
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

SOCIAL NETWORK CODING RATE CONTROL IN
INFORMATION CENTRIC DELAY TOLERANT NETWORKS

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

SAMUEL BENNETT WOOD

December 2014

The Thesis of Samuel Wood
is approved:

————————————————–
Professor J.J. Garcia-Luna-Aceves, Chair

————————————————–
Professor Katia Obraczka

————————————————–
Professor Brad Smith

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1583279

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 1583279

Copyright c� by

Samuel B. Wood

2014

Table of Contents

List of Figures iv

List of Tables vi

Abstract vii

Dedication viii

Acknowledgments ix

1 Introduction 1

1.1 Preliminaries . 2

1.2 Delay-tolerant Networks . 3

1.3 Information Centric Networks . 5

1.4 Network Coding . 6

1.5 Information CEntric Mobile Ad-hoc Networking (ICEMAN) 9

1.6 Towards Social Rate Control . 15

2 Related Work 17

3 Method 18

3.1 Popularity Index . 19

3.2 Example Scenario . 21

3.3 Discussion . 22

4 Experiments 23

4.1 Automatic Network Test System (ANTS) 23

4.2 Disconnected Scenario . 30

5 Results 33

6 Discussion 35

References 36

iii

List of Figures

1 The network architecture diagrams for the traditional Internet and a

DTN. 4

2 The layer-less ICEMAN architecture (which is itself based on the

Haggle architecture) that SOCRATIC builds on. Managers run in

separate threads and communicate to one another by posting and

registering listeners to events on the daemon’s main event queue. . 10

3 An illustration of the in-network subscription to publication match-

ing. The solid circles represent nodes. Node “P” publishes a data

object that is replicated to nearby nodes denoted cP . Node “S” sub-

scribes to this data object, and its interest is propagated to nodes

denoted sP . The dashed circles indicate the distance from the pub-

lisher (subscriber) that the data object (interest) has propagated. . 11

4 An example scenario illustrating all of the mechanisms of SOCRATIC.

The black square represents a decoded data object, and the rectangles

represent encoded blocks of that data object. 21

5 The design, debug, and evaluate process cycle that was used when

developing ICEMAN and SOCRATIC. 24

6 An architecture diagram and work flow of the Automatic Network

Test System that was used to evaluate SOCRATIC in a realistic, yet

repeatable way. 27

7 An example portion of a test specification file. It is in the JSON

format with metacommands ˆrepeat and ˆassign that the Test

Generator uses to produce multiple test files that are executed by the

Test Runner. 31

8 Disconnected scenario. Node “P” publishes a data object that only

node “S” subscribes to. “UAV” nodes ferry the data object from “P”

to “S”. 32

9 Average delay distribution in the disconnected scenario for the di↵er-

ent representative replication approaches. 34

iv

10 Average transmit megabytes (Tx), receive megabytes (Rx), and data

objects delivered (#DO) for the disconnected scenario. The error

bars represent the min and max across all runs. The red line indicates

the maximum possible number of data objects delivered (max. DO

delivery). 34

v

List of Tables

1 Disconnected scenario parameters. 32

vi

Abstract

Social Network Coding Rate Control

in Information Centric Delay Tolerant Networks

by

Samuel Bennett Wood

Tactical and emergency-response networks require e�cient communication

without a managed infrastructure in order to meet the requirements of mission crit-

ical applications. In these networks, mobility, disruption, limited network resources,

and limited host resources are the norm instead of the exception. Despite these

constraints, applications must quickly and reliably share data collected from their

environment to allow users to coordinate and make critical decisions. Our previous

work demonstrates that applying information-centric paradigms to the tactical edge

can provide performance benefits over traditional address centric approaches. We

expand on this work and investigate how social relationships can be inferred and

exploited to improve network performance in volatile networks.

As a result of our investigation, we propose SOCRATIC (SOCial RATe control

for Information Centric networks), a novel approach to dissemination that unifies

replication and network coding, which takes advantage of social content and context

heuristics to improve network performance. SOCRATIC replicates network encoded

blocks according to a popularity index metric that captures social relationships, and

is shared during neighbor discovery. The number of encoded blocks that is relayed

to a node depends on its interest in the data object and its popularity index, i.e.,

how often and for how long it meets other nodes. We observe that nodes with

similar interests tend to be co-located and we exploit this information through use

of a generalization of a data object-to-interest matching function that quantifies this

similarity. Encoded blocks are subsequently replicated towards the subscriber if a

stable path exists. We evaluate an implementation of SOCRATIC through a detailed

network emulation of a tactical scenario and demonstrate that it can achieve better

performance than the existing socially agnostic approaches.

Dedication

To my parents,

Sam Wood and Eve Bennett-Wood,

for their unceasing support and courage,

when times got curiouser than I could suppose.

Intelligence is the capacity to receive, decode and transmit information
e�ciently. Stupidity is blockage of this process at any point.

— Robert A. Wilson

viii

Acknowledgments

This work could not have been completed without the help of my adviser, Pro-
fessor J.J. Garcia-Luna-Aceves, whose ingenuity and positivity serves as a constant
resource for inspiration. Professor Sadjadpour’s guidance and inventiveness served
as the catalyst for this research. I thank my colleagues at the CCRG Lab and at
UCSC, especially James Mathewson and Michael Cutter for their perseverance and
dedication to knowledge and truth. This work is partially based on the DARPA
CBMEN project—in particular, it is based on Joshua Joy, Dr. Mark-Oliver Stehr,
and Professor Gerla’s work in network coding in the context of that project.

The text of this thesis includes reprint of the following previously published material:

Samuel Wood, Hamid Sadjadpour, J.J. Garcia-Luna-Aceves, “SOCRATIC:
A Social Approach to Network Coding Rate Control.” To appear in IEEE
GLOBECOM 2014.

The co-authors listed in this publication directed and supervised the research which
forms the basis for the thesis.

ix

1 Introduction

Disaster response and tactical networks require e�cient delay-tolerant communica-

tion without any fixed infrastructure guarantees. With the advent of inexpensive

mobile computers (e.g., personal data assistants, laptops, cell phones, and wearable

technology) and inexpensive vehicle platforms (e.g., quad-copters, remote control he-

licopters, planes, and cars), new kinds of heterogeneous mobile networks are forming

that use inexpensive commodity hardware in tactical and disaster response scenar-

ios [3]. As an example, suppose a large earthquake occurs which damages communi-

cations infrastructure (e.g., down cell and ham radio towers), as well as underground

infrastructure (e.g., cut coaxial and fiber cables) and power. A city might call upon

a volunteer communications disaster response team to survey damage and aggregate

data into reports that are delivered to a local emergency response commission re-

sponsible for resource allocation to reestablish critical communications infrastructure

for firefighters and police. It is envisaged that squads of disaster response members

will travel together using either their own personal mobile devices or mobile devices

provided by the city to collect data such as video, photos, voice, and textual reports

which are shared with other squad members and used for inter-squad coordination.

E�cient and opportunistic communication with limited resources is paramount for

the safety of each squad member and for the success of the mission. Temporary

infrastructure such as throwboxes [48] and unmanned vehicles are deployed at will

to increase network capacity, and mobile devices must automatically use these re-

sources without user configuration. An important aspect to these networks is that

almost every node works in concert to accomplish a common goal, where each node

may have di↵erent roles and responsibilities in accomplishing the overarching goal.

This assumption is relaxed in the tactical case, since adversaries may actively jam

the network or commandeer devices with sensitive information.

The key research question that this thesis addresses is whether social infor-

mation (e.g., the roles and responsibilities of the nodes) can be used by disaster

response networks to improve network performance. Our conclusion is yes, and this

thesis proposes and evaluates SOCRATIC, a socially aware method of content dis-

1

semination that improves performance over existing socially agnostic approaches in

certain disaster networks. With this approach, new social constructs do not need

to be introduced into the network through mechanisms such as explicit or learned

social network graphs, which require either modifications at the application layer

(increase in deployment e↵ort) or a learning phase (increase in delivery delay). In-

deed, SOCRATIC uses existing network primitives (publications and subscriptions)

to infer meaningful relationships which directly influence content dissemination for

improved performance.

The remainder of this section details the preliminary research, definitions, and

motivation. Chapter 2 discusses the related work. Chapter 3 details the SOCRATIC

algorithm and provides an idealized scenario that exercises all of its functionality.

Chapter 4 describes the test emulation system in detail, and describes the eval-

uation scenario. Chapter 5 presents the performance results which illustrate the

benefits SOCRATIC has over several existing dissemination approaches. Chapter 6

summarises the findings of this research and concludes with future work.

1.1 Preliminaries

Although mobile devices come with increasingly larger amounts of storage, process-

ing power, and communication interfaces, e�cient and reliable inter-device commu-

nication remains as a challenging research problem and it is sometimes refereed to

as the “last tactical mile” problem [19, 21]. Traditional host-centric networking ab-

stractions (e.g., TCP over IP) are not disruption tolerant, having been designed for

host-to-host communication in a connected static network, with short round trip

times between hosts, per-packet switching of fixed length messages, bidirectional

connectivity with mostly symmetric rates, and low packet loss. The plethora of mo-

bile ad-hoc networks (MANET) research has uncovered e�cient routing protocols

for large scale mobile networks that are mostly connected though dynamic topolo-

gies (relaxing the static assumption of traditional networks), however a great body

of this research is not immediately applicable to networks where there is frequently

never a contemporaneous path between the communicating parties, or if the path is

2

only in one direction, or significantly delayed.

