
 
 

 

 

ABSTRACT 

BAYESIAN MONITORING OF CLINICAL TRIALS: EXAMPLES USING 

CONJUGATE PRIORS 

By  

Mary Tromp 

January 2015 

A clinical trial can save time and resources if it incorporates Bayesian monitoring. 

Generally speaking, conducting Bayesian analysis is a computationally intensive task. 

However, in the special case of hypotheses testing for clinical trials, and, moreover, when 

conjugate prior distributions of parameters are used, computational complexity is reduced 

remarkably. This thesis presents three examples where the Bayesian monitoring is 

achieved with a prior density of a parameter and the likelihood function of the data 

belonging to conjugate families of distributions.  The first example studies a heart valve 

trial with a Poisson rate of adverse events and a gamma prior distribution of the rate. The 

second example focuses on testing certain drug efficacy for lowering high blood pressure, 

with self-conjugate normal family of distributions.   In the third example, the probability 

of a false positive alarm produced by a heart defibrillator is modeled with beta prior 

distribution conjugate to binomial likelihood function. 
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CHAPTER 1 

INTRODUCTION 

Interim monitoring of clinical trials using Bayesian methods will be examined in 

this paper.  As stated by Brown, Schriger, and Barrett (2010) frequentist statistics have 

little over Bayesian statistics, other than an aura of objectivity that does not withstand 

critical scrutiny for interim analyses.  Under the Bayesian setting, Lee and Liu (2008) 

developed a sequential design on the basis of the predictive probability approach.  They 

constructed stopping rules on the basis of the predictive probability, which corresponds to 

the probability of rejecting the null hypothesis at the end of the study, providing the same 

trend as that observed continues.  The trial is stopped if the predictive probability exceeds 

a chosen efficacy cutoff value or is lower than a futility cutoff value.  By choosing the 

proper cutoff value, the design preserves the types I and II error rates and improves the 

trial efficiency.  Additionally, the design is flexible and easy to implement.  It is also 

robust when the study conduct deviates from the original design. 

Compared with the frequentist methods, Bayesian methods are better alternatives 

for constructing combined designs involving both sequential stopping and adaptive 

randomization.  This is because Bayesian inference relies on the posterior distributions of 

the parameters, which automatically consider the dependence among the observations. 

If the posterior distributions are in the same family as the prior probability in 

Bayesian probability theory, then the prior is called a conjugate prior for the likelihood 

function.  There are three families of conjugate priors that this paper will examine.  The 
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conjugate priors are Poisson-gamma conjugate families, normal self-conjugate family and 

binomial-beta conjugate families.  Korosteleva (2009) discussed Poisson-gamma 

conjugate families but there has not been much literature discussing interim monitoring 

of clinical trials using Bayesian methods for the other families.   

 Okogbaa et al. (2010) say that careful choice of the prior likelihood probability 

structures could ensure computationally efficient posteriors.  Conjugate families are 

efficient from a computational point of view since we can often compute the posterior 

distribution through a simple formula involving the family without resorting to Bayes’s 

theorem directly.  In any Bayesian analysis the aim is to obtain posterior estimates for 

some parameters or functions of parameters.  In a limited number of cases.( e.g., in the 

case of conjugate priors) such estimates may be directly obtained.  

The Food and Drug Administration (FDA) until recently required frequentist 

analysis in trials presented in support if a new drug application or new medical devices.  

The FDA (2010b, 30-35) now welcomes trials with Bayesian analysis and appears to be 

ready to consider trials that use adaptive methodologies.  If it is part of the clinical trial 

plan, you may use a predictive probability at an interim point as the rule for stopping 

your trial.  If the predictive probability that the trial will be successful is sufficiently high 

(based on results at the interim point), you may be able to stop the trial and declare 

success.  If the predictive probability that the trial will be successful is small, you may 

stop the trial for futility and cut losses. 
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CHAPTER 2 

DESCRIPTION OF BAYESIAN MONITORING OF CLINICAL TRIALS 

 WITH CONJUGATE PRIORS 

In a standard non-Bayesian approach the required sample size is statistically 

predetermined by conducting a power analysis.  The trial must continue until at least that 

many subjects have been accrued.  At the end of the trial one statistical test of efficacy of 

the new therapy is carried out. 

