similar fashion
as:

π̂t ≡
∞∑
i=0

βie′2Et(Xt+i) =
β

(1− β)
e′2(I − Φβ)−1µ+ e′2(I − Φβ)−1Xt.

To place the forward-looking rule with discounting in a term structure model,
we re-write the short rate Equation (3.3.5) as:

rt = δ̂0 + δ̂′1Xt, (5.5.16)

where

δ̂0 = γ0 + [γ1,ĝe1 γ1,π̂e2]′
(

β

(1− β)
(I − Φβ)−1µ

)
,

δ̂′1 = [γ1,ĝe1 γ1,π̂e2]′(I − Φβ)−1 + γ1,ue
′
3.

Similarly, we modify the bond price recursions for the standard affine model
in equation (3.3.19) by using the new δ̂0 and δ̂1 coefficients that embody re-
strictions on β, γ0, γ1,ĝ, γ1,π̂, µ and Φ.
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5.5.5 Forward and Backward-looking Taylor Rules

To compute the monetary policy rule, a combined forward-looking and backward-
looking Taylor rules that takes into account the forward-looking expectations
of macro variable is illustrated. The standard forward-looking Taylor rule in
Equation (5.5.11), of the observable macro variables, gives

rt = γ0 + γ′1,oEt(f ot+1) + εMP,F
t ,

where the vector Et(f ot+1) = [Et(gt+1) Et(πt+1)]′ and εMP,F
t = γ1,uf

u
t . We

substitute for fut using the implied short rate Equation (5.5.12) that is implied
by the forward-looking Taylor rule (5.5.11):

rt = γ0 + γ1,uµ2 −
γ1,uΦ22δ̄0

δ̄1,u

+ γ′1,oEt(f ot+1) +
γ1,uΦ22δ̄0

δ̄1,u

rt−1

+γ1,uΦ
′
21f

o
t−1 +

γ1,uΦ22δ̄0

δ̄1,u

(δ̄
′

1Xt−1 − δ̄1,uf
u
t−1) + εMP,FB

t , (5.5.17)

where δ̄1,u is a coefficient on fut in δ̄1. Equation (5.5.17) expresses the short rate
as a function of both expected future macro factors and lagged macro factors,
the lagged short rate, rt−1, and a forward- and backward-looking monetary
policy shock, εMP,FB

t = γ1,uν
u
t . This combined Taylor rule is an equivalent

expression of forward-looking Taylor rule (5.5.11). Similarly, the coefficients
on macro variables in the backward-looking Taylor rule (5.5.9), are identical
to the coefficients in the benchmark Taylor rule (5.5.6).
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Conclusion

The first part of the thesis reviews the traditional model literature about the
term structure of interest rates stemming from the affine arbitrage-free work
by Vasicek (1977), Cox et al. (1985) and Duffie and Kan (1996) models and the
macro finance approach from the seminal work by Ang and Piazzesi (2003).
The second part focuses on the alternative for modelling the term structure
that considers reduced form statistical approach, the three factor interpolation
Nelson and Siegel (1987). Based on this approach, further extensions have
been discussed, starting from dynamic Nelson-Siegel up until the generalised
arbitrage-free macro finance term structure model with both Nelson-Siegel
latent factors and observable macro factors.

Amongst macro finance models that considers no-arbitrage conditions, there
are proven important advantages that makes macro finance models to out per-
form most term structure models. However, regardless of models success,
macro finance models suffers from some limitations. Recall from the impor-
tant work of Ang and Piazzesi (2003) model which is attempting to find a
connection between macroeconomics and the financial description of the term
structure of interest rates to improve model performance, the model does not
show success when it comes to forecasting purposes. This results from tremen-
dous numerical difficulties encountered in estimating the necessary parameters.
The identification of risk price is also problematic.