1.2 Delay-tolerant Networks

As an alternative to Internet and MANET research, delay-tolerant (or disruption

tolerant) networks (DTN) is a broad research area that explores dissemination and

replication strategies for communication where there may never be a contempo-

raneous path between hosts. As described in [13, 46], DTNs use a sender-driven

communication primitive that names an individual destination host using a univer-

sal resource indicator. DTN takes a “store, carry, and forward” approach to routing

where a variable length message (termed a bundle) is forwarded on a hop-by-hop ba-

sis and is temporarily cached (with a bundle time-to-live, TTL, optionally specified

by the sender) at relay nodes until it is delivered to the destination. Bi-directional

communication, contemporaneous paths, and short delays are not assumed. Security

policies operate on the bundle as opposed to the connection. Our research investi-

gates a particular type of DTN, and how network protocols can maximize network

performance.

Figure 1 illustrates a high-level diagram of both the traditional Internet archi-

tecture (the network stack), and a DTN stack. This diagram serves as a guideline of

the technology interface boundaries, but alternative demarcations exist (e.g., 7 layer

OSI model), and some technologies overlap layers. Each layer generally only inter-

acts with its adjacent layer, through a well defined interface. For example, a Web

application sends a message to a TCP socket which adds a TCP header and then en-

capsulate the message into an IP datagram. The application receives messages from

the TCP socket which decapsulates the IP datagram and the TCP header. The data

link and physical layers are typically the same in both the Internet and in DTNs, and

they include technologies such as the IEEE 802.2 sub-layer, MAC sub-layer, wired

Ethernet (IEEE 802.3), Bluetooth, USB, Wi-Fi (IEEE 802.11a/b/g/n/ac). The

Internet network layer encompasses protocols such as IPv4, IPv6, ICMP and ARP,

where routing tables are maintained by application layer protocols (e.g., OSPF, RIP,

and EIGRP) and ARP tables (IP address to MAC address mappings) are maintained

3

by the Address Resolution Protocol at the data link layer. IP functions as the so-

called narrow-waist of the Internet, providing the global naming abstraction and the

packet abstraction for data transport between autonomous system (AS) boundaries.

Transport layer protocols for the Internet include UDP and TCP, where TCP pro-

vides a reliable, connection oriented interface of byte streams and features congestion

control mechanisms, and UDP serves as an unreliable datagram delivery service for

potentially lossy best e↵ort communication. In a DTN, the network and transport

layers may use the same Internet technologies and networks (e.g., as an overlay),

but the key di↵erence between the two architectures is the additional bundle layer

abstraction which serves as the new narrow waist between DTN autonomous sys-

tems, or regions. Each DTN region may use di↵erent transport (and lower layer)

protocols, and the bundle layer is responsible for storing and routing bundles on a

hop-by-hop basis between DTN nodes, for the eventual delivery to the destination.

The focus of our research is at the bundle layer.

Application

Bundle

Transport

DTN Network

Data Link

Physical

Application

Transport

Network

Data Link

Physical

Internet Stack DTN Stack

Figure 1: The network architecture diagrams for the traditional Internet and a
DTN.

In delay-tolerant forwarding schemes the bundle replica is deleted upon suc-

cessfully sending the bundle to a relay that is closer to the destination. As an

alternative to forwarding techniques, replication is used to improve dissemination

performance in networks with non-contemporaneous paths. With replication, nodes

store replicas at relay nodes that need not be on the shortest path to the destination,

with the intent that increasing the number of relays and replicas will increase the

4

probability that the bundle will reach the destination. The research challenge for

replication algorithms is how to judiciously select which relays receive the bundle,

how many times to replicate the bundle, and how long a relay caches the bundle.

The goal for dissemination is that the bundle is delivered with high probability with

minimal consumption of network and device resources.

1.3 Information Centric Networks

Recent work demonstrates that the information centric networking (ICN) paradigm

can improve content delivery and reduce latency in delay tolerant networks [29,30,

33,37,47]. The ICN approach to networking changes the communication abstraction

provided by the network layer from a socket between a pair of location-based ad-

dresses to a data object referenced by name [23,28,31], and is heavily influenced by

the directed di↵usion architecture for sensor networks [27]. ICN applications commu-

nicate with the network layer through an application programming interface (API)

based on publish-subscribe primitives, where a publisher provides the content and its

associated metadata to form a data object. We say that a subscription (or interest)

matches a data object when it refers to the data object. There are several approaches

to how metadata names a data object and each approach has its own advantages

and disadvantages (see [22] for a discussion on this topic), but the approaches fall

into three categories: 1) self-certifying flat names [31], 2) human readable hierarchi-

cal names [28], and 3) human readable attribute-value pairs [12, 36]. The matching

function is not necessarily bijective, and a single subscription may refer to multiple

data objects and a single data object may match multiple subscriptions. There are

two main approaches to the subscription life cycle: 1) persistent or long-standing

(e.g., Haggle [36]), and 2) exact match (e.g., NDN [28]). In the persistent case,

the subscription is a�liated with a TTL and may return multiple data objects that

match during the specified time, while in the exact match case a single matching

data object will “consume” the subscription and remove it from the matching node

so that subsequent matching may not occur. Depending on the interest forwarding

scheme, multiple data objects may be returned to a single exact match subscription.

5

The metadata is used by the subscriber to request the content and by the network

to make caching and routing decisions for the data object. This approach enables

communication over non-contemporaneous paths and supports ubiquitous caching:

subscriber applications only specify what content they desire (not where), and the

network decides how to deliver this content to the subscriber. Since a subscriber

is unaware of the source of the content, any cast and nearest replica routing are

supported. Data objects are cached opportunistically at intermediate relays along

the path to a subscriber, according to a cache eviction policy. Publisher applications

only specify what content they want to share, along with metadata to define a name

that is used by the subscribers to reference the data object. Since the publisher

does not know the subscribers at the time of publication, multicast communication

is automatically supported without the need for the publisher to invoke a subscriber

discovery protocol. Information Centric Delay Tolerant Networks (ICDTN) refers

to the application of the ICN principles to DTNs [43]. Instead of the bundle layer

providing only a send primitive for bundles, this layer is expanded to provide an

ICN API. The main conceptual di↵erence is that in ICDTN content discovery is

the responsibility of the bundle layer. In other words, instead of the bundle layer

routing bundles to hosts identified by URIs as in DTN, ICDTN routes subscriptions

and data objects separately, in response to a data object match somewhere in the

network (not necessarily at the publisher or subscriber). For example, in the Named

Data Networking ICN architecture the Forwarding Information Base (FIB) is used

to route interests, and the Pending Interest Table (PIT) is used to route content.

The main challenge for ICDTNs is to e�ciently deliver data objects to subscribers

from caches and publishers. Given that global knowledge is unavailable, nodes must

make local decisions based on limited network knowledge and intermittent neighbor

connectivity.

1.4 Network Coding

Random linear network coding (RLNC) [24], or network coding, refers to a content

dissemination technique that o↵ers a generalization, and improvement, to fragmen-

6

tation. At a high level, network coding uses cheap computational power to increase

network e�ciency. Fragmentation is a method to split a data object into smaller

sized fragments (smaller data objects) that are each cached and routed indepen-

dently, and the original data object is reconstructed and passed to the subscriber

application upon the reception of all of the fragments. Fragmentation is employed

when the connectivity duration between nodes is short, prohibiting the transfer of a

large data object. In ICDTN, publishers do not necessarily know their subscribers

during the life cycle of the data object, thus publishers may use a replication strategy

for each fragment that is subscriber independent. Due to this lack of communication

between the subscriber and the publisher, naive replication schemes for fragments

may lead the subscriber to experience the classical “Coupon Collectors” problem

from probability theory [18], forcing the subscriber to wait an inordinate amount of

time for the last few missing fragments. Specifically, if the fragments are uniformly

distributed for each cache that the subscriber meets, then the expected number

of caches that the subscriber would need to visit to reconstruct the data object is

⇥(m logm) where m is the number of fragments. Among its benefits, random lin-

ear network coding lowers this bound to ⇥(m) by adding a negligible amount of

metadata for each fragment, and increasing the amount of processing per fragment

at the subscriber. Additionally, it reduces the amount of communication necessary

between hosts to determine the missing blocks: a fragmentation approach requires

a mechanism (e.g., Bloom filters [10] or lists) to indicate what fragments a node

already has and what fragments the node needs, while network coding does not

require this communication—it only needs to indicate when it has received enough

blocks.

Below we describe the RLNC encoding process as in [20]. When a publisher

publishes a file M it subdivides it into a set of n equal sized fragments M1, . . . , Mn

(we set the fragment size to 32KB). The fragments are used to generate blocks

B1, . . . , Bk, where each block Bj is the same size as a fragment, and is associated

with with a sequence of coe�cients gj = gj1, . . . , g
j
n where each gji is drawn uniformly

at random from the finite field Fps (we set p = 2 and s = 8). Bj is generated by

7

setting Bj =
Pn

i=1 gjiM
i where the summation occurs over every symbol position in

M i. In other words, let Bj
m be the m-th symbol of Bj and M i

m be the m-th symbol

of M i (encoded in Fps), then Bj
m =

Pn
i=1 gjiM

i
m. We say that gj is the coe�cient

vector for Bj , and Bj is the information vector. Instead of caching data objects

containing fragments M i, we cache data objects containing tuples (gj , Bj). In a

process called mixing, if a cache has received a set of tuples {(g1, B1), . . . , (gh, Bh)},

then it can generate new blocks H i by picking a set of coe�cients oi = oi1 . . . oih

uniformly at random from Fps , and setting H i =
Ph

j=1 oijB
j , where the summation

is over every symbol (as before). The coe�cient vector gi
0
= gi

0
1 , . . . gi

0
n for H i then

becomes gi
0
k =

Ph
j=1 oijg

j
k, forming tuple (gi

0
, H i).