When using a Bayesian sequential procedure, knowledge of product efficacy is 

updated using the Bayes formula as new data become available.  The Bayesian sequential 

approach is applied when the investigators are confident in the product’s efficacy because 

this approach allows an earlier termination of the trial.  If a trial is not stopped earlier due 

to a non-satisfactory performance of the tested product, the trial is stopped when non-

Bayesian approach dictates it to stop, and a standard test is carried out. 

Consider a clinical endpoint Θ which is modeled as a random variable.  The null 

hypothesis H0: Θ belongs to a set Ω0, is tested against the alternative hypothesis H1: Θ 

belongs to a set Ω1 where the sets Ω0  and Ω1 complement each other.  The prior 

knowledge about the endpoints possible values is summarized by a prior density

. ( ) ( )f  
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Investigators who have strong belief in efficacy of the tested product chose an 

enthusiastic prior, which assumes that the alternative hypothesis   is more 

likely to hold than the null , that is  .    

If the investigators do not have such a strong belief, then their choice of prior 

distribution will be a skeptical prior.  In this case, it is assumed  𝑃(𝐻1) < 0.5.  

Bayesian hypothesis testing is based on the posterior distribution of Θ, given the 

data from the trial.  The posterior density is computed using the Bayes formula 

            

where  is the likelihood function. 

The posterior probability of the alternative hypothesis is computed using the 

formula                                              

                    .                                                    

If the posterior probability of H1 is smaller than 0.05, the trial is stopped, and H1 is 

rejected.  If the probability is greater than 0.95, the trial is stopped, and H1 is accepted, 

otherwise the trial continues.  If the trial is not stopped earlier and reaches its 

predetermined size, then the trial should be stopped, and a non-Bayesian statistical test 

should be performed on the data. 

Computation of the posterior density is simplified if the prior density  

is conjugate to the likelihood function .  A prior density is conjugate to 

a likelihood function if posterior density has the same algebraic form as the prior density. 

1 1:H 

0 0:H 

1

1( ) ( ) 0.5P H d  


 

( | ) ( )
( | )

( | ) ( )

f data
f data

f data d

  


   


 


 

( | )f data  

1

1( | ) ( | )P H data f data d 



 

( | )f data

( )  ( | )f data



5 
 

In this thesis, three examples of conjugate priors will be considered a) a gamma 

prior is a conjugate to a Poisson likelihood function, b) a normal prior is a conjugate to a 

normal likelihood function, and c) a beta prior is conjugate to a binomial likelihood 

function. 
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CHAPTER 3 

EXAMPLE OF TRIAL MONITORING WITH POISSON-GAMMA 

CONJUGATE FAMILIES OF DISTRIBUTIONS 

A clinical trial is conducted to test the performance of a new heart valve.  The 

endpoint of the trial is the rate of valve-related complications.  The rate of a complication 

is defined as the total number of cases divided by the total number of years accrued by all 

patients (patient-years) in the trial (e.g., 9 cases in 500 patient-years gives the 

complication rate = 9/500=0.018 or 1.8%). 

From a list of all possible valve-related complications, endocarditis, inflammation 

of heart lining, is chosen as the primary endpoint because it is the least frequently 

observed complication and takes the longest time to be observed.  The primary endpoint 

is the one that is used in power analysis to pre-determine the required sample size of a 

trial.  The FDA (2010a) requires that a trial should continue for a minimum of 800 

patient-years according to the FDA guidance. 