As for the reduced form models, theoretically they give satisfactory results
because of the parsimony of the models. But as noticed in DNS, models of
this nature fail on ruling out opportunities for risk-free arbitrage. On the
other hand, Li et al. (2012) offer a generalization of the dynamic Nelson-
Siegel model. This model contributes towards both the no-arbitrage approach
and reduced form approach. The main advantage as opposed to other macro
finance models is that there is no effect on the identification of parameters and
this leads to predictions based on risk premia be easily made. Imposition of
arbitrage-free assumptions is a powerful tool for analysing risk price and risk

91



CHAPTER 6. CONCLUSION 92

premia, when these estimates are successfuly made, the model is highly likey
to provide a good analysis about the yield curve movements. Both Linlin and
Gengming (2012) and Li et al. (2012) models, that introduced an arbitrage-
free macro finance modelling framework where the state vector contains the
popular Nelson-Siegel yield factors and observable macro factors seem to be
the leading ones at this stage, as they address theoretical weakness of the
most popular Nelson-Siegel model and overcome the empirical implementation
problem concerning the canonical arbitrage-free affine term structure models
in macro-finance literature.
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Appendix A

Term Structure Model
Specification

A.1 Nominal Pricing Kernel
No arbitrage opportunity between bonds with different maturities guarantees
the existence of a unique and positive discount factor m, which is stochastic,
linking the current price of maturity n with the yield of maturity n − 1 in
the next period. The stochastic discount factor is used to price all nominal
assets in the economy. This implies that asset prices obey in such a way that
their returns multiplied with the stochastic discount factor equal one. Under
discrete time approach the first order condition of the utility maximization
problem is given by

maxEP
t {
∞∑
j=0

δjU(Ct+j)},

where δ is a discount factor, U(·) is a utility function and Ct denotes the
investor’s consumption, a function that expresses consumer spending. The
first order conditions of the investors optimal consumption can be formed into
a useful identity using consumption Euler equation

U ′(Ct) = δEP
t [(1 +Rn

t+1)U ′(Ct+1)]

1 = EP
t [(1 +Rn

t+1)
δU ′(Ct+1)

U ′(Ct)
]

1 = EP
t [(1 +Rn

t+1)mt+1], (A.1.1)

where Rn
t+1 is the real rate of return on an asset with n periods left to

maturity of the underlying asset from time t to t+ 1. The stochastic discount
factor mt+1 = δU ′(Ct+1)

U ′ (Ct)
which is also called the pricing kernel in this case, on

a probability space (Ω,Ft,P), where Ft is a natural filtration generated by
mt+1. The pricing kernel is interpreted as the investor’s preferences regarding
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substitution of consumption and investment through time, can also be called
the intertemporal marginal rate of substitution, the rate at which a person will
trade present consumption for a small increase in future consumption while
maintaining the level of utility. Since the cash flows are deterministic on fixed
income settings, the covariance of the cash flows with the pricing of kernel
depends only on time. The holding-period return on a bond, which is the
total return on an asset or portfolio over the period during which it was held,
is given by

1 +Rn
t+1 =

P n−1
t+1

P n
t

, (A.1.2)

where P denotes the value of a pure discount bond, n is the number of periods
left to maturity at time t. Substituting Equation (A.1.2) into Equation (A.1.1),
we get

P n
t = EP

t [P
n−1
t+1 mt+1]. (A.1.3)

The current price of a zero-coupon bond given as the conditional expecta-
tion of the product of its future price and a statistical discount factor. The
price for today can be computed as follows,

P n
t = exp(An +B′nXt) for all t and n ≥ 0,

P 0
t = exp(A0 +B′0Xt) = 1.

Initial conditions A0 = B0 = 0, both of the parameters are identically zero.
Therefore, for one period bond we have,

P 1
t = EP

t [P
0
t+1mt+1]

= EP
t [mt+1].

Equation (A.1.3) is extremely important in modelling of the pure-discount
bond price and the term structure of interest rates, which results in describing
the dynamics of the pricing kernel. If we assume that the bond price and the
stochastic discount factor are jointly lognormal, then we have,

lnP n
t = ln

(
Et
[
P n−1
t+1 mt+1

])
= Et

[
lnP n−1

t+1 + lnmt+1

]
+

1

2
Vart

[
lnP n−1

t+1 + lnmt+1

]
.