Once a subscriber has received a set of tuples {(g1, B1), . . . , (gk, Bk)} where

k � n, then it can attempt to use the blocks to decode the original data object.

Specifically, the subscriber needs to solve the linear system of equations {Bj =
Pn

i=1 gjiM
i} for j = 1, . . . , k, with M i unknown. Since the coe�cients were selected

randomly (possibly at di↵erent caches in the network), some of the blocks may

be linearly dependent. The key property to enable decoding is that there are n

linearly independent blocks. In practice, our selection of a large field F256 means

that with high probability each newly generated block is linearly independent from

the previously generated blocks, and Gaussian elimination is used to e�ciently invert

the matrix and decode. We use the term rate to refer to the number of encoded blocks

k that the publisher generates. There is a trade o↵ between the network coding rate,

resource utilization, and delivery. In general, a higher rate improves delivery latency,

but at a cost of increased network and processing usage, while a lower rate requires

less network and processing utilization but reduces delivery latency. To see that

network coding is a generalization of fragmentation, let zi = zi1, . . . , z
i
n denote the

coe�cient vector where zij = 0 for all j 6= i and zii = 1. Each coe�cient vector in

z1, . . . zn merely selects the i-th fragment when multiplied by the information vector,

to form Bi = M i.

8

1.5 Information CEntric Mobile Ad-hoc Networking (ICEMAN)

ICEMAN [29,33,47] was developed under the context of the DARPA Content-based

Mobile Edge Networking (CBMEN) [3] project, and the result of this research was

an evaluated ICDTN system which serves as a starting point and baseline for our

investigation. We briefly describe the details of ICEMAN, as SOCRATIC is imple-

mented as a module in this system. ICEMAN is a publish-subscribe system that

is designed for situational awareness applications operating in networks subject to

severe disruption. It adopts a declarative attribute-based approach to naming where

applications request content or services by specifying attributes, their weights, a sat-

isfaction threshold, and the number of content matches. This approach to naming

unifies both exact match and long-standing queries, through a standard publish-

subscribe API. It is an generalization of the Haggle architecture which itself is a

solution for pocket switched networks (PSN) where communication occurs through

point-to-point proximity encounters among two peers [25].

Figure 2 illustrates the ICEMAN architecture which SOCRATIC expands.

Multiple applications connect to an ICEMAN daemon running on the local host

through an API wrapper over TCP, so that libraries across a variety of languages

are supported including C++, C, Java and Python, and TCP’s congestion control

mechanism is used to prevent the system from becoming overloaded servicing appli-

cation requests. Within the user space daemon is a layer-less concurrent architecture

where multiple managers maintain thread pools and communicate with one another

by listening to and posting events on a shared event queue, in the so-called ICE-

MAN kernel. We have simplified the diagram for expository purposes by omitting

some of the managers and submodules. We describe the managers as follows. The

Application Manager is responsible for maintaining local application state, and in-

teracts with the local applications by informing them when a data object match

occurs and handling publications and subscriptions. Upon a data object match,

the Forwarding Manager is triggered to determine what neighbor the data object

should be replicated to in order to maximize the probability that the data object

is received by the subscriber. The Cache Manager is responsible for maintaining

9

the data object life cycle for previously received data objects, or data objects that

have been published by a local application. It is also used to perform the matching

function between data objects and interests. The Transport Manager is responsible

for transmitting data objects between two hops and it is triggered by events created

in the Forwarding Manager. Multiple transport protocols are supported, includ-

ing TCP, UDP unicast, UDP broadcast, and Bluetooth RFCOMM. The Interface

Manager is responsible for maintaining the list of local interfaces and 1-hop neigh-

bor interfaces. This state is used by the Transport Manager to send the data over

a network and supports technologies including Ethernet IEEE 802.3, WiFi IEEE

802.11a/b/g/n/ac, and Bluetooth. It informs the other managers when a new node

is discovered or becomes disconnected by using a mechanism that is particular to

each interface (e.g., periodic UDP broadcasts for WiFi with timeouts to determine

disconnection).

Pub-sub API

App 1 App N

TCP Socket

Event Queue

Application
Manager

Kernel

Cache
Manager

Forwarding
Manager

Transport
Manager

Interface
Manager

Database

Ethernet

WiFi

Bluetooth

TCP

UDP

DIRECT

PRoPHET

Figure 2: The layer-less ICEMAN architecture (which is itself based on the Haggle
architecture) that SOCRATIC builds on. Managers run in separate threads and
communicate to one another by posting and registering listeners to events on the
daemon’s main event queue.

In ICEMAN, a data object is the fundamental unit of abstraction, along with

10

its metadata that is represented as a set of attribute-value pairs and a payload

represented by a file. Every data object has a creation timestamp attribute that is

assigned by the publisher. A data object identifier, or ID, is defined as the SHA-1

hash over all of this information, which is globally unique with high probability.

A node description is a special type of data object that is used to propagate cache

summaries and application interests. The subscriptions of multiple local applications

are aggregated into a single interest node description and the local cache summary

can optionally be included in this data object or propagated separately as a cache

summary node description. Node descriptions are periodically disseminated over

multiple hops and have a limited lifetime. Each node maintains the node descriptions

of other nodes in the network, even if they are not neighbors. The cache summary

uses a Bloom filter data structure to compactly represent an approximation of all of

the data objects that are stored locally.1

P S

Match

Replication Horizon Subscription Horizon

sP

sP

sPcP

cP

cP

sPcP

Figure 3: An illustration of the in-network subscription to publication matching.
The solid circles represent nodes. Node “P” publishes a data object that is replicated
to nearby nodes denoted cP . Node “S” subscribes to this data object, and its interest
is propagated to nodes denoted sP . The dashed circles indicate the distance from
the publisher (subscriber) that the data object (interest) has propagated.

Data object matching to interests occurs at a local cache whenever a new data

object is received, whether it be a node description data object containing interests or

1 A Bloom filter data structure [1] is a compact representation of a set that supports fast set
membership addition and fast probabilistic membership queries. False negatives are not possible,
but false positives are possible, usually with low probability—the fewer the elements the less likely
for a false positive.

11

a file data object. Figure 3 illustrates how data objects and interests are propagated

throughout the network, and shows how a match can occur at intermediate nodes

who are neither publishers nor subscribers. If the data object is a node description

and it is more recent (or fresh) than any previously received node description for its

respective node, then each of the data objects in the local cache are checked to see

if they match the newly received interests, and the node description is inserted into

the cache (and any less recent node descriptions for that node are removed). If this

data object contains a cache summary, then it is stored in a data base used by the

Transport Manager to prevent unnecessary transmissions to neighbors, and it is used

by the matching algorithm to avoid counting previously received data objects (as

determined by the cache summary) as a match. If the node description is less recent

than a previously received one for that node (this is checked using the timestamp

attribute), then it is discarded. If the data object is not a node description, then

each interest stored in the local cache is checked against the data object to see if

there is a match.

When a data object is received, the Cache Manager determines whether or

not the data object should be stored in the local cache by consulting a utility-based

caching policy. Caching is employed to reduce latency and bandwidth use, and is

required if there is no contemporaneous path between a source and a destination.

ICEMAN approaches caching as an online utility maximization problem, similar

to the cooperative caching method described by Chand et al [14] and the utility

dissemination scheme in Spyropoulos et al [41]. A user specifies a policy through

a function that is a composition of utility functions and can express both hard

(evict immediately) and soft (keep if available resources) replacement policies. The

caching manager identifies useful content and prioritizes evictions accordingly, least

utility first. Each utility function assigns a real number between 0 (lowest utility)

and 1 (highest utility) to each data object in the cache, which indicates the utility

of storing that data object at that node. The functions are both content (e.g., a

function of the data object’s metadata or its payload size) and context sensitive (i.e.,

they vary in time and space). Data objects whose utility do not meet a minimum

12

threshold are evicted immediately. Each function is multiplied by a constant weight

factor between 0 and 1, where 0 disables the function. Once the cache exceeds a

watermark capacity, the Cache Manager selects a set of data objects to evict to bring

the cache capacity below the watermark. The minimum threshold, weight factors,

and watermark capacity are all specified by the policy. The selection of which data

objects to evict is framed as a 0-1 knapsack problem [15], where the watermark

capacity is the bag size, the data object payload size is the cost, and the computed

utility is the benefit. Since the optimization problem is NP-Hard, we use the greedy

marginal utility heuristic to solve the problem in polynomial time. This approach

computes a marginal utility as the benefit divided by the cost, and adds data objects

greedily—greatest marginal utility—first to the bag until the bag size is exceeded.

The remaining unselected data objects are evicted.

Although a complete description of the utility caching is outside the scope of

this thesis, we briefly describe several utility functions to make the caching descrip-

tion concrete. The Relative Time-to-live (RTTL) function uses a specific attribute to

determine how long a data object should be cached since its reception. If the node

has cached the data object for less than this time then the utility is 1, otherwise it is

0. The Partial Order (PO) function uses specific attributes to define a partial order

on classes of data objects. If the data object can be replaced by another data object

in the local cache using the partial order, then the utility is 0, otherwise it is 1.