The complication rate R for the new heart valve is compared to the historical 

endocarditis rate Rh = 0.012.  The null hypothesis, H0: R ≥ 2Rh = 0.024, is tested against 

H1:R < 2Rh = 0.024.  Note that the null hypothesis indicates that the new valve performs 

much worse than the historical one.  If the null is accepted, the valve should not be 

marketed. 

An assumption is made that the number of endocarditis events N during a time 

period T has a Poisson distribution with mean RT and probability function   
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From the Bayesian viewpoint, R is modelled as a random variable.  To simplify 

calculations, the prior distribution of R is chosen from a family of distributions conjugate 

to Poisson.  The prior is taken as a Gamma(a, b) for some parameters a  and b that are yet 

to be determined.  The prior density of R is    

                     

The posterior distribution of R, given that n endocarditis events have been 

observed during time t, is with density    

 

where and . 

The posterior probability that the alternative hypothesis is correct is 

 

 

If P(H1|data)<0.5, the alternative hypothesis H1 is rejected, if P(H1|data)>0.95, 

then the H1 is accepted, otherwise, the trial continues. 

The parameters, a and b, must be specified.  Note that the gamma density is 

unimodal, which means it has one peak, and right-skewed, which means it has a long 

right tail.  For unimodal right-skewed distributions, the mean-median-mode inequality 

hold true.  It states that the mean is always larger than the median, which, in turn, is 
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always larger than the mode.  Therefore, P(R<mode) < P(R<median) < P(R<mean).  If 

investigators are inclined to use enthusiastic prior, then they should take the mean of the 

prior distribution to be equal to 0.024.  This gives the opportunity to specify any desired 

prior probability of the true H1 larger than 0.5.  Indeed, 0.5=P(R<median) <  P(R<mean) 

= P(R<0.024) = P(H1).  For a skeptical prior, the mode should be chosen equal to 0.024.  

In this case, P(H1) = P(R<0.024) = P(R<mode) < 0.5=P(R<median), and P(H1) can take 

on any value below 0.5.  For a Gamma(a, b) distribution, mode equals (a-1)b and mean is 

ab. 

Thus, a and b are the solution of the following two equations: 

Equation 1. ab = 0.024 for an enthusiastic prior, and (a-1)b = 0.024 for a 

skeptical prior  

and  

Equation 2.  

where P(H1) is specified by investigators. 

Now a specific numerical example will be presented.  Suppose investigators 

would like to use a skeptical prior with the probability of the true alternative equal to 

P(H1)=0.4.  The parameter of the prior density a and b satisfy (a-1)b = 0.024 and

. 

The minimum required length of the trial is 800 patient-years per FDA (2010b).  

Suppose investigators decide to conduct interim Bayesian analysis at t=400 and t=600 

patient-years.  We will be looking for n such that the posterior probability of true H1, 

0.024

1

0

( ) ( 0.024) ( )P H P R r dr   
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0

exp( / )

( )
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P(H1|n, t), is less than 0.05 or larger than 0.95.  A Mathematica code for calculations is 

presented in Appendix.  The results are summarized in Table 1 in the same appendix. 

From the table, at 400 patient-years, if n≤2, the trial is stopped, and the heart 

valve is marketed; if n≥17, then the trial is stopped, and the valve is not marketed, 

otherwise the trial continues until 600 patient-years are accrued.  At 600 patient-years, if 

n≤6, then the trial is stopped and the valve is marketed; if n≥22, then the trial is stopped, 

and the valve is not marketed; otherwise, the trial continues to 800 patient-years, and a 

standard non-Bayesian test for valve efficacy is performed. 

 

  



10 
 

 

 

 

 

 

CHAPTER 4 

EXAMPLE OF TRIAL MONITORING WITH NORMAL SELF-CONJUGATE 

FAMILY OF DISTRIBUTIONS 

 

A new drug is tested for efficacy in lowering blood pressure.  Let μtr and μc be the 

true mean percentage reduction in blood pressure in the treatment and control group, 

respectively.  Investigators test H0: μtr≤ μc   against H1: μtr> μc.  