A.2 Affine Recursive Form of the Discount
Bond Price

Given the coefficients

An+1 = An − δ0 +B′n(µP
X − ΣXλ0) +

1

2
B′nΣXΣ′XBn, (A.2.1)

B′n+1 = B′n(ΦP
X − ΣXλ1)− δ′1. (A.2.2)
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The recursive relations of An and Bn, for n ≥ 0 is as follows:

An+1 = (n+ 1)A1 +
n∑
i=0

B(i), where B(i) = B′i
(
µP
X − ΣXλ0

)
+

1

2
B′iΣXΣ′XBi

An = nA1 +
n−1∑
i=0

[
B′i(µ

P
X − ΣXλ0) +

1

2
B′iΣXΣ′XBi

]
(A.2.3)

...

A3 = 3A1 +
2∑
i=0

[
B′i(µ

P
X − ΣXλ0) +

1

2
B′iΣXΣ′XBi

]
= −3δ0 +B′1(µP

X − ΣXλ0) +
1

2
B′1ΣXΣ′XB1

+B′2(µP
X − ΣXλ0) +

1

2
B′2ΣXΣ′XB2

= −3δ − δ′1(µP
X − ΣXλ0) +

1

2
δ′1ΣXΣ′Xδ1

+
n−2∑
i=1

[
B′i+1(µP

X − ΣXλ0) +
1

2
B′i+1ΣXΣ′XBi+1

]
A2 = −2δ0 − δ′1(µP

X − ΣXλ0) +
1

2
δ′1ΣXΣ′Xδ1

A1 = A1 = −δ0. (A.2.4)

Therefore,

An+1 = (n+ 1)A1 +
n∑
i=0

[
B′i(µ

P
X − ΣXλ) +

1

2
B′iΣXΣ′XBi

]
= A1 +B′n(µP

X − ΣXλ) +
1

2
B′nΣXΣ′XBn

+nA1 +
n−1∑
i=0

[
B′i(µ

P
X − ΣXλ) +

1

2
B′iΣXΣ′XBi

]
︸ ︷︷ ︸

An

An+1 = An +B′n(µP
X − ΣXλ) +

1

2
B′nΣXΣ′Bn + A1. (A.2.5)
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Bn+1 =
n∑
i=0

(Φ′X − λ′1ΣX)iB1 (A.2.6)

Bn =
n−1∑
i=0

(Φ′X − λ′1ΣX)iB1 (A.2.7)

...

B3 =
2∑
i=0

(Φ′X − λ′1ΣX)iB1

= B1(Φ′X − λ′1ΣX)i−2 +B1(Φ′X − λ′1ΣX)i−1 +B1(Φ′X − λ′1ΣX)i

B2 = B1(Φ′X − λ′1ΣX)i−1 +B1(Φ′X − λ′1ΣX)i

= −δ1 − δ1(Φ′X − λ′1ΣX)

B1 = B1 = −δ1. (A.2.8)

Then,

Bn+1 = B1 +
n∑
i=1

(Φ′X − λ′1ΣX)iB1

= B1 + (Φ′X − λ′1ΣX)1

n∑
i=1

(Φ′X − λ′1ΣX)i−1B1︸ ︷︷ ︸
Bn

= B1 + (Φ′X − λ′1ΣX)Bn,

therefore,

B′n+1 = [B1 + (Φ′X − λ′1ΣX)Bn]
′

= B′1 +B′n(ΦP
X − ΣXλ1), (A.2.9)

Both An+1 and Bn+1 satisfies the coefficients of the measuremnt equation under
no-arbitrage assumptions.

A.3 Forward-Looking Taylor Rules
In this section of the appendix, we describe how to compute δ̄0, δ̄1 in Equation
(5.5.13) of a forward-looking Taylor rule for a k-quarter horizon. From the
dynamics of Xt in Equation (5.5.3), the conditional expectation of k-quarter
ahead GDP growth and inflation can be written as:

Et(gt+k,k) = Et

(
1

k

k∑
i=1

gt+i

)
=

1

k
e′1

(
k∑
i=1

Φiµ+ ΦkΦXt

)

Et(πt+k,k) = Et

(
1

k

k∑
i=1

πt+i

)
=

1

k
e′2

(
k∑
i=1

Φiµ+ ΦkΦXt

)
, (A.3.1)
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where ei is a vector of zeros with a 1 in the i−th position, and Φi is given by:

Φ̃i =
i−1∑
j=0

Φj = (I − Φ)−1(I − Φi). (A.3.2)

The bond price recursions for the standard affine model are thus based on the
short rate equation rt = δ̄0 + δ̄′1Xt, where

δ̄0 = γ0 +
1

k
[γ1,ge1 γ1,πe2]′

(
k∑
i=1

Φ̃i

)
µ, (A.3.3)

δ̄′1 =
1

k
[γ1,ge1 γ1,πe2]′Φ̃kΦ + γ1,ue

′
3. (A.3.4)

As k →∞, both Et(gt+k,k) and Et(πt+k,k) approach their unconditional means
and there is no state dependence. Hence, the limit of the short rate equation
in Equation (4.5.13) as k →∞ is:

rt = γ0 + [γ1,ge1 γ1,πe2]′(I − Φ)−1µ+ γ1,uf
u
t , (A.3.5)

which implies that when k is large, the short rate effectively becomes a function
only of fut , and gt and πt can only indirectly affect the term structure through
the feedback in the VAR Equation (5.5.3). In the limiting case, k = ∞,
the coefficients γ1,g and γ1,π are unidentified because they act exactly like the
constant term γ0 .



Appendix B

Discrete Time Non-Gaussian
Models

Appendix B introduces the distributions which are useful for implementing the
procedures in practice.

B.1 Gamma and Multivariate Gamma
Distributions

A univariate gamma random variable xt+1 that is gamma-distributed with
shape k and scale θ is denoted xt+1 ∼ Γ(k, θ) ≡ Gamma(k, θ), has a probability
density function,

p(xt+1|k, θ) =
1

Γ(k)
xk−1
t+1 θ

−k exp(−xt+1

θ
) for x > 0 and k, θ > 0. (B.1.1)

The Laplace transform,

E[exp(uxt+1)] =

∫ ∞
0

exp(uxt+1)p(xt+1|k, θ)dxt+1

=

∫ ∞
0

exp(uxt+1)
1

Γ(k)
xk−1
t+1 θ

−k exp(−xt+1

θ
)

=

∫ ∞
0

xk−1
t+1 e

−(1−uθ)xt+1
θ

Γ(k)θk

=

(
1

1− θu

)k
,

which exists only if θu < 1. The mean and the variance are,

E(xt+1) = kθ

V(xt+1) = kθ2.
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A multivariate gamma random vector ht+1 ∼ Mult. Gamma(kh,Σh, µh) can
be obtained by shifting and rotating a vector of uncorrelated gamma random
variables, and given by ht+1 = µh + Σhxt+1, where xt+1 is an H × 1 vector
with elements xi,t+1 ∼ Gamma(kh,i, 1) for i = 1, ..., H. The H × 1 vector of
non-negative local parameters is µh,Σh is a full rank H ×H matrix of (non-
negative) scale parameters, and kh > 0 is a H × 1 vector of shape parameters.
The probability density function of ht+1 can be determined by a standard
change of variables. That is,

p(ht+1|kh,Σh, µh) = |Σ−1
h |

H∏
i=1

exp(−e′iΣ−1
h [ht+1 − µh])

Γ(kh,i)
(
e′iΣ

−1
h [ht+1 − µh]

)kh,i ,
where ei is an H× 1 unit vector that selects out the i− th element of a vector.
The mean and the variance are

E[ht+1] = µh + Σhkh,

V[ht+1] = Σhdiag(kh)Σ
′
h.

The Laplace transform is

E[exp(u′ht+1)] =

∫ ∞
0

exp(u′ht+1)p(ht+1|kh,Σh, µh)dht+1

= exp(u′µh)

∫ ∞
0

exp(u′Σhxt+1)|Σ−1
h |

×
H∏
i=1

exp(−e′iΣ−1
h [ht+1 − µh])

Γ(kh,i)
(
e′iΣ

−1
h [ht+1 − µh]

)kh,i dht+1

= exp(u′µh)

∫ ∞
0

exp(u′Σhxt+1)
H∏
i=1

1

Γ(kh,i)
(x

kh,i
i,t+1)−1

× exp(−xt+1)dxt+1

= exp(u′µh)
H∏
i=1

(
1

1− e′iΣ′hu

)kh,i
= exp

(
u′µh −

H∑
i=1

kh,i ln[1− e′iΣ′hu]

)
.