The utility functions are composed to create complex policies using the sum, min,

and max utility functions, which compute the sum, min and max of its constituent

utility functions, respectively. Each utility function returns a real within [0, 1] for

each data object d based on the state of node i at time t, sit. An example policy is

U1(d, sit) = min{RTTL(d, t), PO(d, sit)}. (1)

With this policy suppose that the threshold is set to some number greater than 0,

then any data object that exceeds the relative time-to-live or is eligible for replace-

ment is evicted. This specific policy is used internally in ICEMAN and SOCRATIC

for node descriptions, where the relative time-to-live is 30 seconds and the partial

13

order is over the value of the creation time attribute in milliseconds since the Unix

epoch.

When a match occurs, an event is raised by the Forwarding Manager to de-

termine to which neighbor the data object should be replicated so that it will be

delivered to the subscriber with high probability. The dissemination policy can be a

function of the data object’s metadata, or the same mechanism is used for all data

objects. DIRECT, PRoPHET (described in Chapter 2) and NONE are example dis-

semination mechanisms, where NONE only replicates to a neighbor if that neighbor

has an application that is actively subscribed to the data. The Forwarding Manager

may decide whether to generate network coded blocks or fragments depending on

content and context specific policies. In this case, block (fragment) data objects are

generated which inherit all of the attributes as the original, or parent, data object,

along with additional attributes to enable decoding, such as the parent’s ID and

payload size. Instead of sending the parent data object, the Forwarding Manager

sends all of the blocks (fragments) to the selected neighbor.

After a neighbor has been selected to receive a data object, the content trans-

port policy is consulted by the Transport Manager to determine how the data object

should be sent to the neighbor. Before the data object is passed to the transport

layer to send to the neighbor, the cache summary of the receiving node is consulted

to determine if the node already has it stored locally. If the data object is a block

(fragment) then both the block and the parent ID are checked in the cache sum-

mary. An optional control protocol may sit above the underlying transport protocol

to further reduce redundant transmissions. In TCP, the control protocol first sends

the data object metadata to the receiver, who may send back an acknowledgement

or a reject message. If an acknowledgement is received, then the sender sends the

data object payload. Upon successfully sending a data object to a neighbor, the

sender preemptively updates the neighbor’s cache summary to reflect that it was

received—this cache summary is overridden when a more recent one from the neigh-

bor is received using the partial order utility function and creation timestamp. If the

data object being sent was a block (fragment), then the reject message may indicate

14

whether the receiver has the parent data object, in which case the cache summary

is preemptively updated to reflect the parent ID. In addition to TCP, UDP unicast

and UDP broadcast are supported. With UDP broadcast, the cache summary of all

of the neighbors are preemptively updated.

1.6 Towards Social Rate Control

At a high level, our research focuses on e�cient content dissemination in disas-

ter response and tactical scenarios consisting of several small groups (e.g., 10 node

squads) that are persistently connected within several hops. For brevity and clar-

ity purposes, we will consistently use standard military terminology. Inter-squad

communication is typically non-contemporaneous and can require message ferrying

through members of another squad, or using a UAV. We observe that members

within the same squad are co-located and are likely subscribed to similar content.

By definition, squads are cohesive units that are located within the same region at

the same period of time, and squad members are interested in content generated

by other members in their squad as well as content that is pertinent to the spe-

cific region in which they are operating. As an example tactical scenario, when a

squad moves to to a new geographic area an ICDTN application will automatically

subscribe to spot and BOLO2 reports that are generated by other squads who ei-

ther currently exist in that area, or previously visited that geographic area. This

subscription identifies reports for the region by name (e.g., a neighborhood name)

or by using GPS coordinate ranges. Conversely, as nodes change missions they will

un-subscribe to content that is no longer relevant to the new mission. Since missions

are specific to geographic areas, we observe that nodes with similar subscriptions will

tend to be co-located. Nodes may have similar but di↵erent hardware capabilities

and roles. For example, UAVs cover a much wider geographic area and have more

power and weight resources than a squad member. Squad leaders will tend to meet

2BOLO is an acronym used in the Department of Defense for Be On the Look Out, and refers
to reports that are issued to identify and apprehend a wanted person. From the Oxford Dictionary
of the US Military, a spot report is: “A concise narrative report of essential information covering
events or conditions that may have an immediate and significant e↵ect on current planning and
operations.”

15

other squad leaders more often than non-squad members of another squad, due to

hierarchies established by military doctrine.

The research question becomes how can the social structure inherent to ICDTNs

(due to nodes working in concert to accomplish a common goal) be quantified and

exploited to improve content dissemination performance? In particular, can subscrip-

tions be used, and if so how can subscription similarity information be quantified

and used? SOCRATIC (SOCial RATe control for Information Centric networks) is

one approach to this problem that uses replication heuristics based on social con-

tent and context information to improve network performance. Unlike previous

approaches, SOCRATIC replicates a bounded number of network coded blocks ac-

cording to the satisfaction degree of the data object and the potential relay, along

with other social-context heuristics. SOCRATIC adopts ICEMAN’s naming scheme

where an application subscribes to data objects by specifying a human readable list

of attributes and a matching threshold: this scheme generalizes exact match and

computes a satisfaction degree for a h node, data object i pair. It is implemented

as a module within the Forwarding Manager and Caching Manager (see Section

1.5), and replicates blocks in response to discovering new neighbors or receiving

new data objects through local publications. In contrast with traditional replication

approaches that operate on a data object level, SOCRATIC intelligently replicates

a bounded number of network-coded blocks that are subsequently replicated. SO-

CRATIC enforces a type of rate control that limits the total number of generated

network-coded blocks and imposes a dynamic limit for each relay. A publisher for

a data object decides to replicate a bounded number of coded blocks to each en-

countered neighbor based on the neighbor’s popularity index. Nodes that frequently

visit new neighbors, visit neighbors for long periods of time, or have more interest

in the data object, have a higher popularity index and receive more blocks. Using

this criteria, SOCRATIC can achieve better network performance than approaches

to replication that are socially-agnostic.

16

2 Related Work

We briefly describe related DTN approaches to content dissemination. Epidemic

dissemination [45] is one baseline for DTN routing protocols: in its simplest form,

nodes exchange cache summaries and replicate each missing data object so that

their caches are identical. To improve epidemic dissemination, PRoPHET [34] re-

duces the number of replicas by sharing encounter history summaries among nodes

and by transitively building an encounter probability matrix; this results in repli-

cation of content to nodes that have a high probability of meeting the destination.

Bounded replica approaches such as Spray and Wait [38] enforce an explicit con-

straint on the number of data object replicas to finely control network usage; relays

may further replicate the data object so long as the bound is not exceeded (e.g., us-

ing forwarding tokens), and relay selection is based on first encounter. Utility-based

DTN approaches [9, 41] select relays and data objects for replication according to a

generic utility function, and may also support bounded replicas or a utility thresh-

old. Typical utility functions aim to reduce delivery latency and network usage by

selecting nodes based on the content (e.g., data object creation time), context (e.g.,

node mobility as in most-social-first) or both (e.g., last node to see the data object’s

destination first, or minimize delay). Hui et al [26] identify the importance of using

network centrality and social community knowledge when routing in packet switched

networks, and propose a method that exploits both criteria in their technique called

BUBBLE. Similar to this work, SOCRATIC estimates a node’s centrality using a

metric that encompasses the node degree over time. Unlike BUBBLE, SOCRATIC

is designed for an ICN and uses the explicit subscriptions to infer social community,

and includes link duration in the estimate of network centrality.

The discussed DTN approaches are agnostic of a data object’s interests and

are sender driven. Our research investigates DTN and ICN, which is receiver driven

and has separate interest dissemination and content dissemination phases. Social-

Cast [16] is a utility-based replication scheme for DTN pub-sub systems that uses

interests and a social heuristic to compute a single value for the utility of storing

a replica at a particular node, using utility forecasting. In this scheme, data ob-

17

jects are forwarded only to nodes with a greater utility. The DIRECT protocol [40]

replicates data objects towards the direction of the interest originator. Interests are

propagated epidemically across connected components, and data objects traverse the

reverse path of the interest propagation. Periodic purging and refreshing of interests

ensure that stale paths are discarded and that new paths are discovered.

Several ICN architectures have been proposed as alternatives to the existing

Internet architecture, including NDN [28], PURSUIT [42], NetInf [17], and Mobil-

ityFirst [39]. In the context of ICDTN, all of these approaches are limited due to

their use of exact match naming, global name resolution services or traditional rout-

ing, or limited push-based information dissemination primitives [44]. SOCRATIC

addresses all of these limitations; it generalizes exact match through a satisfaction

degree metric, and uses this metric to push content which is subsequently routed

using a disruption-tolerant protocol that does not require global connectivity.

Recent work [47] has demonstrated the value of combining network coding,

ICN [35] and DTN [32], using interest-based routing. In the ICEMAN system,

network coding can achieve significant performance benefits over fragmentation [29].

As an extension of ICEMAN, SOCRATIC uses DIRECT on network coded blocks

when a path to the subscriber exists. Unlike existing approaches, SOCRATIC sets

a global bound on the number of network encoded blocks for each data object, and

a dynamic bound for each h relay node, data object i pair. To the best of our

knowledge, SOCRATIC is the first proposal to set this dynamic bound based on an

interest satisfaction metric. Furthermore, none of the existing social ICN and DTN

replication approaches operate on network encoded blocks.