Let and be the random variables representing 

blood pressure reduction in the treatment and control groups, respectively. And let’s 

assume that σ2 is known.  

We have that .  Using a Bayesian approach, we put 

a conjugate normal prior on the difference in means, . 

The posterior distribution of  𝜇𝑡𝑟 − 𝜇𝑐 , after observing , is also normal 

with mean and variance .  This can be seen 

by noticing that the posterior density is proportional up to a multiplicative constant. 

It remains to determine δ and .  The mean δ can be elicited by asking 

investigators explicitly what they think the most likely value of μtr- μc is. The 

investigators should also specify P(H1). 

Then we will have an equation for . 

2
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[after substitution ] 

 where  is the N(0,1) cumulative distribution function.   Thus, 

. 

Next, we will present a numeric example. Suppose from previous similar studies 

it is known that the standard deviation is σ=15.  Investigators would like to use an 

optimistic prior.  They are confident with P(H1)=0.7 that, on average, the difference in 

reduction in blood pressure between the groups is .  Hence 

 . 

The required sample size for a non-Bayesian monitoring (with a single z-test for 

comparison of two means at the end of the trial) is computed via power analysis and is 97 

patients per group per Korosteleva (2009).  Suppose investigators decide to conduct an 

interim Bayesian analysis when n=50 patients per group are accrued.  We will be looking 

for such that the posterior probability   

 

is less than 0.05, or larger than 0.95.   

The calculations are simple enough to be done in Excel.  The results of 

calculations are summarized in Table 2 in Appendix.  The Bayesian monitoring 

2

1 22
00 0

1 ( )
( ) ( 0) exp

22
tr c

x
P H P dx


 



  
     

 


0

2

/

1
exp( / 2)

2
z dz

  





 

0( ) /z x   

 01 /    

 
0 1

11 ( )P H








 

5 

 
0 1 1

1

5 5
9.5347

1 ( ) (0.3) 0.5244P H




 

  
   
   

tr cX X

2 2

0

1

2 2

0

( )

2
( | , ) 1

1

2

tr c

tr c

x x n

P H n x x
n



 

 

  
  

     
 

  
 



12 
 

procedure is as follows: when n has reached 50 in both groups and , then 

the trial is should be stopped, and the drug should  not be marketed.  If, on the other hand, 

, then the trial should be stopped, and the drug should be marketed.  In case 

, the trial should continue until 97 patients per group are accrued, at 

which point the trial should be stopped, and the standard z-test should be carried out. 

  

5.7tr cx x  

4.7tr cx x 

5.7 4.7tr cx x   
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CHAPTER 5 

EXAMPLE OF TRIAL MONITORING WITH BINOMIAL-BETA 

CONJUGATE FAMILIES OF DISTRIBUTIONS 

A study is conducted in which N patients with heart arrhythmia are implanted 

with defibrillators (a device that delivers a therapeutic dose of electrical energy to ailing 

heart).  The study is testing whether the chance of false positive alarms by these 

defibrillators in the first year of use is low. 

Let X be the number of false positives, then X~Binomial(N,p) where p is the 

probability of a false positive alarm.  The hypotheses are H0: p≥p0 and  H1:p<p0 .  We put 

a Beta(a,b) prior on p, which is conjugate to binomial family of distributions 

The posterior distribution of p, after observing the number of false alarms x, is 

with density 

 

                  

1 1
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1 1
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where a,b>1 and 0<p<1. 