The Laplace transform exists only if e′iΣ′hu < 1 for i = 1, ..., H.

B.2 Mixture of Gaussian and Mult-NCG
Distributions

Gouriéroux and Jasiak (2006) built the univariate version of the non-Gaussian
process shown in Equation (3.5.1) and Equation (3.5.3), to construct one



APPENDIX B. DISCRETE TIME NON-GAUSSIAN MODELS 101

factor term structure models. Dai et al. (2010) extended the process to
allow for multiple factors. Now, consider a (G + H) × 1 vector xt+1 =
(h′t+1, g

′
t+1)′, where ht+1 is an H × 1 vector having a multivariate NCG dis-

tribution p(ht+1|νh,Φhht,Σh, µh) and gt+1 is a G × 1 vector of conditionally
Gaussian random variable gt+1 ∼ N(µg + Σghht+1,ΣgΣ

′
g). Let u = (u′h, u

′
g)

where uh and ug are H × 1 and G × 1 vectors, respectively. Using the law of
iterated expectations, the Laplace transform is

E[exp(u′xt+1)] = E[exp(u′ggt+1) exp(u′hht+1)] = Eh[Eg|h[exp(u′ggt+1 exp(u′hht+1)]

= Eh
[
exp

(
(µg + Σghht+1)′ug +

1

2
u′gΣgΣ

′
gug

)
exp(u′hht+1)

]
= exp

(
u′gµg +

1

2
u′gΣgΣ

′
gug

)
Eh[exp([u′gΣgh + u′h]ht+1)]

= exp[u′gµg +
1

2
u′gΣgΣ

′
gug + u′ghµh −

H∑
i=1

νh,i ln(1− e′iΣ′hugh)]

+ exp

(
H∑
i=1

e′iΣ
′
hugh

1− e′iΣ′hugh
e′iΣ

−1
h Φh(ht − µh)

)
,

where ugh = Σ′ghug + uh is an H × 1 vector.

B.3 The Stochastic Discount Factor
We define the stochastic discount factor as:

Mt+1 =
exp(−rt)p(gt+1|Ft, ht+1, zt+1; θ,Q)p(ht+1|Ft, zt+1; θ,Q)p(zt+1|Ft; θ,Q)

p(gt+1|Ft, ht+1, zt+1; θ,P)p(ht+1|Ft, zt+1; θ,P)p(zt+1|Ft; θ,P)
,

where the distributions are conditionally Gaussian, conditionally gamma, and
Poisson. This is the exact (non-linear) SDF with no approximations, which
we use during estimation. For intuition, consider breaking the log-stochastic
discount factor mt+1 into three terms; one for each of the shocks that the
economic agent faces. Given by,

mt+1 = −rt +mg,t+1 +mh,t+1 +mz,t+1,

where mi,t+1 is the compensation for risk i. Let λg = µg − µQ
g , λh = νh − νQh ,

Λg = Φg − ΦQ
g , Λh = Φh − ΦQ

h , Λgh = Φgh − ΦQ
gh.

B.3.1 Gaussian Risks

Starting with the Gaussian portion, we find

mg,t+1 = −1

2
λ′gtλgt − λ′gtεg,t+1,
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where εg,t+1 = Σ−1
g,t ξg,t+1 is a standard, zero mean Gaussian shock. The price

of Gaussian risk is

λgt = Σ−1
g,t ((λg + Λggt + Λghht)− Σgh[Σhλh + Λh(ht − µh)]).

This is a clear generalization of the expression for Gaussian ATSMs. The key
difference is a time-varying quantity of risk Σg,t.