3 Method

The beginning of wisdom is the definition of terms.
— Socrates

The approach to naming in SOCRATIC fits tactical networks very well since it elim-

inates the need for a global DNS by pushing content discovery into the bundle layer.

In ICEMAN, only data objects that match an interest with a satisfaction greater

18

than a threshold are transferred. Interest predicates for node S are represented as

a set of weighted attribute/value pairs, I(S) ✓ A ⇥ V ⇥ N, where A, V, and N

denote the domains for attributes, values, and weights. We say that content C with

weighted attributes M(C) satisfies interest I(S) for node S with a satisfaction degree

�(C, S) defined as in [47], where

�(C, S) :=

P
{wi | (ai, vi, wi) 2 I(S) \ M(C)⇥N}P

{wi | (ai, vi, wi) 2 I(S)} . (2)

We say that C matches S with threshold s, written as C |=s I(S), i↵ �(C, S) � s. In

other words, the normalized weighted sum of overlapping attributes between content

M(C) and interest I(S) determines the satisfaction degree.

Interests are propagated epidemically and periodically purged. Content dis-

semination occurs either when an interest from node S with threshold s arrives at

node P with a content C such that C |=s I(S), or when a data object C arrives at

node R who has recently received an interest from node S such that C |=s I(S). In

both cases we configured ICEMAN to replicate C to the neighbor from which P or

R received the interests from S, e↵ectively performing DIRECT.

After a data object C was published at node P and an interest from S has

arrived such that C |=s I(S), P will generate network coded blocks C0, C1, . . . Ck

to replicate towards S via relay R until either: 1) R and P become disconnected,

or 2) R has received enough blocks to reconstruct C. We have limited the number

of encoded blocks that the publisher can generate and transmit in order to avoid

flooding the network with the content. Each block Ci is cached and routed just like

any other data object, and inherits the attributes of C: M(Ci) � M(C).

3.1 Popularity Index

SOCRATIC expands on ICEMAN as follows. To measure a node’s popularity, each

node R maintains a log of all of its previous contacts within a window of the past

wt seconds. This log is used to compute the node’s average connect time AR
vt and

the number of encountered distinct neighbors NR
e . Since SOCRATIC is deployed in

a managed network, we assume that each node has an estimate of the network size,

19

N . We use the average connect time to compute a scalar NR
avt given by

NR
avt :=

8
>>>>>><

>>>>>>:

2 if AR
vt � �2,

1 if �1  AR
vt < �2,

0 if AR
vt < �1,

(3)

where �1, �2 are parameters that are set a priori according to network char-

acteristics (15, 30 seconds in our scenarios). Node R computes its popularity index

as

PR :=
NR

e ⇤ NR
avt

N
. (4)

Nodes exchange their popularity indices during neighbor discovery. When

content dissemination occurs at node P for content C and interest from neighbor R,

if content C 6|=s I(R) (content C does not pass R’s satisfaction threshold s) then the

SOCRATIC algorithm is activated to compute the number of network coded blocks

to generate and forward to the neighbor. If C |=s I(R), then there is a content match

and P reverts to the previously described ICEMAN dissemination mechanisms (i.e.,

DIRECT). With SOCRATIC, P computes a satisfaction scalar M(C, R) as

M(C, R) :=

8
>>>>>>>>>><

>>>>>>>>>>:

2 if 0.75 ⇤ s  �(C, R) < s,

1.5 if 0.5 ⇤ s  �(C, R) < 0.75 ⇤ s,

1 if 0.25 ⇤ s  �(C, R) < 0.5 ⇤ s,

0.5 if �(C, R) < 0.25 ⇤ s.

(5)

Let B(C) be the number of blocks needed to decode C. P computes a maximum

number of blocks of C to replicate to R, B(C, R), as

B(C, R) := PR ⇤ M(C, R) ⇤ B(C). (6)

Let �P (C, R) be the number of generated blocks for C that are successfully sent by

publisher P to R, and �P (C) be the total number of successfully sent blocks for C.

20

Each time P encounters some neighbor R, P greedily sends blocks to R to maximize

�P (C, R) according to two constraints, namely,

C1) �P (C, R)  B(C, R), (7)

and

C2) �P (C)  � ⇤ B(C). (8)

� is a replication parameter that is set a priori according to network characteristics

(1.5 in our scenarios).

3.2 Example Scenario

T1:

a b

A: pub(file1, report=SPOT, area=x) T2:
C: sub(report=SPOT:1, area=y:1, 60%)

social replication

c dc b

DIRECT replication

D: sub(report=SPOT:1, area=x:1, 100%)

d

Figure 4: An example scenario illustrating all of the mechanisms of SOCRATIC.
The black square represents a decoded data object, and the rectangles represent
encoded blocks of that data object.

Figure 4 illustrates a simplified scenario that demonstrates all of the mecha-

nisms of SOCRATIC. At time T1 node a publishes file1 with 2 attributes and node c

subscribes to 2 attributes, each with a weight of 1, and a threshold of 60%, or s = 0.6.

We assume � = 1.5, B(file1) = 4, node b encounters a number of neighbors for du-

rations such that N b
avt = 2, N b

e = 2, P b = 1, and node c has N c
avt = 1, N c

e = 1,

P c = 0.25. Given the subscriptions, we have M(file1, b) = 0.5 and M(file1, c) = 2.

Thus a computes B(file1, b) = 1 ⇤ 0.5 ⇤ 4 = 2 and B(file1, c) = 0.25 ⇤ 2 ⇤ 4 = 2, and

will generate 4 linearly independent encoded blocks: 2 that are sent to c and 2 that

are sent to b by constraint C1 (constraint C2 does not apply since the number of

blocks, 2, is less than 1.5 ⇤ 4 = 6). Later, at time T2, c and b are connected with d

which has an exact match interest with the original data object, and thus its encoded

blocks. Since there is a stable path between c,b,d and file1 |=1 I(d), DIRECT is

21

triggered which replicates these blocks to d who subsequently reconstructs the file.

Note that decoding only occurs at the subscriber, and that the publisher is solely

responsible for determining the number of blocks generated.

3.3 Discussion

From these definitions and the example scenario, it is clear that the number of en-

coded blocks that are generated for a neighbor is proportional to a node’s popularity

and its interest commonality with the data object. NR
avt acts as a filter to prevent

sending blocks to nodes with a very short contact time despite their popularity (i.e.

a lossy interface), and gives more weight to nodes that have a longer contact time.

Through NR
e , nodes that meet many other nodes will receive more blocks. M(C, R)

exploits the observation that in tactical networks nodes with similar interests tend to

be co-located. Replication limitations do not occur if the neighbor has subscriptions

that match the data object, or if the neighbor is along a stable route to a subscribed

node. Regular ICEMAN is structured so that either data objects do or do not match

an interest, however SOCRATIC uses the satisfaction degree directly to make deci-

sions. Only the publisher controls the number of blocks that are generated in the

network for a data object, and places these blocks carefully. Since the blocks are

treated as any other data object, they are subsequently routed to subscribers if a

stable path exists.

From a theoretical perspective, if D denotes the number of published data ob-

jects at a particular node, and Ne denotes the number of encountered neighbors, then

this algorithm requires O
�
D⇤Ne

�
additional memory at the node when compared to

ICEMAN. The other additional memory costs are negligible. In practice, the block

counters and data objects should be aged and purged to save memory. Typically

data object purging is done through a maximum hop-count TTL or timestamp which

indicates when the content is no longer useful, although more complicated policies

are supported such as enforcing a total order on classes of content (e.g., video frame

data objects with a sequence number attribute). These policies are enforced by the

utility caching framework as described in Section 1.5. The parameters wt, �1, �2,

22

� are network dependent and are determined a priori, typically through extensive

emulation.

4 Experiments

Two important characteristics of maps should be noticed. A map is not the
territory it represents, but, if correct, it has a similar structure to the
territory, which accounts for its usefulness.

— Alfred Korzybski

We evaluated the implementation using the Automatic Network Test System (ANTS,

described in Section 4.1) with the CORE [8] network emulator, where each node is

associated with a Linux light-weight container running SOCRATIC. We used the

CORE basic MAC which does not model layer 1 or 2 phenomena in detail (lossless

11Mbps pipes with 50ms delay). Each node has a broadcast radius of 250m and

unlimited cache capacity. Each data object is 1MB and the block size is 32KB. We

compared SOCRATIC against four other content dissemination algorithms with net-

work coding enabled: DIRECT3, EPIDEMIC, SPRAY, and sSPRAY. DIRECT is

ICEMAN as previously described, with DIRECT routing and constraint C2 (defined

in Section 3.1). EPIDEMIC is ICEMAN with Epidemic [45] routing and constraint

C2. SPRAY is SOCRATIC without DIRECT routing and only constraint C2 (it

replicates on first encounter). sSPRAY (social SPRAY) is SOCRATIC without DI-

RECT. The SPRAY approach is similar to social oblivious replication approaches

that replicate on first encounter, while sSPRAY incorporates the social popular-

ity index to give replication preference to more social nodes. All experiments are

averaged over 4 runs, each with a di↵erent mobility seed.