To elicit the values of a and b, we ask investigators for the prior probability that 

the alternative hypothesis is true 
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, 

and also for the most likely value of p 

        

To ensure a unique solution for a and b, we must require that .  A 

numeric example follows.  Suppose N=100 and  is being tested.  Suppose 

investigators would like to use a skeptical prior with the probability of the true alternative 

hypothesis equal to P(H1)=0.45, and suppose also that the elicited value of the mode is 

0.25.  The posterior probability of the alternative is computed as  

 

 

Table 3 in Appendix shows the results of computations.  The Mathematica code is 

given in the same appendix.  The Bayesian stopping rule is summarized as follows: 

If the number of false alarms 𝑥 ≤ 22, then the trial should be stopped, and the 

defibrillator should be marketed; if x≥38, then the trial should be stopped, and the 

defibrillator should not be marketed.  If x is between 23 and 38, then the trial should 

continue.  After one year, the trial should be stopped and a standard maximum likelihood 

test should be carried out.    
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APPENDIX 

MATHEMATICA CODE 
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Poisson-Gamma Example 

Mathematica Code 

In[1]:= a/. FindRoot[Gamma[a,a-1]/Gamma[a]==0.6, {a,5}] 

Out[1]= 7.81438 

a=7.81438, b=0.024/(a-1), P(H1|t,n)=1-Gamma[n+a,0.024*t+a-1]/Gamma[n+a]                                                                                                               

In[2]:= 1-Gamma[9.81438, 16.41438]/Gamma[9.81438]                             t=400, n=2 

Out[2]= 0.96882 

In[3]:= 1-Gamma[10.81438, 16.41438]/Gamma[10.81438]                          t=400, n=3 

Out[3]= 0.942084 

In[4]:= 1-Gamma[23.81438, 16.41438]/Gamma[23.81438]                          t=400, n=16 

Out[4]= 0.0505347 

In[5]:= 1-Gamma[24.81438, 16.41438]/Gamma[24.81438]                          t=400, n=17 

Out[5]= 0.031655 

In[6]:= 1-Gamma[13.81438, 21.21438]/Gamma[13.81438]                          t=600, n=6 

Out[6]= 0.964337 

In[7]:= 1-Gamma[14.81438, 21.21438]/Gamma[14.81438]                          t=600, n=7 

Out[7]= 0.939906 

In[8]:= 1-Gamma[28.81438, 21.21438]/Gamma[28.81438]                          t=600, n=21 

Out[8]= 0.066778 

In[9]:= 1-Gamma[29.81438, 21.21438]/Gamma[29.81438]                          t=600, n=22 

Out[9]= 0.0449617 

TABLE 1. Results of Bayesian Monitoring in Poisson-Gamma Example 

t n P(H1 | n, t) t n P(H1 | n, t) 

400 2 0.9688 400 16 0.0505 

 3 0.9421  17 0.0317 

600 6 0.9643 600 21 0.0668 

 7 0.9399  22 0.0450 
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Normal-Normal Example      

TABLE 2. Results of Bayesian Monitoring in Normal-Normal Example 

n   

50 -5.7 0.0490 

 -5.6 0.0523 

 4.6 0.9474 

 4.7 0.9507 

 

 

Binomial-Beta Example 

Mathematica Code 

In[1]:=  a/. FindRoot[Beta[0.3, a, 3*a-2]/Beta[a, 3*a-2]==0.45,{a,1}] 

Out[1]=  1.77546                                            

 a=1.77546, b=3a-2, N=100, P(H1|x)= Beta[0.3,a+x,N-x+b]/Beta[a+x,N-x+b] 

In[2]:=Beta[0.3,23.77546,81.326]/Beta[23.77546,81.326]                    x=22  

Out[2]= 0.958525 

In[3]:= Beta[0.3,24.77546,80.326]/Beta[24.77546,80.326]                   x=23 

Out[3]= 0.934213 

In[4]:= Beta[0.3,38.77546,66.326]/Beta[38.77546,66.326]                   x=37 

Out[4]= .0679384 

In[5]:= Beta[0.3,39.77546,65.326]/Beta[39.77546,65.326]                   x=38          

Out[5]= 0.0448417 

TABLE 3. Results of Bayesian Monitoring in Binomial-Beta Example 

x  

22 0.9585 

23 0.9342 

37 0.0679 

38 0.0448 

ctr xx  )xx,n|H(P ctr1 

)|( 1 xHP
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