B.4 Bond Pricing Recursions
The bond pricing recursions can be solved by induction. Assume that the bond
prices are

P n
t = exp(An +B′n,hht +B′n,ggt),

for some coefficients An, Bn,h and Bn,g. At maturity n = 1, when the payoff is
P 0
t+1 = 1, we find that

P 1
t = EQ

t [exp(−rt)P 0
t+1] = exp(−δ0 − δ′hht − δ′ggt),

such that A1 = −δ0, B1,gh = −δh and B1,g = −δg. Consider an n−period bond
whose price in the next period is P n−1

t+1 . That is,

P n
t = EQ

t [exp(−rt)P n−1
t+1 ] = EQ

t [exp(−δ0 − δ′hht − δ′ggt)
× exp(An−1 +B′n−1,hht+1 +B′n−1,ggt+1)]

= exp(−δ0 − δ′hht − δ′ggt − An−1)EQ
t [exp(B′n−1,hht+1 +B′n−1,ggt+1)],

where the expectation is taken with respect to the distribution of the random
vector xt+1 = (h′t+1, g

′
t+1)′ under Q such that

ht+1
Q∼ Mult-NCG(νQh,i,Φ

Q
hht,Σh, µh),

gt+1
Q∼ N(µQ

g + ΦQ
g gt + ΦQ

ghht + Σgh[ht+1 − {(IH − ΦQ
h )µh + Σhν

Q
h + ΦQ

hht}],
Σg,tΣ

′
g,t).
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This expectations has the same form as the Laplace transform provided in
Appendix B.1. Using ei to denote a H × 1 unit vector, we find

P n
t = exp(−δ0 − δggt − δhht + An−1 +

1

2
B̄′n−1,gΣg,tΣ

′
g,tBn−1,g

+ [µQ
g + ΦQ

g gt + ΦQ
ghht − Σgh((IH − ΦQ

h )µh + Σhν
Q
h + ΦQ

hht)]
′Bn−1,g

+ [Σ′ghBn−1,g + B̄n−1,h]
′µh +

H∑
i=1

e′iΣ
′
hBn−1,gh

1− e′iΣ′hBn−1,gh

e′iΣ
−1
h Φh[ht − µh]

−
H∑
i=1

νQh,i ln(1− e′iΣ′hBn−1,gh))

= exp(−δ0 + An−1 + µQ′
g Bn−1,g + [Σ′ghBn−1,g + B̄n−1,h]

′µh

− ((IH − ΦQ
h )µh + Σhν

Q
h )′Σ′ghBn−1,g +

1

2
B̄n−1,gΣg,tΣ

′
g,tBn−1,g

−
H∑
i=1

νQh,i ln(1− e′iΣ′hBn−1,gh)−
H∑
i=1

e′iΣ
′
hBn−1,gh

1− e′iΣ′hBn−1,gh

e′iΣ
−1
h Φhµh

+ [B̄′n−1,gΦ
Q
g − δg]gt +

H∑
i=1

e′iΣ
′
hBn−1,gh

1− e′iΣ′hBn−1,gh

e′iΣ
−1
h Φhht

+Bn−1,g(Φ
Q
gh − ΣghΦ

Q
h )ht −∆hht)

= exp(−δ0 + An−1 + µQ′
g Bn−1,g + µ′h[B̄n−1,h + ΦQ′

h Σ′ghBn−1,g]

− νQ
′

h Σ′gΣ
′
ghBn−1,g +

1

2
B̄′n−1,gΣ0,gΣ

′
0,gBn−1,g

−
H∑
i=1

νQh,i ln(1− e′iΣ
′

hBn−1,gh)−
H∑
i=1

e′iΣ
′
hBn−1,gh

1− e′iΣ′hBn−1,gh

e′iΣ
−1
h Φhµh

+ [B̄′n−1,gΦ
Q
g − δg]gt + [

H∑
i=1

e′iΣ
′
hBn−1,gh

1− e′iΣ′hBn−1,gh

e′iΣ
−1
h Φh

+B′n−1,g(Φ
Q
gh − ΣghΦ

Q
h )−∆h +

1

2
(IH ⊗Bn−1,g)

′ΣgΣ
′
g(ıH ⊗Bn−1,g)]ht),

where ΣgΣ
′
g is a GH × GH matrix with diagonal elements Σi,gΣ

′
i,g for i =

1, ..., H. The expression

Bn−1,gh = Σ′ghBn−1,g +Bn−1,h,

is an H × 1 vector. The Laplace transform exists only if e′iBn−1,gh < 1 for
i = 1, ..., H.
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