4.1 Automatic Network Test System (ANTS)

In this section, we describe ANTS (Automatic Network Test System), a network

emulator harness that was designed to evaluate SOCRATIC. It increases test re-

producibility and ease of development for networks system evaluation that require

a detailed model. We first motivate the design of this evaluation system, and then

3 The interest refresh was set to 20 seconds, with a 30 second purge.

23

discuss the technical details of its implementation. Although a full description is

outside the scope of this thesis, we detail the system here to elucidate the evaluation

methodology for SOCRATIC.

Simulation Emulation DeploymentDesign Eval. Design Eval. Eval.Design

DebuggingDebuggingDebugging

Redesign Redesign

increased model accuracy

development ease, repeatability

Figure 5: The design, debug, and evaluate process cycle that was used when
developing ICEMAN and SOCRATIC.

We found that designing and implementing a new network architecture re-

quires multiple iterations of development and evaluation using models at di↵erent

levels of detail, for both the architecture implementation and the targeted network

environment. For example, the routing and network coding modules of ICEMAN

and SOCRATIC were first implemented as software within QualNet [7], a discrete-

time event simulator which provides an API with a high ease of development and

whose experiments generate highly repeatable results. After undergoing multiple

iterations of development, debugging and and evaluation at the simulator stage, the

protocols needed to be implemented together on a single stack, and evaluated on a

network with a more detailed model, in order to understand how the system would

behave in a disaster response or tactical scenario with current hardware. The im-

plementation at the emulation stage used the full network stack and was very close

to the end solution that ran on mobile phones. In the context of ICEMAN, we then

deployed the implementation on actual hardware and evaluated the system using

only network emulation. Lastly, we performed over-the-air (OTA) tests in a target

network. Debugging occurred during the design and evaluation of the architecture

at each stage, but major problems with a module required it to be re-designed and

evaluated at a previous stage. Fig. 5 illustrates this development approach, and the

spectrum of trade-o↵s for development ease, repeatability, and model accuracy.

Discrete-time simulators [6,7] allow the developer to write their protocols at a

24

high level (by abstracting the network API) and specify network parameters with-

out worrying about the actual hardware or specific network characteristics. Multiple

instantiations of the protocol pass messages to each other via a FIFO queue which

adds delays, jitter (variance in delay), and errors that are typical of a target net-

work deployment. The protocol specification is abstract enough that time can be

virtualized and each message is immediately processed in a fast simulation time.

The simulation stage allows the designer to quickly understand at a high-level how

an idealized implementation will perform in an idealized network. The designer can

rapidly prototype di↵erent versions of the protocol and quickly discover sources of

protocol design errors and scalability issues.

The software implementation at the simulation stage is simple and does not

need to handle concurrency, hardware specific driver code, or use a real network

socket API which may have operating system dependent idiosyncrasies. These ab-

stractions in the implementation model drastically reduce the development time by

eliminating the need to write di�cult to debug code. The network model is also ab-

stracted, and may not run the full targeted network stack (each network layer runs

its own abstracted code). This network abstraction enables repeatability, where each

test case specifies a unique seed to ensure the same randomness (e.g. jitter, packet

loss, mobility) occurs across multiple executions of the same test. Due to the sim-

plified model, simulators typically provide an easy way to generate a multitude of

repeatable tests. The disadvantage of simulation is that it does not capture low level

phenomena which may dramatically e↵ect the end system performance and system

implementation di�culty. For example, SOCRATIC uses network coding which re-

quires matrix inversion calculations and an advanced level of code sophistication to

achieve correctness and performance. First, the network coding functionality was

evaluated within QualNet to verify correctness and to initially understand the ben-

efits of the approach [32]. However, since QualNet does not model CPU latency, it

was necessary to then evaluate the network coding component within SOCRATIC in

emulation in order to understand how feasible the approach was in practice. Could

network coding even be deployed on mobile phones with limited resources? The

25

answer is yes, but the parameters are important [29]. The results of emulation

uncovered the tradeo↵s between fragmentation size, rate, and performance.

Network emulation [8, 11] executes instances of the software implementation

either as separate processes, light weight containers, or virtual machines, and models

the network communication between these instances in real time. Since the network

is emulated, the designer can debug an implementation that is close to the final

implementation on a variety of network topologies, whereas actual deployment is

typically time and cost prohibitive when still at the design stage. The implementa-

tion at this stage is mostly complete, but is missing hardware specific driver code

if the targeted hardware is not emulated. The network emulation is more detailed

than that of a simulator, and the actual network stack may be used while only the

physical layer is abstracted (e.g., using a pipe or a socket). The test reproducibility

is reduced due to the use of random number generators internal to the emulator,

and due to timer dependent code: the same test cases may give di↵erent results

depending on the hardware and operating system that executes the emulation. In-

deed, we found that in the early stages of our research machines with a faster CPU

had better evaluation results than machines with a slower CPU, an indication that

it would be di�cult to make quantitative claims that were reproducible. Typically

the emulated networks are very specific and the emulation tools do not provide a

way of generating many test cases, as in a simulator. In practice, creating multiple

runs with di↵erent parameters must be done manually, which is time consuming

and error prone. In comparison to simulation, errors in parameter assignment often

take a long time to discover, since they appear at the end of test execution and

emulation runs in real-time. What is needed is a system for network evaluation that

can achieve the high model detail of emulation with the repeatability and ease of

a simulator. We designed ANTS in response to this need. ANTS is a test harness

for a network emulator (currently CORE) that enables the designer to succinctly

specify tests which are compiled to fully automated test cases that can be executed

with greater ease and reproducibility than what is available with traditional network

emulation.

26

EvaluationExperiment Design

Test
Specification

Test Generation Test Cases

test_spec
.json

Test
Generator

testA/

testB/

testC/ Mobility
Generator

Validation
Scripts

Test Execution

Test
Runner

CORE

EMANE

Test Results

testA_logs/

testB_logs/

testC_logs/

Test Presentation

Regression Testing

App.
Metrics

App.
Graphs

Network
Metrics

Network
Graphs

SOCRATIC

Resource
Monitor

Repeatable Test Cases Manual Inspection, Debugging

Figure 6: An architecture diagram and work flow of the Automatic Network Test
System that was used to evaluate SOCRATIC in a realistic, yet repeatable way.

Figure 6 illustrates the ANTS architecture and work flow of test generation and

evaluation. A user creates first creates a test specification file that is in JavaScript

Object Notation (JSON) format that defines the entire network and application

parameters, such as the number of nodes, duration, mobility, and tra�c parameters.

We use JSON since it is human readable, easy to modify, and it lends itself to Web

services should the framework have a Web frontend. Figure 7 shows the top portion

of a test specification file to illustrate how the parameters are defined and the use

of the repeat and assign metacommands (prefixed with the ˆsymbol and within a

dictionary). This specification defines a test that has 22 nodes, a duration of 1880

seconds, and covers a 1300x1300m2 area.

The repeat metacommand is used to automatically generate a number of test

cases that are identical, except for a few parameters which vary. The ˆrepeat

keyword takes an array as a value, and will create a test case for every element in

the array, where the key for which ˆrepeat is a value is assigned each element. For

example, in Figure 7 the seed is assigned 1 through 5 in di↵erent test cases. The

metacommands can compose, to create every permutation for the repeat elements.

To see this functionality, in Figure 7 the config key has a ˆrepeat command

and gets assigned dictionaries with keys ˆassign and %%diss%%. When combined

with the seed repeat, this test specification generates a total of 10 test cases, one

for every combination of seed and config assignments. This metacommand eases

the generation of a large suite of test cases, and reduces human errors by allowing

27

the user to only specifying what parameters to vary.

The assign metacommand is used for string replacement. The ˆassign key-

word takes the value and assigns it as the value for which the metacommand dictio-

nary (the enclosing dictionary { } of the metacommand) is a value. Any other keys

specified in the metacommand’s enclosing dictionary are then used to string replace

all occurrences of that key with the key’s value. For example, in Figure 7 the string

%%diss%% will be replaced with socratic or epidemic, depending on the assign-

ment from repeat. In this way, each test case that uses the config-socratic.xml

configuration file will have the output set to experiment-socratic, and each

test cases that uses the config-epidemic.xml configuration file will have the

output set to experiment-epidemic. The name is used to specify an output

directory when running experiments, thus the experiment results for SOCRATIC

and EPIDEMIC will be stored in separate directories. This metacommand is in-

valuable when creating a test specification that results in dozens if not hundreds of

test cases, as one can easily find the key parameters for each test output by reading

the directory name.

The specification may also reference external files such as application config-

uration (e.g., the config-socratic.xml and config-epidemic.xml lines in

Figure 7), validation scripts or tra�c generation scripts which will be executed. This

specification and the external files are passed to the Test Generator which acts as

a compiler that parses the JSON and outputs multiple stand-alone test cases which

are distributed separately from the Test Generator, and are executed using the Test

Runner. A test case is a bundle that contains all of the dependent scripts and li-

braries, so that it can be run on any environment that supports the Test Runner.

The Test Generator uses mobility model libraries (e.g., BonnMotion [1] for Random

Waypoint and Nomadic mobility) when generating tests, and these models and their

parameters are included in the test specification and automatically passed to these

tools. The user can optionally add validation scripts which are executed at the

end of the test to verify that the applications behaved correctly and that the test

passed. The decision to separate test generation from test execution was deliber-

28

ate. This demarcation enables the Test Generator and Test Runner to be developed

independently, and relieves the evaluator from searching for the test generator and

its dependencies to recompile the tests. This separation is analogous to the tools

and stages to C development: C source code (i.e., test specification), a compiler (i.e.,

test generator), its binary object code (i.e., test case), and an execution environment

(i.e., test runner). Binaries (i.e., test cases) are easier to distribute and execute, but

changes require the source code (i.e., the test specification).

The Test Runner loads test cases by reading a file which specifies the paths

to the test cases, along with the number of times to execute each test. The Test

Runner will initialize the emulator and perform all the initialization necessary to

start the architecture and the applications. In Figure 6 we see that the Test Runner

initializes the CORE emulator for network emulation, with EMANE [4] for realistic

physical layer modeling, SOCRATIC (the application under test), and a Resource

Monitor. The Resource Monitor keeps track of system resource utilization to ensure

that the system under test does not run out of resource and generate invalid results.

A separate process periodically polls the system for data (i.e., CPU, memory, and

file descriptor usage) and stores this information in a log that is checked by the

Test Runner at the end of the test execution to ensure that no resource limits were

violated during the test. The test specification can set a maximum CPU usage

for each light weight container, using the Linux program cpulimit [2], to enforce

container fairness or to model a CPU constrained device.4 An optional daemon can

be activated which will periodically send a broadcast ping to each neighbor and

record replies—this connectivity data is used to build network connectivity graphs.

At the end of the test execution (the exact duration is in the specification)

the Test Runner ensures that all of the emulation and application processes have

exited and kills any leftover processes so that the system has a clean slate for the

execution of the next test. The Test Runner collects all of the log files generated by

the emulator, applications, and resource monitor, and stores them in a single output

directory along with the test specification file. To increase repeatability, the Test

4 We found that cpulimit was incompatible with some applications, since it bounds CPU usage
using the SIGSTOP and SIGCONT POSIX signals which can cause other interrupts to be lost.

29

Runner generates a file in the output directory that contains system information

such as the version of Linux, hardware details, and all of the installed packages. The

output files are then amenable to graph generation and metric aggregation.

As illustrated by the thick arrows in Figure 6, ANTS has 3 main work flows:

1) development and debugging, 2) regression testing, and 3) evaluation. All 3 of

these work flows were used in the development of SOCRATIC. In work flow 1) a

developer generates a series of tests, executes the tests, examines the output, and

uncovers bugs in the protocol that could manifest as crashes, poor performance or

error messages. They then fix the bug, update the code, and re-run the tests. In work

flow 2) a developer generates a series of test cases with validation scripts that ensure

that the system behaves in a predetermined way. Usually these tests exercise bare-

bones functionality or test features in ways that were previously broken. Regression

tests are executed whenever a new version of the system is created to ensure that

previously existing functionality still works in the new version. Lastly, work flow

3) occurs once the system has become stable and requires evaluation. In this work

flow, a series of automated scripts parse the output logs for the application and the

network to generate graphs and aggregate metrics. Using ANTS in these 3 ways

greatly reduced the development time of SOCRATIC by quickly uncovering bugs

and sources of protocol ine�ciencies, and by eliminating a class of human errors

where experiments were conducted with incomparable parameters.

4.2 Disconnected Scenario

The disconnected scenario models 4 squads of 5 nodes on patrol in 4 di↵erent regions,

with 2 UAVs that circle between the squads. The UAVs cannot communicate directly

with each other. Figure 8 illustrates the emulated scenario and Table 1 summarize

the parameters. The total area for the emulation is 1300x1300 m2 and the duration

of each experiment is 30 minutes. There are two UAVs flying around the area with a

velocity of 30 meters/sec around a circle with radius of 550 meters. Each member of

a squad has a mobility pattern of Random Waypoint with minimum and maximum

velocity of 1 and 7 meters/sec, respectively. The minimum and maximum pause

30

test spec.json

[
{

"num_nodes" : 22,
"duration" : 1880,
"seed" : { "ˆrepeat" : [1, 2, 3, 4, 5] },
"area_height" : 1300,
"area_width" : 1300,
"config" : {"ˆrepeat" : [

{ "ˆassign" :
{

"path" : "./Configs/config-socratic.xml"
},

"%%diss%%" : "socratic"
},
{ "ˆassign" :

{
"path" : "./Configs/config-epidemic.xml"

},
"%%diss%%" : "epidemic"

}
],
"output" : "experiment-%%diss%%",

...
},

...

Figure 7: An example portion of a test specification file. It is in the JSON for-
mat with metacommands ˆrepeat and ˆassign that the Test Generator uses to
produce multiple test files that are executed by the Test Runner.

31

time for each group member is zero and five seconds, respectively. 25 data objects are

published 5 minutes into the test, where each data object has a single subscriber with

a 100% satisfaction degree and a 100% threshold. The squad member subscriptions

occur 15 minutes into the test, and the UAV subscriptions occur at the beginning of

the test. The UAVs have 75% satisfaction degree with all of the data objects (with

a 100% threshold). Publisher-subscriber pairs are chosen uniformly at random, with

the constraint that the publisher and subscriber belong to di↵erent squads. This

constraint implies that all inter-squad communication must occur through the UAV

message ferries.

1300m

P

S

UAV

400m

250m

UAV

250m

1300m

Figure 8: Disconnected scenario. Node “P” publishes a data object that only node
“S” subscribes to. “UAV” nodes ferry the data object from “P” to “S”.

Total Area 1300x1300m2

Total Nodes 22
Duration 30 minutes
UAV Mobility Circle (550m radius)
UAV Velocity 30m/s
Squad Member Mobility Random Waypoint
Squad Member Min, Max Velocity 1,7m/s
Squad Member Min, Max Pause Time 0,5s

Table 1: Disconnected scenario parameters.

32

5 Results

Figure 9 graphs the delivery versus the delay across the di↵erent dissemination

approaches. Since Epidemic dissemination is usually considered a baseline for DTN

routing protocols, our comparison shows that SOCRATIC outperforms this approach

and delivers the most data objects within the delay constraint. It is only when

the delay constraint is very high that EPIDEMIC slightly outperforms SOCRATIC

because the network is less congested after the initial flood of data objects which

results in faster delivery while SOCRATIC only caches the data object judiciously to

save network resources. The figure also shows that SOCRATIC clearly outperforms

other techniques for all level of delay constraints.

In comparing SPRAY and sSPRAY, it is clear that the popularity index cap-

tures the higher social value of the UAVs, enabling sSPRAY to replicate more blocks

directly to the UAVs than SPRAY which replicates most of the blocks to its immedi-

ate neighbors who are not in contact with the subscriber. This comparison highlights

how social information is used to discover better relays. In comparing DIRECT and

sSPRAY, we see the benefit of replicating blocks multiple hops along the path that

the last interest was received—this path tends to be through a UAV directly or an

intermediate node to a UAV if it recently received the interest. In comparing DI-

RECT and SOCRATIC, we see how placing replicas closer to the destination prior

to routing consistently reduces delay.

Figure 10 shows the total bandwidth utilized (for transmit (Tx) and received

(Rx)) along with total data object (DO) delivery. SOCRATIC delivers 100% of

data objects while other techniques deliver less that 100% except EPIDEMIC ap-

proach. This reduction in bandwidth usage enables SOCRATIC to deliver most of

the data objects within less delay than using EPIDEMIC which quickly saturates

the bandwidth. Moreover, SOCRATIC disseminates the information intelligently

and therefore requires less bandwidth usage for the same delivery compared to EPI-

DEMIC approach. Given the interference and scarcity of spectrum in dense wireless

environments, SOCRATIC clearly outperforms all of these techniques by caching

selectively.

33

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800

Av
er

ag
e

nu
m

be
r o

f d
at

a
ob

je
ct

s
w

ith
in

 d
el

ay

Delay (s)

Data objects delivered within delay

socratic
direct

epidemic
spray

sspray

Figure 9: Average delay distribution in the disconnected scenario for the di↵erent
representative replication approaches.

 200

 300

 400

 500

 600

 700

 800

 900

socratic direct epidemic spray sspray
 0

 5

 10

 15

 20

 25

To
ta

l b
an

dw
id

th
 (M

B)

To
ta

l #
 D

O
 d

el
ive

re
d

Dissemination policy

Performance per dissemination policy

Rx
Tx

DO
max. DO delivery

Figure 10: Average transmit megabytes (Tx), receive megabytes (Rx), and data
objects delivered (#DO) for the disconnected scenario. The error bars represent the
min and max across all runs. The red line indicates the maximum possible number
of data objects delivered (max. DO delivery).

34

6 Discussion

Research into e�cient dissemination in ICDTN led to the design of a novel replication

approach called SOCRATIC that unifies replication and network coding to e�ciently

disseminate content through delay-tolerant networks (DTNs). The main idea behind

SOCRATIC is to cache network encoded blocks in nodes that are more relevant in

terms of their interest in the original data object, and nodes that have a higher

probability of meeting another node that has interest in this content by computing

a popularity index. The popularity index computes a value that is proportional

to the interest commonality of node to the data object, average contact time for

the node and the average number of nodes that the node meets. SOCRATIC takes

advantage of the distributed nature of random linear network coding [24] and controls

the number of encoded blocks that a cache receives. This judicious distribution

of the encoded blocks allows the network to utilize minimum network resources

(bandwidth) while maximizing the data delivery. Emulation results have shown

that this technique outperforms several replication approaches proposed in the DTN

literature.

Future work should examine the role the choice in parameters plays in influenc-

ing performance. Can the parameters be discovered dynamically through a learning

phase, or can a portfolio of parameters be used that is selected based on mission con-

text (e.g., similar to adaptive interest modeling in [33])? This work can be integrated

with a more general utility-based dissemination framework, and can apply di↵erent

replication policies according to content priority. Actual publish, subscription, and

mobility traces could be used in an evaluation to determine how well SOCRATIC

captures the social structure in deployed ICDTN applications. ANTS (Section 4.1)

could be expanded to evaluate SOCRATIC on an automated mobile test bed using

an inexpensive hardware platform, such as quad-copters and the iRobot Create [5].

This work can be extended to wireless mobile ad hoc networks (MANETs) where

nodes are mainly connected in the network. In such networks, the popularity index

can be redefined to consider the unique characteristics of MANETs.

35

References

[1] BonnMotion - a mobility scenario generation and analysis tool. http://sys.

cs.uos.de/bonnmotion/. Accessed: 2014-08-01.

[2] cpulimit. https://github.com/opsengine/cpulimit. Accessed: 2014-

08-01.

[3] Creating a secure, private internet and cloud at the tactical edge. http://

www.darpa.mil/NewsEvents/Releases/2013/08/21.aspx. Accessed:

2014-07-18.

[4] Extendable mobile ad-hoc network emulator. http://www.nrl.navy.mil/

itd/ncs/products/emane. Accessed: 2014-08-01.

[5] iRobot create programmable robot. http://en.wikipedia.org/wiki/

iRobot_Create. Accessed: 2014-08-06.

[6] NS-3. http://www.nsnam.org. Accessed: 2014-07-29.

[7] SCALABLE network technologies, QualNet. http://web.

scalable-networks.com/content/qualnet. Accessed: 2014-07-29.

[8] Je↵ Ahrenholz. Comparison of CORE network emulation platforms. In MIL-

COM, pages 166–171. IEEE, 2010.

[9] Aruna Balasubramanian, Brian Levine, and Arun Venkataramani. DTN routing

as a resource allocation problem. In ACM SIGCOMM Computer Communica-

tion Review, volume 37, pages 373–384, 2007.

[10] Burton Bloom. Space/time trade-o↵s in hash coding with allowable errors.

Communications of the ACM 13, 1970.

[11] Marta Carbone and Luigi Rizzo. Dummynet revisited. In ACM SIGCOMM

Computer Communication Review, 2010.

36

[12] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new

communication infrastructure. In Revised Papers from the NSF Workshop on

Developing an Infrastructure for Mobile and Wireless Systems, 2002.

[13] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and

H. Weiss. RFC 4838. IETF, 2007.

[14] Narottam Chand, Ramesh C Joshi, and Manoj Misra. Cooperative caching in

mobile ad hoc networks based on data utility. In Mobile Information Systems,

2007.

[15] William Cook, William Cunningham, William Pulleyblank, and Alexander

Schrijver. Combinatorial Optimization. Wiley-Interscience, 1997.

[16] Paolo Costa, Cecilia Mascolo, Mirco Musolesi, and Gian Pietro Picco. Socially-

aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks.

Journal on Selected Areas in Communications, 26(5):748–760, 2008.

[17] Christian Dannewitz, Dirk Kutscher, Börje Ohlman, Stephen Farrell, Bengt

Ahlgren, and Holger Karl. Network of information (NetInf)–an information-

centric networking architecture. Computer Communications, 2013.

[18] Paul Erdős and Alfréd Rényi. On a classical problem of probability theory.

Magyar Tudomos Akada Matematikai Kutattk Kzlemei, 1961.

[19] William Finn. Improving battlefield connectivity for dismounted forces. Defense

Tech Briefs, 2012.

[20] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. Network coding:

an instant primer. ACM SIGCOMM Computer Communication Review, 2006.

[21] Skyler Frink. Secure cell phone technology gets ready for deployment. Military

and Aerospace Electronics, 2012.

[22] Ali Ghodsi, Teemu Koponen, Jarno Rajahalme, Pasi Sarolahti, and Scott

Shenker. Naming in content-oriented architectures. Proceedings of the ACM

SIGCOMM workshop on Information-centric networking, 2011.

37

[23] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath Raghavan,

and James Wilcox. Information-centric networking: seeing the forest for the

trees. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks,

page 1. ACM, 2011.

[24] Tracey Ho, Ralf Koetter, Muriel Medard, David R Karger, and Michelle E↵ros.

The benefits of coding over routing in a randomized setting. In International

Symposium on Information Theory (ISIT), page 442, 2003.

[25] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and

Christophe Diot. Pocket switched networks and human mobility in conference

environments. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-

tolerant networking, 2005.

[26] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based forwarding

in delay-tolerant networks. Transactions on Mobile Computing, 10(11):1576–

1589, 2011.

[27] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

di↵usion: a scalable and robust communication paradigm for sensor networks.

In Proceedings of the 6th annual international conference on Mobile computing

and networking, 2000.

[28] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,

Nicholas H Briggs, and Rebecca L Braynard. Networking named content. In

Proceedings of the 5th international conference on Emerging networking exper-

iments and technologies, 2009.

[29] Joshua Joy, Yu-Ting Yu, Mario Gerla, Samuel Wood, James Mathewson, and

Mark-Oliver Stehr. Network coding for content-based intermittently connected

emergency networks. In Proceedings of the 19th Annual International Confer-

ence on Mobile computing and Networking, pages 123–126. ACM, 2013.

[30] Vikas Kawadia, Niky Riga, Je↵ Opper, and Dhananjay Sampath. Slinky: An

adaptive protocol for content access in disruption-tolerant ad hoc networks.

38

In ACM MobiHoc 2011 International Workshop on Tactical Mobile Ad Hoc

Networking, 2011.

[31] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,

Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond)

network architecture. In ACM SIGCOMM Computer Communication Review,

2007.

[32] Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario Gerla. Code

torrent: content distribution using network coding in vanet. In Proceedings of

the 1st International Workshop on Decentralized Resource Sharing in Mobile

Computing and Networking, pages 1–5. ACM, 2006.

[33] Hua Li, Ralph Costantini, David Anhalt, Rafael Alonso, Mark-Oliver Stehr,

Carolyn Talcott, Minyoung Kim, Timothy McCarthy, and Samuel Wood. Adap-

tive interest modeling enables proactive content services at the network edge.

UMAP Project Synergy (ProS), 2014.

[34] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in in-

termittently connected networks. ACM SIGMOBILE Mobile Computing and

Communications Review, 7(3):19–20, 2003.

[35] Marie-Jose Montpetit, Cedric Westphal, and Dirk Trossen. Network coding

meets information-centric networking. In Proceedings of the 1st ACM work-

shop on Emerging Name-Oriented Mobile Networking Design-Architecture, Al-

gorithms, and Applications, 2012.

[36] Erik Nordström, Per Gunningberg, and Christian Rohner. A search-based net-

work architecture for mobile devices. Technical report, Department of Informa-

tion Technology, Uppsala University, 2009.

[37] Soon-Young Oh, Davide Lau, and Mario Gerla. Content centric networking in

tactical and emergency MANETs. In Wireless Days, IFIP, pages 1–5. IEEE,

2010.

39

[38] Konstantinos Psounis and Cauligi S Raghavendra. Spray and wait: An e�cient

routing scheme for intermittently connected mobile networks. In Proceedings of

the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking (WDTN),

2005.

[39] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mobili-

tyFirst: a robust and trustworthy mobility-centric architecture for the future

Internet. ACM SIGMOBILE Mobile Computing and Communications Review,

2012.

[40] Ignacio Solis and JJ Garcia-Luna-Aceves. Robust content dissemination in dis-

rupted environments. In Proceedings of the Third ACM Workshop on Challenged

Networks, pages 3–10. ACM, 2008.

[41] Thrasyvoulos Spyropoulos, Thierry Turletti, and Katia Obraczka. Routing

in delay-tolerant networks comprising heterogeneous node populations. IEEE

Transactions on Mobile Computing, 8(8):1132–1147, 2009.

[42] Dirk Trossen and George Parisis. Designing and realizing an information-centric

internet. IEEE Communications Magazine, 2012.

[43] Gareth Tyson, John Bigham, and Eliane Bodanese. Towards an information-

centric delay-tolerant network. In Proceedings of IEEE INFOCOM Workshop

on Emerging Design Choices in Name-Oriented Networking (NOMEN), 2013.

[44] Gareth Tyson, Eliane Bodanese, John Bigham, and Andreas Mauthe. Beyond

content delivery: Can ICNs help emergency scenarios? IEEE Network, 2014.

[45] Amin Vahdat and David Becker. Epidemic routing for partially connected ad

hoc networks. Technical report, CS-200006, Duke University, 2000.

[46] Forrest Warthman. Delay-tolerant networks (DTNs) a tutorial. Technical re-

port, Warthman Associates, 2003.

[47] Samuel Wood, James Mathewson, Joshua Joy, Mark-Oliver Stehr, Minyoung

Kim, Ashish Gehani, Mario Gerla, Hamid Sadjadpour, and J.J. Garcia-Luna-

40

Aceves. ICEMAN: A system for e�cient, robust and secure situational aware-

ness at the network edge. In IEEE MILCOM, 2013.

[48] Wenrui Zhao, Yang Chen, Mostafa Ammar, Mark Corner, Brian Levine, and

Ellen Zegura. Capacity enhancement using throwboxes in DTNs. In Mobile

Adhoc and Sensor Systems (MASS), pages 31–40. IEEE, 2006.

41

